
Pseudo-Vector Machine For Embedded

Applications

by

Lea Hwang Lee

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

at the
The University of Michigan

2000
Doctoral Committee:

Prof. Trevor Mudge, Chairperson
Prof. Richard Brown
Prof. Ed Davidson
Prof. Marios Papaefthymiou
Prof. Karem Sakallah





“We are moving into a third stage of computing. In the first,
the mainframe world, there was one computer for many people.
In the second, the PC world, there was a computer for each person.
In the next stage there will be many computing devices for each
person...”

Roy Want,
Palo Alto Research Center, Xerox Corp.,
Palo Alto, CA.
Source: PC Week Online, January 3, 2000



© 000
2
Lea Hwang Lee
All Rights Reserved



To My Mother,
Chern, Der-Shin,

And
My Sister,

Lee, Deek Ann,

For their unfailing care and support.
ii



a

d on

years

n. I

r, I

rious

n the

rch

e had

lly or

ost

to Bill

e my

and

ort

nted
ACKNOWLEDGEMENTS

I joint the M-CORETM Technology Center (MTC), Motorola Incorp., Austin, Texas, as

summer intern in 1994. At that time, the group (under a different name) had just embarke

developing a new ISA for targeting mid-to-low end embedded markets. I spent the next two

(1995 and 1996) working and traveling between Austin, Texas and Ann Arbor, Michiga

became a full-time employee towards the end of 1996.

This dissertation work is not formally nor directly funded by any organization. Howeve

did receive a lot of assistance from the MTC. In particular, they had given me access to va

software tools and benchmark programs. For a brief period of time, they had also kept me o

payroll while I was working full-time on my dissertation - what a perfect way to fund a resea

project.

I am deeply indebted to my manager, John Arends, for all the constant guidance h

provided to me. From day one, he has always been there to renter his help, technica

otherwise.

I am very grateful to my co-worker and my best friend, Jeff Scott. He is one of the m

talented, energetic, motivated and creative engineer I have ever met. I am also very grateful

Moyer for all his technical assistance and insightful advises. His insights has always mad

“research life” much more interesting and challenging.

I am also deeply indebted to Prof. Trevor Mudge for all his technical assistance

advises, without which, this dissertation work would be impossible.

Lastly, but not the least, I would like to thank the entire MTC team, for all their supp

they have given to me. I feel honored, to have such a great opportunity to work with this tale

and motivated group of people.
iii



nce

f this

e to

a

nce

and

-off.

essing

our

for

that

alled

ch

ation

trol

t-stride
PREFACE

The focus of this dissertation is on designing low-cost, low-power and high performa

processors for mid-to-low end mobile embedded applications. In particular, the main goal o

work is to explore ways to add a minimum amount of hardware to a single issued machin

improve its performance on critical loop executions- since many of these applications spend

significant amount of their execution time on a handful of critical loops. Improve the performa

on these loops provides the biggest bang for the buck.

This dissertation borrows many existing architectural ideas from vector processors

DSP processors, and combines them into a single execution model.

Vector processing paradigm is well known for its excellent cost/performance trade

The processing paradigm proposed in this dissertation, called thepseudo-vector machine, exploits,

as much as possible, the low-cost, low-power and high performance aspects of vector proc

paradigm.

As we will see later in this dissertation, the characteristics of the critical loops found in

benchmarks vary greatly, fromhighly vectorizable, to difficult (and costly) to vectorize, to

impossible to vectorize.

For example, a loop that performs a vector operation described by C[i] = A[i] * B[i],

i=0,...,n-1, for some vectors A, B and C of length n, is a highly vectorizable loop. A loop

performs a vector operation described by C[i] = (A[i]>B[i])? A[i]2 : A[i]+B[i], for i=0,...,n-1, is

more difficult (or costlier ) to vectorize.

The vector arithmetic represented by some hard-to-vectorize loops, in this work, is c

pseudo-vector arithmetic(PVA). For this type of loops, the DSP’s style of processing, whi

focuses on optimizing the program loop executions, is more suitable. These optimiz

techniques include: (i) using the “while” or “repeat” instructions to remove loop con

overheads; (ii) using data streaming buffers to remove overhead associated with constan
iv



vector

the

vector

decide

s well

dware
memory operations.

The pseudo-vector machine proposed in this dissertation can execute two types of

arithmetic: a “true” vector arithmetic and a “pseudo” vector arithmetic, as described in

preceding paragraph. Depending on the type of loops, the machine sometime behaves like a

processor; it sometime behaves like a DSP processor. The compilers, for this machine,

which execution modes to use for each critical loop.

In addition, this machine uses a single datapath to execute all the vector arithmetic a

as the scalar portion (the non-loop portion) of the program code - an efficient reuse of the har

resources.
v



TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS iii

PREFACE iv

TABLE OF CONTENTS vi

LIST OF FIGURES xv

LIST OF TABLES xviii

FREQUENTLY USED M-CORE INSTRUCTIONS xiv
vi



1

. . 3

. . 12

. 13
CHAPTER I

INTRODUCTION: LOW-COST, LOW-POWER DESIGNS FOR EMBED-
DED APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 The World Of Mobile Computing . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Alternate Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.2 Performance vs. Instantaneous Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Important Characteristics Of Mobile Systems . . .. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Execution Modes For Mobile Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.4 Pseudo-Vector Machine - An Architectural Overview . . . . . . . . . . . . . . . . . . . . 6

1.5 The Strength of Vector Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Vector Processing vs. Pseudo-Vector Processing . . . . . . . . . . . . . . . . . . . . . .

1.7 The Basic Framework For This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.8 Profile-Based Performance Evaluations - An Example . . . . . . . . . . . . . . . . . . .14

1.9 Contributions Of This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.10 A Note On Vector Processing Paradigm . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . 16
vii



8

. 21

22

. 23

24

5

. . 31
CHAPTER II

RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Software Loop Unrolling . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

2.2 Software Pipelining and Register Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

2.3 Stream Data Buffers In WM and SMC Architectures . . . . . . . . . . . . . . . . . . . . .20

2.4 Data Address Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5 Compute And Memory Move Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.6 Special Loop Instructions For Removing Loop Control Overheads . . . . . . .

2.6.1 The TriCoreTM ISA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 The SHARC ADSP ISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.7 Vector Processing . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.7.1 Cray-1 Vector Machine - A SISD Vector Machine . . . . . . . . . . . . . . . . 25

2.7.2 PowerPC AltiVec - A SIMD Vector Processor .. . . . . . . . . . . . . . . . . . .26

2.9 Decoupled Access/Execute Machine - Astronautics ZS-1 . . . . . . . . . . . . . . . . 29

2.10 The Transmeta’s CrusoeTM Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.11 Pseudo-Vector Machine - Comparisons With Related Work . . . . . . . .. . . . . 32

2.12 General Comparisons With Related Work . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
viii



8

0

1

2

4

CHAPTER III

VECTOR ARITHMETIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Canonical Vector Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

3.1.1 Compound CVA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.2 Reduction CVA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.3 Hybrid CVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

3.1.4 Some Examples Of CVA . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .42

3.2 Pseudo-Vector Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

3.3 Vector Arithmetic with Early Termination .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
ix



0

0

. 57

.58

0

2

62

3

. .67

7

CHAPTER IV

PROGRAMMING MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 Execution Modes . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Constant-Stride Load/Store Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

4.2.1 cs-load And cs-store For CVA Executions . .. . . . . . . . . . . . . . . . . . . . .51

4.2.2 cs-load And cs-store For PVA Executions. . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Special Registers For Vector Executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1 Stride and Size Register . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .57

4.3.2 Count Index Register (CIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.3 Register For Storing Constant-Stride Load Addresses . . . . . . . . . . . . .59

4.3.4 Register For Storing Constant-Stride Store Addresses .. . . . . . . . . . . 59

4.3.5 Scalar Results For Reduction And Hybrid CVA . . . . . . . . . .. . . . . . . .59

4.3.6 Scalar Source Operands For CVA Executions . . . . . . . . . . . . . . . . . . . .59

4.4 Vector Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

4.5 Terminating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.5.1 Early Termination for CVA Executions . . . . . . . . . . . . . . . . . . . . . . . . .

4.5.2 Early Termination for PVA Executions . . . . . . .. . . . . . . . . . . . . . . . . .63

4.6 Register Overlay . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.7 Machine States Maintenance For Vector Executions . . . . . . . . . . . . . . . . . . . . . 65

4.7.1 Saving The Execution Modes . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7.2 Saving The Minimum Vector Contexts . . . . . . . . . . . . . . . . . . . . . . . . . .66

4.7.3 Updates of Temporary and Overlaid Instances of R0 and R1 . . . . .

4.8 Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.8.1 Memory Bandwidth Requirements For Vector Executions . . .. . . . . 68

4.8.2 Memory Map For M0, M1, TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
x



4

7

8

8

. 83
4.8.3 Temporary Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8.4 Strip Mining For TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

CHAPTER V

PSEUDO-VECTOR MACHINE IMPLEMENTATIONS . . . . . . . . . . . . . . . . . .74

5.1 Datapath Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Scalar Executions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.3 CVA Executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.4 PVA Executions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.5 Managing The PVA Loop Executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Implementing The Temporary Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Machine States Maintenance For Vector Executions . . . . . . . . . . . . . . . . . . . . . 65

5.7 Implementing The Memory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.8 Loop Cache For Storing PVA Program Loops . . . . . . . . . . . . . . . . . . . . . . . . . . 83
xi



87

. 88

93

.94

4

07

09

10
CHAPTER VI

BENCHMARKS CHARACTERISTIC AND PERFORMANCE EVALUA-
TIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1 Metrics For Performance Evaluations . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Benchmark Programs And Their Characteristics . . . . . . . . . . . . . . . . . . . . . . .

6.3 Performance Evaluation Methodologies - Overview . . . . . . . . . . . . . . . . . . . . . 90

6.4 Vector Setup and Exit Costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.1 Special Registers Initialization Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.2 Vector Instruction Decode Costs .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.3 Additional Pipeline Warm-Up Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4.4 Vector Mode Exit Costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

6.4.5 Initial Access Conflicts At M0 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 PVA-Only Executions - Three Types Of Loop Execution Overheads . . . . . .

6.6 Cycle Saving Calculations for Vectorizing a Typical Scalar Loop. . . . . . . . . . 97

6.6.1 Saving Calculations For Typical PVA Executions . . .. . . . . . . . . . . . 98

6.6.2 Saving Calculations For Typical CVA Executions. . . . . . . . . . . . . . . .99

6.7 CVA-Only vs. PVA-Only vs. CVA/PVA Executions . . . . . . . . . . . . . . . . . . . 101

6.8 TM Strip-Mining Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.9 Throughput Rates For CVA Executions With Memory Conflicts . . . . . . . . . 1

6.10 Maximizing The Use Of TM via Vector Duplication . . . . . . . . . . . . . . . . . . 108

6.10.1 Software Implementation of Vector Duplication . . . . . . . . . . . . . . . 1

6.10.2 Execution Overheads of Vector Duplication . . . . . . . . . . . . . . . . . . .1

6.11 Instruction Fetch Bandwidth .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
xii



3

3

5

17

28

33

8

CHAPTER VII

EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7.1 Overall Speedups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7.1.1 CVA-Only vs. PVA-Only Executions . . . . . . . . . . . . . . . . . . . . . . . . . 11

7.1.2 Allowing CVA-Only Executions To Terminate Early . . . . . . . . . . ..115

7.2 Speedups During Program Loop Executions. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Performance Impact By Varying The Sizes Of TM . . . . . . . . . . . . . . . . . . . . . 1

7.3.1 TM Strip-Mining Costs vs. TM Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.2 Average Speedups vs. TM Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 PVA-Only Executions . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . ..121

7.5 Instruction Fetch Bandwidth Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5.1 Normalized IReq From Processor Core . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5.2 Normalized IFetch From The Memory M0 . .. . . . . . . . . . . . . . . . . . . 125

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER VIII

Architectural Extensions For DSP Applications. . . . . . . . . . . . . . . . . . . . . . . . 130

8.1 Architectural Extensions - VLIW/Vector Machine.. . . . . . . . . . . . . . . . . . . . . 130

8.2 Implementing The IIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

8.3 Implementing The FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 134

CHAPTER IX

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
xiii



31
APPENDICES A

CRITICAL LOOP VECTORIZATIONS AND CYCLE SAVING CALCULA-
TIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..187
xiv



19

23

. .24

7

0

LIST OF FIGURES

Figure 1.1: Instantaneous Power Of A Mobile Computing System . . . . . . . . . . . . . . . . . .3

Figure 1.2: Energy versus power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.3: Various Execution Modes On The Pseudo-Vector Machine. . . . . . . . . . . . . . 7

Figure 1.4: The CPU Architecture for the Pseudo-Vector Machine . . . . . . . . . . . . . . . . . .8

Figure 1.5: Dependency Graphs for Three Types of CVA. . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 1.6: Data dependency graph for Example 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 1.7: Relationships Between Speedup and n with Tr=1 . . . . . . . . . . . . . . . . . . . . . 11

Figure 1.8: Various Processing Paradigms . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Figure 2.1: Software Loop Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Figure 2.2: Software Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.3: Software Pipelining With Register Rotation . . .. . . . . . . . . . . . . . . . . . . . . . .20

Figure 2.4: SMC Architecture - A Dynamic Access Ordering System . . . . .. . . . . . . . . 21

Figure 2.5: ADSP-2106x SHARC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Figure 2.6: Source Registers For Multifunction Computations (ALU and Multiplier) .

Figure 2.7: Program loops using special loop instructions . . . . . . . . . . . . . . . . . . . . . .

Figure 2.8: Block Diagram For Cray-1 Vector Machine . .. . . . . . . . . . . . . . . . . . . . . . . .26

Figure 2.9: Block Diagram of PowerPC with AltiVec Technology . . . . . . . .. . . . . . . . . 27

Figure 2.10: AltiVec Vector Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2.11: MultiTitan Floating-Point Architecture . .. . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.12: FPU ALU Instruction Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.13: The Astronautics ZS-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 2.14: A FORTRAN Loop and Its ZS-1 Assembly Code. . . . . . . . . . . . . . . . . . . .31

Figure 2.15: Applications/Code Morphing Software/Hardware Layers . . . . . . . . . . . . . 31

xv



35

. .36

. 39

. . 50

urce

1

. 64

73

. . .75

5

Figure 2.16:    Comparison Between a 2-Wide VLIW Machine and a 2-Deep Vector

Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.17: The General Structure of a PVA Program Loop . . . . . . . . . . . . . . . . . . . .

Figure 3.1: A Generic Data Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.2: Dependency Graphs for Three Types of CVA . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.3: Basic Datapath Structure for Executing CVA. . . . . . . . . . . . . . . . . . . . . . . . .40

Figure 3.4: A Program Loop with Multiple Exits . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 45

Figure 4.1: Various Execution Modes On The Pseudo-Vector Machine . . . . . . . . . . .

Figure 4.2: Dependency Graphs Showing the Relationships Between L0, L1 and So

Operands X, Y and Z .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 4.3: Data Dependency Graph for Example 4.4 . . . .. . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.4: Stride Size Register, SSR .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Figure 4.5: Count Index Register, CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Figure 4.6: Format of CVA and PVA Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Figure 4.7: Register Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.8: A Simplistic View Of The Memory Organization . . . . . . . . . . .. . . . . . . . . . 68

Figure 4.9: Memory Map For M0, M1, TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

Figure 4.10: Execution Activities For The Two CVA Instructions . .. . . . . . . . . . . . . . . 71

Figure 4.11: Execution Activities For The Four CVA Instructions Using Solution (II) .

Figure 5.1: The CPU Architecture for the Pseudo-Vector Machine . .. . . . . . . . . . . . . . .74

Figure 5.2: Datapath for a Single-Issued, Four-Stage Pipelined Machine . . . . . . . . .

Figure 5.3: Datapath For The Pseudo-Vector Machine . . . . . . . .. . . . . . . . . . . . . . . . . . .75

Figure 5.4: The Implementations of L0, L1 and S Units. . . . . . . . . . . . . . . . . . . . . . . . . .77

Figure 5.5: Updates of Local R0 in L0 and Overlaid Instance of R0 in Regfile . . . . . . . 80

Figure 5.6: The IXR Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 82

Figure 5.7: Register File with Temporary and Overlaid Instances of R0 and R1 . .. . . . 82

Figure 5.8: Loop Cache Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
xvi



9

d

19

125

.134
Figure 6.1: Percentage of Execution Cycles Spent in Critical Loops . . . . . . . . . . . . . . . .90

Figure 6.2: Execution Costs For TM Strip-Mined Code .. . . . . . . . . . . . . . . . . . . . . . ..106

Figure 6.3: Vector Duplication . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 6.4: Transformed Code For Vector Duplication . . . . . . . . . . . . . . . . . . . . . . . . ..110

Figure 6.5: IReq from Processor Core versus IFetch from Memory M0 . . . . . . . . . . ..110

Figure 7.1: Overall Speedups For Various Execution Modes . . . . . . . . . . . . . . . . . . . ..114

Figure 7.2: Speedups During Loop Executions For Various Execution Modes . . . . . . 117

Figure 7.3: Speedups For blit vs. TM Sizes . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..118

Figure 7.4:    Speedups During A Single Loop Execution vs. TM Sizes (For jpeg an

summin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 7.5: Overall Speeds vs. TM Sizes (For jpeg and summin) . . . . . . . . . . . . . . . . . 120

Figure 7.6: Speeds vs. TM Sizes - Average of All Benchmarks. . . . . . . . . . . . . . . . . ..121

Figure 7.7: Performance Benefits of Using a 512-Byte TM . . . . . . . . . . . . . . . . . . . . ..121

Figure 7.8: Performance Improvements Using PVA-Only Executions . . . . . . . . . . . . . 122

Figure 7.9: Normalized IReq From Processor Core During Loop Executions . . . . . . .

Figure 7.10: Normalized IReq From Processor Core - Overall . . . . . . . . . . . . . . . . . . . 126

Figure 7.11: Normalized IFetch From Memory M0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 8.1: Datapath for the Extended Pseudo-Vector Machine .. . . . . . . . . . . . . . . . . 130

Figure 8.2: Dependency Graphs For Three Types of CVA Executions . . . . . . . . . . . . . 132

Figure 8.3: Enhanced Datapath For Implementing IIR Filters . . . . . . . . . . . . . . . . . . .

Figure 8.4: DIT Decomposition of a N-point FFT . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 135

Figure 8.5: Generalized Butterfly Computation Diagram. . . . . . . . . . . . . . . . . . . . . . . 136

Figure 8.6: Implementing Part Of Butterfly For DIT FFT . . . . . . . . . . . . . . . . . . . . . . . 137
xvii



.43

T3

.72

8

6

7

0

111

ion
LIST OF TABLES

Table 3.1: Some Examples of CVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.1: Special Registers For Vector Executions . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.2: Overlaid and Temporary Instances of R0/R1 . .. . . . . . . . . . . . . . . . . . . . . . . .64

Table 4.3: Accessibilities of M0, M1 and TM . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 68

Table 4.4: Two Possible Solutions For Allocating The Temporary Vectors T1, T2 and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6.1: PowerStone Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Table 6.2: Percentage Execution Time Spent In Program Loops . . . . . . . . . . . . . . . . . . .89

Table 6.3: Additional Registers Initialization Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Table 6.4:    Performance Improvements Due to Eliminating Various Types of Loop

Execution Overheads . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Table 6.5:    Performance Improvements Due to Eliminating Various Types of Loop

Execution Overheads . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Table 6.6: “auto” Critical Loop1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 6.7: Profile For Critical Loop 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..100

Table 6.8: Vectorizing A Loop For Performing C[i] = A[i] * B[i] . . . . . . . . . . . . . . . . . 101

Table 6.9: A Critical Loop From “jpeg” . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..103

Table 6.10: Vertorizing Critical Loop 1 From Benchmark “blit” . .. . . . . . . . . . . . . . ..107

Table 6.11: Profile For Critical Loop 1 From Benchmark “blit” . . . . . . . . . . . . . . . . . . 107

Table 6.12: Vectorizing The Loop Shown in Example 1.1 . . . . . . . . . . . . . . . . . . . . . . .

Table 6.13: Normalized IReq For PVA and CVA Executions . . . . . . . . . .. . . . . . . . . ..112

Table 7.1: Overall Speedups For Various Combinations of Execution Modes. . . . . ..114

Table 7.2:    Speedups During Loop Executions For Various Combinations of Execut

xviii



16
Modes . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Table 7.3: Speedups For CVA/PVA Executions vs. TM Sizes . . . . . . . . . . . . .. . . . . . . 120

Table 7.4: Speedups For CVA-Only Executions vs. TM Sizes . . . . . . . . . . . . . . . . . . ..120

Table 7.5: Performance Improvements For PVA-Only Executions . . . . . . . . . . . . . . . . 122

Table 7.6: Normalized IReq From The Processor Core. . . . . . . . . . . . . . . . . . . . . . . . . 124

Table 7.7: Normalized IFetch From Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Table 7.8: Normalized IFetch From Memory M0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..128

Table 7.9: Possible Sources for Operands W, X, Y and Z . . . . . . . . . . . . . . . . . . . . . . ..131

Table 9.1: Speedups For Various Execution Modes . . . . . . . . . . . . . . .. . . . . . . . . . . . . 139
xix



ntly

ry
FREQUENTLY USED M-CORE INSTRUCTIONS

The following contains brief descriptions of M-CORE instructions that are freque

used throughout this dissertation.

In this ISA, an instruction typically has the following format: ops rx, ry, where rx and

are source registers; and rx is also the destination register [MCORE98].

Table 1: Frequently Used M-CORE Instructions

Mnemonic Description Example

ldb, ldh, ldw
stb, sth, stw

Load byte; load halfword; load word
Store byte; store halfword; store word

ldw r6, (r2)
stb r7, 4(r3)

bf, bt Branch if c-bit clear; branch if c-bit set bt TARGET

cmplt
cmpne
cmphs
cmpnei

Compare less than, set c-bit if true
Compare not equal, set c-bit if true
Compare higher or same, set c-bit if true
Compare not equal immediate, set c-bit if true

cmplt r4, r7
cmpnei r6, 3

add, addi,
sub, subi,
rsub

Add; add immediate
Subtract (rx = rx - ry); subtract immediate
Reverse subtract (rx = ry - rx)

add r6, r8
subi r8, 2
rsub r9, r2

decne
declt

Decrement, then set c-bit if not equal 0
Decrement, then set c-bit if less than 0

decne r1
declt r1

mov, movt Move; move if c-bit set mov r3, r6

lsr, lsri
lsl, lsli
asri

Logical shift right; logical shift right immediate
Logical shift left; logical shift left immediate
Arithmetic shift right immediate

lsr r7, r5
lsli r7, 8
asri r7, 8

or, xor Logical or; exclusive-or or r2, r3

clrt Clear register if c-bit set clrt r8

mul multiply mul r3, r4

ixh Index halfword (rx = rx + (ry <<1)) ixh r4, r1

tst Test with zero (clear c-bit if (rx & ry) == 0; set otherwise) tst r4, r5

zextb Zero extent least significant byte zextb r3

lrw Load relative word: load a word from DATA_LABEL into rx lrw r2, [DATA_LABEL]

mtcr, mfcr Move to control register from general purpose register; move
from control register to general purpose register

mtcr r3, SSR
xx



ies.
Trademarks

M-COREis a trademark of Motorola Corporation.

i500plus is a trademark of Motorola Corporation.

Palm VII is a trademark of 3Com Corporation.

Palm.Net is a trademark of 3Com Corporation.

SmartPhone is a trademark of Neopoint Incorporation.

WebBank is a trademark of Leonia Bank Corporation.

SHARC is a trademark of Analog Devices Corporation.

TMS320Cxx is a trademark of Texas Instrument Incorporation.

PowerPC AltiVec is a trademark of Motorola Corporation.

Cray-1 is a trademark of Cray Research Incorporation.

IA-64 is a trademark of Intel Corporation.

TriCore is a trademark of Siemens Incorporation.

Crusoe is a trademark of Transmeta Corporation.

Code Morphing is a trademark of Transmeta Corporation.

StarCore is a trademark of Motorola Corporation and Lucent Technolog
xxi



s pri-

plica-

ting

hones,

ns are

their

f such

their

st two

n. The

the

hole

adi-

s and
CHAPTER 1

INTRODUCTION : L OW-COST, LOW-POWER

DESIGNS FOR EMBEDDED APPLICATIONS

Low-cost, low-power designs have been gaining importance in microprocessor system

marily due to increasingly wide spread use of portable and handheld applications. These ap

tions are also known asmobile applications.

Mobile computing and mobile applications, for the purpose of this work, refer to compu

systems for consumers’ portable and handheld applications that include pagers, cellular p

personal digital assistants (PDA), global positioning systems (GPS), etc. These applicatio

powered by a battery system that has a limited energy storage capacity.

In this Chapter, we will examine the importance of mobile computing systems and

future trends. We will also examine some of the important characteristics and requirements o

systems. We will give an overview of our proposed execution model, called thepseudo-vector

machine, for mobile applications. We will then examine the strength of vector processing and

suitability for such systems.

1.1  The World Of Mobile Computing

The Personal Computer (PC) market has been enjoying tremendous growth in the pa

decades. The growth in this market, in terms of profit margins, has recently been slowed dow

sharpest growth has been gradually shifting from the low volume and high profit margin, to

high volume and low profit margin PC market - a sign of a maturing market. The market as a w

will continue to grow, primarily being sustained by: (i) the general break down of the world’s tr

tional trading boundaries, opening up the world’s mass markets; and by (ii) the rapid advance

growth in the internet.
1



2

f

based

rma-

of the

itional

umers.

taurant.

it the

n

end/

r, etc.

EN

m-

ity. A

forma-

broad

grates

ment

vices

bank

us-

signa-
We are entering an era ofpersonal communication. Early nineties marks the beginning o

this era where we saw the rapid growth in computing, pagers, cellular phones and web-

mobile applications. This era is characterized by the needs of an individual to acquire the info

tion and knowledge he or she needs, at any time, at anywhere, precisely and instantly.

The personal communication era was enabled by the adaptation and popularization

internet. With the society becomes increasingly mobile, accessing to the internet via the trad

workstations or desktop computers can no longer satisfy the changing needs of the cons

These needs range from stock trading, accessing to the weather forecasts, to locating a res

Mobile computing serves these needs. The growth of the internet will continue to benef

mobile computing market.

3Com Corp. has been offering Palm VIITM Connected Organizer since 1998. In conjunctio

with the Palm.NetTM internet access service provided by 3Com, a user can use Palm VII to s

receive emails, obtain stock quote, sports scores, check flight information or the weathe

[PALMVII98].

Motorola Incorp., through Nextel Communications Incorp., has been offering iD

i500plusTM multi-service digital wireless phone. This WML (Wireless Markup Language)-co

pliant phone features Internet microbrowser, two-way e-mail and wireless modem functional

user of this phone can check news, weather and stocks, find phone number and address in

tion, and even get driving directions [IDEN99].

Nokia Corp. and Palm Computing Inc. (a 3Com company) have recently announced a

joint development and licensing agreement to create a new pen-based product line that inte

telephony with data applications, personal and professional information manage

[PALMVII99].

Neopoint Inc. has recently announced its availability of its SmartphoneTM (through Sprint) -

a cellular phone with limited web browsing capabilities [NEOPOINT99a, NEOPOINT99b].

Leonia Bank of Finland will be offering its customers online banking services, WebBankTM,

through the WAP (Wireless Application Protocols) phones, in the spring of 2000. These ser

are based on Public Key Infrastructure (PKI), digital signatures and strong encryption. The

will identify the customer with digital signatures located on a SIM card of a mobile phone. C

tomers using digital signatures do not need cumbersome passwords anymore. With digital

tures mobile phone banking will be a lot easier and more secure than before [LEONIA00].



3

fax,

b-based

e mar-

or re-

erfor-

” for

sign

pera-

ed

sys-

ively

re per-

new

com-

stem,
Very soon, we will be seeing all the consumers’ mobile applications, including email,

pager, personal organizer, cellular phone, GPS, stock quote, weather forecast and other we

applications integrated into a single, lightweight, device that everyone carries.

1.2  Important Characteristics Of Mobile Systems

One of the important factors that decides whether a portable product can succeed in th

ket place is “how long can the product operate before its battery needs to be replaced

charged”. Other important factors are the system costs and performance.

Perhaps to the surprise of some readers, in many mobile systems, improving the p

mance can often help solve the “energy problems.” Unfortunately, the “low-power objective

mobile computing systems is not a straight forward concept. To begin with, the low power de

goal for such a system is not to maximize the battery life, but to maximize the number of o

tions performed per battery discharge.

In order to further understand the “power problem” in mobile computing, we will first ne

to understand some characteristics of a mobile computing system.

1.2.1 Alternate Operating Modes

To conserve energy, power-down techniques are widely employed in mobile computing

tems, at all levels of design hierarchies. A mobile application typically operates alternat

between two operating modes: (i) burst mode (or active mode), where active computations a

formed; and (ii) power-down mode (or sleep mode), where the system is asleep waiting for a

computational event to occur. A paging system, for example, is only awaken to process an in

ing message, and is put back to sleep once the computation is completed.

Figure 1.1 shows an example of the instantaneous power of a mobile computing sy

going through a series of burst and sleep modes.

Time

Power

Figure 1.1: Instantaneous Power Of A Mobile Computing System

Burst modes
Sleep modes



4

sub-

er sub-

mall

m to

(thus

an be

ugh a

uring

ode.

sleep.

r the

se, is

)

gn the

uring
A mobile computing system typically consists of a digital subsystem, among with other

systems. A cellular system, for example, these other subsystems include receiver/transmitt

system, the display subsystem, the keypad subsystem, etc.

From the energy consumption point of view, if the digital subsystem consumes only a s

fraction of the overall system power, then it will be advantageous to design that subsyste

improve the overall system performance. By shortening the time the system is in burst mode

shortening the time the system is consuming high power), the overall energy consumption c

reduced.

Figure 1.2 shows the instantaneous power of two competing designs operating thro

“sleep-burst-sleep” sequence. Design A has higher performance with slightly higher power d

burst mode, while Design B has lower performance with slightly lower power during burst m

Design A completes the computational task earlier and immediately puts the system to

Since energy consumption is the integration of power over time (given by the area unde

power-time curve), the overall energy consumption of the system using Design A, in this ca

lower than that of Design B.

1.2.2 Performance vs. Instantaneous Power

From the above example, it is arguable thatif a digital subsystem (microprocessor included

consumes only a small fraction of the overall system power, then it is advantageous to desi

subsystem to improve the overall system performance. That is, we solve the “power problem” by

improving the performance, possibly at the expense of slightly higher power consumption d

burst mode.

Timesleep

sleep

sleep

sleep

burst

burst

Design A:

Design B:

Instantaneous

Design A
Design B

Energy consumption of
the system using Design B

Energy consumption of
the system using Design A

Figure 1.2: Energy versus power consumption

Power



5

higher

to the

ue that

ance.

des

hieve

volt-

de the

e

t the

.

ecific

ce, as

con-

n dur-

ystem

on may

e digi-

ghly

ese
The battery systems are, unfortunately, not ideal. They possess internal resistance. If

power is continuously drawn from these batteries, then less useful energy will be available

rest of the system due to this internal resistance. To reduce such dissipations, one would arg

we should operate a mobile system at a lower power level, possibly at the expense of perform

That is, we solve the “power problem” by lowering the power consumption during burst mo

[Martin99, Surampudi99].

By now it should become clear that as far as the digital subsystem is concerned, to ac

the “low-energy” object, one needs to perform complex trade-offs that involve the operating

age and frequency of the digital subsystem, as well as the system environments which inclu

power consumption characteristics of other subsystems, and the battery subsystem itself.

In this dissertation work, we will focus on designing microprocessor cores formid to low-

end, ultra-lightweight, embedded mobile applications. In these specific design environments, th

digital subsystems often consume a small fraction of the overall power. We will thus adap

“high performance” approach in solving the “power problem”, as described in Section 1.2.1In

summary, the design goals in our design environments are (in order of importance):

1. Low cost (low chip area);

2. High performance;

3. Low power.

The above ordering has the following implications. Once an area budget is set for a sp

application, we should then design the digital subsystem to improve the overall performan

much as possible. In doing so, we can often (though not always) lower the overall energy

sumption. Furthermore, any low-power design technique that can reduce power consumptio

ing burst mode, should only be usedif they do not degrade the overall performance.

Conversely, if a design technique that reduces power consumption of the digital subs

during burst mode but degrades the system performance, then the overall energy consumpti

reduce or increase, depending on the system power relative to the power consumption of th

tal subsystem.

1.3  Execution Modes For Mobile Systems

At certain time, many mobile applications require the machines to perform some hi

repetitive DSP functions. Large amount of instruction level parallelism (ILP) is present in th



6

func-

rating

n the

o their

these

s the

nnels,

ch exe-

ified if

et vol-

ng in

e for

udo”

ssing

chine

ocess

uction

vector

execu-

e will

ode.
applications. But at some other time, they require the machines to perform control intensive

tions.

To address the needs for mobile computing, some desktop CPUs have been incorpo

some DSP capabilities into their instruction set and designs [Massana99, Lexra99, etc.]. O

other hand, some DSP processors are now incorporating some general control functions int

designs [SHARC97,StarCore98].

Some systems use dual-core solutions to address this problem [DSP56654,etc.]. In

systems, one core performs all the control intensive functions; while the other core perform

specialized DSP functions. The two cores communicate through some communication cha

such as a shared memory. These systems often employ dual instruction streams, one for ea

cution cores. The high development costs associated with this approach could only be just

the specialized market segment where the system is designed to, has sufficiently large mark

ume to amortize these non-recurring engineering costs.

1.4  Pseudo-Vector Machine - An Architectural Overview

In this dissertation, we will present a processing paradigm that is capable of executi

two modes: (i) a scalar execution mode for control functions; and (ii) a vector execution mod

exploiting the ILP that is present in these applications.

The vector execution mode can be further divided into a “true” vector mode and a “pse

vector mode. For loops that are highly vectorizable, the machine uses a “true” vector proce

paradigm to process the loops. For loops that are difficult or impossible to vectorize, the ma

uses a “pseudo” vector processing paradigm (similar to the DSP’s style of processing) to pr

the loop.

This machine executes all these modes on a single datapath using a single instr

stream. Each instruction in this stream can be classified as either a scalar instruction or a

instruction. When a vector instruction is fetched and decoded, the machine enters a vector

tion mode. The machine only exits the vector mode via a few pre-defined mechanisms. W

call this execution model thepseudo-vector machine.

The following are some important features of the pseudo-vector machine.

• The pseudo-vector machine has two major execution modes: scalar mode and vector m

• While in vector mode, this machine can perform two types of vector arithmetic: theCanonical



7

exe-

ion-

mem-

ighly

ts of a

r

-

two

(S

nts a

up to

. M0

is a

imple,

elined
Vector Arithmetic(CVA) and thePseudo-Vector Arithmetic(PVA). Correspondingly, there are

two vector instructions: a CVA instruction and a PVA instruction. Figure 1.3 shows all the

cution modes in this machine.

• When executing in a vector mode, the vector instruction (CVA or PVA instruction) can opt

ally enable up to two input data streams from the memory (denoted as L0 and L1) and one out-

put data stream to the memory (denoted as S).

• When the machine executes in a CVA mode, data are continuously streamed from the

ory, processed by a chain of functional units and streamed back to the memory, in a h

pipelined fashion. The CVA mode represents a “true” vector processing paradigm.

• When the machine executes in a PVA mode, the corresponding assembly code consis

PVA instruction followed by aloop body. The loop body is composed of multiple scala

instructions. The PVA instruction is very similar to the “DO UNTIL” or “REPEAT” instruc

tions in the traditional DSP processors. A PVA instruction can optionally enable up to

constant-stride load operations (L0 and L1 streams) and one constant-stride store operation

stream) to be automatically performed during loop executions. The PVA mode represe

“pseudo” vector processing paradigm similar to the DSP’s style of processing.

• The CPU architecture of the pseudo-vector machine is shown in Figure 1.4.

• When executing in a vector mode (CVA or PVA mode), the memory system can support

two data reads, one data write and one instruction fetch in each cycle.

• In this machine, there are three independent on-chip memory modules, M0, M1 and TM

supplies instructions and data, while M1 supplies data only. TM (temporary memory)

small memory block used to store temporary vectors only.

• When executing program loops, a smallloop cache is used to store the instructions.

• Within the execution core, there are two load units, L0 and L1, a store unit S, a register file

Regfile and a general purpose functional unit P (see Figure 1.4).

• Besides performing the memory store operations, the S unit can also perform some s

commutative arithmetic and logical functions, such as “add”, “and”, “or”, “xor”, etc.

• When executing in a scalar mode, the execution core behaves like a single-issued pip

Execution modes

Scalar mode

Vector mode

CVA mode

PVA mode

Figure 1.3: Various Execution Modes On The Pseudo-Vector Machine



8

peline

ster to

ugh

/M1/

n be

1.5. In

s.

t many
machine. It uses the Regfile and the P unit for computation, and L0 and S units for memory

load and store operations, respectively.

• When executing in a PVA mode, the execution core also behaves like a single-issued pi

machine, except that it can optionally enable up to: (i) two input data streams L0 and L1; and

(ii) one output data stream S. In addition, the machine uses some special loop count regi

remove execution overheads associated with branches and loop control mechanisms.

• When executing in a CVA mode, data are continuously streamed in from M0/M1/TM, thro

the L0 and L1 units, processed by the P and S units, and optionally streamed back to M0

TM. When executing in this mode, two distinct scalar arithmetic, p_op and s_op, ca

simultaneously performed at P and S, respectively.

• There are three types of CVA executions:Compound CVA, Reduction CVAandHybrid CVA.

The data dependency graphs for these three types of executions are shown in Figure

this Figure, operands X, Y and Z can source from input streams L0, L1 or a scalar s. The out-

puts of these executions can be written to an output stream S or to a scalar destination 

• In this datapath, all scalar and vector executions use the same P unit. This means tha

Figure 1.4: The CPU Architecture for the Pseudo-Vector Machine

P

result_bus s_dbus

Regfile

L1

L0_dbus

M0
RAM Module

M1
RAM Module

M0_dbus

M1_dbus

Execution Core

M0_abus

M1_abus

Program
Sequencer

S

xbus

ybus

zbus

pbus

Loop
Cache

TM
Temporary
Memory

latch

zs
_b

us
s_

ab
us

s_
db

us

L1_dbus

L0

TM_abus
TM_dbus

L0
_a

bu
s

L1
_a

bu
s



9

vector

text

ector

. In

-

arithmetic functions that are available to the scalar executions are also available to the

executions.

1.5  The Strength of Vector Processing

In this Section, we will attempt to motivate the strength of vector processing, in the con

of low-cost, low-power embedded computing environments. Readers who are familiar with v

processing may skip this Section entirely. Consider the following example.

Example 1.1:

The following program loop performs an element-wise multiplication on two vectors

vector form, it is performing: C[i]= A[i] * B[i], for all i. The data dependency graph of this pro

gram loop is shown in Figure 1.6.

L1:

addi r2,2 // update stride value

ld.h r7,(r2) // load A[i]

addi r3,1 // update stride value

ld.b r6,(r3) // load B[i]

mul r7,r6 // multiply A[i] * B[i]

L0 or L1 or s L0 or L1 or s

S

Figure 1.5: Dependency Graphs for Three Types of CVA

s

(a) Compound CVA (b) Reduction CVA

L0 or L1 or s

Operand X Operand Y

Operand Z p_op p_op

s_ops_op

L0 or L1 or s L0 or L1 or s
Operand X Operand Y

S and s
(c) Hybrid CVA

p_op

s_op

L0 or L1 or s L0 or L1 or s
Operand X Operand Y



10

ey are

rked in

these

hen a

am in a

unit

t, it is

and

result

n by

te in

ration

Ts+n/

all

kes for
addi r4,2 // update stride value

st.h r7,(r4) // store C[i]

decne r1 // decrement loop index r1

// set c bit if r1 not equals zero

bt L1 // backward branch if c bit set

In this example, intermediate values are produced and then consumed immediately. Th

continuously being written back to and read from registers R6 and R7. These values are ma

Figure 1.6 as “*”. Since they are produced and consumed only once, it is inefficient to store

values in the often limited register storage space. This situation, unfortunately, is inevitable w

vector operation, such as the one shown in Example 1.1, is expressed using a scalar progr

load-store ISA.

A more efficient approach, is to chain a number of functional units together, with each

performing a specific task. Thus when an intermediate value is produced by a functional uni

directly passed on to the next functional unit down the chain, thereby avoiding all the read

write traffic to the register file associated with this value.

Besides saving power, we could also pipeline the vector executions, such that one

could be produced in every cycle. The time required to perform a vector operation is give

Ts + n/Tr, where Ts is the initial setup cost, n is the vector length and Tr is the throughput ra

number of results produced per cycle. If a scalar machine takes m cycles to execute one ite

of the equivalent program loop, then the speedup using the vector machine is given by nm/(

Tr), or nm/(Ts+n) for Tr=1. Maximum speedup could be achieved when Ts is sufficiently sm

and n is sufficiently large. In this case, the speedup approaches m, the number of cycles it ta

addi

ld.h

addi

ld.b

mul decne

st.h bt

Figure 1.6: Data dependency graph for Example 1.1

**

*



11

eedup

ake

uring

ector

vec-

c are

ce);

d con-

ory

tion

ower

ower
the scalar machine to execute one iteration of the program loop. The relationship between sp

and n with Tr=1 is shown in Figure 1.7.

Another subtle benefit of vector processing is its low instruction fetch bandwidth. T

Example 1.1 for example. The scalar program loop requires 8 instructions to be fetched d

each iteration. In a vector machine, after fetching the initial vector setup code and the v

instruction itself, the machine does not need any further instruction fetch to perform the entire

tor operation. As a result, the instruction fetch bandwidth and its associated memory traffi

much lower.

In summary, the strength of vector processing arises from:

• The ability to pipeline various operations on a single data stream (to improve performan

• Efficient data storage and movement (large amount of temporary data are produced an

sumed by adjacent functional units without going through the register file or the mem

system); and

• Smaller routing area (result produced by a functional unit is routed directly to its destina

functional unit, instead of broadcasting it to the entire datapath);

• Lower instruction fetch bandwidth.

Furthermore, efficient data movements and lower routing area could also mean lower p

consumption. The strength of vector processing makes it very suitable for the low-cost, low-p

embedded computing systems.

Speedup

n

m

Figure 1.7: Relationships Between Speedup and n with Tr=1

decreasing Ts



12

eing

such

t they

ation

s

, data

its in a

emory.

the

ome

igm.

k gen-

ith these

])?

na-

y of

con-
1.6  Vector Processing vs. Pseudo-Vector Processing

When a DSP algorithm or function is implemented on a DSP machine, it is often b

transformed into program loops. The optimizing compiler then tries to re-structure the loop

that all the possible parallelism can be easily exploited by the machine.

Vector Processing

In mobile applications, some program loops are highly vectorizable, in the sense tha

perform well defined vector operations. For example, a loop that performs a vector oper

described by C[i] = A[i] + B[i], for all i, is a highly vectorizable loop. Highly vectorizable loop

can be most efficiently executed using a “true” vector processing paradigm. In this paradigm

are continuously streamed from the memory and are processed by a chain of functional un

highly pipelined fashion. The processed data are then continuously streamed back to the m

All temporary results produced during the vector operations are not written to or read from

register file.

Pseudo-Vector Processing

Some program loops, however, are impossible or difficult to vectorize. They may bec

vectorizable after being transformed by the compiler to “fit” the vector processing parad

These transformations involve adding some addition vector operations that may include mas

erations, gather and scatter operations, etc. There are, however, overheads associated w

operations. In this dissertation, we will call these type of vector arithmeticpseudo-vector arith-

metic (PVA).

For example, a loop that performs a vector operation described by C[i] = (A[i]>B[i

A[i] 2 : A[i]+B[i], for all i, is difficult (or costly) to vectorize. It is considered here to be a PVA

arithmetic.

Many today’s DSP machines can execute the PVA arithmetic efficiently. They include A

log Devices’ ADSP-2106X SHARCTM chip [SHARC97] and Texas Instrument’s TMS320CxxTM

family of chips [TMS320C3x]. These machines improve the performance by removing man

the overheads associated with: (i) loop control mechanism; (ii) constant-stride load; and (ii)

stant-stride store.



13

s of

has

ISA

mbed-

calar

The

riz-

essing

orm

sing a

that

p is

at the

this

it is

of the

ula-

chine,
1.7  The Basic Framework For This Dissertation

In this work, we will use the M-CORE instruction set architecture (ISA) for the purpose

illustration and evaluation. The M-CORE ISA uses 16-bit fixed length instruction encoding. It

one of the highest code density among all the commercially available ISA. Furthermore, the

provides extensive bits and bytes manipulation operations that are ideal for many real time e

ded control and DSP applications [MCORE98,Moyer98].

An assembly program written for the pseudo-vector machine consists of regular s

instructions (the M-CORE instructions in this case), with two additional vector instructions.

first vector instruction, the CVA instruction, vectorizes critical loops that are “highly vecto

able”. These vectorized loops are then executed on this machine using a “true” vector proc

paradigm.

The second vector instruction, the PVA instruction, vectorizes critical loops that perf

pseudo-vector arithmetic. These vectorized loops are then executed on this machine u

“pseudo”-vector processing paradigm.

For the purpose of this work, when a program loop is replaced by its equivalent code

consists of one or more vector instructions (CVA and/or PVA instructions), the program loo

said to bevectorized. This vectorized code segment is also called thevector equivalentof the orig-

inal scalar program loop, as they both perform the same function. Vectorization can occur

assembly level or at the source code level.

A program loop that can be vectorized only using CVA instruction(s) is called aCVA vector-

izable loop. A program loop that can be vectorized using PVA instruction(s) is called aPVA vec-

torizable loop. The PVA execution represents a more general vectorizing mechanism.Thus a loop

that is CVA vectorizable, is also PVA vectorizable.

Profile-Based Performance Evaluations

In this work, developing a vectorizing compiler for this machine is beyond the scope of

work. Without a vectorizing compiler, there is no vectorized assembly code. Without which,

impossible to evaluate exactly the performance benefits by using a detail simulation model

machine. Instead, the following approach is adopted.

The benchmarks were not re-compiled to vectorize the critical loops. Cycle-based sim

tions were first performed on a single-issued, four-stage pipelined machine. This scalar ma



14

erfor-

is also

nch-

ed. We

tistic.

up the

rtant

to give

ructs.

details

work-

ven in

nce

p is

takes

imate

tion.

es

o exe-

ther-
which executes M-CORE instructions, does not have any vector processing capability. The p

mance statistics collected on this scalar machine were used as a base result. This machine

referred to here as thebase machine.

The original scalar programs were dynamically profiled. Each program loop in these be

marks was marked, and the number of invocations and the number of iterations were record

then vectorized these critical loops by hand, at the assembly level.

The number of cycles saved for each loop were then computed using the profiled sta

All the vector startup and exit costs were subtracted from these savings. We then summed

net savings for each loop to give the total saving.

Throughout this dissertation, examples will be extensively used to illustrate some impo

concepts, procedures and techniques for vectorizing program loops. They will also be used

detail illustrations on how we estimate execution cycle saving by using various vector const

These detailed examples may bore some of our readers; however, we think that this level of

is necessary in order to fatefully and accurately disseminate these information. The detail

ings of evaluating the performance, for each critical loop, in each benchmark program, are gi

Appendix B.

1.8  Profile-Based Performance Evaluations - An Example

We will use the following example to illustrate how we can estimate the performa

improvements on this machine.

Example 1.2:

Vectorize the loop shown in Example 1.1 on page 9 using a CVA instruction. This loo

executed on a single-issued scalar machine for 100 iterations. This single-issued machine

two cycles to execute a load instruction, and 2 cycles to execute a multiply instruction. Est

the speedup when this loop is executed on the pseudo-vector machine using a CVA instruc

This loop performs a vector operation described by C[i]=A[i]*B[i], for all i. The loop tak

12 cycles per iterations to execute, except for the last iteration where it takes only 11 cycles t

cute (the branch instruction “bt” takes one cycle to execute when it is not taken; 2 cycles o

wise). Thus the execution cycles, on the scalar machine, is 12x99 +11x1 = 1199 cycles.

The loop can be vectorized using a CVA instruction as follows.



15

C,

rites

tore

Execut-

other

t, vec-

ector

tor

single-

r cycle

t are

for-

o vec-

rith-

this

par-

r on,

erfor-
<Some initialization code>

// assign L0 to A, L1 to B, S to C.

CVA mul @L0, @L1, @S;

In this example, stream L0, L1 and S are enabled and are assigned to vector A, B and

respectively. The CVA instruction multiplies, element-wise, between vectors A and B and w

the results to vector C.

The initialization code preceding the CVA instruction sets up the starting load/s

addresses, operand sizes, constant stride values and vector length for vectors A, B and C.

ing this initialization code adds overhead to the vector executions. In addition, there are also

costs associated with this vector execution: vector instruction decode, pipeline warm-up cos

tor mode exit cost, etc. The total vector setup and exit costs, in this example, is 11 cycles (v

setup and exit costs will be described in detail in Section 6.4 in Chapter 6).

The P unit that performs the multiply function is fully pipelined. After these initial vec

setup and exit costs, the pipeline can produceoneresult ineverycycle. The execution cycles on

the pseudo-vector machine is thus given by: 11 + 100 = 111 cycles. The speedup over the

issued scalar machine is thus: 1199/111 = 10.80 .

Unlike the traditional DSP processors, this machine can access three data streams pe

during vector computations.

1.9  Contributions Of This Dissertation

As we will see later in this dissertation, with comparable hardware costs, for loops tha

highly vectorizable, the CVA execution (the “true” vector processing) often offers higher per

mance benefits and lower power consumptions. For loops that are impossible or too costly t

torize, the PVA execution (DSP’s style of processing) offers better performance benefits.

In this dissertation, we propose a CPU architecture to perform both the “true” vector a

metic and the “pseudo” vector arithmetic on a single datapath. The optimizing compiler for

machine tries to “vectorize” the critical loops by selecting between a “true” vector processing

adigm, a “pseudo” vector processing paradigm, or a combination of both. As we will see late

by providing the ability to execute both of these processing paradigms, we can achieve p

mance improvements that are higher than any of the individual paradigm.



16

base

ments

ance

ARC

in a

-

rent

s

be clas-

rPC’s

tion in

e classi-

it has

vector

work.

n this

odel,

these

es the

costs

this
A drawback of this dissertation is that a single-issued pipelined machine is used as a

machine. All performance results given in this dissertation are expressed in terms of improve

over this base machine. This dissertation would have been more interesting if the perform

results are given relative to, say, a traditional DSP machine, similar to the ADSP-2106X SH

chip.

Nevertheless, this dissertation has certainly explored some architecturalalternativesto

exploit ILP found in these embedded applications. In particular, it tries to exploit parallelism

“vertical” (or “depth”) direction, rather than in a “horizon” (or “width”) direction as in a conven

tional wide-issued VLIW machine. This different will be described later in Section .

1.10  A Note On Vector Processing Paradigm

The first commercially available vector machine was the Cray-1TM vector machine, built in

1974 [Cray1]. In this machine, multiple function units can be chained together to perform diffe

scalar arithmetic functions simultaneously.

Later machines extended this idea toarray processing, where a single instruction stream i

executed by multiple PEs, each operates on a single data stream. These later machines can

sified as SIMD (single instruction stream and multiple data stream) vector machines. Powe

AltiVecTM is a recent example of such machines [ALTIVEC98].

The Cray-1, on the other hand, has only one Processing Elements (PE). Each instruc

this machine only processes and consumes a single data stream. This machine can thus b

fied as a SISD (single instruction stream and single data stream) vector machine.

Our pseudo-vector machine can also be classified as a SISD vector machine, since

only a single PE, processing a single data stream. Figure 1.8 shows how the pseudo-

machine relates to the various types of processing paradigms.

The rest of this dissertation is organized as follows. Chapter 2 describes related

Chapter 3 classifies and discusses two types of vector arithmetic that can be performed o

machine. They are the CVA and the PVA arithmetic. Chapter 4 describes the programming m

on this machine, for vector executions. It also describes various special registers used for

executions. Chapter 5 describes the implementations of this machine. Chapter 6 describ

benchmarks used in this work and the performance evaluation methodologies. Vector setup

and expressions for performance evaluation for typical program loops will also be derived in



17

itectural
Chapter. Chapter 7 presents some experimental results. Chapter 8 presents some arch

extensions for DSP applications. Chapter 9 summaries the dissertation.

SISD

MISD

SIMD

MIMD

Single Data StreamMultiple Data Stream

Single Instruction Stream

Multiple Instruction Stream

Vector Processing
Paradigm

Pseudo-Vector Machine

Figure 1.8: Various Processing Paradigms



18

ra-

isters

fter-

or

longer

inal

olled

. In the

size

n, soft-

g.

alar

elined

duler
CHAPTER 2

RELATED WORK

This Chapter describes related work to this dissertation.

2.1  Software Loop Unrolling

In software loop unrolling, multiple iterations from a loop are combined into a single ite

tion, with the branch instructions interleaving between the iterations being removed. The reg

in each copy of the loop body are given different names to avoid unnecessary WAW (Write-A

Write) and WAR (Write-After-Read) data dependences. In a wide-issued machine (VLIW

superscalar machine), loop unrolling exposes the available ILP to the hardware by creating

sequences of straight-line code.

Figure 2.1 shows an example of software loop unrolling. Figure 2.1(a) shows the orig

loop; Figure 2.1(b) shows that the loop is unrolled twice; and Figure 2.1(c) shows the unr

loop is register renamed and re-scheduled so that dependent instructions are further apart

unrolled loops, R9 is assumed to be appropriately initialized for proper loop exit condition.

Software loop unrolling, however, results in a larger static program loop. Larger code

has an adverse affect on system cost as well as on instruction cache performance. In additio

ware loop unrolling also increases register pressure on the compiler due to register renamin

2.2  Software Pipelining and Register Rotation

Software pipelining is frequently used in wide-issued machines (VLIW and supersc

machines). This technique reorganizes loops such that each iteration in the software-pip

code is made from instructions chosen from different iterations of the original loop. The sche



19

re 2.2

pro-

result

con-

ftware.

the

dware

e (rrb)

es are

nt
essentially separates the dependent instructions that occur within a single loop iteration. Figu

shows conceptually how a loop is being software pipelined [Patterson96].

In a software pipelined loop, a multi-cycle instruction (such as a load instruction) may

duce result that is only consumed in the next iteration; that is, an instruction may consume

that was produced in the previous iteration. To avoid over-writing a result before it is being

sumed, the software pipelined loop may need to be unrolled and registers be renamed in so

Thus, software pipelining also enlarges code size and increases register pressure.

Register Rotation

In Intel’s IA-64TM architecture, a technique called register rotation is used to minimize

code size expansion problem associated with software pipelining. In this technique, the har

automatically renames the register by adding to the register number, a rotating register bas

register. The rrb register is decremented when certain special software pipelined loop branch

L1:
ld.h r3,(r2)
add r3, r10
st.h r3, (r2)
subi r2, 2
cmpnei r2,0
bt L1

(a) A loop that performs (b) The loop is unrolled twice.

Figure 2.1: Software Loop Unrolling

A[i]=A[i]+constant.

L1:
ld.h r3,(r2)
add r3,r10
st.h r3,(r2)
subi r2,2
ld.h r3,(r2)
add r3,r4
st.h r3,(r2)
subi r2,2
cmpnei r2,0
bt L1

L1:
ld.h r3,(r2)
ld.h r7,2(r2)
add r3,r10
add r7,r10
st.h r3,(r2)
st.h r7,2(r2)
subi r2,2
cmpnei r2,0
bt L1

(c) The loop is register renamed
and re-scheduled so that depende
instructions are further apart.

L1:
ld.h r3,(r2)
add r3, r10
st.h r3, (r2)
subi r2, 2
cmpnei r2, 0
bt L1

(a) A loop that performs (b) The loop is software pipelined

Figure 2.2: Software Pipelining
A[i]=A[i]+constant.

Iteration i of the original loop
(a set of dependent instructions)

Iteration i: ld.h add st.h

Iteration i+1: ld.h add st.h

Iteration i+2: ld.h add st.h



20

ister X

ation.

R4 in

itera-

con-

d as

ment

f31”

er-

e and

y. The
executed at the end of each iteration. Decrementing the rrb register makes the value in reg

appear to move to register X+1 in the next iteration [IA64].

Figure 2.3 shows conceptually how a loop can be software pipelined using register rot

In this example, register instance R3 in iteration i, is the same instance as register instance

the iteration i+1; in turn, this register instance is the same instance as register instance R5 in

tion i+2, and so on.

2.3  Stream Data Buffers In WM and SMC Architectures

In the WM architecture, Wulf first proposed using stream data buffers, under program

trol, to prefetch data from the memory into data buffers [Wulf92]. These buffers are organize

first-in-first-out (FIFO) queues. This technique can be illustrated using the following code seg

for performing a vector dot product. In this code, “r0-r31” denotes integer registers and “f0-

denotes floating-point registers.

Sin32F f0, r6, r5, 4

Sin32F f1, r6, r5, 4

Loop:

f4 = (f0 * f1) + f4

JNI f0, Loop

A single instruction,streamin, informs a stream control unit that a sequence of data op

ands is to be read from the memory, starting at a specified location, with a specified strid

count. The starting location and the count are specified in registers R6 and R5, respectivel

stride value (4 in this example) is specified in theSin32F instructions (streamin 32-bit floating-

point operands).

L1:
ld.h r3,(r2)
add r3, r10
st.h r3, (r2)
subi r2, 2
cmpnei r2, 0
bt L1

(a) A loop that performs
(b) The loop is software pipelined

Figure 2.3: Software Pipelining With Register Rotation

A[i]=A[i]+constant.

Iteration i of the original loop
(a set of dependent instructions)

Iteration i:  ld.h r3 ,(r2) add r4,r10  st.h r5,(r2)

Iteration i+1: ld.h r3,(r2) add r4 ,r10  st.h r5,(r2)

Iteration i+2: ld.h r3,(r2) add r4,r10 st.h r5 ,(r2)

same instance

same instance



21

s f0

e two

ory

e: (i)

utput

egisters.

s a data

rand to

nter-

of the

e buff-

cally

resched-

emory

chip

tore
The first twoSin32F instructions set up two stream buffers. They designate register

and f1 as the “head” of the two FIFO queues. Within the loop body, a read from one of thes

registers dequeues a data item from the appropriate queue.

McKee et. al. [McKee95a,McKee95b] extended this work by proposing a Stream Mem

Controller (SMC) architecture. In this architecture, multiple stream buffers were used to stor

data prefetched from the memory (input queue); and (ii) data to be stored to the memory (o

queue). The heads of these FIFO queues appeared to the processor as memory mapped r

After these streams are properly set up, a read from a designated memory location dequeue

operand from an input queue; a write to a designated memory location enqueues a data ope

an output queue.

Figure 2.4 shows the block diagram of a SMC architecture. It shows how the CPU is i

faced with the memory system through a cache and a Stream Buffer Unit (SBU). The heads

FIFO queues in the SBU appeared to the CPU as some pre-defined memory locations. Thes

ers are also used to buffer some single-use vectors to avoid polluting the cache.

In addition to the stream buffers, there is also a Memory Scheduling Unit that dynami

reschedules the access requests made by the SBU and the cache. The unit coalesces and

ules these requests to take advantage of the page access behavior of the DRAM m

[McKee95a,McKee95b].

2.4  Data Address Generators

On the Analog Devices SHARC ADSP-2106x CPU, there are two independent on-

memory modules: the Program Memory (PM) and the Data Memory (DM). PM is used to s

CPU

FIFO

FIFO

:
:

FIFO

Stream Buffer Unit

Cache M
em

or
y 

S
ch

ed
ul

in
g 

U
ni

t

mem

mem

mem

mem

:
:

Figure 2.4: SMC Architecture - A Dynamic Access Ordering System

DRAM
memory



22

two

erate

tions of

e 2.5

le to a

d a M

with

r the

ount

es a

ed in

ycle.
program instructions and data; while DM is used to store data only. In this CPU, there are

Data Address Generation units, DAG1 and DAG2. These two DAGs can independently gen

two load/store addresses, enabling the processor core to access two operands (any combina

read and write) in each cycle. The block diagram of the ADSP-2106x CPU is shown in Figur

[SHARC97].

Each of these DAGs contains eight I registers and eight M registers that are accessib

program. A load or store instruction can access the memory by specifying an I register an

register. For example, the following load instruction loads the memory content from the PM,

an address stored in I0; the value I0+M3 is then automatically written back to register I0 afte

load operation (i.e. that address stored in I0 is automatically post-incremented by the am

stored in M3). The data loaded from PM is stored into register R6 [SHARC97].

R6 = PM(I0, M3); // indirect addressing with post-modify.

2.5  Compute And Memory Move Instructions

The ADSP-2106x chip can also provide a “compute-and-move” instruction that combin

compute function with up to two memory load/store operations. These operations are perform

parallel, in a single cycle. An example of such instructions is shown below.

R7 = R6 + R0, DM(I0,M3)=R5, PM(I11,M15)=R4;

This instruction performs an add, and two memory store operations, all in a single c

The two memory operations can be any combination of load and store operations.

DAG1 DAG2

PM DM

PM Address Bus
DM Address Bus

PM Data Bus
DM Data Bus

Register
File

Processor Core

Shifter ALUMultiplier

Figure 2.5: ADSP-2106x SHARC Block Diagram

Bus
Connect

IO



23

aral-

he

d their

s that

con-

ple,

eads

pro-

s are

ation

d last

zero
The ADSP-2106x chip also provides some multifunction computations that combine p

lel operations of the multiplier and the ALU, or the multiplier and dual functions in the ALU. T

following shows two examples of such multifunction instructions [SHARC97].

R3 = R3 * R7, R4 = R8 - R13;

R3 = R3 * R7, R5 = R11 + R15, R4 = R8 - R13;

There are, however, certain restrictions on how these independent operations can rea

source registers. Some of these restrictions are illustrated in Figure 2.6. This Figure show

each of the four input operands for computations that use both the ALU and multiplier are

strained to a different set of four register file locations. The X operand to the ALU, for exam

can only be R8, R9, R10 or R11. This is a limited form of VLIW machine [SHARC97].

2.6  Special Loop Instructions For Removing Loop Control Overheads

Several commercial DSP ISA have special loop instructions for removing the overh

associated with the loop control mechanism [SHARC97,TMS320C3x,TRICORE97].

2.6.1 The TriCoreTM  ISA

In the TriCore ISA, for example, three special branch instructions are used to handle

gram loops. They are JNEI, JNED and LOOP instructions. The JNEI and JNED instruction

like normal jump-not-equal instructions, but with an additional increment or decrement oper

on a data register operand. The LOOP instruction only requires execution time in the first an

iteration of the program loop. For all other iterations of the loop, the LOOP instruction has

execution time. Here are some examples of loops using these instructions [TRICORE97].

R0, F0
R1, F1
R2, F2
R3, F3

R4, F4
R5, F5
R6, F6
R7, F7

R8, F8
R9, F9

R10, F10
R11, F11

R12, F12
R13, F13
R14, F14
R15, F15

Multiplier

Any register

ALU

Any register

Figure 2.6: Source Registers For Multifunction Computations
(ALU and Multiplier)



24

ost

, how-

y in the

ro-

d the

alled

own

ruc-

TR is

Loop

the

ating

Loop

en the

of the
The JNEI, JNED and LOOP instructions in the TriCore ISA are capable of removing alm

all the overheads associated with the branches at the end of the original loop. They do not

ever, remove overheads associated with the cs-load and cs-store operations, if there is an

loop.

2.6.2 The SHARC ADSP ISA

On the Analog Devices’ ADSP-2106x chip, a DO UNTIL instruction is available for p

gram loop executions. There are two types of DO UNITL loops. One is the counter-based an

other is not. In a counter-based loop, the iteration count is first written to a special register c

Loop Count Register (LCNTR), prior to the loop execution. An example of such loop is sh

below.

LCNTR=30, DO label UNTIL LCE;

. . . . loop body . . . .

label: [last instruction of the loop body]

The number of iterations can be specified as an immediate field in the DO UNTIL inst

tion; or, the instruction can also specify a universal register that contains the loop count. LCN

decremented by one for each iteration executed. The loop continues to execute until the

Counter Expires (LCE).

In a non-counter based DO UNTIL loop, the terminating condition is specified in

instruction. The iteration count, however, is not. In this case, the loop exits when the termin

condition is met. An example of such loops is shown below.

DO label UNTIL AC; // exits when ALU Carry out is set

. . . . loop body . . . .

label: [last instruction of the loop body]

This machine supports three hardware stacks: PC stack; Loop Address Stack and

Count Stack. These three stacks work in a synchronized manner for loop executions. Wh

ADSP-2106x executes a DO UNTIL instruction, the program sequencer pushes the address

mov d3, 3
L1:
. . . . .
jnei d3,10,L1

mov a2, 99
L1:
. . . . .
loop a2,L1

(a) A loop that executes d3=3,...,10 (b) A loop that executes 100 times

Figure 2.7: Program loops using special loop instructions



25

the

s the

oop

ontrol

r par-

arily

f the

; and

registers

nized

btain

red to

to a

era-

ength

tech-

d if

e used

the
last loop instruction and the termination condition for exiting the loop (both specified in

instruction) into the Loop Address Stack. It also pushes the top-of-loop address, which i

address of the instruction following the DO UNTIL instruction, on the PC stack. When a l

exits, all three stacks are popped. The three-stack mechanism allows the removal of loop c

overheads for nested loops.

2.7  Vector Processing

A vector processor can be classified as a SISD machine, a SIMD machine, among othe

adigms (see Section 1.10 on page 16).

2.7.1 Cray-1 Vector Machine - A SISD Vector Machine

The first commercially available vector machine, the Cray-1 vector machine, was prim

built for massively parallel scientific computations. Figure 2.8 shows the block diagram o

machine [Cray1].

There are three sets of primary registers: vector registers (V); scalar registers (S)

address registers (A). In addition, there are also scalar-save registers (T) and address-save

(B). These registers act as buffers between the memory and the primary registers.

There are altogether 12 functions units in this machine. These functional units are orga

into four groups: address, scalar, vector and floating-point pipelines. The vector pipelines o

operands from one or two V registers and an S register. Results from a vector pipe are delive

a V register. When a floating-point pipe is used for a vector operation, it can function similar

vector pipe.

Once a vector operation is initiated, it will continue the operation until the number of op

tions performed equals a count specified by the Vector Length register. Vectors having a l

greater than 64 are handled under program control in groups of 64 plus a remainder. This

nique is also known asstrip mining. A Vector Mask register was also provided to performmasked

vector operations. In these operations, a vector operation on an element will only be performe

the corresponding bit in the Vector Mask register is set. These masked vector operations ar

for vectorizing program loops with conditional branches and conditional executions within

loop body [Cray1,Hwang84,Hwang93].



26

lock

con-

ector

ide.

ytes,

t can

vector

 type.
2.7.2 PowerPC AltiVec - A SIMD Vector Processor

The AltiVec technology provides a SIMD extension to the PowerPC architecture. A b

diagram of PowerPC with AltiVec technology is shown in Figure 2.9 [ALTIVEC98].

Besides the usual Integer Unit and the Floating-Point Unit, it has a Vector unit which

tains a 32-entry vector register file and a vector execution unit. The block diagram of the v

unit is shown in Figure 2.10. These register file and the execution unit are all fixed 128-bit w

This width represents the total vector length, which can be subdivided into sixteen 8-bit b

eight 16-bit halfwords, or four 32-bit words. Depending on the operand type, the vector uni

simultaneously operate on 4 to 16 vector elements. This machine is essentially a multi-PE

processor (or SIMD vector processor), although the number of PEs is a function of operand

Shift

Logical

Add

Vector pipelines

Reciprocal

Multiply

Add

Floating point
pipelines

Scalar pipelines
Population

Count

Shift

Add

Logical

Scalar
registers

Scalar-
save

registers

Address
registers

Address-
save

registers

M
em

or
y

Vector Mask
Vector Length

 (B)

(T)

(A)

(S)

Figure 2.8: Block Diagram For Cray-1 Vector Machine

Address pipelines

Add

Multiply

Vector
registers

(V)



27

add-

ically

Both

e con-

e data
2.8  The MultiTitan Floating-Point Architecture: A Unified Vector/Scalar
Floating-Point Architecture

Jouppi et. al. [Jouppi89] proposed a unified vector/scalar floating-pint architecture by

ing a small amount of hardware to a scalar machine for improving the performance of class

vectorizable code.

In this architecture, a FPU unit (or FPU chip) is added to a CPU chip as a coprocessor.

of these chips share the same off-chip data cache. All floating-point load/store operations ar

trolled by the CPU; the actual data transfers take place directly between the FPU chip and th

cache.

Branch Unit

Inst Inst Inst

Integer Unit Floating Point Unit Vector Unit

GPR FPR VR

Memory
DataDataDataData

Addr
Inst
Addr

Inst

Figure 2.9: Block Diagram of PowerPC with AltiVec Technology

Vector Register File

:

VR0
VR1

VR30
VR31

Vector ALU

Figure 2.10: AltiVec Vector Unit

128128128 128



28

ipe-

onal

n the

ource

s, the

emory

tors

to be

r length

ld

pro-
Figure 2.11 gives an overview of the architecture of the FPU. The FPU has three fully p

lined independent function units: add, multiply and reciprocal approximation. These functi

units can accept a new set of operands in each cycle, and have a latency of three cycles.

A unified register file, containing 52 general-purpose 64-bit scalar registers, sits betwee

functional units and the data cache. This register file has four ports: two read ports for ALU s

operands (RA and RB); one write port for ALU destination operand (RR); and one read/write port

for memory load/store operations (Rm).

There are two separate Instruction Registers: one controls the FPU ALU operation

other controls the load store operations. These separate Instruction Registers allow the m

load/store operations to proceed in parallel with the issue of FPU ALU operations.

This architecture provides a single unified vector/scalar floating-point register file. Vec

are stored in successive registers in this register file. This allows individual vector elements

addressed and accessed with scalar operations. Each arithmetic instruction contains a vecto

field; scalar operations are simply vector operations of length one.

The format of a FPU ALU instruction is shown in Figure 2.12. The vector length (VL) fie

of an ALU instruction specifies the number of elements in the vector (between 1 to 16) to be

PSW
Reciprocal

Multiply

Add

Fully pipelined
function units

R0

R51

RA
RB

RR

Off-chip
Data Cache Rm

Figure 2.11: MultiTitan Floating-Point Architecture

Load/Store Instruction Register

ALU Instruction Register

Rmcontrol

RA, RB andRR control

+1 +1 +1 -1

RR RA RB VL

Unified Register File

From CPU



29

gis-

ector

by

ctor

L=0

of 1

pro-

ter in

].

pled

s (for

trib-

line.

float-

ese

e con-

em-

es are
cessed. When a vector instruction (VL field is non-zero) is loaded into the ALU Instruction Re

ter, it remains in the register for the entire duration of this vector execution: each time a v

instruction is issued, the RR, RA and RB fields of the Instruction Register are each incremented

one; and the VL field of the register is decremented by one. If the VL field is not zero, the ve

instruction sitting in the Instruction Register is re-issued again; this process repeats until V

(see Figure 2.11).

If the SRA (or SRB) bit in the instruction is set, register source field RA (or RB) does not

increment (i.e. it is a scalar constant).

In MultiTitan, the user can dynamically partition the 52 64-bit registers into any number

to 16-element register groups (or vectors) on an instruction-by-instruction basis.

To facilitate concurrent load/store and ALU operations, the MultiTitan architecture also

vides some hardware supports for synchronizing the reading and writing of individual regis

the register file to avoid RAW, WAW and WAR hazards between these operations [Jouppi89

2.9  Decoupled Access/Execute Machine - Astronautics ZS-1

The Decoupled Access/Execute Machine (Astronautics ZS-1) provides two loosely cou

datapath and two sets of registers: X registers (for floating point operands) and A register

integer operands). The block diagram of ZS-1 is shown in Figure 2.13.

The Instruction Fetch/Split unit fetches the instructions from the local memory and dis

utes them to two instruction pipelines: the X instruction pipeline and the A instruction pipe

The fixed point and addressing instructions are forwarded to the A instruction pipeline; the

ing point instructions are forwarded to the X instruction pipeline. Instructions distributed to th

pipelines are decoded and issued to the appropriate functional units, if there is no hardwar

flict nor data-dependency.

The ZS-1 uses two sets of FIFO (first-in-first-out) queues for communicating with the m

ory. One set consists of a A Load Queue (ALQ) and a A Store Queue (ASQ). These A queu

114226664

6 RR RA RB Unit Op Vector
Length

SRASRB

Figure 2.12: FPU ALU Instruction Format



30

ueue

ters.

run

load/

oint

A and

test

) load

oad

e

f the

each

point

can be
used in conjunction with the A registers. The other set of queues consists of a X Load Q

(XLQ) and a X Store Queue (XSQ). These X queues are used in conjunction with the X regis

A unique feature of this architecture is that one of the instruction pipeline is allowed to

ahead of the other. These two pipelines “loosely” synchronize with each other using the four

store queues. This can be illustrated using the following example [Smith88,Smith89].

The ZS-1 loop consists of a mixture of integer/address instructions and floating p

instructions. When the loop is fetched, these instructions are distributed appropriately to the

X instruction pipelines. The first two instructions of the loop decrement the loop counter and

the result against zero. The next three instructions (executed on the A instruction pipeline

elements of vector B, C and D. All three of the loaded data items will be placed in the X L

Queue (XLQ), as soon as they are available from the memory.

The next two instructions read B[i] into register X2, multiply it with C[i], and places th

result into register X3. The next instruction adds D[i] to X3 and places the result to the head o

X Store Queue (XSQ). All these three instructions are executed on the X instruction pipeline;

of these instructions dequeues a data item from the XLQ queue.

By using these four load/store queues, memory load/store operations and the floating

computation can be performed concurrently. Furthermore, accesses to the prefetched data

Logical unit

FP Multiplier

FP Adder

Reciprocal Unit

Copy Unit

Integer Shifter

Integer Adder/
Logical

Integer Mult/
Div

X Registers

Instruction
Pipeline

X

Instruction
Pipeline

A

Instruction
Fetch/Split

Unit

Store Unit

X data

A data

Addr Unit

Loads

Stores

Local
Memory

Central
Memory

Figure 2.13: The Astronautics ZS-1

A Registers



31

h88,

oces-

are are

ons.

of the
achieved by reading from the heads of the appropriate load queues (XLQ or ALQ) [Smit

Smith89].

2.10  The Transmeta’s CrusoeTM  Processors

Transmeta Corp. recently introduced a new family of processors called the Crusoe pr

sors. These processors are x86-compatible. The x86 applications and the underlaying hardw

insulated with a software layer, called the Code MorphingTM. The Code Morphine software

dynamically “morphs” (or translate) the x86 code into the underlying hardware instructi

Figure 2.15 shows the applications, the Code Morphine software and the hardware layers

machine. [CRUSOE00].

Figure 2.14: A FORTRAN Loop and Its ZS-1 Assembly Code

Do 10 I= 1,100
10 A(I) = B(I)*C(I) + D(I)

(a) FORTRAN Source Code

A5 = -100 // negative loop count
A6 = A-8 // pointer to A
A7 = B-8 // pointer to B
A8 = C-8 // pointer to C
A9 = D-8 // pointer to D

loop: A5 = A5+1 // increment loop count
B, A0=(A5==0)  // compare =0? set branch flag
XLQ = (A7=A7+8) // load next element of B
XLQ = (A8=A8+8) // load next element of C
XLQ = (A9=A9+8) // load next element of D
X2 = XLQ // copy B[i] into X2
X3 = X2 * XLQ // multiply B[i] and C[i]
XSQ = XLQ + X3 // add D[i]; result to XSQ
(A6=A6+8) = XSQ // store result to A[i]
JMPF loop // branch on false to “loop”

(b) ZS-1 Assembly Code

x86 Operating BIOS
SystemsApplications

Code Morphing Software

Hardware (VLIW engine)

Figure 2.15: Applications/Code Morphing Software/Hardware Layers



32

, sav-

in, the

ically

times

many

hard-

hard-

rticular

rted.

larger

across

point

the

ge of

into

cution

end the

.4 on

odel

fea-

laying

ode
The Code Morphine software can translate an entire group of x86 instructions at once

ing the resulting translation in a Translation Cache. When the x86 code is executed aga

translated code can be executed directly from the cache. Due to the locality of reference typ

found in many application programs, a block of translated code is frequently re-used many

after it is being translated. As a result, the initial translation costs tend to be amortized over

executions.

There are a few advantages for insulating the legacy x86 code with the underlaying

ware. First, the hardware and software designers can judiciously rendered some functions in

ware and some in software, according to the product design goals and constraints. For a pa

hardware implementation, only a special version of Code Morphine software needs to be po

Second, by having dynamic boundaries between the software and the hardware,

design space can be explored and newer hardware/software techniques can be employed

different generations of the processor family, according to the technology available at a given

in time.

Third, compared to the conventional VLIW or superscalar machines which optimize

executions at the instruction level, the Code Morphine software has a higher level knowled

the x86 code and can thus perform optimizations at a higher level.

In addition to dynamic translations, the Code Morphing software also instruments code

the translated code to dynamically “learn” about the program behaviors (such as block exe

frequencies, and branch history). This data can be used later to decide when and how to sp

efforts for re-optimization [CRUSOE00].

2.11  Pseudo-Vector Machine - Comparisons With Related Work

The CPU architecture for our proposed pseudo-vector machine is shown in Figure 1

page 8.

Comparison With The Crusoe Processors

The two initial Crusoe processors announced by Transmeta, model TM3120 and m

TM5400, have a four-wide VLIW engine as their underlaying execution hardware. A unique

ture of the Crusoe processors is the decoupling of the application software and the under

hardware implementation: instead of executing the target ISA (the x86 ISA) directly, the C



33

cuted

rlay-

sible

m the

some

utions

ave any

tem-

have

nger

with

rfor-

ill be

con-

an the

cture

mini-

essor.

r file;

lt, vec-
Morphing software decomposes, optimizes and translates them into the native ISA (ISA exe

on the native machine).

This dissertation work presents an architectural alternative for implementing the (unde

ing) hardware, targeting mid-to-low end, lightweight, embedded mobile applications. It is pos

to have an additional software layer, added to this machine, to insulate the hardware fro

application software. In this case, each instruction on this machine can be thought of as amacro-

op in the native ISA. That is, the “decoupling” approach used by the Crusoe processors is, in

sense, “orthogonal” to what is present here in this work.

Comparison With SISD Vector Machine, Cray-1

Unlike Cray-1, this pseudo-vector machine executes both the scalar and vector exec

share the same datapath, using the same set of functional units. Furthermore, it does not h

fixed length vector register. Instead, it has a temporary vector memory (the TM module). This

porary storage space, to some degree, replaces the functionalities of vector registers.

One advantage of using TM over the vector registers is that it allows the compiler to

more flexibilities in organizing the temporary storage space - it can be organized to store lo

but fewer temporary vectors, or shorter but more temporary vectors, or a mixture of vectors

different length, etc. This allows the compilers to select the TM’s configuration for the best pe

mance and lowest power consumption. TM and its associated vector allocations issues w

described and discussed in detail in Section 4.8.3 and Section 4.8.4 in Chapter 4.

Comparison With SIMD Vector Machine, PowerPC AltiVec

PowerPC AltiVec is a multiple PE vector machine, while the pseudo-vector machine is

sidered to be a single PE vector machine. The hardware cost of the latter is much lower th

former.

Comparison With The MultiTitan Unified Register File Architecture

The pseudo-vector machine shares a similar design goal with the MultiTitan archite

[Jouppi89]: they both attempt to improve the performance of vectorizable code by adding a

mum amount of hardware to a scalar machine.

Unlike the MultiTitan architecture, the pseudo-vector machine does not have a coproc

In particular, it only has one register file. In this machine, vectors are not stored in the registe

instead, they are streamed between the memory and the functional units directly. As a resu



34

uch

r fre-

LIW

tacks

ithout

ver-

utions

up the

op is

t of

TM.

write)

one

tal”

d by

lso be

de),

ent

tem-

o any

for a
tor length is not limited to 16 elements; and strip-mining overheads for longer vectors are m

lower or non-existence. Furthermore, limited storage space in the register file (reserved fo

quently used scalar in this machine) is not clobbered by the vector data.

Comparisons With The VLIW Machines

The following distinctions can be made between the pseudo-vector machine and a V

machine, such as the ADSP-2106x chip.

• Unlike the ADSP-2106x chip, this pseudo-vector machine does not support multiple s

(PC stack, loop address stack and loop count stack) for program loop executions. W

these stacks, only the inner most loop can benefit from eliminating the loop control o

heads. Thus there will still be control overheads associated with the outer loops exec

on this machine.

In this machine, we concentrate our hardware resources on optimizing and speeding

inner-most loop executions - since it provides the greatest benefits if the inner-most lo

executed multiple iterations each time it is invoked. If an inner loop executesn iterations,

then saving one cycle from the inner-most loop executions will have the similar effec

savingn cycles from the next outer loop executions.

• In this machine, there are three independent on-chip memory modules, M0, M1 and

Thus the machine can perform up to three data memory operations (two reads and one

per cycle.

• A VLIW machine is capable of issuing multiple independent compute operations in

cycle. This can be thought of performing multiple independent operations in a “horizon

or “width” direction (see Figure 2.16). By the end of each cycle, the results produce

these operations are written back to some architectural registers; these results can a

feed-forwarded to other compute operations in the subsequent cycle.

In the pseudo-vector machine, when executing in a CVA mode (or a “true” vector mo

two function units are chained together in a “vertical” direction to perform two depend

operations. These operations are performed simultaneously on two different data. The

porary results that are produced between the two functional units are not written back t

architectural register.

The differences between the execution model for a two-wide VLIW machine and those



35

very

ever,

(the

rmat

ing a

y

oop

ally

ritten

unt

pre-

n co-
two-deep vector machine can be illustrated in Figure 2.16.

• When executing in a PVA mode, the execution model of the pseudo-vector machine is

similar to those of a conventional DSP processor (such as the ADSP-2106x Chip). How

the following minor differences can be noted.

• Each program loop on this machine can optionally enable up to two cs-load

L0 and L1 streams) and one cs-store (the S stream) operations. The instruction fo

of a PVA instruction and the general structure of a program loop constructed us

PVA instruction are shown in Figure 2.17.

• In the PVA instruction, E0/E1/ES are the enable bits for the L0/L1/S streams,

respectively. Access to the L0 and L1 streams within the loop body is achieved b

reading from registers R0 and R1, respectively. In addition, a label within the l

body, called “cs-store”, marks the instruction that, when executed, will automatic

initiate a cs-store operation. The data for the store operation, is the same data w

back by that instruction.

• There are three ways in which a loop can exit its executions: (i) by the Co

Register becoming zero; or (ii) by the conditional code becoming a value

specified in the CT field (assuming ET=1); or (iii) by a taken branch within the loop

body with its target lies outside the loop body. All these three exit mechanisms ca

exist simultaneously on a program loop.

Two independent operations
are issued simultaneously

Two functional

Data

Two function units
chained together to

(a) A two-wide VLIW machine (b) A two-deep vector machine

Figure 2.16: Comparison Between a 2-Wide VLIW Machine and a 2-Deep
Vector Machine

Results are written back to registers
or are feed-forwarded to
the next compute operations

units operate in

Results are written
back to memory

Temporary
results are
not written
back to
any register

perform dependent
operationsparallel



36

nven-

ector

rtain

like a

d for

an

gm. If

the
2.12  General Comparisons With Related Work

The pseudo-vector machine has merged many architectural techniques found in co

tional DSP and vector machines, into a single execution model. It performs two forms of v

arithmetic (namely, the “true” and “pseudo” vector arithmetic) on a single datapath. At ce

time, this machine behaves like a true vector machine; and in some other time, it behaves

DSP machine that optimizes program loop executions.

The optimizing compiler, in this case, decides which processing paradigm is best suite

a given program loop. In general, it will first try to vectorize a loop using CVA instruction(s), in

attempt to exploit the low-power and high performance aspects of vector processing paradi

this is not possible, or too costly, it will then try to vectorize the loop using a PVA instruction (

DSP’ style of loop-based executions), or a combination of both CVA and PVA instructions.

A PVA loop body consists

br L1

L1:

br L2

Figure 2.17: The General Structure of a PVA Program Loop

L2

cs-load/cs-store
enable bits

Early termination
condition code and
enable bit

cs-store:
<instruction>

<instructions>

Executing this instruction
will initiate a
cs-store operation

<instructions>

PVA @L0, @L1, @S, ct=1, #Loop_size // A PVA instruction

(b) A program loop constructed using a PVA instruction

(a) PVA Instruction Format

of multiple scalar instructions<instructions>

Vector_Opcode Loop_sizeE0E1 Es

01631 15

ETCT

6713

cs-store-index1

cs-store-index

Loop exits its
executions



37

on

s par-

it.
If a vector arithmetic can be described by one or more CVA depicted in Figure 1.5

page 9, then CVA executions offer great opportunities for performance improvements. This i

ticularly true when the p_op is a multi-cycle operation, and can be fully pipelined at the P un



38

ode.

e cat-

tions

es of

xecu-

own in

ency

ector

dency

dency

func-
CHAPTER 3

VECTOR ARITHMETIC

The pseudo-vector machine is capable of executing in scalar mode and in vector m

When in a vector mode, all the vector arithmetic that can be performed on this machine can b

egorized into the following two categories.

• Canonical Vector Arithmetic (CVA);

• Pseudo-Vector Arithmetic (PVA).

Correspondingly, there are two vector instructions in this machine, one for CVA execu

and one for PVA executions. In this Chapter, we will in turn describe each of these two typ

vector arithmetic. In addition, there are also some vector arithmetic that can terminate its e

tion before the full vector is being processed. We will call this avector arithmetic with early termi-

nation.

3.1  Canonical Vector Arithmetic

Many vector arithmetic can be represented by a generic data dependency graph sh

Figure 3.1. In this graph, “ ” denotes some scalar arithmetic or logical function. This depend

graph isgeneric, in the sense that it represents a large number of vector operations. The v

arithmetic shown in Example 1.1 on page 9, for example, can be represented by the depen

graph shown in Figure 3.1. The scalar function, in this case, is the multiplication function.

We will now further generalize this dependency graph as follows.

• A source operand can be either a scalar constant or a vector element;

• The generic dependency graph shown in Figure 3.1 is chained with another depen

graph to form a compounded operation with three source operands and two arithmetic

tions (see Figure 3.2(a)).

•



39

(see

s.
• A feed-back path is added from the output to the input of the second arithmetic function

Figure 3.2(b) and Figure 3.2(b)).

We will call these generalized vector operationscanonical vector operations,or canonical

vector arithmetic(CVA)*. Figure 3.2 shows three basic types of CVA. They are: (i)compound

CVA; (ii) reduction CVA. and (iii)hybrid CVA. In this figure, “s” denotes some scalars quantitie

* In this dissertation, vector arithmetic and vector operation will be used interchangeably.

A[i] B[i]

C[i]

Figure 3.1: A Generic Data Dependency Graph

•

A[i] or B[i] or s A[i] or B[i] or s

C[i]

Figure 3.2: Dependency Graphs for Three Types of CVA

s

(a) Compound CVA (b) Reduction CVA

A[i] or B[i] or s

Operand X Operand Y

Operand Z p_op p_op

s_ops_op

A[i] or B[i] or s A[i] or B[i] or s
Operand X Operand Y

C[i] and s

(c) Hybrid CVA

p_op

s_op

A[i] or B[i] or s A[i] or B[i] or s
Operand X Operand Y



40

the

w-

tors

here

quire-

ese

. The
In these three types of CVA, the first arithmetic performed near the two inputs is called

primary arithmetic(p_op). The second arithmetic performed near the output is called thesecond-

ary arithmetic (s_op).

In order to limit the hardware costs, for the purpose of this work, we will impose the follo

ing restrictions.

• In the compound CVA, the two arithmetic combined can only source up to two distinct vec

(vectors A and B in Figure 3.2(a)). This restriction, however, does not preclude the case w

all three source operands are vectors. It reduces the maximum memory bandwidth re

ment, from three data fetches per cycle to two data fetches per cycle.

• The secondary arithmetic, s_op, is limited to a few simple commutative ALU functions. Th

include add, and, or, xor, etc.*

The basic datapath structure for executing the CVA is shown in Figure 3.3.

3.1.1 Compound CVA

Compound CVA can produce a destination vector as a result of vector computations

general form of a compound CVA can be expressed as follows.

• If source X and source Y are all vectors, then

Ri = (Xi p_op Yi) s_op Zi, i=0,...,n-1

where

n denotes the vector length;

p_op denotes the primary arithmetic;

* A scalar arithmetic,op, is said to becommutative if (x op y) = (y op x), for all scalar x and y.

Figure 3.3: Basic Datapath Structure for Executing CVA

p_op
s_op

S: data stream

L0: first input data
stream from memory

L1: second input data
stream from memory

From Regfile

to memory

Latch

P



41

graph

a

of a
s_op denotes the secondary arithmetic;

Ri denotes theith element of the destination vector;

X i, Yi and Zi are respectively theith element of vectors X, Y and Z.

• If source X is a scalar constant, x, and source Y is a vector, then

Ri = (x p_op Yi) s_op Zi, i=0,...,n-1

• If source X is a vector and source Y is a scalar constant, y, then

Ri = (Xi p_op y) s_op Zi, i=0,...,n-1

The secondary arithmetic, s_op, can also be a “no-op”. In this case, the dependency

shown in Figure 3.2(a) degenerates into those shown in Figure 3.1.

3.1.2 Reduction CVA

A reduction CVA performs avector reduction operation, where one or more vectors, as

result of the vector operation, is reduced to a scalar result [Hwang84]. The general form

reduction CVA can be expressed as follows.

• If source X and source Y are all vectors, then

S0 = (X0 p_op Y0)

Si = (Xi p_op Yi) s_op Si-1, i=1,...,n-1;

R = Sn-1

where

Si denotes theith partial result;

R denotes the scalar result for the vector reduction operations.

• If source X is a scalar constant, x, and source Y is a vector, then

S0 = (x p_op Y0)

Si = (x p_op Yi) s_op Si-1, i=1,...,n-1;

R = Sn-1

• If source X is a vector and source Y is a scalar constant, y, then

S0 = (X0 p_op y)

Si = (Xi p_op y) s_op Si-1, i=1, n-1;

R = Sn-1



42

, are

-

ribed

c-

on-

ose

,

ector

ond-

first

mem-

; and

e 40).

dary

ed in

, fol-

ase,

econd

see

“no-

@S”
The feed-back path shown in Figure 3.3, in conjunction with the secondary arithmetic

responsible for computing and accumulating apartial result; and eventually, producing a final sca

lar result. An example of such reduction operations is the inner product of two vectors, desc

by (A[i] * B[i]). In this case, the primary arithmetic is the “multiplication” function and the se

ondary arithmetic is the accumulative “add” function.

3.1.3 Hybrid CVA

A hybrid CVA is identical to a reduction CVA, except that the partial results are also c

stantly being written to a destination vector. The general form of a hybrid CVA is identical to th

for reduction CVA, except that the partial results, Si, i=0,.,n-1, also form a destination vector, R

with Ri= Si, i=0,.,n-1. For hybrid CVA, there are two destinations: a scalar destination and a v

destination.

3.1.4 Some Examples Of CVA

A few examples of CVA are shown in Table 3.1. In each of these examples, the corresp

ing CVA vector instruction is also shown in Table 3.1.

In these CVA instructions, “@” denotes a data stream. In particular, “@L0” denotes the

input data stream from the memory; “@L1” denotes the second input data stream from the

ory; “@P” denotes the intermediate result stream produced by the primary arithmetic, p_op

“@S” denotes the output data stream to the memory (compare these with Figure 3.3 on pag

All L 0, L1 and S streams are constant stride memory operations.

For compound CVA, the CVA instructions can specify both the primary and the secon

arithmetic (see Example (a) and Example (b) in Table 3.1). These two arithmetic are specifi

the CVA instructions with a comma separating them: the primary arithmetic is specified first

lowed by the secondary arithmetic. The instruction is terminated with the “;” symbol. In this c

the “@P” stream appears as a destination in the primary arithmetic; it also appears in the s

arithmetic as a source.

For compound CVA, the CVA instructions can also specify only the primary arithmetic (

Example (c) through Example (f) in Table 3.1). The secondary arithmetic, in this case, is a

op” and the results produced by the primary arithmetic are stored directly to the memory via “

stream. No “@P” stream is specified in the instructions.

i
∑



43

etic

rs as a

of the

metic is

as the

scribe

func-

) in
For reduction CVA, the CVA instructions specify both the primary and secondary arithm

(see Example (g) through Example (i) in Table 3.1). In these cases, the “@P” stream appea

designation in the primary arithmetic; it also appears in the secondary arithmetic as one

source operands. The destination and the second source operand of the secondary arith

always register R3. For reduction CVA, R3 is designated to store the partial results as well

final scalar result for the reduction operations.

Since the secondary arithmetic is commutative, a shorthand notation can be used to de

a reduction CVA. In this case, the entire secondary arithmetic expression is replaced by the

tion name for s_op. The CVA instruction for calculating the inner product (Example (g

Table 3.1), for example, can also be written as:

Table 3.1: Some Examples of CVA

Ex. Vector Arithmetic Descriptions CVA Vector Instructions

Streams
Enabled

L0 L1 S

(i) Compound CVA

a C[i]= sA[i] + B[i] Vector constant
multiplication and

addition

CVA mul r4, @L0, @P,
add @P, @L1, @S;

Y Y Y

b C[i]= (A[i]) 2+B[i] Element-wise
square and add

CVA mul @L0, @L0, @P,
add @P, @L1, @S;

Y Y Y

c C[i]= (A[i]) 2 Element-wise
square

CVA mul @L0, @L0, @S; Y N Y

d C[i]= abs(A[i]) Element-wise
absolute

CVA abs @L0, @S; Y N Y

e C[i]=A[i] Vector assignment CVA mov @L0, @S; Y N Y

f C[i] = 0 Memory block ini-
tialization

CVA mov 0, @S; N N Y

(ii) Reduction CVA

g IP = (A[i] * B[i]) Vector inner prod-
uct

CVA mul @L0, @L1, @P,
add r3, @P, r3;

Y Y N

h Norm2 = (A[i]) 2 The square of
“norm” of vector A

CVA mul @L0, @L0, @P,
add r3, @P, r3;

Y N N

i Sum = A[i] Vector reduction
through summa-

tions

CVA mov @L0, @P,
add r3, @P, r3;

Y N N

(iii) Hybrid CVA

j C[i]=A[i]*B[i];
IP = (A[i] * B[i])

Vector multiplica-
tion and vector
inner product

CVA mul @L0, @L1, @P,
add r3, @P, {@S,r3};

Y Y Y

i 0 n 1–,=
∑

i 0 n 1–,=
∑

i 0 n 1–,=
∑

i 0 n 1–,=
∑



44

the

VA

ot be

ndi-

from

ome

form.

ed of

. We

vec-

tate-

d

Then

con-
CVA mul @L0, @L1, add; // shorthand notation for reduction CVA

For hybrid CVA, the instruction syntax is similar to those for reduction CVA, except that

secondary arithmetic has two destinations: a S stream and register R3. They appear on the C

instruction in the form “{@S, R3}”. There is no shorthand notation for hybrid CVA.

3.2  Pseudo-Vector Arithmetic

There are many program loops that perform arithmetic functions on vectors, but cann

classified as vector arithmetic. Consider the following program loop.

Example 3.1:

for (i=0; i<n; i++) {

if (A[j]>m) {

“M”

}else{

“N”

}

if (B[k]>A[j]) goto EXIT;

j=j+4; k=k+8;

}

EXIT

In this loop, “M” and “N” represent some segments of straight-line code. They are co

tionally executed based on condition A[j]>m. Also, there are more than one possible exits

this loop. The conditional executions of “M” and “N” and conditional loop exits can base on s

runtime information. The control flow graph of this loop is shown in Figure 3.4.

Often there is no systematic way of describing these types of operations in vector

When implemented in assembly code, this loop is converted into a program loop compos

assembly instructions, with multiple conditional and unconditional branches in between them

will call such an arithmetic apseudo-vector arithmetic (PVA).

In a “true” vector machine (such as Cray-1), the loop shown in Example 3.1 can still be

torized using multiple vector operations. To simplify our discussion, let’s assume that the s

ment “if (B[k]>A[j])” is removed from the loop. In this case, the condition (A[j]>m) can be use

to generate a vector mask. Assuming that “M” and “N” represent some vector operations.

“M” can be performed under the control of the mask; while “N” can be performed under the



45

eded.

con-

VA

f CVA

be
trol of a “inverted” version of the mask. In this example, no gather nor scatter operation is ne

In our pseudo-vector machine, the PVA execution is a generalization of CVA execution.Any

program loop that is vectorizable using the CVA construct, is also vectorizable using the PVA

struct. The converse, however, is not true. If a loop is vectorizable by using either a CVA or a PVA

construct, it is usually more efficient, in terms of execution time, to vectorize it using the C

construct. There are also some program loops that are best vectorized by a combinations o

and PVA constructs. We will come back to this subject later in this dissertation.

Example 3.2:

Vectorize the vector operations: C[i]= A[i]2+B[i].

The CVA version of this program loop shown in Example (b) in Table 3.1. It can also

vectorized, using a PVA construct, as follows.

<Some initialization code>

A[j]>m?

i<n?

Start

i=i+1

M N

Exit

i=0

y

y n

y

n
j=j+4
k=k+8

Exit

Figure 3.4: A Program Loop with Multiple Exits

n

B[k]>A[j]?



46

ector

priate

B[i]

his

g the

stina-

”).
// assign L0 to A, L1 to B, S to C.

PVA @L0, @L1, @S, #3; // PVA instruction

mov r3, r0 // r3 = A[i]

mul r3, r3 // r3 = A[i] 2

cs-store:

add r3, r1 // C[i] = A[i] 2 + B[i];

// initiate a cs-store here

In this vectorized loop, all L0, L1 and S streams are enabled. In particular, the L0 stream is

assigned to vector A; the L1 stream is assigned to vector B and the S stream is assigned to v

C. “Assignment” here refers to initializing some specially designated registers to the appro

load/store addresses and stride values for accessing the vectors A, B and C.

Within the loop body, access to A[i] is achieved by reading from register R0; access to

is achieved by reading from register R1. R0 and R1 are, respectively, the “heads” of the L0 and L1

streams.

An “add” instruction is located at a label called “cs-store” within the loop body. When t

instruction is executed, a constant-stride store to the memory is automatically initiated, usin

result written back by this instruction. This cs-store operation writes a data element to the de

tion vector C.

The size of the PVA loop, in this example, is three instructions (“mov”, “mul” and “add

This is specified in the PVA instruction using the notation “#3”.

3.3  Vector Arithmetic with Early Termination

Consider the program loop shown in Example 3.3.

Example 3.3:

L1:

ld.h r7,(r2) // load A[i]

addi r2,2

ld.h r6,(r3) // load B[i]

addi r3,2

cmplt r6,r7 // is A[i] > B[i]?

bt EXIT // if so, exit the loop

decne r14 // if not, decrement the count



47

its as

will

it is

being

c.

e is

hmetic

ssed.

, it

sibly

and

inate

tion.

in

con-
bt L1 //is the entire vector being processed?

//if not, branch backward

EXIT:

The corresponding high level source code is shown below.

for (i=0; i<n; i++) {

if (A[i] > B[i]) {break;}

}

This loop performs an element-wise compare between vector A and B. This loop ex

soon as A[i]>B[i]. If no such pair of elements exists, then all the elements of vector A and B

be processed before the loop exits.

If a program loop performs certain arithmetic function on a fixed length vector(s), and

possible for the computation to terminate even before the last element(s) of the vector(s) is

processed, then such an operation is called avector arithmetic with early termination.

Example 3.1 and Example 3.3 shown earlier in this Chapter are examples of such arithmeti

In a vector arithmetic with early termination, there are two terminating conditions. On

when all the elements of a source vector are being processed. The other is when certain arit

condition is met. This condition could be met prior to the last vector element is being proce

This condition is usually data dependent and can not be determined a priori.

When a loop with “if” condition in the loop body is vectorized on a “true” vector machine

is often converted into multiple vector operations which involves mask generation, and pos

some gather and scatter operations.

Early Termination Enable Bit, ET

In our vector execution model, both CVA and PVA arithmetic described in Section 3.1

Section 3.2 can be a vector arithmetic with early termination. All vector executions can term

early by setting an enable bit, called theEarly Termination Enable Bit(ET bit), in the vector

instruction. The value of the condition code for this to occur is also specified in the instruc

This bit is called the CT bit. The formats of the CVA and PVA instructions will be described

Section 4.4 in Chapter 4.

For CVA executions with early termination enabled (ET=1), the primary arithmetic are some

functions that can alter the condition code. During the course of the vector executions, if the



48

his

en

the

ctors

-

e the

ally.

e fol-

ized
dition code is set to the pre-specified value (given by the CT bit), the vector execution will termi-

nate immediately.

Example 3.4:

Vectorize the program loop shown in Example 3.3 using a CVA construct.

This loop can be vectorized using a CVA construct as follows.

<Some initialization code>

// assign L0 to A, L1 to B.

CVA cmplt.ct=1 @L0, @L1;

In this CVA instruction, the secondary arithmetic is unspecified (i.e. it is a “no-op”). In t

instruction, ET=1 and CT=1. The primary arithmetic (“cmplt”) compares, element-wise, betwe

vector A and vector B. If A[i] > B[i], for some i, the condition code is set to one, terminating

CVA executions. If no such pair of elements are found, executions continue until the two ve

are exhausted.

For PVA executions,early terminationcan be achieved by any of the following two mecha

nisms:

• By using the ET and CT bits in the PVA instruction, similar to those described above; and

• When a branch within the loop body is taken, and the target of the branch lies outsid

loop body.

When any of the above two conditions is met, the PVA executions terminate automatic

The machine will then enter a scalar mode. These two exit mechanisms are illustrated in th

lowing example.

Example 3.5:

Vectorize the program loop shown in Example 3.3 using a PVA construct.

The CVA version of this loop is shown in Example 3.4. This loop can also be vector

using a PVA construct as follows.

<Some initialization code>

// assign L0 to A, L1 to B.

PVA @L0, @L1, ct=1, #1;

cmplt R0, R1 // loop body



49

een

code

.

y:

is

exe-

3.4,

two

e-

ith

le of
Like its CVA counterpart, the PVA instruction has ET=1 and CT=1. The PVA loop body con-

sists of only one scalar instruction (“cmplt”). This instruction compares, element-wise, betw

vectors A and B. This is achieved by reading and comparing R0 and R1. When the condition

c is set to 1 (CT=1) as a result of the comparisons, the PVA executions terminate immediately

An alternate version of this loop is shown below.

<Some initialization code>

// assign L0 to A, L1 to B.

PVA @L0, @L1, #2;

cmplt R0, R1 // part of loop body

bt EXIT // part of loop body

EXIT

In this alternative, ET=0 in the PVA instruction. There are two instructions in the loop bod

(“cmplt” and “bt”). When the second instruction in the loop (“bt EXIT”) is taken (the target of th

branch lies outside the loop body), the PVA executions terminate immediately. Otherwise, the

cutions will continue with the first instruction of the next iteration (“cmplt”).

The first PVA version of the loop executes as fast as the CVA version shown in Example

taking one cycle per iteration to execute. The second PVA version is less efficient, taking

cycles per iteration to execute. By setting ET=1, we eliminated the overhead associated with ex

cuting the conditional branch instruction.

The “exit-by-conditional-branches” alternative is typically used by a program loop w

conditional executions within the loop body that also utilize the condition code. An examp

such loops is shown in Example 3.1 on page 44.



50

this

the

tion,

ause

. The

e are

hree

nt-

r each

The
CHAPTER 4

PROGRAMMING MODELS

In this Chapter, we will discuss the programming models for vector executions on

machine.

In the CVA executions, there are notions of “vector elements” and “vector length”. In

PVA executions, there are notions of “loop body” and “iterations”. Throughout this disserta

“vector length” and “number of iteration” will be used interchangeably, if such uses do not c

any confusion in a given context.

4.1  Execution Modes

There are two major execution modes in this machine: scalar mode and vector mode

vector mode can be further divided into: CVA mode and PVA mode. Correspondingly, ther

two vector instructions, a CVA instruction and a PVA instruction. Furthermore, there are t

types of CVA executions. Figure 4.1 shows all the execution modes in this machine.

4.2  Constant-Stride Load/Store Operations

A vector instruction (a CVA or a PVA instruction) can optionally enable up to two consta

stride load (cs-load) and one constant-stride store (cs-store) operations to be performed fo

pair of vector elements (for CVA executions) or during loop executions (for PVA executions).

Execution modes

Scalar mode

Vector mode

CVA mode

PVA mode

Figure 4.1: Various Execution Modes On The Pseudo-Vector Machine

Compound CVA

Reduction CVA

Hybrid CVA



51

eam.

ays

orre-
two cs-load operations are denoted by L0 and L1. The cs-store operations are denoted by S. L0 and

L1 are also referred to as the input data streams; S is also referred to as the output data str

The data dependency graphs in Figure 4.2 show the relationships between L0, L1 and source

operands X, Y and Z. Operand X can source either from L0, L1 or register R4. Operand Y can

source either from L0, L1 or register R5. Operand Z can source from either L0, L1 or register R6.

4.2.1 cs-load And cs-store For CVA Executions

When in a CVA mode, S can be enabled or disabled. For compound CVA, S is alw

enabled. If S is disabled, the CVA corresponds to a reduction CVA. If S is enabled, the CVA c

sponds to either a compound CVA or a hybrid CVA.

Example 4.1:

Vectorize the following program loop.

L1:

stw r5,(r14)

addi r14,4

decne r6

bt L1

This loop is found in a benchmark program calledsummin . It initializes a block of memory

with a constant. It can be vectorized using a CVA instruction as follows.

<Some initialization code>

CVA mov r4, @S;

L0, L1 or r4 L0, L1 or r5

C[i]

Figure 4.2: Dependency Graphs Showing the Relationships Between L 0, L1
and Source Operands X, Y and Z

s

(a) Compound CVA (b) Reduction CVA

L0 or L1 or r6

Source X Source Y

Source Z p_op p_op

s_ops_op

(S enabled) (S disabled)

L0, L1 or r4 L0, L1 or r5
Source X Source Y

C[i] and s
(c) Hybrid CVA

p_op

s_op

(S enabled)

L0, L1 or r4 L0, L1 or r5
Source X Source Y



52

ze and

CVA

in this

initial-

(for

be

this

torized

tion.
This is a compound CVA. In this case, S is enabled but L0 and L1 are disabled. The initial-

ization code preceding the CVA instruction sets up the starting store address, its operand si

constant-stride value. R4, in this case, is initialized to the appropriate constant prior to the

executions. The cs-store S are then performed using this constant. The primary arithmetic,

case, is a “mov” function. Besides setting up the store address and stride value, the vector

ization code also includes the initialization of vector length to a special register calledCount Index

Register(CIR). This register, which controls the number of vector elements to be processed

CVA executions) or the number of iterations to be executed (for PVA executions), will

described further in Section 4.3.2.

Example 4.2:

Vectorize the following program loop.

L1:

ld.b r7,(r3)

st.b r7,(r2)

sub r2, r9

sub r3, r9

decne r6

bt L1

This loop performs a block memory transfer between two memory locations. R9, in

case, contains the stride value for the cs-load and cs-store operations. This loop can be vec

as follows.

<Some initialization code>

CVA mov @L0,@S;

This is also a compound CVA. In this case, L0 and S are enabled, but not L1. The primary

arithmetic is also a “mov” (or “pass”) function. The secondary arithmetic is also a “pass” func

Example 4.3:

Vectorize the following vector operation: C[i] = sA[i] + B[i], for some scalar constant s.

This vector operation can be vectorized using a CVA instruction as follows.

<Some initialization code>

// assign L0 to A, L1 to B.



53

.

to

arith-

tion

g from

s, A
// initialize r5 with the scalar s

CVA mul @L0, r5, @P, add @P, @L1, @S;

This is another compound CVA. In this example, all L0, L1 and S streams are enabled

Stream L0 is assigned to vector A; stream L1 is assigned to vector B and stream S is assigned

vector C. Register R5 is initialized to the scalar s prior to the vector executions. The primary

metic is the “mul” function and the secondary arithmetic is the “add” function.

In the above Example, the CVA instruction sources two vector operands. A CVA instruc

can also source up to three vectors, provided that the three source vectors are actually comin

no more than two distinct vectors. For example, the vector operations C[i] = A[i]2 + B[i] can be

vectorized as follows.

// assign L0 to A, L1 to B, S to C.

CVA mul @L0, @L0, @P, add @P, @L1, @S;

In this case, operands X, Y and Z are all vectors, sourcing from only two distinct vector

and B.

Example 4.4:

Vectorize the following program loop.

L1:

ldw r10,(r14)

decne r4

mov r7,r10

lsr r7,r9

or r7,r3

mov r3,r10

stw r7,(r13)

lsl r3,r8

addi r14,4

addi r13,4

bt L1

This loop is taken from a benchmark program calledblit . The vector operations per-

formed by this loop can be described by:

C[i] = (lsr(A[i], r9) | lsl(A[i], r8))



54

lsr”)

hift

ions,

lsr”

uction

ads

ce

th-

ister

xe-
This loops reads in a vector, A, an element at a time, and performs a logical shift right (“

and a logical shift left (“lsl”) operations on the element. It then “or” the results of these two s

operations and writes it to a destination vector, C. It can be vectorized using two CVA instruct

as follows.

<Some initialization code>

// assign L0 to vector A, S to a temporary vector.

mov r5, r9

CVA lsr @L0, r5, @S;

<Some initialization code>

// assign L0 to the temporary vector, L1 to vector A.

// assign S to vector C.

mov r5, r8

CVA lsl @L0, r5, @P, or @L1, @P, @S;

Both of these CVA instructions are compound CVA instructions. The first performs a “

operation on the source vector A and produces a temporary vector. The second CVA instr

has “lsl” as its primary arithmetic and “or” as its secondary arithmetic. This latter instruction re

in the temporary vector via L0 and performs a “lsl” operation on it. It also reads the original sour

vector A via L1 and performs a “or” function with the results produced from the primary ari

metic. It then writes back the results to vector C via S.

Notice that the source operand Y for both CVA instructions is always sourced from reg

R5. Additional “mov” instructions are thus needed to initialize this register prior to the CVA e

cutions. The data dependency graph for this loop is shown in Figure 4.3.

A[i]
r5 <- r9

C[i]

lsr

lsl

or

First CVA

Second CVA
instruction

instruction

r5 r8←

Figure 4.3: Data De pendenc y Graph for Exam ple 4.4



55

ns in

the

the

.

f

itten

nt is s),

The

by the

L

regis-

nored
Note that in the original scalar program loop shown on page 53, there are 11 instructio

the loop body. Thus duringeachiteration, there were 11 instruction requests being made to

instruction memory. In the CVA executions, besides fetching the initialization codes and

“mov” instructions, there is no instruction request throughout the course of vector executions

Example 4.5:

Vectorize the following program loop.

movi r4,1

L1:

stw r4,(r11) // cs-store

addi r11,4

addi r4,1 // store data sequence: 1,2,3,...

cmplt r4,r13 // check for loop terminating condition

bt L1

This loop is taken from a benchmark program calledauto . The loop stores a sequence o

data described by: 1,2,3,..., etc. This loop can be vectorized as follows.

<Some initialization code>

movi r4,1

CVA mov r4, @P, add @P, r3, {r3,@S};

This is a hybrid CVA. The partial result, generated in every cycle, is simultaneously wr

to register R3 and stream S.

If the starting value of the sequence is some constant other than a one (say, the consta

then two CVA instructions will be needed. The first one is the hybrid CVA described above.

second is a compound CVA that adds s-1 to each element of the resulting vector produced

first CVA executions.

4.2.2 cs-load And cs-store For PVA Executions

When in a PVA mode, any or all of L0, L1 and S can be disabled. To enable the cs-load0

(or L1), the “@L0” (or “@L1”) symbol must appear in the PVA instruction. When L0 (or L1) is

enabled, access to the cs-load data stream within the loop body is achieved by reading from

ter R0 (or R1). Each read from R0 (or R1) dequeues one data item from the L0 (or L1) stream.

Registers R0 and R1, however, are read-accessible only. Writing to these registers will be ig

by the hardware.



56

body.

initi-

store”

is
To enable cs-store S, there must be one (and only one) “cs-store” label within the loop

When the instruction located at this label is executed, a cs-store operation is automatically

ated, using the data written back by that instruction. There can be no more than one “cs-

label in a PVA loop body. If there is none, S is considered to be disabled by the assembler.

Example 4.6:

Vectorize the following program loop.

for (i=0; i<n; i++) {

if (A[i] > p) C[i]=4 else C[i]=8;

}

The corresponding assembly code is shown below.

mov r4, 4

mov r8, 8

L1:

ld.w r7,(r3) // load A[i]

addi r3,4

mov r2, r8

cmplt r6,r7 // is A[i] > p?

movt r2, r4 // r2 = (A[i] > p)? r4: r8;

st.w r2, (r4) // store result

addi r4,4

decne r5 // decrement the loop count

bt L1 //is the entire vector being processed?

This loop can be vectorized using a PVA construct as follows.

<Some initialization code>

// assign L0 to A, S to C.

mov r4, 4

mov r8, 8

PVA @L0, @S, #4;

mov r2, r8

complt R6, R0 // Is (A[j] > p)?

cs-store:

movt r2,r4 // r2 = (A[i] > p)? r4: r8;

//cs-store performed here

In this loop, L0 and S are enabled, but not L1. In each PVA iteration, a cs-store operation



57

is

width

on-

these

ns, or

ecial

r exe-

l-

n is
automatically initiated whenever the “movt” instruction is executed.

Note that after vectorizing this loop with a PVA instruction, the size of the loop body

reduced from the original 9 instructions, down to 3 instructions. The instruction request band

when executing this loop is thus greatly reduced.

All the instructions that were eliminated from the loop performed some repetitive loop c

trol or cs-load/cs-store operations. During loop executions, the machine no longer needs

instructions since their associated operations are already pre-specified in the PVA instructio

in some special registers.

4.3  Special Registers For Vector Executions

Prior to any vector execution, certain registers need to be properly initialized. These sp

registers contain all the necessary information for the hardware to carry out the proper vecto

cutions. Table 4.1 shows these special registers. They are described in the followings.

4.3.1 Stride and Size Register

A special register, called theStride and Size Register(SSR), is used to specify the stride va

ues and the operand sizes for L0, L1 and S streams, if the corresponding load/store operatio

enabled. This register is partitioned into three independent fields, one for each of the L0, L1 and S

Table 4.1: Special Registers For Vector Executions

Registers Nota-
tions

Register Contents

Stride and Size Register SSR Stride values and operand sizes for L0, L1 and
S

Count Index Register CIR Number of iterations to be executed

General purpose register, R0a R0 Load address for L0

General purpose register, R1a R1 Load address for L1

General purpose register, R2 R2 Store address for S

General purpose register, R3 R3 Partial and final results for reduction or hybrid
CVA

General purpose register, R4 R4 Optional source for operand X

General purpose register, R5 R5 Optional source for operand Y

General purpose register, R6 R6 Optional source for operand Z

a. These are overlaid instances. See Section 4.6.



58

”

ister”

t

loop

to its

y one,

ro, the

CR

e reg-
stream. The format of SSR is shown in Figure 4.4.

The STR0/STR1/STRS fields specify the stride values for L0, L1 and S, respectively; the

SZ0/SZ1/SZS fields specify the operand sizes for L0, L1 and S, respectively.

When in a PVA mode, if any of L0, L1 and S is disabled, its corresponding “SZ” and “STR

fields are “don’t care”.

SSR is a special control register that can be accessed using the “move-to-control reg

instruction (“mtcr”) or the “move-from-control register” instruction (“mfcr”).

4.3.2 Count Index Register (CIR)

A special register, called theCount Index Register(CIR), is composed of two independen

registers: (i) theCount Register(CR); and (ii) theIndex Register(IXR). This register is shown in

Figure 4.5.

Register CR is used to specify the vector length for CVA executions, or the number of

iterations to be executed for PVA executions. This register is initialized by the software prior

vector executions. During the vector executions, this register is automatically decremented b

for each vector element (or each iteration) being processed. When this register reaches ze

vector executions will terminate. A vector arithmetic, however, could also terminate prior to

becoming zero. This will be described further in Section 4.5. CR is a read and write accessibl

ister.

STR0 STR1 STRsx x
0910192029

Figure 4.4: Stride Size Register, SSR

31
SZ1SZ0

STR0/STR1/STRS: Stride value for L0, L1 and S, respectively.

SZ0/SZ1/SZS: Operand size for L0, L1 and S, respectively.

SZS

0x word
10 halfword
11 byte

They are defined as follows:

For L0 For L1 For S

31 0

Figure 4.5: Count Index Register, CIR

Count Register (CR)Index Register (IXR)
1615



59

op

n we

. Writ-

ntrol”

r

ely,

isters

e

That is,

the

ances

1, this

wever,

reg-

s, the

ritten

, R5

g the

sed in
Register IXR is only used for PVA executions. It serves as a “local PC” within a PVA lo

body. When we are executing the first instruction in the loop body, the IXR is set to one. Whe

are executing theith instruction in the loop body, the IXR is set toi. IXR is a hardware-only regis-

ter. The software have no access to this register. Reading from this register returns all zeros

ing to this register is ignored by the hardware.*

Register CIR is a special control register that can be accessed using the “move-to-co

instruction (“mtcr”) or the “move-from-control” instruction (“mfcr”). However, only the lowe

portion of CIR (the CR register) is accessible to the software.

4.3.3 Register For Storing Constant-Stride Load Addresses

The load addresses for L0 and L1, if enabled, are stored in registers R0 and R1, respectiv

as shown in Table 4.1. Prior to entering a vector execution, the software initializes these reg

to point to the starting load addresses for L0 and L1. During the course of vector executions, thes

registers are constantly updated by the hardware, to point to the latest cs-load addresses.

each time a cs-load L0 (or L1) is performed, R0 (or R1) is added by the stride value specified in

STR0 (or STR1) field in the SSR register. The hardware, in this case, updates the overlaid inst

of R0 and R1. Register Overlay will be described in Section 4.6.

4.3.4 Register For Storing Constant-Stride Store Addresses

If S is enabled, the store addresses for S are stored in register R2. Similar to R0 and R

register is constantly updated by the hardware to point to the latest cs-store address. R2, ho

is not overlaid. Again, Register Overlay will be described in Section 4.6.

4.3.5 Scalar Results For Reduction And Hybrid CVA

When executing a reduction CVA or a hybrid CVA, R3 is designated as the destination

ister. It is also designated for storing the partial results during the vector executions. That i

partial results produced during the course of the vector executions are constantly being w

back to register R3.

4.3.6 Scalar Source Operands For CVA Executions

During CVA executions, operands X, Y and Z can optionally source from registers R4

and R6, respectively. Once initialized by the software, these registers will not be altered durin

entire course of CVA executions.

* The hardware recovery mechanisms for exceptions and interrupts for PVA executions will be discus
Section 4.7.



60

r gen-

VA

e

-

is

peci-

the

truc-

s an

f the

this

hen

ten
When in PVA executions, registers R3, R4 and R5 have no special meaning and are fo

eral uses.

4.4  Vector Instructions

Figure 4.6 shows the formats of the CVA and PVA instructions. Both the CVA and P

instructions are 32-bit wide.

In both CVA and PVA instructions, the E0, E1, Es bits, respectively, enables or disables th

L0, L1 and S streams. Also in these instructions, the ET bit enables or disables the early termina

tion capability. The CT bit specifies the condition code for this to occur, if the capability

enabled.

In the CVA instruction, the Vx0/Vx1, Vy0/Vy1 and Vz0/Vz1 bits appropriately select the

sourcing of operands X, Y and Z. In particular, these bits select the sourcing of L0, L1 or a desig-

nated registers, as defined in Figure 4.2 on page 51. The p_op field in the CVA instruction s

fies a primary arithmetic. The s_op field specifies the secondary arithmetic.

In the PVA instruction, the cs-store-index field specifies the index of the instruction in

loop body that will initiate a cs-store operation, when the instruction is executed. The first ins

tion in a PVA loop has an instruction index of zero, the second instruction in the PVA loop ha

instruction index of one, and so on. The Loop_size field in this instruction specifies the size o

PVA loop body, in number of scalar instructions.

Example 4.7:

Implement the inner product of two vectors: (A[i]*B[i]) .

Initialize CR to n.

Initialize SSR[STR 0] to stride value for vector A.

Initialize SSR[STR 1] to stride value for vector B.

Initialize R0 to the starting address for vector A.

Initialize R1 to the starting address for vector B.

CVA mul @L0, @L1, add;

In this example, S is disabled. Thus this is a reduction CVA. The primary arithmetic for

reduction operations is the “mul” function; the secondary arithmetic is the “add” function. W

the vector computation is completed, the final result (the inner product) will be implicitly writ

i 0 n 1–,=
∑



61
Figure 4.6: Format of CVA and PVA Instructions

Vector_Opcode Loop_sizeE0 E1 Es

01631

p_op s_op

s_op: Opcode for secondary arithmetic

E0/E1/ES: Enable bits for data streams L0, L1 and S, respectively

15

ET CT

ET: Enable bit for early termination
CT: Condition code for early termination

Loop_size: Size of loop body in number of instructions

p_op: Opcode for primary arithmetic

6713

cs-store-index

cs-store-index: Index of the instruction in the loop body that will
initiate a cs-store operation

Vector_Opcode: Opcode for vector instructions

Vz0/Vz1: Defined as follows.

Vz1Vz0 = 00 operand Z sources from R5 (compound CVA)
Vz1Vz0 = 01 operand Z sources from L0 (compound CVA)
Vz1Vz0 = 10 operand Z sources from L1(compound CVA)
Vz1Vz0 = 11 operand Z not used (Reduction CVA)

ET: Enable bit for early termination
CT: Condition code for early termination

Vector_Opcode: Opcode for vector instructions

(a) CVA Instruction

(b) PVA Instruction

Vector_Opcode E0 E1 Es

01631 15

ETCT

347
Vx1Vx00 Vy1Vy0Vz1Vz0

8

Vx0/Vx1: Defined as follows.

Vx1Vx0 = 00 operand X sources from R3
Vx1Vx0 = 01 operand X sources from L0
Vx1Vx0 = 10 operand X sources from L1
Vx1Vx0= 11 operand X sources zero

Vy0/Vy1: Defined as follows.

Vy1Vy0 = 00 operand Y sources from R4
Vy1Vy0 = 01 operand Y sources from L0
Vy1Vy0 = 10 operand Y sources from L1
Vy1Vy0 = 11 operand Y sources zero

E0/E1/ES: Enable bits for data streams L0, L1 and S, respectively

1



62

rtial

will

VA

ode

lly

i-

con-

ition
back to R3. The CVA instruction, in this example, will have the following settings: Vx1/Vx0=01,

Vy1/VY0=10, Vz1=Vz0=11, ES=0, ET=0, CT=“don’t care”.

In this example, if the vector executions is interrupted, register R3 will contain the pa

result of the inner product computations. Upon returning from the interrupt, computations

continue from where it was left off.

Example 4.8:

Implement the vector arithmetic: C[i] = sA[i], for all i.

Initialize CR to the vector length.

Initialize SSR[STR 0] to stride value for vector A.

Initialize SSR[STR S] to stride value for vector C.

Initialize R0 to the starting address for vector A.

Initialize R2 to the starting address for vector C.

Initialize R5 to s.

CVA mul @L0, R5, @S;

This is a compound CVA. The second arithmetic is a “no-op”. In this case, L0 and S are

enabled, but not L1. Prior to the vector executions, R5 was initialized with the constant s. The C

instruction, in this example, will have the following settings: Vx1/Vx0=01, Vy1/Vy0=00, Vz0/

Vz1=00, ES=1, ET=0, CT=“don’t care”.

4.5  Terminating Conditions

All vector executions (CVA and PVA) can exit their executions and return to a scalar m

prior to CR becoming zero. A vector instruction (a CVA or a PVA instruction) can optiona

enable this capability by setting the ET bit to one, and by specifying this early terminating cond

tion in the CT field (see Figure 4.6 on page 61). During the course of vector executions, if the

dition code equals to those specified in the CT bit, the vector executions will terminate

immediately.

4.5.1 Early Termination for CVA Executions

The p_op field, in this case, specifies some scalar arithmetic that will alter the cond

code. This is the only early terminating condition for CVA executions.



63

ody.

e loop

s out-

those

PVA

se a

con-

trates

s are

used

aries.

tride

ad/store

raries

torage

use of
4.5.2 Early Termination for PVA Executions

In PVA executions, conditional and unconditional branches are allowed within a loop b

When a branch inside the loop body is taken, and the target of the branch lies outside th

body, then the execution of the PVA loop is considered to terminate.

A PVA loop can terminate its executions via one of the following three mechanisms.

(1) The CR reaches 0; or

(2) When a branch resides within the loop body is taken and the target of the branch lie

side the loop body; or

(3) The early termination capability is explicitly enabled (by setting the ET bit in the PVA

instruction) and during the course of the PVA executions, the condition code is set to

specified in the CT field.

Conditions (2) and (3) above are collectively referred to as the early termination for

executions. That is, they terminate prior to CR reaches zero.

When executing the last instruction of the loop body, if the last instruction does not cau

change-of-control flow with a target lies outside the loop body, then the loop execution will

tinue and the control is transferred back to the top of the loop. Example 3.5 on page 48 illus

examples for using the early exit mechanisms (2) and (3) described above.

4.6  Register Overlay

In this Section, we will introduce the notions ofRegister OverlayandTemporary Register.

These notions are applicable to PVA executions only.

In vector arithmetic, most data loaded from the memory via the constant-stride load

temporariesonly, in the sense that they are consumed in a single iteration, and are never

again. Registers R6 and R7 shown in Example 1.1 on page 9 are examples of such tempor

Furthermore, if a vector arithmetic is allowed to be interrupted, then all the constant-s

load/store addresses associated with the vector executions need to be saved so that the lo

operations can resume upon returning from the interrupt. Storing all the prefetched tempo

from the memory as well as these load/store addresses using some architectural visible s

spaces (such as the general purpose register file or control registers) could be an inefficient



64

is

file is

cution

and the

three

erlaid

rs are

sters are
these valuable resources.

A new approach, calledRegister Overlay, is introduced to address this problem. In th

approach, upon entering a PVA execution mode, a portion of the architectural visible register

“overlaid” with a new set of registers. When a register is beingoverlaid, it has two instances: (i) an

overlaid instance; and (i) a temporary instance. When in the PVA mode, only its temporary

instance is visible to a programmer, but not its overlaid instance. Conversely, when the exe

exits the PVA mode and enters a scalar mode, the overlaid instance becomes visible again

temporary instance cease to exist.

Figure 4.7 shows how the visibility of the overlaid registers change over a sequence of

execution modes: scalar, PVA and scalar.

In this work, registers R0 and R1 are designated as the set of registers that could be ov

during PVA executions. They are shown in Table 4.2. The overlaid instances of these registe

used to store the corresponding cs-load addresses. The temporary instances of these regi

used to store the data prefetched from the memory via the cs-load L0 and L1.

Table 4.2: Overlaid and Temporary Instances of R0/R1

Registers
Overlaid Instance

(Only Accessible In Scalar Mode)
Temporary Instance

(Only Accessible In PVA Mode)

Contents Accessibility Contents Accessibility

R0 Load address for L0 Read/Write Prefetched data for L0 Read Only

R1 Load address for L1 Read/Write Prefetched data for L1 Read Only

Regfile Regfile Regfile

(a) Scalar mode (b) PVA mode (c) Scalar mode

These registers are
always visible

Temporaries

Overlaid registers

Figure 4.7: Register Overlay

 disappear and reappear again.

Time



65

ware.

its its

re lost.

ich is

part of

ta into

erlaid

e the

ould

etic is

need

carded.

intain

ister

xecut-

tion

e, in

xecu-
The temporary instances of R0 and R1, respectively associated with L0 and L1, are read-only

registers. Writing to these temporary registers within the loop body are ignored by the hard

These temporary registers are only defined during the PVA executions. When a PVA loop ex

executions and enters a scalar mode, the data contained in these temporary registers a

Access to such a register, at that point, will retrieve the overlaid instance of the register, wh

the load address for the last cs-load operation performed.

Also, when a PVA execution is interrupted, these temporary registers are not saved as

the context. Upon returning from the interrupt, the cs-load operations that prefetched the da

the temporary registers will be re-initiated, using the load addresses stored in the ov

instances of R0 and R1. The temporary instances of R0 and R1 will be re-initialized befor

normal PVA executions can resume.

4.7  Machine States Maintenance For Vector Executions

In this machine, all vector executions are interruptible, in the sense that an interrupt c

cause a temporary suspension of a vector execution, even before the entire vector arithm

completed.* Besides the usual context for scalar executions, certain additional contexts will

to be saved so that the vector executions can properly resume later on.

When an interrupt occurs, some of these vector contexts are saved and some are dis

In this Section, we will discuss the minimum vector contexts that need to be saved to ma

machine states consistency with fast interrupt response time.

4.7.1 Saving The Execution Modes

A vector execution mode is indicated by having a non-zero value in the Count Reg

(CR). Conversely, having a zero value in the CR indicates that the machine is (or had been) e

ing in a scalar mode.

In addition, the content of IXR is used to distinguish between the CVA and PVA execu

modes: for CVA executions, IXR is always zero; for PVA executions, it is always non-zero.

Upon returning from an interrupt, the IXR and CR are both examined by the hardwar

order to put the machine in the appropriate execution mode prior to resuming the normal e

tion.

* In this context, interrupts and exceptions are equivalent concepts.



66

n in

rough

ith all

97,

rrupt

ele-

ack

d is

from

e nor-

in the

nstruc-

ector

-

dingly

e mem-

loca-

ng to

m the

tion,

in the
4.7.2 Saving The Minimum Vector Contexts

Upon an interrupt, the vector contexts that will be saved by the hardware are show

Table 4.1. They include SSR, CIR, the overlaid instances of R0 and R1, and register R2 th

R6. Since these registers are already in the Regfile, they are automatically saved along w

other registers in the Regfile. A shadow register file similar to those used in [SHARC

TMS320C3x, MCORE98] can be used to achieve fast interrupt response time.

CVA Executions

For CVA executions, operations on each vector element isatomic, in the sense that if the

result of the operations associated with a vector element is not written back when an inte

occurs, thenall the intermediate results will be discarded. All operations performed on this

ment (or elements) will have to be repeated upon returning from the interrupt.

When performing a reduction or hybrid CVA, the partial result is constantly written b

into the Regfile (to R3). If the CVA is interrupted, the partial result is already in the Regfile an

automatically saved. No additional time is wasted to save the partial result. When returning

the interrupt, however, the content of R3 will need to be restored back onto the s_dbus befor

mal CVA executions can resume.

PVA Executions

For PVA executions, all the intermediate results produced in the loop body are stored

Regfile. The machine, in this case, maintains its consistency at the boundaries of the scalar i

tions within a loop body. Thus no additional time is wasted to save the intermediate results.

The temporary instances of R0, R1, for PVA executions, are not saved as part of the v

contexts. Upon returning from the interrupt, the cs-loads (L0 and L1) that fetched these temporar

ies, if enabled, are re-initiated. Temporary registers R0 and R1 are then updated accor

before the normal PVA executions can resume. The hardware, in this case, assumes that th

ory locations have not been altered during the course of servicing the interrupt.

When a PVA instruction is decoded, a copy of the PC is saved in a temporary hardware

tion. When an interrupt occurs during the PVA executions, the saved copy of the PC (pointi

the PVA instruction) is restored and saved as part of the vector context. When returning fro

interrupt, using this PC, the PVA instruction is fetched to recover all the loop control informa

including cs-store-index, Loop_size, etc. The content of IXR is then added to the PC to obta

address of the instruction in the loop body where the execution is to be resumed.



67

d its

ple 4.6

tion. If

s also

ng at

pera-

will

d

1)

R1)

e

empo-

y are

e sub-

this

orary

M1 is

mpo-

d M1

ibilities
In PVA executions, the execution of the instruction located at the “cs-store” label, an

associated cs-store operation is an atomic operation. Consider the PVA loop shown in Exam

on page 56. The “movt” instruction and the associated cs-store operation is an atomic opera

a cs-store does not complete due to an exception or an interrupt, then the “movt” instruction i

considered “not executed”. Upon returning from the interrupt, executions will resume starti

the “movt” instruction.

4.7.3 Updates of Temporary and Overlaid Instances of R0 and R1

When a PVA instruction is decoded and begins its executions, the first two cs-load o

tions are initiated immediately (if they are enabled). The first read from R0 (or R1) in the loop

yield the first data loaded via L0 (or L1); the second read from R0 in the loop will yield the secon

data element loaded via L0 (or L1), and so on. It is possible to have multiple reads from R0 (or R

within a single iterations.

During PVA executions, at any given point in time, the temporary instance of R0 (or

always contains the data fetched from memory via L0 (or L1) using the load address stored in th

overlaid instance of R0 (or R1). In terms of machine states consistency, the updates of the t

rary and overlaid instances of R0 (or R1) occur simultaneously in a lock-step manner: the

both updated at the instruction boundary between the instruction that reads R0 (or R1) and th

sequent instruction in the program order.

4.8  Memory Organization

A simplistic view of the memory organization of this machine is shown in Figure 4.8. In

machine, there are three independent on-chip memory modules: M0, M1, and TM (Temp

Memory). In addition, there is a small instruction cache, called theloop cache, for storing program

loop instructions during PVA executions.

M0 and M1 are the main on-chip memories. M0 is used to store instructions and data.

used to store data only. TM is also used to store data only. In particular, it is used to store te

rary vectors during vector executions.

In this memory system, the load unit L0 has read access to M0 and TM; the load unit L1 has

read access to M1 and TM; the store unit S has write access to all M0, M1 and TM. M0 an

are single ported memories. TM has one read port and one write port. The contents, access

and the number of read and write ports of these memory modules are shown in Table 4.3.



68

put

here is

oded

e one

s and

ame

pre-

1 and
4.8.1 Memory Bandwidth Requirements For Vector Executions

To perform all the CVA arithmetic shown in Figure 1.5 on page 9, with a sustain through

rate of one, we require the memory system to support two data reads and one data write. T

no instruction request during a CVA execution. This is because once a CVA instruction is dec

and executed, no further instruction is needed for the rest of CVA executions.

In addition to the two data reads and one data write, the PVA executions also requir

instruction to be fetched in each cycle.

In each cycle, the memory system shown in Figure 4.8 can support up to two data read

one data write (through M0, M1 and TM); it can also support one instruction fetch in the s

cycle (using the Loop Cache).

4.8.2 Memory Map For M0, M1, TM

The three memory modules M0, M1 and TM can be accessed by referencing certain

defined memory space (i.e. they are memory mapped modules). The memory map for M0, M

TM is shown in Figure 4.9.

Table 4.3: Accessibilities of M0, M1 and TM

Memory
Module Contents

Data Streams Number of Read/
Write Ports

Arbitrate
Between StreamsL0 L1 S

M0 Instructions
and data

Read - Write 1 (read or write) L0 vs. S

M1 Data - Read Write 1 (read or write) L1 vs. S

TM Data
(temporary

vectors)

Read Read Write 2 (one read and
one write)

L0 vs. L1

L0

L1

P S

TM

Loop
cache

M0

M1

Figure 4.8:  A Simplistic View Of The Memory Organization

Execution Core



69

s. It

ctors in

po-

oper-

y. TM

r con-

licitly

esses

have

store

ltiple

tions

read

the
4.8.3 Temporary Memory

TM is a small RAM memory used for storing temporary vectors during vector execution

can also be used to store some frequently used constant vectors (such as the coefficient ve

digital filtering).

TM is an extension of vector registers in the traditional vector machines for holding tem

rary vectors. Like those on traditional vector machines, the optimizing compilers attempt to

ate on these temporary vectors as much as possible prior to writing them back to the memor

helps reduce the memory bandwidth pressure on M0 and M1. It also helps reduce the powe

sumptions on these larger memory modules.

There are two major differences between TM and vector registers.

• Accesses to TM are made by referencing the appropriate memory space, instead of exp

specified in the vector instructions (as vector register numbers). In particular, these acc

are made by setting up the data streams L0, L1 and S.

• When constructing, allocating and utilizing these temporary vectors, the compilers

more flexibilities in organizing the temporary storage space. For example, if a TM can

a vector ofn elements, then it can also be organized as a storage space form vectors, each

with a length ofn/melements. The TM can also be organized as a storage space for mu

vectors with different length. The compilers, in this case, can manage the vector alloca

to minimize fragmentations within TM.

For the purpose of this work, TM is assumed to be 512 bytes, direct-mapped, with one

port and one write port. The following example illustrates how TM can be utilized to speedup

vector executions.

M0

M1

0x00000000

0x80000000

0xFFFFFFFF

0x7FFFFFFF

TM

Figure 4.9: Memory Map For M0, M1, TM

0xFFFFFDFF
0xFFFFFE00



70

can

p

f the

mpo-

via

.

e out-

sed a

pera-

them

flexi-

d the
Example 4.9:

Illustrate how the executions of the vectorized loop shown in Example 4.4 on page 53

benefit from using TM.

Recall that this loop is performing: C[i] = (lsr(A[i], r9) | lsl(A[i], r8). The vectorized loo

is shown below.

<Some initialization code>

// assign L0 to A; assign S to a temporary vector in TM.

mov r5, r9

CVA lsr @L0, r5, @S;

<Some initialization code>

//assign L0 to A; assign L1 to the temporary vector in TM

//assign S to vector C.

mov r5, r8

CVA lsl @L0, r5, @P, or @L1, @P, @S;

In this example, a temporary vector is created and allocated in TM. The destination o

first CVA instruction and one of the source operands of second CVA instruction access the te

rary vector through TM. The first CVA instruction sources vector A from M0 via L0 and writes the

temporary vector to TM via S. The second CVA instruction sources vector A again from M0

L0 and sources the temporary vector from TM via L1. It also writes the result vector to M1 via S

The execution activities for these two CVA instructions are shown in Figure 4.10.

In this example, the second CVA instruction uses three data streams (two inputs and on

put). No memory conflict arises in these executions. Using M0 and M1 alone would have cau

lot of memory conflicts.

4.8.4 Strip Mining For TM

When the size of a vector being processed is larger than the size of TM, the vector o

tions are broken down, under software control, into multiple vector operations, with each of

operates on vectors with length that can fit into TM. This is the TM equivalence ofstrip-miningfor

vector registers [Cray1,Patterson96].

Unlike the fixed length vector registers, however, the compilers, in this case, have the

bilities to trade-off between the number of temporary vectors it can allocate and utilize, an

number of strip-mined iterations. This concept will be illustrated later in Example 4.11.

Example 4.10:



71

is not

r

n 128

void

urce
Strip-mine the vectorized code shown in Example 4.9, assuming that the vector length

known at compile time.

In this example, there are only two CVA instructions andonetemporary vector involved, it

is possible to have the entire TM dedicated to storing asingletemporary vector. Since each vecto

element is four bytes long (a word) and the TM is 512 bytes, a vector with length greater tha

elements will require some strip-mining code to “wrap around” the vector instruction to a

overflowing the TM. The following shows the strip-mined code, in C-style language, for a so

vector with an unknown length, n [Patterson96].

low = 1;

VL = (n mod 128); // find the odd size piece first

for (j=0; j<n/128; j++) {

for (i=low; i<low+VL-1; i++) { // runs for length VL

C[i] = (lsr(A[i], r9) | lsl(A[i], r8)); //main op.

}

low = low + VL;

VL = 128; // reset VL to 128 after the first

// odd size piece

}

or

Figure 4.10: Execution Activities For The Two CVA Instructions

A[i]
from M0 via L0

TM

T[i] = lsr(A[i], r9)
to TM via S

N.A.

lsr pass

(a) Execution activities for the
first CVA instruction

A[i]
from M0 via L0

TM

C[i]=lsr(A[i], r9) | lsl(A[i],r8)
to M1 via S

T[i]= lsr(A[i],r9)

lsl

(b) Execution activities for the
second CVA instruction

r5  r9← r5  r8←

from TM via L1

To M1



72

tion,

tors B

VA

r T3

TM.

lution

side

nly

be

olu-
The following example illustrates how TM could be used to reduce power consump

while maintaining the highest possible performance level.

Example 4.11:

Vectorize the following reduction operations: ((A[i]*B[i]+C[i]) * A[i]*B[i]*D[i]),

for some independent vectors A, B, C and D. Assume that vectors A and C reside in M0; vec

and D reside in M1.

An optimum solution, in terms of execution time, using 3 temporary vectors and 4 C

instructions (3 compound CVA and 1 reduction CVA), is shown below.

(1) T1[i] = A[i] * B[i];

(2) T2[i] = T1[i] + C[i];

(3) T3[i] = T1[i] * D[i];

(4) Reduction result =  (T2[i] * T3[i]);

Since vectors A and B reside in M0 and M1, T1 must be allocated in TM. Thus vecto

must be in M0 (given that D resides in M1). Since vector C resides in M0, T2 can be in M1 or

Table 4.4 shows two possible solutions for allocating the temporary vectors.

Both solutions have no memory conflict and thus have the same performance level. So

(II), however, provides a lower power solution since T2 is allocated in TM instead of in M1.

A drawback of Solution (II) is that it requires the two temporary vectors T1 and T2 to re

in TM simultaneously. If TM is not big enough to hold both vectors, then Solution (I) is the o

viable solution. If the TM is too small for even a single vector, then Solution (I) will need to

strip-mined. Figure 4.11 shows the execution activities for the four CVA instructions, using S

tion (II).

Table 4.4: Two Possible Solutions For Allocating The Temporary Vectors T1, T2 and T3

Temporary
Vectors

Solutions (I) Solution (II)

M0 M1 TM M0 M1 TM

T1 X X

T2 X X

T3 X X

i 0 n 1–,=
∑

i 0 n 1–,=
∑



73
pass

Figure 4.11: Execution Activities For The Four CVA Instructions Using Solu
tion ( II )

A[i]
from M0 via L0

TM
T1[i] to TM via S

N.A.

mul pass

(a) Execution activities for the
first CVA instruction

C[i]
from M0 via L0

TM

T2[i] to TM via S

add

(b) Execution activities for the
second CVA instruction

B[i]
from M1 via L1

T1[i]
from TM via L1

N.A.

add

(c) Execution activities for the
third CVA instruction

T3[i]
from M0 via L0

TM

reduction

mul

(d) Execution activities for the
fourth CVA instruction

T2[i]
from TM via L1

pass

D[i]
from M1 via L0

T3[i] to M0 via S

mul

T1[i]
from TM via L1

N.A.

TM



74
CHAPTER 5

PSEUDO-VECTOR MACHINE

IMPLEMENTATIONS

In this Chapter, we will discuss how we could implement the pseudo-vector machine.

5.1  Datapath Implementations

The CPU architecture of this machine is shown in Figure 5.1.

Figure 5.1: The CPU Architecture for the Pseudo-Vector Machine

P

result_bus s_dbus

Regfile

L1

L0_dbus

M0
RAM Module

M1
RAM Module

M0_dbus

M1_dbus

Execution Core

M0_abus

M1_abus

Program
Sequencer

S

xbus

ybus

zbus

pbus

Loop
Cache

TM
Temporary
Memory

latch

zs
_b

us
s_

ab
us

s_
db

us

L1_dbus

L0

TM_abus
TM_dbus

L0
_a

bu
s

L1
_a

bu
s



75

tage

, the P

func-

.

nit in

d and

c

us is

o fig-

this
We will begin by comparing our datapath implementation with a single-issued, four-s

pipelined machine. The datapath the latter machine is shown in Figure 5.2. In this datapath

unit denotes a general purpose functional unit that is capable of performing all the arithmetic

tions defined in the ISA. These functions include add, shift, logical, multiply, load, store, etc

The datapath for our proposed pseudo-vector machine is shown in Figure 5.3. The P u

this datapath is similar to those in the single-issued machine, except that the memory loa

store functions have been moved to the L0, L1 and S units. Furthermore, all multi-cycle arithmeti

functions in the P unit are fully pipelined, including the integer multiply.* For the purpose of this

work, an integer multiply is assumed to take two cycle to execute.

The result_bus in this datapath is now driven by either the P unit or the S unit. This b

used for writing back results to the Regfile, or feed-forward to the P unit. Comparing these tw

* In this work, we will only focus on integer arithmetic. Floating point arithmetic is beyond the scope of
dissertation.

Figure 5.2: Datapath for a Single-Issued, Four-Stage Pipelined Machine

PRegfile

result_bus

Memory

Figure 5.3: Datapath For The Pseudo-Vector Machine

L0

P

result_bus

S

s_dbus

To M0,M1,TM

latch

p_busRegfile

re
su

lt_
bu

s

L0_dbus

L0_abus
M0_dbus

zs
_b

us

xbus

ybus

zbus

s_
db

us

s_
ab

us
L1_dbus

TM_dbus

L1

L1_abus
M1_dbus
TM_dbus



76

ory

the

f the

M0,

etic.

ch as

S

s its

r

een the

esults

ues in

feed

-

] and

ed dur-

red) at

t (from

pre-
ures, the following load/store units have been added to the pseudo-vector machine:

• L0 and L1 Units. These are memory load units. These units fetch data from the mem

(M0, M1 or TM) and load them into the Regfile and/or feed-forward to the P unit. Within

L0 (L1) unit, there is a local copy of register R0 (R1). The L0 (L1) unit constantly snoops the

result_bus for any write back activity to register R0 (R1) and updates its local copy o

register.

• S Unit. This is a memory store unit. This unit performs store operations to the memory (

M1 and TM). Besides the store operations, the S unit can also perform the s_op arithm

These arithmetic include some simple, commutative arithmetic and logical functions su

“add”, “and”, “or”, “xor”, etc. Within the S unit, there is a local copy of register R2. The

unit constantly snoops the p_bus for any write back activity to register R2 and update

local copy of the register.

Notice that the four functional units (namely, the L0, L1, P and S units) are chained togethe

to form a Y-shape datapath. In addition, a feedback path (s_dbus and zs_bus) exists betw

output and the input of the S unit. This feedback path is used for accumulating the partial r

for reduction and hybrid CVA. The basic structure of this datapath is to implementall the CVA

shown in Figure 4.2 on page 51.

The implementations of these load/store units are depicted in Figure 5.4. Within the L0 (or

L1) unit, there is a two-deep data queue and a local copy of register R0 (or R1). The data que

L0 and L1 also have an extra by-pass path that allows the data in the tail of the queue to

directly into the Regfile. Likewise, the S unit contains a local copy of register R2.

The local copies of registers R0, R1 and R2 within the L0, L1 and S units can be automati

cally updated by the hardware by adding by the stride values SSR[STR0], SSR[STR1

SSR{STR2], respectively. These updates occur if the corresponding data streams are enabl

ing the CVA or PVA executions. At any given point in time, the local register R0 (or R1) of L0 (or

L1) unit contains the latest load address, and its corresponding data is stored (or is to be sto

the tail of the queue (see Figure 5.4).

The S unit, on the other hand, has a data queue of only one-deep. When a load reques

L0 or L1 unit) has a memory conflict with a store request (from the S unit), the latter will take

cedence.



77

to the

iguate

refer-

e ele-

ine. It

or feed

e L

the S
In this datapath, both scalar and vector execution modes use thesameP unit. This means

that many arithmetic functions that are available to the scalar executions are also available

vector executions.

When performing cs-load and cs-store operations, the hardware does not disamb

memory references. i.e. it does not check for any data hazard associated with the memory

ences. It is the responsibility of the vectorizing compilers or assemblers to ensure that all th

ments in the source and destination vectors are independent in the memory.

5.2  Scalar Executions

When executing in a scalar mode, the machine operates like a single-issued mach

reads operands from the Regfile, executes in the P unit, and writes back to the Regfile and/

-forwards to the P unit for the next computation. It can also load data from the memory, via th0

unit and the L0_dbus, to the Regfile and the P unit. It can also store data to the memory using

unit.

+
SSR[STR2]

p_bus

p_bus

(a) The L0 Load Unit (b) The L1 Load Unit

Figure 5.4: The Implementations of L 0, L1 and S Units
(c) The S Unit

R2

ALU
(s_op)

zs_bus

s_abus

s_dbus

+
SSR[STR0]
result_busL0_abus

L0_dbus
M0_dbus

R0

TM_dbus

L0 Data Queue

+
SSR[STR1]
result_busL1_abus

L1_dbus
M1_dbus

R1

TM_dbus

L1 Data Queue

tail tail



78

a the

via

L

, and

t then

by

tions,

s and

le, via

on-

ites to

lt is

s and

.4(c)).

e ini-

ode,

y

m is

A exe-
5.3  CVA Executions

When executing in a CVA mode, data are continuously streamed from the memory vi

L0 and/or L1 units, into the P unit; the results are then optionally written back to the memory

the S unit (for compound and hybrid CVA).

To perform a compound CVA, consider a vector operation described by C[i] = sA[i]. The0

unit shown in Figure 5.3 loads the source vector A from the memory, an element at a time

feeds it into the P unit. At the same time, the constant s is read from the Regfile. The P uni

performs the multiply operations, and the S unit performs the cs-store operations.

To perform a reduction CVA, consider a vector inner product described

(A[i]*B[i]) (see Example 4.7 on page 60). Instead of performing the cs-store opera

the S unit performs the “add” function and accumulates the partial results via the s_dbu

zs_bus. At the same time, these partial results are constantly written back to R3 in the Regfi

the result_bus.

To perform hybrid CVA, in addition to accumulating the partial results, the S unit also c

stantly writes the results to the memory via a cs-store operation. In this case, the S unit wr

two destinations in each cycle: R3 in the register file and the memory via S.

For reduction and hybrid CVA, the partial result is initialized as follows. When a resu

first produced on the p_bus (by the P unit), the S unit performs a “pass” function on this bu

drive the data directly onto the s_dbus, instead of performing the s_op function (see Figure 5

This result is used as the initial value for the partial result. This operation corresponds to th

tialization of the partial sum, S0, described in Section 3.1.2 and Section 3.1.3 on page 41.

5.4  PVA Executions

When executing in a PVA mode, the datapath behaves as if it is executing in a scalar m

except that: (i) if the L0 (L1) stream is enabled, the L0 (L1) unit prefetches data from the memor

and loads them into the temporary instance of R0 (R1) in the Regfile; and (ii) if the S strea

enabled, the S unit stores data to the memory, using the data produced by the P unit. The PV

cutions will be illustrated using the following example.

i 0 n 1–,=
∑



79

er-

n, if

A

p

d R1,

addi-

d into

data
Example 5.1:

Vectorize the program loop shown in Example 3.1 on page 44.

This is a program loop with multiple exit points. In this example, two cs-loads are p

formed during each iteration. The loop is controlled by a loop index i, for i=0,...,n-1. In additio

B[k]>A[j], for some j and k, the loop will exit early. This loop can be vectorized using our PV

loop construct as follows.

Initialize R3 to m.

Initialize CR to n.

Initialize SSR[STR 0] to 4; SSR[STR 1] to 8.

Initialize R0 to the starting address for vector A;

Initialize R1 to the starting address for vector B;

PVA @L0,@L1,#loop_size;

complt R3, R0 // Is (A[j] > m)?

bf EXE_N // Branch if false

[Instructions for the “M” block]

br CONT // unconditional branch

EXE_N:

[Instructions for the “N” block]

CONT:

complt R0, R1 // Is (A[j]<B[k])?

bt EXIT // Exit if true. Otherwise,

// branch back to top of loop

EXIT:

In the vectorized loop, both the L0 and L1 streams are enabled while S is not. In the loo

body, accesses to A[j] and B[k] are made by reading from the temporary registers R0 an

respectively.

Upon entering the loop executions, two data are fetched from the memory via the L0 and L1

units and loaded into the tails of their respective data queues. In the subsequent cycle, two

tional data are fetched from the memory while the data already in the data queues are move

the temporary registers R0 and R1 in the Regfile, respectively.

During subsequent iterations, each time when R0 (or R1) is read in the program loop, a

is moved from the data queue in the L0 (or L1) unit into the temporary register R0 (or R1), while



80

ware

0 (or

red in

out the

ormer

ins the

oop

ro; the

the

ilar to

cap-

tion

the

each

ion in
another cs-load is initiated by the L0 (or L1) unit to fill the tail of its data queue.

The overlaid instance of R0 (or R1) in the Regfile is constantly updated by the hard

with the corresponding load address. At any given point in time, the temporary instance of R

R1) in the Regfile contains the data prefetched from the memory, with an address that is sto

the overlaid instance of R0 (or R1) in the Regfile. The same correspondence can be said ab

contents of the tail of the data queue in the L0 (or L1) unit and its local copy of R0 (or R1).

Figure 5.5 shows an example of how the local copy of R0 in L0 unit and the overlaid

instance of R0 in Regfile are being updated when streaming in a vector. It shows that the f

(contains the address of the data currently being fetch) always runs ahead of the latter (conta

address of the data being committed into the Regfile).

Notice that there are multiple conditional and unconditional branches within the PVA l

body. In this example, there are two possible ways to exit this loop: one is by CR reaches ze

other is when the last instruction “bt EXIT” is taken. If this last branch instruction is not taken,

control will be transferred back to the top of the loop and the PVA executions will continue.

5.5  Managing The PVA Loop Executions

To monitor the loop execution and the target of a branch, a counter based scheme sim

those proposed in [Lee99a,Lee99b,Lee99d] can be used.

When a PVA instruction is encountered, the Loop_size specified in the instruction is

tured by the hardware. In addition, the IXR register is used to keep track of which instruc

within the loop body is currently being executed. This register behaves like a “local PC” within

loop body. When the first instruction in the loop is being executed, IXR is set to one. For

instruction sequentially executed, this register is incremented by one. When the last instruct

the loop is being executed, IXR is set to the Loop_size.

Figure 5.5: Updates of Local R0 in L0 and Overlaid Instance of R0 in Regfile

Local Copy of R0 Overlaid Instance of R0
Time

1
2
3
4
5
:

4000
4004
4008
400C
4010

xxxx
xxxx
4000
4008
400C

::

(in L0) (in Regfile)



81

first

s not

nsfer

irec-

hen

ber.

the

ment

ome-

tive

is

y), the

e for

ement

. If

. If

ed in

ards

ndi-

ng-

this

truc-
When the IXR equals to Loop_size-1, the instruction fetch will be directed towards the

instruction of the loop. If the last instruction is a sequential instruction or the instruction doe

cause a change-of-control flow with a target lies outside the loop body, the execution will tra

back to the beginning of the loop and IXR is reset to one.

When a branch is taken during a PVA execution (either in a forward or a backward d

tion), the branch displacement field of the branch instruction is added to the IXR register. W

the taken branch is in a forward direction, the branch displacement field is a positive num

When this value is added to IXR, the latter will point to the target somewhere further down

branch instruction. When the taken branch is in a backward direction, the branch displace

field is a negative number. When this value is added to IXR, the latter will point to the target s

where before the branch instruction.

With these branch adjustments, the IXR will always point to the correct instruction rela

to the PVA instruction. After a taken branch, if the resulting IXR is non-negative or if the IXR

greater than the Loop_size (indicating that the branch target is located outside the loop bod

PVA loop execution will terminate.

Figure 5.6 shows an implementation of the IXR register. The IXR is incremented by on

each instruction executed sequentially in the loop body. When a branch is taken, the displac

field of the branch instruction is added to IXR.

The IXR_count is constantly compared with zero, Loop_size and Loop_size-1

(IXR_count ) or (IXR_count>Loop_size), the PVA executions will terminate immediately

(IXR_count == Loop_size-1), an instruction fetch from the top of the loop will be initiated.

This counter based approach is very similar to the Enhanced Scheme propos

[Lee99b,Lee99d]. Interested readers are referred to that reference.

If a PVA execution terminates with CR equals zero, no cycle penalty is incurred. Tow

the end of the last iteration of a PVA execution, if the last instruction in the loop is a taken co

tional branch with its target lies outside the loop body, a cycle penalty will be incurred for wro

fully fetching and executing the first instruction in the loop. In this case, the result of executing

instruction will be squashed (i.e. the result will be discarded and not written back). A new ins

tion fetch using the branch target will be initiated.

0≤



82

r reg-

espec-

TR1]
5.6  Implementing The Temporary Registers

Figure 5.7 shows an implementation of the Regfile. This Regfile contains, besides othe

isters, an overlaid and temporary instances of R0 and R1 (O_R0, T_R0, O_R1 and T_R1 r

tively).

O_R0, O_R1 and R2 can be updated by adding the stride values SSR[STR0], SSR[S

IXR

1

Terminate loop

IXR_count

clear

executions
>

load

Loop_size-1

Displacement field of a
branch instruction

+

Figure 5.6: The IXR Register

=? Initiate instruction fetch
from the top of loop

Loop_size

0≤

Figure 5.7: Register File with Temporary and Overlaid Instances of R0 and R1

+
SSR[STR0]

O_R0

result_bus

+
SSR[STR1]

O_R1

R0

+
SSR[STR2]

O_R2

R2

R3-R15 R3-R15

T_R0

L0_dbus

R1

T_R1

L1_dbus

PVA_exe

PVA_exe

Regfile



83

s com-

the

their

RC

mory

this

ition,

hese

apping

CVA

cache

is is

0.

-entry

struc-

an

tched
and SSR{STR2], respectively. These updates occur when the cs-load or cs-store operation i

mitted (to the Regfile or to the memory). At any given point in time, T_R0 (or T_R1) contains

data prefetched from the memory, with an address stored in O_R0 (or O_R1).

This figure also shows how reading from registers R0 and R1 are selected between

temporary instance and overlaid instance, depending on whether we are in PVA mode.

5.7  Implementing The Memory System

The memory system of this machine is very similar to those implemented in the SHA

ADSP-21061 chip [SHARC97], except that this machine has an additional independent me

module: the Temporary Memory (TM).

The memory organization of this machine is shown in Figure 5.1 on page 74. In

machine, there are three independent on-chip memory modules: M0, M1, and TM. In add

there is also a loop cache for storing program loop instructions during PVA executions. All t

memory modules are typically SRAM memories.

These three memory modules can be accessed by the L0, L1 and S streams by referencing

certain pre-defined memory address space (i.e. they are memory mapped modules). The m

for M0, M1 and TM is shown in Figure 4.9 on page 69.

5.8  Loop Cache For Storing PVA Program Loops

For CVA executions, instruction fetch is not necessary since once the machine enters a

execution, it no longer requires any instruction.

For PVA executions, a small loop cache is used to store the program loops. This loop

will first attempt to eliminate any access conflicts at M0 with data references. Once th

achieved, it will also attempt to capture the entire program loop to reduce access power at M

For the purpose of this work, we will assume that the loop cache is organized as a 32

(64 instructions), direct-mapped cache. Each loop cache entry stores two 16-bit M-CORE in

tions. Each instruction request, on this machine, fetches two 16-bit M-CORE instructions.

All scalar instructions in a PVA loop body can be classified into two categories. When

instruction fetch causes a conflict with data references at M0, the two instructions being fe

are calledEssential Instructions. Otherwise, they are calledNon-Essential Instructions.



84

struc-

n

ty is

will

, in an

h the

ct at

e next

bit is

on-

entries

ely
Due to the pipeline nature of the machine, a load instruction that accesses M0 (or an in

tion that sources R0 in PVA executions), Ii, can only cause a conflict at M0 with two instructio

fetches down the program order. That is, data fetch for Ii can only conflict with a fetch request for

instructions: (i) Ii+3 and Ii+4, if I i is at odd address; or with (ii) Ii+4 and Ii+5, if I i is at even address.*

The following illustrates the case where Ii is odd address aligned.

I i // This instruction reads R0 and is odd address aligned.

I i+1

I i+2

I i+3 // cause conflict at M0 - an essential instruction

I i+4 // cause conflict at M0 - an essential instruction

Due to the “wrap-around” nature of the loop, Ii can also be at the bottom of the loop and Ii+3,

Ii+4 and Ii+5 at the top of the loop.

Upon entering a PVA execution, when allocating instructions into the loop cache, priori

first given to essential instructions. After all these instructions are allocated, the loop cache

then try to allocate as many non-essential instructions as possible, into the loop cache

attempt to reduce access power at M0.

The loop cache operates as follows. In addition to a valid bit, there is an E bit (Essential bit)

associated with each entry in the loop cache. During the first four iterations of the loop, bot

loop cache and M0 are accessed in parallel for all instruction requests.

During the first two iterations of the loop, when an instruction request causes a confli

M0 andthe requested instructions are not found in the loop cache, an entry is allocated in th

cycle for the two essential instructions associated with this request. Their corresponding E

set.

During the third iteration of the loop, the loop cache will then try to capture as many n

essential instructions as possible. It does so by replacing the existing non-essential entries (

with their E bits cleared).

During the fourth iteration, the following two conditions (or events) are monitored clos

by the hardware:

* Assuming a big endian address mode.



85

ra-

uring

g the

loop

m the

exist

work,

the

an be

-

• All instruction requests are found in the loop cache;

• There is no change-of-control flow instruction inside the loop body.

If both of these conditions are satisfied during the fourth iteration, then from the fifth ite

tion and beyond, all instructions are supplied by the loop cache, avoidingany instruction access to

M0.

The state machine for the loop cache controller is shown in Figure 5.8. It shows that d

the first two iterations, the loop cache is warmed up with all the essential instructions. Durin

third iteration, it is warmed up with the non-essential instructions, as much as possible. If the

cache is successful in capturing the entire loop, as determined during the fourth iteration, fro

fifth iteration and beyond, M0 can be shut off completely for all instruction requests.

Note that it is possible to have essential instructions from different program loops to co-

in the loop cache - an essential entry can only be replaced by another essential entry. In this

a loop cache flush occurs whenever there is a context switch.

If the loop cache is filled with many essential instructions, then there is little room in

cache for non-essential instructions. In this case, very little M0’s instruction access power c

saved. Under any circumstances, a non-essential instruction willnot replace an essential instruc

Figure 5.8: Loop Cache Controller

2nd
iteration

3rd
iteration

5th
iteration

and
beyond

Allocate
non-essential
instructions

Observe
loop cache

access patterns

Supply all instructions
from loop cache;

shut off M0

Normal
accessBegin a new

PVA execution

loop
exits

loop
exits

4th
iteration

loop
exits**

*

*  (all instruction accesses during the 4th iteration hit in the loop cache) &&
(no change-of-control flow instruction found in the loop body) &&

** Not of condition “*”

no loop exits

1st
iteration

Allocate
essential

instructions

loop
exits



86

power

small
tion already in the loop cache. That is, performance consideration always supersedes the

consideration.

Interested readers are referred to some other related work on instruction caching for

program loops [Lee99a,Lee99c].



87

will

thod-

actual

ill be

nce
CHAPTER 6

BENCHMARK CHARACTERISTICS AND

PERFORMANCE EVALUATION

METHODOLOGIES

In this Chapter, we will describe the benchmark programs we use in this work. We

describe some critical loop related characteristic. We will then describe our experimental me

ologies for evaluating the performance benefits for using the pseudo-vector machine. The

performance results will be given in Chapter 7. All performance results, in this dissertation, w

given relative to a single-issued, four stage pipeline scalar machine, which we call thebase

machine.

We will first define two metrics for performance evaluations.

6.1  Metrics For Performance Evaluations

We defineperformance improvement as

Performance Improvement = (6.1)

whereES is the execution cycles for the original scalar program, andEV is the execution cycles for

the vectorized program. We definespeedup as

Speedup = = (6.2)

In the rest of this dissertation, we will use these two metrics to quantify the performa

benefits for using the pseudo-vector machine.

ES EV–

ES
-------------------

ES

EV
------- 1

1 Performance– Improvement–
-------------------------------------------------------------------------------------



88

wn in

.

on the

ops

xecu-

ntage

loops

es less

ard

g-
6.2  Benchmark Programs And Their Characteristics

The benchmark programs used in this work, called the PowerStone benchmarks, is sho

Table 6.1. These benchmarks were compiled to the M•CORE ISA using the Diab 4.2.2 compiler

The number of dynamic instructions executed and the number of instructions being fetched

base machine are also presented in this Table.

Percentage Execution Time On Critical Loops

In this work, performance improvement is achieved by vectorizing all the critical lo

found in a benchmark program. Thus, it is important to closely examine what percentage of e

tion time the program spends on executing these loops. By Amdahl’s law,the performance will be

limited by the fraction of time the program spends in non-loop executions.

Table 6.2 below shows, for each benchmark, the number of critical loops and the perce

of execution time it spends on these loops. Due to time constraints and the large number of

that exist in these benchmark programs, as a rule of thumb, any program loop that consum

than 2-3% of the overall execution time is not typically considered ascritical.

Table 6.1: PowerStone Benchmarks

Benchmark Dynamic Inst.
Executed

Dynamic Inst.
Fetched

Descriptions

auto 17374 20695 Automobile control application

blit 72416 78448 Graphics application

compress 322101 355216 A Unix utility

des 510814 519037 Data Encryption Standard

engine 955012 1058154 Engine control application

fir_int 629166 705966 Integer FIR filter

g3fax 1412648 1681130 Group three fax decode

g721 231706 256025 Adaptive differential PCM for voice com-
pression

jpeg 1342076 1528812 JPEG 24-bit image decompression stand

map3d 1228596 1463233 3D interpolating function for automobile
control applications

pocsag 131159 147202 POCSAG communication protocol for pa
ing applications

servo 41132 42919 Hard disc drive servo control

summin 1330505 1532825 Handwriting recognition

ucbqsort 674165 804662 U.C.B. Quick Sort

v42bis 1488430 1660493 Modem encoding/decoding



89

s, in

s in

ench-

about

tion

n

about

nce

rove-

t con-
Figure 6.1 shows the percentage of execution time a program spent on critical loop

graphical form. Depending on the benchmarks, this percentage varies greatly from 0% forservo

to 99% forblit . Five out of the fifteen benchmarks spent less than 5% of their execution time

loops.

Seven out of the fifteen benchmarks spent less than 10% on loops. The other eight b

marks spent, on average, 66% of their times in loops. On average, a benchmark spends

37.9% on a few handful of critical program loops - a significant but not an overwhelming frac

of execution time.

If these benchmark programs spendzeroexecution time on these critical loops (i.e. with a

infinitespeedup during loop executions), then the average performance improvement will be

37.9% - this represents the upper limit on our overall performance improvement number.

We will present our performance enhancement results in two ways: (i) performa

improvements over the entire original scalar program executions; and (ii) performance imp

ments during loop executions (i.e. the time the programs spent in non-loop executions is no

sidered).

Table 6.2: Percentage Execution Time Spent In Program Loops

Benchmarks Number of
Critical Loops

Number of Itera-
tions per Invocation

% Execution Time In
Program Loops (%)

auto 2 702.5 71.76

blit 2 1000 99.18

compress 1 7969 9.81

des 2 9.31 2.61

engine 2 3.51 9.77

fir_int 1 33.6 69.74

g3fax 2 960.4 56.65

g721 1 5 2.87

jpeg 5 33.39 49.02

map3d 1 13.5 37.93

pocsag 2 18.3 61.21

servo 0 N.A. 0.00

summin 5 173.9 81.52

ucbqsort 1 2.27 0.58

v42bis 1 8271 2.48

Average 1.73 1371 39.65



90

r the

ve on

bench-

e of

h, it

del of

ula-

chine).

ics col-

mbers

nch-

g the
Table 6.2 also shows the average number of iterations per loop invocation. The highe

average number of iterations per invocation, the less impact the vector startup costs will ha

the overall performance. From the above Table, this number also varies greatly across the

marks, from a few iterations to thousands of iterations per invocation.

6.3  Performance Evaluation Methodologies - Overview

Developing a vectorizing compiler for this pseudo-vector machine is beyond the scop

this work. Without a vectorizing compiler, there is no vectorized assembly code. Without whic

is impossible to evaluate exactly the performance benefits by using a detail simulation mo

the machine. Instead, the following approach is adopted.

The benchmarks were not re-compiled to vectorize the critical loops. Cycle-based sim

tions were first performed on a single-issued, four-stage pipelined machine (or the base ma

This base machine does not have any vector processing capability. The performance statist

lected on this scalar machine were used as a base result. All performance improvement nu

for various vector processing techniques will be given relative to this base result.

The original scalar programs were dynamically profiled. Each program loop in these be

marks was marked; the number of invocations and the number of iterations were recorded.

We then vectorize these critical loops by hand, at the assembly level, either by usin

0

20

40

60

80

100

Benchmarks

P
er

ce
nt

ag
e 

of
 E

xe
cu

tio
n 

C
yc

le
s

auto

blit

comp

des

fir_int

g3fax

g721

jpeg

average

ucbqsort

summin

servo

pocsag

v42bis

map3d
Overall

engine

in
 C

rit
ic

al
 L

oo
ps

Figure 6.1: Percentage of Execution Cycles Spent in Critical Loops



91

are

t Sec-

ive the

the

ts.

or a

y,

by a

rack

ting in

tions.

nd exit

e 6.3
CVA instruction(s) and/or the PVA instruction(s). The number of cycles saved for each loop

then computed using the profiled statistic. Vector setup and exit costs (described in the nex

tion) are subtracted from these savings. We then sum up the net savings for each loop to g

total saving.

Depending on the types of experiments, we may vectorize the loops: (i) strictly using

PVA constructs only; or (ii) strictly using the CVA constructs only; or (iii) Using both construc

For the case of (iii), we will choose a solution by using between CVA and PVA constructs,

combination of both, whichever that will yield the best performance result.

In doing so, we obtain three set of experimental results, which we will call, respectivel

• CVA-only executions;

• PVA-only executions; and

• CVA/PVA executions.

The results given by “CVA-only executions” loosely track the performance achievable

conventional 2-deep vector machine. The results given by “PVA-only executions” loosely t

the performance achievable by asingle-issuedDSP machines*. The results given by “CVA/PVA

executions” represent the performance achievable by a machine that is capable of execu

both “true” vector mode and “pseudo” vector mode.

6.4  Vector Setup and Exit Costs

In this Section, we will breakdown all the overheads associated with the vector execu

We will estimate and assign a fixed cost to each of these overhead components. The setup a

costs for vector executions can be broken down as follows.

• Special registers initialization costs;

• Vector instruction decoding costs;

• Pipeline warm-up costs;

• Vector mode exit costs;

• Initial access conflicts at M0 (for PVA executions only).

6.4.1 Special Registers Initialization Costs

Depending on the type of vector executions, some or all of the registers listed in Tabl

* The performance of a conventional DSP VLIW machine is not evaluated in this work.



92

itial-

resses

urpose

ily R0/

to R0/

rs

end-

ruc-

med to

for the
need to be appropriately initialized prior to vector executions. The additional setup costs to in

ize these registers are listed in this Table. These additional costs arein addition to the setup costs

already incurred in the scalar version of the program loops, prior to vectorization.

Take R0/R1/R2, for example. These registers need to be initialized to the starting add

for various data streams, if they are enabled. In the scalar program loops, certain general p

registers will also need to be initialized to these addresses, although they are not necessar

R1/R2. The vectorizing compiler, in this case, can rename the last writes of these registers

R1/R2 appropriately; if successful, theadditionalvector setup costs for initializing these registe

are zero. In this work, we will assume that an additional “mov” instruction isalwaysneeded to ini-

tialize each of these registers.

For CVA executions, both SSR and CIR are always initialized. For PVA executions, dep

ing on the loop, only one of SSR and CIR, or both, need to be initialized.

SSR is a special control register and can be initialized using the following M-CORE inst

tion sequence. In this work, all stride values for the cs-load and cs-store operations are assu

be known at compile time.

lrw r3,[Stride_Sixe_Vector] //load Stride_Size_Vector into R3

mtcr r3, SSR // move r3 to SSR

:

Stride_Size_Vector:

.long 0xXXXXXXXX // The actual stride/size vector

The two-instruction sequence is assumed to take three cycles to execute: two cycles

Table 6.3: Additional Registers Initialization Costs

Registers Register Contents Additional Setup
Costs (cycles)a

SSR Stride values and operand sizes for L0, L1
and S

3

CIR Number of iterations to be executed 1

R0 Load address for L0 1

R1 Load address for L1 1

R2 Store address for S 1

R3,R4,R5 Scalar constants for CVA executions 1

a. If applicable



93

ation

r our

the

“mov”

itiate

-up

per-

s zero

re

o

cle

 zero.

eds to

iting a

cause

and

cycle.
first instruction and one cycle for the second.

CIR is also a special control register. In the scalar version of the program loops, the iter

count (or the vector length), if used, need to be initialized to a general purpose register. Fo

pseudo-vector machine, the additional setup costs for initializing CIR is theextra “mtcr” instruc-

tion. This instruction is assumed to take one cycle to execute.

R3 through R5 are used for compound CVA. If used, they need to be initialized to

required scalar constants. To initialized each of these registers, we assume that an extra

instruction is needed.

6.4.2 Vector Instruction Decode Costs

We assume that two cycles are needed to: (i) decode the vector instruction; and (ii) in

the first cs-load operations from M0 and/or M1.

6.4.3 Additional Pipeline Warm-Up Costs

For CVA executions, due to the chaining of the P and S units, additional pipeline warm

costs are incurred before the first result of the CVA computations is available. If the p_op

formed at the P unit takes one cycle to execute, and the s_op performed at the S unit take

cycle to execute, then theadditional pipeline warm-up cost is zero.

In general, the additional pipeline warm-up costs for CVA executions is given by tp+ts-1,

where tp is the execution time for p_op; and ts is the execution time for s_op. They are both a

expressed in number of cycles. tp ranges from one cycle (all except the multiply function) to tw

cycles (the multiply function); while ts ranges from zero cycle (by-passing the S unit) to one cy

(an ALU arithmetic).

These costs are only associated with CVA executions. For PVA executions, this cost is

6.4.4 Vector Mode Exit Costs

Upon exiting a vector mode, the PC needs to be adjusted and the instruction fetch ne

be appropriately redirected. We will assume that the machine incurs one cycle penalty for ex

vector mode.

6.4.5 Initial Access Conflicts At M0

This cost is associated with PVA executions only. Instruction and data references can

conflicts at M0 during loop executions. When such a conflict arises, a stall cycle is incurred

the instructions that cause this conflict are captured into the loop cache in the subsequent



94

t two

loop

th the

I

d

first

to the

ories.

nd of

-store-

d load/

ing at

cribed

given

ver

the

cuted
The allocations of these essential instructions into the loop cache occur only during the firs

iterations of the loop. Once all the essential instructions are captured, they will remain in the

cache until they are replaced by other essential instructions (see Section 5.8 on page 83).

If I i has a data reference that accesses M0, then it will only cause access conflict wi

instruction request for Ii+3 and Ii+4, or with Ii+4 and Ii+5, depending on the address alignment ofi.

Furthermore, due to the wrap-around nature of the loop, Ii can be near the bottom of the loop an

Ii+3 and Ii+4 (or Ii+4 and Ii+5) can be near the top of the loop. The loop cache typically uses the

two iterations to capture all the essential instructions in the loop.

6.5  PVA-Only Executions - Three Types Of Loop Execution Overheads

In a PVA-only execution, the number of execution cycles saved can be categorized in

following categories. The overall cycle saving will be given by the sum of each of these categ

• Cycle saving due to eliminating the loop control overheads (lp-ctl-oh);

• Cycle saving due to eliminating the cs-load overheads (cs-load-oh);

• Cycle saving due to eliminating the cs-store overheads (cs-store-oh).

We will denote these loop execution overheads aslp-ctl-oh, cs-load-ohand cs-store-oh,

respectively. The lp-ctl-oh refers to the time spent on executing the branch instruction at the e

the loop, as well as the loop index increment/decrement instruction. The cs-load-oh and cs

oh refer to the time spent on executing the load/store instructions, as well as their associate

store address increment/decrement instructions. The use of a PVA construct is precisely aim

eliminating these three types of loop execution overheads.

There are vector setup and exit costs associated with PVA executions as des

Section 6.4. For the purpose of calculating these overheads, the setup and exit costs for a

PVA execution are dividedequallyamong all of the categories of overheads involved, whene

applicable. This is illustrated in the following example.

Example 6.1:

Vectorize the loop shown in Example 3.3 on page 46 using a PVA loop. Also calculate

saving due to eliminating the various types of loop overheads. Assuming that this loop is exe

100 times and the branch instruction “bt EXIT” was never taken.

For convenience sake, this loop is illustrated below.



95

o be

e

one

0) +

es 2

1099/

p.

-load-

f 600
L1:

ld.h r7,(r2) // load A[i]

addi r2,2

ld.h r6,(r3) // load B[i]

addi r3,2

cmplt r6,r7 // is A[i] > B[i]?

bt EXIT // if so, exit the loop

decne r14 // if not, decrement the count

bt L1 //is the entire vector being processed?

//if not, branch backward

EXIT:

The CVA version of this loop is shown in Example 3.4 on page 48. This loop can als

vectorized using a PVA loop as follows.

Initialize CR appropriately.

Initialize both SSR[STR 0] and SSR[STR 1] to 2.

Initialize R0 and R1 to the appropriate starting addresses.

L1:

PVA @L0, @L1, #2; // A PVA loop with 2 scalar instructions

cmplt R1, R0

bt EXIT

EXIT:

This PVA loop only enables L0 and L1. The original loop took 11 cycles per iteration. Th

“bt L1” is taken 99 times and not taken 1 time. During the last iteration, the “bt L1” takes only

cycle to execute. The total execution time of the original loop is: 11 x 99 + 10 x 1 = 1099.

The setup and exit costs for the PVA loop is: 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R

1(R1) + 1(exit) = 9 cycles. The PVA loop body, which consists of two scalar instructions, tak

cycles to execute. Thus the total cycles for PVA executions is:9 + 2 x 100 = 209 cycles. Compared

to the scalar execution, a saving of 1099 - 209 = 890 cycles. The speedup is given by

209=5.26.

By enabling L0 and L1, we can eliminate the first four instructions in the original loo

These four instructions take 6 cycle per iteration to execute. They are associated with the cs

oh. Thus the saving due to eliminating the cs-load-oh is 6 cycles per iteration, or a total o

cycles.



96

op.

ctl-oh.

itera-

setup

with

ycles;

g is

wn in

only.

when
The PVA loop also successfully eliminated the last two instructions in the original lo

These two instructions take 3 cycle per iteration to execute. They are associated with the lp-

Thus the saving due to eliminating the lp-ctl-oh is 3 cycles per iteration, except for the last

tion, where the saving is only 2 cycles. Thus the total saving for eliminating lp-ctl-oh is 99 x 3 + 1

x 2 = 299.

There is no instruction in this loop that is associated with the cs-store-oh. Since the

and exit cost is 9 cycles. This cost will be equally divided between cs-load-oh and lp-ctl-oh,

4.5 cycles each. Thus the final saving due to eliminating the cs-load-oh is 600 - 4.5 = 595.5 c

the final saving due to eliminating the lp-ctl-oh is 299 - 4.5 = 294.5 cycles. The total savin

given by 595.5(for cs-load-oh) + 294.5(for lp-ctl-oh) = 890 cycles.

The performance improvement due to eliminating various types of overheads are sho

Table 6.4. The overall speedup for PVA-only executions, in this case, is 1099/209=5.26.

Example 6.2:

Vectorize the program loop shown in Example 4.1 on page 51 using the PVA construct

Estimate the execution cycles saving due to eliminating the various types of loop overheads

the loop is executed 100 times.

This loop can be vectorized using the PVA loop construct as follows.

Initialize R5 to the appropriate constant.

Initialize CR appropriately.

Initialize SSR[STR S] to 4.

Initialize R2 to the appropriate starting address.

L1

PVA @S, #1; // PVA loop with 1 scalar instruction

mov R2, R5 // initiate cs-store S

Table 6.4: Performance Improvements Due to Eliminating Various Types of Loop Execution
Overheads

Types of Overhead
Eliminated

Cycle Saving Performance
Improvements

Overall Speedup

lp-ctl-oh 294.5 0.2680 -

cs-load-oh 595.5 0.5418 -

cs-store-oh 0 0.0000 -

Total 890 0.8098 5.26



97

ts).

t) = 8

and

ation

tore,

is 2 x

the

tion

599/

) =

tor-
The original program loop took 6 cycles per iteration (or 6 x 99 +5 x 1 = 599 cycles total);

while the vectorized loop took only 1 cycle per iteration (not including the setup and exit cos

The vector setup and exit costs are: 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R3) + 1(exi

cycles. This cost will be divided equally between lp-ctl-oh and cs-store-oh.

In this loop, only the S stream is enabled. By enabling S, we could eliminate the “stw”

“addi r14,4” instructions, a saving of 3 cycles per iteration. In order to initiate a cs-store oper

in each iteration, however, a “mov R2, R6” instruction is added to the loop body. Thus for cs-s

the saving is actually 2 cycles per iteration. Thus the total saving for eliminating cs-store-oh

100 - 4 = 196 cycles.

Likewise, the PVA loop construct can eliminate the branch overheads by eliminating

“decne” and “bt” instructions, also a saving of 3 cycles per iteration, except for the last itera

where the saving is 2 cycles. Thus the total saving for eliminating lp-ctl-oh is 3 x 99 + 2 x 1 - 4 =

295.

Total saving: 196(for cs-store-oh) + 295(for lp-ctl-oh) = 491 cycles; or a speedup of

(599-491)=5.55.

Alternatively, the PVA loop took 1(one instruction) x 100(iterations) + 8(setup/exit costs

108 cycles to execute. Total saving = 599 - 108 = 491 cycles.

6.6  Cycle Saving Calculations for Vectorizing a Typical Scalar Loop

In this Section, we will derive a generic expression for calculating cycle saving for a vec

izing typical scalar loop. Consider the following loop.

L1:

I0

Table 6.5: Performance Improvements Due to Eliminating Various Types of Loop Execution
Overheads

Types of Overhead
Eliminated

Cycle Saving Performance
Improvements

Overall Speedup

lp-ctl-oh 295 0.4925 -

cs-load-oh 0 0.0000 -

cs-store-oh 196 0.3272 -

Total 491 0.8197 5.55



98

the

uc-

hat

l not

t;

n

cre-

us the

n this
I1

:

br L1

A “typical loop” here refers to a loop: (i) that exits only through the branch at the end of

loop (i.e. through “br L1” not taken); and (ii) there is a loop index increment/decrement instr

tion within the loop body. A “typical loop” always exits with the register CR becoming zero. T

is, the loop does not exit early.

For loops that are not “typical”, the cycle saving calculations are more ad hoc and wil

be described here. We will first define the following terms.

n1 be the number of times “br” is taken;

n2 be the number of times “br” is not taken;

n be the total iteration count for the scalar loop (n=n1+n2);

p be the number execution cycles for the primary arithmetic performed at the P unit;

Ol be the cs-load-oh per iteration (cs-load-oh = (n1 + n2) * Ol);

Os be the cs-store-oh per iteration (cs-store-oh = (n1 + n2) * Os);

Olp be the lp-ctl-oh per iteration, when “br” is taken (lp-ctl-oh = (n-1) * Olp + 1 * (Olp-1));

CPVA be the vector setup and exit cost for the PVA executions;

CCVA be the vector setup and exit cost for the CVA executions;

tsc be the execution cycles per iterations for the scalar loop, when “br” is taken;

tp be the number execution cycles for the primary arithmetic performed at the P unit;

ts be the number execution cycles for the secondary arithmetic performed at the S uni

For CVA executions, the initial vector setup and exit costs will be CCVA=CPVA+tp+ts-1. That

is, for tp=1 and ts=0, the setup and exit costs for both CVA and PVA executions are identical.

6.6.1 Saving Calculations For Typical PVA Executions

For a “typical loop” described above, Olp =3 cycles: 2 cycles for eliminating the executio

of the taken branch instruction and 1 cycle for eliminating the execution of the loop index in

ment/decrement instruction. But when the branch is not taken, the saving is only 2 cycles. Th

cycle saving due to removing lp-ctl-oh is typically given by: 3 * n1 + 2 * n2.
*

For a typical PVA execution, saving due to removing cs-load-oh = Ol*(n1+n2); saving due to

removing cs-store-oh =Os*(n1+n2); saving due to removing lp-ctl-oh =3*n1 + 2*n2.; the total

* This rule, however, does not hold if the loop index is also used somewhere else in the loop body. I
case, the loop index increment/decrement instruction can not be removed from the PVA loop body.



99

ns

scalar

ns.

hput
setup/exit cost = CPVA*n2. Thus the total saving is given by:

Total PVA saving = (Ol +Os) * (n1 + n2) + (3*n1 + 2*n2) - CPVA *n2 (6.3)

6.6.2 Saving Calculations For Typical CVA Executions

When a “typical” loop is vectorized using a CVA construct, the resulting CVA executio

always terminate with the count register CR becoming zero. Furthermore, since the original

loop is invoked n2 times, the CVA instruction is also executed n2 times.

When a loop is CVA vectorizable, the per-iteration execution time of the loop, tsc, can be

divided into five components: Ol, Os, Olp, tp, ts, where Olp is again 3 cycles for the “typical” loop.

Thus, tsc, for the scalar loop, in this case, can be written as

tsc = Ol + Os + Olp + tp + ts = Ol + Os + 3 + tp + ts

The total execution cycles for the scalar loop, Es, is given by

Es = tsc * n1 + (tsc-1) * n2 = (Ol + Os + 3 + tp + ts) * n1 + (Ol + Os + 3 + tp + ts - 1) * n2

A CVA execution incurs an initial setup cost and an actual vector execution cost. For n2 exe-

cutions of a CVA instruction, the initial setup cost amounts to CCVA*n2. Since the original loop is

executed n=n1+n2 iterations, n results are being produced in the equivalent CVA executio

Assuming there is no memory conflict during the CVA executions and the sustained throug

rate is one, the actual vector execution cost is equal to n=n1+n2.

Thus for n2 executions of the CVA instruction, the total execution time is given by

Ev = (CCVA * n2) + (n1+n2) = (CPVA+tp+ts-1) * n2 + (n1+n2)

Thus, for CVA execution,

CVA saving = Es - Ev; or

CVA saving = (Ol+Os) * (n1+n2) + (tp+ts+2)*n1 + 2*n2 - CPVA*n2 (6.4)

Notice that equations (6.3) and (6.4) are identical when tp=1 and ts=0. Comparing these two

equations, CVA executions will outperform PVA executions if tp is greater than 1 and ts=0,. This is

particularly true when n1 is relatively large and n2 is relatively small.



100

nly;

the

t” is

e

can

ate
Example 6.3:

Estimate the cycle saving for the loop shown in Table 6.6 for: (i) using PVA construct o

(ii) using CVA construct only.

This loop, taken from “auto” benchmark (loop number 1), can be vectorized by using

PVA-only construct, and by using the CVA-only construct, as shown in Table 6.6.

Table 6.7 shows the profiled statistics for the loop. They include the number of time “b

taken (n1=704) and the number of time “bt” is not taken (n2=1).

For PVA executions, Ol=0, Os=2, Olp = 3. Os is 2 cycles instead of 3 because to perform th

cs-store, an additional “mov” instruction is introduced into the PVA loop body. The cs-store

only save 2 cycles of overhead, instead of 3, per iteration. Thus

CPVA = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R3) + 1(exit) = 8.

PVA saving = (Ol +Os) * (n1 + n2) + (3*n1 + 2*n2) - CPVA *n2

= (0 + 2) * (704+1) + (3 * 704 + 2 * 1) - 8 * 1 = 3516 cycles

For CVA executions, an additional “mov” function is also introduced. Thus Os=2. Since

tp=1 (it takes the P unit one cycle to perform a “mov” function) and ts=0 (there is no secondary

arithmetic to perform in the CVA executions), CVA saving = PVA saving = 3517.

Example 6.4:

Vectorized loop shown in Example 1.1 on page 9 using PVA and CVA constructs. Estim

the execution cycles for the vectorized loop, assuming that the vector length is 100.

Table 6.6: “auto” Critical Loop 1

Assembly Instructions Using PVA Construct Only Using CVA Construct Only

0000010d2 stw r5,(r14)
0000010d4 addi r14,4
0000010d6 decne r6
0000010d8 bt 0x010d2

PVA @S, #1
cs-store:
mov r5, r5

CVA mov r5, @S;

Table 6.7: Profile For Critical Loop 1

Address Entry Type Exe. Counts,
n=n1+n2

Branch
Target

Taken count,
n1 (%)

Not taken
count, n2 (%)

0000010d2
0000010d8

target
bt

705
705

-
000010d2

-
704 (99.9)

-
1 (0.142)



101

tions

ltiply

te the

nly

iplica-

VA

ms

zable
The scalar loop takes 13 * 100 + 12 * 1 = 1312 cycles. In this loop, Ol + Os = 8, Olp = 3,

ts=0, tp=2 (a 2-cycle multiplication is performed at the P unit).

CPVA = 3(SSR) + 1(CIR) + 2(inst. decode) + 3(R0/R1/R2) + 1(exit) = 10 cycles.

PVA saving = (Ol +Os) * (n1 + n2) + (3*n1 + 2*n2) - CPVA *n2

= 8 * 100 + (3*99 + 2*1) - 10 * 1 = 1089 cycles, or a speedup of 5.88.

CCVA = CPVA + tp + ts -1 = 10 + 2 + 0 - 1 = 11 cycles.

CVA saving = (Ol+Os) * (n1+n2) + (tp+ts+2)*n1 + 2*n2 - CPVA*n2

= 8 * 100 + (2 + 0 + 2)*99 + 2*1 - 11*1 = 1187, or a speedup of 10.49.

In this example, PVA executions achieve a speedup of 5.88; while the CVA execu

achieve a speedup of 10.49. This disparity is mainly due to the pipelining of the 2-cycle mu

function at the P unit. For PVA executions, the machine is unable to simultaneously execu

multiply functions from different iterations. That is, the machine can initiate a new iteration o

when the current iteration is completed. It does not possess the knowledge that the two mult

tion functions across different iterations are actually independent operations.

However, if the multiply at the P unit takes only one cycle to execute, then CVA and P

would have achieved the same performance.

6.7  CVA-Only vs. PVA-Only vs. CVA/PVA Executions

When a loop is vectorizable with a CVA construct, the vectorized loop typically perfor

equally or better than the PVA version of the loop. Some loops, however, are not vectori

Table 6.8: Vectorizing A Loop For Performing C[i] = A[i] * B[i]

Assembly Instructions Using PVA Construct Only Using CVA Construct Only

addi r2,2
ld.h r7,(r2)
addi r3,1
ld.b r6,(r3)
mul r7,r6  (2 cycles)
st.h r7,(r2)
decne r1
bt L1

PVA @L0,@L1,@S, #1
cs-store:
mul r0, r1, @S

CVA mul @L0,@L1,@S;



102

rfor-

con-

.

The

nism.

CVA

mer

nd

ruc-

the

e opera-
using the CVA construct. In these cases, PVA provides an opportunity for improving the pe

mance.

However, there are also some loops that perform the best when a combination of both

structs are used. The following is an example of such loops.

Example 6.5:

Vectorize the following using (i) PVA-only; (ii) CVA-only; and (iii) CVA/PVA constructs

Estimate their speedups assuming that the loop is executed 100 times.

L1:

subi      r13,1

ldb r6,(r13,1)

lsli r6,1

rsub      r6,r11

add       r6,r7

ldw       r7,(r12)

decne     r10

sth r7,(r6) //not constant-stride

addi      r12,4

bt L1

This loop is taken from the benchmark program called “jpeg ”. It contains a non-constant

stride store operation; it is thus not CVA vectorizable. The scalar loop takes 14 x 99 + 13 x 1 =

1399 cycles to execute.

The PVA-only version of the loop is shown in second left most column of Table 6.9.

PVA loop removes the overheads for the two cs-load instructions and the loop control mecha

This Table also shows how the loop can be vectorized using a combination of a

instruction and a PVA instruction (shown in the right most column of the Table). The for

instruction is a compound CVA. It reads in a vector and performs two ALU functions (“lsli” a

“rsub”) with a throughput rate of one (not including the vector setup/exit costs). This CVA inst

tion then writes its output to a temporary vector.

The PVA instruction then takes over the remaining tasks of the loop: it reads back in

temporary vector, calculates the store addresses and performs the non-constant stride stor

tions.



103

i-

R0,

A

ove

those
PVA-only Executions

For PVA-only executions, Ol=5, Os=0, Olp = 3. Os is 5 cycles instead of 6 because an add

tional “mov r6,r0” instruction is introduced in the PVA loop body. This is because register

which is the head of the L0 stream, is a read only register. The two-operand M-CORE IS

destructs one of its source operands when performing many ALU function (“lsli” in the ab

example). The “mov” instruction is used to ensure that we don’t write back to R0. Thus,

CPVA = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(exit) = 9

PVA saving = (Ol +Os) * (n1 + n2) + (3*n1 + 2*n2) - CPVA *n2

= (5 + 0) * (99 +1) + (3 * 99 + 2 * 1) - 9 * 1 = 790 cycles

Speedup for PVA-only executions = 1399/(1399-790) = 2.297

CVA/PVA Executions

For CVA/PVA executions, lets consider first, the CVA instruction. In this case, tp=ts=1.

CCVA = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exit) + tp + ts - 1 = 10

CVA execution time = CCVA + 100 = 110 cycles

For the PVA instruction,

CPVA = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8

PVA execution time = CPVA + 4 * 100 = 408 cycles

Total execution time = 110 + 408 = 518 cycles.

Speedup for CVA/PVA executions = 1399/518 = 2.700

Thus the CVA/PVA executions achieve a higher speedup (2.700) compared to

achieved by the PVA-only executions (2.297) and by CVA-only executions (not vectorizable).

Table 6.9: A Critical Loop From “jpeg”

Scalar Code (i) Using PVA-only
Construct

(ii) Using CVA-
only Construct

(iii) Using CVA/PVA
Constructs

L1:
subi r13,1
ldb r6,(r13,1)
lsli  r6,1
rsub      r6,r11
add       r6,r7
ldw       r7,(r12)
decne r10
sth r7,(r6)
addi      r12,4
bt L1

PVA @L0,@L1,#6
mov r6, r0
lsli r6,1
rsub r6,r11
add r6,r7
sth r1,(r6)

Not
vectorizable.

<some initialization code>
; read a vector via L0 and write
; to a temporary vector via S
CVA lsli @L0, 1, @P,

rsub @P, r11, @S;
......
<some initialization code>
; read from the temporary
; vector via L0
PVA @L0, #3

mov r6, r0
add r6, r7
sth r1, (r6)



104

e of

will

igh

ector

.

tions.

oca-
6.8  TM Strip-Mining Costs

For CVA executions, when a temporary register allocated into TM is larger than the siz

TM, the latter will need to be strip-mined (see Section 4.8.4 on page 70). In this Section, we

estimate the execution costs associated with strip-miming TM.

The following shows a strip-mined code in M-CORE instructions. The corresponding h

level c-code is shown in Example 4.10 on page 70. In this code, the operand size for the v

operations is assumed to be a word (4 bytes); TM (512 bytes) can thus store 128 elements

The code contains a loop with 2-level of nesting. The outer loop executes n/128+1 itera

The inner loop is invoked n/128+1 times; it executes (n mod 128) iterations during the first inv

tion, and 128 iterations for each of the subsequent n/128 invocations.

//-----------------------------------------------------------
// Strip-mined code for TM (see Example 4.10 on page 70).
// ======================================================
//
// Memory Variables:
// LOW - low
// VL - VL
// N_DIV_128 - n/128
// J_INDEX - j loop index for outer loop
// Registers:
// r14 - i loop index for inner loop
// r13 - low+VL-1
// r0 - initially contains n (vector length)
//-----------------------------------------------------------

//---------------
//  Prolog
//---------------
movi r1, 1
lrw r2, [LOW]
stw r1, (r2) // low = 1

movi r1, 0x3f
and r1, r0
lrw r3, [VL]
stw r1, (r3) // VL = n mod 128

mov r1, r0
asri r1, 7
lrw r3, [N_DIV_128]
stw r1, (r3) // N_DIV_128 = n/128

movi r1, 0
lrw r3, [J_INDEX]
stw r1, (r3) // j = 0
cmplt r1, r0 // j < n/128?
bf EXIT

//---------------
// Outer Loop
//---------------
// Register allocations:
// r14 = i



105

code
// r13 = low+VL-1

OUTER_LOOP:
lrw r2, [LOW]
ldw r14,(r2) // r14 = low
lrw r2, [VL]
ldw r13, (r2) // r13 = VL
add r13, r14
subi r13, 1 // r13 = low+VL-1

//----------------
// Inner Loop
//----------------
//There is always at least one
// iteration for the INNER_LOOP.

INNER_LOOP:

[Main CVA/PVA executions]

addi r14, 1 // i = i + 1
cmplt r14, r13 // (i<low+VL-1)?
bt INNER_LOOP

//------------------
// End of Inner Loop
//------------------
lrw r2, [LOW]
ldw r1, (r2) // r1 = low
lrw r4, [VL]
ldw r3, (r4) // r3 = VL
add r1, r3
stw r1, (r2) // low = low + VL
movi r3, 127
addi r3, 1
stw r3, (r4) // VL = 128

lrw r2, [J_INDEX]
ldw r1, (r2) // r1 = j
addi r1, 1
stw r1, (r2) // j = j + 1
lrw r2, [N_DIV_128]
ldw r2, (r2) // r2 = n/128
cmplt r1, r2 // (j<n/128)?
bt OUTER_LOOP

//------------------
// End of Outer Loop
//------------------
EXIT:

. . . .
.data
.align word
LOW:
.long 0
N_DIV_128:
.long 0
J_INDEX:
.long 0

The execution time of this code can be broken down into: execution time for the prolog

(X), setup cost for the inner loop (Y1), the loop control overhead for the outer loop (Y2), the loop



106

ts are

m the

loop

d

le

gth,
control overhead for the outer loop (Z), and the actual CVA execution time itself. These cos

illustrated in Figure 6.2.

Excluding the inner loop executions, the execution cost is given by: X + (n/128+1) * (Y1 +

Y2). The inner loop execution cost is given by: (n/128+1) * (CCVA + Z) + n, where CCVA is the

setup and exit costs for the CVA executions as described in Section 6.4 on page 91. Fro

above strip-mined assembly code, X=24, Y1=10, Y2=29, Z=4.

The total execution time for the strip-mined code is thus: 24 + (n/128+1) * (43 + CCVA) + n.

In a more general setting,

Execution time for trip-mined code = 24 + (n/m+1) * (43 + CCVA) + n (6.5)

where n is the original vector length;

m is the vector length of strip-mined vectors reside in TM; and

“/” denotes the integer “divide” rounded down to the nearest integer.

Example 6.6:

Calculate the performance improvements and speedups when vectorizing the program

shown in Example 4.4 on page 53 with CVA constructs.

To recap, this loop, taken from benchmark “blit ”, performs a vector operation describe

by C[i] = (lsr(A[i], r9) | lsl(A[i], r8)). The vectorized code is shown in Table 6.10. The profi

statistics of this loop are shown in Table 6.11.

This loop was invoked three times, with 1000 iterations per invocation (vector len

n=1000). The original scalar loop takes 14 x 2997 + 13 x 3 = 41997 cycles to execute.

X

Y1

CVA

OUTER_LOOP

INNER_LOOP n iterations

(n/128+1) iterations

Figure 6.2: Execution Costs For TM Strip-Mined Code

executions

Y2

Z



107

128,

utes

ruc-

the

) +

-

r a

ced

output
TM is used to store a temporary vector produced by the first CVA instruction. Since n>

strip-mining for TM is necessary. In the strip-mined code, the inner-most loop exec

(n/128+1)=8 iterations, each time it is invoked. This inner-most loop consists of two CVA inst

tions; they are shown in Table 6.10.

In both CVA instructions, an additional “mov” instruction is needed to initialize R5. For

first CVA instruction (tp=1, ts=0), the vector setup/exit cost per invocation is 3(SSR) + 1(CIR

2(instr. decode) + 1(R0) + 1(R2) + 1(exit) + 1(tp) + 0(ts) - 1 + 1(extra “move” inst.) = 10 cycles.

For the second CVA instruction (tp=1, ts=1), it is 3(SSR) + 1(CIR) + 2(instr. decode) +

1(R0) + 1(R1) + 1(R2) + 1(exit) + 1(tp) + 1(ts) - 1 + 1(extra “move” inst.) = 12 cycles.

Thus the total vector setup/exit cost per invocation, CCVA = 10 + 12 = 22 cycles; the execu

tion time per invocation = 24 + (n/128+1) * (43 + CCVA) + 2*n = 2544

For 3 invocations, the saving for CVA-only executions is 41997 - 3 * 2544 = 34365, o

speedup of 5.503.

6.9  Throughput Rates For CVA Executions With Memory Conflicts

For CVA executions, after the initial pipeline warm-up cost is incurred, a result is produ

in each subsequent cycle, provided that there is no memory conflict between the input and

Table 6.10: Vertorizing Critical Loop 1 From Benchmark “blit ”

Address Opcode //; Assembly Code Using CVA Construct

00000304     8a0e //;  ldw       r10,(r14)
00000306     25f4 //; decne r4
00000308     12a7 //;  mov       r7,r10
0000030a     0b97 //;  lsr       r7,r9
0000030c     1e37 //;  or        r7,r3
0000030e     12a3 //;  mov       r3,r10
00000310  970d //;  stw       r7,(r13)
00000312  1b13 //;  lsl       r3,r1
00000314  203e //;  addi      r14,4
00000316  203d //;  addi      r13,4
00000318 e7f4 //; bt 0x0000304

Setup a temporary vector T
. . . . . .
; T[i] = lsr(A[i], r9)
mov r5, r9
CVA lsr @L0, r5, @S;
. . . . . .
;@L1 <---- T[i]
mov r5, r1
CVA lsl @L0, r5, @P,

or @L1, @P, @S;

Table 6.11: Profile For Critical Loop 1 From Benchmark “blit ”

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000304
00000318

target
bt

3000
3000

-
00000304

-
2997 (99.9)

-
3 (0.100)



108

ut rate

etup/

nflict

t. In

o con-

ry

. It

truc-

M0 or

xecu-

r a

y re-

nt (two

. Thus

mem-
data streams at M0 and M1; and between the two input data streams at TM. This throughp

of oneis the best possible throughput rate on this machine (not including the initial vector s

exit costs).

From the right most column of Table 4.3 on page 68, we can see that when there is a co

at either M0, M1 or TM, only up to a maximum of two data streams are involved in the conflic

this case, accessing to the memory module in question are alternatively granted to the tw

tending data streams. As a result, the throughput rate is degraded to one vector result in evetwo

cycles (not including the initial vector setup/exit costs).

Example 6.7:

Calculate the performance improvements and speedups for Example 6.6,assuming that the

TM is not used (or TM is removed from the design).

For CVA executions, the first CVA instruction are not affected by the absent of TM

streams in a vector from M0 (or M1) and streams out to M1 (or M0). For the second CVA ins

tion, however, the throughput rate is reduced to one result every 2 cycles due to conflicts at

M1 (depending on the destination of stream S); an additional 1000 (vector length, n=1000) e

tion cycles is required per invocation.

With CCVA=22, the execution time per invocation = CCVA + n (for the first CVA instruction)

+ 2*n (for the second CVA instruction) = CCVA + 3*n = 3022.

For 3 invocations, the saving for CVA-only executions is 41997 - 3 * 3022 = 32931, o

speedup of 4.632..

6.10  Maximizing The Use Of TM via Vector Duplication

Certain vector operations could only benefit (performance-wise) from the use of TM b

allocating somenon-temporary vectors into the TM. Consider the following vector operation.

B[i] = s *A[i]+B[i], for all i and some scalar s.

This vector operation requires three memory accesses to produce each result eleme

reads and one write). In this case, however, source vector B, is also the destination vector

accessing vector B will cause a read and a write conflict in each cycle, regardless of which



109

ecu-

s no

above

d by

ector

f TM.

other

ded.

B has

s

ory bank vector B resides. Without any code modification, the performance of this vector ex

tion will suffer.

In this machine, TM is tightly coupled into the execution datapath; the IO system ha

access to TM. In this example, if vector B needs not be accessed by the IO system, then the

vector operation can be replaced by the following twoalternatively invoked vector operations.

B1[i] = s *A[i]+B 2[i]

B2[i] = s *A[i]+B 1[i]

That is, vector B now has two instances, B1 and B2. At any given point in time, only one

instance is valid. All other references to vector B in the original code will need to be replace

references to the valid instance of vector B, at that point in time. Figure 6.3 shows how the v

operations and the references to vector B are being transformed in order to take advantage o

With these code transformations, an instance of vector B can reside in TM, while the

one in M0 or M1. The vector operations can now utilize TM to improve performance.

6.10.1 Software Implementation of Vector Duplication

To perform vector duplication described above, a global pointer to vector B is nee

Figure 6.4 shows how the updating of this pointer can be implemented. In this figure, vector

two possible locations, addr_X and addr_Y. In the vector operation, B1[i]=A[i]*B 2[i], vector B1 is

pointed to by pointer_B1 and vector B2 by pointer_B2. pointer_B1, the global pointer, alway

points to the valid instance of B.

B[i] = s *A[i]+B[i]

(references to B)

B[i] = s *A[i]+B[i]

(references to B)

B[i] = s *A[i]+B[i]

(references to B)

B1[i] = s *A[i]+B 2[i]

(references to B1)

B1[i] = s *A[i]+B 2[i]

(references to B1)

B2[i] = s *A[i]+B 1[i]

(references to B2)

Time Original Code Transformed Code

Figure 6.3: Vector Duplication

:

:

:

:

:

:

:

:

:

:



110

(2

ional

duced

ruc-

core

in

tions

ction

e IReq
6.10.2 Execution Overheads of Vector Duplication

The overhead foreachinvocation of the vector execution includes: a global pointer fetch

cycles); a test instruction (1 cycle); two pointer update instructions (2 cycles); and a condit

branch (2 cycles); a total of 7 cycles.

6.11  Instruction Fetch Bandwidth

As mentioned in Section 1.5 on page 9, a subtle benefit of vector processing is the re

instruction fetch bandwidth. In this Section, we will illustrate how we could estimate the inst

tion fetch bandwidth reduction associated with the PVA and CVA executions.

We distinguish the difference between instruction requests (IReq) from the processor

and the instruction fetches (IFetch) from the memory M0. This different is illustrated

Figure 6.5.

For CVA executions, there is no different between these two metrices, since CVA execu

do not utilize the loop cache. For PVA executions, the loop cache satisfied some of the instru

requests from the processor core. As a result, the IFetch from the memory are less than th

made by the core.

If (pointer_B1 == addr_X) {

pointer_B1 = addr_Y;

pointer_B2 = addr_X;

} else {

pointer_B1 = addr_X;

pointer_B2 = addr_Y;

}

< vector operations for B1[i] = A[i] * B 2[i] >

// In the rest of the program, pointer_B1

// always points to the valid instance of B.

Figure 6.4: Transformed Code For Vector Duplication

M0
Processor

Core
Loop Cache

IReq
from core

IFetch
from M0

Figure 6.5: IReq from Processor Core versus IFetch from Memory M0



111

o

torized

vec-

.4 on

cute

quest

ranch

is

e only

ugh

xecu-

x 1 =

ers:
We define theNormalized Instruction Request(IReq) from the processor core, as the rati

between the number of instruction requests being made by the processor core for the vec

program, versus those for the base machine.

Likewise, we define theNormalized Instruction Fetch(IFetch) from the processor core, as

the ratio between the number of instruction fetches being made from the memory M0 for the

torized program, versus those for the base machine.

Example 6.8:

Calculate the normalized IReq and normalized IFetch for the loop shown in Example 4

page 53, by using (i) a PVA construct; and (ii) a CVA construct. This loop is assumed to exe

100 iterations.

The PVA and CVA versions of the loop are shown in Table 6.12.

There are 11 instructions in the original scalar loop. In this machine, each instruction re

fetches two 16-bit instructions. Due to the pipeline nature of the scalar machine, when the b

instruction “bt” is taken, one additional instruction (the fall-through instruction following it)

also fetched. As a result, 12 instructions are being fetched per loop iteration, even though w

execute 11 of them. During the last iteration when the “bt” instruction is not taken, the fall-thro

instruction is fetched and executed. This instruction is not considered as part of the loop e

tions. Thus the IReq of the scalar machine during loop executions is given by 12 x 99 + 11

1199 instructions.

For PVA execution, the vector setup code consists of initialization of the following regist

Table 6.12: Vectorizing The Loop Shown in Example  1.1

Original Scalar Loop Using PVA
Construct

Using CVA
Construct

L1:

ldw r10,(r14)

decne r4

mov r7,r10

lsr r7,r9

or r7,r3

mov r3,r10

stw r7,(r13)

lsl r3,r8

addi r14,4

addi r13,4

bt L1

<Some vector setup code>

PVA @L0,@S, #5

mov r3, r0

mov r7, r3

lsr r7,r9

lsl r3,r1

cs-store:

or r3,r7a

<Some vector setup code>

mov r5, r9

CVA lsr @L0, r5, @S;

<Some vector setup code>

mov r5, r8

CVA lsl @L0, r5, @P,

or @L1, @P, @S;



112

PVA

loop

VA

(1

, r9”

liza-

ow-

). In

is

CVA

from

exe-

n of

ruc-

re pre-

again

nce

o fetch
SSR (2 instructions); CIR (1 instruction); R0 and R2 (1 instruction each). In addition, the

instruction is 32-bit wide and is counted as 2 instructions. There are 5 instructions in the

body, which is executed 100 times. Thus for PVA execution, the IReq is (2+1+1+1+2)+ 5 x 100 =

507 instructions

For CVA execution, there are two CVA instructions. The vector setup code for the first C

instruction consists of initialization of the following registers: SSR (2 instructions); CIR

instruction); R0 and R2 (1 instruction each). In addition, there is also an additional “mov r5

instruction. The CVA instruction is also counted as 2 instructions. The total IReq for the initia

tion code is 7 instructions.

The vector setup code for the second CVA instruction consists of initialization of the foll

ing registers: SSR (2 instructions); CIR (1 instruction); R0, R1 and R2 (1 instruction each

addition, there is also an additional “mov r5, r8” instruction. Again, the CVA instruction

counted as 2 instructions. The total IReq for the initialization code is 8 instructions. Thus for

executions, IReq is given by 7 (first CVA instruction) + 8 (second CVA instruction) 15 instructions

The normalized IReq for PVA and CVA executions are summarized in Table 6.13.

In this example, the PVA execution is able to reduce the instruction fetch bandwidth

the original 1199 instructions down to 507 instructions - a reduction of about 58%; the CVA

cution is able to further reduce the instruction bandwidth down to 15 instructions - a reductio

about 99%.

For PVA execution, the reductions are primarily due to eliminating the fetching of inst

tions that perform the cs-load, cs-store and loop control operations. Once these operations a

specified in the vector instruction, there is no need for the machine to fetch these instructions

due to their repetitive nature.

The CVA execution goes one step further in reducing the instruction fetch bandwidth. O

all the data streams, primary and secondary arithmetic are properly setup, there is no need t

any instruction for the rest of the CVA executions.

Table 6.13: Normalized IReq For PVA and CVA Executions

Execution Modes PVA Execution CVA Execution

IFetch 507 instructions 15 instructions

Normalized IFetch 0.4229 0.0125



113

e. We

ns. We

trib-

Chap-

th on

xecu-

he way

es: (i)

6.3

ults,

e we

An

led the

An

more
CHAPTER 7

EXPERIMENTAL RESULTS

In this Chapter, we will present the performance results for the pseudo-vector machin

will first present the overall speedups, as well as the speedups during program loop executio

will then present the performance impact by varying the sizes of TM.

For PVA-only executions, we will present what are the performance improvements con

uted by removing various types of overheads associated with loop executions. Later in this

ter, we will also present what are the effects of vectorizations on instruction fetch bandwid

this machine.

7.1  Overall Speedups

Figure 7.1 and Table 7.1 show, for each benchmark, the overall speedups for various e

tion modes on this machine. These results assume that the TM is 512 bytes. Depending on t

we restrict the selection of the vectorizing constructs, there are three major execution mod

PVA-only executions; (ii) CVA-only executions; and (iii) CVA/PVA executions (see Section

on page 90).

In CVA-only executions, two different sets of results are presented. The first set of res

called the “CVA-only executions without early termination”, corresponds to the cases wher

would not vectorize a loop with a CVA construct if it contains an early terminating condition.

example of such a loop is shown in Example 3.3 on page 46. In the second set of results, cal

“CVA-only executions with early termination”, we allowed a vector computation to exit early.

example of such vectorized loop is shown in Example 3.4 on page 45. This latter approach is

generic and provides more opportunities for vectorization.



114
Table 7.1: Overall Speedups For Various Combinations of Execution Modes1

Benchmarks PVA-Only
Executions

CVA-Only Executions
CVA/PVA
Executions

Without early termi-
nation

With early termina-
tion

auto 2.563 2.123 2.123 2.564

blit 2.751 5.293 5.293 5.293

compress 1.089 1.089 1.089 1.089

des 1.022 1.000 1.022 1.022

engine 1.043 1.000 1.038 1.043

fir_int 1.814 2.632 2.632 2.632

g3fax 1.859 1.858 1.858 1.859

g721 1.020 1.020 1.020 1.020

jpeg 1.475 1.256 1.256 1.569

map3d 1.433 1.000 1.426 1.433

pocsag 1.270 1.000 1.000 1.270

servo 1.000 1.000 1.000 1.000

summin 1.958 1.480 1.480 2.190

ucbqsort 1.002 1.002 1.002 1.002

v42bis 1.021 1.021 1.021 1.021

Average 1.488 1.585 1.617 1.734

1. TM is assumed to be 512 bytes.

Benchmarks

O
ve

ra
ll 

S
pe

ed
up

s

auto

blit

compress
des

fir_int

g3fax

g721

jpeg average

ucbqsort

summin

servo
pocsag

v42bis

map3d

Overall

engine

Figure 7.1: Overall Speedups For Various Execution Modes

PVA-only executions
CVA-only executions with no early termination
CVA-only executions with early termination
CVA/PVA executions

Legends

0

1

2

3

4

5



115

ong all

ina-

, the

verall

VA

unities

ing

typi-

xe-

ble to

itiate

d in

ally

truct

era-

e

in a

to
If we allow both CVA and PVA executions withall the vector execution capabilities

described in this dissertation, the overall average speedup achieved is 1.734 - the highest am

possible execution modes. Closely following this, is the CVA-only executions with early term

tion, with an overall speedup of 1.617. By not allowing the vector executions to exit early

overall speedup drops slightly, to 1.585. Using the PVA-only executions, we achieved an o

speedup of 1.488.

7.1.1 CVA-Only vs. PVA-Only Executions

As mentioned earlier, if a loop is CVA-vectorizable, it is also PVA-vectorizable. The P

construct represents a more generic vectorizing mechanism. It thus provides more opport

for vectorization and performance improvements.

However, if a program loop is vectorizable by either a CVA or a PVA construct, depend

on the type of primary arithmetic (p_op) performed at the P unit, a CVA-vectorized code can

cally achieve a higher speedup than its PVA counterpart.

If p_op is a multi-cycle operation (such as a 2-cycle multiply or divide), then the CVA e

cutions will achieve higher speedup. This is because for PVA executions, the machine is una

simultaneously execute the multi-cycle functions across different iterations. That is, it can in

a new iteration only when the current iteration is completed. This scenario was illustrate

Example 6.4 on page 100.

In general, if a loop is vectorizable either by a CVA or a PVA construct, the former typic

performs the same or better than the latter. The CVA construct will outperform the PVA cons

when:

• p_op takes multiple cycles to execute; or

• the CVA is a reduction or hybrid CVA; or

• the CVA is a compound CVA that also utilizes the s_op function, such as the vector op

tion described by C[i] = A[i]2 + B[i].

To perform C[i] = A[i]2 + B[i], in every cycle, the compound CVA reads two data from th

memory, performs a “multiply” and an “add” operations, writes one data to the memory - all

single cycle.

7.1.2 Allowing CVA-Only Executions To Terminate Early

In CVA-only executions, if we allow a vector arithmetic to terminate early, we were able



116

ver-

rmi-

.

arious

ieved

termi-

r PVA-

tions,
vectorize more program loops using the CVA construct. By incorporating this capability, the o

all speedup increases slightly from 1.585 to 1.617.

For CVA-only executions, only three benchmark programs benefited from this early te

nation capability. Out of these three benchmarks,map3d benefited the most from this capability

The speedup, in this cases, increased from 1.000 (no speedup) to 1.426.

7.2  Speedups During Program Loop Executions

Figure 7.2 and Table 7.2 show the speedups during program loop executions for the v

execution modes. Again, TM is assumed to 512 bytes.

If we consider the speedup only during program loop executions, the speedups ach

were much higher, as can be expected. In these cases, the CVA-only executions with early

nation achieves an average speedup of 4.617 - the highest among all execution modes. Fo

only executions, the average speedup during loop executions is 3.692. For CVA/PVA execu

Table 7.2: Speedups During Loop Executions For Various Combinations of Execution

Modes1

1. TM is assumed to be 512 bytes.

Benchmarks PVA-Only
Executions

CVA-Only Executions
CVA/PVA
Executions

Without early termi-
nation

With early termina-
tion

auto 6.671 3.806 3.806 6.676

blit 2.794 5.503 5.503 5.503

compress 5.994 5.994 5.994 5.994

des 5.929 1.010 5.929 5.929

engine 1.740 1.000 1.601 1.740

fir_int 2.805 9.015 9.015 9.015

g3fax 5.500 5.499 5.499 5.500

g721 3.143 3.143 3.143 3.143

jpeg 3.124 6.696 6.696 4.258

map3d 4.930 1.000 4.711 4.930

pocsag 1.531 1.000 1.000 1.531

servo 1.000 1.000 1.000 1.000

summin 2.501 7.645 7.645 2.998

ucbqsort 1.726 1.726 1.726 1.726

v42bis 5.993 5.991 5.991 5.991

Average 3.692 4.002 4.617 4.396



117

VA

und

sult,

not

did

ree-

hand

sed or

enefits
the corresponding speedup is 4.396.

7.3  Performance Impact By Varying The Sizes Of TM

In this machine, TM is primarily used to increase the effective memory bandwidth for C

executions - it is essentially used as a third memory port in addition to M0 and M1. A compo

CVA that enables all three data streams (L0, L1 and S) could utilize TM to improve the perfor-

mance. Without TM, such compound CVA would have taken two cycles to produce a re

instead of one (see Section 6.9 on page 107).

In this work, the PVA-only executions do not utilize TM, and thus its performance was

affected. For CVA executions, unfortunately, there were only three benchmarks (namely,blit ,

jpeg andsummin ) whose performance could benefit from using TM; all other benchmarks

not benefit, in terms of performance, from using TM.*

The low utilization of TM is due to the fact that most of the benchmarks did not have th

data stream CVA in their vectorized code. Since all vectorizations were manually done by

(by examining the assembly code), we believe that more opportunities could have been expo

* TM could also be used by these benchmarks for power reduction. However, evaluating the power b
of using TM is beyond the scope of this dissertation.

Benchmarks

 S
pe

ed
up

s 
D

ur
in

g 
Lo

op
 E

xe
cu

tio
ns

auto

blit
compressdes

fir_int

g3fax

g721

jpeg

average

ucbqsort

summin

servo
pocsag

v42bis

map3d
Overall

engine

PVA-only executions
CVA-only executions with no early termination
CVA-only executions with early termination
CVA/PVA executions

Legends

Figure 7.2: Speedups During Loop Executions For Various Execution Modes

0

1

2

3

4

5

6

7

8

9

10



118

ding.

upli-

to its

ge; or

s,

TM.

nce

at is,

t M0/
made available if these were done by the compilers, in conjunction with careful high-level co

However, no such high-level code modification nor compiler work were done in this work.

Among the abovementioned three benchmarks,blit has two critical loops that utilized TM

without the need to use the vector duplication approach (see Section 6.10 on page 108).jpeg and

summin , on the other hand, each has one critical loop that utilized TM by using the vector d

cation approach.

7.3.1 TM Strip-Mining Costs vs. TM Sizes

The executions of a three-data stream CVA do not always benefit from using TM, due

strip-mining costs. These costs are higher when the number of strip-mined iterations is lar

equivalently, when TM is small, relative to the total vector length.

Benchmark “blit ”

Figure 7.5 shows how the speedups forblit vary as a function of TM sizes. This figure is

for the CVA/PVA executions.blit spent about 99% of its executing time on two critical loop

manipulating two vectors of length 1000. Both of these loops benefited greatly from using

These loops were shown in Example 4.4 on page 53 and Example 6.6 on page 106.

For small TM (256 bytes or less), the costs of strip-mining overwhelmed the performa

benefits brought by using the TM itself. Thus for these sizes of TM, the TM was not used. Th

in these cases, the approach of avoiding the use of TM (thereby incurring memory conflicts a

M1), still outperformed the approach of using TM with strip-mining.

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

No TM 64 128 256 512 1024

Speedups during loop executions
Overall Speedups

Figure 7.3: Speedups For blit  vs. TM Sizes
TM Sizes (bytes)

TM was not used
Using TM
with strip-mining

Using TM
without
strip-mining

2048 4096

S
pe

ed
up

s



119

rall

tes or

ger

the size

r

r. At

.978 to

pres-

ases

e 7.3,

nly
When TM is 512 bytes in size, the benefits of using TM started to manifest. The ove

speedup, in this case, jumps from 4.489 to 5.293. When the size of TM increases to 1024 by

larger, the entire temporary vector could fit into TM. As a result, strip-mining of TM was no lon

necessary, and the overall speedup increases even further, to 6.581. Increasing TM beyond

of 1024 bytes does not further improve the performance.

Benchmarks “jpeg” and “summin”

For jpeg andsummin , theyeachhave one loop that utilized TM for performance. Fo

these benchmarks, the speedupsduring the executions of that particular loopis shown in

Figure 7.4. In both cases, the loop could only benefit from TM when TM is 128 bytes or large

these sizes, no strip-mining was necessary. The speedups, in these cases, jump from 5

10.134 forjpeg , and from 5.584 to 9.727 forsummin .

The overall speedups brought by using TM, for these two benchmarks, are far less im

sive. They are shown in Figure 7.5. With TM of 128 bytes or larger, the overall speedup incre

from 1.549 to 1.569 forjpeg , and from 2.106 to 2.190 forsummin .

7.3.2 Average Speedups vs. TM Sizes

The speedups versus TM sizes, average over all benchmarks, are shown in Tabl

Table 7.4 and Figure 7.6. Table 7.3 is for CVA/PVA executions, while Table 7.4 is for CVA-o

executions.

No TM 64 128 256 512 1024

TM Sizes (bytes)
20484096

S
pe

ed
up

s 
D

ur
in

g 
E

xe
cu

tio
ns

Figure 7.4: Speedups During A Single Loop Execution vs. TM Sizes
(For jpeg  and summin)

TM not used

TM was used

5

6

7

8

9

10

11

without strip-mining

jpeg

summin

of
 A

 L
oo

p



120

1

9

0

9

1

6

0

3

Table 7.3: Speedups For CVA/PVA Executions vs. TM Sizes

Benchmarks

TM Sizes (Bytes)

Speedups During Loop Executions Overall Speedups

No
TM

128 256 512 1024 No
TM

128 256 512 1024

blit 4.632 4.632 4.632 5.503 6.923 4.489 4.489 4.489 5.293 6.58

jpeg 3.971 4.258 4.258 4.258 4.258 1.549 1.569 1.569 1.569 1.56

summin 2.812 2.998 2.998 2.998 2.998 2.106 2.190 2.190 2.190 2.19

Average
Over All

Benchmarks
4.306 4.338 4.338 4.396 4.490 1.673 1.680 1.680 1.734 1.81

Table 7.4: Speedups For CVA-Only1 Executions vs. TM Sizes

Benchmarks

TM Sizes (Bytes)

Speedups During Loop Executions Overall Speedups

No
TM

128 256 512 1024 No
TM

128 256 512 1024

blit 4.632 4.632 4.632 5.503 6.923 4.489 4.489 4.489 5.293 6.58

jpeg 5.468 6.696 6.696 6.696 6.696 1.244 1.256 1.256 1.256 1.25

summin 5.583 7.645 7.645 7.645 7.645 1.442 1.480 1.480 1.480 1.48

Average
Over All

Benchmarks
4.340 4.559 4.559 4.617 4.712 1.560 1.564 1.564 1.617 1.70

1. With early terminations.

Figure 7.5: Overall Speeds vs. TM Sizes (For jpeg  and summin)

1.0

1.5

2.0

2.5

No TM 64 128 256 512 1024
TM Sizes (bytes)

20484096
O

ve
ra

ll 
S

pe
ed

up
s

summin

jpeg



121

erall

lthough

var-

heads
Figure 7.7 highlights the performance benefits of using a 512-byte TM, for both the ov

speedups and the speedups during loop executions. The speedups for PVA executions, a

not affected by TM, are also shown in this figure for comparison purposes.

7.4  PVA-Only Executions

In this Section, we will take a closer look at the performance benefits due to eliminating

ious types of overheads in PVA-only executions. As described in Section 6.5, these over

No TM 64 128 256 512 1024

TM Sizes (bytes)
2048 4096

S
pe

ed
up

s During Loop Executions

Overall Executions

Figure 7.6: Speeds vs. TM Sizes - Average of All Benchmarks

1.0

2.0

3.0

4.0

5.0

CVA/PVA Executions

CVA-Only Executions

CVA/PVA Executions

CVA-Only Executions

0

1

2

3

4

5

Overall Speedups

P
V

A
-O

nl
y

C
V

A
-O

nl
y

w
ith

 E
ar

ly
T

er
m

in
at

io
n

C
V

A
/P

V
A

P
V

A
-O

nl
y

C
V

A
-O

nl
y

w
ith

 E
ar

ly
T

er
m

in
at

io
n

C
V

A
/P

V
A

Speedups During
Loop  Executions

S
pe

ed
up

s

With a 512-byte TM

Without TM

Legend

Figure 7.7: Performance Benefits of Using a 512-Byte TM



122

ffects

etric

using

present

ctl-oh,

exe-
include lp-ctl-oh, cs-load-oh, cs-store-oh. In order to better quantify the breakdown of the e

of eliminating each of these types of overheads, we will use the performance improvement m

defined in Equation (6.1) on page 87.

Table 7.5 and Figure 7.8 show the performance improvements, for each benchmark,

the PVA-only executions. For each benchmark, three set of results are presented. They re

the performance improvements achieved due to eliminating cs-load-oh, cs-store-oh and lp-

respectively. The sums of these three components give the total improvements for PVA-only

cutions.

Table 7.5: Performance Improvements For PVA-Only Executions

Benchmarks
Performance Improvements Due To Eliminating Vari-

ous Types of Overheads
Overall Performance

Improvements

lp-ctl-oh cs-load cs-store

auto 0.3182 0.0000 0.2917 0.6099

blit 0.2121 0.2122 0.2122 0.6365

compress 0.0491 0.0000 0.0327 0.0818

des 0.0075 0.0141 0.0001 0.0217

engine 0.0098 0.0318 0.0000 0.0416

fir_int 0.1652 0.2835 0.0000 0.4487

g3fax 0.2517 0.1311 0.0791 0.4619

Benchmarks

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

auto blit

compress

des

fir_int
g3fax

g721

jpeg

average

ucbqsort

summin

servo

pocsag

v42bis

map3d
Overall

engine

Improvements due to eliminating lp-ctl-oh
Improvements due to eliminating cs-load-oh
Improvements due to eliminating cs-store-oh

Figure 7.8: Performance Improvements Using PVA-Only Executions

Legends

0.0

0.1

0.2

0.3

0.4

0.5

0.6



123

ents

cs-

s, the
From Table 7.5, eliminating lp-ctl-oh provided the greatest performance improvem

(11.29%). This is closely followed by eliminating the cs-load-oh (7.98%). Eliminating the

store-oh improves the performance by yet another 5.20%. By removing all these overhead

overall performance is improved by 24.47%, for PVA-only executions.

g721 0.0072 0.0078 0.0046 0.0196

jpeg 0.1281 0.1352 0.0589 0.3222

map3d 0.1717 0.1306 0.0000 0.3023

pocsag 0.1174 0.0950 0.0000 0.2124

servo 0.0000 0.0000 0.0000 0.0000

summin 0.2430 0.1550 0.0913 0.4893

ucbqsort 0.0008 0.0011 0.0005 0.0024

v42bis 0.0124 0.0000 0.0083 0.0207

Average 0.1129 0.0798 0.0520 0.2447

Table 7.5: Performance Improvements For PVA-Only Executions

Benchmarks
Performance Improvements Due To Eliminating Vari-

ous Types of Overheads
Overall Performance

Improvements

lp-ctl-oh cs-load cs-store



124

core

rious

tions.

wn to

many

tions.

were
7.5 Instruction Fetch Bandwidth Reductions

In this Section, we will look at the effects of vectorizations on IReq from the processor

and the IFetch from the memory (see Section 6.11 on page 110).

7.5.1 Normalized IReq From Processor Core

Table 7.6 shows, for each benchmark, the normalized IReq from processor core for va

execution modes.

Normalized IReq During Loop Executions

Figure 7.9 shows the normalized IReq for various execution modes during loop execu

During loop executions, the PVA-only executions were able to reduce the number of IReq do

39.58% of those for the base machine. These reductions were primarily due to the fact that

instructions in the original loops specified some cs-load, cs-store and loop control opera

Once these operations are specified in the PVA instructions, the corresponding instructions

no longer needed by the machine during the loop executions.

Table 7.6: Normalized IReq From The Processor Core

Bench-
marks

Dynamic
IReq.
From
Core

Normalized IReq. From Processor Core

During Loop Executions Overall

PVA-
Only

CVA-Only CVA/PVA PVA-
Only

CVA-
Only

CVA/
PVA

auto 20695 0.168 2.853 x 10-3 2.853 x 10-3 0.3237 0.1893 0.1893

blit 78448 0.4173 1.250 x 10-3 1.250 x 10-3 0.4652 0.0834 0.0834

compress 355216 0.2002 1.506 x 10-4 1.506 x 10-4 0.9103 0.8878 0.8878

des 519037 0.1804 0.0781 0.0781 0.9799 0.9774 0.9774

engine 1058154 0.5754 0.3633 0.3633 0.9353 0.9030 0.9030

fir_int 705966 0.3577 0.0233 0.0233 0.4248 0.1253 0.1253

g3fax 1681130 0.2069 0.0244 0.0244 0.5495 0.4458 0.4458

g721 256025 0.3584 0.2059 0.2059 0.9830 0.9791 0.9791

jpeg 1528812 0.3267 0.0329  0.1822 0.6802 0.7870 0.6115

map3d 1463233 0.2108 0.0649 0.0649 0.6430 0.5770 0.5770

pocsag 147202 0.6905 1.0000 0.6905 0.8382 1.0000 0.8382

servo 42919 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

summin 1532825 0.4230 0.0777 0.3115 0.4824 0.9000 0.3854

ucbqsort 804662 0.6220 0.4695 0.4695 0.9979 0.9971 0.9971

v42bis 1660493 0.2001 1.45x10-4 1.45x10-4 0.9800 0.9751 0.9751

Average - 0.3958 0.2230 0.2638 0.7462 0.6858 0.6650



125

g all

, the

core

2 for

ntial

tions).

P pro-

ed in
The CVA executions were able to reduce the IReq even further, by also pre-specifyin

the arithmetic operations (p_op and s_op) in the CVA instructions. During loop executions

normalized IReq is 0.2230 for CVA-only executions, and 0.2638 for CVA/PVA executions.

Normalized IReq - Overall

Figure 7.10 shows, for each benchmark, the overall normalized IReq from processor

for various executions modes. Overall, the normalized IReq from processor core is 0.746

PVA-only executions; 0.6858 for CVA-only executions and 0.6650 for CVA/PVA executions.

7.5.2 Normalized IFetch From The Memory M0

For PVA executions, we distinguish two caching schemes for the loop cache: (i)essential

instruction only caching(the loop cache only caches all the essential instructions); and (ii)all

instruction caching(the loop cache can cache all instructions in the loop, including non-esse

instructions, as long as the caching of these instructions do not replace any essential instruc

The “essential instruction only caching” represents the approach used by the traditional DS

cessors (such as the SHARC 2106x chip). The “all instruction caching” approach is propos

this dissertation (see Section 5.8 on page 83).

0.0

0.2

0.4

0.6

0.8

1.0

auto

blit

compress
des

fir_int

g3fax

g721
jpeg

average

ucbqsort

summin

servo

pocsag

v42bismap3d

Overall

engine

N
or

m
al

iz
ed

 IR
eq

. F
ro

m
 P

ro
ce

ss
or

 C
or

e

PVA-only executions
CVA-only executions with early termination
CVA/PVA executions

Legends

Figure 7.9: Normalized IReq From Processor Core During Loop Executions

Benchmarks



126

tions

ill be
Figure 7.11 shows the normalized IFetch from the memory, for both the overall execu

and loop executions. The lower the normalized IFetch from M0, the lower access power w

consumed at M0.

Table 7.7: Normalized IFetch From Memory

Bench-
marks

During Loop Executions Overall

PVA-Only
(essential
inst. only
caching)

PVA-Only
(all inst.
caching)

CVA-
Only

CVA/PVA
PVA-Only
(essential
inst. only
caching)

PVA-Only
(all inst.
caching)

CVA-
Only

CVA/PVA

auto 1.545x10-3 1.545x10-3 2.853x10-3 2.853x10-3 0.1882 0.1882 0.1893 0.1893

blit 0.339 9.723x10-4 1.250x10-3 1.250x10-3 0.3887 0.0832 0.0834 0.0834

compress 1.757x10-4 1.757x10-4 1.506x10-4 1.506x10-4 0.8878 0.8878 0.8878 0.8878

des 0.0781 0.0781 0.0781 0.0781 0.9774 0.9774 0.9774 0.9774

engine 0.3633 0.3633 0.3633 0.3633 0.9030 0.9030 0.9030 0.9030

fir_int 0.1347 0.0233 0.0233 0.0233 0.2251 0.1253 0.1253 0.1253

g3fax 0.0244 0.0244 0.0244 0.0244 0.4458 0.4458 0.4458 0.4458

g721 0.2059 0.2059 0.2059 0.2059 0.9791 0.9791 0.9791 0.9791

jpeg 0.0773 0.0260 0.0329 0.0310 0.5617 0.5374 0.7870 0.5397

map3d 0.0649 0.0649 0.0649 0.0649 0.5770 0.5770 0.5770 0.5770

pocsag 0.5721 0.0267 1.0000 0.0267 0.7763 0.4912 1.0000 0.4912

servo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

summin 0.2116 0.0493 0.0777 0.0474 0.2928 0.1472 0.9000 0.1455

ucbqsort 0.4697 0.4697 0.4695 0.4695 0.9971 0.9971 0.9971 0.9971

v42bis 1.693x10-4 1.693x10-4 1.45x10-4 1.45x10-4 0.9751 0.9751 0.9751 0.9751

Average 0.2362 0.1556 0.2230 0.1560 0.6783 0.6210 0.7218 0.6210

auto

blit

compress
des

fir_int

g3fax

g721

jpeg
average

ucbqsort

summin

servo

pocsag v42bis

map3d

Overall

engine

N
or

m
al

iz
ed

 IR
eq

. F
ro

m
 P

ro
ce

ss
or

 C
or

e

PVA-only executions
CVA-only executions with early termination
CVA/PVA executions

Legends

Figure 7.10: Normalized IReq From Processor Core - Overall

Benchmarks
0.0

0.2

0.4

0.6

0.8

1.0



127

tions,

alized

all of

lly

e the

rdless

ctions

truc-

lized
Essential Instruction Only Caching vs. All Instruction Caching

For PVA executions, during loop executions, by also caching the non-essential instruc

the normalized IFetch was reduced from 0.2362 to 0.1556. For overall executions, the norm

IFetch was only reduced from 0.6783 to 0.6210

The difference in normalized IFetch between these two approaches wasnot as significant as

what we had expected. This is due to a combination of the following two reasons. First, in

these benchmarks,after a loop is being vectorized by a PVA construct, the loop body is typica

small; that is, PVA vectorization was able to significantly reduce the loop size. Second, insid

PVA loop bodies, the cs-load and cs-store operations are sofrequentthat many of the instructions

within the vectorized loops were essential instructions - they were always being cached, rega

of which loop caching scheme was used. As a results of these two factors, most of the instru

in the PVA loops were captured in the loop cache in both approaches.

PVA Executions vs. CVA Exactions

The abovementioned two observations (small PVA vectorized loops and almost all ins

tions in the PVA loops are essential) are also responsible for having little different, in norma

IFetch, between the PVA-only, CVA-only and CVA/PVA executions.

0.0

0.2

0.4

0.6

0.8

Normalized IFetch

During Loop Executions

PVA-Only with Essential Instruction Caching Only

PVA-Only with All Instruction Caching

Legend

From Memory

Normalized IFetch
From Memory - Overall

CVA-only Executions with Early Termination

CVA/PVA Executions

N
or

m
al

iz
ed

 IF
et

ch
 F

ro
m

 M
em

or
y

Figure 7.11: Normalized IFetch From Memory M0



128

orb

ult, it

0 for

tions,

ed in

sorb

d the

ous

y exe-

nges

inate

ieved

t the

), we
PVA-Only with All Instruction Caching vs. CVA/PVA Executions

For PVA-only executions with “all instruction caching”, the loop cache was able to abs

almostall the instruction requests from the processor core during loop executions. As a res

achieved the same overall normalized IFetch with those for the CVA/PVA executions (0.621

both of them). Although they consume about the same access power at M0, the PVA execu

however, consume power accessing the loop cache while the CVA executions do not.

The normalized IFetch from the memory for various execution modes are summariz

Table 7.8. For PVA executions with “all instruction caching”, the loop cache was able to ab

most of the instruction requests from the core during loop executions. As a result, it achieve

same normalized IFetch with the CVA/PVA executions.

7.6  Summary

The PVA-only executions improves the performance significantly by eliminating vari

types of loop execution overheads. The overall speedup, in this case, is 1.488. The CVA-onl

cutions improves the performance even more significantly, with an overall speedup ra

between 1.585 and 1.617, depending on whether we allow a CVA vector execution to term

early.

The CVA/PVA executions achieved the highest overall speedup (1.734). This was ach

on three fronts:

• For program loops that are highly vectorizable, we use the CVA construct to extrac

maximum possible parallelism from the loops;

• For program loops that are impossible or costly to vectorize (in a conventional sense

use the PVA construct to eliminate various types of overheads for loop executions;

Table 7.8: Normalized IFetch From Memory M0

Execution
Modes

During Loop
Executions

Overall

PVA-Only with Essential
Instruction Only Caching

0.2362 0.6783

PVA-Only with All Instruction
Caching

0.1556 0.6210

CVA-Only (with Early
Terminations)

0.2230 0.7218

CVA/PVA 0.1560 0.6210



129

PVA

ras-

ons

e for
• There are yet some loops that can be best vectorized using a combination of CVA and

constructs. An example of such loops was shown in Example 6.5 on page 102.

Vectorizations (using PVA or CVA constructs) reduced the instruction fetch bandwidth d

tically. The CVA executions are inherently low in instruction fetch bandwidth. For PVA executi

with the “all instruction caching” scheme, the normalized IFetch is about the same as thos

CVA/PVA executions.



130

ctor

ce the

ating

tion.

some

_op,

, the

results
CHAPTER 8

ARCHITECTURAL EXTENSIONS FOR DSP
APPLICATIONS

In this Chapter, we will describe some architectural extensions to the pseudo-ve

machine for DSP applications. In particular, we will look at how these extensions can enhan

Infinite Impulse Response (IIR) Filter and Fast Fourier Transform (FFT) computations. Evalu

the performance benefits of these extensions, however, is beyond the scope of this disserta

8.1  Architectural Extensions - VLIW/Vector Machine

The pseudo-vector machine proposed in this dissertation can be extended by adding

processing capabilities in the “width” or “horizontal” direction, as shown in Figure 8.1.

In this enhanced machine, there are two primary arithmetic functions, p1_op and p2

performed by two functional units, P1 and P2, respectively. With these two functional units

machine can issue two independent operations to P1 and P2 simultaneously, and the two

Figure 8.1: Datapath for the Extended Pseudo-Vector Machine

P2

result2_bus

S

s_dbus

Output Data Stream

P1

L0 L1

Input Data Streams

result1_bus S

RegFile

W

X

Z

Y



131

imilar

ome

simple

ree-

om-

s of

of an

as

am
produced by them can be written back to the register file via two independent result buses (s

to a 2-wide VLIW machine).

The S unit is similar to those in the original pseudo-vector machine. It can perform s

memory store operations (including the output data streaming operations) as well as some

ALU arithmetic. However, the S unit now has three inputs (to perform three-input “add”, th

input “or”, etc.).

Like the original pseudo-vector machine, there are three types of CVA executions: c

pound CVA, reduction CVA and hybrid CVA. The dependency graphs for these three type

CVA are shown in Figure 8.2.

In these dependency graphs, operands W, X, Y and Z canindependentlysource from

(i) input stream L0, or (ii) input stream L1; or (iii) a designated register.

Each of these operands can also source from a zero-extended upper or lower halfword

input stream L0 or L1, as defined in Table 7.9. This sourcing mode is depicted in this Table

“Cross Sourcing”.

In this Table, {0, L0[15:0]} denotes the zero-extended lower halfword from the input stre

L0. {0, L0[31:16]} denotes the zero-extended upper halfword from the input stream L0, etc.

The three types of CVA depicted in Figure 8.2 have the following general forms.

•  Compound CVA:

Si = (Wi p1_op Xi) s_op (Yi p2_op Zi) i=0,...,n-1;

•  Reduction CVA:

S0 = (W0 p1_op X0) s_op (Y0 p2_op Z0);

Si = (Wi p1_op Xi) s_op (Yi p2_op Zi) s_op Si-1, i=1,...,n-1;

Table 7.9: Possible Sources for Operands W, X, Y and Z

Operands
Operands Sourcing Modes

Independent Sourcing Cross Sourcing

W L0, L1, R0 {0,L0[31:16]}

X L0, L1, R4 {0,L1[15:0]}

Y L0, L1, R8 {0,L1[31:16]}

Z L0, L1, R12 {0,L0[15:0]}



132
L0, L1, r0, {0,L0[31:16]}

S

Figure 8.2: Dependency Graphs For Three Types of CVA Executions

(a) Compound CVA

Source W

s_op

(S enabled)

p1_op

r3

(a) Reduction CVA
(S disabled)

S and r3

(a) Hybrid CVA
(S enabled)

L0, L1, r4, {0,L1[15:0]}
Source X

L0, L1, r8, {0,L1[31:16]}
Source Y

L0, L1, r12, {0,L0[15:0]}
Source Z

p1_op

L0, L1, r0, {0,L0[31:16]}
Source W

s_op

p1_op

L0, L1, r4, {0,L1[15:0]}
Source X

L0, L1, r8, {0,L1[31:16]}
Source Y

L0, L1, r12, {0,L0[15:0]}
Source Z

p1_op

L0, L1, r0, {0,L0[31:16]}
Source W

s_op

p1_op

L0, L1, r4, {0,L1[15:0]}
Source X

L0, L1, r8, {0,L1[31:16]}
Source Y

L0, L1, r12, {0,L0[15:0]}
Source Z

p1_op



133

S

-vec-

z-

bits).

ng (32
R = Sn-1

where

Si denotes theith partial result;

R denotes the scalar result for the vector reduction operations.

• Hybrid CVA:

Same as reduction CVA, except that Si ,i=0,...,n-1, is also written to the memory via the

stream.

When p2_op is a “pass Z” function, this machine degenerates into the original pseudo

tor machine.

8.2  Implementing The IIR Filter

An nth order biquad infinite impulse response (IIR) filter is represented by the following

domain transfer function.

H(z) = Y(z)/X(z) = (B0 + B1z
-1 + B2 z

-2+. . . + Bnz
-n) / (1 + A1z

-1 + A2 z
-2+. . . + Anz

-n)

The corresponding difference equation is given by

Y(t) = B0 * X[t] + (B i * X[t- i] - A i * Y[t- i]) (8.1)

To implement this filter, the input vector <X[t-1],X[t-2],...,X[t-n]>, the output vector <Y[t-

1],Y[t-2],...,Y[t-n]> and the two coefficient vectors <B1,...,Bn> and <A1,...,An> are organized in

the memory system as follows.

First, coefficients Ai are negated, such that Ai’ = -A i, i=1,...,n. A new vector is formed:

<A1,’...,An’>.

The size of all the elements in these four vectors are assumed to be halfword long (16

The input vector <X[t-1],X[t-2],...,X[t-n]> and the output vector <Y[t-1],Y[t-2],...,Y[t-n]> are

pairedtogether, element-wise, to form a new vector. Theith element of this new vector is given by

{X[t- i],Y[t- i]}. Likewise, the coefficient vectors <A1’,...,An’> and <B1,...,Bn> are paired together,

element-wise, to form another new vector. Theith element of this new vector is given by {Ai’,B i}.

Due to these element pairing, the element size of theses two new vectors are a word lo

bits), or twice the element size of the original vectors.

Figure 8.3 shows how the enhanced datapath can perform thenth-order IIR shown in equa-

i 1 n,=
∑



134

”

is

ed to
tion (8.1).

In this figure, L0 streams in <{X[t-1],Y[t-1]},{X[t-1],Y[t-2]},...,{X[t-1],Y[t- n]}>, while L 1

streams in <{A1’,B1},{A 2’,B1},...,{A n’Bn}>. The operands W, X, Y and Z, all in “cross-sourcing

mode, source in <A1’,A 2’,...,An’>, <Y[t-1],Y[t-2],...,Y[t- n]>, <B1,B2,...,Bn> and <X[t-1],X[t-

2],..., X[t-n]>, respectively.

The final reduction result is given by, Y’[t] = (Bi * X[t- i] - A i * Y[t- i]). A final term,

B0 * X[t], needs to be added to obtain the final result, Y[t].

The throughput rate of this implementation isn+C cycles per output sample, where C

some fixed vector startup cost.

The fetch addresses generated by L0 and L1 can also usemodulo addressingto access circu-

lar buffers, identical to those used in [SHARC97,TMS320C3x]. These circular buffers are us

store sample stream <X[t-1],X[t-2],...,X[t-n]> and response stream <Y[t-1],Y[t-2],...,Y[t-n]>.

These buffers can also used to store the coefficients Ai’ and Bi, i=1,...,n.

8.3  Implementing The FFT

A N-point Discrete Fourier Transform (DFT) is defined as

k = 0,...,N-1 (8.2)

Figure 8.3: Enhanced Datapath For Implementing IIR Filters

add

P2

X[t-1],X[t-2],..., X[t-n]
B1X[t-1], B2X[t-2],. . .,BnX[t-n]

P1

A1’Y[t-1],A 2’Y[t-2], . . .,An’Y[t- n]

Y’[t]

mul

mul

B1,B2,...,Bn

Y[t-1],Y[t-2],...,Y[t- n]

A1’,A 2’,...,An’

{X
[t-

1]
,Y

[t-
1]

},
{X

[t-
1]

,Y
[t-

2]
},

...
,{

X
[t-

1]
,Y

[t-
n]

}

{A
1’

,B
1}

,{
A

2’
,B

1}
,..

.,{
A

n’
B

n}

L0 L1

Cross sourcing mode

W

X

Y

Z

i 1 n,=
∑

H k( ) h n( )e
j
2πnk

N
-------------–

n 0=

N 1–

∑=



135

ctrum,

rm

en

rfly,

re
In this equation, N is assumed to be a power of 2; the time response, h(n), and the spe

H(k), are all complex numbers. In a radix two Decimation In Time (DIT) Fast Fourier Transfo

(FFT), a N-point DFT is broken down into two -point DFTs. A -point DFT is further brok

down into two -point DFTs, and so on. Equation(8.2) can be rewritten as:

The first half FFT,

k = 0,1,..., -1;

and the second half FFT,

k = 0,1,..., -1;

where WN= ; and . The WN
k term above is

called the phase factor. The two -point DFTs, and , are combined in a butte

using the phase factors Wk and -Wk. This decomposition and recombination of a N-point DFT a

illustrated in Figure 8.4.

N
2
---- N

2
----

N
4
----

H k( ) h2nWN
2
----

nk

n 0=

N
2
---- 1–

∑ WN
k

h2n 1+ WN
2
----

nk

n 0=

N
2
---- 1–

∑+ H0
1

k( ) W
k

H1
1

k( )+= =
N
2
----

H k N
2
----+ 

  h2nWN
2
----

nk

n 0=

N
2
---- 1–

∑ WN
k

h2n 1+ WN
2
----

nk

n 0=

N
2
---- 1–

∑– H0
1

k( ) W
k

H1
1

k( )–= =
N
2
----

e
j
2π
N
------–

H0
1

k( ) h2nWN
2
----

nk

n 0=

N
2
---- 1–

∑= H1
1

k( ) h2n 1+ WN
2
----

nk

n 0=

N
2
---- 1–

∑=

N
2
---- H0

1
k( ) H1

1
k( )

N/2 point DFT

h0
h2
h4

hN-2

H(0)
H0

1
0( )

H(1)
H0

1
1( )

H(2)
H0

1
2( )

H(N/2-1)
H0

1 N
2
---- 1– 

 

N/2 point DFT

h1
h3
h5

hN-1

H(N/2)
H1

1
0( )

H(N/2+1)
H1

1
1( )

H(N/2+2)
H1

1
2( )

H(N-1)
H1

1 N
2
---- 1– 

 

Even Time Group

Odd Time Group

:
:

:
:

W0

W1

W2

-W0

-W1

-W2

-WN/2-1

Figure 8.4: DIT Decomposition of a N-point FFT

:
:

:
:

WN/2-1



136

fig-

f the

lti-

arated,

rmed

mory

ber of

vector

ing

actors.

}; and

cos },

data
Figure 8.5 shows the generalized butterfly computational structure for DIT FFT. In this

ure, “Re” denotes the real part of a complex number; while “Im” denotes the imaginary part o

complex number.

Two complex data points, X(n) and X(m), are extracted from the memory. X(m) is mu

plied by a complex exponential phase factor. The resulting real and imaginary parts are sep

combined with the respective parts of X(n) and written back to the memory . After the transfo

data pair is written back to the memory, the process begins again on a different pair of me

locations, using an updated phase factor value. The process continues until the required num

butterflies has been computed.

The above computational structure can be implemented on our enhanced pseudo-

machine as follows.

In this implementation, a complex number, X(n) = Re X(n) + j Im X(n), is represented us

one word of data (32 bits): upper halfword for Re X(n); and lower halfword for Im X(n).

Two new vectors are created. Each element in these new vectors consists two phase f

Each element in the first vector consists of a concatenation of two phase factors {cos , sin

each element in the second vector consists of a concatenation of two phase factors {-sin ,

where ,i=0,..., -1. Each phase factor is assumed to be represented by a halfword

(16 bit); and each element in the new vectors is assumed to be 32 bit wide.

+
+
+

-

+
+
+

-

cosθ

cosθ

+
+

+
+

-sinθ

sinθ

Re X(n)

Re X(m)

Re Y(n)

Re Y(m)

Im X(n)

Im X(m)

Im Y(n)

Im Y(m)

Figure 8.5: Generalized Butterfly Computation Diagram

Upper half

Lower half

T(k)

θ θ

θ θ

θ 2πi
N

--------=
N
2
----



137

s: an

mul-

orm,

own

r is

ector

VA

one

+C

ive if

n the

etc.),

arried
The computational structure shown in Figure 8.5 can be broken down into two halve

upper half and a lower half, each consists of two multiplications and three additions. The two

tiplications and the first addition can be mapped onto a compound CVA, as follows. To perf

say, the upper half of the butterfly, L0 streams in <{Re X(0),Im X(0)},{Re X(1),Im X(1)},...,{Re

X(N-1), Im X( -1)}>; while L1 streams in <{Re W0, Im W0},{Re W1,Im W1},...,{Re WN/2-1, Im

WN/2-1}>, or equivalently, <{cos 0, sin 0}, {cos , sin }, {cos , sin }, ... , {cos ,

sin }>.

At the same time, operands W, X, Y and Z are all put in a “cross sourcing” mode, as sh

in Figure 8.6.

The output of this compound CVA is a temporary vector, T(k), k=0,..., -1. This vecto

also shown in Figure 8.5. This vector is then added to the vector for Re X(n) to obtain the v

for Re Y(n); and subtract from the vector for Re X(n) to obtain the vector for Re Y(m). Three C

instructions (one as shown in Figure 8.6, followed by two vector additions) are required for

half of the butterfly. To merge two -point DFTs, six CVA instructions are required, or 6*N

cycles, for some fixed constant cost C.

It should be noted that the vector computations (or the CVA executions) are only effect

the number of sample points are large (during the final stages of recombinations). Whe

decomposition is down to such a point where the number of sample points is small (2, 4 or 8,

then a conventional loop-based DSP style of executions will be more efficient. This can be c

out on this machine using the PVA executions.

N
2
----

2π
N
------ 2π

N
------ 4π

N
------ 4π

N
------

2π N
2
---- 1– 

 

N
--------------------------

2π N
2
---- 1– 

 

N
--------------------------

add

P2

Im X(0),...,Im X(N/2-1)
ReW0*ImX(0),...,ReWN/2-1*ImX(N/2-1)

P1

ImW0*ReX(0),...,ImWN/2-1*ReX(N/2-1)

ReW0*ImX(0)+ImW0*ReX(0),...,

mul

mul

Re W0,...,Re WN/2-1

Re X(0),..., Re X(N/2-1)

Im W0,...,Im WN/2-1

{R
e 

X
(0

),
Im

 X
(0

)}
,..

.,{
R

e 
X

(N
/2

-1
),

 Im
 X

(N
/2

-1
)}

{R
e 

W
0 ,

 Im
 W

0 }
,..

.,{
R

e 
W

N
/2

-1
, I

m
W

N
/2

-1
}

L0 L1

Cross sourcing mode

W

X

Y

Z

Figure 8.6: Implementing Part Of Butterfly For DIT FFT

ReWN/2-1*ImX(N/2-1)*ImW N/2-1*ReX(N/2-1)

T(k) =

N
2
----

N
2
----



138

take

int in

ance,

ppli-

nit,

also

or the

arized

rated

l units.
CHAPTER 9

SUMMARY

Many today’s mobile applications require the underlaying execution machines to

advantage of the parallelism that frequently found in these applications. But in some other po

time, they also require the machines to perform control intensive functions. Besides perform

the design of these machines is also severely constrained by thehardware costsandpower con-

sumption.

In this dissertation, we proposed a processing paradigm, called thepseudo-vector machine,

for executing these applications. This machine attempts to exploit thelow-powerandhigh perfor-

manceaspects of vector processing paradigm to efficiently extract and exploit the ILP in the a

cations,whenever possible. The strength of vector processing arises from:

• The ability to pipeline various operations on a data stream (to improve performance);

• Result produced by a functional unit is routed directly to its destination functional u

instead of being broadcast to the entire datapath;

• Lower instruction fetch bandwidth.

Efficient data storage and movements and lower instruction fetch bandwidth could

mean lower power consumption. The strength of vector processing makes it very suitable f

low-cost, low-power embedded computing systems.

Various design aspects and some of their unique features of this machine are summ

below [Lee99e,Lee99f].

Sharing of Functional Units Between Scalar and Vector Executions

In this machine, both scalar and vector executions are performed using a single, integ

datapath. In particular, both scalar and vector execution modes use the same set of functiona



139

r exe-

lt or

VA

t data

nd in

regis-

ction

ed as

store”

tive
Thus, arithmetic functions that are available to scalar executions, are also available to vecto

cutions - an efficient use of hardware resources.

CVA vs. PVA Executions - Choosing The Best Execution Mode For A Given Critical Loop

The vector execution mode, in this machine, can be further divided intoCanonical Vector

Arithmetic (CVA) mode andPseudo-Vector Arithmetic(PVA) mode. The former is used for a

“true” vector processing paradigm; while the latter is used for program loops that are difficu

impossible to vectorize (in a conventional sense).

Two vector instructions are added to the M-CORE ISA: a CVA instruction and a P

instruction. These instructions can optionally and independently, enable or disable two inpu

streams (L0 and L1) and one output data stream (S).

There three types of CVA executions on this machine:compound CVA; reduction CVAand

hybrid CVA. These three types of CVA represent some basic vector arithmetic commonly fou

DSP and scientific computations.

For PVA executions, the heads of the input data queues are accessed by reading from

ter R0 and R1. In addition, an instruction in the PVA loop body can be selected as the instru

that will enqueue data to the output stream - the result written back by this instruction is us

the data for the output stream. This instruction can be specified by using a label called “cs-

located within the loop body; or, equivalently, by specifying the index of the instruction (rela

to the PVA instruction) in the PVA instruction itself.

Table 9.1 summarizes the speedups for various execution modes on this machine.

Table 9.1: Speedups For Various Execution Modes

Execution Modes

Without a TM With a 512-byte TM

Overall
Speedups

Speedups During
Loop Executions

Overall
Speedups

Speedups During
Loop Executions

PVA-Only Executions1

1. Not affected by TM.

1.488 3.692 1.488 3.692

CVA-Only
Executions

Without early
termination

1.585 4.002 N.A.2 N. A.2

2. Results are not available.

With early
termination

1.560 4.340 1.617 4.617

CVA/PVA Executions 1.673 4.306 1.734 4.396



140

ov-

The

ore

The

the

ther.

o vec-

t can

mbina-

n all

r con-

eas-

posi-

the

VA

ector

educ-

and

chines

ctor

ow-

o each

f longer
When executing in a PVA mode, the performance can be significantly improved by rem

ing the overheads for: (i) loop control; (ii) cs-load operations; and (ii) cs-store operations.

overall speedup, by usingonly the PVA construct, is 1.488.

By usingonly the CVA construct, the overall speedup improves the performance even m

significantly. The overall speedup for CVA-only executions with early termination is 1.617.

CVA executions allow the executions of multi-cycle functions from different iterations (in

original loop) to overlap in time.

When combining both CVA and PVA executions, the performance improves even fur

The overall speedup, in this case, is 1.734. For loops that are highly vectorizable, it is best t

torize them using the CVA construct. For loops that are not CVA vectorizable, PVA construc

be used instead. In addition, there are also certain loops that are best vectorized using a co

tion of both constructs. By allowing the use of both vectorizing constructs, a compiler is give

the flexibilities to vectorize a program loop, to achieve the best possible speedup and powe

sumption.

Using The Temporary Memory For Better Performance and Lower Power

Performance of vector executions is frequently limited by the memory bandwidth. Incr

ing the bandwidth by adding the number of memory read and write ports is an expensive pro

tion. In this dissertation, we proposed using a small Temporary Memory (TM) to increase

effective memory bandwidth during CVA executions. With the use of a 512-byte TM, the C

executions can perform two data reads and one data write, all in a single cycle.

In some sense, TM has replaced the roles of vector registers in the conventional v

machines. Like its vector register counterpart, TM can be used to improve performance (by r

ing the memory conflicts), as well as to save access power to the larger memory modules.

Compared with the vector registers, however, TM is more flexible, in terms of allocating

organizing these temporary storage spaces. Vector registers in the conventional vector ma

typically have a fixed size and length. With the TM, a compiler can trade off between the ve

length and the number of vectors that can be allocated into TM. A drawback of using TM, h

ever, is the extra overheads in specifying the vector length, strides and element sizes prior t

vector execution. These overheads, however, can be easily amortized over the executions o

vectors.



141

data

one

TM

nance,

ions.

ile an

its tem-

vector

, in

tial-

ecu-

lly. It

ome

ontrol

loop

m-

gives

ential

tions,
Without TM, performance for vector operations that perform two data reads and one

write per cycle will be impacted. Their throughput rates, in this case, were degraded from

result per cycle, to one result every two cycles. For CVA/PVA executions, the removal of

reduces the overall speedup from 1.734 to 1.673.

Register Overlay and Temporary Registers

In this dissertation, we had also discussed various aspects of machine states mainte

with respect to interrupt on vector executions. We introduced the concept ofregister overlayand

temporary registers, in an attempt to reduce the interrupt response latency for vector execut

The latter is an important design factor for many real-time applications.

A temporary register used to store temporary data streamed in from the memory; wh

overlaid register is used to store the load addresses corresponding to the data fetched into

porary register. During a context switch, all temporary registers are not saved as part of the

execution contexts.

Instruction Fetch Memory Bandwidth Reductions

Vectorization drastically reduces the instruction fetch bandwidth. The CVA execution

particular, is inherently low in this bandwidth requirement. After fetching all the setup and ini

ization code, a CVA execution has no further instruction request for the rest of its vector ex

tions.

Vectorization via a PVA construct also reduces the instruction fetch bandwidth drastica

does so by reducing the loop size significantly. This involves removing from the loop body, s

instructions that specify certain repetitive operations, such as cs-load, cs-store, and loop c

operations.

The instruction fetch bandwidth for PVA executions can be further reduced by using a

cache that attempts to cacheall the instructions, not just those instructions that will cause a me

ory conflict with data references. This loop caching scheme, proposed in this dissertation,

first priority to those instructions that will cause a data reference conflict. After these ess

instructions are allocated into the loop cache, the latter then tries to capture all other instruc

without replacing any essential instructions.

Using this loop caching scheme, the PVA executions can absorbalmost all the instruction

requests coming from the processor core during loop executions.



142
Appendix A: Critical Loop Vectorizations and Cycle
Saving Calculations

A.1 Benchmark “auto”
A.1.1Critical Loop 1

This loop performs vector initialization, C[i] = i, where i=0,1,2,3...
Estimated execution cycles = 7 x 2097 + 6 x 3 = 14697
Average number of iterations per invocation = 2100/3 = 700

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 3 + 1(M0 conflict) = 25
cs-store saving: 3 x 2100 - 25/2 = 6288
lp-ctl saving: 3 x 2097 + 2 x 3 - 25/2 = 6285
Total saving = 6288 + 6285 = 12573

(ii) CVA-Only executions
A temporary vector is created. This temporary vector can be stored in M0 or M1. TM is not used.
First CVA instruction (tp=ts=1):
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)

+ 1(tp) + 1(ts) - 1 + 1(extra “mov” inst.)= 10
Execution time: 3 x 10 + 2100 = 2130
Second CVA instruction (tp=1, ts=0):
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)

+ 1(exit) + 1(tp) + 0(ts) - 1 + 1(extra “mov” inst.)= 10
Execution time: 3 x 10 + 2100 = 2130
CVA-only saving = 14697 - 2130 - 2130 = 10437

Table A.1.1: Vectorizing Critical Loop 1

Address Opcode//; Assembly Code Using PVA Construct Using CVA Construct

00000308 940b //; stw       r4,(r11)
0000030a 203b //; addi      r11,4
0000030c 2004 //; addi      r4,1
0000030e 0dd4 //; cmplt     r4,r13
00000310 e7fb //; bt        0x0000308

PVA @S, #1
cs-store:
addi      r4,1a

movi r4,1
CVA mov r4, @P,

add @P, r3, {r3,@S}
. . . . . . .
movi r5, 1
CVA add @L0, r5, @S

a. Essential instruction

Table A.1.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000308
00000310

target
bt

2100
2100

-
00000308

-
2097 (99.9)

-
3 (0.143)



143
(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machine:
IReq from core during loop executions: 6 x 2097 + 5 x 3 = 12597
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 3 + 1 x 2100 = 2118
CVA-only executions:
IReq from core during CVA executions: 7 x 2 (setup code/vector inst.) x 3 = 42

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 3 + 1 (essential inst.) = 19
PVA-only with all inst. caching: same as PVA-only with essential inst. caching.
CVA/PVA executions: 7 x 2 (setup code/vector inst.) x 3 = 42

A.1.2Critical Loop 2 :

This loop performs vector initialization, C[i] = r5, for some scalar r5.
Estimated execution cycles = 6 x 704 + 5 x 1 = 4229
Average number of iterations per invocation = 705/1 = 705

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 1 + 1(M0 conflict) = 9
cs-store saving: 2 x 705 - 9/2 = 1406
lp-ctl Saving: 3 x 704 + 2 x 1 - 9/2 = 2110
Total saving: 1406 + 2110 = 3516

(ii) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2)

Table A.1.3: Vectorizing Critical Loop 2

Address Opcode//; Assembly Code Using PVA Construct Using CVA Construct

000010d2     950e //; stw       r5,(r14)
000010d4     203e //; addi      r14,4
000010d6     01b6 //; decne r6
000010d8     e7fc //; bt 0x010d2

PVA @S, #1
cs-store:
mov r5, r5a

CVA mov r5, @S;

a. Essential instruction

Table A.1.4: Profile For Critical Loop 2

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

0000010d2
0000010d8

target
bt

705
705

-
000010d2

-
704 (99.9)

-
1 (0.142)



144
+ 1(exit) + 1(tp) + 0(ts) - 1 = 8
Execution time = 8 x 1 + 705 = 713
CVA saving = 4229 - 713 = 3516

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machine:
IReq from core during loop executions: 6 x 704 + 5 x 1 = 4229
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 1 + 1 x 705 = 711
CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 1 = 6

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 1 + 1 (essential inst.) = 7
PVA-only with all inst. caching: same as PVA-only with essential inst. caching.
CVA/PVA executions: 6 (setup code/vector inst.) x 1 = 6
--------------------------------------------------------------------------------------------------------------

A.1.3Summary
Total program execution cycles: 26381
Total number of cycles in loops: 14697 (loop 1) + 4229 (loop 2)

= 18926 or 71.76% of program execution time.
Average number of iterations per invocation = (700+705)/2 = 702.5

(i) PVA-Only executions
cs-store saving: 6288 + 1406 = 7694
lp-ctl Saving: 6285 + 2110 = 8395
Total cycle saving: 7694 + 8395 = 16089;%cycle saving: 16089/26381=0.6099
Speedup during loop executions = 18926/(18926 - 16089) = 6.671 (perf. imp. = 0.8501)
Overall speedup: 26381/(26381 - 16089) = 2.563 (perf. imp. = 0.6098)

(ii) CVA-Only executions
Total cycle saving: 10437 + 3516 = 13953
Speedup during loop executions = 18926/(18926-13953)= 3.806 (perf. imp. = 0.7373)
Overall speedup = 26381/(26381 - 13953) = 2.123 (perf. imp. = 0.5290)

Table A.1.5: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 8395 0.3182

cs-load-oh 0 0

cs-store-oh 7694 0.2917

Total 16091 0.6099



145
(iii) CVA/PVA executions
Total cycle saving: 12573(PVA for loop1) + 3516(CVA for loop2) = 16089
Speedup during loop executions = 18926/(18926 - 16089) = 6.671(perf. imp. = 0.7373)
Overall speedup: 26381/(26381 - 16089) = 2.563 (perf. imp. = 0.6098)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machine:
IReq from core overall: 20695
IReq from core during loop executions: 12597 + 4229 = 16826

PVA-only executions:
IReq from core reduced = 16826 - (2118 + 711) = 13997
Normalized IReq from core during PVA executions = (2118 + 711)/16826 = 0.168
IReq from core overall = 20695 - 13997 = 6698
Normalized IReq from core overall = (20695 - 13997)/20695 = 0.3237

CVA-only executions:
IReq from core reduced = 16826 - (42 + 6) = 16778

Normalized IReq from core during CVA executions = (42+6)/16826 = 2.853 x 10-3

Normalized IReq from core overall = (20695 - 16778)/20695 = 0.1893

CVA/PVA executions:
IReq from core reduced = 16826 - (42 + 6) = 16778

Normalized IReq from core during CVA/PVA executions = 48/16826 = 2.853 x 10-3

Normalized IReq from core overall = (20695 - 16778)/20695 = 0.1893

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory reduced = 16826 - (19 + 7) = 16800

Normalized Ifetch from memory during PVA executions: (19 + 7)/16826 = 1.545x10-3

Ifetch from memory overall = 20695 - 16800 = 3895
Normalized Ifetch from memory overall = (20695 - 16800)/20695 = 0.1882

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
Ifetch from memory: same as those for IReq from core
CVA/PVA executions:
Ifetch from memory: same as those for IReq from core

Table A.1.6: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.168 2.853 x 10-3 2.853 x 10-3 0.3237 0.1893 0.1893



146
Table A.1.7: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

1.545x10-3 1.545x10-3 2.853 x 10-3 2.853 x 10-3 0.1882 0.1882 0.1893 0.1893



147
A.2 Benchmark “blit”
A.2.1Critical Loop 1

This loop performs vector operations C[i] = lsr(A[i], r9) | lsl(A[i], r1), for some scalars r1 and r9.
Estimated execution cycles = 14 x 2997 + 13 x 3 = 41997
Average number of iterations per invocation = 3000/3 = 1000

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)

+ 1(exit) = 9 cycles
Total setup/exit costs = 9 x 3 + 1(M0 conflict) = 28
Cycles per iteration: 5
Cycle saving per iteration = 14 - 5 = 9 (3 for lp-ctl, 3 for cs-load, 3 for cs-store)
cs-load saving: 3 x 3000 - 28/3 = 8991
cs-store saving: 3 x 3000 - 28/3 = 8991
lp-ctl saving: 3 x 2997 + 2 x 3 - 28/3 = 8988
Total saving = 8991 + 8991 + 8988 = 26970

(ii) CVA-Only executions
A temporary vector is stored in TM. Strip-mining for TM is needed (see Section 6.8 on page 104).
First CVA instruction (tp=1, ts=0):
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)

+ 1(exit) + 1(tp) + 0(ts) - 1 + 1(extra “move” inst.) = 10
Second CVA instruction (tp=1, ts=1):
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2)

+ 1(exit) + 1(tp) + 1(ts) - 1 + 1(extra “move” inst.) = 12 cycles
Setup/exit costs per invocation (CCVA) = 10 + 12 = 22 cycles per invocation
In each invocation, vector length n=1000.

Table A.2.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000304     8a0e //;  ldw       r10,(r14)
00000306     25f4 //; decne r4
00000308     12a7 //;  mov       r7,r10
0000030a     0b97 //;  lsr       r7,r9
0000030c     1e37 //;  or        r7,r3
0000030e     12a3 //;  mov       r3,r10
00000310  970d //;  stw       r7,(r13)
00000312  1b13 //;  lsl       r3,r1
00000314  203e //;  addi      r14,4
00000316  203d //;  addi      r13,4
00000318 e7f4 //; bt 0x0000304

PVA @L0,@S, #5
mov r3, r0
mov r7, r3
lsr r7,r9
lsl r3,r1
cs-store:
or r3,r7a

Setup a temporary vector T
. . . . . .
; T[i] = lsr(A[i], r9)
mov r5, r9
CVA lsr @L0, r5, @S;
. . . . . .
;@L1 <---- T[i]
mov r5, r1
CVA lsl @L0, r5, @P,

or @L1, @P, @S;

a Essential instructions

Table A.2.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000304
00000318

target
bt

3000
3000

-
00000304

-
2997 (99.9)

-
3 (0.100)



148
Execution time per invocation = 24 + (n/128+1) x (43 + CCVA) + 2n = 2544
There are a total of 3 invocations.
CVA-only saving = 41997 - 3 x 2544 =

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
TM is used to store the temporary vector.
CCVA=22; n=1000;
With no TM:
Execution time: CCVA + n + 2n = 3022
With TM = 256 bytes:
Execution time using strip-mining: 24 + (n/64+1) x (43 + CCVA) + 2n = 3064 (> execution time without using TM)
With TM = 1024 bytes: no stripe mining necessary.
Execution time: CCVA + n + n = 2022

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 12 x 2997 + 11 x 3 = 35997
PVA-only executions:
IReq from core during PVA executions: 7 (setup code/vector inst.) x 3 + 5 x 3000 = 15021
CVA-only executions:
IReq from core during CVA executions: 15 (setup code/vector inst.) x 3 = 45

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 3 + 1 (essential inst.)

+ 4 x 3000 (non-essential inst.) = 12021
PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 3 + 1 (essential inst.)

+ 4 x 4 (non-essential inst.) = 38
CVA-only executions: 15 (setup code/vector inst.) x 3 = 45
CVA/PVA executions: 15 (setup code/vector inst.) x 3 = 45

Table A.2.3: CVA Executions Using Various Sizes of TM

TM Sizes
(bytes)

Using TM? Exe. Time per
Invocation

Total Exe.
Time

CVA-only Cycle
Saving

0 N 3022 9066 32931

64 N 3022 9066 32931

128 N 3022 9066 32931

256 N 3022 9066 32931

512 Y 2544 7632 34365

1024 Y 2022 6066 35931



149
A.2.2Critical Loop 2

This loop performs vector operations C[i] = lsr(A[i], r1) | lsl(A[i], r9), for some scalars r1 and r9.
Estimated execution cycles = 14 x 2997 + 13 x 3 = 41997
Average number of iterations per invocation = 3000/3 = 1000

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 2
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)

+ 1(exit) = 9 cycles
Total setup/exit costs = 9 x 3 + 2(M0 conflicts) = 29
Cycles per iteration: 6
Cycle saving per iteration = 14 - 5 = 9
cs-load saving: 3 x 3000 - 29/3 = 8990
cs-store saving: 3 x 3000 - 29/3 = 8990
lp-ctl saving: 3 x 2997 + 2 x 3 - 29/3 = 8987
Total saving = 8990 + 8990 + 8987 = 26967

(ii) CVA-Only executions
First CVA instruction (tp=1, ts=0):
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exit)

+ 1(tp) + 0(ts) - 1 + 1(extra “move” inst.) = 10 cycles
Execution time = 3 x 10 + 3000 = 3030
Second CVA instruction (tp=1, ts=1):
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2)

+ 1(exit) + 1(tp) + 1(ts) - 1 + 1(extra “move” inst.) = 12 cycles
Setup/exit costs per invocation (CCVA) = 10 + 12 = 22 cycles per invocation
In each invocation, vector length n=1000.
Execution time per invocation = 24 + (n/128+1) x (43 + CCVA) + 2n = 2544
There are a total of 3 invocations.

Table A.2.4: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000356     1227 //;  mov       r7,r2
00000358     0b17 //;  lsr       r7,r1
0000035a     1e37 //;  or        r7,r3
0000035c     970d //;  stw       r7,(r13)
0000036e  1223 //;  mov       r3,r2
00000360 820e //;  ldw       r2,(r14)
00000362  25f4 //; decne r4
00000364  1b93 //;  lsl       r3,r9
00000366  203e //;  addi      r14,4
00000368  203d //;  addi      r13,4
0000036a  e7f4 //;  bt        0x00000356

PVA @L0,@S, #5
mov r3, r0a

mov r7, r3a

lsr r7,r9
lsl r3,r1
cs-store:
or r3,r7a

Setup a temporary vector T
. . . . . .
; T[i] = lsr(A[i], r9)
mov r5, r1
CVA lsr @L0, r5, @S;
. . . . . .
;@L1 <---- T[i]
mov r5, r9
CVA lsl @L0, r5, @P,

or @L1, @P, @S;

a Essential instructions

Table A.2.5: Profile For Critical Loop 2

Address Entry Type Execution
Counts

Branch Target Taken count
(%)

Not taken
count (%)

00000356
0000036a

target
bt

3000
3000

-
00000356

-
2997 (99.9)

-
3 (0.100)



150
CVA-only saving = 41997 - 3 x 2544 = 34365

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
TM is used to store the temporary vector.
CCVA=22; n=1000;
With no TM:
Execution time: CCVA + n + 2n = 3022
With TM = 256 bytes:
Execution time using strip-mining: 24 + (n/64+1) x (43 + CCVA) + 2n = 3064 (> execution time without using TM)
With TM = 1024 bytes: no stripe mining necessary.
Execution time: CCVA + n + n = 2022

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 12 x 2997 + 11 x 3 = 35997
PVA-only executions:
IReq from core during PVA executions: 7 (setup code/vector inst.) x 3 + 5 x 3000 = 15021
CVA-only executions:
IReq from core during CVA executions: 15 (setup code/vector inst.) x 3 = 45

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 3 + 3 (essential inst.)

+ 4 x 3000 (non-essential inst.) = 12021

PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 3 + 3 (essential inst.)

+ 2 x 4 (non-essential inst.) = 32

CVA-only executions: 15 (setup code/vector inst.) x 3 = 45
CVA/PVA executions: 15 (setup code/vector inst.) x 3 = 45
-------------------------------------------------------------------------------------------------------------

A.2.3Summary
Total program execution cycles: 84739
Total number of cycles in loops: 41997 (loop 1) + 41997 (loop 2)= 83994

Table A.2.6: CVA Executions Using Various Sizes of TM

TM Sizes
(bytes)

Using TM? Exe. Time per
Invocation

Total Exe.
Time

CVA-only Cycle
Saving

0 N 3022 9066 32931

64 N 3022 9066 32931

128 N 3022 9066 32931

256 N 3022 9066 32931

512 Y 2544 7632 34365

1024 Y 2022 6066 35931



151
or 99.18% of program execution time.
Average number of iterations per invocation = 1000

(i) PVA-Only executions
cs-store saving: 8991 + 8990 = 17981
cs-store saving: 8991 + 8990 = 17981
lp-ctl Saving: 8988 + 8987 = 17975
Total cycle saving: 17981 + 17981 + 17975 = 53937
Speedup during loop executions = 83994/ (83994 - 53937) = 2.794 (perf. imp. = 0.6421)
Overall speedup: 84739/(84739 - 53937) = 2.751 (perf. imp. = 0.6365)

(ii) CVA-Only executions
Total cycle saving: 34365 (loop 1) + 34365 (loop 2) = 68730
Speedup during loop executions = 83994/(83994-68730)= 5.503 (perf. imp. = 0.8183)
Overall speedup = 84739/(84739 - 68730) = 5.293 (perf. imp. = 0.8111)

(iii) CVA/PVA executions
Total cycle saving: 34365 (CVA loop 1) + 34365 (CVA loop 2) = 68730
Speedup during loop executions = 83994/(83994-68730)= 5.503 (perf. imp. = 0.8183)
Overall speedup = 84739/(84739 - 68730) = 5.293 (perf. imp. = 0.8111)

(iv) CVA Executions Using Various Sizes of TM

(v) IReq From Core

Table A.2.7: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 17975 0.2121

cs-load-oh 17981 0.2122

cs-store-oh 17981 0.2122

Total 53937 0.6365

Table A.2.8: CVA Executions Using Various Sizes of TM

TM Sizes
(bytes)

CVA-Only Executions CVA/PVA Executions

Total Cycle
Saving

Speedup
DuringLoop
Executions

Overall
Speedup

Total Cycle
Saving

Speedup
DuringLoop
Executions

Overall
Speedup

0 65862 4.632 4.489 65862 4.632 4.489

64 65862 4.632 4.489 65862 4.632 4.489

128 65862 4.632 4.489 65862 4.632 4.489

256 65862 4.632 4.489 65862 4.632 4.489

512 68730 5.503 5.293 68730 5.503 5.293

1024 71862 6.923 6.581 71862 6.923 6.581

2048 71862 6.923 6.581 71862 6.923 6.581

4096 71862 6.923 6.581 71862 6.923 6.581



152
Base machinne:
IReq from core overall: 78448
IReq from core during loop executions: 35997 + 35997 = 71994

PVA-only executions:
IReq from core reduced = 71994 - (15021 + 15021) = 41952
Normalized IReq from core during PVA executions = (15021 + 15021)/71994 = 0.4173
Normalized IReq from core overall = (78448 - 41952)/78448 = 0.4652

CVA-only executions:
IReq from core reduced = 71994 - (45 + 45) = 71904

Normalized IReq from core during CVA executions = (45 + 45)/71994 = 1.250 x 10-3

Normalized IReq from core overall = (78448 - 71904)/78448 = 0.0834

CVA/PVA executions:
IReq from core reduced = 71994 - (45 + 45) = 71904

Normalized IReq from core during CVA/PVA executions = (45 + 45)/71994 = 1.250 x 10-3

Normalized IReq from core overall = (78448 - 71904)/78448 = 0.0834

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory reduced = 71994 - (12021 + 12021) = 47952
Normalized Ifetch from memory during PVA executions: (12021 + 12021)/71994 = 0.339
Normalized Ifetch from memory overall = (78448 - 47952)/78448 = 0.3887

PVA-only with all inst. caching:
Ifetch from memory reduced = 71994 - (38 + 32) = 71924

Normalized Ifetch from memory during PVA executions: (38 + 32)/71994 = 9.723 x 10-4

Normalized Ifetch from memory overall = (78448 - 71924)/78448 = 0.0832

CVA-only executions:
Ifetch from memory: same as those for IReq from core

CVA/PVA executions:
Ifetch from memory: same as those for IReq from core

Table A.2.9: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.4173 1.250 x 10-3 1.250 x 10-3 0.4652 0.0834 0.0834

Table A.2.10: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

0.339 9.723 x 10-4 1.250 x 10-3 1.250 x 10-3 0.3887 0.0832 0.0834 0.0834



153
A.3 Benchmark “compress”
A.3.1Critical Loop 1

This loop performs vector initialization, C[i] = r5, for some scalar r5.
Estimated execution cycles = 6 x 7968 + 5 x 1 = 47813 or 9.81% execution time.
Average number of iterations per invocation = 7969

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8 cycles
Total setup/exit costs = 8 x 1 + 1(M0 conflict) = 9
Cycles per iteration: 6
Cycle saving per iteration = 5
cs-store saving: 2 x 7969 - 9/2 = 15934
lp-ctl saving: 3 x 7968 + 2 x 1 - 9/2 = 23902
Total saving = 15934 + 23902 = 39836
Speedup during loop executions = 47813 / (47813 - 39836) = 5.994 (perf. imp. = 0.8332)
Overall speedup = 487021/(487021-39836) = 1.089 (perf. imp. = 0.0817)

(ii) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)

+ 1(tp) + 0(ts) - 1 = 8
Execution time = 8 x 1 + 7969 = 7977
CVA saving = 47813 - 7977 = 39836

Table A.3.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000c32     950e //;  stw       r5,(r14)
00000c34     203e //;  addi      r14,4
00000c36     01b6 //;  decne     r6
00000c38     e7fc //;  bt        0x00000c32

PVA  @S, #1
cs-store:
mov r5, r5a

CVA mov r5, @S;

a. Essential instruction

Table A.3.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000c32
00000c38

target
bt

7969
7969

-
00000304

-
7968 (100)

-
1 (0.00)

Table A.3.3: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 23902 0.0491

cs-load-oh 0 0

cs-store-oh 15934 0.0327

Total 39836 0.0818



154
Speedup during loop executions = 47813 / (47813 - 39836) = 5.994 (perf. imp. = 0.8332)
Overall speedup 487021/(487021-39836) = 1.089 (perf. imp. = 0.0817)

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core overall: 355216
IReq from core during loop executions: 5 x 7968 + 4 x 1 = 39844

PVA-only executions:
IReq from core during PVA executions = 6 x 1 + 1 x 7969 = 7975
IReq from core reduced = 39844 - 7975 = 31869
Normalized IReq from core during PVA executions = 7975/39844 = 0.2002
Normalized IReq from core overall = (355216 - 31869)/355216 = 0.9103

CVA-only executions:
IReq from core during CVA executions = 6 x 1 = 6
IReq from core reduced = 39844 - 6 = 39838

Normalized IReq from core during CVA executions = 6/39844 = 1.506 x 10-4

Normalized IReq from core overall = (355216 - 39838)/355216 = 0.8878

CVA/PVA executions:
IReq from core during CVA/PVA executions = 6 x 1 = 6
IReq from core reduced = 39844 - 6 = 39838

Normalized IReq from core during CVA/PVA executions = 6/39844 = 1.506 x 10-4

Normalized IReq from core overall = (355216 - 39838)/355216 = 0.8878

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 1 + 1 (essential inst.) = 7
Ifetch from memory reduced = 39844 - 7 = 39837

Normalized Ifetch from memory during PVA executions: 7/39844 = 1.757x10-4

Normalized Ifetch from memory overall = (355216 - 39837)/355216 = 0.8878

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory

Table A.3.4: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.2002 1.506 x 10-4 1.506 x 10-4 0.9103 0.8878 0.8878



155
CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.3.5: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

1.757 x 10-4 1.757 x 10-4 1.506 x 10-4 1.506 x 10-4 0.8878 0.8878 0.8878 0.8878



156
A.4 Benchmark “des”
A.4.1Critical Loop 1

This loop reads two vectors sequentially and finds the first i that satisfies: A[i] != B[i].
Estimated execution cycles = 12 x 1128 + 11 x 141 = 15087
Average number of iterations per invocation = 1269/141 = 9

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1)

+ 1(exit) = 9 cycles
Total setup/exit costs = 9 x 141 + 1(M0 conflict) = 1270
Saving per iteration: 12 -1 = 11 (4 for lp-ctl-oh, 7 for cs-load-oh)
cs-load saving: 7 x 1269 - 1270/2 = 8248
lp-ctl saving: 4 x 1128 + 3 x 141 - 1270/2 = 4300
Total saving: 8248 + 4300 = 12548

(ii) CVA-Only executions
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1)

+ 1(exit) + 1(tp) + 0(ts) -1 = 9 cycles
Execution time = 9 x 141 + 1269 = 2538
CVA saving = 15087 - 2538 = 12549

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

Table A.4.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

000008ac     a702 //;  ldb       r7,(r2)
000008ae     a603 //;  ldb       r6,(r3)
000008b0     0f67 //;  cmpne     r7,r6
000008b2     01c2 //;  clrt      r2
000008b4     e005 //;  bt        0x008c0
000008b6     2002 //;  addi      r2,1
000008b8     2003 //;  addi      r3,1
000008ba     0184 //;  declt     r4
000008bc     eff7 //;  bf        0x008ac

PVA @L0,@L1, ct=1,#1
cmpne r0, r1a

CVA cmpne.ct=1 @L0,@L1;

a. Essential instruction

Table A.4.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

000008ac
000008b4
000008ba
000008bc

target
bt
target
bt

1269
1269
1269
1269

-
000008b6

-
000008ac

-
0 (0)

-
1128 (88.9)

-
1269 (100)

-
141 (11.1)



157
(v) IReq From Core
Base machinne:
IReq from core during loop executions: 10 x 1128 + 9 x 141 = 12549
PVA-only executions:
IReq from core during PVA executions: 7 (setup code/vector inst.) x 141 + 1 x 1269 = 2256
CVA-only executions:
IReq from core during CVA executions: 7 (setup code/vector inst.) x 141 = 987

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 141 + 1 (essential inst.) = 988

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 7 (setup code/vector inst.) x 141 = 987
CVA/PVA executions: 7 (setup code/vector inst.) x 141 = 987

A.4.2Critical Loop 2

This loop performs vector initialization, C[i] = r5, for some scalar r5.
Estimated execution cycles = 6 x 33 = 198
Average number of iterations per invocation = 33

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup and exit costs = 8 x 1 + 1(M0 conflict) = 9
cs-load saving: 0
cs-store saving: 2 x 33 - 9/2 = 62
lp-ctl saving: 3 x 33 - 9/2 = 95
Total saving = 62 + 95 = 157

(ii) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) +

+ 1(tp) + 0(ts) -1 = 8
Execution time = 8 x 1 + 33 = 41

Table A.4.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000a62     950e //;  stw       r5,(r14)
00000a64     203e //;  addi      r14,4
00000a66     01b6 //;  decne     r6
00000a68     e7fc //;  bt        0x00000a62

PVA  @S,#1
cs-store:
mov r5, r5a

CVA mov r5, @S;

a. Essential instruction

Table A.4.4: Profile For Critical Loop 2

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000a62
00000a68

target
bt

33
33

-
00000a62

-
32 (97.0)

-
1 (3.03)



158
CVA saving = 198 - 41 = 157

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 5 x 32 + 4 x 1 = 164
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 1 + 1 x 32 = 38
CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 1 = 6

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 1 + 1 (essential inst.) = 7

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 7 (setup code/vector inst.) x 1 = 7
CVA/PVA executions: 7 (setup code/vector inst.) x 1 = 7
-----------------------------------------------------------------------------------------------------

A.4.3Summary
Total execution cycles: 586643
Total execution cycles in loops: 15087 + 198 = 15285 or 2.61% of total execution time.
Average number of iterations per invocation = (15087 x 9 + 33 x 198)/15285 = 9.31

(i) PVA-Only executions
Total cs-load saving = 8248
Total cs-store saving = 62
Total lp-ctl saving = 4300 + 95 = 4395
Total cycle saving: 12548+ 157 = 12705
Speedup during loop executions = 15285/ (15285 - 12706) = 5.929 (perf. imp. = 0.8313)
Overall speedup: 586643/(586643-12706) = 1.022  (perf. imp. = 0.0215)

(ii) CVA-Only executions
CVA-only with no early termination
Total saving: 157 (loop2)
Speedup during loop executions = 15285/ (15285 -157) = 1.010 (perf. imp. = 0.0099)

Table A.4.5: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 4395 0.0075

cs-load-oh 8248 0.0141

cs-store-oh 62 0.0001

Total 12705 0.0217



159
Overall speedup: 586643/(586643-157) = 1.000 (perf. imp. = 0.0000)

CVA-only with possible early termination
Total saving: 12550 + 157 = 12707
Speedup during loop executions = 15285/ (15285 - 12706) = 5.929 (perf. imp. = 0.8313)
Overall speedup: 586643/(586643-12706) = 1.022 (perf. imp. = 0.0215)

(iii) CVA/PVA executions
Total saving: 12550(CVA or PVA for loop2) + 157(CVA or PVA for loop2) = 12707
Speedup during loop executions = 15285/ (15285 - 12706) = 5.929 (perf. imp. = 0.8313)
Overall speedup: 586643/(586643-12706) = 1.022 (perf. imp. = 0.0215)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core overall: 519037
IReq from core during loop executions: 12549 + 164 = 12713

PVA-only executions:
IReq from core reduced = 12713 - (2256 + 38) = 10419
Normalized IReq from core during PVA executions = (2256 + 28)/12713 = 0.1804
Normalized IReq from core overall = (519037 - 10419)/519037 = 0.9799

CVA-only executions:
IReq from core reduced = 12713 - (987 + 6) = 11720
Normalized IReq from core during CVA executions = (987 + 6)/12713 = 0.0781
Normalized IReq from core overall = (519037 - 11720)/519037 = 0.9774

CVA/PVA executions:
IReq from core reduced = 12713 - (987 + 6) = 11720
Normalized IReq from core during CVA/PVA executions = (987 + 6)/12713 = 0.0781
Normalized IReq from core overall = (519037 - 11720)/519037 = 0.9774

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory reduced = 12713 - (988 + 7) = 11718
Normalized Ifetch from memory during PVA executions: (988+7)/12713 = 0.0783
Normalized Ifetch from memory overall = (519037 - 11718)/519037 = 0.9774

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory

Table A.4.6: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.1804 0.0781 0.0781 0.9799 0.9774 0.9774



160
CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.4.7: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

0.0781 0.0781 0.0781 0.0781 0.9774 0.9774 0.9774 0.9774



161

is not
A.5 Benchmark “engine”
A.5.1Critical Loop 1

This loop reads a vector A sequentially and finds the first i that satisfies: A[i] < r2, for some scalar r2. Vector A
sorted.
Estimated execution cycles = 6 x 11995 + 5 x 4879 = 96365
Average number of iterations per invocation = 16874/4879 = 3.46

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8
Total setup/exit costs = 8 x 4879 + 1(M0 conflict) = 39033
cs-load saving: 3 x 16874 - 39033/2 = 31106
lp-ctl saving: 2 x 11995 + 1 x 4879 - 39033/2 = 9353
Total saving = 31106 + 9353 = 40459

(ii) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit)

+ 1(tp) + 0(ts) - 1 + 1(extra “move” inst.) = 9 cycles
Execution time = 4879 x 9 + 16874 = 60785
CVA-only saivng = 96365 - 60785 = 35580

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 5 x 11995 + 4 x 4879 = 79491
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 4879 + 1 x 16874 = 46148
CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 4879 = 29274

Table A.5.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

000002d2     a76d //;  ldb       r7,(r13,6)
000002d4     205d //;  addi      r13,6
000002d6     0d27 //;  cmplt     r7,r2
000002d8     e7fc //;  bt        0x000002d2

PVA  @L0, ct=0,#1
cmplt r0, r2a

mov r5, r2
CVA cmplt.ct=0 @L0, r5;

a. Essential instruction

Table A.5.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

000002d2
000002d8

target
bt

16874
16874

-
000002d2

-
11995 (71.1)

-
4879 (28.9)



162

s not
(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 4879 + 1(essential inst.) = 29275

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 4879 = 29274
CVA/PVA executions: 6 (setup code/vector inst.) x 4879 = 29274

A.5.2Critical Loop 2

This loop reads a vector A sequentially and finds the first i that satisfies: A[i] < r2, for some scalar r2. Vector A i
sorted.
Estimated execution cycles = 6 x 12430 + 5 x 4879 = 98975
Average number of iterations per invocation = 17309/4879 = 3.56

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8
Total setup/exit costs = 8 x 4879 - 1(M0 conflict) = 39033
cs-load saving: 3 x 17309 - 39033/2 = 32411
lp-ctl saving: 2 x 12430 + 1 x 4879 - 39033/2 = 10223
Total saving = 42634

(ii) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit)

+ 1(tp) + 0(ts) - 1 + 1(extra “move” inst.) = 9 cycles
Execution time = 4879 x 9 + 17309 = 61220
CVA-only saivng = 98975 - 61220 = 37755

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

Table A.5.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

0000030e     a76c //;  ldb       r7,(r12,6)
00000310     205c //;  addi      r12,6
00000312     0d27 //;  cmplt     r7,r2
00000314     e7fc //;  bt        0x0000030e

PVA  @L0, ct=0, #1
cmplt r0, r2a

mov r5, r2
CVA cmplt.ct=0 @L0, r5;

a. Essential instruction

Table A.5.4: Profile For Critical Loop 2

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

0000030e
00000314

target
bt

17309
17309

-
0000030e

-
12430 (71.8)

-
4879 (28.2)



163
(v) IReq From Core
Base machinne:
IReq from core during loop executions: 5 x 12430 + 4 x 4879 = 81666
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 4879 + 1 x 17309 = 46583
CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 4879 = 29274

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 4879 + 1(essential inst.) = 29275

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 4879 = 29274
CVA/PVA executions: 6 (setup code/vector inst.) x 4879 = 29274
-------------------------------------------------------------------------------------------------------------

A.4.3Summary
Total execution cycles: 2000000
Total execution cycles in loops: 96365 + 98975 = 195340 or 9.77% of total execution time.
Average number of iterations per invocation = (3.46 x 96365 + 3.56 x 98975)/195340 = 3.51

(i) PVA-Only executions
cs-load saving = 31106 + 32411 = 63517
lp-ctl saving = 9353 + 10223 = 19576
Total cycle saving: 63517 + 19576 = 83093
Speedup during loop executions = 195340 / ( 195340 - 83093) = 1.740 (perf. imp. = 0.4253)
Overall speedup: 2000000/(2000000 - 83093) = 1.043  (perf. imp. = 0.0412)

(ii) CVA-Only executions
CVA-only with no early termination
Total saving: 0
Speedup during loop executions = 1 (perf. imp. = 0.0000)
Overall speedup: 1 (perf. imp. = 0.0000)

CVA-only with possible early termination
Total cycle saving:35580 (loop 1) + 37755 (loop 2) = 73335
Speedup during loop executions = 195340 / ( 195340 - 73335) = 1.601(perf. imp. = 0.3754)
Overall speedup: 2000000/(2000000 - 73335) = 1.038 (perf. imp. = 0.0366)

Table A.5.5: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 19576 0.0098

cs-load-oh 63517 0.0318

cs-store-oh 0 0

Total 83093 0.0416



164
(iii) CVA/PVA executions
Total cycle saving:40459 (PVA for loop 1) + 42634 (PVA for loop 2) = 83093
Speedup during loop executions = 195340 / ( 195340 - 83093) = 1.740 (perf. imp. = 0.4253)
Overall speedup: 2000000/(2000000 - 83093) = 1.043 (perf. imp. = 0.0412)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core overall: 1058154
IReq from core during loop executions: 79491 + 81666 = 161157

PVA-only executions:
IReq from core reduced = 161157 - (46148 + 46583) = 68426
Normalized IReq from core during PVA executions = (46148 + 46583)/161157 = 0.5754
Normalized IReq from core overall = (1058154 - 68426)/1058154 = 0.9353

CVA-only executions:
IReq from core reduced = 161157 - (29274 + 29274) = 102609
Normalized IReq from core during CVA executions = (29274 + 29274)/161157 = 0.3633
Normalized IReq from core overall = (1058154 - 102609)/1058154 = 0.9030

CVA/PVA executions:
IReq from core reduced = 161157 - (29274 + 29274) = 102609
Normalized IReq from core during CVA/PVA executions = (29274 + 29274)/161157 = 0.3633
Normalized IReq from core overall = (1058154 - 102609)/1058154 = 0.9030

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory reduced = 161157 - (29275 + 29275) = 102607
Normalized Ifetch from memory during PVA executions: (29275+29275)/161157 = 0.3633
Normalized Ifetch from memory overall = (1058154 - 102607)/1058154 = 0.9030

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only and CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.5.6: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.5754 0.3633 0.3633 0.9353 0.9030 0.9030

Table A.5.7: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

0.3633 0.3633 0.3633 0.3633 0.9030 0.9030 0.9030 0.9030



165
A.6 Benchmark “fir_int”
A.6.1Critical Loop 1

This loop computes an inner product described by A[i]*B[i].

Estimated execution cycles in loops = 12 x 68382 + 11 x 2100 = 843684 or 69.74%
Average number of iterations per invocation = 70482/2100 = 33.6

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1)

+ 1(exit) = 9 cycles
Total setup/exit costs = 9 x 2100 + 1(M0 conflict) = 18901
Cycles per iteration: 13
Cycle saving per iteration = 8 (5 for cs-laod; 3 for lp-ctl)
cs-load saving: 5 x 70482 - 18901/2 = 342960
lp-ctl saving: 3 x 68382 + 2 x 2100 - 18901/2 = 199896
Total saving = 342960 + 199896 = 542856
Speedup during loop executions = 843684 / (843684 - 542856) = 2.805 (perf. imp. = 0.6435)
Overall speedup = 1209720/(1209720-542856) = 1.814 (perf. imp. = 0.4487)

Table A.6.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

000002f8     243e //;  subi      r14,4
000002fa     8607 //;  ldw       r6,(r7)
000002fc     851e //;  ldw       r5,(r14,4)
000002fe     01b1 //;  decne     r1
00000300     0356 //;  mul r6,r5(2 cycle)
00000302     1c64 //;  add       r4,r6
00000304     2037 //;  addi      r7,4
00000306     e7f8 //;  bt        0x000002f8

PVA @L0,@L1, #3
mov r5, r0a

mul r5, r1a

add r4, r5

CVA mul @L0, @L1, @P,
add r3, @P, r3;

a Essential instructions

Table A.6.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

000002f8
00000306

target
bt

70482
70482

-
000002f8

-
68382 (97)

-
2100 (2.98)

Table A.6.3: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 199896 0.1652

cs-load-oh 342960 0.2835

cs-store-oh 0 0.0000

Total 542856 0.4487

i
∑



166
(ii) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(exit)

+ tp(2) + ts(1) - 1 = 11 cycles
Execution time = 11 x 2100 + 70482 = 93582
CVA-only saving: 843684 - 93582 = 750102
Speedup during loop executions = 843684/ ( 843684 - 750102) = 9.015 (perf. imp. = 0.8891)
Overall speedup: 1209720/(1209720-750102) = 2.632 (perf. imp. = 0.6201)

(iii) CVA/PVA executions
Total saving = 750102 (use CVA)
Speedup during loop executions = 843684/ ( 843684 - 750102) = 9.015
Overall speedup: 1209720/(1209720-750102) = 2.632

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core overall: 705966
IReq from core during loop executions: 9 x 68382 + 8 x 2100 = 632238

PVA-only executions:
IReq from core during PVA executions: 7 (setup code/vector inst.) x 2100 + 3 x 70482 = 226146
IReq from core reduced = 632238 - 226146 = 406092
Normalized IReq from core during PVA executions = 226146/632238 = 0.3577
Normalized IReq from core overall = (705966 - 406092)/705966 = 0.4248

CVA-only executions:
IReq from core during CVA executions: 7 (setup code/vector inst.) x 2100 = 14700
IReq from core reduced = 632238 - 14700 = 617538
Normalized IReq from core during CVA executions = 14700/632238 = 0.0233
Normalized IReq from core overall = (705966 - 617538)/705966 = 0.1253

CVA/PVA executions:
IReq from core during CVA/PVA executions: 7 (setup code/vector inst.) x 2100 = 14700
IReq from core reduced = 632238 - 14700 = 617538
Normalized IReq from core during CVA/PVA executions = 14700/632238 = 0.0233
Normalized IReq from core overall = (705966 - 617538)/705966 = 0.1253

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions = 7 (setup code/vector inst.) x 2100 + 2 (essential inst.)

+ 1 x 70482 (non-essential inst.) = 85184
Ifetch from memory reduced = 632238 - 85184 = 547054
Normalized Ifetch from memory during PVA executions: 85184/632238 = 0.1347

Table A.6.4: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.3577 0.0233 0.0233 0.4248 0.1253 0.1253



167
Normalized Ifetch from memory overall = (705966 - 547054)/705966 = 0.2251

PVA-only with all inst. caching:
Ifetch from memory during PVA executions = 7 (setup code/vector inst.) x 2100 + 2 (essential inst.)

+ 1 x 4 (non-essential inst.) = 14706
Ifetch from memory reduced = 632238 - 14706 = 617532
Normalized Ifetch from memory during PVA executions: 14706/632238 = 0.0233
Normalized Ifetch from memory overall = (705966 - 617532)/705966 = 0.1253

CVA-only executions:
IReq from core = Ifetch from memory

CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.6.5: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

0.1347 0.0233 0.0233 0.0233 0.2251 0.1253 0.1253 0.1253



168
A.7 Benchmark “g3fax”
A.7.1Critical Loop 1

This loop performs a vector sum, described by A[i].

Estimated execution cycles = 7 x 87488 + 6 x 50 = 612716
Average number of iterations per invocation = 87538/50 = 1750.8

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8
Total setup/exit costs = 8 x 50 + 1(M0 conflict) = 401
cs-load saving: 3 x 87538 - 401/2 = 262414
lp-ctl saving: 3 x 87488 + 2 x 50 - 401/2 = 262364
PVA-only saving: 262414 + 262364 = 524778

(ii) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit)

+ 1(tp) + 1(ts)-1 = 9 cycles
Execution time = 9 x 50 +87538 = 87988
CVA-only saving: 612716 - 87988 = 524728

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 6 x 87488 + 5 x 50 = 525178
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 50 + 1 x 87538 = 87838
CVA-only executions:

Table A.7.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000316     01b3 //;  decne     r3
00000318     a602 //;  ldb       r6,(r2)
0000031a     2002 //;  addi      r2,1
0000031c     1c64 //;  add       r4,r6
0000031e     e7fb //;  bt        0x00000316

PVA  @L0, #1
add r4, r0a

CVA mov @L0, @P,
add r3, @P, r3;

a. Essential instruction

Table A.7.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000316
0000031e

target
bt

87538
87538

-
000002d2

-
87488 (99,9)

-
50 (0.0571)

i
∑



169
IReq from core during CVA executions: 6 (setup code/vector inst.) x 50 = 300

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 50 + 1(essential inst.) = 301

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 50 = 300
CVA/PVA executions: 6 (setup code/vector inst.) x 50 = 300

A.7.2Critical Loop 2

This loop performs vector initialization, C[i] = r10, for some scalar r10.
Estimated execution cycles = 6 x 82885 + 5 x 3832 = 516470
Average number of iterations per invocation = 86717/3832 = 22.63

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 3832 + 1(M0 conflicts) = 30657
cs-store saving: 2 x 86717 - 30657/2 = 158106
lp-ctl saving: 3 x 82885 + 2 x 3832 - 30657/2 = 240991
Total saving = 158106 + 240991 = 399097

(ii) CVA-Only executions
Since tp=1 and ts=0, CVA saving = PVA saving = 399097

(iii) CVA/PVA executions
Same as CVA-only or PVA-only executions

(iv) CVA Executions Using Various Sizes of
N.A. (TM not used).

(v) IReq From Core
Base machinne:

Table A.7.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

000003f2     ba0e //;  stb       r10,(r14)
000003f4     200e //;  addi      r14,1
000003f6 018d //;  declt     r13
000003f8  effb //;  bf        0x000003f2

PVA  @S, #1
cs-store:
mov r10, r10a

mov r5, r10
CVA  mov r5, @S

a. Essential instruction

Table A.7.4: Profile For Critical Loop 2

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

000003f2
000003f8

target
bt

86717
86717

-
000003f2

-
82885 (95.6)

-
3832 (4.42)



170
IReq from core during loop executions: 5 x 82885 + 4 x 3832 = 429753
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 3832 + 1 x 86717 = 109709
CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 3832 = 22992

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 3832 + 1(essential inst.) = 22993

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.
CVA-only executions: 6 (setup code/vector inst.) x 3832 = 22992
CVA/PVA executions: 6 (setup code/vector inst.) x 3832 = 22992
-----------------------------------------------------------------------------------------------------------------

A.4.3Summary
Total execution cycles: 2000000
Total execution cycles in loops: 612716 + 516470 = 1129186 or 56.65% of total execution time.
Average number of iterations per invocation = (1750.8 x 612716 + 22.63 x 516470)/1129186

= 960.4

(i) PVA-Only executions
cs-load saving: 262414
cs-store saving: 158106
lp-ctl saving: 262364 + 240991 = 503355
Total cycle saving: 262414 + 158106 + 503355 = 923875
Speedup during loop executions = 1129186/(1129186-923875) = 5.500 (perf. imp. = 0.8182)
Overall speedup: 2000000/(2000000-923875) = 1.859  (perf. imp. = 0.4621)

(ii) CVA-Only executions
CVA-only saving: 524728(loop1) + 399097(loop2) = 923825
Speedup during loop executions = 1129186/(1129183-923825) = 5.499 (perf. imp. = 0.8182)
Overall speedup: 2000000/(2000000-923825) = 1.858 (perf. imp. = 0.4621)

(iii) CVA/PVA executions
CVA/PVA saving: 524778(PVA for loop1) + 399097(CVA or PVA for loop2) = 923857
Speedup during loop executions = 1129183/(1129183-923857) = 5.500 (perf. imp. = 0.8182)
Overall speedup: 2000000/(2000000-923857) = 1.859 (perf. imp. = 0.4621)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

Table A.7.5: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 503355 0.2517

cs-load-oh 262414 0.1311

cs-store-oh 158106 0.0791

Total 923875 0.4619



171
(v) IReq From Core
Base machinne:
IReq from core overall: 1681130
IReq from core during loop executions: 525178 + 429753 = 954931

PVA-only executions:
IReq from core reduced = 954931 - (87838 + 109709) = 757384
Normalized IReq from core during PVA executions = (87838 + 109709)/954931 = 0.2069
Normalized IReq from core overall = (1681130 - 757384)/1681130 = 0.5495

CVA-only executions:
IReq from core reduced = 954931 - (300 +22992) = 931639
Normalized IReq from core during CVA executions = (300 +22992)/954931 = 0.0244
Normalized IReq from core overall = (1681130 - 931639)/1681130 = 0.4458

CVA/PVA executions:
IReq from core reduced = 954931 - (300 +22992) = 931639
Normalized IReq from core during CVA/PVA executions = (300 +22992)/954931 = 0.0244
Normalized IReq from core overall = (1681130 - 931639)/1681130 = 0.4458

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory reduced = 954931 - (301 + 22993) = 931637
Normalized Ifetch from memory during PVA executions: (301 + 22993)/954931 = 0.0244
Normalized Ifetch from memory overall = (1681130 - 931637)/1681130 = 0.4458

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory

CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.7.6: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.2069 0.0244 0.0244 0.5495 0.4458 0.4458

Table A.7.7: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

0.0244 0.0244 0.0244 0.0244 0.4458 0.4458 0.4458 0.4458



172
A.8 Benchmark “g721”
A.8.1Critical Loop 1

This loop performs a vector move C[i] = A[i].
Estimated execution cycles = 9 x 792 + 8 x 198 = 8712 or 2.87% execution time.
Average number of iterations per invocation = 990/198 = 5

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)

+ 1(exit) = 9 cycles
Total setup/exit costs = 9 x 198 + 1(M0 conflict) = 1783
Cycle saving per iteration = 9 -1(extra “mov”)=8
cs-load saving: 3 x 990 - 1783/3 = 2376
cs-store saving: 2 x 990 - 1783/3 = 1386
lp-ctl saving: 3 x 792 + 2 x 198 - 1783/3 = 2178
Total saving = 2376 + 1386 + 2178 = 5940
Speedup during loop executions = 8712/(8712 - 5940) = 3.143 (perf. imp. = 0.6818)
Overall speedup = 303885/(303885-5940) = 1.020 (perf. imp. = 0.0196)

(ii) CVA-Only executions
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)

Table A.8.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

0000088a     01b9 //;  decne     r9
0000088c     c70c //;  ldh       r7,(r12)
0000088e     241c //;  subi      r12,2
00000890     d702 //;  sth       r7,(r2)
00000892     2412 //;  subi      r2,2
00000894     e7fa //;  bt        0x0000088a

PVA  @L0, @S, #1
cs-store:
mov r0, r0a

CVA mov @L0, @S;

a. Essential instruction

Table A.8.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

0000088a
00000894

target
bt

990
990

-
00000304

-
792 (80)

-
198 (20)

Table A.8.3: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 2178 0.0072

cs-load-oh 2376 0.0078

cs-store-oh 1386 0.0046

Total 5940 0.0196



173
+ 1(exit) + 1(tp) + 0(ts) - 1 = 9 cycles
Execution time = 9 x 198 + 990 = 2772
CVA saving = 8712 - 2772 = 5940
Speedup during loop executions = 8712/(8712 - 5940) = 3.143 (perf. imp. = 0.6818)
Overall speedup = 303885/(303885-5940) = 1.020 (perf. imp. = 0.0196)

(iii) CVA/PVA executions
Total saving = 5942 (CVA or PVA for loop1)
Speedup during loop executions = 8712/(8712 - 5942) = 3.143 (perf. imp. = 0.6818)
Overall speedup = 303885/(303885-5942) = 1.020 (perf. imp. = 0.0196)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core overall: 256025
IReq from core during loop executions: 7 x 792 + 6 x 198 = 6732

PVA-only executions:
IReq from core during PVA executions = 7 (setup code and vector inst.) x 198 + 990 = 2376
IReq from core reduced = 6732 - 2376 = 4356
Normalized IReq from core during PVA executions = 2376/6732 = 0.3584
Normalized IReq from core overall = (256025 - 4356)/256025 = 0.9830

CVA-only executions:
IReq from core during CVA executions = 7 (setup code and vector inst.) x 198 = 1386
IReq from core reduced = 6732 - 1386 = 5346
Normalized IReq from core during CVA executions = 1386/6732 = 0.2059
Normalized IReq from core overall = (256025 - 5346)/256025 = 0.9791

CVA/PVA executions:
IReq from core during CVA/PVA executions = 7 (setup code and vector inst.) x 198 = 1386
IReq from core reduced = 6732 - 1386 = 5346
Normalized IReq from core during CVA/PVA executions = 1386/6732 = 0.2059
Normalized IReq from core overall = (256025 - 5346)/256025 = 0.9791

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 7 (setup code and vector inst.)x198 + 1(essential inst) = 1387
Ifetch from memory reduced = 6732 - 1387 = 5345
Normalized Ifetch from memory during PVA executions: 1387/6732 = 0.2059
Normalized Ifetch from memory overall = (256025 - 5345)/256025 = 0.9791

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:

Table A.8.4: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.3584 0.2059 0.2059 0.9830 0.9791 0.9791



174
IReq from core = Ifetch from memory

CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.8.5: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

0.2059 0.2059 0.2059 0.2059 0.9791 0.9791 0.9791 0.9791



175
A.9 Benchmark “jpeg”
A.9.1Critical Loop 1

This loop performs vector initialization, C[i] = r1, for some scalar r1.
Estimated execution cycles = 7 x 1752 + 6 x 873 = 17502
Average number of iterations per invocation = 2625/873 = 3.01

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 873 + 1(M0 conflict) = 6985
cs-store saving: 2 x 2625 - 6985/2 = 1758
lp-ctl saving: 3 x 1752 + 2 x 873 - 6985/2 = 3510
Total saving = 1758 + 3510 = 5268

(ii) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)

+ 1(tp) + 0(ts) - 1 + 1(extra “mov” inst.) = 9 cycles
Execution time = 9 x 873 + 2625 = 10482
CVA-only saving: 17502 - 10482 = 7020

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 5 x 1752 + 4 x 873 = 12252
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 873 + 1 x 2625 = 7863
CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 873 = 5238

Table A.9.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

000003cc     9105 //;  stw r1,(r5)
000003ce     2035 //;  addi r5,4
000003d0  01b6 //;  decne     r6
000003d2  e7fb //;  bt        0x000003cc

PVA  @S, #1
cs-store:
mov r1, r1a

mov r5, r1
CVA mov r5, @S;

a. Essential instruction

Table A.9.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

000003cc
000003d2

target
bt

2625
2625

-
000003cc

-
1752 (66.7)

-
873 (33.3)



176
(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 873 + 1(essential inst.) = 5239

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 873 = 5238
CVA/PVA executions: 6 (setup code/vector inst.) x 873 = 5238

A.9.2Critical Loop 2

This loop performs vector initialization, C[i] = r6, for some scalar r6.
Estimated execution cycles = 6 x 31995 + 5 x 600 = 194970
Average number of iterations per invocation = 32595/600 = 54.325

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 0
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 600 + 1(M0 conflict) = 4801
cs-store saving: 2 x 32595 - 4801/2 = 62790
lp-ctl saving: 3 x 31995 + 2 x 600 - 4801/2 = 94785
Total saving = 62790 + 94785 = 157575

(ii) CVA-Only executions
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) + 1(tp) + 0(ts) - 1 = 8
Execution time = 8 x 600 + 32595 = 37395
CVA-only saving: 194970 - 37395 = 157575

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:

Table A.9.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

0000042c     960e //;  stw       r6,(r14)
0000042e     203e //;  addi      r14,4
00000430  01bd //;  decne     r13
00000432  e7fb //;  bt        0x0000042c

PVA  @S, #1
cs-store:
mov r6, r6a

mov r5, r6
CVA mov r5, @S;

a. Essential instruction

Table A.9.4: Profile For Critical Loop 2

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

0000042c
00000432

target
bt

32595
32595

-
0000042c

-
31995 (98.2)

-
600 (1.8)



177
IReq from core during loop executions: 5 x 31995 + 4 x 600 = 162375
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 600 + 1 x 32595 = 36195
CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 600 = 3600

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 600 + 1(essential inst.) = 3601

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 600 = 3600
CVA/PVA executions: 6 (setup code/vector inst.) x 600 = 3600

A.9.3Critical Loop 3

Estimated execution cycles = 13 x 18000 + 12 x 600 = 241200
Average number of iterations per invocation = 18600/600 = 31

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 2
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1)

+ 1(exit) = 9 cycles
Total setup/exit costs = 9 x 600 + 2(M0 conflicts) = 5402
Cycle saving per iteration = 13 - 4 = 9 (3 for lp-ctl, 6 for cs-load)
cs-load saving: 6 x 18600 - 5402/2 = 108899
lp-ctl saving: 3 x 18000 + 2 x 600 - 5402/2 = 52499
PVA-only saving = 108899 + 52499 = 161398

(ii) CVA-Only executions
N.A.

Table A.9.5: Vertorizing Critical Loop 3

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000442     a604 //;  ldb       r6,(r4)
00000444     12b7 //;  mov       r7,r11
00000446     1d67 //;  ixh       r7,r6
00000448     860a //;  ldw       r6,(r10)
0000044a     01bc //;  decne     r12
0000044c d607 //;  sth r6,(r7) // not cs
0000044e     2004 //;  addi      r4,1
00000450     203a //;  addi      r10,4
00000452     e7f7 //;  bt        0x00000442

PVA  @L0,@L1, #3
mov r7,r11a

ixh       r7,r0a

sth r1,(r7)a

Not vectorizable.

a Essential instructions

Table A.9.6: Profile For Critical Loop 3

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000442
00000452

target
bt

18600
18600

-
00000442

-
18000 (96.8)

-
600 (3.2)



178
(iii) CVA/PVA executions
Same as PVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A.

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 10 x 18000 + 9 x 600 = 185400
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 600 + 3 x 18000 = 57600
CVA-only executions: N.A.
CVA/PVA executions:
IReq from core during CVA/PVA executions: 6 (setup code/vector inst.)x600 + 3x18000 = 57600

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 600 + 3(essential inst.) = 3603

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only executions.

A.9.4Critical Loop 4

Estimated execution cycles = 14 x 18000 + 13 x 600 = 259800
Average number of iterations per invocation = 18600/600 = 31

Table A.9.7: Vertorizing Critical Loop 4

Address Opcode //; Assembly Code Using PVA Construct Using CVA/PVA Construct

0000045e     240d //;  subi      r13,1
00000460     a61d //;  ldb       r6,(r13,1)
00000462  3c16 //;  lsli      r6,1
00000464 14b6 //;  rsub      r6,r11
00000466  1c76 //;  add       r6,r7
00000468  870c //;  ldw       r7,(r12)
0000046a  01ba //;  decne     r10
0000046c  d706 //;  sth r7,(r6) //not cs
0000047e 203c //;  addi      r12,4
00000470  e7f4 //;  bt        0x0000045e

PVA  @L0,@L1, #6
mov r6, r0
lsli r6,1
rsub      r6,r11a

add       r6,r7a

sth r1,(r6)a

CVA lsli @L0, 1, @P,
rsub @P, r11, @S;

PVA @L0, #3
mov r6, r0a

add r6, r7a

sth r1, (r6)a

a Essential instructions

Table A.9.8: Profile For Critical Loop 4

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

0000045e
00000470

target
bt

18600
18600

-
0000045e

-
18000 (96.8)

-
600 (3.2)



179
(i) PVA-Only executions
Stall cycles due to M0 conflicts = 2
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(exit) = 9
Total setup/exit costs = 9 x 600 + 2(M0 conflicts) = 5402
Saving per iteration = 14 - 6 = 8 (3 for lp-ctl, 5 for cs-load)
cs-load saving: 5 x 18600 - 5402/2 = 90299
lp-ctl saving: 3 x 18000 + 2 x 600 - 5402/2 = 52499
PVA-only saving: 90299 + 52499 = 142798

(ii) CVA-Only executions
N.A.

(iii) CVA/PVA executions
The temporary vector produced by the first CVA instruction can be stored in M0/M1. TM is not used.
CVA instruction (tp=ts=1):
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exit) + 1(tp) + 1(ts) - 1

= 10 cycles
Eecution time = 10 x 600 + 18600 = 24600
PVA instruction:
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8 cycles
Execution time = 8 x 600 + 4 x 18600 = 79200
CVA/PVA saving: 259800 - 24600 - 79200 = 156000

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 11 x 18000 + 10 x 600 = 204000
PVA-only executions:
IReq from core during PVA executions: 7 (setup code/vector inst.) x 600 + 5 x 18600 = 97200
CVA-only executions: N.A.

CVA/PVA executions:
CVA instruction:
IReq from core during CVA executions: 7 (setup code/vector inst.) x 600 = 4200
PVA instruction:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 600 + 3 x 18600 = 59400
Total IReq from core: 4200 + 59400 = 63600

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 600 + 3(essential inst.)

+ 2 x 18600 (non-essential inst.) = 41403

PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 600 + 3(essential inst.)

+ 2 x 4 (non-essential inst.) = 4211

CVA-only executions: N.A.

CVA/PVA executions:
CVA instruction:
Ifetch from memory during CVA executions: 7 (setup code/vector inst.) x 600 = 4200



180
PVA instruction:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 600 + 3(essential inst.) = 3603
Total IReq from core: 4200 + 3603 = 7803

A.9.5Critical Loop 5

This loop performs a vector multiplication A[i] = A[i] * B[i]. Vector length is always 64.
Estimated execution cycles = 13 x 17766 + 12 x 282 = 234342
Average number of iterations per invocation = 18048/282 = 64

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2)

+ 1(exit) = 10
Total setup/exit costs = 10 x 282 + 1(M0 conflicts) = 2821
saving per iteration: 14 - 4 = 10 (3 for lp-ctl, 4 for cs-load, 3 for cs-store)
cs-load saving: 4 x 18048 - 2821/3 = 71252
cs-store saving: 3 x 18048 - 2821/3 = 53204
lp-ctl saving: 3 x 17766 + 2 x 282 - 2821/3 = 52922
PVA-only saving: 71252 + 53204 + 52922 = 177378

(ii) CVA-Only executions
Vector duplications is used for this loop (see Section 6.10 on page 108).
Overhead for vector duplications = 282 x 7 = 1974 cycles.
Vector length = 64 halfwords or 128 bytes. Strip-mining of TM not necessary.
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2) + 1(exit) +2(tp)

+ 0(ts) - 1 = 11 cycles
Execution time = 1974(vector duplications) + 11 x 282 + 18048 = 23124
CVA-only saving: 234342 - 23124 = 211218

(iii) CVA/PVA executions
Same as CVA-only executions

Table A.9.9: Vertorizing Critical Loop 5

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000614     c702 //;  ldh       r7,(r2)
00000616     a603 //;  ldb       r6,(r3)
00000618     01b1 //;  decne     r1
0000061a 0367 //; mul r7,r6 (2 cycle)
0000061c     d702 //;  sth       r7,(r2)
0000061e     2012 //;  addi      r2,2
00000620     2003 //;  addi      r3,1
00000622     e7f8 //;  bt        0x00000614

PVA @L0,@L1,@S, #2
mov r3, r0a

cs-store:
mul r3, r1a

CVA mul @L0,@L1,@S

a. Essential instruction

Table A.9.10: Profile For Critical Loop 5

Address Entry Type Execution
Counts

Branch Tar-
get

Taken count
(%)

Not taken
count (%)

00000614
00000622

target
bt

18048
18048

-
00000614

-
17766 (98.4)

-
282 (1.6)



181
(iv) CVA Executions Using Various Sizes of TM
No TM:
Execution time = 11 x 282 + 18048 x 2 = 39198
Total saving = 234342 - 39198 = 195144

TM is 64 bytes:
In each invocation, vector length, n = 64 (or 128 bytes). TM needs to be strip-mined.
Execution time per invocation: 24 + (64/32)x(43+12) + 64 = 198
Total execution time = 198 x 282 + 1974(vector duplications) = 57810 (> 39198). TM not used.

TM is 128 bytes or larger:
CVA-only saving: 234342 - 23124 = 211218

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 9 x 17766 + 8 x 282 = 162150
PVA-only executions:
IReq from core during PVA executions: 8 (setup code/vector inst.) x 282 + 2 x 18048 = 38352
CVA-only executions:
IReq from core during CVA executions: 8 (setup code/vector inst.) x 282 = 2256

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 8 (setup code/vector inst.) x 282 + 2(essential inst.) = 2258

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 8 (setup code/vector inst.) x 282 = 2256
CVA/PVA executions: 8 (setup code/vector inst.) x 282 = 2256
-------------------------------------------------------------------------------------------------------------

A.9.6Summary
Total cycles in loops = 17502 + 194970 + 241200 +259800 + 234342 = 947814 or 49.02%
Average number of iterations per invocation = (17502 x 3.01 + 194970 x 5.49 + 241200 x 31 +

259800 x 31 + 234342 x 64.00)/947814 = 33.39

(i) PVA-Only executions
Total cs-load saving: 108899(loop3) + 90299(loop4) + 71252(loop5) = 270450
Total cs-store saving: 1758(loop1) + 62790(loop2) + 53204(loop5) = 117752
Total lp-ctl saving: 3510(loop1) + 94785(loop2) + 52499(loop3) + 52499(loop4)

Table A.9.11: CVA Executions Using Various Sizes of TM

TM Sizes
(bytes)

Using TM? Total Exe.
Time

CVA-only Cycle
Saving

Speedups during
executions of loop 5

0 N 39198 195144 5.978

64 N 39198 195144 5.978

128 Y 23124 211218 10.134

256 Y 23124 211218 10.134

512 Y 23124 211218 10.134

1024 Y 23124 211218 10.134



182
+ 52922(loop5) = 256215
Total saving = 270450 + 117752 + 256215 = 644417
Speedup duirng loop executions: 947814/(947814-644417) = 3.124 (perf. imp. = 0.6799)
Overall speedup: 2000000/(2000000-644417) = 1.475  (perf. imp. = 0.3220)

(ii) CVA-Only executions
Total cycles in loops = 17502(loop1) + 227565(loop2) + 234342(loop5) = 479409
Total CVA-only saving: 7020(loop1) + 189570(loop2) + 211218(loop5) = 407808
Speedup duirng loop executions: 479409/(479409- 407808) = 6.696 (perf. imp. = 0.8506)
Overall speedup: 2000000/(2000000-407808) = 1.256 (perf. imp. = 0.2039)

(iii) CVA/PVA executions
Total saving: 7020(CVA for loop1) + 189570(CVA for loop2) + 161400(PVA for loop3)

+ 156000(combination of CVA and PVA) + 211218(CVA for loop5) = 725208
Speedup during loop executions = 947814/(947814-725208) = 4.258 (perf. imp. = 0.7651)
Overall speedup = 2000000/(2000000-725208) = 1.569 (perf. imp. = 0.3626)

(iv) CVA Executions Using Various Sizes of TM
No TM or TM is 64 bytes (not used).
CVA-only executions:
Total cycles in loops = 17502(loop1) + 227565(loop2) + 234342(loop5) = 479409
Total CVA-only saving: 7020(loop1) + 189570(loop2) + 195144(loop5) = 391734
Speedup duirng loop executions: 479409/(479409-391734) = 5.468 (perf. imp. = 0.8171)
Overall speedup: 2000000/(2000000-391734) = 1.244 (perf. imp. = 0.1959)

CVA/PVA executions:
Total saving: 7020(CVA for loop1) + 189570(CVA for loop2) + 161400(PVA for loop3)

+ 156000(combination of CVA and PVA) + 195144(CVA for loop5) = 709134
Speedup during loop executions = 947814/(947814-709134) = 3.971(perf. imp. = 0.7482)
Overall speedup = 2000000/(2000000-709134) = 1.5493 (perf. imp. = 0.3546)

Table A.9.12: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 256215 0.1281

cs-load-oh 270450 0.1352

cs-store-oh 117752 0.0589

Total 644417 0.3222

Table A.9.13: CVA Executions Using Various Sizes of TM

TM Sizes
(bytes)

CVA-Only Executions CVA/PVA Executions

Total Cycle
Saving

Speedup
DuringLoop
Executions

Overall
Speedup

Total Cycle
Saving

Speedup
DuringLoop
Executions

Overall
Speedup

0 391734 5.468 1.244 709134 3.971 1.549

64 391734 5.468 1.244 709134 3.971 1.549

128 407808 6.696 1.256 725208 4.258 1.569



183
(v) IReq From Core
Base machinne:
IReq from core overall: 1528812
IReq from core during loop executions (all 5 loops):

12252 + 162375 + 185400 + 204000 + 162150=726177

PVA-only executions:
IReq from core reduced = 726177 - (7863+36195+57600+97200+38352) = 488967
Normalized IReq from core during PVA executions:

(7863+36195+57600+97200+38352)/726177=0.3267
Normalized IReq from core overall = (1528812 - 488967)/1528812 = 0.6802

CVA-only executions:
IReq from core during CVA executions: 12252(loop1)+162375(loop2)+162150(loop5)=336777
IReq from core reduced = 336777 - (5238(loop1) + 3600(loop2) + 2256(loop5) )= 325683
Normalized IReq from core during CVA executions = (5238 + 3600 + 2256)/336777 = 0.0329
Normalized IReq from core overall = (1528812 - 325683)/1528812 = 0.7870

CVA/PVA executions:
IReq from core during CVA/PVA executions:

5238(loop2)+3600(loop2)+57600(loop3)+63600(loop4)+2256(loop5)=132294
IReq from core reduced = 726177 - 132294 = 593883
Normalized IReq from core during CVA/PVA executions = 132294/726177 = 0.1822
Normalized IReq from core overall = (1528812 - 593883)/1528812 = 0.6115

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during loop executions: 5239(loop1) + 3601(loop2) + 3603(loop3) + 41403(loop4)

+ 2258(loop5) = 56104
Ifetch from memory reduced = 726177 - 56104 = 670073
Normalized Ifetch from memory during PVA executions: 56104/726177 = 0.0773
Normalized Ifetch from memory overall = (1528812 - 670073)/1528812 = 0.5617

PVA-only with all inst. caching:

256 407808 6.696 1.256 725208 4.258 1.569

512 407808 6.696 1.256 725208 4.258 1.569

1024 407808 6.696 1.256 725208 4.258 1.569

Table A.9.14: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.3267 0.0329  0.1822 0.6802 0.7870 0.6115

Table A.9.13: CVA Executions Using Various Sizes of TM

TM Sizes
(bytes)

CVA-Only Executions CVA/PVA Executions

Total Cycle
Saving

Speedup
DuringLoop
Executions

Overall
Speedup

Total Cycle
Saving

Speedup
DuringLoop
Executions

Overall
Speedup



184
Ifetch from memory during loop executions: 5239(loop1) + 3601(loop2) + 3603(loop3) + 4211(loop4)
+ 2258(loop5) = 18901

Ifetch from memory reduced = 726177 - 18901 = 707276
Normalized Ifetch from memory during PVA executions: 18901/726177 = 0.0260
Normalized Ifetch from memory overall = (1528812 - 707276)/1528812 = 0.5374

CVA-only executions:
Ifetch from memory during loop executions: 5238(loop1) + 3600(loop2) + 2256(loop5) = 11094
Ifetch from memory reduced = 336777 - 11094 = 325683
Normalized Ifetch from memory during PVA executions: 11094/336777 = 0.0329
Normalized Ifetch from memory overall = (1528812 - 325683)/1528812 = 0.7870

CVA/PVA executions:
Ifetch from memory during loop executions: 5239(loop1) + 3600(loop2) + 3603(loop3) + 7803(loop4)

+ 2256(loop5) = 22500
Ifetch from memory reduced = 726177 - 22500 = 703677
Normalized Ifetch from memory during PVA executions: 22500/726177 = 0.0310
Normalized Ifetch from memory overall = (1528812 - 703677)/1528812 = 0.5397

Table A.9.15: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

0.0773 0.0260 0.0329 0.0310 0.5617 0.5374 0.7870 0.5397



185

rted.
A.10 Benchmark “map3d”
A.10.1Critical Loop 1

This loop performs reads in a vector A sequentially and find the first i that satisfies r3 < A[i]. Vector A is not so
Estimated execution cycles = 6 x 7155 + 8 x 89449 = 758522 or 37.93% of total execution time.
Average number of iterations per invocation = 96604/7155 = 13.5

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8
Total setup/exit costs = 8 x 7155 + 1(M0 conflict) = 57241
cs-load saving: 3 x 96604 - 57241/2 = 261192
lp-ctl saving: 4 x 89449 + 2 x 7155 - 57241/2 = 343486
Total saving = 261192 +343486 = 604678
Speedup during loop executions = 758522/(758522- 604678) = 4.930 (perf. imp. = 0.7972)
Overall speedup = 2000000/(2000000-604678) = 1.433 (perf. imp. = 0.3022)

(ii) CVA-Only executions
CVA-only with no early termination
Cycle saving: 0
Speedup during loop executions = 1 (perf. imp. = 0.0000)

Table A.10.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000458     c702 //;  ldh       r7,(r2)
0000045a     2012 //;  addi      r2,2
0000045c     0d73 //;  cmplt     r3,r7
0000045e     e002 //;  bt        0x00000464
00000460     01be //;  decne     r14
00000462     e7fa //;  bt        0x00000458

PVA  @L0, ct=0, #1
cmplt r3, r0a

mov r4, r3
CVA cmplt.ct=0 r4, @L0;

a. Essential instruction

Table B.10.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000458
0000045e
00000462

target
bt
bt

96604
96604
89449

-
00000464
00000458

-
7155 (7.41)
89449 (100)

-
89449 (92.6)

0 (0)

Table A.10.3: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 343486 0.1717

cs-load-oh 261192 0.1306

cs-store-oh 0 0

Total 604678 0.3023



186
Overall speedup = 1 (perf. imp. = 0.0000)

CVA-only with possible early termination
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) + 1(tp)

+ 0(ts) - 1 + 1(extra “mov” inst.) = 9 cycles
Execution time = 9 x 7155 + 96604 = 160999
CVA-only saving: 758522 - 160999 = 597523
Speedup during loop executions = 758522/(758522- 597523) = 4.711 (perf. imp. = 0.7877)
Overall speedup = 2000000/(2000000-597523) = 1.426 (perf. imp. = 0.2987)

(iii) CVA/PVA executions
CVA/PVA saving: 604678 (PVA for loop1)
Speedup during loop executions = 758522/(758522- 604678) = 4.930 (perf. imp. = 0.7972)
Overall speedup = 2000000/(2000000-604678) = 1.433 (perf. imp. = 0.3022)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core overall: 1463233
IReq from core during loop executions: 7 x 89449 + 5 x 7155 = 661918

PVA-only executions:
IReq from core during PVA executions: 6 (setup code and vector inst.)x7155 + 1x96604 = 139534
IReq from core reduced = 661918 - 139534 = 522384
Normalized IReq from core during PVA executions = 139534/661918 = 0.2108
Normalized IReq from core overall = (1463233 - 522384)/1463233 = 0.6430

CVA-only executions:
IReq from core during CVA executions: 6 (setup code and vector inst.) x 7155 = 42930
IReq from core reduced = 661918 - 42930 = 618988
Normalized IReq from core during CVA executions = 42930/661918 = 0.0649
Normalized IReq from core overall = (1463233 - 618988)/1463233 = 0.5770

CVA/PVA executions:
IReq from core during CVA/PVA executions: 6 (setup code and vector inst.) x 7155 = 42930
IReq from core reduced = 661918 - 42930 = 618988
Normalized IReq from core during CVA/PVA executions = 42930/661918 = 0.0649
Normalized IReq from core overall = (1463233 - 618988)/1463233 = 0.5770

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6(setup code and vector inst.)x7155 + 1(essential inst)

= 42931
Ifetch from memory reduced = 661918 - 42931 = 618987

Table A.10.4: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.2108 0.0649 0.0649 0.6430 0.5770 0.5770



187
Normalized Ifetch from memory during PVA executions: 42931/661918 = 0.0649
Normalized Ifetch from memory overall = (1463233 - 618987)/1463233 = 0.5770

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory

CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.10.5: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

0.0649 0.0649 0.0649 0.0649 0.5770 0.5770 0.5770 0.5770



188
A.11 Benchmark “pocsag”
A.11.1Critical Loop 1

Estimated execution cycles = 46347 (see Table A.11.1)
Average number of iterations per invocation = 4557/147 = 31

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) +1(R1)

+ 1(exit) + 1(extra “mov” inst.) = 10 cycles
Total setup/exit costs = 10 x 147 + 1(M0 conflic) = 1471
cs-load saving: 6 x 2394 - 1471/2 = 13629
lp-ctl saving: 3 x 4410 + 2 x 147 - 1471/2 = 12789

(ii) CVA-Only executions
N.A.

(iii) CVA/PVA executions
Same as PVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A.

(v) IReq From Core
Base machinne:
IReq from core during loop executions:41559 (see Table A.11.1)

Table A.11.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Execution
Cycles

Number Inst.
Fetches

Using PVA Con-
struct

Using CVA
Construct

000002de     0e21 //; tst       r1,r2
000002e0 e80f //; bf 0x000002f0
000002e2 2419 //; subi r9, 1
000002e4 a606 //; ldb       r6,(r9)
000002e6 1767 //;  xor       r12,r6
000002e8 241a //; subi r10, 1
000002ea a606 //; ldb       r6,(r10)
000002ec 1767 //;  xor       r13,r6
000002ee 3e12 //;  lsri      r2,1
000002f0 0183 //; declt     r3
000002fa efec //; bf 0x000002de

4557
2x2163 + 2394

2394
2 x 2394

2394
2394

2 x 2394
2394
2394
4557

2x4410 + 147

4557
2x2163+2394

2394
2394
2394
2394
2394
2394
2397
4557

2x4410+147

mov r4, r1
PVA@L0,@L1,#5
tst r4,r2a

bf CONTa

xor       r12,r0
xor       r13,r1
CONT:
lsri      r2,1

Not
Vectorizable.

Total 46347 41559 - -

a Essential instructions

Table A.11.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

000002de
000002e0
000002f0
000002fa

target
bf
target
bf

4557
4557
4557
4557

-
00000300

-
000002de

-
2163 (47.5)

-
4410 (96.8)

-
2394 (52.5)

-
147 (3.23)



189
PVA-only executions:
IReq from core during PVA executions: 7 (setup code/vector inst.) x 147 + 5 x 4557 = 23814
CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 147 + 2(essential inst.)

+ 3 x 4557 (non-essential inst.) = 14702

PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 147 + 2(essential inst.)

+ 3 x 4 (non-essential inst.) = 1043

CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only with all inst. caching

A.2.2Critical Loop 2

Estimated execution cycles = 10 x 3033 + 11 x 1011 = 41451
Average number of iterations per invocation = 4044 x 1011 = 4

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 0
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(exit) = 7 cycles
Total setup/exit costs = 7 x 1011 + 0(M0 conflict) = 7077
lp-ctl saving: 3 x 3033 + 2 x 1011 - 7077 = 4044

(ii) CVA-Only executions
N. A.

(iii) CVA/PVA executions
Same as PVA-only executions

(iv) CVA Executions Using Various Sizes of TM

Table A.11.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

000003cc     1226 //;  mov       r6,r2
000003ce     0146 //;  zextb     r6
000003d0     1c16 //;  add       r6,r1
000003d2 a606 //; ldb r6,(r6) //not cs
000003d4     01b4 //;  decne     r4
000003d6     1c63 //;  add       r3,r6
000003d8     3e82 //;  lsri      r2,8
000003da     e7f8 //;  bt        0x000003cc

PVA #6
mov r6,r2
zextb r6
add       r6,r1
ldb r6,(r6)
add       r3,r6
lsri  r2,8

Not Vectorizable.

Table A.11.4: Profile For Critical Loop 2

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000356
0000036c

target
bt

4044
4044

-
00000356

-
3033 (75)

-
1011 (25)



190
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 9 x 3033 + 8 x 1011 = 35385
PVA-only executions:
IReq from core during PVA executions: 5 (setup code/vector inst.) x 1011 + 6 x 4044 = 29319
CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 5 (setup code/vector inst.) x 1011

+ 6 x 4044 (non-essential inst.) = 29319

PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 5 (setup code/vector inst.) x 1011

+ 6 x 4 (non-essential inst.) = 5079

CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only with all inst. caching.
--------------------------------------------------------------------------------------------------------

A.2.3Summary
Total number of cycles in loops: 46347 + 41451 = 87798 or 61.21%
Average number of iterations per invocation = (46347 x 31 + 41451 x 4)/87798 = 18.3

(i) PVA-Only executions
cs-load saving: 13629
lp-ctl Saving: 12789 + 4044 = 16833
Total saving: 13629 + 16833 = 30462
Speedup during loop executions = 87798/ (87798 - 30462) = 1.531 (perf. imp. = 0.3468)
Overall speedup: 143437/(143437 - 30462) = 1.270 (perf. imp. = 0.2126)

(ii) CVA-Only executions
Total cycle saving: 0
Speedup during loop executions = 1 (perf. imp. = 0.000)
Overall speedup = 1 (perf. imp. = 0.000)

(iii) CVA/PVA executions
Total cycle saving (PVA for loop1 and loop2) = 30462
Speedup during loop executions = 87798/ (87798 - 30462) = 1.531 (perf. imp. = 0.3468)

Table A.11.5: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 16833 0.1174

cs-load-oh 13629 0.0950

cs-store-oh 0 0

Total 30462 0.2124



191
Overall speedup: 143437/(143437 - 30462) = 1.270 (perf. imp. = 0.2126)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core overall: 147202
IReq from core during loop executions: 41559+ 35385 = 76944

PVA-only executions:
IReq from core reduced = 76944 - (23814 + 29319) = 23811
Normalized IReq from core during PVA executions = (23814 + 29319)/76944 = 0.6905
Normalized IReq from core overall = (147202 - 23811)/147202 = 0.8382

CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory reduced = 76944 - (14702 + 29319) = 32923
Normalized Ifetch from memory during PVA executions: (14702 + 29319)/76944 = 0.5721
Normalized Ifetch from memory overall = (147202 - 32923)/147202 = 0.7763

PVA-only with all inst. caching:
Ifetch from memory reduced = 76944 - (1043 + 1011) = 74890
Normalized Ifetch from memory during PVA executions: (1043 + 1011)/76944 = 0.0267
Normalized Ifetch from memory overall = (147202 - 74890)/147202 = 0.4912

CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only with all inst. caching.

Table A.11.6: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.6905 1.0000 0.6905 0.8382 1.0000 0.8382

Table A.11.7: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

 0.5721 0.0267 1.0000 0.0267 0.7763 0.4912 1.0000 0.4912



192
A.12 Benchmark “servo”
Cycles in Loops = 0; Total cycle saving: 0; % cycle saving: 0

Speedup during loop executions: N.A.

Overall speedup = 1.

Table A.11.8: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 0 0

cs-load-oh 0 0

cs-store-oh 0 0

Total 0 0

Table A.11.9: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table A.11.10: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000



193

, can be
A.13 Benchmark “summin”
A.13.1Critical Loop 1

This loop performs a vector operation described by C[i] = asri(i2,1), for i=1,2,3...50.
Estimated execution cycles = 11 x 1519 + 10 x 31 = 17019
Average number of iterations per invocation = 1550/31 = 50
TM needs not be used (although it could be used for power reason).

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8 cycles
Total setup/exit costs = 8x 31 + 1(M0 conflict) = 249
Cycles per iteration: 5
Cycles saving per iteration = 11 - 5 = 6 (3 for cs-store, 3 for lp-ctl)
cs-store saving: 3 x 1550 - 249/2 = 4526
lp-ctl saving: 3 x 1519 + 2 x 31 - 249/2 = 4495
PVA saving: 4526 + 4495 = 9021

(ii) CVA-Only executions
TM needs not be used in order to retain the same performance level. The two temporary vectors, T1 and T2
stored in M0 and M1, respectively (or in M1 and M0, respectively).
First CVA instructions:
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) + 1(tp) + 1(ts) - 1

+ 1(extra “mov” inst.) = 10
Second CVA instructions:
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2) + 1(exit) + 2(tp)

+ 0(ts) - 1 = 11
Third CVA instructions:
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exit) + 1(tp) + 0(ts) - 1

Table A.13.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

000002c2     1217 //;  mov       r7,r1
000002c4     0317 //; mul r7,r1 (2 cycles)
000002c6     2001 //;  addi      r1,1
000002c8     3a17 //;  asri      r7,1
000002ca     0d31 //;  cmplt     r1,r3
000002cc     9702 //;  stw       r7,(r2)
000002ce     2032 //;  addi      r2,4
000002d0     e7f8 //;  bt        0x000002c2

PVA @S, #4
mov r7,r1
mul r7,r1
addi      r1,1a

cs-store:
asri      r7,1a

movi r4,1
; T1[i] = i
CVA mov r4, @P,

add @P, r3, {r3,@S};
. . . . . . .
; T2[i] = T1[i] 2

CVA mul @L0, @L0, @S;
. . . . . .
; C[i] = asri(T2[i],1)
CVA asri @L0, 1, @S;

a. Essential instruction

Table A.13.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

000002c2
000002d0

target
bf

1550
1550

-
000002c2

-
1519 (98)

-
31 (2)



194
= 9
Total setup/exit costs = 10 + 11 + 9 = 30 cycles
Execution time = 30 x 31 + 1550 x 3 = 5580
CVA-only saving = 17019 - 5580 = 11439

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 9 x 1519 + 8 x 31 = 13919
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 31 + 5 x 1550 = 7936
CVA-only executions:
IReq from core during CVA executions: (6+8+7) (setup code/vector inst.) x 31 = 651
CVA/PVA executions: same as CVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 31 + 2(essential inst.)

+ 2 x 1550 (non-essential inst.) = 3288
PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 31 + 2(essential inst.)

+ 2 x 4 (non-essential inst.) = 196
CVA-only executions:
Ifetch from memory during CVA executions: (6+8+7) (setup code/vector inst.) x 31 = 651

CVA/PVA executions: same as CVA-only executions

A.13.2Critical Loop 2

Estimated execution cycles = 9 x 36456 + 8 x 744 = 334056

Table A.13.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

000002e0     1251 //;  mov       r1,r5
000002e2     1c71 //;  add       r1,r7
000002e4     1276 //;  mov       r6,r7
000002e6     2007 //;  addi      r7,1
000002e8     3c26 //;  lsli      r6,2
000002ea     0d47 //;  cmplt     r7,r4
000002ec     0561 //;  sub       r1,r6
000002ee     e7f8 //;  bt        0x000002e0

PVA  #7
mov       r1,r5
add r1,r7
mov       r6,r7
addi r7,1
lsli r6,2
sub r1,r6

Not vectorizable

Table A.13.4: Profile For Critical Loop 2

Address Entry Type Execution
Counts

Branch Tar-
get

Taken count
(%)

Not taken
count (%)

000002e0
000002ee

target
bf

37200
37200

-
000002e0

-
36456 (98)

-
744 (2)



195
Average number of iterations per invocation = 37200/744 = 50

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 0
Setup/exit costs per invocation = 1(CIR) + 2(instr. decode) + 1(exit) = 4 cycles
lp-ctl saving: 3 x 36456 + 2 x 744 - 4 x 744 = 107880
Total saving = 107880

(ii) CVA-Only executions
N.A.

(iii) CVA/PVA executions
Same as PVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 9 x 36456 + 8 x 744 = 334056
PVA-only executions:
IReq from core during PVA executions: 3 (setup code/vector inst.) x 744 + 6 x 37200 = 225432
CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 3 (setup code/vector inst.) x 744 +

+ 6 x 37200 (non-essential inst.) = 225432
PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 3 (setup code/vector inst.) x 744

+ 6 x 4 (non-essential inst.) = 2256
CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only with all inst. caching.

A.13.3Critical Loop 3

Table A.13.5: Vertorizing Critical Loop 3

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000302     8402 //;  ldw       r4,(r2)
00000304     2032 //;  addi      r2,4
00000306     0d34 //;  cmplt     r4,r3
00000308     0243 //;  movt      r3,r4
0000030a     01b1 //;  decne     r1
0000030c     e7fa //;  bt        0x00000302

PVA  @L0, #2
cmplt     r0,r3a

movt      r3,r0a

Not vectorizable

a. Essential instruction



196
This loop finds the minimum element of a vector A, min(A[i]).
Estimated execution cycles: 8 x 60000 + 7 x 10000 = 550000
Average number of iterations per invocation = 70000/10000 = 7

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8 cycles
Total setup/exit costs = 8x 10000 + 1(M0 conflict) = 80001
cs-load saving: 3 x 70000 - 80001/2 = 170000
lp-ctl saving: 3 x 60000 + 2 x 10000 - 80001/2 = 160000
Total saving: 170000 + 160000 = 330000

(ii) CVA-Only executions
N.A.

(iv) CVA Executions Using Various Sizes of TM
N.A.

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 7 x 60000 + 6 x 10000 = 480000
PVA-only executions:
IReq from core during PVA executions: 5 (setup code/vector inst.) x 10000 + 2 x 70000 = 190000
CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 5 (setup code/vector inst.) x 10000 + 2(essential inst.) = 50002

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only with all inst. caching.

A.13.4Critical Loop 4

Table A.13.6: Profile For Critical Loop 3

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000302
0000030c

target
bf

70000
70000

-
00000302

-
60000 (85.7)

-
10000 (14.3)

Table A.13.7: Vertorizing Critical Loop 4

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

0000033c     910e //;  stw       r1,(r14)
0000033e     203e //;  addi      r14,4
00000340     01b2 //;  decne     r2
00000342     e7fc //;  bt        0x0000033c

PVA  @S, #1
cs-store:
mov r1,r1a

CVA mov r1,@S

a. Essential instruction



197
This loop performs vector initialization, C[i] = r1, for some scalar r1.
Estimated execution cycles: 6 x 37169 + 5 x 31 = 223169
Average number of iterations per invocation = 37200/31 = 1200

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8 cycles
Total setup/exit costs = 8 x 31 + 1 = 249
cs store saving: 2 x 37200 - 249/2 = 74276
lp-ctl saving: 3 x 37169 + 2 x 31 - 249/2 = 111445
PVA-only saving = 74276 + 111445 = 185721

(ii) CVA-Only executions
Since tp=1, ts=0, CVA saving = PVA saving = 185721

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 5 x 37169 + 4 x 31 = 185969
PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 31 + 1 x 37200 = 37386
CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 31 = 186
CVA/PVA executions: same as CVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 31 + 1(essential inst.) = 187

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.
CVA-only executions: 6 x 31 = 186
CVA/PVA executions: 6 x 31 = 186

Table A.13.8: Profile For Critical Loop 4

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

0000033c
00000342

target
bf

37200
37200

-
0000033c

-
37169 (99.9)

-
31 (0.1)



198
A.13.5Critical Loop 5

This loop performs a vector operation described by, B[i] = r3 *A[i]+B[i], for some scalar r3.
Estimated execution cycles:14 x 34751 + 13 x 1510 = 506144
Number of iterations per invocation (fixed) = 24

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 2
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2)

+ 1(exit) = 10
Total setup/exit costs = 10 x 1510 + 2 = 15102
Saving per iteration = 15 - 5 = 10 (3 for lp-ctl; 4 for cs-load; 3 for cs-store)
cs-load saving: 4 x 36261 - 15102/3 = 140010
cs-store saving: 3 x 36261 - 15102/3 = 103749
lp-ctl saving: 3 x 34751 + 2 x 1510 - 15102/3 = 102239
PVA-only savng: 140010 + 103749+ 102239 = 345998

(ii) CVA-Only executions
This loop is CVA vectorizable using vector duplication on vector B (see Section 6.10 on page 108).
Loop 5 is an inner loop of a doubly nested loop. The profile of this doubly nested loop is shown below.

The global pointer to vector B can be updated once for each outer loop invocation.
Thus overhead for vector duplications = 30 invocations x 7 cycles/invocation = 210 cycles.

Table A.13.9: Vertorizing Critical Loop 5

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000358     860d //;  ldw       r6,(r13)
0000035a     870e //;  ldw       r7,(r14)
0000035c 0336 //; mul  r6,r3 (2 cycle)
0000035e     1c67 //;  add       r7,r6
00000360     01b5 //;  decne     r5
00000362     970e //;  stw       r7,(r14)
00000364     203e //;  addi      r14,4
00000366     203d //;  addi      r13,4
00000368     e7f7 //;  bt        0x00000358

PVA @L0,@L1,@S, #4
mov r6, r3a

mul r6, r0a

cs-store:
add r6, r1a

mov r5, r3
CVA mul @L0, r5, @P,

add @P, @L1, @S;

a. Essential instruction

Table A.13.10: Profile For Critical Loop 5

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000358
00000368

target
bt

36261
36261

-
00000358

-
34751 (95.8)

-
1510 (4.16)

Table A.13.11: More Profile For Critical Loop 5

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000346
00000358
00000368
0000036e

target
target
bt
bt

1510
36261
36261
1510

-
-

00000358
00000346

-
-

34751 (95.8)
1480 (98)

-
-

1510 (4.16)
30 (1.99)



199

cutions
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exit) + 2(tp) + 1(ts)
- 1 + 1(extra “mov” inst.) = 12 cycles

Total setup/exit costs = 12
Vector length per invocation = 24. No strip-mining of TM necessary.
Execution time: 210(overheads for vector duplication) + 12 x 1510 + 36261 = 54591
CVA-only saving: 506144 - 54591 = 451553

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
No TM:
Total setup/exit costs = 12
2 reads and 1 write are needed to produce 1 result. Not including vector setup, the throughput rate for CVA exe
is one result every 2 cycles, due to M0 and/or M1 conflicts.
Execution time: 12 x 1510 + 36261 x 2 = 90642
CVA saving: 506144 - 90642 = 415502

In each invocation, vector length, n = 24 (or 96 bytes).
For TM of size 64 bytes: needs strip-mining
Execution time per invocation: 24 + (n/m+1) x (43 + CCVA) + n = 24 + (24/16+1)x(43+12) + 24 = 158
Total execution time = 158 x 1510 + 390(vector duplications) = 238970 (> 90642). TM not used.

For TM of size 128 bytes or larger: no strip-mining is necessary.
CVA saving = 451373

(v) IReq From Core
Base machinne:
IReq from core during loop executions: 10 x 34751 + 9 x 1510 = 361100
PVA-only executions:
IReq from core during PVA executions: 8 (setup code/vector inst.) x 1510 + 3 x 36261 = 120863
CVA-only executions:
IReq from core during CVA executions: 8 (setup code/vector inst.) x 1510 = 12080
CVA/PVA executions: same as CVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 8 (setup code/vector inst.) x 1510 + 3(essential inst.) = 12083
PVA-only with all inst. caching: same as PVA-only with essential inst. caching.
CVA-only executions: 8 (setup code/vector inst.) x 1510 = 12080
CVA/PVA executions: 8 (setup code/vector inst.) x 1510 = 12080

Table A.13.12: CVA Executions Using Various Sizes of TM

TM Sizes
(bytes)

Using TM? Total Exe.
Time

CVA-only Cycle
Saving

Speedups during
executions of loop 5

0 N 90642 415502 5.584

64 N 90642 415502 5.584

128 Y 54591 451553 9.272

256 Y 54591 451553 9.272

512 Y 54591 451553 9.272

1024 Y 54591 451553 9.272



200
----------------------------------------------------------------------------------------------------

A.13.6Summary
Total execution cycles = 2000000
Total cycles in loops = 17019 + 334056 + 550000 + 223169 + 506144 = 1630388 or 81.52%
Average number of iterations per invocation = (50 x 17019 + 50 x 334056 + 7 x 550000

+ 1200 x 223169 + 24.01 x 542405)/1666649 = 173.9

(i) PVA-Only executions
cs-load saving: 170000 (loop3) + 140010(loop5) = 310010
cs-store saving: 4526(loop1) + 74276 (loop4) + 103749(loop5) = 182551
lp-ctl saving: 4495(loop1) + 107880 (loop2) + 160000 (loop3) + 111445 (loop4) + 102239(loop5)

= 486059
Total saving = 310010 + 182551 + 486059 = 978620
Speedup during loop executions =1630388 /(1630388-978620) = 2.501 (perf. imp. = 0.6002)
Overall speedup = 2000000/(2000000-978620) = 1.958 (perf. imp. = 0.4893)

Total cycles in loops = 17019 + 334056 + 550000 + 223169 + 506144 = 1630388 or 81.52%

(ii) CVA-Only executions
Number of cycles in loops = 17019(loop1) + 223169 (loop4) + 506144(loop5) = 746332
Total saving: 11439(loop1) + 185721(loop4) + 451553(loop5) = 648713
Speedup during loop executions =746332 /(746332-648713) = 7.645 (perf. imp. = 0.8692)
Overall speedup = 2000000/(2000000-648713) = 1.480 (perf. imp. = 0.3244)

(iii) CVA/PVA executions
Total saving: 11439 (CVA for loop1) + 107880 (PVA for loop2) + 330000 (PVA for loop3) +

185721 (PVA or CVA for loop4) + 451553 (CVA for loop5) = 1086593
Speedup during loop executions =1630388/(1630388-1086593) = 2.998 (perf. imp. = 0.6665)
Overall speedup = 2000000/(2000000-1086593) = 2.190 (perf. imp. = 0.5433)

(iv) CVA Executions Using Various Sizes of TM
No TM or TM is 64 bytes (not used).
CVA-only executions:
Total saving: 11439(loop1) + 185721(loop4) + 415502(loop5) = 612662
Speedup during loop executions =746332 /(746332-612662) = 5.583 (perf. imp. = 0.8209)
Overall speedup = 2000000/(2000000-612662) = 1.442 (perf. imp. = 0.3065)

CVA/PVA executions:
Total saving: 11439 (CVA for loop1) + 107880 (PVA for loop2) + 330000 (PVA for loop3) +

185721 (PVA or CVA for loop4) + 415502 (CVA for loop5) = 1050542
Speedup during loop executions =1630388/(1630388-1050542) = 2.812 (perf. imp. = 0.6444)

Table A.13.13: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 486059 0.2430

cs-load-oh 310010 0.1550

cs-store-oh 182551 0.0913

Total 978620 0.4893



201
Overall speedup = 2000000/(2000000-1050542) = 2.106 (perf. imp. = 0.5252)

(v) IReq From Core
Base machinne:
IReq from core overall: 1532825
IReq from core during loop executions: 13919+334056+480000+185969+361100 = 1375044

PVA-only executions:
IReq from core during PVA executions:

7936(loop1)+225432(loop2)+190000(loop3)+37386(loop4)+120863(loop5)=581617
IReq from core reduced = 1375044 - 581617 = 793427
Normalized IReq from core during PVA executions = 581617/1375044 = 0.4230
Normalized IReq from core overall = (1532825 - 793427)/1532825 = 0.4824

CVA-only executions:
IReq from core during loop executions: 7936(loop1)+37386(loop4)+120863(loop5)=166185
IReq from core during CVA executions: 651(loop1)+186(loop4)+12080(loop5) = 12917
IReq from core reduced = 166185 - 12917 = 153268
Normalized IReq from core during CVA executions = 12917/166185 = 0.0777
Normalized IReq from core overall = (1532825 - 153268)/1532825 = 0.9000

CVA/PVA executions:
IReq from core during CVA/PVA executions:

651(loop1)+225432(loop2)+190000(loop3)+186(loop4)+12080(loop5) = 428349
IReq from core reduced = 1375044 - 428349 = 946695
Normalized IReq from core during CVA/PVA executions = 428349/1375044 = 0.3115
Normalized IReq from core overall = (1532825 - 946695)/1532825 = 0.3854

Table A.13.14: CVA Executions Using Various Sizes of TM

TM Sizes
(bytes)

CVA-Only Executions CVA/PVA Executions

Total Cycle
Saving

Speedup
DuringLoop
Executions

Overall
Speedup

Total Cycle
Saving

Speedup
DuringLoop
Executions

Overall
Speedup

0 612662 5.583 1.442 1050542 2.812 2.106

64 612662 5.583 1.442 1050542 2.812 2.106

128 648713 7.645 1.480 1086593 2.998 2.190

256 648713 7.645 1.480 1086593 2.998 2.190

512 648713 7.645 1.480 1086593 2.998 2.190

1024 648713 7.645 1.480 1086593 2.998 2.190

Table A.13.15: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.4230 0.0777 0.3115 0.4824 0.9000 0.3854



202
(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during loop executions: 3288(loop1) + 225432(loop2) + 50002(loop3) + 187(loop4)

+ 12083(loop5) = 290992
Ifetch from memory reduced = 1375044 - 290992 = 1084052
Normalized Ifetch from memory during PVA executions: 290992/1375044 = 0.2116
Normalized Ifetch from memory overall = (1532825 - 1084052)/1532825 = 0.2928

PVA-only with all inst. caching:
Ifetch from memory during loop executions: 3288(loop1) + 2256(loop2) + 50002(loop3) + 187(loop4)

+ 12083(loop5) = 67816
Ifetch from memory reduced = 1375044 - 67816 = 1307228
Normalized Ifetch from memory during PVA executions: 67816/1375044 = 0.0493
Normalized Ifetch from memory overall = (1532825 - 1307228)/1532825 = 0.1472

CVA-only executions:
Ifetch from memory during loop executions: 651(loop1) + 186(loop4) + 12080(loop5) = 12917
Ifetch from memory reduced = 166185 - 12917 = 153268
Normalized Ifetch from memory during PVA executions: 12917/166185 = 0.0777
Normalized Ifetch from memory overall = (1532825 - 153268)/1532825 = 0.9000

CVA/PVA executions:
Ifetch from memory during loop executions: 651(loop1) + 2256(loop2) + 50002(loop3) + 186(loop4)

+ 12080(loop5) = 65175
Ifetch from memory reduced = 1375044 - 65175 = 1309869
Normalized Ifetch from memory during PVA executions: 65175/1375044 = 0.0474
Normalized Ifetch from memory overall = (1532825 - 1309869)/1532825 = 0.1455

Table A.13.16: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

 0.2116 0.0493 0.0777 0.0474 0.2928 0.1472 0.9000 0.1455



203
A.14 Benchmark “ucbqsort”
A.14.1Critical Loop 1

This loop performs a vector move, C[i] = A[i].
Estimated execution cycles = 9x 378 + 8 x 297 = 5778 or 0.58% of total execution time.
Average number of iterations per invocation = 675/297 = 2.27

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)

+ 1(exit) = 9 cycles
Total setup/exit costs = 9 x 297 + 1(M0 conflict) = 2674
cs-load saving: 3 x 675 - 2674/3 = 1134
cs-store saving: 2 x 675 - 2674/3 = 459
lp-ctl saving: 3 x 378 + 2 x 297 - 2674/3 = 837
Total saving: 1134 + 459 + 837 = 2430
Speedup during loop executions = 5778/(5778 - 2430) = 1.726 (perf. imp. = 0.4206)
Overall speedup = 1017501/(1017501-2430) = 1.002 (perf. imp. = 0.0020)

(ii) CVA-Only executions
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)

+ 1(exit) + 1(tp) + 0(ts) -1 = 9 cycles

Table A.14.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000482     a703 //;  ldb       r7,(r3)
00000484     b702 //;  stb       r7,(r2)
00000486     1232 //;  mov       r2,r3
00000488     0593 //;  sub       r3,r9
0000048a     0cc3 //;  cmphs     r3,r12
0000048c     e7fa //;  bt        0x00000482

PVA  @L0, @S, #1
cs-store:
mov r0, r0a

CVA mov @L0,@S;

a. Essential instruction

Table A.14.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000482
0000048c

target
bt

675
675

-
00000482

-
378 (56)

-
297 (44)

Table A.14.3: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 837 0.0008

cs-load-oh 1134 0.0011

cs-store-oh 459 0.0005

Total 2430 0.0024



204
Execution time = 9 x 297 + 675 = 3348
CVA saving = 5778 - 3348 = 2430
Speedup during loop executions = 5778/(5778 - 2430) = 1.726 (perf. imp. = 0.4206)
Overall speedup = 1017501/(1017501-2430) = 1.002 (perf. imp. = 0.0020)

(iii) CVA/PVA executions
Total saving: 2430 (using CVA or PVA)
Speedup during loop executions = 5778/(5778 - 2430) = 1.726 (perf. imp. = 0.4206)
Overall speedup = 1017501/(1017501-2430) = 1.002 (perf. imp. = 0.0020)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core overall: 804662
IReq from core during loop executions: 7 x 378 + 6 x 297 = 4428

PVA-only executions:
IReq from core during PVA executions: 7 (setup code/vector inst.) x 297 + 1 x 675 = 2754
IReq from core reduced = 4428 - 2754 = 1674
Normalized IReq from core during PVA executions = 2754/4428 = 0.6220
Normalized IReq from core overall = (804662 - 1674)/804662 = 0.9979

CVA-only executions:
IReq from core during CVA executions: 7 (setup code/vector inst.) x 297 = 2079
IReq from core reduced = 4428 - 2079 = 2349
Normalized IReq from core during CVA executions = 2079/4428 = 0.4695
Normalized IReq from core overall = (804662 - 2349)/804662 = 0.9971

CVA/PVA executions: same as CVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 7(setup code and vector inst.)x297 + 1(essential inst) = 2080
Ifetch from memory reduced = 4428 - 2080 = 2348
Normalized Ifetch from memory during PVA executions: 2080/4428 = 0.4697
Normalized Ifetch from memory overall = (804662 - 2348)/804662 = 0.9971

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory

CVA/PVA executions:

Table A.14.4: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.6220 0.4695 0.4695 0.9979 0.9971 0.9971



205
IReq from core = Ifetch from memory

Table A.14.5: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

0.4697 0.4697 0.4695 0.4695 0.9971 0.9971 0.9971 0.9971



206
A.15 Benchmark “v42bis”
A.15.1Critical Loop 1

This loop performs vector initialization, C[i] = r5, for some scalar r5.
Estimated execution cycles = 6 x 8270 + 5 x 1 = 49625 or 2.48% of total execution time.
Average number of iterations per invocation = 8271

(i) PVA-Only executions
Stall cycles due to M0 conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 1 + 1(M0 conflict) = 9
cs-store saving: 2 x 8271 - 9/2 = 16538
lp-ctl saving: 3 x 8271 + 2 x 1 - 9/2 = 24811
Total saving = 16538 + 24811 = 41349
Speedup during loop executions = 49631/(49631- 41349) = 5.993 (perf. imp. = 0.8331)
Overall speedup = 2000000/(2000000-41349) = 1.0211 (perf. imp. = 0.0201)

(ii) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)

+ 1(tp) + 0(ts) - 1 = 8
Execution time = 8 x 1 + 8271 = 8279
CVA saving = 49625 - 8279 = 41346
Speedup during loop executions = 49631/(49631- 41346) = 5.991 (perf. imp. = 0.8331)
Overall speedup = 2000000/(2000000-41346) = 1.021(perf. imp. = 0.0201)

Table A.15.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construct

00000a0a     950e //;  stw       r5,(r14)
00000a0c     203e //;  addi      r14,4
00000a0e     01b6 //;  decne     r6
00000a10     e7fc //;  bt        0x00000a0a

PVA  @S, #1
cs-store:
mov r5, r5a

CVA mov r5, @S;

a. Essential instruction

Table A.15.2: Profile For Critical Loop 1

Address Entry Type Execution
Counts

Branch
Target

Taken count
(%)

Not taken
count (%)

00000a0a
00000a10

target
bt

8271
8271

-
00000a0a

-
8270 (100)

-
1 (0.0121)

Table A.15.3: Performance Improvement for PVA-Only Executions

Types of Overhead
Eliminated

Cycle Saving % Cycle Saving

lp-ctl-oh 24811 0.0124

cs-load-oh 0 0

cs-store-oh 16538 0.0083

Total 41349 0.0207



207
(iii) CVA/PVA executions
Total saving = 41346 (use CVA or PVA)
Speedup during loop executions = 49631/(49631- 41346) = 5.991

Overall speedup = 2000000/(2000000-41346) = 1.021

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
IReq from core overall: 1660493
IReq from core during loop executions: 5 x 8270 + 4 x 1 = 41354

PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 1 + 8271 = 8277
IReq from core reduced = 41354 - 8277 = 33077
Normalized IReq from core during PVA executions = 8277/41354 = 0.2001
Normalized IReq from core overall = (1660493 - 33077)/1660493 = 0.9800

CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 1 = 6
IReq from core reduced = 41354 - 6 = 41348

Normalized IReq from core during CVA executions = 6/41354 = 1.45x10-4

Normalized IReq from core overall = (1660493 - 41348)/1660493 = 0.9751
CVA/PVA executions: same as CVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6(setup code and vector inst.)x1 + 1(essential inst) = 7
Ifetch from memory reduced = 41354 - 7 = 41353

Normalized Ifetch from memory during PVA executions: 7/41354 = 1.693x10-4

Normalized Ifetch from memory overall = (1660493 - 41354)/1660493 = 0.9751

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only and CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.15.4: Normalized IReq From Core

During Loop Executions Overall

PVA-Only
Executions.

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only
Executions

CVA-Only
Executions

CVA/PVA
Executions

0.2001 1.45x10-4 1.45x10-4 0.9800 0.9751 0.9751

Table A.15.5: Normalized IFetch From Memory

During Loop Executions Overall

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

PVA-Only -
essential

inst. caching

PVA-Only -
all inst.
caching

CVA-Only
Executions

CVA/PVA
Executions

1.693x10-4 1.693x10-4 1.45x10-4 1.45x10-4 0.9751 0.9751 0.9751 0.9751



208

BIBLIOGRAPHY



igital

al,”

nize
ry

ches

,”
BIBLIOGRAPHY

[Almasi89] G. Almasi and A. Gottlieb,Highly Parallel Computing, The Benjamin/
Cummings Pub. Co. Inc., Redwood City, CA, 1989.

[ALTIVEC98] AltiVec: The Programming Environments Manual. Motorola Inc., 1998.

[ARM95] An Introduction to Thumb, Advanced RISC Machines Ltd., March 1995.

[Bajwa97] R. S. Bajwa, N. Schumann, H. Kojima, “Power Analysis Of A 32-Bit RISC
Microcontroller Integrated With A 16-bit DSP,”Proc. IEEE International
Symposium on Low Power Electronics and Design, August 1997.

[Bellas98] N. Bellas, I. Hajj and C. Polychronopoulos, “A New Scheme for I-Cache
energy reduction in High-Performance Processors,”Proc. IEEE Power Driven
Microarchitecture Workshop, Barcelona, Spain, 1998.

[Bellas99] N. Bellas, I. Hajj, C. Polychronopoulos and G. Stamoulis, “Energy and
Performance Improvements in Microprocessor Design Using a Loop Cache,”Proc.
International Conference on Computer Design, Austin, Texas, October 1999.

[Chandrakasan92] A. Chandrakasan, S. Sheng, R. Brodersen, “Low-Power CMOS D
Design,”IEEE Journal of Solid-State Circuits, April 1992.

[Chen92] William Chen, Roger Bringmann, Scott Mahlke, Richard Hank and James
Sicolo, “An Efficient Architecture for Loop Based Data Preloading,”Proc. IEEE
International Symposium on Microarchitecture, 1992.

[Cray1] Cray Research, Inc., “Cray-1 Computer System Hardware Reference Manu
Bloomington, MN, pub. no. 2240004, 1967.

[CRUSOE00] “Transmeta Breaks the Silence, Unveils Smart Processor to Revolutio
Mobile Internet Computing”, company press release, Transmeta Corp., Janua
19th, 2000.

[Ditzel87] D. Ditzel and H. McLellan, “Branch Folding in the CRISP Microprocessor:
Reducing Branch Delay to Zero,”Proc. IEEE International Symposium on
Computer Architecture, 1987.

[DSP56654] DSP56654 User’s Manual, Motorola Incorp., 1999.

[Ghose99] K. Ghose and M. Kamble, “Reducing Power in Superscalar Processor Ca
Using Subbanking, Multiple Line Buffers and Bit-Line Segmentation,”Proc. IEEE
International Symposium on Low Power Electronics and Design, San Diego, CA,
1999.

[Horowitz94] M. Morowitz, T. Indermaur and R. Gonzalez, “Low-Power Digital Design
Proc. IEEE International Symposium on Low Power Electronics, October, 1994.
209



r/

at

,”

ffer

,”
[Hwang84] K. Hwang and F. A. Briggs,Computer Architecture and Parallel Processing,
McGraw-Hill Book Company, New York, NY, 1984.

[Hwang93] K. Hwang,Advanced Computer Architecture: Parallelism, Scalability,
Programmability, McGraw-Hill Book Company, New York, NY, 1993.

[IA64] IA-64 Application Developer’s Architecture Guide, Intel Corporation, 1999.

[IDEN99] “Motorola Introduces i500plus’s Multi-Service Digital Wireless Phone -
Affordable WML-Compliant Phone with Two-Way Radio, Paging and Internet
Capabilities,” company press release, Motorola Incorp., August 2nd, 1999.

[Jouppi89] Norman P. Jouppi, Jonathan Bertoni and David W. Wall, “A Unified Vecto
Scalar Floating-Point Architecture,” Research Report 89/8, Western Research
Laboratory, Palo Alto, CA, July 1989.

[Kin97] J. Kin, M. Gupta and W. Mangione-Smith, “The Filter Cache: An Energy
Efficient Memory Structure,”Proc. IEEE International Symposium on
Microarchitecture, 1997.

[Kiuchi96] Atsushi Kiuchi and Tetsuya Nakagawa, “System with Loop Buffer And Repe
Control Circuit Having Stack For Storing Control Information,”US Patentnumber
5,579,493, November 26th, 1996.

[Kissell97] Kissell,MIPS16: High-density MIPS for the Embedded Market. Silicon
Graphics MIPS Group, 1997.

[Kozuch94] M. Kozuch and A. Wolfe, “Compression of Embedded System Programs
Proc. IEEE International Conference on Computer Design, 1994.

[Lee84] J. Lee and A. J. Smith, “Branch Prediction Strategies and Branch Target Bu
Design,”IEEE Computer, 1984.

[Lee99a] Lea Hwang Lee, Bill Moyer and John Arends, “Instruction Fetch Energy
Reduction Using Loop Caches for Embedded Applications With Small Tight
Loops,”Proc. IEEE International Symposium on Low Power Electronics and
Design, San Diego, CA, 1999.

[Lee99b] Lea Hwang Lee, Jeff Scott, Bill Moyer and John Arends, “Low-Cost Branch
Folding for Embedded Applications with Small Tight Loops,”Proc. IEEE
International Symposium on Microarchitecture, Haifa, Isreal, 1999.

[Lee99c] Lea Hwang Lee, “Low-Cost Embedded Program Loop Caching - Revisited
University of Michigan Technical Report CSE-TR-411-99, Department of EECS,
University of Michigan, Ann Arbor, December 18th, 1999.

[Lee99d] Lea Hwang Lee, Jeff Scott, Bill Moyer and John Arends, “Data Processor
System Having Branch Control and Method Thereof,”European patentnumber
210



apan,

n

g

 24th,

d

e

,”

2nd,
EP0965910_A2, December, 22nd, 1999. Patent also pending in US, China, J
Taiwan, Korea; filed June 19th 1998, Motorola Incorp.

[Lee99e] Lea Hwang Lee and Bill Moyer, “Data Processing System Having Instructio
Folding and Method Thereof,”US patent pending, filed January 4th, 2000,
Motorola Incorp.

[Lee99f] Lea Hwang Lee, “Pseudo-Vector Machine and Method Thereof,”US patent
pending, filed January 11th, 2000, Motorola Incorp.

[Lefurgy97] C. Lefurgy, P. Bird, I. Chen and T. Mudge, “Improving Code Density Usin
Compression Techniques,”Proc. IEEE International Symposium on
Microarchitecture, December, 1997.

[LEONIA00] “Leonia to Launch Worlds First Secure WebBank Services for WAP
Phones”, company press release, Leonia Coporation Bank, Finland, January
2000.

[Lexra99] K. Yarlagadda, “Lexra Adds DSP Extensions,”Microprocessor Report, vol. 13,
no. 11, August 23th, 1999.

[MCORE98]M•CORE Reference Manual, Motorola Inc., 1998.

[Martin99] Thomas Martin and Daniel Siewiorek, “The Impact of Battery Capacity an
Memory Bandwidth on CPU Speed-Setting: A Case Study,”Proc. IEEE
International Symposium on Low Power Electronics and Design, San Diego, CA,
1999.

[McKee95a] S. Mckee and W. Wulf, “Access Ordering and Memory-Conscious Cach
Utilization,” Proc. Symp. on High Performance Computer Architecture, Raleigh,
NC, January 1995.

[McKee95b] S. McKee, “Maximizing Memory Bandwidth for Streamed Computations
Ph.D. Thesis, Dept. of Computer Sc., University of Virginia, May 1995.

[Moyer98] Bill Moyer and John Arends, “RISC Gets Small,”Byte Magazine, vol. 23, No.
2, February 1998.

[Moyer99a] Bill Moyer, Lea Hwang Lee and John Arends, “Data Processing System
Having A Cache And Method Thereof,”US Patent number 5,893,142, April 6th,
1999.

[Moyer99b] Bill Moyer, Lea Hwang Lee and John Arends, “Distributed Tag Cache
Memory System And Method For Storing Data In The Same,”US Patent number
5,920,890, July 6th, 1999.

[NEOPOINT99a] “Neopoint Unveils The Neopoint 1600 Dual Mode Smartphone At
PCS’99 In New Orleans”, company press release, Neopoint Inc., September 2
211



-

ld
,

t
tober

ia,

w-

l

-1,”
1999.

[NEOPOINT99b] “Neopoint Inc. Launches Industry’s Most Comprehensive Location
Based Smart-Wireless Information Service - myAladdin.com”, company press
release, Neopoint Inc., September 2nd, 1999.

[PALMVII98] “3Com Announces the Palm VII Connected Organizer, The First Handhe
Solution for Out-of-the-box Wireless Internet Access”, company press release
3Com Corporation, December 2nd, 1998.

[PALMVII99] “Nokia and Palm Computing Ally to Develop a New Pen-based Produc
Category for Smart Phones”, company press release, 3Com Corporation, Oc
13th, 1999.

[Patterson96] David Patterson and John Hennessy,Computer Architecture: A Quantitative
Approach, second edition, Morgan Kaufmann Pub. Inc., San Francisco, Californ
1996.

[PowerPC98]PowerPC 604e RISC Microprocessor User’s Manual, IBM
Microelectronics/Motorola Inc., 1998.

[Scott98] Jeff Scott, Lea Hwang Lee, John Arends and Bill Moyer, “Designing the Lo
Power M•CORE Architecture,”Proc. IEEE Power Driven Microarchitecture
Workshop, Barcelona, Spain, June 1998.

[Scott99a] Jeff Scott, Lea Hwang Lee, Bill Moyer and John Arends, “Assembly-Leve
Optimizations for the M-CORE M3 Processor Core,”International Workshop on
Compiler and Architecture Support for Embedded Systems, Washington, DC,
October 1999.

[Scott99b] Jeff Scott, Lea Hwang Lee, Ann Chin, John Arends and Bill Moyer,
“Designing the M•CORE M3 CPU Architecture,”Proc. IEEE International
Conference on Computer Design, Austin, Texas, October 1999.

[Segars95] S. Segars, “Panel Discussion: where does the power go?”International
Symposium on Low Power Design, Dana Point Resort, April 1995.

[Smith88] James E. Smith and S. D. Klinger, “Performance of the Astronautics ZS-
Central Processor,” Astronautics Corporation of America, March 1988.

[Smith89] James E. Smith, “Dynamic Instruction Scheduling and the Astronautics ZS
Computer, vol. 22, no. 7, pp. 21-35, 1989.

[SHARC97]ADSP-2106x SHARC User’s Manual, Analog Devices Inc., 1997.

[Smith91] J. E. Smith, “A Study of Branch Prediction Strategies,”Proc. International
Symposium on Computer Architecture, 1991.
212



nce
r

 and

stor

n

ded
[StarCore98] Ole Wolf and Jeff Bier, “StarCoreTM Launches First Architecture,”
Microprocessor Report, vol. 12, no. 14, October 26th, 1998.

[Su95] C. Su and A. M. Despain, “Cache Design Trade-offs for Power and Performa
Optimization: A Case Study,”Proc. IEEE International Symposium on Low Powe
Design, 1995.

[SuperH98]SuperH SH-4 Hardware Manual, Hitachi Inc., 1998.

[Surampudi99] S. Surampudi, “Advanced Battery Systems: Chemistry, Construction
Characteristics,” keynote address,IEEE International Symposium on Low Power
Electronics and Design, San Diego, CA, 1999.

[Thompson98] Scott Thompson, Paul Packan and Mark Bohr, “MOS Scaling: Transi
Challenges for the 21st Century,” Intel Technical Journal, third quarter, 1998.

[TMS320C3x]TMS320C3x User’s Guide, Texas Instruments Inc., 1997.

[TRICORE97]TriCore Architecture Manual, Siemens Incorp., 1997.

[Turley98] Jim Turley, “M•CORE M300 Gain Poise, Performance, Second-Generatio
Motorola Core Enhances Math Ability, Branch Handling,”Microprocessor Report,
vol. 12, no. 16, November 7th, 1998.

[Wolfe92] A. Wolfe and A. Chanin, “Executing Compressed Programs on an Embed
RISC Architecture,”Proc. IEEE International Symposium on Microarchitecture,
1992.

[Wulf92] W. Wulf, “Evaluation of the WM Architecture,”IEEE Proc. Int’l Symp. of
Computer Architecture, Gold Coast, Australia, 1992.
213


	Pseudo-Vector Machine For Embedded Applications
	by
	Lea Hwang Lee
	A dissertation submitted in partial fulfillment of the requirements for the degree of
	Doctor of Philosophy
	(Computer Science and Engineering)
	at the
	The University of Michigan
	2000
	For their unfailing care and support.

	ACKNOWLEDGEMENTS
	PREFACE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	FREQUENTLY USED M-CORE INSTRUCTIONS
	Trademarks
	Chapter.pdf
	Chapter 1
	Introduction: Low-Cost, Low-power Designs for embedded applications
	1.1 The World Of Mobile Computing
	1.2 Important Characteristics Of Mobile Systems
	1.2.1 Alternate Operating Modes
	1.2.2 Performance vs. Instantaneous Power

	1.3 Execution Modes For Mobile Systems
	1.4 Pseudo-Vector Machine - An Architectural Overview
	1.5 The Strength of Vector Processing
	1.6 Vector Processing vs. Pseudo-Vector Processing
	1.7 The Basic Framework For This Dissertation
	1.8 Profile-Based Performance Evaluations - An Example
	1.9 Contributions Of This Dissertation
	1.10 A Note On Vector Processing Paradigm

	Chapter 2
	Related work
	2.1 Software Loop Unrolling
	2.2 Software Pipelining and Register Rotation
	2.3 Stream Data Buffers In WM and SMC Architectures
	2.4 Data Address Generators
	2.5 Compute And Memory Move Instructions
	2.6 Special Loop Instructions For Removing Loop Control Overheads
	2.6.1 The TriCoreTM ISA
	2.6.2 The SHARC ADSP ISA

	2.7 Vector Processing
	2.7.1 Cray-1 Vector Machine - A SISD Vector Machine
	2.7.2 PowerPC AltiVec - A SIMD Vector Processor

	2.8 The MultiTitan Floating-Point Architecture: A Unified Vector/Scalar Floating-Point Architecture
	2.9 Decoupled Access/Execute Machine - Astronautics ZS-1
	2.10 The Transmeta’s CrusoeTM Processors
	2.11 Pseudo-Vector Machine - Comparisons With Related Work
	2.12 General Comparisons With Related Work

	Chapter 3
	Vector arithmetic
	3.1 Canonical Vector Arithmetic
	3.1.1 Compound CVA
	3.1.2 Reduction CVA
	3.1.3 Hybrid CVA
	3.1.4 Some Examples Of CVA

	3.2 Pseudo-Vector Arithmetic
	3.3 Vector Arithmetic with Early Termination

	Chapter 4
	Programming Models
	4.1 Execution Modes
	4.2 Constant-Stride Load/Store Operations
	4.2.1 cs-load And cs-store For CVA Executions
	4.2.2 cs-load And cs-store For PVA Executions

	4.3 Special Registers For Vector Executions
	4.3.1 Stride and Size Register
	4.3.2 Count Index Register (CIR)
	4.3.3 Register For Storing Constant-Stride Load Addresses
	4.3.4 Register For Storing Constant-Stride Store Addresses
	4.3.5 Scalar Results For Reduction And Hybrid CVA
	4.3.6 Scalar Source Operands For CVA Executions

	4.4 Vector Instructions
	4.5 Terminating Conditions
	4.5.1 Early Termination for CVA Executions
	4.5.2 Early Termination for PVA Executions

	4.6 Register Overlay
	4.7 Machine States Maintenance For Vector Executions
	4.7.1 Saving The Execution Modes
	4.7.2 Saving The Minimum Vector Contexts
	4.7.3 Updates of Temporary and Overlaid Instances of R0 and R1

	4.8 Memory Organization
	4.8.1 Memory Bandwidth Requirements For Vector Executions
	4.8.2 Memory Map For M0, M1, TM
	4.8.3 Temporary Memory
	4.8.4 Strip Mining For TM


	Chapter 5
	Pseudo-vector machine implementations
	5.1 Datapath Implementations
	5.2 Scalar Executions
	5.3 CVA Executions
	5.4 PVA Executions
	5.5 Managing The PVA Loop Executions
	5.6 Implementing The Temporary Registers
	5.7 Implementing The Memory System
	5.8 Loop Cache For Storing PVA Program Loops

	Chapter 6
	Benchmark Characteristics and Performance Evaluation Methodologies
	6.1 Metrics For Performance Evaluations
	6.2 Benchmark Programs And Their Characteristics
	6.3 Performance Evaluation Methodologies - Overview
	6.4 Vector Setup and Exit Costs
	6.4.1 Special Registers Initialization Costs
	6.4.2 Vector Instruction Decode Costs
	6.4.3 Additional Pipeline Warm-Up Costs
	6.4.4 Vector Mode Exit Costs
	6.4.5 Initial Access Conflicts At M0

	6.5 PVA-Only Executions - Three Types Of Loop Execution Overheads
	6.6 Cycle Saving Calculations for Vectorizing a Typical Scalar Loop
	6.6.1 Saving Calculations For Typical PVA Executions
	6.6.2 Saving Calculations For Typical CVA Executions

	6.7 CVA-Only vs. PVA-Only vs. CVA/PVA Executions
	6.8 TM Strip-Mining Costs
	6.9 Throughput Rates For CVA Executions With Memory Conflicts
	6.10 Maximizing The Use Of TM via Vector Duplication
	6.10.1 Software Implementation of Vector Duplication
	6.10.2 Execution Overheads of Vector Duplication

	6.11 Instruction Fetch Bandwidth

	Chapter 7
	Experimental Results
	7.1 Overall Speedups
	7.1.1 CVA-Only vs. PVA-Only Executions
	7.1.2 Allowing CVA-Only Executions To Terminate Early

	7.2 Speedups During Program Loop Executions
	7.3 Performance Impact By Varying The Sizes Of TM
	7.3.1 TM Strip-Mining Costs vs. TM Sizes
	7.3.2 Average Speedups vs. TM Sizes

	7.4 PVA-Only Executions
	7.5 �Instruction Fetch Bandwidth Reductions
	7.5.1 Normalized IReq From Processor Core
	7.5.2 Normalized IFetch From The Memory M0

	7.6 Summary

	Chapter 8
	Architectural Extensions For DSP Applications
	8.1 Architectural Extensions - VLIW/Vector Machine
	8.2 Implementing The IIR Filter
	8.3 Implementing The FFT

	Chapter 9
	Summary

	Bibliography.pdf
	BIBLIOGRAPHY
	BIBLIOGRAPHY



