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PREFACE

The focus of this dissertation is on designing low-cost, low-power and high performance
processors for mid-to-low end mobile embedded applications. In particular, the main goal of this
work is to explore ways to add a minimum amount of hardware to a single issued machine to
improve its performance on critical loop executionsince many of these applications spend a
significant amount of their execution time on a handful of critical loops. Improve the performance
on these loops provides the biggest bang for the buck.

This dissertation borrows many existing architectural ideas from vector processors and
DSP processors, and combines them into a single execution model.

Vector processing paradigm is well known for its excellent cost/performance trade-off.
The processing paradigm proposed in this dissertation, callgasghedo-vector machinexploits,
as much as possible, the low-cost, low-power and high performance aspects of vector processing
paradigm.

As we will see later in this dissertation, the characteristics of the critical loops found in our
benchmarks vary greatly, frorhighly vectorizable to difficult (and costly) to vectorize to
impossible to vectorize

For example, a loop that performs a vector operation described by CJi] = A[i] * B[i], for
i=0,...,n-1, for some vectors A, B and C of length n, is a highly vectorizable loop. A loop that
performs a vector operation described by C[i] = (A[i]>B[i])? Alil A[i]+B[i], for i=0,...,n-1, is
more difficult (or costlier ) to vectorize.

The vector arithmetic represented by some hard-to-vectorize loops, in this work, is called
pseudo-vector arithmetiPVA). For this type of loops, the DSP’s style of processing, which
focuses on optimizing the program loop executions, is more suitable. These optimization
techniques include: (i) using the “while” or “repeat” instructions to remove loop control

overheads; (ii) using data streaming buffers to remove overhead associated with constant-stride
\Y



memory operations.

The pseudo-vector machine proposed in this dissertation can execute two types of vector
arithmetic: a “true” vector arithmetic and a “pseudo” vector arithmetic, as described in the
preceding paragraph. Depending on the type of loops, the machine sometime behaves like a vector
processor; it sometime behaves like a DSP processor. The compilers, for this machine, decide
which execution modes to use for each critical loop.

In addition, this machine uses a single datapath to execute all the vector arithmetic as well
as the scalar portion (the non-loop portion) of the program code - an efficient reuse of the hardware

resources.
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FREQUENTLY USED M-CORE INSTRUCTIONS

The following contains brief descriptions of M-CORE instructions that are frequently
used throughout this dissertation.

In this ISA, an instruction typically has the following format: ops rx, ry, where rx and ry
are source registers; and rx is also the destination register MCORE98].

Table 1: Frequently Used M-CORE Instructions

Mnemonic Description Example
Idb, Idh, Idw Load byte; load halfword; load word ldw 16, (r2)
stb, sth, stw Store byte; store halfword; store word stb  r7, 4(r3)
bf, bt Branch if c-bit clear; branch if c-bit set bt TARGET
cmplt Compare less than, set c-bit if true cmplt 4, r7
cmpne Compare not equal, set c-bit if true cmpnei 16, 3
cmphs Compare higher or same, set c-bit if true
cmpnei Compare not equal immediate, set c-bit if true
add, addi, Add; add immediate add r6,r8
sub, subi, Subtract (rx = rx - ry); subtract immediate subi r8, 2
rsub Reverse subtract (rx =ry - rx) rsub r9, r2
decne Decrement, then set c-bit if not equal O decne r1l
declt Decrement, then set c-bit if less than O declt r1
mov, movt Move; move if c-bit set mov 3, r6
Isr, Isri Logical shift right; logical shift right immediate Isr r7,r5
Isl, Isli Logical shift left; logical shift left immediate Isli r7,8
asri Arithmetic shift right immediate asri r7,8
or, Xor Logical or; exclusive-or or r2,r3
clrt Clear register if c-bit set clrt r8
mul multiply mul r3, r4
ixh Index halfword (rx = rx + (ry <<1)) ixh r4,rl
tst Test with zero (clear c-bit if (rx & ry) == 0; set otherwise) tst r4,r5
zextb Zero extent least significant byte zextb r3
Irw Load relative word: load a word from DATA_LABEL into rx Irw r2, [DATA_LABEL]
mtcr, mfcr Move to control register from general purpose register; move mtcr r3, SSR
from control register to general purpose register

XX
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CHAPTER 1

INTRODUCTION : L ow-CoOST, L OW-POWER
DESIGNS FOR EMBEDDED APPLICATIONS

Low-cost, low-power designs have been gaining importance in microprocessor systems pri-
marily due to increasingly wide spread use of portable and handheld applications. These applica-

tions are also known asobile applications

Mobile computing and mobile applications, for the purpose of this work, refer to computing
systems for consumers’ portable and handheld applications that include pagers, cellular phones,
personal digital assistants (PDA), global positioning systems (GPS), etc. These applications are

powered by a battery system that has a limited energy storage capacity.

In this Chapter, we will examine the importance of mobile computing systems and their
future trends. We will also examine some of the important characteristics and requirements of such
systems. We will give an overview of our proposed execution model, calledsbedo-vector
machineg for mobile applications. We will then examine the strength of vector processing and their

suitability for such systems.

1.1 The World Of Mobile Computing

The Personal Computer (PC) market has been enjoying tremendous growth in the past two
decades. The growth in this market, in terms of profit margins, has recently been slowed down. The
sharpest growth has been gradually shifting from the low volume and high profit margin, to the
high volume and low profit margin PC market - a sign of a maturing market. The market as a whole
will continue to grow, primarily being sustained by: (i) the general break down of the world’s tradi-
tional trading boundaries, opening up the world’s mass markets; and by (ii) the rapid advances and

growth in the internet.
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We are entering an era personal communicatiorEarly nineties marks the beginning of
this era where we saw the rapid growth in computing, pagers, cellular phones and web-based
mobile applications. This era is characterized by the needs of an individual to acquire the informa-

tion and knowledge he or she needs, at any time, at anywhere, precisely and instantly.

The personal communication era was enabled by the adaptation and popularization of the
internet. With the society becomes increasingly mobile, accessing to the internet via the traditional
workstations or desktop computers can no longer satisfy the changing needs of the consumers.
These needs range from stock trading, accessing to the weather forecasts, to locating a restaurant.
Mobile computing serves these needs. The growth of the internet will continue to benefit the

mobile computing market.

3Com Corp. has been offering Palm WM Connected Organizer since 1998. In conjunction
with the Palm.NéetM internet access service provided by 3Com, a user can use Palm VII to send/
receive emails, obtain stock quote, sports scores, check flight information or the weather, etc.
[PALMVI1198].

Motorola Incorp., through Nextel Communications Incorp., has been offering iDEN
i500plus M multi-service digital wireless phone. This WML (Wireless Markup Language)-com-
pliant phone features Internet microbrowser, two-way e-mail and wireless modem functionality. A
user of this phone can check news, weather and stocks, find phone number and address informa-

tion, and even get driving directions [IDEN99].

Nokia Corp. and Palm Computing Inc. (a 3Com company) have recently announced a broad
joint development and licensing agreement to create a new pen-based product line that integrates
telephony with data applications, personal and professional information management
[PALMVI199)].

Neopoint Inc. has recently announced its availability of its SmartpHbrithrough Sprint) -
a cellular phone with limited web browsing capabilities [NEOPOINT99a, NEOPOINT99b].

Leonia Bank of Finland will be offering its customers online banking services, webBhnk
through the WAP (Wireless Application Protocols) phones, in the spring of 2000. These services
are based on Public Key Infrastructure (PKI), digital signatures and strong encryption. The bank
will identify the customer with digital signatures located on a SIM card of a mobile phone. Cus-
tomers using digital signatures do not need cumbersome passwords anymore. With digital signa-

tures mobile phone banking will be a lot easier and more secure than before [LEONIAQQ].
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Very soon, we will be seeing all the consumers’ mobile applications, including email, fax,
pager, personal organizer, cellular phone, GPS, stock quote, weather forecast and other web-based

applications integrated into a single, lightweight, device that everyone carries.

1.2 Important Characteristics Of Mobile Systems

One of the important factors that decides whether a portable product can succeed in the mar-
ket place is “how long can the product operate before its battery needs to be replaced or re-

charged”. Other important factors are the system costs and performance.

Perhaps to the surprise of some readers, in many mobile systems, improving the perfor-
mance can often help solve the “energy problems.” Unfortunately, the “low-power objective” for
mobile computing systems is not a straight forward concept. To begin with, the low power design
goal for such a system is not to maximize the battery life, but to maximize the number of opera-

tions performed per battery discharge.

In order to further understand the “power problem” in mobile computing, we will first need

to understand some characteristics of a mobile computing system.

1.2.1 Alternate Operating Modes

To conserve energy, power-down techniques are widely employed in mobile computing sys-
tems, at all levels of design hierarchies. A mobile application typically operates alternatively
between two operating modes: (i) burst mode (or active mode), where active computations are per-
formed; and (ii) power-down mode (or sleep mode), where the system is asleep waiting for a new
computational event to occur. A paging system, for example, is only awaken to process an incom-

ing message, and is put back to sleep once the computation is completed.

Figure 1.1 shows an example of the instantaneous power of a mobile computing system,

going through a series of burst and sleep modes.

Power Burst modes

Sleep modes
>
Time

Figure 1.1: Instantaneous Power Of A Mobile Computing System

A
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A mobile computing system typically consists of a digital subsystem, among with other sub-
systems. A cellular system, for example, these other subsystems include receiver/transmitter sub-

system, the display subsystem, the keypad subsystem, etc.

From the energy consumption point of view, if the digital subsystem consumes only a small
fraction of the overall system power, then it will be advantageous to design that subsystem to
improve the overall system performance. By shortening the time the system is in burst mode (thus
shortening the time the system is consuming high power), the overall energy consumption can be

reduced.

Figure 1.2 shows the instantaneous power of two competing designs operating through a
“sleep-burst-sleep” sequence. Design A has higher performance with slightly higher power during
burst mode, while Design B has lower performance with slightly lower power during burst mode.
Design A completes the computational task earlier and immediately puts the system to sleep.
Since energy consumption is the integration of power over time (given by the area under the
power-time curve), the overall energy consumption of the system using Design A, in this case, is

lower than that of Design B.
Energy consumption of

Instantaneous the system using Design A
Power
A Design
. ¥ Design B

Energy consumption of
§ the system using Design B

A\ .

D(asi(_yjrlA;<ﬁ3F)_,|I burst sleep Time
Design B:«S/€€pP =i< burst |, sleep

Figure 1.2: Energy versus power consumption

1.2.2 Performance vs. Instantaneous Power

From the above example, it is arguable tiiat digital subsystem (microprocessor included)
consumes only a small fraction of the overall system power, then it is advantageous to design the
subsystem to improve the overall system performaRicat is, we solve the “power problem” by
improving the performance, possibly at the expense of slightly higher power consumption during

burst mode.
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The battery systems are, unfortunately, not ideal. They possess internal resistance. If higher
power is continuously drawn from these batteries, then less useful energy will be available to the
rest of the system due to this internal resistance. To reduce such dissipations, one would argue that
we should operate a mobile system at a lower power level, possibly at the expense of performance.
That is, we solve the “power problem” by lowering the power consumption during burst modes
[Martin99, Surampudi99].

By now it should become clear that as far as the digital subsystem is concerned, to achieve
the “low-energy” object, one needs to perform complex trade-offs that involve the operating volt-
age and frequency of the digital subsystem, as well as the system environments which include the

power consumption characteristics of other subsystems, and the battery subsystem itself.

In this dissertation work, we will focus on designing microprocessor coresifdto low-
end, ultra-lightweight, embedded mobile applicatioimsthese specific design environments, the
digital subsystems often consume a small fraction of the overall power. We will thus adapt the
“high performance” approach in solving the “power problem”, as described in Section 118.1.

summary, the design goals in our design environments are (in order of importance):

1. Low cost (low chip area);
2. High performance;

3. Low power.

The above ordering has the following implications. Once an area budget is set for a specific
application, we should then design the digital subsystem to improve the overall performance, as
much as possible. In doing so, we can often (though not always) lower the overall energy con-
sumption. Furthermore, any low-power design technique that can reduce power consumption dur-

ing burst mode, should only be uséthey do not degrade the overall performance.

Conversely, if a design technique that reduces power consumption of the digital subsystem
during burst mode but degrades the system performance, then the overall energy consumption may
reduce or increase, depending on the system power relative to the power consumption of the digi-

tal subsystem.

1.3 Execution Modes For Mobile Systems

At certain time, many mobile applications require the machines to perform some highly

repetitive DSP functions. Large amount of instruction level parallelism (ILP) is present in these
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applications. But at some other time, they require the machines to perform control intensive func-

tions.

To address the needs for mobile computing, some desktop CPUs have been incorporating
some DSP capabilities into their instruction set and designs [Massana99, Lexra99, etc.]. On the
other hand, some DSP processors are now incorporating some general control functions into their
designs [SHARC97,StarCore98].

Some systems use dual-core solutions to address this problem [DSP56654,etc.]. In these
systems, one core performs all the control intensive functions; while the other core performs the
specialized DSP functions. The two cores communicate through some communication channels,
such as a shared memory. These systems often employ dual instruction streams, one for each exe-
cution cores. The high development costs associated with this approach could only be justified if
the specialized market segment where the system is designed to, has sufficiently large market vol-

ume to amortize these non-recurring engineering costs.

1.4 Pseudo-Vector Machine - An Architectural Overview

In this dissertation, we will present a processing paradigm that is capable of executing in
two modes: (i) a scalar execution mode for control functions; and (ii) a vector execution mode for

exploiting the ILP that is present in these applications.

The vector execution mode can be further divided into a “true” vector mode and a “pseudo”
vector mode. For loops that are highly vectorizable, the machine uses a “true” vector processing
paradigm to process the loops. For loops that are difficult or impossible to vectorize, the machine
uses a “pseudo” vector processing paradigm (similar to the DSP’s style of processing) to process

the loop.

This machine executes all these modes on a single datapath using a single instruction
stream. Each instruction in this stream can be classified as either a scalar instruction or a vector
instruction. When a vector instruction is fetched and decoded, the machine enters a vector execu-
tion mode. The machine only exits the vector mode via a few pre-defined mechanisms. We will

call this execution model theseudo-vector machine

The following are some important features of the pseudo-vector machine.

» The pseudo-vector machine has two major execution modes: scalar mode and vector mode.

« While in vector mode, this machine can perform two types of vector arithmeti€anenical
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Vector Arithmetiq CVA) and thePseudo-Vector Arithmetid®VA). Correspondingly, there are
two vector instructions: a CVA instruction and a PVA instruction. Figure 1.3 shows all the exe-

cution modes in this machine.

Scalar mode

Execution mode< CVA mode
Vector mode<

PVA mode
Figure 1.3: Various Execution Modes On The Pseudo-Vector Machine

When executing in a vector mode, the vector instruction (CVA or PVA instruction) can option-

ally enable up to two input data streams from the memory (denoteg aisd_L,) and one out-

put data stream to the memory (denoted as S).

When the machine executes in a CVA mode, data are continuously streamed from the mem-
ory, processed by a chain of functional units and streamed back to the memory, in a highly
pipelined fashion. The CVA mode represents a “true” vector processing paradigm.

When the machine executes in a PVA mode, the corresponding assembly code consists of a
PVA instruction followed by aloop body The loop body is composed of multiple scalar
instructions. The PVA instruction is very similar to the “DO UNTIL" or “REPEAT” instruc-

tions in the traditional DSP processors. A PVA instruction can optionally enable up to two

constant-stride load operationsy(&nd Ly streams) and one constant-stride store operation (S

stream) to be automatically performed during loop executions. The PVA mode represents a
“pseudo” vector processing paradigm similar to the DSP’s style of processing.

The CPU architecture of the pseudo-vector machine is shown in Figure 1.4.

When executing in a vector mode (CVA or PVA mode), the memory system can support up to
two data reads, one data write and one instruction fetch in each cycle.

In this machine, there are three independent on-chip memory modules, MO, M1 and TM. MO
supplies instructions and data, while M1 supplies data only. TM (temporary memory) is a
small memory block used to store temporary vectors only.

When executing program loops, a snhatlp cachds used to store the instructions.

Within the execution core, there are two load unitg,and Ly, a store unit S, a register file

Regfile and a general purpose functional unit P (see Figure 1.4).
Besides performing the memory store operations, the S unit can also perform some simple,

commutative arithmetic and logical functions, such as “add”, “and”, “or”, “xor”, etc.

When executing in a scalar mode, the execution core behaves like a single-issued pipelined
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Figure 1.4: The CPU Architecture for the Pseudo-Vector Machine
machine. It uses the Regfile and the P unit for computation, grehd S units for memory
load and store operations, respectively.

* When executing in a PVA mode, the execution core also behaves like a single-issued pipeline
machine, except that it can optionally enable up to: (i) two input data stregasd_L;; and
(i) one output data stream S. In addition, the machine uses some special loop count register to
remove execution overheads associated with branches and loop control mechanisms.

* When executing in a CVA mode, data are continuously streamed in from MO/M1/TM, through
the Lg and Ly units, processed by the P and S units, and optionally streamed back to MO/M1/
TM. When executing in this mode, two distinct scalar arithmetic, p_op and s_op, can be
simultaneously performed at P and S, respectively.

* There are three types of CVA executiol@mpound CVAReduction CVAandHybrid CVA
The data dependency graphs for these three types of executions are shown in Figure 1.5. In
this Figure, operands X, Y and Z can source from input streagnk{.or a scalar s. The out-
puts of these executions can be written to an output stream S or to a scalar destination s.

» In this datapath, all scalar and vector executions use the same P unit. This means that many



Operand X  Operand Y
Loor LlorS Loor L10I’S

(a) Compound CVA (b) Reduction CVA

Operand X Operand Y
Lopor Lyors Lpor Lyors

Sands
(c) Hybrid CVA
Figure 1.5: Dependency Graphs for Three Types of CVA
arithmetic functions that are available to the scalar executions are also available to the vector

executions.

1.5 The Strength of Vector Processing

In this Section, we will attempt to motivate the strength of vector processing, in the context
of low-cost, low-power embedded computing environments. Readers who are familiar with vector

processing may skip this Section entirely. Consider the following example.

Example 1.1:
The following program loop performs an element-wise multiplication on two vectors. In

vector form, it is performing: C[i]= A[i] * B[i], for all i. The data dependency graph of this pro-

gram loop is shown in Figure 1.6.

L1:

addi r2,2 I/l update stride value
Id.h r7,(r2) /l'load A[i]

addi r3,1 I/l update stride value
Id.b ré,(r3) /' load BJi]

mul r7,ré /I multiply A[i] * Bi]
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addi r4,2 // update stride value
st.h r7,(r4) /I store CJi]
decne rl /I decrement loop index rl
/Il set c bit if r1 not equals zero
bt L1 /l backward branch if ¢ bit set

@)
CORINCD
() ey
D) ()

Figure 1.6: Data dependency graph for Example 1.1

In this example, intermediate values are produced and then consumed immediately. They are
continuously being written back to and read from registers R6 and R7. These values are marked in
Figure 1.6 as “*". Since they are produced and consumed only once, it is inefficient to store these
values in the often limited register storage space. This situation, unfortunately, is inevitable when a

vector operation, such as the one shown in Example 1.1, is expressed using a scalar program in a

load-store ISA. ]

A more efficient approach, is to chain a number of functional units together, with each unit
performing a specific task. Thus when an intermediate value is produced by a functional unit, it is
directly passed on to the next functional unit down the chain, thereby avoiding all the read and

write traffic to the register file associated with this value.

Besides saving power, we could also pipeline the vector executions, such that one result
could be produced in every cycle. The time required to perform a vector operation is given by
Ts + n/Tr, where Ts is the initial setup cost, n is the vector length and Tr is the throughput rate in
number of results produced per cycle. If a scalar machine takes m cycles to execute one iteration
of the equivalent program loop, then the speedup using the vector machine is given by nm/(Ts+n/
Tr), or nm/(Ts+n) for Tr=1. Maximum speedup could be achieved when Ts is sufficiently small

and n is sufficiently large. In this case, the speedup approaches m, the number of cycles it takes for
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the scalar machine to execute one iteration of the program loop. The relationship between speedup

and n with Tr=1 is shown in Figure 1.7.

Speedup

decreasing Ts

-y

Figure 1.7: Relationships Between Speedup and n with Tr=1

Another subtle benefit of vector processing is its low instruction fetch bandwidth. Take
Example 1.1 for example. The scalar program loop requires 8 instructions to be fetched during
each iteration. In a vector machine, after fetching the initial vector setup code and the vector
instruction itself, the machine does not need any further instruction fetch to perform the entire vec-
tor operation. As a result, the instruction fetch bandwidth and its associated memory traffic are

much lower.

In summary, the strength of vector processing arises from:

. The ability to pipeline various operations on a single data stream (to improve performance);

. Efficient data storage and movement (large amount of temporary data are produced and con-
sumed by adjacent functional units without going through the register file or the memory
system); and

. Smaller routing area (result produced by a functional unit is routed directly to its destination
functional unit, instead of broadcasting it to the entire datapath);

. Lower instruction fetch bandwidth.

Furthermore, efficient data movements and lower routing area could also mean lower power
consumption. The strength of vector processing makes it very suitable for the low-cost, low-power

embedded computing systems.
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1.6 Vector Processing vs. Pseudo-Vector Processing

When a DSP algorithm or function is implemented on a DSP machine, it is often being
transformed into program loops. The optimizing compiler then tries to re-structure the loop such

that all the possible parallelism can be easily exploited by the machine.

Vector Processing

In mobile applications, some program loops are highly vectorizable, in the sense that they
perform well defined vector operations. For example, a loop that performs a vector operation
described by C[i] = A[i] + BJi], for all i, is a highly vectorizable loop. Highly vectorizable loops
can be most efficiently executed using a “true” vector processing paradigm. In this paradigm, data
are continuously streamed from the memory and are processed by a chain of functional units in a
highly pipelined fashion. The processed data are then continuously streamed back to the memory.
All temporary results produced during the vector operations are not written to or read from the

register file.

Pseudo-Vector Processing

Some program loops, however, are impossible or difficult to vectorize. They may become
vectorizable after being transformed by the compiler to “fit” the vector processing paradigm.
These transformations involve adding some addition vector operations that may include mask gen-
erations, gather and scatter operations, etc. There are, however, overheads associated with these
operations. In this dissertation, we will call these type of vector arithnpstizido-vector arith-
metic(PVA).

For example, a loop that performs a vector operation described by CJ[i] = (A[i]>B][i])?

Ali] 2. A[i]+BJi], for all i, is difficult (or costly) to vectorize. It is considered here to be a PVA

arithmetic.

Many today’s DSP machines can execute the PVA arithmetic efficiently. They include Ana-
log Devices’ ADSP-2106X SHARE chip [SHARC97] and Texas Instrument’s TMS320C¥x
family of chips [TMS320C3x]. These machines improve the performance by removing many of
the overheads associated with: (i) loop control mechanism; (ii) constant-stride load; and (ii) con-

stant-stride store.
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1.7 The Basic Framework For This Dissertation

In this work, we will use the M-CORE instruction set architecture (ISA) for the purposes of
illustration and evaluation. The M-CORE ISA uses 16-bit fixed length instruction encoding. It has
one of the highest code density among all the commercially available ISA. Furthermore, the ISA
provides extensive bits and bytes manipulation operations that are ideal for many real time embed-
ded control and DSP applications [MCORE98,Moyer98].

An assembly program written for the pseudo-vector machine consists of regular scalar
instructions (the M-CORE instructions in this case), with two additional vector instructions. The
first vector instruction, the CVA instruction, vectorizes critical loops that are “highly vectoriz-
able”. These vectorized loops are then executed on this machine using a “true” vector processing

paradigm.

The second vector instruction, the PVA instruction, vectorizes critical loops that perform
pseudo-vector arithmetic. These vectorized loops are then executed on this machine using a

“pseudo”-vector processing paradigm.

For the purpose of this work, when a program loop is replaced by its equivalent code that
consists of one or more vector instructions (CVA and/or PVA instructions), the program loop is
said to bevectorized This vectorized code segment is also calledbetor equivalentf the orig-
inal scalar program loop, as they both perform the same function. Vectorization can occur at the

assembly level or at the source code level.

A program loop that can be vectorized only using CVA instruction(s) is call@davector-
izable loop A program loop that can be vectorized using PVA instruction(s) is calleéfAa vec-
torizable loop The PVA execution represents a more general vectorizing mechanigms.a loop

that is CVA vectorizable, is also PVA vectorizable.

Profile-Based Performance Evaluations

In this work, developing a vectorizing compiler for this machine is beyond the scope of this
work. Without a vectorizing compiler, there is no vectorized assembly code. Without which, it is
impossible to evaluate exactly the performance benefits by using a detail simulation model of the

machine. Instead, the following approach is adopted.

The benchmarks were not re-compiled to vectorize the critical loops. Cycle-based simula-

tions were first performed on a single-issued, four-stage pipelined machine. This scalar machine,
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which executes M-CORE instructions, does not have any vector processing capability. The perfor-
mance statistics collected on this scalar machine were used as a base result. This machine is also

referred to here as thmse machine

The original scalar programs were dynamically profiled. Each program loop in these bench-
marks was marked, and the number of invocations and the number of iterations were recorded. We

then vectorized these critical loops by hand, at the assembly level.

The number of cycles saved for each loop were then computed using the profiled statistic.
All the vector startup and exit costs were subtracted from these savings. We then summed up the

net savings for each loop to give the total saving.

Throughout this dissertation, examples will be extensively used to illustrate some important
concepts, procedures and techniques for vectorizing program loops. They will also be used to give
detail illustrations on how we estimate execution cycle saving by using various vector constructs.
These detailed examples may bore some of our readers; however, we think that this level of details
is necessary in order to fatefully and accurately disseminate these information. The detail work-
ings of evaluating the performance, for each critical loop, in each benchmark program, are given in

Appendix B.

1.8 Profile-Based Performance Evaluations - An Example

We will use the following example to illustrate how we can estimate the performance

improvements on this machine.

Example 1.2:

Vectorize the loop shown in Example 1.1 on page 9 using a CVA instruction. This loop is
executed on a single-issued scalar machine for 100 iterations. This single-issued machine takes
two cycles to execute a load instruction, and 2 cycles to execute a multiply instruction. Estimate

the speedup when this loop is executed on the pseudo-vector machine using a CVA instruction.

This loop performs a vector operation described by C[i]=A[i]*B]i], for all i. The loop takes
12 cycles per iterations to execute, except for the last iteration where it takes only 11 cycles to exe-
cute (the branch instruction “bt” takes one cycle to execute when it is not taken; 2 cycles other-

wise). Thus the execution cycles, on the scalar machine, is 12x99 +11x1 = 1199 cycles.

The loop can be vectorized using a CVA instruction as follows.
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<Some initialization code>
/lassign LOto A, L1to B, Sto C.
CVA mul @LO, @L1, @S;

In this example, streamd-L, and S are enabled and are assigned to vector A, B and C,

respectively. The CVA instruction multiplies, element-wise, between vectors A and B and writes

the results to vector C.

The initialization code preceding the CVA instruction sets up the starting load/store
addresses, operand sizes, constant stride values and vector length for vectors A, B and C. Execut-
ing this initialization code adds overhead to the vector executions. In addition, there are also other
costs associated with this vector execution: vector instruction decode, pipeline warm-up cost, vec-
tor mode exit cost, etc. The total vector setup and exit costs, in this example, is 11 cycles (vector

setup and exit costs will be described in detail in Section 6.4 in Chapter 6).

The P unit that performs the multiply function is fully pipelined. After these initial vector
setup and exit costs, the pipeline can prodageresult ineverycycle. The execution cycles on

the pseudo-vector machine is thus given by: 11 + 100 = 111 cycles. The speedup over the single-

issued scalar machine is thus: 1199/111 = 10.80 . L]

Unlike the traditional DSP processors, this machine can access three data streams per cycle

during vector computations.

1.9 Contributions Of This Dissertation

As we will see later in this dissertation, with comparable hardware costs, for loops that are
highly vectorizable, the CVA execution (the “true” vector processing) often offers higher perfor-
mance benefits and lower power consumptions. For loops that are impossible or too costly to vec-

torize, the PVA execution (DSP’s style of processing) offers better performance benefits.

In this dissertation, we propose a CPU architecture to perform both the “true” vector arith-
metic and the “pseudo” vector arithmetic on a single datapath. The optimizing compiler for this
machine tries to “vectorize” the critical loops by selecting between a “true” vector processing par-
adigm, a “pseudo” vector processing paradigm, or a combination of both. As we will see later on,
by providing the ability to execute both of these processing paradigms, we can achieve perfor-

mance improvements that are higher than any of the individual paradigm.
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A drawback of this dissertation is that a single-issued pipelined machine is used as a base
machine. All performance results given in this dissertation are expressed in terms of improvements
over this base machine. This dissertation would have been more interesting if the performance
results are given relative to, say, a traditional DSP machine, similar to the ADSP-2106X SHARC
chip.

Nevertheless, this dissertation has certainly explored some architeattgialativesto
exploit ILP found in these embedded applications. In particular, it tries to exploit parallelism in a
“vertical” (or “depth”) direction, rather than in a “horizon” (or “width”) direction as in a conven-

tional wide-issued VLIW machine. This different will be described later in Section .

1.10 A Note On Vector Processing Paradigm

The first commercially available vector machine was the Crd§-lector machine, built in
1974 [Crayl]. In this machine, multiple function units can be chained together to perform different

scalar arithmetic functions simultaneously.

Later machines extended this ideaatway processingwhere a single instruction stream is
executed by multiple PEs, each operates on a single data stream. These later machines can be clas-
sified as SIMD (single instruction stream and multiple data stream) vector machines. PowerPC’s

AltiVec™ is a recent example of such machines [ALTIVEC98].

The Cray-1, on the other hand, has only one Processing Elements (PE). Each instruction in
this machine only processes and consumes a single data stream. This machine can thus be classi-

fied as a SISD (single instruction stream and single data stream) vector machine.

Our pseudo-vector machine can also be classified as a SISD vector machine, since it has
only a single PE, processing a single data stream. Figure 1.8 shows how the pseudo-vector

machine relates to the various types of processing paradigms.

The rest of this dissertation is organized as follows. Chapter 2 describes related work.
Chapter 3 classifies and discusses two types of vector arithmetic that can be performed on this
machine. They are the CVA and the PVA arithmetic. Chapter 4 describes the programming model,
on this machine, for vector executions. It also describes various special registers used for these
executions. Chapter 5 describes the implementations of this machine. Chapter 6 describes the
benchmarks used in this work and the performance evaluation methodologies. Vector setup costs

and expressions for performance evaluation for typical program loops will also be derived in this
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Vector Processing
Paradigm

Single Data Streﬁ/rrMuItiple Data Stream
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/
Pseudo-Vector Machine

Figure 1.8: Various Processing Paradigms
Chapter. Chapter 7 presents some experimental results. Chapter 8 presents some architectural

extensions for DSP applications. Chapter 9 summaries the dissertation.
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CHAPTER 2

RELATED WORK

This Chapter describes related work to this dissertation.

2.1 Software Loop Unrolling

In software loop unrolling, multiple iterations from a loop are combined into a single itera-
tion, with the branch instructions interleaving between the iterations being removed. The registers
in each copy of the loop body are given different names to avoid unnecessary WAW (Write-After-
Write) and WAR (Write-After-Read) data dependences. In a wide-issued machine (VLIW or
superscalar machine), loop unrolling exposes the available ILP to the hardware by creating longer

sequences of straight-line code.

Figure 2.1 shows an example of software loop unrolling. Figure 2.1(a) shows the original
loop; Figure 2.1(b) shows that the loop is unrolled twice; and Figure 2.1(c) shows the unrolled
loop is register renamed and re-scheduled so that dependent instructions are further apart. In the

unrolled loops, R9 is assumed to be appropriately initialized for proper loop exit condition.

Software loop unrolling, however, results in a larger static program loop. Larger code size
has an adverse affect on system cost as well as on instruction cache performance. In addition, soft-

ware loop unrolling also increases register pressure on the compiler due to register renaming.

2.2 Software Pipelining and Register Rotation

Software pipelining is frequently used in wide-issued machines (VLIW and superscalar
machines). This technique reorganizes loops such that each iteration in the software-pipelined

code is made from instructions chosen from different iterations of the original loop. The scheduler
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L1: L1: L1:
Id.h r3,(r2) Id.h r3,(r2) Id.h r3,(r2)
add r3, r10 add r3,r10 Id.h r7,2(r2)
st.h r3, (r2) sth  r3,(r2) add r3,r10
subi r2, 2 subi  r2,2 add r7,r10
cmpnei r2,0 Id.h r3,(r2) st.h  r3,(r2)
bt L1 add r3,r4 sth  17,2(r2)
sth  r3,(r2) subi 12,2
subi r2,2 cmpnei 12,0
cmpnei r2,0 bt L1
bt L1
(a) A loop that performs  (b) The loop is unrolled twice. (c) The loop is register renamed
A[i]=A[i]+constant. and re-scheduled so that dependent

instructions are further apart.

Figure 2.1: Software Loop Unrolling

essentially separates the dependent instructions that occur within a single loop iteration. Figure 2.2

shows conceptually how a loop is being software pipelined [Patterson96].

Iteration i of the original loop

L1: (a set of dependent instructions)

Id.h r3,(r2)

add r3, r10

sth 13, (r2) Iteration i: st.h
subi r2, 2

cmpnei 12, 0 Iteration i+1: Id.h

bt L1

Iteration i+2: Id.h add
(a) A loop that performs

b) The loop is software pipelined
Ali]=Alil+constant. () P pip

Figure 2.2: Software Pipelining

In a software pipelined loop, a multi-cycle instruction (such as a load instruction) may pro-
duce result that is only consumed in the next iteration; that is, an instruction may consume result
that was produced in the previous iteration. To avoid over-writing a result before it is being con-
sumed, the software pipelined loop may need to be unrolled and registers be renamed in software.

Thus, software pipelining also enlarges code size and increases register pressure.

Register Rotation

In Intel's I1A-64™ architecture, a technique called register rotation is used to minimize the
code size expansion problem associated with software pipelining. In this technique, the hardware
automatically renames the register by adding to the register number, a rotating register base (rrb)

register. The rrb register is decremented when certain special software pipelined loop branches are



20

executed at the end of each iteration. Decrementing the rrb register makes the value in register X

appear to move to register X+1 in the next iteration [IA64].

Figure 2.3 shows conceptually how a loop can be software pipelined using register rotation.
In this example, register instance R3 in iteration i, is the same instance as register instance R4 in
the iteration i+1; in turn, this register instance is the same instance as register instance R5 in itera-

tion i+2, and so on.

Iteration i of the original loop

L1: (a set of dependent instructions)

Id.h r3,(r2) inst

add (3, 110 same instance

st.h r3, (r2) Iteration i: 0 sthr5,(r2)

subi 2,2 same instance
cmpnei 2,0 Iteration i+1:ld.h r3,(r2) add

btL1

Iteration i+2: Id.h r3,(r2) addr4,r10  st.h

(a) A loop that performs

A[l]=A][i]+constant. (b) The loop is software pipelined

Figure 2.3: Software Pipelining With Register Rotation

2.3 Stream Data Buffers In WM and SMC Architectures

In the WM architecture, Wulf first proposed using stream data buffers, under program con-
trol, to prefetch data from the memory into data buffers [Wulf92]. These buffers are organized as
first-in-first-out (FIFO) queues. This technique can be illustrated using the following code segment
for performing a vector dot product. In this code, “rO-r31” denotes integer registers and “f0-f31”

denotes floating-point registers.

Sin32F f0, 16,15, 4
Sin32F f1, 16,15, 4
Loop:

f4 = (f0 * f1) + f4

JNI f0, Loop

A single instruction streamin informs a stream control unit that a sequence of data oper-
ands is to be read from the memory, starting at a specified location, with a specified stride and
count. The starting location and the count are specified in registers R6 and R5, respectively. The
stride value (4 in this example) is specified in Bi@32F instructions (streamin 32-bit floating-

point operands).



21

The first twoSin32F instructions set up two stream buffers. They designate registers fO
and f1 as the “head” of the two FIFO queues. Within the loop body, a read from one of these two

registers dequeues a data item from the appropriate queue.

McKee et. al. [McKee95a,McKee95b] extended this work by proposing a Stream Memory
Controller (SMC) architecture. In this architecture, multiple stream buffers were used to store: (i)
data prefetched from the memory (input queue); and (ii) data to be stored to the memory (output
gueue). The heads of these FIFO queues appeared to the processor as memory mapped registers.
After these streams are properly set up, a read from a designated memory location dequeues a data
operand from an input queue; a write to a designated memory location enqueues a data operand to

an output queue.

Figure 2.4 shows the block diagram of a SMC architecture. It shows how the CPU is inter-
faced with the memory system through a cache and a Stream Buffer Unit (SBU). The heads of the
FIFO queues in the SBU appeared to the CPU as some pre-defined memory locations. These buff-

ers are also used to buffer some single-use vectors to avoid polluting the cache.

_ DRAM
Stream Buffer Unit memory
FIFO - | mem
c
FIFO 2
— (o))
: £ — mem
: =
. °
FIFO 2
3 [ mem
CPU >
o
S
[}
— Cache =
- mem

Figure 2.4: SMC Architecture - A Dynamic Access Ordering System

In addition to the stream buffers, there is also a Memory Scheduling Unit that dynamically
reschedules the access requests made by the SBU and the cache. The unit coalesces and resched-
ules these requests to take advantage of the page access behavior of the DRAM memory
[McKee95a,McKee95h].

2.4 Data Address Generators

On the Analog Devices SHARC ADSP-2106x CPU, there are two independent on-chip

memory modules: the Program Memory (PM) and the Data Memory (DM). PM is used to store
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program instructions and data; while DM is used to store data only. In this CPU, there are two
Data Address Generation units, DAG1 and DAG2. These two DAGs can independently generate
two load/store addresses, enabling the processor core to access two operands (any combinations of

read and write) in each cycle. The block diagram of the ADSP-2106x CPU is shown in Figure 2.5
[SHARC97].

Processor Core

____________________________

I e T . PM DM

y PM Address Bus

\ A 4

X ) 4 DM Address Bys
| T Bus e PM Data Bus , 10
E "Conneéa t DM Data Bus : >
' | Register—_— 1 :
v File v ;
Multiplien & A& |Shiftef | ALU |
[ |

____________________________

Figure 2.5: ADSP-2106x SHARC Block Diagram

Each of these DAGs contains eight | registers and eight M registers that are accessible to a
program. A load or store instruction can access the memory by specifying an | register and a M
register. For example, the following load instruction loads the memory content from the PM, with
an address stored in 10; the value 10+M3 is then automatically written back to register 10 after the
load operation (i.e. that address stored in 10 is automatically post-incremented by the amount

stored in M3). The data loaded from PM is stored into register R6 [SHARC97].

R6 = PM(I0, M3); // indirect addressing with post-modify.

2.5 Compute And Memory Move Instructions

The ADSP-2106x chip can also provide a “compute-and-move” instruction that combines a
compute function with up to two memory load/store operations. These operations are performed in

parallel, in a single cycle. An example of such instructions is shown below.
R7 = R6 + RO, DM(I10,M3)=R5, PM(111,M15)=R4;

This instruction performs an add, and two memory store operations, all in a single cycle.

The two memory operations can be any combination of load and store operations.
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The ADSP-2106x chip also provides some multifunction computations that combine paral-
lel operations of the multiplier and the ALU, or the multiplier and dual functions in the ALU. The

following shows two examples of such multifunction instructions [SHARC97].
R3 =R3 *RY7, R4 = R8 - R13;
R3 =R3 *RY7, R5 = R11 + R15, R4 = R8 - R13;

There are, however, certain restrictions on how these independent operations can read their
source registers. Some of these restrictions are illustrated in Figure 2.6. This Figure shows that
each of the four input operands for computations that use both the ALU and multiplier are con-
strained to a different set of four register file locations. The X operand to the ALU, for example,

can only be R8, R9, R10 or R11. This is a limited form of VLIW machine [SHARC97].

0Fo Any regist
1.F1
2. F2
3. F3
Multiplier
4, F4
5. F5
6. Fb
7, F7
R8, F8
F\Bl% FF910
R11, F1T1 \ ALU
12 2
[3, F13 /
4. F14
2. F15 Any regist

Figure 2.6: Source Registers For Multifunction Computations
(ALU and Multiplier)

2.6 Special Loop Instructions For Removing Loop Control Overheads

Several commercial DSP ISA have special loop instructions for removing the overheads
associated with the loop control mechanism [SHARC97,TMS320C3x,TRICORE97].

2.6.1 The TriCore™ ISA

In the TriCore ISA, for example, three special branch instructions are used to handle pro-
gram loops. They are JNEI, JNED and LOOP instructions. The JNEI and JNED instructions are
like normal jump-not-equal instructions, but with an additional increment or decrement operation
on a data register operand. The LOOP instruction only requires execution time in the first and last
iteration of the program loop. For all other iterations of the loop, the LOOP instruction has zero

execution time. Here are some examples of loops using these instructions [TRICORE97].
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mov d3, 3 mov a2, 99
L1: L1:
jnei d3,10,L1 loop a2,L1

(a) A loop that executes d3=3,...,10 (b) A loop that executes 100 times

Figure 2.7: Program loops using special loop instructions

The JNEI, INED and LOOP instructions in the TriCore ISA are capable of removing almost
all the overheads associated with the branches at the end of the original loop. They do not, how-
ever, remove overheads associated with the cs-load and cs-store operations, if there is any in the

loop.

2.6.2 The SHARC ADSP ISA

On the Analog Devices’ ADSP-2106x chip, a DO UNTIL instruction is available for pro-
gram loop executions. There are two types of DO UNITL loops. One is the counter-based and the
other is not. In a counter-based loop, the iteration count is first written to a special register called
Loop Count Register (LCNTR), prior to the loop execution. An example of such loop is shown

below.

LCNTR=30, DO label UNTIL LCE;
....loop body . ...
label: [last instruction of the loop body]

The number of iterations can be specified as an immediate field in the DO UNTIL instruc-
tion; or, the instruction can also specify a universal register that contains the loop count. LCNTR is
decremented by one for each iteration executed. The loop continues to execute until the Loop
Counter Expires (LCE).

In a non-counter based DO UNTIL loop, the terminating condition is specified in the
instruction. The iteration count, however, is not. In this case, the loop exits when the terminating
condition is met. An example of such loops is shown below.

DO label UNTIL AC; // exits when ALU Carry out is set

....loop body . ...
label: [last instruction of the loop body]

This machine supports three hardware stacks: PC stack; Loop Address Stack and Loop
Count Stack. These three stacks work in a synchronized manner for loop executions. When the

ADSP-2106x executes a DO UNTIL instruction, the program sequencer pushes the address of the
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last loop instruction and the termination condition for exiting the loop (both specified in the
instruction) into the Loop Address Stack. It also pushes the top-of-loop address, which is the
address of the instruction following the DO UNTIL instruction, on the PC stack. When a loop
exits, all three stacks are popped. The three-stack mechanism allows the removal of loop control

overheads for nested loops.

2.7 \ector Processing

A vector processor can be classified as a SISD machine, a SIMD machine, among other par-

adigms (see Section 1.10 on page 16).

2.7.1 Cray-1 Vector Machine - A SISD Vector Machine
The first commercially available vector machine, the Cray-1 vector machine, was primarily
built for massively parallel scientific computations. Figure 2.8 shows the block diagram of the

machine [Crayl].

There are three sets of primary registers: vector registers (V); scalar registers (S); and
address registers (A). In addition, there are also scalar-save registers (T) and address-save registers

(B). These registers act as buffers between the memory and the primary registers.

There are altogether 12 functions units in this machine. These functional units are organized
into four groups: address, scalar, vector and floating-point pipelines. The vector pipelines obtain
operands from one or two V registers and an S register. Results from a vector pipe are delivered to
a V register. When a floating-point pipe is used for a vector operation, it can function similar to a

vector pipe.

Once a vector operation is initiated, it will continue the operation until the number of opera-
tions performed equals a count specified by the Vector Length register. Vectors having a length
greater than 64 are handled under program control in groups of 64 plus a remainder. This tech-
nique is also known astrip mining A Vector Mask register was also provided to perfamasked
vector operationsin these operations, a vector operation on an element will only be performed if
the corresponding bit in the Vector Mask register is set. These masked vector operations are used
for vectorizing program loops with conditional branches and conditional executions within the

loop body [Crayl,Hwang84,Hwang93].
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Figure 2.8: Block Diagram For Cray-1 Vector Machine

2.7.2 PowerPC AltiVec - A SIMD Vector Processor
The AltiVec technology provides a SIMD extension to the PowerPC architecture. A block

diagram of PowerPC with AltiVec technology is shown in Figure 2.9 [ALTIVEC98].

Besides the usual Integer Unit and the Floating-Point Unit, it has a Vector unit which con-
tains a 32-entry vector register file and a vector execution unit. The block diagram of the vector
unit is shown in Figure 2.10. These register file and the execution unit are all fixed 128-bit wide.
This width represents the total vector length, which can be subdivided into sixteen 8-bit bytes,
eight 16-bit halfwords, or four 32-bit words. Depending on the operand type, the vector unit can
simultaneously operate on 4 to 16 vector elements. This machine is essentially a multi-PE vector

processor (or SIMD vector processor), although the number of PEs is a function of operand type.
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Figure 2.9: Block Diagram of PowerPC with AltiVec Technology
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Figure 2.10: AltiVec Vector Unit

2.8 The MultiTitan Floating-Point Architecture: A Unified Vector/Scalar
Floating-Point Architecture
Jouppi et. al. [Jouppi89] proposed a unified vector/scalar floating-pint architecture by add-
ing a small amount of hardware to a scalar machine for improving the performance of classically

vectorizable code.

In this architecture, a FPU unit (or FPU chip) is added to a CPU chip as a coprocessor. Both
of these chips share the same off-chip data cache. All floating-point load/store operations are con-
trolled by the CPU; the actual data transfers take place directly between the FPU chip and the data

cache.
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Figure 2.11 gives an overview of the architecture of the FPU. The FPU has three fully pipe-
lined independent function units: add, multiply and reciprocal approximation. These functional

units can accept a new set of operands in each cycle, and have a latency of three cycles.
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From CPU ALU Instruction Register
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Figure 2.11: MultiTitan Floating-Point Architecture

A unified register file, containing 52 general-purpose 64-bit scalar registers, sits between the
functional units and the data cache. This register file has four ports: two read ports for ALU source
operands (R and Rg); one write port for ALU destination operand gR and one read/write port

for memory load/store operations, (R

There are two separate Instruction Registers: one controls the FPU ALU operations, the
other controls the load store operations. These separate Instruction Registers allow the memory

load/store operations to proceed in parallel with the issue of FPU ALU operations.

This architecture provides a single unified vector/scalar floating-point register file. Vectors
are stored in successive registers in this register file. This allows individual vector elements to be
addressed and accessed with scalar operations. Each arithmetic instruction contains a vector length

field; scalar operations are simply vector operations of length one.

The format of a FPU ALU instruction is shown in Figure 2.12. The vector length (VL) field

of an ALU instruction specifies the number of elements in the vector (between 1 to 16) to be pro-
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cessed. When a vector instruction (VL field is non-zero) is loaded into the ALU Instruction Regis-
ter, it remains in the register for the entire duration of this vector execution: each time a vector
instruction is issued, thegR Ry and R fields of the Instruction Register are each incremented by

one; and the VL field of the register is decremented by one. If the VL field is not zero, the vector
instruction sitting in the Instruction Register is re-issued again; this process repeats until VL=0

(see Figure 2.11).

If the SRy (or SRg) bit in the instruction is set, register source field Bor Rg) does not

increment (i.e. it is a scalar constant).

4 6 6 6 2 2 4 11
6 | Re | Ra | Re oniop| St
SRySRs

Figure 2.12: FPU ALU Instruction Format

In MultiTitan, the user can dynamically partition the 52 64-bit registers into any number of 1

to 16-element register groups (or vectors) on an instruction-by-instruction basis.

To facilitate concurrent load/store and ALU operations, the MultiTitan architecture also pro-
vides some hardware supports for synchronizing the reading and writing of individual register in
the register file to avoid RAW, WAW and WAR hazards between these operations [Jouppi89].

2.9 Decoupled Access/Execute Machine - Astronautics ZS-1

The Decoupled Access/Execute Machine (Astronautics ZS-1) provides two loosely coupled
datapath and two sets of registers: X registers (for floating point operands) and A registers (for

integer operands). The block diagram of ZS-1 is shown in Figure 2.13.

The Instruction Fetch/Split unit fetches the instructions from the local memory and distrib-
utes them to two instruction pipelines: the X instruction pipeline and the A instruction pipeline.
The fixed point and addressing instructions are forwarded to the A instruction pipeline; the float-
ing point instructions are forwarded to the X instruction pipeline. Instructions distributed to these
pipelines are decoded and issued to the appropriate functional units, if there is no hardware con-

flict nor data-dependency.

The ZS-1 uses two sets of FIFO (first-in-first-out) queues for communicating with the mem-

ory. One set consists of a A Load Queue (ALQ) and a A Store Queue (ASQ). These A queues are
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Figure 2.13: The Astronautics ZS-1
used in conjunction with the A registers. The other set of queues consists of a X Load Queue

(XLQ) and a X Store Queue (XSQ). These X queues are used in conjunction with the X registers.

A unique feature of this architecture is that one of the instruction pipeline is allowed to run
ahead of the other. These two pipelines “loosely” synchronize with each other using the four load/

store queues. This can be illustrated using the following example [Smith88,Smith89].

The ZS-1 loop consists of a mixture of integer/address instructions and floating point
instructions. When the loop is fetched, these instructions are distributed appropriately to the A and
X instruction pipelines. The first two instructions of the loop decrement the loop counter and test
the result against zero. The next three instructions (executed on the A instruction pipeline) load
elements of vector B, C and D. All three of the loaded data items will be placed in the X Load

Queue (XLQ), as soon as they are available from the memory.

The next two instructions read BJi] into register X2, multiply it with C[i], and places the
result into register X3. The next instruction adds DJ[i] to X3 and places the result to the head of the
X Store Queue (XSQ). All these three instructions are executed on the X instruction pipeline; each

of these instructions dequeues a data item from the XLQ queue.

By using these four load/store queues, memory load/store operations and the floating point

computation can be performed concurrently. Furthermore, accesses to the prefetched data can be
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Do 10 I= 1,100
10 A(l) = B()*C(I) + D(1)

(a) FORTRAN Source Code

A5 =-100 /I negative loop count
A6 = A-8 I/l pointer to A
A7 =B-8 // pointer to B
A8 =C-8 /I pointer to C
A9 =D-8 /I pointer to D
loop: A5 = A5+1 /I increment loop count

B, AO=(A5==0) /I compare =07? set branch flag
XLQ = (A7=A7+8) /I load next element of B
XLQ = (A8=A8+8) /I load next element of C
XLQ = (A9=A9+8) /I load next element of D

X2 = XLQ /I copy BJi] into X2

X3 =X2*XLQ /I multiply BJi] and CJi]

XSQ = XLQ + X3 [/l add D[i]; result to XSQ
(A6=A6+8) = XSQ /I store result to A[i]

JMPF loop // branch on false to “loop”

(b) ZS-1 Assembly Code

Figure 2.14: A FORTRAN Loop and Its ZS-1 Assembly Code
achieved by reading from the heads of the appropriate load queues (XLQ or ALQ) [Smith88,

Smith89).

2.10 The Transmeta’s CrusoB¥ Processors

Transmeta Corp. recently introduced a new family of processors called the Crusoe proces-
sors. These processors are x86-compatible. The x86 applications and the underlaying hardware are
insulated with a software layer, called the Code MorpfiMgThe Code Morphine software
dynamically “morphs” (or translate) the x86 code into the underlying hardware instructions.
Figure 2.15 shows the applications, the Code Morphine software and the hardware layers of the
machine. [CRUSOEO0O].

x86 Operating BIOS
Applicationg Systems

Code Morphing Software

Hardware (VLIW engine)

Figure 2.15: Applications/Code Morphing Software/Hardware Layers
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The Code Morphine software can translate an entire group of x86 instructions at once, sav-
ing the resulting translation in a Translation Cache. When the x86 code is executed again, the
translated code can be executed directly from the cache. Due to the locality of reference typically
found in many application programs, a block of translated code is frequently re-used many times
after it is being translated. As a result, the initial translation costs tend to be amortized over many

executions.

There are a few advantages for insulating the legacy x86 code with the underlaying hard-
ware. First, the hardware and software designers can judiciously rendered some functions in hard-
ware and some in software, according to the product design goals and constraints. For a particular

hardware implementation, only a special version of Code Morphine software needs to be ported.

Second, by having dynamic boundaries between the software and the hardware, larger
design space can be explored and newer hardware/software techniques can be employed across
different generations of the processor family, according to the technology available at a given point

in time.

Third, compared to the conventional VLIW or superscalar machines which optimize the
executions at the instruction level, the Code Morphine software has a higher level knowledge of

the x86 code and can thus perform optimizations at a higher level.

In addition to dynamic translations, the Code Morphing software also instruments code into
the translated code to dynamically “learn” about the program behaviors (such as block execution
frequencies, and branch history). This data can be used later to decide when and how to spend the
efforts for re-optimization [CRUSOEQQ].

2.11 Pseudo-Vector Machine - Comparisons With Related Work

The CPU architecture for our proposed pseudo-vector machine is shown in Figure 1.4 on

page 8.
Comparison With The Crusoe Processors

The two initial Crusoe processors announced by Transmeta, model TM3120 and model
TM5400, have a four-wide VLIW engine as their underlaying execution hardware. A unique fea-
ture of the Crusoe processors is the decoupling of the application software and the underlaying

hardware implementation: instead of executing the target ISA (the x86 ISA) directly, the Code
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Morphing software decomposes, optimizes and translates them into the native ISA (ISA executed

on the native machine).

This dissertation work presents an architectural alternative for implementing the (underlay-
ing) hardware, targeting mid-to-low end, lightweight, embedded mobile applications. It is possible
to have an additional software layer, added to this machine, to insulate the hardware from the
application software. In this case, each instruction on this machine can be thought wiaasoa
opin the native ISA. That is, the “decoupling” approach used by the Crusoe processors is, in some

sense, “orthogonal” to what is present here in this work.
Comparison With SISD Vector Machine, Cray-1

Unlike Cray-1, this pseudo-vector machine executes both the scalar and vector executions
share the same datapath, using the same set of functional units. Furthermore, it does not have any
fixed length vector register. Instead, it has a temporary vector memory (the TM module). This tem-

porary storage space, to some degree, replaces the functionalities of vector registers.

One advantage of using TM over the vector registers is that it allows the compiler to have
more flexibilities in organizing the temporary storage space - it can be organized to store longer
but fewer temporary vectors, or shorter but more temporary vectors, or a mixture of vectors with
different length, etc. This allows the compilers to select the TM’s configuration for the best perfor-
mance and lowest power consumption. TM and its associated vector allocations issues will be

described and discussed in detail in Section 4.8.3 and Section 4.8.4 in Chapter 4.
Comparison With SIMD Vector Machine, PowerPC AltiVec

PowerPC AltiVec is a multiple PE vector machine, while the pseudo-vector machine is con-
sidered to be a single PE vector machine. The hardware cost of the latter is much lower than the

former.
Comparison With The MultiTitan Unified Register File Architecture

The pseudo-vector machine shares a similar design goal with the MultiTitan architecture
[Jouppi89]: they both attempt to improve the performance of vectorizable code by adding a mini-

mum amount of hardware to a scalar machine.

Unlike the MultiTitan architecture, the pseudo-vector machine does not have a coprocessor.
In particular, it only has one register file. In this machine, vectors are not stored in the register file;

instead, they are streamed between the memory and the functional units directly. As a result, vec-
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tor length is not limited to 16 elements; and strip-mining overheads for longer vectors are much

lower or non-existence. Furthermore, limited storage space in the register file (reserved for fre-

qguently used scalar in this machine) is not clobbered by the vector data.

Comparisons With The VLIW Machines

The following distinctions can be made between the pseudo-vector machine and a VLIW

machine, such as the ADSP-2106x chip.

Unlike the ADSP-2106x chip, this pseudo-vector machine does not support multiple stacks
(PC stack, loop address stack and loop count stack) for program loop executions. Without
these stacks, only the inner most loop can benefit from eliminating the loop control over-

heads. Thus there will still be control overheads associated with the outer loops executions

on this machine.

In this machine, we concentrate our hardware resources on optimizing and speeding up the
inner-most loop executions - since it provides the greatest benefits if the inner-most loop is
executed multiple iterations each time it is invoked. If an inner loop executiesations,

then saving one cycle from the inner-most loop executions will have the similar effect of

savingn cycles from the next outer loop executions.

In this machine, there are three independent on-chip memory modules, MO, M1 and TM.
Thus the machine can perform up to three data memory operations (two reads and one write)

per cycle.

A VLIW machine is capable of issuing multiple independent compute operations in one
cycle. This can be thought of performing multiple independent operations in a “horizontal”
or “width” direction (see Figure 2.16). By the end of each cycle, the results produced by
these operations are written back to some architectural registers; these results can also be

feed-forwarded to other compute operations in the subsequent cycle.

In the pseudo-vector machine, when executing in a CVA mode (or a “true” vector mode),
two function units are chained together in a “vertical” direction to perform two dependent
operations. These operations are performed simultaneously on two different data. The tem-
porary results that are produced between the two functional units are not written back to any

architectural register.

The differences between the execution model for a two-wide VLIW machine and those for a
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two-deep vector machine can be illustrated in Figure 2.16.

Two independent operations Data
are issued simultaneously
. Two function units
Two functional ‘/’ chained together to
units operate in - Temporary perform dependent
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or are feed-forwarded to any register

the next compute operations Results are written

back to memory

(@) A two-wide VLIW machine (b) A two-deep vector machine

Figure 2.16: Comparison Between a 2-Wide VLIW Machine and a 2-Deep
Vector Machine

When executing in a PVA mode, the execution model of the pseudo-vector machine is very
similar to those of a conventional DSP processor (such as the ADSP-2106x Chip). However,

the following minor differences can be noted.

» Each program loop on this machine can optionally enable up to two cs-load (the
Lo and Ly streams) and one cs-store (the S stream) operations. The instruction format
of a PVA instruction and the general structure of a program loop constructed using a

PVA instruction are shown in Figure 2.17.

* In the PVA instruction, §/E;/Eg are the enable bits for theglL,/S streams,
respectively. Access to thegland Ly streams within the loop body is achieved by
reading from registers RO and R1, respectively. In addition, a label within the loop
body, called “cs-store”, marks the instruction that, when executed, will automatically
initiate a cs-store operation. The data for the store operation, is the same data written

back by that instruction.

» There are three ways in which a loop can exit its executions: (i) by the Count
Register becoming zero; or (ii) by the conditional code becoming a value pre-
specified in the € field (assuming E=1); or (iii) by a taken branch within the loop

body with its target lies outside the loop body. All these three exit mechanisms can co-

exist simultaneously on a program loop.
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(b) A program loop constructed using a PVA instruction

Figure 2.17: The General Structure of a PVA Program Loop

2.12 General Comparisons With Related Work

The pseudo-vector machine has merged many architectural techniques found in conven-
tional DSP and vector machines, into a single execution model. It performs two forms of vector
arithmetic (namely, the “true” and “pseudo” vector arithmetic) on a single datapath. At certain
time, this machine behaves like a true vector machine; and in some other time, it behaves like a

DSP machine that optimizes program loop executions.

The optimizing compiler, in this case, decides which processing paradigm is best suited for
a given program loop. In general, it will first try to vectorize a loop using CVA instruction(s), in an
attempt to exploit the low-power and high performance aspects of vector processing paradigm. If
this is not possible, or too costly, it will then try to vectorize the loop using a PVA instruction (the

DSP’ style of loop-based executions), or a combination of both CVA and PVA instructions.
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If a vector arithmetic can be described by one or more CVA depicted in Figure 1.5 on
page 9, then CVA executions offer great opportunities for performance improvements. This is par-

ticularly true when the p_op is a multi-cycle operation, and can be fully pipelined at the P unit.
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CHAPTER 3

VECTOR ARITHMETIC

The pseudo-vector machine is capable of executing in scalar mode and in vector mode.
When in a vector mode, all the vector arithmetic that can be performed on this machine can be cat-

egorized into the following two categories.

. Canonical Vector Arithmetic (CVA);
. Pseudo-Vector Arithmetic (PVA).

Correspondingly, there are two vector instructions in this machine, one for CVA executions
and one for PVA executions. In this Chapter, we will in turn describe each of these two types of
vector arithmetic. In addition, there are also some vector arithmetic that can terminate its execu-
tion before the full vector is being processed. We will call thiator arithmetic with early termi-

nation

3.1 Canonical Vector Arithmetic

Many vector arithmetic can be represented by a generic data dependency graph shown in
Figure 3.1. In this graph“ " denotes some scalar arithmetic or logical function. This dependency
graph isgeneric in the sense that it represents a large number of vector operations. The vector
arithmetic shown in Example 1.1 on page 9, for example, can be represented by the dependency

graph shown in Figure 3.1. The scalar function, in this case, is the multiplication function.

We will now further generalize this dependency graph as follows.

A source operand can be either a scalar constant or a vector element;
. The generic dependency graph shown in Figure 3.1 is chained with another dependency
graph to form a compounded operation with three source operands and two arithmetic func-

tions (see Figure 3.2(a)).
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CIi]
Figure 3.1: A Generic Data Dependency Graph
. A feed-back path is added from the output to the input of the second arithmetic function (see

Figure 3.2(b) and Figure 3.2(b)).

We will call these generalized vector operatiar@monical vector operationgr canonical
vector arithmetic(CVA)*. Figure 3.2 shows three basic types of CVA. They arecdimpound
CVA (ii) reduction CVAand (iii) hybrid CVA In this figure, “s” denotes some scalars quantities.

Operand X Operand Y Operand X Operand Y
AlijorB[iJors AlijorBJi]ors Alijor Bliljors  AlijorBJ[ijors

Operand Z
Ali] or B[i] or s

CIil

(a) Compound CVA (b) Reduction CVA

Operand X Operand Y
AlilorB[iljors  AJiJor B[i]or s

Cli]and s
(c) Hybrid CVA

Figure 3.2: Dependency Graphs for Three Types of CVA

* In this dissertation, vector arithmetic and vector operation will be used interchangeably.
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In these three types of CVA, the first arithmetic performed near the two inputs is called the
primary arithmetic(p_op). The second arithmetic performed near the output is callesktdund-

ary arithmetic(s_op).

In order to limit the hardware costs, for the purpose of this work, we will impose the follow-
ing restrictions.

* Inthe compound CVA, the two arithmetic combined can only source up to two distinct vectors
(vectors A and B in Figure 3.2(a)). This restriction, however, does not preclude the case where
all three source operands are vectors. It reduces the maximum memory bandwidth require-
ment, from three data fetches per cycle to two data fetches per cycle.

» The secondary arithmetic, s_op, is limited to a few simple commutative ALU functions. These

include add, and, or, xor, etc.

The basic datapath structure for executing the CVA is shown in Figure 3.3.

Lo: first input data
stream from memory

A 4

From Redfile > popP_, S: data stream

S_Of~T ™ to memory

L,: second input data
stream from memory

L:i Latch

A 4

Figure 3.3: Basic Datapath Structure for Executing CVA

3.1.1 Compound CVA
Compound CVA can produce a destination vector as a result of vector computations. The

general form of a compound CVA can be expressed as follows.
. If source X and source Y are all vectors, then

Ri = (X p_op ¥)s_op Z i=0,...,n-1

where
n denotes the vector length;

p_op denotes the primary arithmetic;

* A scalar arithmeticpp, is said to beommutativef (x opy) = (yop x), for all scalar x and y.
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s_op denotes the secondary arithmetic;

R; denotes théh element of the destination vector;

Xj, Yj and Z are respectively thigh element of vectors X, Y and Z.
. If source X is a scalar constant, x, and source Y is a vector, then
Ri=(Xp_opY)s_op4%i=0,..,n-1
. If source X is a vector and source Y is a scalar constant, y, then
Ri = (Xjp_opy)s_op Zi=0,...,n-1

The secondary arithmetic, s_op, can also be a “no-op”. In this case, the dependency graph

shown in Figure 3.2(a) degenerates into those shown in Figure 3.1.

3.1.2 Reduction CVA
A reduction CVA performs aector reduction operatignwhere one or more vectors, as a
result of the vector operation, is reduced to a scalar result [Hwang84]. The general form of a

reduction CVA can be expressed as follows.

. If source X and source Y are all vectors, then
So = (Xo P_0p Yo)
S=p_opY)s op$;, i=1,.,n-1;
R=8.

where

S denotes théh partial result;

R denotes the scalar result for the vector reduction operations.

. If source X is a scalar constant, x, and source Y is a vector, then
So = (X p_op )
S=xp_opY)s op$;, i=1,..,n-1;
R=8&

. If source X is a vector and source Y is a scalar constant, y, then
So=(XoP_0PY)

S=(Xip_opy)s_ops, i=1,n-1;
R=&1
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The feed-back path shown in Figure 3.3, in conjunction with the secondary arithmetic, are
responsible for computing and accumulatinggatial result and eventually, producing a final sca-

lar result. An example of such reduction operations is the inner product of two vectors, described
by > (A[i] * B[i]). In this case, the primary arithmetic is the “multiplication” function and the sec-
I

ondary arithmetic is the accumulative “add” function.

3.1.3 Hybrid CVA

A hybrid CVA is identical to a reduction CVA, except that the partial results are also con-
stantly being written to a destination vector. The general form of a hybrid CVA is identical to those
for reduction CVA, except that the partial results, iS0,.,n-1, also form a destination vector, R,
with Rj=§, i=0,.,n-1. For hybrid CVA, there are two destinations: a scalar destination and a vector

destination.

3.1.4 Some Examples Of CVA
A few examples of CVA are shown in Table 3.1. In each of these examples, the correspond-

ing CVA vector instruction is also shown in Table 3.1.

In these CVA instructions, “@” denotes a data stream. In particular, “@L0” denotes the first
input data stream from the memory; “@L1" denotes the second input data stream from the mem-
ory; “@P” denotes the intermediate result stream produced by the primary arithmetic, p_op; and
“@S” denotes the output data stream to the memory (compare these with Figure 3.3 on page 40).

AllL, Ly and S streams are constant stride memory operations.

For compound CVA, the CVA instructions can specify both the primary and the secondary
arithmetic (see Example (a) and Example (b) in Table 3.1). These two arithmetic are specified in
the CVA instructions with a comma separating them: the primary arithmetic is specified first, fol-
lowed by the secondary arithmetic. The instruction is terminated with the “;” symbol. In this case,
the “@P” stream appears as a destination in the primary arithmetic; it also appears in the second

arithmetic as a source.

For compound CVA, the CVA instructions can also specify only the primary arithmetic (see
Example (c) through Example (f) in Table 3.1). The secondary arithmetic, in this case, is a “no-
op” and the results produced by the primary arithmetic are stored directly to the memory via “@S”

stream. No “@P” stream is specified in the instructions.
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Table 3.1: Some Examples of CVA

Streams
Enabled
Ex. Vector Arithmetic Descriptions CVA Vector Instructions
Lo| Li| S
(i) Compound CVA
a Cli]= sA[i] + BIi] Vector constant | CVA mul r4, @LO, @P, Y|Y|Y
multiplication and add @P, @L1, @S;
addition
b CIlil= (A€ 2+B[i Element-wise | CVAmul @LO, @LO, @P, | Y | Y | Y
(1= (AT U square and add add @P, @L1, @S;
c Clil= (Ali]) 2 Element-wise | CVA mul @LO, @LO, @S; Y| N| Y
square
d Cli]= abs(Al[i]) Element-wise CVA abs @LO, @S; Y| N[ Y
absolute
e Clil=Al] Vector assignment| CVA mov @LO, @S; Y N ¥
f Clij=0 Memory block ini- | CVA mov 0, @S; N| N[ Y
tialization
i) Reduction CVA
g IP= Z (A[i] * BI[i]) Vector inner prod-| CVAmul @LO, @L1, @P, | Y | Y | N
i=fm-1 uct add r3, @P, r3;
h Norm2 = (A[i]) 2 The square of | CVAmul @LO, @LO, @P, | Y | N | N
Zl “norm” of vector A add r3, @P, r3;
[ Sum = Z Ali] Vector reduction | CVA mov @LO, @P, Y [ N[N
i through summa- add r3, @P, r3;
tions
(iii) Hybrid CVA
] Cli]=A[i]*BIi]; Vector multiplica- | CVAmul @LO, @L1, @P, [ Y | Y | Y
IP= Z (A[i] * BIi]) tion and vector add r3, @P, {@S,r3};
inner product

For reduction CVA, the CVA instructions specify both the primary and secondary arithmetic
(see Example (g) through Example (i) in Table 3.1). In these cases, the “@P” stream appears as a
designation in the primary arithmetic; it also appears in the secondary arithmetic as one of the
source operands. The destination and the second source operand of the secondary arithmetic is

always register R3. For reduction CVA, R3 is designated to store the partial results as well as the

final scalar result for the reduction operations.

Since the secondary arithmetic is commutative, a shorthand notation can be used to describe
a reduction CVA. In this case, the entire secondary arithmetic expression is replaced by the func-

tion name for s _op. The CVA instruction for calculating the inner product (Example (g) in

Table 3.1), for example, can also be written as:
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CVA mul @LO, @L1, add; // shorthand notation for reduction CVA

For hybrid CVA, the instruction syntax is similar to those for reduction CVA, except that the
secondary arithmetic has two destinatioass stream and register R3. They appear on the CVA

instruction in the form “{@S, R3}". There is no shorthand notation for hybrid CVA.

3.2 Pseudo-Vector Arithmetic

There are many program loops that perform arithmetic functions on vectors, but cannot be

classified as vector arithmetic. Consider the following program loop.

Example 3.1:
for (i=0; i<n; i++) {
if (Afi]>m) {
M
lelse{
NE
}
if (B[K]>A[j]) goto EXIT;
j=i+4; k=k+8;
}
EXIT

In this loop, “M” and “N” represent some segments of straight-line code. They are condi-
tionally executed based on condition A[j]>m. Also, there are more than one possible exits from

this loop. The conditional executions of “M” and “N” and conditional loop exits can base on some

runtime information. The control flow graph of this loop is shown in Figure 3.4. ]

Often there is no systematic way of describing these types of operations in vector form.
When implemented in assembly code, this loop is converted into a program loop composed of
assembly instructions, with multiple conditional and unconditional branches in between them. We

will call such an arithmetic pseudo-vector arithmeti@VA).

In a “true” vector machine (such as Cray-1), the loop shown in Example 3.1 can still be vec-
torized using multiple vector operations. To simplify our discussion, let's assume that the state-
ment “if (B[K]>A[j])” is removed from the loop. In this case, the condition (A[j]>m) can be used
to generate a vector mask. Assuming that “M” and “N” represent some vector operations. Then

“M” can be performed under the control of the mask; while “N” can be performed under the con-
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Figure 3.4: A Program Loop with Multiple Exits

trol of a “inverted” version of the mask. In this example, no gather nor scatter operation is needed.

In our pseudo-vector machine, the PVA execution is a generalization of CVA execlitign.
program loop that is vectorizable using the CVA construct, is also vectorizable using the PVA con-
struct. The converse, however, is not trlfe loop is vectorizable by using either a CVA or a PVA
construct, it is usually more efficient, in terms of execution time, to vectorize it using the CVA
construct. There are also some program loops that are best vectorized by a combinations of CVA

and PVA constructs. We will come back to this subject later in this dissertation.

Example 3.2:

Vectorize the vector operations: C[i]= A#lBIi].

The CVA version of this program loop shown in Example (b) in Table 3.1. It can also be

vectorized, using a PVA construct, as follows.

<Some initialization code>
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/lassign LOto A, L1to B, Sto C.

PVA @LO, @L1, @S, #3; /l PVA instruction

mov  r3, 10 I1'r3 = Ali]

mul  r3,r3 11'r3 = AJi] 2
cs-store:

add r3,rl I C[i] = Ali] 2 + BJil;

/I initiate a cs-store here

In this vectorized loop, all §, L; and S streams are enabled. In particular, thstteam is
assigned to vector A; thesLstream is assigned to vector B and the S stream is assigned to vector

C. “Assignment” here refers to initializing some specially designated registers to the appropriate

load/store addresses and stride values for accessing the vectors A, B and C.

Within the loop body, access to A[i] is achieved by reading from register RO; access to BJi]

is achieved by reading from register R1. RO and R1 are, respectively, the “heads” gfdhd L;

streams.

An “add” instruction is located at a label called “cs-store” within the loop body. When this
instruction is executed, a constant-stride store to the memory is automatically initiated, using the
result written back by this instruction. This cs-store operation writes a data element to the destina-

tion vector C.

The size of the PVA loop, in this example, is three instructions (“mov”, “mul” and “add”).

This is specified in the PVA instruction using the notation “#3”. O]

3.3 Vector Arithmetic with Early Termination

Consider the program loop shown in Example 3.3.

Example 3.3:
L1:
Id.h r7,(r2) /'load AJi]
addi r2,2
Id.h ré,(r3) /' load BIi]
addi r3,2
cmplt  r6,r7 /l'is A[i] > BJi]?
bt EXIT Il if so, exit the loop

decne rl4 /I if not, decrement the count



47

bt L1 /lis the entire vector being processed?
/lif not, branch backward
EXIT:

The corresponding high level source code is shown below.

for (i=0; i<n; i++) {
if (A[i] > BJi]) {break;}
}

This loop performs an element-wise compare between vector A and B. This loop exits as

soon as A[i]>B]Ji]. If no such pair of elements exists, then all the elements of vector A and B will

be processed before the loop exits. ]

If a program loop performs certain arithmetic function on a fixed length vector(s), and it is
possible for the computation to terminate even before the last element(s) of the vector(s) is being
processed, then such an operation is calledreator arithmetic with early termination

Example 3.1 and Example 3.3 shown earlier in this Chapter are examples of such arithmetic.

In a vector arithmetic with early termination, there are two terminating conditions. One is
when all the elements of a source vector are being processed. The other is when certain arithmetic
condition is met. This condition could be met prior to the last vector element is being processed.

This condition is usually data dependent and can not be determined a priori.

When a loop with “if” condition in the loop body is vectorized on a “true” vector machine, it
is often converted into multiple vector operations which involves mask generation, and possibly

some gather and scatter operations.

Early Termination Enable Bit, Et
In our vector execution model, both CVA and PVA arithmetic described in Section 3.1 and
Section 3.2 can be a vector arithmetic with early termination. All vector executions can terminate

early by setting an enable bit, called tBarly Termination Enable Bi{E; bit), in the vector

instruction. The value of the condition code for this to occur is also specified in the instruction.
This bit is called the & bit. The formats of the CVA and PVA instructions will be described in

Section 4.4 in Chapter 4.

For CVA executions with early termination enabled-€®&), the primary arithmetic are some

functions that can alter the condition code. During the course of the vector executions, if the con-
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dition code is set to the pre-specified value (given by théif), the vector execution will termi-

nate immediately.

Example 3.4:

Vectorize the program loop shown in Example 3.3 using a CVA construct.

This loop can be vectorized using a CVA construct as follows.

<Some initialization code>
/lassign LOto A, L1 to B.
CVA cmplt.ct=1 @LO0, @L1;

In this CVA instruction, the secondary arithmetic is unspecified (i.e. it is a “no-op”). In this
instruction, E=1 and G=1. The primary arithmetic (“cmplt”) compares, element-wise, between
vector A and vector B. If A[i] > BJ[i], for some i, the condition code is set to one, terminating the
CVA executions. If no such pair of elements are found, executions continue until the two vectors

are exhausted. ]

For PVA executionsearly terminationcan be achieved by any of the following two mecha-

nisms:

. By using the E and G bits in the PVA instruction, similar to those described above; and

. When a branch within the loop body is taken, and the target of the branch lies outside the

loop body.

When any of the above two conditions is met, the PVA executions terminate automatically.
The machine will then enter a scalar mode. These two exit mechanisms are illustrated in the fol-

lowing example.

Example 3.5:

Vectorize the program loop shown in Example 3.3 using a PVA construct.

The CVA version of this loop is shown in Example 3.4. This loop can also be vectorized

using a PVA construct as follows.

<Some initialization code>

// assign LO to A, L1 to B.

PVA @LO, @L1, ct=1, #1;

cmplt RO, R1 // loop body
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Like its CVA counterpart, the PVA instruction hag£l and G=1. The PVA loop body con-

sists of only one scalar instruction (“cmplt”). This instruction compares, element-wise, between
vectors A and B. This is achieved by reading and comparing RO and R1. When the condition code

cis setto 1 (¢€=1) as a result of the comparisons, the PVA executions terminate immediately.

An alternate version of this loop is shown below.

<Some initialization code>
/lassign LOto A, L1 to B.

PVA @LO, @L1L, #2;

cmplt RO, R1 I part of loop body
bt EXIT Il part of loop body
EXIT

In this alternative, =0 in the PVA instruction. There are two instructions in the loop body:
(“cmplt” and “bt"). When the second instruction in the loop (“bt EXIT”) is taken (the target of this
branch lies outside the loop body), the PVA executions terminate immediately. Otherwise, the exe-

cutions will continue with the first instruction of the next iteration (“cmpilt”).

The first PVA version of the loop executes as fast as the CVA version shown in Example 3.4,
taking one cycle per iteration to execute. The second PVA version is less efficient, taking two

cycles per iteration to execute. By setting=H, we eliminated the overhead associated with exe-
cuting the conditional branch instruction. ]
The “exit-by-conditional-branches” alternative is typically used by a program loop with

conditional executions within the loop body that also utilize the condition code. An example of

such loops is shown in Example 3.1 on page 44.
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CHAPTER 4

PROGRAMMING MODELS

In this Chapter, we will discuss the programming models for vector executions on this

machine.

In the CVA executions, there are notions of “vector elements” and “vector length”. In the
PVA executions, there are notions of “loop body” and “iterations”. Throughout this dissertation,
“vector length” and “number of iteration” will be used interchangeably, if such uses do not cause

any confusion in a given context.

4.1 Execution Modes

There are two major execution modes in this machine: scalar mode and vector mode. The
vector mode can be further divided into: CVA mode and PVA mode. Correspondingly, there are
two vector instructions, a CVA instruction and a PVA instruction. Furthermore, there are three

types of CVA executions. Figure 4.1 shows all the execution modes in this machine.

Scalar mode Compound CVA

Execution mode< CVA modB<Reduction CVA
Vector mod8<

Hybrid CVA
PVA mode
Figure 4.1: Various Execution Modes On The Pseudo-Vector Machine

4.2 Constant-Stride Load/Store Operations

A vector instruction (a CVA or a PVA instruction) can optionally enable up to two constant-
stride load (cs-load) and one constant-stride store (cs-store) operations to be performed for each

pair of vector elements (for CVA executions) or during loop executions (for PVA executions). The



51

two cs-load operations are denoted kyand L;. The cs-store operations are denoted by sard

L, are also referred to as the input data streams; S is also referred to as the output data stream.

The data dependency graphs in Figure 4.2 show the relationships betyégraind source
operands X, Y and Z. Operand X can source either frgygnLly or register R4. Operand Y can

source either from ¢, L, or register R5. Operand Z can source from eitlyet L or register R6.

Source X Source Y Source X Source Y Source X Source Y
Lo, Lyorrd Lo Liorrs Lo, Lyorrd  Lg Liorrs Lo, Lporrd Lg Liorrs

Source Z
LoorLyorr6

C[i] Clijand s
(a) Compound CVA (b) Reduction CVA (c) Hybrid CVA
(S enabled) (S disabled) (S’enabled)

Figure 4.2: Dependency Graphs Showing the Relationships Between L o L1
and Source Operands X, Y and Z

4.2.1 cs-load And cs-store For CVA Executions

When in a CVA mode, S can be enabled or disabled. For compound CVA, S is always
enabled. If S is disabled, the CVA corresponds to a reduction CVA. If S is enabled, the CVA corre-
sponds to either a compound CVA or a hybrid CVA.

Example 4.1:

Vectorize the following program loop.

L1:

stw r5,(rl4)
addi rl4,4
decne ré

bt L1

This loop is found in a benchmark program caltegnmin. It initializes a block of memory

with a constant. It can be vectorized using a CVA instruction as follows.

<Some initialization code>
CVA mov r4, @S;
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This is a compound CVA. In this case, S is enabled Qyand L, are disabled. The initial-

ization code preceding the CVA instruction sets up the starting store address, its operand size and
constant-stride value. R4, in this case, is initialized to the appropriate constant prior to the CVA
executions. The cs-store S are then performed using this constant. The primary arithmetic, in this
case, is a “mov” function. Besides setting up the store address and stride value, the vector initial-
ization code also includes the initialization of vector length to a special register Calaat Index
Register(CIR). This register, which controls the number of vector elements to be processed (for

CVA executions) or the number of iterations to be executed (for PVA executions), will be

described further in Section 4.3.2. []

Example 4.2:

Vectorize the following program loop.

L1:

Id.b r7,(r3)
st.b r7,(r2)
sub r2, r9
sub r3, r9
decne ré

bt L1

This loop performs a block memory transfer between two memory locations. R9, in this
case, contains the stride value for the cs-load and cs-store operations. This loop can be vectorized

as follows.
<Some initialization code>
CVA mov @LO,@S;
This is also a compound CVA. In this casg, &nd S are enabled, but noj.LThe primary

arithmetic is also a “mov” (or “pass”) function. The secondary arithmetic is also a “pass” function.

O

Example 4.3:
Vectorize the following vector operation: C[i] = sA[i] + B[i], for some scalar constant s.
This vector operation can be vectorized using a CVA instruction as follows.

<Some initialization code>
/lassign LOto A, L1 to B.
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/l initialize r5 with the scalar s

CVA mul @LO, r5, @P, add @P, @L1, @S;

This is another compound CVA. In this example, af}, IL; and S streams are enabled.
Stream lg is assigned to vector A; stream Is assigned to vector B and stream S is assigned to
vector C. Register R5 is initialized to the scalar s prior to the vector executions. The primary arith-

metic is the “mul” function and the secondary arithmetic is the “add” function. ]

In the above Example, the CVA instruction sources two vector operands. A CVA instruction

can also source up to three vectors, provided that the three source vectors are actually coming from

no more than two distinct vectors. For example, the vector operations CJi] gN_ﬂi[i] can be

vectorized as follows.

/l assign LOto A, L1to B, Sto C.
CVA mul @LO, @LO, @P, add @P, @L1, @S;

In this case, operands X, Y and Z are all vectors, sourcing from only two distinct vectors, A
and B.

Example 4.4:

Vectorize the following program loop.

L1:

ldw r10,(r14)
decne r4

mov r7,r10
Isr r7,r9

or r7,r3
mov r3,r10
stw r7,(rl3)
Isl r3,r8
addi rl4,4
addi r13,4

bt L1

This loop is taken from a benchmark program calldd . The vector operations per-

formed by this loop can be described by:

C[i] = (sr(Ali], r9) |  ISI(A]il, r8))
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This loops reads in a vector, A, an element at a time, and performs a logical shift right (“Isr”)
and a logical shift left (“Isl”) operations on the element. It then “or” the results of these two shift
operations and writes it to a destination vector, C. It can be vectorized using two CVA instructions,

as follows.

<Some initialization code>

/Il assign LO to vector A, S to a temporary vector.
mov r5, r9

CVA Isr @LO, r5, @S;

<Some initialization code>

Il assign LO to the temporary vector, L1 to vector A.
// assign S to vector C.

mov r5, r8

CVA Isl @LO, r5, @P, or @L1, @P, @S;

Both of these CVA instructions are compound CVA instructions. The first performs a “Isr”
operation on the source vector A and produces a temporary vector. The second CVA instruction
has “Isl” as its primary arithmetic and “or” as its secondary arithmetic. This latter instruction reads

in the temporary vector viadand performs a “IslI” operation on it. It also reads the original source
vector A via Ly and performs a “or” function with the results produced from the primary arith-

metic. It then writes back the results to vector C via S.

Notice that the source operand Y for both CVA instructions is always sourced from register
R5. Additional “mov” instructions are thus needed to initialize this register prior to the CVA exe-
cutions. The data dependency graph for this loop is shown in Figure 4.3.

All r5<-r9

First CVA
instruction

ESecond CVA
.instruction

Cli]
Figure 4.3: Data De pendency Graph for Exam ple 4.4
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Note that in the original scalar program loop shown on page 53, there are 11 instructions in
the loop body. Thus duringachiteration, there were 11 instruction requests being made to the

instruction memory. In the CVA executions, besides fetching the initialization codes and the

“mov” instructions, there is no instruction request throughout the course of vector executidns.

Example 4.5:

Vectorize the following program loop.

movi r4,1

L1:

stw r4,(rll) /I cs-store

addi rll,4

addi r4,1 I store data sequence: 1,2,3,...
cmplt r4,ri3 /I check for loop terminating condition
bt L1

This loop is taken from a benchmark program cakedo . The loop stores a sequence of
data described by: 1,2,3,..., etc. This loop can be vectorized as follows.
<Some initialization code>

movi r4,1
CVA mov r4, @P, add @P, r3, {r3,@S};

This is a hybrid CVA. The partial result, generated in every cycle, is simultaneously written

to register R3 and stream S.

If the starting value of the sequence is some constant other than a one (say, the constant is s),
then two CVA instructions will be needed. The first one is the hybrid CVA described above. The

second is a compound CVA that adds s-1 to each element of the resulting vector produced by the

first CVA executions. ]

4.2.2 cs-load And cs-store For PVA Executions

When in a PVA mode, any or all ofd.L; and S can be disabled. To enable the cs-logd L
(or Ly), the “@LO” (or “@L1") symbol must appear in the PVA instruction. Wheg (br L,) is
enabled, access to the cs-load data stream within the loop body is achieved by reading from regis-
ter RO (or R1). Each read from RO (or R1) dequeues one data item fromyter L) stream.

Registers RO and R1, however, are read-accessible only. Writing to these registers will be ignored
by the hardware.
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To enable cs-store S, there must be one (and only one) “cs-store” label within the loop body.
When the instruction located at this label is executed, a cs-store operation is automatically initi-
ated, using the data written back by that instruction. There can be no more than one “cs-store”

label in a PVA loop body. If there is none, S is considered to be disabled by the assembler.

Example 4.6:

Vectorize the following program loop.

for (i=0; i<n; i++) {
if (A[i] > p) CJ[i]=4 else CJ[i]=8;

}

The corresponding assembly code is shown below.

mov r4, 4

mov r8, 8

L1:

Id.w r7,(r3)  /l'load AJi]

addi r3,4

mov r2, r8

cmplt ré,r7 Il'is A[i] > p?

movt r2, r4 Il r2 = (A[i] > p)? r4: r8;

st.w r2, (r4) // store result

addi r4,4

decne r5 // decrement the loop count
bt L1 /lis the entire vector being processed?

This loop can be vectorized using a PVA construct as follows.

<Some initialization code>
/lassign LOto A, Sto C.

mov r4, 4

mov r8, 8

PVA @LO, @S, #4,

mov r2, r8

complt R6, RO I1's (A[j] > p)?
cs-store:

movt r2,r4 Ir2 = (A[i] > p)? r4: r8;

/lcs-store performed here

In this loop, Ly and S are enabled, but nof.Lin each PVA iteration, a cs-store operation is
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automatically initiated whenever the “movt” instruction is executed.

Note that after vectorizing this loop with a PVA instruction, the size of the loop body is
reduced from the original 9 instructions, down to 3 instructions. The instruction request bandwidth

when executing this loop is thus greatly reduced.

All the instructions that were eliminated from the loop performed some repetitive loop con-
trol or cs-load/cs-store operations. During loop executions, the machine no longer needs these

instructions since their associated operations are already pre-specified in the PVA instructions, or

in some special registers. U]

4.3 Special Registers For Vector Executions

Prior to any vector execution, certain registers need to be properly initialized. These special
registers contain all the necessary information for the hardware to carry out the proper vector exe-

cutions. Table 4.1 shows these special registers. They are described in the followings.

Table 4.1: Special Registers For Vector Executions

Registers Nota- Register Contents
tions
Stride and Size Register SSR Stride values and operand sizgg fgrdnd
S
Count Index Register CIR Number of iterations to be executed
General purpose register, R0 | RO Load address forg
General purpose register, R1 | R1 Load address forjL
General purpose register, R2 R2 Store address for S
General purpose register, R3 R3 Partial and finaléslspl\uts for reduction or hybrid
General purpose register, R4 R4 Optional source for operand X
General purpose register, R5 R5 Optional source for operand Y
General purpose register, R6 R6 Optional source for operand Z

a. These are overlaid instances. See Section 4.6.

4.3.1 Stride and Size Register
A special register, called tigtride and Size Registé8SR), is used to specify the stride val-

ues and the operand sizes fof, IL; and S streams, if the corresponding load/store operation is

enabled. This register is partitioned into three independent fields, one for each gf theand S
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stream. The format of SSR is shown in Figure 4.4.

31 29 2019 109 0
xx[Sz]  STR, z STR, Sz  STR
\/_/ \/_/
For |_O For Ll For S

STRYSTR/STRg: Stride value for |, L; and S, respectively.

SZy/SZ4/SZg: Operand size ford, L; and S, respectively.
They are defined as follows:  0x word

10 halfword
11 byte

Figure 4.4: Stride Size Register, SSR

The STRYSTR)/STRq fields specify the stride values forplL; and S, respectively; the
SZ,/SZ,/SZg fields specify the operand sizes fgy L, and S, respectively.

When in a PVA mode, if any of §, L; and S is disabled, its corresponding “SZ” and “STR”

fields are “don’t care”.

SSR is a special control register that can be accessed using the “move-to-control register”

instruction (“mtcr”) or the “move-from-control register” instruction (“mfcr”).

4.3.2 Count Index Register (CIR)

A special register, called th@ount Index RegistgCIR), is composed of two independent
registers: (i) theCount Registe(CR); and (ii) thelndex Registe(IXR). This register is shown in
Figure 4.5.

31 1615 0
Index Register (IXR) Count Register (CR)

Figure 4.5: Count Index Register, CIR

Register CR is used to specify the vector length for CVA executions, or the number of loop
iterations to be executed for PVA executions. This register is initialized by the software prior to its
vector executions. During the vector executions, this register is automatically decremented by one,
for each vector element (or each iteration) being processed. When this register reaches zero, the
vector executions will terminate. A vector arithmetic, however, could also terminate prior to CR
becoming zero. This will be described further in Section 4.5. CR is a read and write accessible reg-

ister.
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Register IXR is only used for PVA executions. It serves as a “local PC” within a PVA loop
body. When we are executing the first instruction in the loop body, the IXR is set to one. When we
are executing thah instruction in the loop body, the IXR is setitdXR is a hardware-only regis-

ter. The software have no access to this register. Reading from this register returns all zeros. Writ-

ing to this register is ignored by the hardware.

Register CIR is a special control register that can be accessed using the “move-to-control”
instruction (“mtcr”) or the “move-from-control” instruction (“mfcr”). However, only the lower

portion of CIR (the CR register) is accessible to the software.

4.3.3 Register For Storing Constant-Stride Load Addresses

The load addresses fogland Ly, if enabled, are stored in registers RO and R1, respectively,
as shown in Table 4.1. Prior to entering a vector execution, the software initializes these registers
to point to the starting load addresses fgrdnd Ly. During the course of vector executions, these
registers are constantly updated by the hardware, to point to the latest cs-load addresses. That is,

each time a cs-loadg(or L,) is performed, RO (or R1) is added by the stride value specified in the
STR, (or STRy) field in the SSR register. The hardware, in this case, updates the overlaid instances

of RO and R1. Register Overlay will be described in Section 4.6.

4.3.4 Register For Storing Constant-Stride Store Addresses
If S is enabled, the store addresses for S are stored in register R2. Similar to RO and R1, this
register is constantly updated by the hardware to point to the latest cs-store address. R2, however,

is not overlaid. Again, Register Overlay will be described in Section 4.6.

4.3.5 Scalar Results For Reduction And Hybrid CVA

When executing a reduction CVA or a hybrid CVA, R3 is designated as the destination reg-
ister. It is also designated for storing the partial results during the vector executions. That is, the
partial results produced during the course of the vector executions are constantly being written

back to register R3.

4.3.6 Scalar Source Operands For CVA Executions
During CVA executions, operands X, Y and Z can optionally source from registers R4, R5
and R6, respectively. Once initialized by the software, these registers will not be altered during the

entire course of CVA executions.

* The hardware recovery mechanisms for exceptions and interrupts for PVA executions will be discussed in
Section 4.7.
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When in PVA executions, registers R3, R4 and R5 have no special meaning and are for gen-

eral uses.

4.4 \ector Instructions

Figure 4.6 shows the formats of the CVA and PVA instructions. Both the CVA and PVA

instructions are 32-bit wide.

In both CVA and PVA instructions, theg=E,, Eg bits, respectively, enables or disables the
Lo L1 and S streams. Also in these instructions, thebE enables or disables the early termina-
tion capability. The G bit specifies the condition code for this to occur, if the capability is

enabled.

In the CVA instruction, the Yo/Vyq, Vyo/Vy1 and V,¢/V,, bits appropriately select the
sourcing of operands X, Y and Z. In particular, these bits select the sourcing bf br a desig-

nated registers, as defined in Figure 4.2 on page 51. The p_op field in the CVA instruction speci-

fies a primary arithmetic. The s_op field specifies the secondary arithmetic.

In the PVA instruction, the cs-store-index field specifies the index of the instruction in the
loop body that will initiate a cs-store operation, when the instruction is executed. The first instruc-
tion in a PVA loop has an instruction index of zero, the second instruction in the PVA loop has an
instruction index of one, and so on. The Loop_size field in this instruction specifies the size of the

PVA loop body, in number of scalar instructions.

Example 4.7:
Implement the inner product of two vectcl)rzsgn_l(A[i]*B[i]) .

Initialize CR to n.

Initialize SSR[STR o] to stride value for vector A.
Initialize SSR[STR 1] to stride value for vector B.
Initialize RO to the starting address for vector A.
Initialize R1 to the starting address for vector B.

CVA mul @LO, @L1, add;

In this example, S is disabled. Thus this is a reduction CVA. The primary arithmetic for this
reduction operations is the “mul” function; the secondary arithmetic is the “add” function. When

the vector computation is completed, the final result (the inner product) will be implicitly written
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(a) CVA Instruction

31 1615 8 7 43
Vector_Opcode 0 Eo[E1 EsErCiVxdVxoVyVydVzVzq  P_OP s_op
Vector_Opcode: Opcode for vector instructions
Eo/Eq/Eg: Enable bits for data streamg,IL; and S, respectively
VoV Defined as follows.

V41V = 00 operand X sources from R3
Vy1Vyo =01 operand X sources from L
Vy1Vyo = 10 operand X sources from L
Vy1Vyo= 11 operand X sources zero
Vyo/Vy1: Defined as follows.
Vy1Vyo =00 operand Y sources from R4
Vy1Vyo = 01 operand Y sources from L
Vy1Vyo = 10 operand Y sources from L
Vy1Vyo =11 operand Y sources zero
V,o/Vy1: Defined as follows.
V,1V,0=00 operand Z sources from R5 (compound CVA)
V,1V,0=01 operand Z sources frong (compound CVA)
V,1V,0= 10 operand Z sources from(tompound CVA)
V,1V,0=11 operand Z not used (Reduction CVA)
Et: Enable bit for early termination
Ct Condition code for early termination
p_op: Opcode for primary arithmetic
s_op: Opcode for secondary arithmetic
(b) PVA Instruction
31 1615 13 76
Vector_Opcode 1|Eg [E1 [Es[ET Cy| Cs-store-index Loop_size

Vector_Opcode: Opcode for vector instructions

Eol Ell ES:

ET:
C

Enable bits for data streamg,IL, and S, respectively

Enable bit for early termination
Condition code for early termination

cs-store-index: Index of the instruction in the loop body that will

Loop_size:

initiate a cs-store operation
Size of loop body in number of instructions

Figure 4.6: Format of CVA and PVA Instructions
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back to R3. The CVA instruction, in this example, will have the following settingg/W(,=01,
Vy1/Vyo=10, V;1=V,¢=11, Es=0, =0, Gi="don't care”.

In this example, if the vector executions is interrupted, register R3 will contain the partial

result of the inner product computations. Upon returning from the interrupt, computations will

continue from where it was left off. ]

Example 4.8:

Implement the vector arithmetic: C[i] = sA[i], for all i.

Initialize CR to the vector length.
Initialize SSR[STR o] to stride value for vector A.

Initialize SSR[STR gl to stride value for vector C.

Initialize RO to the starting address for vector A.
Initialize R2 to the starting address for vector C.
Initialize R5 to s.

CVA mul @LO, R5, @S;

This is a compound CVA. The second arithmetic is a “no-op”. In this cagand S are
enabled, but not L. Prior to the vector executions, R5 was initialized with the constant s. The CVA
instruction, in this example, will have the following settings; 1/ ,q=01, Vy1/Vyo=00, V¢

V,1=00, Es=1, E=0, G="don’t care”. Ll

4.5 Terminating Conditions

All vector executions (CVA and PVA) can exit their executions and return to a scalar mode
prior to CR becoming zero. A vector instruction (a CVA or a PVA instruction) can optionally

enable this capability by setting the-Bit to one, and by specifying this early terminating condi-
tion in the G field (see Figure 4.6 on page 61). During the course of vector executions, if the con-
dition code equals to those specified in thg Git, the vector executions will terminate

immediately

4.5.1 Early Termination for CVA Executions
The p_op field, in this case, specifies some scalar arithmetic that will alter the condition

code. This is the only early terminating condition for CVA executions.
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4.5.2 Early Termination for PVA Executions
In PVA executions, conditional and unconditional branches are allowed within a loop body.
When a branch inside the loop body is taken, and the target of the branch lies outside the loop

body, then the execution of the PVA loop is considered to terminate.
A PVA loop can terminate its executions via one of the following three mechanisms.
(1) The CR reaches 0; or

(2) When a branch resides within the loop body is taken and the target of the branch lies out-

side the loop body; or

(3) The early termination capability is explicitly enabled (by setting thebE in the PVA

instruction) and during the course of the PVA executions, the condition code is set to those

specified in the gfield.

Conditions (2) and (3) above are collectively referred to as the early termination for PVA

executions. That is, they terminate prior to CR reaches zero.

When executing the last instruction of the loop body, if the last instruction does not cause a
change-of-control flow with a target lies outside the loop body, then the loop execution will con-
tinue and the control is transferred back to the top of the loop. Example 3.5 on page 48 illustrates

examples for using the early exit mechanisms (2) and (3) described above.

4.6 Register Overlay

In this Section, we will introduce the notions Bigister Overlayand Temporary Register

These notions are applicable to PVA executions only.

In vector arithmetic, most data loaded from the memory via the constant-stride loads are
temporariesonly, in the sense that they are consumed in a single iteration, and are never used

again. Registers R6 and R7 shown in Example 1.1 on page 9 are examples of such temporaries.

Furthermore, if a vector arithmetic is allowed to be interrupted, then all the constant-stride
load/store addresses associated with the vector executions need to be saved so that the load/store
operations can resume upon returning from the interrupt. Storing all the prefetched temporaries
from the memory as well as these load/store addresses using some architectural visible storage

spaces (such as the general purpose register file or control registers) could be an inefficient use of
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these valuable resources.

A new approach, calletRegister Overlayis introduced to address this problem. In this
approach, upon entering a PVA execution mode, a portion of the architectural visible register file is
“overlaid” with a new set of registers. When a register is beingrlaid, it has two instances: (i) an
overlaid instance and (i) atemporary instanceWhen in the PVA mode, only its temporary
instance is visible to a programmer, but not its overlaid instance. Conversely, when the execution
exits the PVA mode and enters a scalar mode, the overlaid instance becomes visible again and the

temporary instance cease to exist.

Figure 4.7 shows how the visibility of the overlaid registers change over a sequence of three

execution modes: scalar, PVA and scalar.
Overlaid registers
disappear and reappear again.

These registers are
) always visible
Time

(a) Scalar mode (b) PVA mode (c) Scalar mode

Figure 4.7: Register Overlay

In this work, registers RO and R1 are designated as the set of registers that could be overlaid
during PVA executions. They are shown in Table 4.2. The overlaid instances of these registers are
used to store the corresponding cs-load addresses. The temporary instances of these registers are

used to store the data prefetched from the memory via the csdead ;.

Table 4.2: Overlaid and Temporary Instances of RO/R1

Overlaid Instance Temporary Instance
Registers (Only Accessible In Scalar Mode) (Only Accessible In PVA Mode)
Contents Accessibility Contents Accessibility]
RO Load address forgL Read/Write Prefetched data fo5 . ~ Read Only
R1 Load address for4L Read/Write Prefetched data fof .  Read Only
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The temporary instances of RO and R1, respectively associated yathdl,, are read-only
registers. Writing to these temporary registers within the loop body are ignored by the hardware.
These temporary registers are only defined during the PVA executions. When a PVA loop exits its
executions and enters a scalar mode, the data contained in these temporary registers are lost.
Access to such a register, at that point, will retrieve the overlaid instance of the register, which is

the load address for the last cs-load operation performed.

Also, when a PVA execution is interrupted, these temporary registers are not saved as part of
the context. Upon returning from the interrupt, the cs-load operations that prefetched the data into
the temporary registers will be re-initiated, using the load addresses stored in the overlaid
instances of RO and R1. The temporary instances of RO and R1 will be re-initialized before the

normal PVA executions can resume.

4.7 Machine States Maintenance For Vector Executions

In this machine, all vector executions are interruptible, in the sense that an interrupt could

cause a temporary suspension of a vector execution, even before the entire vector arithmetic is

completecf Besides the usual context for scalar executions, certain additional contexts will need

to be saved so that the vector executions can properly resume later on.

When an interrupt occurs, some of these vector contexts are saved and some are discarded.
In this Section, we will discuss the minimum vector contexts that need to be saved to maintain

machine states consistency with fast interrupt response time.

4.7.1 Saving The Execution Modes
A vector execution mode is indicated by having a non-zero value in the Count Register
(CR). Conversely, having a zero value in the CR indicates that the machine is (or had been) execut-

ing in a scalar mode.

In addition, the content of IXR is used to distinguish between the CVA and PVA execution

modes: for CVA executions, IXR is always zero; for PVA executions, it is always non-zero.

Upon returning from an interrupt, the IXR and CR are both examined by the hardware, in
order to put the machine in the appropriate execution mode prior to resuming the normal execu-

tion.

* |n this context, interrupts and exceptions are equivalent concepts.
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4.7.2 Saving The Minimum Vector Contexts

Upon an interrupt, the vector contexts that will be saved by the hardware are shown in
Table 4.1. They include SSR, CIR, the overlaid instances of RO and R1, and register R2 through
R6. Since these registers are already in the Regfile, they are automatically saved along with all
other registers in the Regfile. A shadow register file similar to those used in [SHARC97,

TMS320C3x, MCORE98] can be used to achieve fast interrupt response time.

CVA Executions

For CVA executions, operations on each vector elemeatdmic in the sense that if the
result of the operations associated with a vector element is not written back when an interrupt
occurs, therall the intermediate results will be discarded. All operations performed on this ele-

ment (or elements) will have to be repeated upon returning from the interrupt.

When performing a reduction or hybrid CVA, the partial result is constantly written back
into the Regfile (to R3). If the CVA is interrupted, the partial result is already in the Regfile and is
automatically saved. No additional time is wasted to save the partial result. When returning from
the interrupt, however, the content of R3 will need to be restored back onto the s_dbus before nor-

mal CVA executions can resume.

PVA Executions

For PVA executions, all the intermediate results produced in the loop body are stored in the
Regfile. The machine, in this case, maintains its consistency at the boundaries of the scalar instruc-

tions within a loop body. Thus no additional time is wasted to save the intermediate results.

The temporary instances of RO, R1, for PVA executions, are not saved as part of the vector

contexts. Upon returning from the interrupt, the cs-loadgaid Ly) that fetched these temporar-

ies, if enabled, are re-initiated. Temporary registers RO and R1 are then updated accordingly
before the normal PVA executions can resume. The hardware, in this case, assumes that the mem-

ory locations have not been altered during the course of servicing the interrupt.

When a PVA instruction is decoded, a copy of the PC is saved in a temporary hardware loca-
tion. When an interrupt occurs during the PVA executions, the saved copy of the PC (pointing to
the PVA instruction) is restored and saved as part of the vector context. When returning from the
interrupt, using this PC, the PVA instruction is fetched to recover all the loop control information,
including cs-store-index, Loop_size, etc. The content of IXR is then added to the PC to obtain the

address of the instruction in the loop body where the execution is to be resumed.
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In PVA executions, the execution of the instruction located at the “cs-store” label, and its
associated cs-store operation is an atomic operation. Consider the PVA loop shown in Example 4.6
on page 56. The “movt” instruction and the associated cs-store operation is an atomic operation. If
a cs-store does not complete due to an exception or an interrupt, then the “movt” instruction is also
considered “not executed”. Upon returning from the interrupt, executions will resume starting at

the “movt” instruction.

4.7.3 Updates of Temporary and Overlaid Instances of RO and R1

When a PVA instruction is decoded and begins its executions, the first two cs-load opera-
tions are initiated immediately (if they are enabled). The first read from RO (or R1) in the loop will
yield the first data loaded viagl(or L,); the second read from RO in the loop will yield the second
data element loaded vigl(or L), and so on. It is possible to have multiple reads from RO (or R1)

within a single iterations.

During PVA executions, at any given point in time, the temporary instance of RO (or R1)
always contains the data fetched from memory wddr L) using the load address stored in the
overlaid instance of RO (or R1). In terms of machine states consistency, the updates of the tempo-
rary and overlaid instances of RO (or R1) occur simultaneously in a lock-step manner: they are
both updated at the instruction boundary between the instruction that reads RO (or R1) and the sub-

sequent instruction in the program order.

4.8 Memory Organization

A simplistic view of the memory organization of this machine is shown in Figure 4.8. In this
machine, there are three independent on-chip memory modules: MO, M1, and TM (Temporary
Memory). In addition, there is a small instruction cache, calleddbp cachefor storing program

loop instructions during PVA executions.

MO and M1 are the main on-chip memories. MO is used to store instructions and data. M1 is
used to store data only. TM is also used to store data only. In particular, it is used to store tempo-

rary vectors during vector executions.

In this memory system, the load unig bas read access to MO and TM; the load unitias
read access to M1 and TM; the store unit S has write access to all MO, M1 and TM. MO and M1
are single ported memories. TM has one read port and one write port. The contents, accessibilities

and the number of read and write ports of these memory modules are shown in Table 4.3.
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Figure 4.8: A Simplistic View Of The Memory Organization
Table 4.3: Accessibilities of MO, M1 and TM

Memory Data Streams Number of Regd/ Arbitrate
Module | Contents LO L1 S Write Ports | Between Streams
MO Instructions Read - Write | 1 (read or write dvs. S
and data
M1 Data - Read| Write| 1 (read or writg) 1lvs. S
™ Data Read Read| Writej] 2 (onereadand Lgvs.l
(temporary one write)
vectors)

4.8.1 Memory Bandwidth Requirements For Vector Executions

To perform all the CVA arithmetic shown in Figure 1.5 on page 9, with a sustain throughput
rate of one, we require the memory system to support two data reads and one data write. There is
no instruction request during a CVA execution. This is because once a CVA instruction is decoded

and executed, no further instruction is needed for the rest of CVA executions.

In addition to the two data reads and one data write, the PVA executions also require one

instruction to be fetched in each cycle.

In each cycle, the memory system shown in Figure 4.8 can support up to two data reads and
one data write (through MO, M1 and TM); it can also support one instruction fetch in the same

cycle (using the Loop Cache).

4.8.2 Memory Map For MO, M1, TM
The three memory modules M0, M1 and TM can be accessed by referencing certain pre-
defined memory space (i.e. they are memory mapped modules). The memory map for MO, M1 and

TM is shown in Figure 4.9.
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0x00000000

MO
OX7FEFFFFE
0x8000000

M1
OXFFFFFDFE
OXFFFFFEO ™
OXFFFFFFF

Figure 4.9: Memory Map For MO, M1, TM
4.8.3 Temporary Memory
TM is a small RAM memory used for storing temporary vectors during vector executions. It
can also be used to store some frequently used constant vectors (such as the coefficient vectors in
digital filtering).

TM is an extension of vector registers in the traditional vector machines for holding tempo-
rary vectors. Like those on traditional vector machines, the optimizing compilers attempt to oper-
ate on these temporary vectors as much as possible prior to writing them back to the memory. TM
helps reduce the memory bandwidth pressure on MO and M1. It also helps reduce the power con-

sumptions on these larger memory modules.

There are two major differences between TM and vector registers.

. Accesses to TM are made by referencing the appropriate memory space, instead of explicitly
specified in the vector instructions (as vector register numbers). In particular, these accesses

are made by setting up the data streagyd.fand S.

. When constructing, allocating and utilizing these temporary vectors, the compilers have
more flexibilities in organizing the temporary storage space. For example, if a TM can store
a vector ofn elements, then it can also be organized as a storage spawe/émtors, each
with a length ofn/melements. The TM can also be organized as a storage space for multiple
vectors with different length. The compilers, in this case, can manage the vector allocations

to minimize fragmentations within TM.

For the purpose of this work, TM is assumed to be 512 bytes, direct-mapped, with one read
port and one write port. The following example illustrates how TM can be utilized to speedup the

vector executions.
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Example 4.9:
lllustrate how the executions of the vectorized loop shown in Example 4.4 on page 53 can

benefit from using TM.

Recall that this loop is performing: C[i] = (Isr(A[i], r9) | IslI(A[i], r8). The vectorized loop

is shown below.

<Some initialization code>

I/ assign LO to A; assign S to a temporary vector in TM.
mov r5, r9

CVA Isr @LO, r5, @S;

<Some initialization code>

/lassign LO to A; assign L1 to the temporary vector in TM
/lassign S to vector C.

mov r5, r8

CVA Isl @LO, r5, @P, or @L1, @P, @S;

In this example, a temporary vector is created and allocated in TM. The destination of the
first CVA instruction and one of the source operands of second CVA instruction access the tempo-
rary vector through TM. The first CVA instruction sources vector A from MO ahd writes the
temporary vector to TM via S. The second CVA instruction sources vector A again from MO via
Lo and sources the temporary vector from TM via It also writes the result vector to M1 via S.

The execution activities for these two CVA instructions are shown in Figure 4.10.

In this example, the second CVA instruction uses three data streams (two inputs and one out-
put). No memory conflict arises in these executions. Using MO and M1 alone would have caused a

lot of memory conflicts. L]

4.8.4 Strip Mining For TM

When the size of a vector being processed is larger than the size of TM, the vector opera-
tions are broken down, under software control, into multiple vector operations, with each of them
operates on vectors with length that can fitinto TM. This is the TM equivalensgipfminingfor

vector registers [Crayl,Patterson96].

Unlike the fixed length vector registers, however, the compilers, in this case, have the flexi-
bilities to trade-off between the number of temporary vectors it can allocate and utilize, and the

number of strip-mined iterations. This concept will be illustrated later in Example 4.11.

Example 4.10:
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Cli]=Isr(A[i], r9) | IsI(A[i],r8)

To Ml¢_2 to M1 via S
T[i] = Isr(A[i], r9) -
to T™M V|]a S \
™ |e ™
AJi] Al
from MO via L % from MO via Ly < /
S
s 7 pass— ‘—’ﬁ —
—
5 . r r5 - r8
NA TIN< Isr(A[i],x
o from TMVia Ly
(a) Execution activities for the (b) Execution activities for the
first CVA instruction second CVA instruction

Figure 4.10: Execution Activities For The Two CVA Instructions

Strip-mine the vectorized code shown in Example 4.9, assuming that the vector length is not

known at compile time.

In this example, there are only two CVA instructions amgktemporary vector involved, it

is possible to have the entire TM dedicated to storisgngletemporary vector. Since each vector

element is four bytes long (a word) and the TM is 512 bytes, a vector with length greater than 128

elements will require some strip-mining code to “wrap around” the vector instruction to avoid

overflowing the TM. The following shows the strip-mined code, in C-style language, for a source

vector with an unknown length, n [Patterson96].

low =1;
VL = (n mod 128); I/ find the odd size piece first
for (j=0; j<n/128; j++) {

for (i=low; i<low+VL-1; i++) { // runs for length VL

C[i] = (Isr(A[i], r9) | ISI(A[i], r8)); //main op.
}
low = low + VL;
VL = 128; /I reset VL to 128 after the first

/l odd size piece
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The following example illustrates how TM could be used to reduce power consumption,

while maintaining the highest possible performance level.

Example 4.11:

Vectorize the following reduction operatiori1§:(;n_1 (CA[I*BII]+C[iD * ALiI*B[i]*DIi]),
for some independent vectors A, B, C and D. Assume that vectors A and C reside in MO; vectors B
and D reside in M1.

An optimum solution, in terms of execution time, using 3 temporary vectors and 4 CVA
instructions (3 compound CVA and 1 reduction CVA), is shown below.

(1) T1[i] = A[i] * BIil;

(2) T2[i] = T1[i] + C[i];

(3) T3[i] = T1[i] * DfiJ;

(4) Reduction result :Zl (T2[i] * T3[i]);

Since vectors A and B reside in MO and M1, T1 must be allocated in TM. Thus vector T3
must be in MO (given that D resides in M1). Since vector C resides in MO, T2 can be in M1 or TM.
Table 4.4 shows two possible solutions for allocating the temporary vectors.

Table 4.4: Two Possible Solutions For Allocating The Temporary Vectors T1, T2 and T3

Temporary Solutions (1) Solution (11)
vectors Ivo [ M1 [ T™ || Mo [ M1 [ TM™
T1 X X
T2 X X
T3 X X

Both solutions have no memory conflict and thus have the same performance level. Solution

(1N, however, provides a lower power solution since T2 is allocated in TM instead of in M1.

A drawback of Solution (Il) is that it requires the two temporary vectors T1 and T2 to reside
in TM simultaneously. If TM is not big enough to hold both vectors, then Solution (1) is the only
viable solution. If the TM is too small for even a single vector, then Solution (1) will need to be
strip-mined. Figure 4.11 shows the execution activities for the four CVA instructions, using Solu-

tion (I1). L]
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All]

from MO via Ly
B[I] mul pass/—

from M1 via Ly

N.A.

(a) Execution activities for the
first CVA instruction

T3[i] to MO via S
41,_

. ™
T1[i]
from TM viﬂ
DIi]
from M1 via @
mu

ass

N.A.

(c) Execution activities for the
third CVA instruction

T1[ijto TMvia S
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T2[ijto TMvia S

™ <
Tl N
from TM vig Ly
Cli]
from MO via [N
add /|
—2 o

N.A.

(b) Execution activities for the
second CVA instruction

™
T2[i] /
from TM vigl Ly
T3[i]
from MO via L
mu =0
reduction

(d) Execution activities for the
fourth CVA instruction

Figure 4.11: Execution Activities For The Four CVA Instructions Using Solu
tion (1)
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CHAPTER 5

PSEUDO-VECTOR MACHINE
IMPLEMENTATIONS

In this Chapter, we will discuss how we could implement the pseudo-vector machine.

5.1 Datapath Implementations

The CPU architecture of this machine is shown in Figure 5.1.

MO_dbus
MO < —
RAM Modulg, 1 MO_abus X
M1 < M1 dbus R
RAM Modulg, M1 abus N
| ’ K'
TM_dbus ™
Temporar
oy T™M_abus Mer%ory Y
ala
__________ B N IO
! - Execution Core ol o
Y L)) LO LO dbus b @ " E
Loop » L xbus ?
Cache > obus :
yy »Redfil > P I
: Y ”;\ bus !
.| Program L, L1 _dbus - latch l
'| Sequencer —» :l\
' > jZbu
result_bu s dbus

_________________________________________________________________

Figure 5.1: The CPU Architecture for the Pseudo-Vector Machine
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We will begin by comparing our datapath implementation with a single-issued, four-stage
pipelined machine. The datapath the latter machine is shown in Figure 5.2. In this datapath, the P
unit denotes a general purpose functional unit that is capable of performing all the arithmetic func-

tions defined in the ISA. These functions include add, shift, logical, multiply, load, store, etc.
Memory

Redfile ;E:I\‘ P

»
»

result _bus

Figure 5.2: Datapath for a Single-Issued, Four-Stage Pipelined Machine

The datapath for our proposed pseudo-vector machine is shown in Figure 5.3. The P unit in
this datapath is similar to those in the single-issued machine, except that the memory load and

store functions have been moved to thg Iy and S units. Furthermore, all multi-cycle arithmetic

functions in the P unit are fully pipelined, including the integer multipor the purpose of this

work, an integer multiply is assumed to take two cycle to execute.

To MO,M1,T™M
A A
LO_%Ibbua— E 2
MO_dbus—»{ L ]
TM dbus__» ° LO_dbus o o
Y _i xbus
+——»|Regfilg " AP PBUS =1
L1 ab VL 5] Vbus "
_abUSe—- » >
M1_dbus—» L, LL_dbus __latch |
TM_dbus— | 0 > M DRI
~ > |Zbus | >
S L~
n
o
result busflq— s dbus

Figure 5.3: Datapath For The Pseudo-Vector Machine

The result_bus in this datapath is now driven by either the P unit or the S unit. This bus is

used for writing back results to the Redfile, or feed-forward to the P unit. Comparing these two fig-

* In this work, we will only focus on integer arithmetic. Floating point arithmetic is beyond the scope of this
dissertation.
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ures, the following load/store units have been added to the pseudo-vector machine:

. Lo and L, Units. These are memory load units. These units fetch data from the memory
(MO, M1 or TM) and load them into the Regfile and/or feed-forward to the P unit. Within the
Lo (L4) unit, there is a local copy of register RO (R1). Thg(L) unit constantly snoops the

result_bus for any write back activity to register RO (R1) and updates its local copy of the

register.

. S Unit. This is a memory store unit. This unit performs store operations to the memory (MO,
M1 and TM). Besides the store operations, the S unit can also perform the s_op arithmetic.
These arithmetic include some simple, commutative arithmetic and logical functions such as
“add”, “and”, “or”, “xor”, etc. Within the S unit, there is a local copy of register R2. The S
unit constantly snoops the p_bus for any write back activity to register R2 and updates its

local copy of the register.

Notice that the four functional units (namely, thg L1, P and S units) are chained together

to form a Y-shape datapath. In addition, a feedback path (s_dbus and zs_bus) exists between the
output and the input of the S unit. This feedback path is used for accumulating the partial results
for reduction and hybrid CVA. The basic structure of this datapath is to impleaietite CVA

shown in Figure 4.2 on page 51.

The implementations of these load/store units are depicted in Figure 5.4. Withirg {oe L
L) unit, there is a two-deep data queue and a local copy of register RO (or R1). The data queues in
Lo and L4 also have an extra by-pass path that allows the data in the tail of the queue to feed

directly into the Regfile. Likewise, the S unit contains a local copy of register R2.

The local copies of registers RO, R1 and R2 within thelly and S units can be automati-
cally updated by the hardware by adding by the stride values SSR[STRO0], SSR[STR1] and
SSR{STR?Z], respectively. These updates occur if the corresponding data streams are enabled dur-
ing the CVA or PVA executions. At any given point in time, the local register RO (or R1¢bL
L) unit contains the latest load address, and its corresponding data is stored (or is to be stored) at

the tail of the queue (see Figure 5.4).

The S unit, on the other hand, has a data queue of only one-deep. When a load request (from
Lo or L, unit) has a memory conflict with a store request (from the S unit), the latter will take pre-

cedence.
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..............................

L, Data Queu:e . L,Data Queufe
MO_dbus—p : M1 _dbus—p] :
TM_dbus—p D—;»Lo_dbus TM_dbus—p,| D—:—»Ll_dbus

il

tail

* result_bus

: result_bus :
' L1_abus<4— -SSRISTR1]

~SSRISTRO]

—» S_abus

.................

(c) The S Unit
Figure 5.4: The Implementations of L o, L1 and S Units

In this datapath, both scalar and vector execution modes ussatheP unit. This means
that many arithmetic functions that are available to the scalar executions are also available to the

vector executions.

When performing cs-load and cs-store operations, the hardware does not disambiguate
memory references. i.e. it does not check for any data hazard associated with the memory refer-
ences. It is the responsibility of the vectorizing compilers or assemblers to ensure that all the ele-

ments in the source and destination vectors are independent in the memory.

5.2 Scalar Executions

When executing in a scalar mode, the machine operates like a single-issued machine. It
reads operands from the Redfile, executes in the P unit, and writes back to the Regfile and/or feed

-forwards to the P unit for the next computation. It can also load data from the memory, vig the L

unit and the LO_dbus, to the Regfile and the P unit. It can also store data to the memory using the S

unit.
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5.3 CVA Executions

When executing in a CVA mode, data are continuously streamed from the memory via the

Lo and/or Ly units, into the P unit; the results are then optionally written back to the memory via

the S unit (for compound and hybrid CVA).

To perform a compound CVA, consider a vector operation described by C[i] = sA[i]. §he L
unit shown in Figure 5.3 loads the source vector A from the memory, an element at a time, and
feeds it into the P unit. At the same time, the constant s is read from the Regfile. The P unit then

performs the multiply operations, and the S unit performs the cs-store operations.

To perform a reduction CVA, consider a vector inner product described by
B (Zn 1(A[i]*B[i]) (see Example 4.7 on page 60). Instead of performing the cs-store operations,

the S unit performs the “add” function and accumulates the partial results via the s_dbus and
zs_bus. At the same time, these partial results are constantly written back to R3 in the Redfile, via

the result_bus.

To perform hybrid CVA, in addition to accumulating the partial results, the S unit also con-
stantly writes the results to the memory via a cs-store operation. In this case, the S unit writes to

two destinations in each cycle: R3 in the register file and the memory via S.

For reduction and hybrid CVA, the partial result is initialized as follows. When a result is
first produced on the p_bus (by the P unit), the S unit performs a “pass” function on this bus and
drive the data directly onto the s_dbus, instead of performing the s_op function (see Figure 5.4(c)).
This result is used as the initial value for the partial result. This operation corresponds to the ini-

tialization of the partial sum,gSdescribed in Section 3.1.2 and Section 3.1.3 on page 41.

5.4 PVA Executions

When executing in a PVA mode, the datapath behaves as if it is executing in a scalar mode,
except that: (i) if the i (L) stream is enabled, thg)l(L ;) unit prefetches data from the memory
and loads them into the temporary instance of RO (R1) in the Redfile; and (ii) if the S stream is
enabled, the S unit stores data to the memory, using the data produced by the P unit. The PVA exe-

cutions will be illustrated using the following example.
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Example 5.1:

Vectorize the program loop shown in Example 3.1 on page 44.

This is a program loop with multiple exit points. In this example, two cs-loads are per-
formed during each iteration. The loop is controlled by a loop index i, for i=0,...,n-1. In addition, if
B[K]>A[j], for some j and k, the loop will exit early. This loop can be vectorized using our PVA
loop construct as follows.

Initialize R3 to m.

Initialize CR to n.
Initialize SSR[STR o] to 4; SSR[STR 1] to 8.

Initialize RO to the starting address for vector A;
Initialize R1 to the starting address for vector B;

PVA @LO,@L1,#loop_size;

complt R3, RO Il'ls (A[j] > m)?

bf EXE_N /I Branch if false
[Instructions for the “M” block]

br CONT // unconditional branch
EXE_N:

[Instructions for the “N” block]

CONT:

complt RO, R1 Il'ls (A[j]<B[K])?

bt EXIT Il Exit if true. Otherwise,

// branch back to top of loop
EXIT:

In the vectorized loop, both thegland Ly streams are enabled while S is not. In the loop

body, accesses to A[j] and B[k] are made by reading from the temporary registers RO and R1,

respectively.

Upon entering the loop executions, two data are fetched from the memory vig el
units and loaded into the tails of their respective data queues. In the subsequent cycle, two addi-
tional data are fetched from the memory while the data already in the data queues are moved into

the temporary registers RO and R1 in the Redfile, respectively.

During subsequent iterations, each time when RO (or R1) is read in the program loop, a data

is moved from the data queue in thg (or L;) unit into the temporary register RO (or R1), while
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another cs-load is initiated by thg (or L,) unit to fill the tail of its data queue.

The overlaid instance of RO (or R1) in the Redfile is constantly updated by the hardware
with the corresponding load address. At any given point in time, the temporary instance of RO (or
R1) in the Redfile contains the data prefetched from the memory, with an address that is stored in
the overlaid instance of RO (or R1) in the Regfile. The same correspondence can be said about the

contents of the tail of the data queue in thédr L;) unit and its local copy of RO (or R1).

Figure 5.5 shows an example of how the local copy of RO guhit and the overlaid

instance of RO in Redfile are being updated when streaming in a vector. It shows that the former

(contains the address of the data currently being fetch) always runs ahead of the latter (contains the
address of the data being committed into the Redfile).

Local Copy of RO Overlaid Instance of RO

Time (in Lo) (in Regfile)
T 400 XXXX
2 4000\xxxx
3 400\4000
4 4003\:1008
5

4010 400C

Figure 5.5: Updates of Local RO in LO and Overlaid Instance of RO in Regfile

Notice that there are multiple conditional and unconditional branches within the PVA loop
body. In this example, there are two possible ways to exit this loop: one is by CR reaches zero; the

other is when the last instruction “bt EXIT” is taken. If this last branch instruction is not taken, the

control will be transferred back to the top of the loop and the PVA executions will continué.]

5.5 Managing The PVA Loop Executions

To monitor the loop execution and the target of a branch, a counter based scheme similar to
those proposed in [Lee99a,Lee99b,Lee99d] can be used.

When a PVA instruction is encountered, the Loop_size specified in the instruction is cap-
tured by the hardware. In addition, the IXR register is used to keep track of which instruction
within the loop body is currently being executed. This register behaves like a “local PC” within the
loop body. When the first instruction in the loop is being executed, IXR is set to one. For each

instruction sequentially executed, this register is incremented by one. When the last instruction in
the loop is being executed, IXR is set to the Loop_size.
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When the IXR equals to Loop_size-1, the instruction fetch will be directed towards the first
instruction of the loop. If the last instruction is a sequential instruction or the instruction does not
cause a change-of-control flow with a target lies outside the loop body, the execution will transfer

back to the beginning of the loop and IXR is reset to one.

When a branch is taken during a PVA execution (either in a forward or a backward direc-
tion), the branch displacement field of the branch instruction is added to the IXR register. When
the taken branch is in a forward direction, the branch displacement field is a positive number.
When this value is added to IXR, the latter will point to the target somewhere further down the
branch instruction. When the taken branch is in a backward direction, the branch displacement
field is a negative number. When this value is added to IXR, the latter will point to the target some-

where before the branch instruction.

With these branch adjustments, the IXR will always point to the correct instruction relative
to the PVA instruction. After a taken branch, if the resulting IXR is non-negative or if the IXR is
greater than the Loop_size (indicating that the branch target is located outside the loop body), the

PVA loop execution will terminate.

Figure 5.6 shows an implementation of the IXR register. The IXR is incremented by one for
each instruction executed sequentially in the loop body. When a branch is taken, the displacement

field of the branch instruction is added to IXR.

The IXR_count is constantly compared with zero, Loop_size and Loop_size-1. If
(IXR_counk 0) or (IXR_count>Loop_size), the PVA executions will terminate immediately. If

(IXR_count == Loop_size-1), an instruction fetch from the top of the loop will be initiated.

This counter based approach is very similar to the Enhanced Scheme proposed in

[Lee99b,Lee99d]. Interested readers are referred to that reference.

If a PVA execution terminates with CR equals zero, no cycle penalty is incurred. Towards
the end of the last iteration of a PVA execution, if the last instruction in the loop is a taken condi-
tional branch with its target lies outside the loop body, a cycle penalty will be incurred for wrong-
fully fetching and executing the first instruction in the loop. In this case, the result of executing this
instruction will be squashed (i.e. the result will be discarded and not written back). A new instruc-

tion fetch using the branch target will be initiated.
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Figure 5.6: The IXR Register
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5.6 Implementing The Temporary Registers

Figure 5.7 shows an implementation of the Regfile. This Regfile contains, besides other reg-

isters, an overlaid and temporary instances of RO and R1 (O_RO, T_R0O, O_R1 and T_R1 respec-

tively). o
Redfile
""""" O_ROg
SSR[STRO]E——»
LO_dbus
O R1
SSR[STRl]—é—.
L1 dbus
O_R2
SSR[STRZ]—é;
result_bus R3-R15 » R3-R15

_____________________________

Figure 5.7: Register File with Temporary and Overlaid Instances of RO and R1

O_RO, O_R1 and R2 can be updated by adding the stride values SSR[STRO0], SSR[STR1]
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and SSR{STRZ2], respectively. These updates occur when the cs-load or cs-store operation is com-
mitted (to the Redfile or to the memory). At any given point in time, T_RO (or T_R1) contains the

data prefetched from the memory, with an address stored in O_RO (or O_R1).

This figure also shows how reading from registers RO and R1 are selected between their

temporary instance and overlaid instance, depending on whether we are in PVA mode.

5.7 Implementing The Memory System

The memory system of this machine is very similar to those implemented in the SHARC
ADSP-21061 chip [SHARC97], except that this machine has an additional independent memory
module: the Temporary Memory (TM).

The memory organization of this machine is shown in Figure 5.1 on page 74. In this
machine, there are three independent on-chip memory modules: MO, M1, and TM. In addition,
there is also a loop cache for storing program loop instructions during PVA executions. All these

memory modules are typically SRAM memories.

These three memory modules can be accessed bygtHe land S streams by referencing
certain pre-defined memory address space (i.e. they are memory mapped modules). The mapping

for MO, M1 and TM is shown in Figure 4.9 on page 69.

5.8 Loop Cache For Storing PVA Program Loops

For CVA executions, instruction fetch is not necessary since once the machine enters a CVA

execution, it no longer requires any instruction.

For PVA executions, a small loop cache is used to store the program loops. This loop cache
will first attempt to eliminate any access conflicts at MO with data references. Once this is

achieved, it will also attempt to capture the entire program loop to reduce access power at MO.

For the purpose of this work, we will assume that the loop cache is organized as a 32-entry
(64 instructions), direct-mapped cache. Each loop cache entry stores two 16-bit M-CORE instruc-

tions. Each instruction request, on this machine, fetches two 16-bit M-CORE instructions.

All scalar instructions in a PVA loop body can be classified into two categories. When an
instruction fetch causes a conflict with data references at MO, the two instructions being fetched

are calledessential InstructiongOtherwise, they are callétbn-Essential Instructions
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Due to the pipeline nature of the machine, a load instruction that accesses MO (or an instruc-

tion that sources RO in PVA executions),dan only cause a conflict at MO with two instruction

fetches down the program order. That is, data fetch;foam only conflict with a fetch request for

instructions: (i) 43 and |,4, if I; is at odd address; or with (i)}, and |,s, if |; is at even address.

The following illustrates the case wheréslodd address aligned.

I /I This instruction reads RO and is odd address aligned.
lisa

)

I i+3 [/l cause conflict at MO - an essential instruction

li+s // cause conflict at MO - an essential instruction

Due to the “wrap-around” nature of the loopcan also be at the bottom of the loop apd,!

li+4 and |5 at the top of the loop.

Upon entering a PVA execution, when allocating instructions into the loop cache, priority is
first given to essential instructions. After all these instructions are allocated, the loop cache will
then try to allocate as many non-essential instructions as possible, into the loop cache, in an

attempt to reduce access power at MO.

The loop cache operates as follows. In addition to a valid bit, there is an Edsieitial bi}
associated with each entry in the loop cache. During the first four iterations of the loop, both the

loop cache and MO are accessed in parallel for all instruction requests.

During the first two iterations of the loop, when an instruction request causes a conflict at
MO andthe requested instructions are not found in the loop cache, an entry is allocated in the next
cycle for the two essential instructions associated with this request. Their corresponding E bit is

set.

During the third iteration of the loop, the loop cache will then try to capture as many non-
essential instructions as possible. It does so by replacing the existing non-essential entries (entries

with their E bits cleared).

During the fourth iteration, the following two conditions (or events) are monitored closely

by the hardware:

* Assuming a big endian address mode.
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. All instruction requests are found in the loop cache;

. There is no change-of-control flow instruction inside the loop body.

If both of these conditions are satisfied during the fourth iteration, then from the fifth itera-
tion and beyond, all instructions are supplied by the loop cache, avadgiyigstruction access to
MO.

The state machine for the loop cache controller is shown in Figure 5.8. It shows that during
the first two iterations, the loop cache is warmed up with all the essential instructions. During the
third iteration, it is warmed up with the non-essential instructions, as much as possible. If the loop
cache is successful in capturing the entire loop, as determined during the fourth iteration, from the

fifth iteration and beyond, MO can be shut off completely for all instruction requests.

Begin a new
PVA executign

Alldcate Allocate Observe  Supply all instructions
essential non-essential loop cache from loop cache;
instructions instructions access patterns shut off MO

*  (all instruction accesses during the 4th iteration hit in the loop cache) &&

(no change-of-control flow instruction found in the loop body) &&
no loop exits

** Not of condition “*”

Figure 5.8: Loop Cache Controller

Note that it is possible to have essential instructions from different program loops to co-exist
in the loop cache - an essential entry can only be replaced by another essential entry. In this work,

a loop cache flush occurs whenever there is a context switch.

If the loop cache is filled with many essential instructions, then there is little room in the
cache for non-essential instructions. In this case, very little MO’s instruction access power can be

saved. Under any circumstances, a hon-essential instructionatileplace an essential instruc-
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tion already in the loop cache. That is, performance consideration always supersedes the power

consideration.

Interested readers are referred to some other related work on instruction caching for small

program loops [Lee99a,Lee99c].
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CHAPTER 6

BENCHMARK CHARACTERISTICS AND
PERFORMANCE EVALUATION
METHODOLOGIES

In this Chapter, we will describe the benchmark programs we use in this work. We will
describe some critical loop related characteristic. We will then describe our experimental method-
ologies for evaluating the performance benefits for using the pseudo-vector machine. The actual
performance results will be given in Chapter 7. All performance results, in this dissertation, will be
given relative to a single-issued, four stage pipeline scalar machine, which we cdihske

machine

We will first define two metrics for performance evaluations.

6.1 Metrics For Performance Evaluations

We defineperformance improvemens

E<-E
Performance Improvement% (6.1)
S

whereEgis the execution cycles for the original scalar program, Bpts the execution cycles for

the vectorized program. We defisgeedums

Speedup s - L (6.2)

_-E_V 1-Performanc Improvement

In the rest of this dissertation, we will use these two metrics to quantify the performance

benefits for using the pseudo-vector machine.
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6.2 Benchmark Programs And Their Characteristics

The benchmark programs used in this work, called the PowerStone benchmarks, is shown in
Table 6.1. These benchmarks were compiled to tR€E®RE ISA using the Diab 4.2.2 compiler.
The number of dynamic instructions executed and the number of instructions being fetched on the

base machine are also presented in this Table.
Table 6.1: PowerStone Benchmarks

Benchmark | Dynamic Inst{ Dynamic Inst. Descriptions
Executed Fetched
auto 17374 20695 Automobile control application
blit 72416 78448 Graphics application
compress 322101 355216 A Unix utility
des 510814 519037 Data Encryption Standard
engine 955012 1058154 Engine control application
fir_int 629166 705966 Integer FIR filter
g3fax 1412648 1681130 Group three fax decode
g721 231706 256025 Adaptive differential PCM for voice com-
pression
jpeg 1342076 1528812 JPEG 24-bit image decompression stapdard
map3d 1228596 1463233 3D interpolating function for automobhile
control applications
pocsag 131159 147202 POCSAG communication protocol for pag-
ing applications
servo 41132 42919 Hard disc drive servo control
summin 1330505 1532825 Handwriting recognition
uchgsort 674165 804662 U.C.B. Quick Sort
v42bis 1488430 1660493 Modem encoding/decoding

Percentage Execution Time On Critical Loops

In this work, performance improvement is achieved by vectorizing all the critical loops
found in a benchmark program. Thus, it is important to closely examine what percentage of execu-
tion time the program spends on executing these loops. By Amdahl'sHavyperformance will be

limited by the fraction of time the program spends in hon-loop executions.

Table 6.2 below shows, for each benchmark, the number of critical loops and the percentage
of execution time it spends on these loops. Due to time constraints and the large number of loops
that exist in these benchmark programs, as a rule of thumb, any program loop that consumes less

than 2-3% of the overall execution time is not typically considereditasal.
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Table 6.2: Percentage Execution Time Spent In Program Loops

Benchmarks Number of Number of Itera- | % Execution Time In
Critical Loops | tions per Invocatior] Program Loops (%)
auto 2 702.5 71.76
blit 2 1000 90.18
compress 1 7969 9.81
des 2 9.31 2.61
engine 2 3.51 9.77
fir_int 1 33.6 69.74
g3fax 2 960.4 56.65
g721 1 5 2.87
ipeg 5 33.39 49.02
map3d 1 135 37.93
pocsag 2 18.3 61.21
servo 0 N.A. 0.00
summin 5 173.9 81.52
uchgsort 1 2.27 0.58
v42bis 1 8271 2.48
Average 1.73 1371 39.65

Figure 6.1 shows the percentage of execution time a program spent on critical loops, in
graphical form. Depending on the benchmarks, this percentage varies greatly from €8t/for

to 99% forblit . Five out of the fifteen benchmarks spent less than 5% of their execution times in
loops.

Seven out of the fifteen benchmarks spent less than 10% on loops. The other eight bench-
marks spent, on average, 66% of their times in loops. On average, a benchmark spends about

37.9% on a few handful of critical program loops - a significant but not an overwhelming fraction
of execution time.

If these benchmark programs speretoexecution time on these critical loops (i.e. with an
infinite speedup during loop executions), then the average performance improvement will be about

37.9% - this represents the upper limit on our overall performance improvement number

We will present our performance enhancement results in two ways: (i) performance
improvements over the entire original scalar program executions; and (ii) performance improve-

ments during loop executions (i.e. the time the programs spent in non-loop executions is not con-
sidered).
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Figure 6.1: Percentage of Execution Cycles Spent in Critical Loops

Table 6.2 also shows the average number of iterations per loop invocation. The higher the
average number of iterations per invocation, the less impact the vector startup costs will have on
the overall performance. From the above Table, this number also varies greatly across the bench-

marks, from a few iterations to thousands of iterations per invocation.

6.3 Performance Evaluation Methodologies - Overview

Developing a vectorizing compiler for this pseudo-vector machine is beyond the scope of
this work. Without a vectorizing compiler, there is no vectorized assembly code. Without which, it
is impossible to evaluate exactly the performance benefits by using a detail simulation model of

the machine. Instead, the following approach is adopted.

The benchmarks were not re-compiled to vectorize the critical loops. Cycle-based simula-
tions were first performed on a single-issued, four-stage pipelined machine (or the base machine).
This base machine does not have any vector processing capability. The performance statistics col-
lected on this scalar machine were used as a base result. All performance improvement numbers

for various vector processing techniques will be given relative to this base result.

The original scalar programs were dynamically profiled. Each program loop in these bench-

marks was marked; the number of invocations and the number of iterations were recorded.

We then vectorize these critical loops by hand, at the assembly level, either by using the
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CVA instruction(s) and/or the PVA instruction(s). The number of cycles saved for each loop are
then computed using the profiled statistic. Vector setup and exit costs (described in the next Sec-
tion) are subtracted from these savings. We then sum up the net savings for each loop to give the

total saving.

Depending on the types of experiments, we may vectorize the loops: (i) strictly using the
PVA constructs only; or (i) strictly using the CVA constructs only; or (iii) Using both constructs.
For the case of (iii), we will choose a solution by using between CVA and PVA constructs, or a

combination of both, whichever that will yield the best performance result.

In doing so, we obtain three set of experimental results, which we will call, respectively,

» CVA-only executions
* PVA-only executionand
 CVA/PVA executions

The results given by “CVA-only executions” loosely track the performance achievable by a

conventional 2-deep vector machine. The results given by “PVA-only executions” loosely track

the performance achievable bysigle-issuedSP machines The results given by “CVA/PVA
executions” represent the performance achievable by a machine that is capable of executing in

both “true” vector mode and “pseudo” vector mode.

6.4 Vector Setup and Exit Costs

In this Section, we will breakdown all the overheads associated with the vector executions.
We will estimate and assign a fixed cost to each of these overhead components. The setup and exit

costs for vector executions can be broken down as follows.

» Special registers initialization costs;
» Vector instruction decoding costs;

* Pipeline warm-up costs;

* Vector mode exit costs;

» Initial access conflicts at MO (for PVA executions only).

6.4.1 Special Registers Initialization Costs

Depending on the type of vector executions, some or all of the registers listed in Table 6.3

* The performance of a conventional DSP VLIW machine is not evaluated in this work.
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need to be appropriately initialized prior to vector executions. The additional setup costs to initial-
ize these registers are listed in this Table. These additional costs additionto the setup costs

already incurred in the scalar version of the program loops, prior to vectorization.

Table 6.3: Additional Registers Initialization Costs

Registers Register Contents Additional Setuy
Costs (cycle)
SSR Stride values and operand sizes fgrily 3
and S

CIR Number of iterations to be executed 1

RO Load address forg. 1

R1 Load address forqL 1

R2 Store address for S 1
R3,R4,R5 Scalar constants for CVA executions 1

a. If applicable

Take RO/R1/R2, for example. These registers need to be initialized to the starting addresses
for various data streams, if they are enabled. In the scalar program loops, certain general purpose
registers will also need to be initialized to these addresses, although they are not necessarily RO/
R1/R2. The vectorizing compiler, in this case, can rename the last writes of these registers to R0/
R1/R2 appropriately; if successful, thdditionalvector setup costs for initializing these registers
are zero. In this work, we will assume that an additional “mov” instructicaiisysneeded to ini-

tialize each of these registers.

For CVA executions, both SSR and CIR are always initialized. For PVA executions, depend-

ing on the loop, only one of SSR and CIR, or both, need to be initialized.

SSR is a special control register and can be initialized using the following M-CORE instruc-
tion sequence. In this work, all stride values for the cs-load and cs-store operations are assumed to

be known at compile time.

Irw r3,[Stride_Sixe_Vector] //load Stride_Size Vector into R3
mtcr r3, SSR /I move r3 to SSR

Stride_Size_Vector:
long OXXX XXX XXX /I The actual stride/size vector

The two-instruction sequence is assumed to take three cycles to execute: two cycles for the
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first instruction and one cycle for the second.

CIR is also a special control register. In the scalar version of the program loops, the iteration
count (or the vector length), if used, need to be initialized to a general purpose register. For our
pseudo-vector machine, the additional setup costs for initializing CIR iextia“mtcr” instruc-

tion. This instruction is assumed to take one cycle to execute.

R3 through R5 are used for compound CVA. If used, they need to be initialized to the
required scalar constants. To initialized each of these registers, we assume that an extra “mov”

instruction is needed.

6.4.2 Vector Instruction Decode Costs
We assume that two cycles are needed to: (i) decode the vector instruction; and (ii) initiate

the first cs-load operations from MO and/or M1.

6.4.3 Additional Pipeline Warm-Up Costs

For CVA executions, due to the chaining of the P and S units, additional pipeline warm-up
costs are incurred before the first result of the CVA computations is available. If the p_op per-
formed at the P unit takes one cycle to execute, and the s_op performed at the S unit takes zero

cycle to execute, then tlaelditional pipeline warm-up cost is zero.

In general, the additional pipeline warm-up costs for CVA executions is giveg#iy1,
where 1, is the execution time for p_op; anglis the execution time for s_op. They are both are
expressed in number of cycleg.ranges from one cycle (all except the multiply function) to two
cycles (the multiply function); whilestranges from zero cycle (by-passing the S unit) to one cycle
(an ALU arithmetic).

These costs are only associated with CVA executions. For PVA executions, this cost is zero.

6.4.4 Vector Mode Exit Costs
Upon exiting a vector mode, the PC needs to be adjusted and the instruction fetch needs to
be appropriately redirected. We will assume that the machine incurs one cycle penalty for exiting a

vector mode.

6.4.5 Initial Access Conflicts At MO
This cost is associated with PVA executions only. Instruction and data references can cause
conflicts at MO during loop executions. When such a conflict arises, a stall cycle is incurred and

the instructions that cause this conflict are captured into the loop cache in the subsequent cycle.
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The allocations of these essential instructions into the loop cache occur only during the first two
iterations of the loop. Once all the essential instructions are captured, they will remain in the loop

cache until they are replaced by other essential instructions (see Section 5.8 on page 83).

If I, has a data reference that accesses MO, then it will only cause access conflict with the
instruction request forl3 and |,4, or with I;;, and },5, depending on the address alignment;of |
Furthermore, due to the wrap-around nature of the loagan be near the bottom of the loop and
lirz and {4 (or li 4 and },5) can be near the top of the loop. The loop cache typically uses the first

two iterations to capture all the essential instructions in the loop.

6.5 PVA-Only Executions - Three Types Of Loop Execution Overheads

In a PVA-only execution, the number of execution cycles saved can be categorized into the

following categories. The overall cycle saving will be given by the sum of each of these categories.

» Cycle saving due to eliminating the loop control overheads (Ip-ctl-oh);
* Cycle saving due to eliminating the cs-load overheads (cs-load-oh);

* Cycle saving due to eliminating the cs-store overheads (cs-store-oh).

We will denote these loop execution overheaddpastl-oh, cs-load-ohand cs-store-oh
respectively. The Ip-ctl-oh refers to the time spent on executing the branch instruction at the end of
the loop, as well as the loop index increment/decrement instruction. The cs-load-oh and cs-store-
oh refer to the time spent on executing the load/store instructions, as well as their associated load/
store address increment/decrement instructions. The use of a PVA construct is precisely aiming at

eliminating these three types of loop execution overheads.

There are vector setup and exit costs associated with PVA executions as described
Section 6.4. For the purpose of calculating these overheads, the setup and exit costs for a given
PVA execution are dividegquallyamong all of the categories of overheads involved, whenever

applicable. This is illustrated in the following example.

Example 6.1:
Vectorize the loop shown in Example 3.3 on page 46 using a PVA loop. Also calculate the
saving due to eliminating the various types of loop overheads. Assuming that this loop is executed

100 times and the branch instruction “bt EXIT” was never taken.

For convenience sake, this loop is illustrated below.
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L1:

Id.h r7,(r2)  /l'load A[i]

addi r2,2

Id.h r6,(r3) /' load BIi]

addi r3,2

cmplt ré,r7 /l'is A[i] > BJi]?

bt EXIT /'if so, exit the loop

decne ri4 /I if not, decrement the count

bt L1 /lis the entire vector being processed?
/lif not, branch backward

EXIT:

The CVA version of this loop is shown in Example 3.4 on page 48. This loop can also be

vectorized using a PVA loop as follows.

Initialize CR appropriately.

Initialize both SSR[STR ol and SSR[STR ;] to 2.

Initialize RO and R1 to the appropriate starting addresses.

L1:

PVA @LO, @L1, #2; /I A PVA loop with 2 scalar instructions
cmplt R1, RO

bt EXIT

EXIT:

This PVA loop only enablesd.and L. The original loop took 11 cycles per iteration. The

“bt L1” is taken 99 times and not taken 1 time. During the last iteration, the “bt L1” takes only one

cycle to execute. The total execution time of the original loop is: 11 x 99 + 10 x 1 = 1099.

The setup and exit costs for the PVA loop is: 3(SSR) + 1(CIR) + 2(instr. decode) + 1(RO) +
1(R1) + 1(exit) = 9 cycles. The PVA loop body, which consists of two scalar instructions, takes 2
cycles to execute. Thus the total cycles for PVA executior&4s2 x 100 = 209 gcles. Compared
to the scalar execution, a saving of 1099 - 209 = 890 cycles. The speedup is given by 1099/
209=5.26.

By enabling lg and Ly, we can eliminate the first four instructions in the original loop.
These four instructions take 6 cycle per iteration to execute. They are associated with the cs-load-
oh. Thus the saving due to eliminating the cs-load-oh is 6 cycles per iteration, or a total of 600

cycles.
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The PVA loop also successfully eliminated the last two instructions in the original loop.
These two instructions take 3 cycle per iteration to execute. They are associated with the Ip-ctl-oh.
Thus the saving due to eliminating the Ip-ctl-oh is 3 cycles per iteration, except for the last itera-
tion, where the saving is only 2 cycles. Thus the total saving for eliminating Ip-ctl-ohxs39+ 1
X2 =299.

There is no instruction in this loop that is associated with the cs-store-oh. Since the setup
and exit cost is 9 cycles. This cost will be equally divided between cs-load-oh and Ip-ctl-oh, with
4.5 cycles each. Thus the final saving due to eliminating the cs-load-oh is 600 - 4.5 = 595.5 cycles;
the final saving due to eliminating the Ip-ctl-oh is 299 - 4.5 = 294.5 cycles. The total saving is
given by 595.5(for cs-load-oh) + 294.5(for Ip-ctl-oh) = 890 cycles.

The performance improvement due to eliminating various types of overheads are shown in

Table 6.4. The overall speedup for PVA-only executions, in this case, is 1099/209=5.26. []

Table 6.4: Performance Improvements Due to Eliminating Various Types of Loop Execution

Overheads
Types of Overhead | Cycle Saving Performance Overall Speedup
Eliminated Improvements
Ip-ctl-oh 294.5 0.2680 -
cs-load-oh 595.5 0.5418 -
cs-store-oh 0 0.0000 -
Total 890 0.8098 5.26

Example 6.2:
Vectorize the program loop shown in Example 4.1 on page 51 using the PVA construct only.
Estimate the execution cycles saving due to eliminating the various types of loop overheads when

the loop is executed 100 times.

This loop can be vectorized using the PVA loop construct as follows.

Initialize R5 to the appropriate constant.

Initialize CR appropriately.

Initialize SSR[STR gl to 4.

Initialize R2 to the appropriate starting address.

L1

PVA @S, #1, / PVA loop with 1 scalar instruction
mov R2, R5 /I initiate cs-store S
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The original program loop took 6 cycles per iteration (or 6 x @ x1 = 599 gcles total);

while the vectorized loop took only 1 cycle per iteration (not including the setup and exit costs).

The vector setup and exit costs are: 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R3) + 1(exit) =8

cycles. This cost will be divided equally between Ip-ctl-oh and cs-store-oh.

In this loop, only the S stream is enabled. By enabling S, we could eliminate the “stw” and
“addi r14,4” instructions, a saving of 3 cycles per iteration. In order to initiate a cs-store operation
in each iteration, however, a “mov R2, R6” instruction is added to the loop body. Thus for cs-store,
the saving is actually 2 cycles per iteration. Thus the total saving for eliminating cs-store-oh is 2 x
100 - 4 = 196 cycles.

Likewise, the PVA loop construct can eliminate the branch overheads by eliminating the
“decne” and “bt” instructions, also a saving of 3 cycles per iteration, except for the last iteration
where the saving is 2 cycles. Thus the total saving for eliminating Ip-ctt@xi99 +2x 1 -4 =
295.

Total saving: 196(for cs-store-oh) + 295(for Ip-ctl-oh) = 491 cycles; or a speedup of 599/
(599-491)=5.55.

Alternatively, the PVA loop took 1(one instruction) x 100(iterations) + 8(setup/exit costs) =

108 cycles to execute. Total saving = 599 - 108 = 491 cycles. L]
Table 6.5: Performance Improvements Due to Eliminating Various Types of Loop Execution
Overheads
Types of Overhead | Cycle Saving Performance Overall Speedup

Eliminated Improvements
Ip-ctl-oh 295 0.4925 -
cs-load-oh 0 0.0000 -
cs-store-oh 196 0.3272 -
Total 491 0.8197 5.55

6.6 Cycle Saving Calculations for Vectorizing a Typical Scalar Loop

In this Section, we will derive a generic expression for calculating cycle saving for a vector-

izing typical scalar loop. Consider the following loop.

L1:
10
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11
br L1
A “typical loop” here refers to a loop: (i) that exits only through the branch at the end of the
loop (i.e. through br L1” not taken); and (ii) there is a loop index increment/decrement instruc-

tion within the loop body. A “typical loop” always exits with the register CR becoming zero. That

is, the loop does not exit early.

For loops that are not “typical”, the cycle saving calculations are more ad hoc and will not

be described here. We will first define the following terms.

n, be the number of times “br” is taken;

n, be the number of times “br” is not taken;

n be the total iteration count for the scalar loop (r+g);

p be the number execution cycles for the primary arithmetic performed at the P unit;
O, be the cs-load-oh per iteration (cs-load-oh ={my) * O));

O be the cs-store-oh per iteration (cs-store-ohy=(p) * Oy);

Oyp be the Ip-ctl-oh per iteration, when “br” is taken (Ip-ctl-oh = (n-1)5-©1 * (Op-1));
Cpya be the vector setup and exit cost for the PVA executions;

Ccya be the vector setup and exit cost for the CVA executions;

tsc be the execution cycles per iterations for the scalar loop, when “br” is taken;

t, be the number execution cycles for the primary arithmetic performed at the P unit;
ts be the number execution cycles for the secondary arithmetic performed at the S unit;

For CVA executions, the initial vector setup and exit costs will bg/Cpyat+tytts-1. That

is, for {,=1 and ¢=0, the setup and exit costs for both CVA and PVA executions are identical.

6.6.1 Saving Calculations For Typical PVA Executions
For a “typical loop” described above, =3 cycles: 2 cycles for eliminating the execution
of the taken branch instruction and 1 cycle for eliminating the execution of the loop index incre-

ment/decrement instruction. But when the branch is not taken, the saving is only 2 cycles. Thus the

*

cycle saving due to removing Ip-ctl-oh is typically given by: 3 %2 * n,.

For a typical PVA execution, saving due to removing cs-load-ol*n@+n,); saving due to

removing cs-store-oh =&(n;+n,); saving due to removing Ip-ctl-oh =3fn+ 2*n,; the total

* This rule, however, does not hold if the loop index is also used somewhere else in the loop body. In this
case, the loop index increment/decrement instruction can not be removed from the PVA loop body.
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setup/exit cost = &a*n,. Thus the total saving is given by:
Total PVA saving = (Q+0g) * (n1 + ny) + (3*ny + 2*ny) - Cpyp *N>o (6.3)

6.6.2 Saving Calculations For Typical CVA Executions
When a “typical” loop is vectorized using a CVA construct, the resulting CVA executions
always terminate with the count register CR becoming zero. Furthermore, since the original scalar

loop is invoked gtimes, the CVA instruction is also executedimes.

When a loop is CVA vectorizable, the per-iteration execution time of the lagpecan be
divided into five components: |0, Oy, t, ts, Where G, is again 3 cycles for the “typical” loop.

Thus, §,, for the scalar loop, in this case, can be written as

lse=Q+ O+ Qp+ i+t =+ O+ 3+H+1
The total execution cycles for the scalar loog,i&given by

Es=tc* N1+ (el *Mm=(Q+0s+3+(+)* N+ (O +Os+3+H+6-1)*m

A CVA execution incurs an initial setup cost and an actual vector execution cost, Eren
cutions of a CVA instruction, the initial setup cost amounts ¢g,£n,. Since the original loop is
executed n=ptn, iterations, n results are being produced in the equivalent CVA executions.

Assuming there is no memory conflict during the CVA executions and the sustained throughput

rate is one, the actual vector execution cost is equal tprn=n
Thus for  executions of the CVA instruction, the total execution time is given by
Ev = (Cova * o) + (Mt1np) = (Coyattpttsl) * np + (m+np)
Thus, for CVA execution,
CVA saving = K- E; or
CVA saving = (Q+Og) * (n1+np) + (ty+ts+2)*ng + 2*n; - Cpya*ny (6.4)

Notice that equations (6.3) and (6.4) are identical wheth ind £=0. Comparing these two
equations, CVA executions will outperform PVA executiong,istgreater than 1 angH0,. This is

particularly true when pis relatively large andJis relatively small.
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Example 6.3:

Estimate the cycle saving for the loop shown in Table 6.6 for: (i) using PVA construct only;
(i) using CVA construct only.

This loop, taken from “auto” benchmark (loop humber 1), can be vectorized by using the

PVA-only construct, and by using the CVA-only construct, as shown in Table 6.6.

Table 6.6: “auto” Critical Loop 1

Assembly Instructions Using PVA Construct Only

Using CVA Construct Only
0000010d2 stwrb,(r14) | PVA @S, #1 CVA mov r5, @S;
0000010d4 addirl4,4 | cs-store:
0000010d6 decne r6 mov 15,15

0000010d8 bt 0x010d2

Table 6.7 shows the profiled statistics for the loop. They include the number of time “bt” is
taken (n=704) and the number of time “bt” is not takep=(h).

Table 6.7: Profile For Critical Loop 1

Address Entry Type Exe. Count$, Branch Taken count,| Not taken
n=m+n, Target ny (%) count, i (%)

0000010d2 | target 705 - - -

0000010d8 | bt 705 000010d2 704 (99.9) 1(0.142)

For PVA executions, 30, O=2, Q, = 3. Gsis 2 cycles instead of 3 because to perform the

cs-store, an additional “mov” instruction is introduced into the PVA loop body. The cs-store can

only save 2 cycles of overhead, instead of 3, per iteration. Thus
Cpya = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R3) + 1(exit) = 8.
PVA saving = (Q+QOg) * (n1 + np) + (3*ny + 2*n,) - Coyp *No
=(0+2)*(704+1) + (3*704+2*1)-8*1=23516 cycles

For CVA executions, an additional “mov” function is also introduced. Thys20Since
t,=1 (it takes the P unit one cycle to perform a “mov” function) ageDt(there is no secondary

arithmetic to perform in the CVA executions), CVA saving = PVA saving = 3517.

Example 6.4:

Vectorized loop shown in Example 1.1 on page 9 using PVA and CVA constructs. Estimate

the execution cycles for the vectorized loop, assuming that the vector length is 100.
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Table 6.8: Vectorizing A Loop For Performing C[i] = A[i] * BJi]

Using PVA Construct Only Using CVA Construct O

-

y

Assembly Instructions
addi r2,2

Id.h r7,(r2)

addi r3,1

Id.b ré,(r3)

mul r7,ré6 (2 cycles)
st.h r7,(r2)

decne rl

bt L1

PVA @LO,@L1,@S, #1
cs-store:
mul 10, rl, @S

CVA mul @LO,@L1,@S;

The scalar loop takes 13 * 100 + 12 * 1 = 1312 cycles. In this logpt Os = 8, Q, = 3,

ts=0, 1,=2 (a 2-cycle multiplication is performed at the P unit).

Cpya = 3(SSR) + 1(CIR) + 2(inst. decode) + 3(R0O/R1/R2) + 1(exit) = 10 cycles.

PVA saving = (Q+0y) * (N + np) + (3*ng + 2"Ny) - Cpya *N2

=8*100 + (3*99 + 2*1) - 10 * 1 = 1089 cycles, or a speedup of 5.88.

Cova = Cpya +th + -1 =10+ 2 + 0 - 1 = 11 cycles.

CVA saving = (Q+Og) * (n1+ny) + (ty+ts+2)*ny + 2*ny - Cpya*ny

=8*100+ (2+0+2)*99 + 2*1 - 11*1 = 1187, or a speedup of 10.49.

In this example, PVA executions achieve a speedup of 5.88; while the CVA executions

achieve a speedup of 10.49. This disparity is mainly due to the pipelining of the 2-cycle multiply

function at the P unit. For PVA executions, the machine is unable to simultaneously execute the

multiply functions from different iterations. That is, the machine can initiate a new iteration only

when the current iteration is completed. It does not possess the knowledge that the two multiplica-

tion functions across different iterations are actually independent operations.

However, if the multiply at the P unit takes only one cycle to execute, then CVA and PVA

O

would have achieved the same performance.

6.7 CVA-Only vs. PVA-Only vs. CVA/PVA Executions

When a loop is vectorizable with a CVA construct, the vectorized loop typically performs

equally or better than the PVA version of the loop. Some loops, however, are not vectorizable



102

using the CVA construct. In these cases, PVA provides an opportunity for improving the perfor-

mance.

However, there are also some loops that perform the best when a combination of both con-

structs are used. The following is an example of such loops.

Example 6.5:
Vectorize the following using (i) PVA-only; (i) CVA-only; and (iii) CVA/PVA constructs.

Estimate their speedups assuming that the loop is executed 100 times.

L1:

subi  rl13,1

Idb re,(rl13,1)
Isli ré,1

rsub  r6,r11

add re,r7

ldw r7,(rl2)
decne r10

sth r7,(r6) //not constant-stride
addi ri12,4

bt L1

This loop is taken from the benchmark program callgekf ”. It contains a non-constant
stride store operation; it is thus not CVA vectorizable. The scalar loop takes 14 x 9% 4 ¥

1399 cycles to execute.

The PVA-only version of the loop is shown in second left most column of Table 6.9. The

PVA loop removes the overheads for the two cs-load instructions and the loop control mechanism.

This Table also shows how the loop can be vectorized using a combination of a CVA
instruction and a PVA instruction (shown in the right most column of the Table). The former
instruction is a compound CVA. It reads in a vector and performs two ALU functions (“Isli” and
“rsub”) with a throughput rate of one (not including the vector setup/exit costs). This CVA instruc-

tion then writes its output to a temporary vector.

The PVA instruction then takes over the remaining tasks of the loop: it reads back in the
temporary vector, calculates the store addresses and performs the non-constant stride store opera-

tions.
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Table 6.9: A Critical Loop From “jpeg”

Scalar Code (i) Using PVA-only (ii) Using CVA- (iii) Using CVA/PVA
Construct only Construct Constructs

L1: PVA @LO,@L1,#6 Not <some initialization code>
subi  rl13,1 mov 6, r0 vectorizable. | ;read avector via LO and write
Idb ré,(r13,1) | Isli ré,1 ; to a temporary vector via S
Isli 6,1 rsub r6,r11 CVA Isli @LO, 1, @P,
rsub ré,ril add r6,r7 rsub @P, r11, @S;
add re,r7 sth rr,d | | ...
ldw r7,(rl2) <some initialization code>
decne rl0 ; read from the temporary
sth r7,(ré) ; vector via LO
addi ri2,4 PVA @LO, #3
bt L1 mov r6, r0

add r6, r7

sthrl, (r6)

PVA-only Executions

For PVA-only executions, 35, O~0, qp = 3. Qyis 5 cycles instead of 6 because an addi-

tional “mov r6,r0” instruction is introduced in the PVA loop body. This is because register RO,

which is the head of the d-stream, is a read only register. The two-operand M-CORE ISA

destructs one of its source operands when performing many ALU function (“Isli” in the above

example). The “mov” instruction is used to ensure that we don’t write back to RO. Thus,

Cpya = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(exit) =9
PVA saving = (@+0Qg) * (ny + mp) + (3*ng + 2*ny) - Coyp ™2

=5+0)*(99+1)+(3*99+2*1)-9*1=790cycles
Speedup for PVA-only executions = 1399/(1399-790) = 2.297

CVA/PVA Executions

For CVA/PVA executions, lets consider first, the CVA instruction. In this cgsg;l.
Ccva = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exip+tf- 1 = 10
CVA execution time = gy + 100 = 110 cycles

For the PVA instruction,

Cpyva = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8

PVA execution time = gy + 4 * 100 = 408 cycles

Total execution time = 110 + 408 = 518 cycles.
Speedup for CVA/PVA executions = 1399/518 = 2.700

Thus the CVA/PVA executions achieve a higher speedup (2.700) compared to those
achieved by the PVA-only executions (2.297) and by CVA-only executions (not vectorizablk).
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6.8 TM Strip-Mining Costs

For CVA executions, when a temporary register allocated into TM is larger than the size of
TM, the latter will need to be strip-mined (see Section 4.8.4 on page 70). In this Section, we will

estimate the execution costs associated with strip-miming TM.

The following shows a strip-mined code in M-CORE instructions. The corresponding high
level c-code is shown in Example 4.10 on page 70. In this code, the operand size for the vector

operations is assumed to be a word (4 bytes); TM (512 bytes) can thus store 128 elements.

The code contains a loop with 2-level of nesting. The outer loop executes n/128+1 iterations.
The inner loop is invoked n/128+1 times; it executes (n mod 128) iterations during the first invoca-

tion, and 128 iterations for each of the subsequent n/128 invocations.

!
/I Strip-mined code for TM (see Example 4.10 on page 70).
1
I
/I Memory Variables:

/I LOW - low

/I VL - VL

/I N_DIV_128 - n/128

/I J_INDEX - j loop index for outer loop
/I Registers:

Il rl4 - i loop index for inner loop
/I 13 - low+VL-1

I r0 - initially contains n (vector length)
1

Jfemmmmmmnmenaen

1 Prolog

stw rl, (r2) /lNow =1

movi rl, Ox3f

and rl, rO

Irw r3, [VL]

stw rl, (r3) /I'VL = n mod 128
mov rl, rO

asri rl, 7

Irw r3, [N_DIV_128]

stw rl, (r3) /I N_DIV_128 = n/128
movi r1, 0

Irw r3, [J_INDEX]

stw rl, (r3) IIj=0

cmplt r1,r0 /l'j < n/128?

bf EXIT

I/ Register allocations:
Ilrl4 =i
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// r13 = low+VL-1

OUTER_LOORP:

Irw r2, [LOW]

Idw r14,(r2) I/ r14 = low

Irw r2, [VL]

ldw r13, (r2) //r13 =VL

add r13, rl4

subi ri3, 1 /I r13 = low+VL-1

/[There is always at least one
Il iteration for the INNER_LOOP.

INNER_LOOP:
[Main CVA/PVA executions]
addi  ri4,1 Ni=i+1

cmplt  r14,r13 Il (i<low+VL-1)?
bt INNER_LOOP

Idw rl, (r2) I/l =low
Irw r4, [VL]

ldw r3, (r4) /Ir3=VL
add rl, r3

stw rl, (r2) /l'low = low + VL
movi 3, 127

addi r3, 1

stw r3, (rd) /I'VL =128
Irw r2, [J_INDEX]

ldw rl, (r2) Irl=j

addi r1, 1

stw rl, (r2) Nji=j+1
Irw r2, [N_DIV_128]

ldw r2, (r2) Il r2 =n/128
cmplt r1,r2 I (j<n/128)?
bt OUTER_LOOP

EXIT:

.data

.align word
LOW:

ong O
N_DIV_128:
dong O
J_INDEX:
long O

The execution time of this code can be broken down into: execution time for the prolog code

(X), setup cost for the inner loop Y, the loop control overhead for the outer loop,)ythe loop
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control overhead for the outer loop (Z), and the actual CVA execution time itself. These costs are

illustrated in Figure 6.2.

X

OUTER_LOOP
Yq
INNER_LOOP

CVA 7]
executions

Z
Yo

(n/128+1) iterations

g

|~ n iterations

Figure 6.2: Execution Costs For TM Strip-Mined Code

Excluding the inner loop executions, the execution cost is given by: X + (n/128+1) * (Y
Y,). The inner loop execution cost is given by: (n/128+1) %&(fx + Z) + n, where Gy, is the
setup and exit costs for the CVA executions as described in Section 6.4 on page 91. From the

above strip-mined assembly code, X=245Y0, Y,=29, Z=4.

The total execution time for the strip-mined code is thus: 24 + (n/128+1) * (43 G+ n.
In a more general setting,

Execution time for trip-mined code = 24 + (n/m+1) * (43 +() + n (6.5)

where n is the original vector length;
m is the vector length of strip-mined vectors reside in TM; and

“I” denotes the integer “divide” rounded down to the nearest integer.

Example 6.6:
Calculate the performance improvements and speedups when vectorizing the program loop

shown in Example 4.4 on page 53 with CVA constructs

To recap, this loop, taken from benchmatkit ”, performs a vector operation described
by CI[i] = (Isr(A[i], r9) | Isl(A[i], r8)). The vectorized code is shown in Table 6.10. The profile

statistics of this loop are shown in Table 6.11.

This loop was invoked three times, with 1000 iterations per invocation (vector length,

n=1000). The original scalar loop takes 14 x 2997 + 13 x 3 = 41997 cycles to execute.
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Table 6.10: Vertorizing Critical Loop 1 From Benchmark “blit

Address Opcode //; Assembly Code Using CVA Construct
00000304 8a0le //; |dw r10,(r14)Setup a temporary vector T
00000306 25f4//; decne r4 | ......

00000308 12a7 //; mov r7,r10| ; T[i] = Isr(A]i], r9)
0000030a  0b97 /I; Isr r7,r9 mov r5,r9

0000030c  1e37//; or r7,r3 CVA Isr @LO, 15, @S;
0000030e 12a3//; mov r3,r10f ......

00000310 970d//; stw r7,(ri3) ;@L1 <---- TIi]

00000312 1b13//; sl r3,rl mov 5, rl

00000314 203e//; addi rl4,4 | CVA Isl @LO, 15, @P,
00000316 203d//; addi rl1l3,4 or @L1, @P, @S;
00000318 e7f4//; bt 0x000030¢

Table 6.11: Profile For Critical Loop 1 From Benchmark “blit "

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000304 target 3000 - - -

00000318 bt 3000 00000304 | 2997 (99.9) 3(0.100)

TM is used to store a temporary vector produced by the first CVA instruction. Since n>128,
strip-mining for TM is necessary. In the strip-mined code, the inner-most loop executes
(n/128+1)=8 iterations, each time it is invoked. This inner-most loop consists of two CVA instruc-

tions; they are shown in Table 6.10.

In both CVA instructions, an additional “mov” instruction is needed to initialize R5. For the

first CVA instruction (5=1, t=0), the vector setup/exit cost per invocation is 3(SSR) + 1(CIR) +
2(instr. decode) + 1(R0) + 1(R2) + 1(exit) +p)¢t O(t) - 1 + 1(extra “move” inst.) = 10 cycles.

For the second CVA instructionftl, t=1), it is 3(SSR) + 1(CIR) + 2(instr. decode) +
1(RO) + 1(R1) + 1(R2) + 1(exit) + Hjt+ 1(1) - 1 + 1(extra “move” inst.) = 12 cycles.

Thus the total vector setup/exit cost per invocatiogy/C= 10 + 12 = 22 cycles; the execu-

tion time per invocation = 24 + (n/128+1) * (43 +\) + 2*n = 2544

For 3 invocations, the saving for CVA-only executions is 41997 - 3 * 2544 = 34365, or a

speedup of 5.503. ]

6.9 Throughput Rates For CVA Executions With Memory Conflicts

For CVA executions, after the initial pipeline warm-up cost is incurred, a result is produced

in each subsequent cycle, provided that there is no memory conflict between the input and output
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data streams at MO and M1; and between the two input data streams at TM. This throughput rate
of oneis the best possible throughput rate on this machine (not including the initial vector setup/

exit costs).

From the right most column of Table 4.3 on page 68, we can see that when there is a conflict
at either MO, M1 or TM, only up to a maximum of two data streams are involved in the conflict. In
this case, accessing to the memory module in question are alternatively granted to the two con-
tending data streams. As a result, the throughput rate is degraded to one vector resulttwavery

cycles (not including the initial vector setup/exit costs).

Example 6.7:
Calculate the performance improvements and speedups for ExampésguBning that the

TM is not used (or TM is removed from the design)

For CVA executions, the first CVA instruction are not affected by the absent of TM. It
streams in a vector from MO (or M1) and streams out to M1 (or M0). For the second CVA instruc-
tion, however, the throughput rate is reduced to one result every 2 cycles due to conflicts at MO or
M1 (depending on the destination of stream S); an additional 1000 (vector length, n=1000) execu-

tion cycles is required per invocation.

With Coya=22, the execution time per invocation & + n (for the first CVA instruction)

+ 2*n (for the second CVA instruction) = + 3*n = 3022.

For 3 invocations, the saving for CVA-only executions is 41997 - 3 * 3022 = 32931, or a
speedup of 4.632.. ]

6.10 Maximizing The Use Of TM via Vector Duplication
Certain vector operations could only benefit (performance-wise) from the use of TM by re-
allocating someon-temporaryectors into the TM. Consider the following vector operation.

B[i] = s *A[i]+B]i], for all i and some scalar s.

This vector operation requires three memory accesses to produce each result element (two
reads and one write). In this case, however, source vector B, is also the destination vector. Thus

accessing vector B will cause a read and a write conflict in each cycle, regardless of which mem-
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ory bank vector B resides. Without any code modification, the performance of this vector execu-

tion will suffer.

In this machine, TM is tightly coupled into the execution datapath; the 10 system has no
access to TM. In this example, if vector B needs not be accessed by the 10 system, then the above

vector operation can be replaced by the following &ternativelyinvoked vector operations.
B4[i] = s *Alil+B li]
B2[i] = s *Alil+B 4]i]

That is, vector B now has two instances, &d B,. At any given point in time, only one
instance is valid. All other references to vector B in the original code will need to be replaced by
references to the valid instance of vector B, at that point in time. Figure 6.3 shows how the vector

operations and the references to vector B are being transformed in order to take advantage of TM.

Time Original Code Transformed Code
B[i] = s *Ali]+B[i] B4[i] = s *A[i]+B 5[i]
(refererices to B) (references to B

Bli] = s ’;A[i]+B[i] B,[i] = s *A[i]+B 4]i
. e .

(refereﬁces to B) (references to B
| Blij=s *:A[i]+B[i] Bq[il=s {*A[i]+B Jlil
(references to B) (references to B

Figure 6.3: Vector Duplication

With these code transformations, an instance of vector B can reside in TM, while the other

one in MO or M1. The vector operations can now utilize TM to improve performance.

6.10.1 Software Implementation of Vector Duplication

To perform vector duplication described above, a global pointer to vector B is needed.
Figure 6.4 shows how the updating of this pointer can be implemented. In this figure, vector B has
two possible locations, addr_X and addr_Y. In the vector operatigii=B[i]*B ,[i], vector B, is
pointed to by pointer_B1 and vector, By pointer_B2. pointer_B1, the global pointer, always

points to the valid instance of B.
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If (pointer_B1 == addr_X) {
pointer_B1 = addr_Y;
pointer_B2 = addr_X;

}else {
pointer_B1 = addr_X;
pointer_B2 = addr_Y;

}

< vector operations for {fi] = A[i] * B 5[i] >

/' In the rest of the program, pointer_B1
/[ always points to the valid instance of B.
Figure 6.4: Transformed Code For Vector Duplication
6.10.2 Execution Overheads of Vector Duplication
The overhead foeachinvocation of the vector execution includes: a global pointer fetch (2
cycles); a test instruction (1 cycle); two pointer update instructions (2 cycles); and a conditional

branch (2 cycles); a total of 7 cycles.

6.11 Instruction Fetch Bandwidth

As mentioned in Section 1.5 on page 9, a subtle benefit of vector processing is the reduced
instruction fetch bandwidth. In this Section, we will illustrate how we could estimate the instruc-

tion fetch bandwidth reduction associated with the PVA and CVA executions.

We distinguish the difference between instruction requests (IReq) from the processor core
and the instruction fetches (IFetch) from the memory MO. This different is illustrated in

Figure 6.5.

IReq IFetch

from core from MO
Prggfssor Loop Cachg¢—— MO

Figure 6.5: IReq from Processor Core versus IFetch from Memory MO

For CVA executions, there is no different between these two metrices, since CVA executions
do not utilize the loop cache. For PVA executions, the loop cache satisfied some of the instruction
requests from the processor core. As a result, the IFetch from the memory are less than the IReq

made by the core.
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We define theNormalized Instruction RequeReq from the processor core, as the ratio
between the number of instruction requests being made by the processor core for the vectorized

program, versus those for the base machine.

Likewise, we define thé&Normalized Instruction FetcfiFetch) from the processor core, as
the ratio between the number of instruction fetches being made from the memory MO for the vec-

torized program, versus those for the base machine.

Example 6.8:
Calculate the normalized IReq and normalized IFetch for the loop shown in Example 4.4 on
page 53, by using (i) a PVA construct; and (ii) a CVA construct. This loop is assumed to execute

100 iterations.

The PVA and CVA versions of the loop are shown in Table 6.12.

Table 6.12: Vectorizing The Loop Shown in Example 1.1

Original Scalar Loop

Using PVA
Construct

Using CVA
Construct

L1:

ldw  r10,(r14)
decne r4

mov  r7,r10
Isr  r7,r9

or r7,r3

mov  r3,r10
stw  r7,(r13)
Isl  r3,r8
addi rl14,4
addi r13,4
bt L1

<Some vector setup code>
PVA @LO,@S, #5

mov r3, 10

mov 17,3

Isr r7,r9

Isl r3,rl

cs-store:

or r3,r?

<Some vector setup code>
mov r5, r9
CVA Isr @LO, 15, @S;

<Some vector setup code>
mov r5, r8
CVA Isl @LO, r5, @P,

or @L1, @P, @S;

There are 11 instructions in the original scalar loop. In this machine, each instruction request
fetches two 16-bit instructions. Due to the pipeline nature of the scalar machine, when the branch
instruction “bt” is taken, one additional instruction (the fall-through instruction following it) is
also fetched. As a result, 12 instructions are being fetched per loop iteration, even though we only
execute 11 of them. During the last iteration when the “bt” instruction is not taken, the fall-through
instruction is fetched and executed. This instruction is not considered as part of the loop execu-
tions. Thus the IReq of the scalar machine during loop executions is given by 12 x99 + 11 x 1 =

1199 instructions.

For PVA execution, the vector setup code consists of initialization of the following registers:
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SSR (2 instructions); CIR (1 instruction); RO and R2 (1 instruction each). In addition, the PVA
instruction is 32-bit wide and is counted as 2 instructions. There are 5 instructions in the loop
body, which is executed 100 times. Thus for PVA execution, the IReq is (2+1+1#15&)100 =

507 instructions

For CVA execution, there are two CVA instructions. The vector setup code for the first CVA
instruction consists of initialization of the following registers: SSR (2 instructions); CIR (1
instruction); RO and R2 (1 instruction each). In addition, there is also an additional “mov r5, r9”
instruction. The CVA instruction is also counted as 2 instructions. The total IReq for the initializa-

tion code is 7 instructions.

The vector setup code for the second CVA instruction consists of initialization of the follow-
ing registers: SSR (2 instructions); CIR (1 instruction); RO, R1 and R2 (1 instruction each). In
addition, there is also an additional “mov r5, r8” instruction. Again, the CVA instruction is
counted as 2 instructions. The total IReq for the initialization code is 8 instructions. Thus for CVA

executions, IReq is given by 7 (first CVA instructjon 8 (second CVA instruction) 15 instructions

The normalized IReq for PVA and CVA executions are summarized in Table 6.13.

Table 6.13: Normalized IReq For PVA and CVA Executions

Execution Modes PVA Execution CVA Execution
IFetch 507 instructions 15 instructions
Normalized IFetch 0.4229 0.0125

In this example, the PVA execution is able to reduce the instruction fetch bandwidth from
the original 1199 instructions down to 507 instructions - a reduction of about 58%; the CVA exe-
cution is able to further reduce the instruction bandwidth down to 15 instructions - a reduction of
about 99%.

For PVA execution, the reductions are primarily due to eliminating the fetching of instruc-
tions that perform the cs-load, cs-store and loop control operations. Once these operations are pre-
specified in the vector instruction, there is no need for the machine to fetch these instructions again

due to their repetitive nature.

The CVA execution goes one step further in reducing the instruction fetch bandwidth. Once

all the data streams, primary and secondary arithmetic are properly setup, there is no need to fetch

any instruction for the rest of the CVA executions. ]
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CHAPTER 7

EXPERIMENTAL RESULTS

In this Chapter, we will present the performance results for the pseudo-vector machine. We
will first present the overall speedups, as well as the speedups during program loop executions. We

will then present the performance impact by varying the sizes of TM.

For PVA-only executions, we will present what are the performance improvements contrib-
uted by removing various types of overheads associated with loop executions. Later in this Chap-
ter, we will also present what are the effects of vectorizations on instruction fetch bandwidth on

this machine.

7.1 Overall Speedups

Figure 7.1 and Table 7.1 show, for each benchmark, the overall speedups for various execu-
tion modes on this machine. These results assume that the TM is 512 bytes. Depending on the way
we restrict the selection of the vectorizing constructs, there are three major execution modes: (i)
PVA-only executions; (ii) CVA-only executions; and (iii) CVA/PVA executions (see Section 6.3

on page 90).

In CVA-only executions, two different sets of results are presented. The first set of results,
called the “CVA-only executions without early termination”, corresponds to the cases where we
would not vectorize a loop with a CVA construct if it contains an early terminating condition. An
example of such a loop is shown in Example 3.3 on page 46. In the second set of results, called the
“CVA-only executions with early termination”, we allowed a vector computation to exit early. An
example of such vectorized loop is shown in Example 3.4 on page 45. This latter approach is more

generic and provides more opportunities for vectorization.
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Figure 7.1: Overall Speedups For Various Execution Modes

Table 7.1: Overall Speedups For Various Combinations of Execution Modés

CVA-Only Executions
Benchmarks PVA-Only MWithout early termi-| With early termina-| CVA/PVA
Executions nation tion Executions
auto 2.563 2.123 2.123 2.564
blit 2.751 5.293 5.293 5.293
compress 1.089 1.089 1.089 1.089
des 1.022 1.000 1.022 1.022
engine 1.043 1.000 1.038 1.043
fir_int 1.814 2.632 2.632 2.632
g3fax 1.859 1.858 1.858 1.859
g721 1.020 1.020 1.020 1.020
ipeg 1.475 1.256 1.256 1.569
map3d 1.433 1.000 1.426 1.433
pocsag 1.270 1.000 1.000 1.270
servo 1.000 1.000 1.000 1.000
summin 1.958 1.480 1.480 2.190
ucbgsort 1.002 1.002 1.002 1.002
v42bis 1.021 1.021 1.021 1.021
Average 1.488 1.585 1.617 1.734

1. TMis assumed to be 512 bytes.
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If we allow both CVA and PVA executions witlall the vector execution capabilities
described in this dissertation, the overall average speedup achieved is 1.734 - the highest among all
possible execution modes. Closely following this, is the CVA-only executions with early termina-
tion, with an overall speedup of 1.617. By not allowing the vector executions to exit early, the
overall speedup drops slightly, to 1.585. Using the PVA-only executions, we achieved an overall

speedup of 1.488.

7.1.1 CVA-Only vs. PVA-Only Executions
As mentioned earlier, if a loop is CVA-vectorizable, it is also PVA-vectorizable. The PVA
construct represents a more generic vectorizing mechanism. It thus provides more opportunities

for vectorization and performance improvements.

However, if a program loop is vectorizable by either a CVA or a PVA construct, depending
on the type of primary arithmetic (p_op) performed at the P unit, a CVA-vectorized code can typi-

cally achieve a higher speedup than its PVA counterpart.

If p_op is a multi-cycle operation (such as a 2-cycle multiply or divide), then the CVA exe-
cutions will achieve higher speedup. This is because for PVA executions, the machine is unable to
simultaneously execute the multi-cycle functions across different iterations. That is, it can initiate
a new iteration only when the current iteration is completed. This scenario was illustrated in

Example 6.4 on page 100.

In general, if a loop is vectorizable either by a CVA or a PVA construct, the former typically
performs the same or better than the latter. The CVA construct will outperform the PVA construct

when:

. p_op takes multiple cycles to execute; or
. the CVA is a reduction or hybrid CVA, or

. the CVA is a compound CVA that also utilizes the s_op function, such as the vector opera-
tion described by C[i] = A[f + BIil.
To perform CJ[i] = A[i]2 + BJi], in every cycle, the compound CVA reads two data from the

memory, performs a “multiply” and an “add” operations, writes one data to the memory - all in a

single cycle.

7.1.2 Allowing CVA-Only Executions To Terminate Early

In CVA-only executions, if we allow a vector arithmetic to terminate early, we were able to
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vectorize more program loops using the CVA construct. By incorporating this capability, the over-

all speedup increases slightly from 1.585 to 1.617.

For CVA-only executions, only three benchmark programs benefited from this early termi-
nation capability. Out of these three benchmarkap3d benefited the maost from this capability.

The speedup, in this cases, increased from 1.000 (no speedup) to 1.426.

7.2 Speedups During Program Loop Executions

Figure 7.2 and Table 7.2 show the speedups during program loop executions for the various

execution modes. Again, TM is assumed to 512 bytes.
Table 7.2: Speedups During Loop Executions For Various Combinations of Execution
Modes"

CVA-Only Executions
Benchmarks PVA-Only ["Without early termi-] With early termina-| CVA/PVA
Executions nation tion Executions
auto 6.671 3.806 3.806 6.676
blit 2.794 5.503 5.503 5.503
compress 5.994 5.994 5.994 5.994
des 5.929 1.010 5.929 5.929
engine 1.740 1.000 1.601 1.740
fir_int 2.805 9.015 9.015 9.015
g3fax 5.500 5.499 5.499 5.500
g721 3.143 3.143 3.143 3.143
ipeg 3.124 6.696 6.696 4.258
map3d 4,930 1.000 4,711 4.930
pocsag 1.531 1.000 1.000 1.531
servo 1.000 1.000 1.000 1.000
summin 2.501 7.645 7.645 2.998
ucbgsort 1.726 1.726 1.726 1.726
v42bis 5.993 5.991 5.991 5.991
Average 3.692 4.002 4.617 4.396

1. TMis assumed to be 512 bytes.

If we consider the speedup only during program loop executions, the speedups achieved
were much higher, as can be expected. In these cases, the CVA-only executions with early termi-
nation achieves an average speedup of 4.617 - the highest among all execution modes. For PVA-

only executions, the average speedup during loop executions is 3.692. For CVA/PVA executions,
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Figure 7.2: Speedups During Loop Executions For Various Execution Modes
the corresponding speedup is 4.396.

7.3 Performance Impact By Varying The Sizes Of TM

In this machine, TM is primarily used to increase the effective memory bandwidth for CVA
executions - it is essentially used as a third memory port in addition to MO and M1. A compound
CVA that enables all three data streamg, (L, and S) could utilize TM to improve the perfor-
mance. Without TM, such compound CVA would have taken two cycles to produce a result,

instead of one (see Section 6.9 on page 107).

In this work, the PVA-only executions do not utilize TM, and thus its performance was not
affected. For CVA executions, unfortunately, there were only three benchmarks (nalitely,
jpeg andsummin) whose performance could benefit from using TM; all other benchmarks did

not benefit, in terms of performance, from using T™.

The low utilization of TM is due to the fact that most of the benchmarks did not have three-
data stream CVA in their vectorized code. Since all vectorizations were manually done by hand

(by examining the assembly code), we believe that more opportunities could have been exposed or

* TM could also be used by these benchmarks for power reduction. However, evaluating the power benefits
of using TM is beyond the scope of this dissertation.
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made available if these were done by the compilers, in conjunction with careful high-level coding.

However, no such high-level code maodification nor compiler work were done in this work.

Among the abovementioned three benchmaukis, has two critical loops that utilized TM
without the need to use the vector duplication approach (see Section 6.10 on pageetd8nd
summin, on the other hand, each has one critical loop that utilized TM by using the vector dupli-

cation approach.

7.3.1 TM Strip-Mining Costs vs. TM Sizes
The executions of a three-data stream CVA do not always benefit from using TM, due to its
strip-mining costs. These costs are higher when the number of strip-mined iterations is large; or

equivalently, when TM is small, relative to the total vector length.

Benchmark “blit ”

Figure 7.5 shows how the speedupsiiit  vary as a function of TM sizes. This figure is
for the CVA/PVA executionsblit  spent about 99% of its executing time on two critical loops,
manipulating two vectors of length 1000. Both of these loops benefited greatly from using TM.

These loops were shown in Example 4.4 on page 53 and Example 6.6 on page 106.

7.0

a——a Speedups during loop executio
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Figure 7.3: Speedups For blit vs. TM Sizes

For small TM (256 bytes or less), the costs of strip-mining overwhelmed the performance
benefits brought by using the TM itself. Thus for these sizes of TM, the TM was not used. That is,
in these cases, the approach of avoiding the use of TM (thereby incurring memory conflicts at MO/

M1), still outperformed the approach of using TM with strip-mining.
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When TM is 512 bytes in size, the benefits of using TM started to manifest. The overall
speedup, in this case, jumps from 4.489 to 5.293. When the size of TM increases to 1024 bytes or
larger, the entire temporary vector could fitinto TM. As a result, strip-mining of TM was no longer
necessary, and the overall speedup increases even further, to 6.581. Increasing TM beyond the size

of 1024 bytes does not further improve the performance.

Benchmarks “jpeg” and “summin”

Forjpeg andsummin, theyeachhave one loop that utilized TM for performance. For
these benchmarks, the speedupsing the executions of that particular lodp shown in
Figure 7.4. In both cases, the loop could only benefit from TM when TM is 128 bytes or larger. At
these sizes, no strip-mining was necessary. The speedups, in these cases, jump from 5.978 to
10.134 forjpeg , and from 5.584 to 9.727 fsummin.
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TM Sizes (bytes)
Figure 7.4: Speedups During A Single Loop Execution vs. TM Sizes
(For jpeg and summin)

The overall speedups brought by using TM, for these two benchmarks, are far less impres-
sive. They are shown in Figure 7.5. With TM of 128 bytes or larger, the overall speedup increases
from 1.549 to 1.569 fgpeg , and from 2.106 to 2.190 fsummin.

7.3.2 Average Speedups vs. TM Sizes
The speedups versus TM sizes, average over all benchmarks, are shown in Table 7.3,
Table 7.4 and Figure 7.6. Table 7.3 is for CVA/PVA executions, while Table 7.4 is for CVA-only

executions.
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Table 7.3: Speedups For CVA/PVA Executions vs. TM Sizes

jpeg and summin)

TM Sizes (Bytes)
Speedups During Loop Executions Overall Speedups
Benchmarks
No 128 256 512 1024 No| 128 256 512 1024
™ ™
blit 4632 | 4.632| 4.632 5.503 6.9283 4.489 4489 4.489 5.93 6|581
ipeg 3.971| 4.258 4.258 4.258 4.258 1549 1.569 1.569 1/569 1.569
summin 2.812| 2998 2998 2.998 2.998 2.106 2.190 2[90 2{190 2.190
Average
Over All 4306 | 4.338| 4.33§ 4.396 4.490 1.6Y3 1.680 1.680 1[34 1{819
Benchmarks
Table 7.4: Speedups For CVA-Only Executions vs. TM Sizes
TM Sizes (Bytes)
Speedups During Loop Executions Overall Speedups
Benchmarks
No 128 256 512 1024 No| 128 256 512 1024
™ ™
blit 4632 | 4.632| 4.632 5503 6.923 4.489 4.4B9 4.489 5p93 6/581
ipeg 5.468| 6.696 6.696 6.69p 6.696 1.244 1.256 1.p56 1[256 1.256
summin 5,583 7.645 7.645 7.645 7.645 1442 1480 1480 1{480 1.480
Average
Over All 4.340 | 4.559| 4.559 4617 4712 1560 1564 1564 1617 1{703
Benchmarks

1. With early terminations.
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Figure 7.7 highlights the performance benefits of using a 512-byte TM, for both the overall
speedups and the speedups during loop executions. The speedups for PVA executions, although

not affected by TM, are also shown in this figure for comparison purposes.
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Figure 7.7: Performance Benefits of Using a 512-Byte TM

7.4 PVA-Only Executions

In this Section, we will take a closer look at the performance benefits due to eliminating var-

ious types of overheads in PVA-only executions. As described in Section 6.5, these overheads
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include Ip-ctl-oh, cs-load-oh, cs-store-oh. In order to better quantify the breakdown of the effects
of eliminating each of these types of overheads, we will use the performance improvement metric

defined in Equation (6.1) on page 87.

Table 7.5 and Figure 7.8 show the performance improvements, for each benchmark, using
the PVA-only executions. For each benchmark, three set of results are presented. They represent
the performance improvements achieved due to eliminating cs-load-oh, cs-store-oh and Ip-ctl-oh,
respectively. The sums of these three components give the total improvements for PVA-only exe-

cutions.
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Figure 7.8: Performance Improvements Using PVA-Only Executions

Table 7.5: Performance Improvements For PVA-Only Executions

Performance Improvements Due To Eliminating Vari-  Overall Performance
Benchmarks ous Types of Overheads Improvements
Ip-ctl-oh cs-load cs-store
auto 0.3182 0.0000 0.2917 0.6099
blit 0.2121 0.2122 0.2122 0.6365
compress 0.0491 0.0000 0.0327 0.0818
des 0.0075 0.0141 0.0001 0.0217
engine 0.0098 0.0318 0.0000 0.0416
fir_int 0.1652 0.2835 0.0000 0.4487
g3fax 0.2517 0.1311 0.0791 0.4619
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Table 7.5: Performance Improvements For PVA-Only Executions

Performance Improvements Due To Eliminating Vari-  Overall Performance
Benchmarks ous Types of Overheads Improvements
Ip-ctl-oh cs-load cs-store

g721 0.0072 0.0078 0.0046 0.0196
ipeg 0.1281 0.1352 0.0589 0.3222
map3d 0.1717 0.1306 0.0000 0.3023
pocsag 0.1174 0.0950 0.0000 0.2124
servo 0.0000 0.0000 0.0000 0.0000
summin 0.2430 0.1550 0.0913 0.4893
uchgsort 0.0008 0.0011 0.0005 0.0024
v42bis 0.0124 0.0000 0.0083 0.0207
Average 0.1129 0.0798 0.0520 0.2447

From Table 7.5, eliminating Ip-ctl-oh provided the greatest performance improvements
(11.29%). This is closely followed by eliminating the cs-load-oh (7.98%). Eliminating the cs-
store-oh improves the performance by yet another 5.20%. By removing all these overheads, the

overall performance is improved by 24.47%, for PVA-only executions.
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In this Section, we will look at the effects of vectorizations on IReq from the processor core
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Instruction Fetch Bandwidth Reductions

and the IFetch from the memory (see Section 6.11 on page 110).

7.5.1 Normalized IReq From Processor Core

Table 7.6 shows, for each benchmark, the normalized IReq from processor core for various

execution modes.

Table 7.6: Normalized IReq From The Processor Core

Normalized IReq. From Processor Core
Dynamic During Loop Executions Overall
Bench- IReq.
marks | Erom PVA- | CVA-Only | CVA/PVA | PVA- CVA- CVA/
Core Only Only Only PVA
auto 20695 0.168 2.853 x T0| 2.853 x 10° 0.3237 0.1893 0.1893
blit 78448 0.4173 | 1250 x10° | 1.250 x 103 | 0.4652 0.0834 0.0834
compress| 355216 0.2002 1506 x 10* | 1.506 x 10* | 0.9103 0.8878 0.8878
des 519037 0.1804 0.0781 0.0781 0.9799 0.97f74 0.9774
engine 1058154 0.5754 0.3633 0.3633 0.9353 0.9030 0.9030
fir_int 705966 0.3577 0.0233 0.0233 0.4248 0.1253 0.12p3
g3fax 1681130 0.2069 0.0244 0.0244 0.5495 0.4458 0.4458
g721 256025 0.3584 0.2059 0.2059 0.9830 0.9791 0.97191
ipeg 1528812| 0.3267 0.0329 0.1822 0.68Q02 0.78}70 0.6115
map3d 1463233 0.2108 0.0649 0.0649 0.6430 0.5770 0.5770
pocsag 147202 0.6905 1.0000 0.6905 0.8382 1.0000 0.8882
servo 42919 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
summin | 1532825 0.4230 0.0777 0.3115 0.4824 0.90p0 0.3854
ucbhgsort 804662 0.6220 0.4695 0.4695 0.9979 0.9971 0.9971
v42bis | 1660493 0.2001| 1.45xf0 | 1.45x10* | 0.9800 | 0.9751| 0.9751
Average - 0.3958 0.2230 0.2638 0.7462 0.6858 0.6650

Normalized IReq During Loop Executions

Figure 7.9 shows the normalized IReq for various execution modes during loop executions.
During loop executions, the PVA-only executions were able to reduce the number of IReq down to
39.58% of those for the base machine. These reductions were primarily due to the fact that many
instructions in the original loops specified some cs-load, cs-store and loop control operations.
Once these operations are specified in the PVA instructions, the corresponding instructions were

no longer needed by the machine during the loop executions.
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The CVA executions were able to reduce the IReq even further, by also pre-specifying all
the arithmetic operations (p_op and s_op) in the CVA instructions. During loop executions, the
normalized IReq is 0.2230 for CVA-only executions, and 0.2638 for CVA/PVA executions.

Normalized IReq - Overall

Figure 7.10 shows, for each benchmark, the overall normalized IReq from processor core
for various executions modes. Overall, the normalized IReq from processor core is 0.7462 for
PVA-only executions; 0.6858 for CVA-only executions and 0.6650 for CVA/PVA executions.

7.5.2 Normalized IFetch From The Memory MO

For PVA executions, we distinguish two caching schemes for the loop caclessg@htial
instruction only cachindthe loop cache only caches all the essential instructions); anall(ii)
instruction cachingthe loop cache can cache all instructions in the loop, including non-essential
instructions, as long as the caching of these instructions do not replace any essential instructions).
The “essential instruction only caching” represents the approach used by the traditional DSP pro-
cessors (such as the SHARC 2106x chip). The “all instruction caching” approach is proposed in

this dissertation (see Section 5.8 on page 83).
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Table 7.7: Normalized IFetch From Memory
During Loop Executions Overall
h PVA-Only [ PVA-Only PVA-Only [ PVA-Only
Be”Ck " || (essential | (allinst. CVA- CVA/PVA | (essential | (all inst. CVA- CVA/PVA
marks inst. only caching) Only inst. only caching) Only
caching) caching)
auto 1.545x10% | 1.545x103 | 2.853x10° | 2.853x10° | 0.1882 0.1882 0.1893 0.1893
blit 0.339 9.723x10% | 1.250x10° | 1.250x10° 0.3887 0.0832 0.0834 0.0834
compress (| 1.757x10* | 1.757x10* | 1.506x10* | 1.506x10* | 0.8878 0.8878 0.8878 0.8878
des 0.0781 0.0781 0.0781 0.0781] 0.9774 0.9774 0.9774 0.9774
engine 0.3633 0.3633 0.3633 0.3633 0.9030 0.9030 0.9080 0.9430
fir_int 0.1347 0.0233 0.0233 0.0233 0.2251] 0.1257 0.12538 0.12%3
g3fax 0.0244 0.0244 0.0244 0.0244 0.4454 0.4458 0.4458 0.4458
g721 0.2059 0.2059 0.2059 0.2059 0.9791 0.9791 0.9791 0.9791
jpeg 0.0773 0.0260 0.0329 0.0310 0.5617 0.537} 0.7870 0.5397
map3d 0.0649 0.0649 0.0649 0.0649 0.5770 0.5770 0.57f0 0.5770
pocsag 0.5721 0.0267 1.0000 0.0267 0.776B 0.4912 1.00p0 0.4912
servo 1.0000 1.0000 1.0000 1.0000] 1.000 1.00000 1.0000 1.0400
summin 0.2116 0.0493 0.0777 0.0474 0.292 0.1472 0.9000 0.1455
uchgsort 0.4697 0.4697 0.4695 0.4695 0.9971 0.9971 0.99171 0.9971
v42bis 1.693x1¢ | 1.693x10* | 1.45x10* | 1.45x10 0.9751 0.9751 0.9751 0.9751
Average 0.2362 0.1556 0.2230 0.1560 0.6783 0.621p 0.7218 0.62110

Figure 7.11 shows the normalized IFetch from the memory, for both the overall executions
and loop executions. The lower the normalized IFetch from MO, the lower access power will be

consumed at MO.
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Essential Instruction Only Caching vs. All Instruction Caching

For PVA executions, during loop executions, by also caching the non-essential instructions,
the normalized IFetch was reduced from 0.2362 to 0.1556. For overall executions, the normalized
IFetch was only reduced from 0.6783 to 0.6210

The difference in normalized IFetch between these two approachesohas significant as
what we had expected. This is due to a combination of the following two reasons. First, in all of
these benchmarkafter a loop is being vectorized by a PVA construct, the loop body is typically
small that is, PVA vectaorization was able to significantly reduce the loop size. Second, inside the
PVA loop bodies, the cs-load and cs-store operations afiegoentthat many of the instructions
within the vectorized loops were essential instructions - they were always being cached, regardless
of which loop caching scheme was used. As a results of these two factors, most of the instructions

in the PVA loops were captured in the loop cache in both approaches.

PVA Executions vs. CVA Exactions

The abovementioned two observations (small PVA vectorized loops and almost all instruc-
tions in the PVA loops are essential) are also responsible for having little different, in normalized
IFetch, between the PVA-only, CVA-only and CVA/PVA executions.
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PVA-Only with All Instruction Caching vs. CVA/PVA Executions

For PVA-only executions with “all instruction caching”, the loop cache was able to absorb
almostall the instruction requests from the processor core during loop executions. As a result, it
achieved the same overall normalized IFetch with those for the CVA/PVA executions (0.6210 for
both of them). Although they consume about the same access power at MO, the PVA executions,

however, consume power accessing the loop cache while the CVA executions do not.

The normalized IFetch from the memory for various execution modes are summarized in
Table 7.8. For PVA executions with “all instruction caching”, the loop cache was able to absorb
most of the instruction requests from the core during loop executions. As a result, it achieved the
same normalized IFetch with the CVA/PVA executions.

Table 7.8: Normalized IFetch From Memory MO

Execution During Loop Overall
Modes Executions

PVA-Only with Essential 0.2362 0.6783
Instruction Only Caching

PVA-Only with All Instruction 0.1556 0.6210

Caching
CVA-Only (with Early 0.2230 0.7218
Terminations)
CVA/PVA 0.1560 0.6210

7.6 Summary

The PVA-only executions improves the performance significantly by eliminating various
types of loop execution overheads. The overall speedup, in this case, is 1.488. The CVA-only exe-
cutions improves the performance even more significantly, with an overall speedup ranges
between 1.585 and 1.617, depending on whether we allow a CVA vector execution to terminate

early.

The CVA/PVA executions achieved the highest overall speedup (1.734). This was achieved
on three fronts:
. For program loops that are highly vectorizable, we use the CVA construct to extract the
maximum possible parallelism from the loops;
. For program loops that are impossible or costly to vectorize (in a conventional sense), we

use the PVA construct to eliminate various types of overheads for loop executions;
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. There are yet some loops that can be best vectorized using a combination of CVA and PVA

constructs. An example of such loops was shown in Example 6.5 on page 102.

Vectorizations (using PVA or CVA constructs) reduced the instruction fetch bandwidth dras-
tically. The CVA executions are inherently low in instruction fetch bandwidth. For PVA executions

with the “all instruction caching” scheme, the normalized IFetch is about the same as those for

CVA/PVA executions.
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CHAPTER 8

ARCHITECTURAL EXTENSIONS FOR DSP
APPLICATIONS

In this Chapter, we will describe some architectural extensions to the pseudo-vector
machine for DSP applications. In particular, we will look at how these extensions can enhance the
Infinite Impulse Response (IIR) Filter and Fast Fourier Transform (FFT) computations. Evaluating

the performance benefits of these extensions, however, is beyond the scope of this dissertation.

8.1 Architectural Extensions - VLIW/Vector Machine

The pseudo-vector machine proposed in this dissertation can be extended by adding some

processing capabilities in the “width” or “horizontal” direction, as shown in Figure 8.1.
Input Data Streams

Lo L1 Output Data Stream
resultl bus S
+—
> >
» RegFile
—p
3
result2 bus i

nl

Figure 8.1: Datapath for the Extended Pseudo-Vector Machine

In this enhanced machine, there are two primary arithmetic functions, p1_op and p2_op,
performed by two functional units, P1 and P2, respectively. With these two functional units, the

machine can issue two independent operations to P1 and P2 simultaneously, and the two results
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produced by them can be written back to the register file via two independent result buses (similar

to a 2-wide VLIW machine).

The S unit is similar to those in the original pseudo-vector machine. It can perform some
memory store operations (including the output data streaming operations) as well as some simple
ALU arithmetic. However, the S unit now has three inputs (to perform three-input “add”, three-

input “or”, etc.).

Like the original pseudo-vector machine, there are three types of CVA executions: com-
pound CVA, reduction CVA and hybrid CVA. The dependency graphs for these three types of
CVA are shown in Figure 8.2.

In these dependency graphs, operands W, X, Y and Zirmaependenthsource from

(i) input stream , or (ii) input stream |, or (iii) a designated register.

Each of these operands can also source from a zero-extended upper or lower halfword of an
input stream k or L4, as defined in Table 7.9. This sourcing mode is depicted in this Table as
“Cross Sourcing”.

Table 7.9: Possible Sources for Operands W, X, Y and Z

Operands Sourcing Modes
Operands Independent Sourcing Cross Sourcing
w Lo Ly, RO {0,Lo[31:16]}
X Lo Ly, R4 {0,L4[15:0]}
Y Lo Ly, R8 {0,L4[31:16]}
Z Lo Ly, R12 {0,Lo[15:01}

In this Table, {0, Lg[15:0]} denotes the zero-extended lower halfword from the input stream

Lo {0, Lo[31:16]} denotes the zero-extended upper halfword from the input strgastcL

The three types of CVA depicted in Figure 8.2 have the following general forms.

. Compound CVA:

Si=(W;pl_opX)s_op (Yp2_op 2 i=0,...,n-1;

. Reduction CVA:

So = (Wp p1_op X) s_op (Yo p2_op %);
S =W pl_opX)s_op(Yp2_opZ)s_opH; i=1,.,n-1,
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Source W Source X Source Y Source Z
Lo, Ly, 10, {0,Lg[31:16]} Lo, Ly, r4, {O,L4[15:0]} Lo, Ly, 18, {0,L4[31:16]} Lo, Ly, r12, {0,Lg[15:0]}

(&) Compound CVA
(S enabled)

Source W Source X Source Y Source Z
Lo Ly, 10, {0,Lo[31:16]} Lo Ly, 4, {0,L4[15:01} Lo, Ly, 18, {0,L4[31:16]} Lo, Ly, r12, {0,Lo[15:0]}

(a) Reduction CVA
(S disabled)

Source W Source X Source Y Source Z
Lo Ly, 10, {0,L[31:16]} Lo Ly, r4, {0,L4[15:01} Lo, Ly, 18, {0,L4[31:16]} Lo, Ly, r12, {0,Lo[15:0]}

S and r3

(a) Hybrid CVA
(S enabled)

Figure 8.2: Dependency Graphs For Three Types of CVA Executions
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R=8.

where
S; denotes théh partial result;

R denotes the scalar result for the vector reduction operations.

. Hybrid CVA:
Same as reduction CVA, except that,i$0,...,n-1, is also written to the memory via the S

stream.

When p2_op is a “pass Z" function, this machine degenerates into the original pseudo-vec-

tor machine.

8.2 Implementing The IIR Filter

An nth order biquad infinite impulse response (lIR) filter is represented by the following z-
domain transfer function.

H(z) = Y(2)IX(z) = (By+ Bzt + B, z2+. ..+ BZ") / (1 + Azt + A, 7%+, .. + AZ")

The corresponding difference equation is given by

Y() =Bo* X[+ :21, (B * X[t-i]- A * Y[-i]) (8.1)

To implement this filter, the input vector <X]t-1],X[t-2],...,X[{}>, the output vector <Y[t-
1],Y[t-2],...,Y[t-n]> and the two coefficient vectors $B..,B,> and <A,...,A;> are organized in

the memory system as follows.

First, coefficients Aare negated, such that’A -A;, i=1,...n. A new vector is formed:

<A AL

The size of all the elements in these four vectors are assumed to be halfword long (16 bits).
The input vector <X[t-1],X[t-2],...,X[tA]> and the output vector <Y[t-1],Y[t-2],...,Y[R]> are
pairedtogether, element-wise, to form a new vector. Ttheelement of this new vector is given by
{X[t- i],Y[t-i]}. Likewise, the coefficient vectors <A...,A,> and <By,...,B,> are paired together,

element-wise, to form another new vector. Ttheelement of this new vector is given by {/B;}.

Due to these element pairing, the element size of theses two new vectors are a word long (32

bits), or twice the element size of the original vectors.

Figure 8.3 shows how the enhanced datapath can performtiberder IIR shown in equa-
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tion (8.1).
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Figure 8.3: Enhanced Datapath For Implementing IIR Filters

In this figure, lg streams in <{X[t-1],Y[t-1]},{X[t-1],Y[t-2]},....{X[t-1], Y[t- n]}>, while L4
streams in <{A’,B1},{A 5,B4},....{A B }>. The operands W, X, Y and Z, all in “cross-sourcing”
mode, source in <fA,,..., A >, <Y[t-1],Y[t-2],...,Y[t-n]>, <B4,B,,....B> and <X[t-1],X]t-

2],..., X[t-n]>, respectively.

The final reduction result is given by, Y'[t] = -Zi (B X[t-i] - A; * Y[t-i]). A final term,
=1n

Bg * X[t], needs to be added to obtain the final result, Y[t].

The throughput rate of this implementationnsC cycles per output sample, where C is

some fixed vector startup cost.

The fetch addresses generated yahd L; can also usenodulo addressintp access circu-
lar buffers, identical to those used in [SHARC97,TMS320C3x]. These circular buffers are used to
store sample stream <X[t-1],X][t-2],...,X[i{}> and response stream <Y[t-1],Y[t-2],..., Yii}>.

These buffers can also used to store the coefficightsd B, i=1,...1n.

8.3 Implementing The FFT

A N-point Discrete Fourier Transform (DFT) is defined as
N-1 _jZmk

Hk) = 3 h(nje N k=0,..N-1 (8.2)
=0
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In this equation, N is assumed to be a power of 2; the time response, h(n), and the spectrum,
H(k), are all complex numbers. In a radix two Decimation In Time (DIT) Fast Fourier Transform
(FFT), a N-point DFT is broken down into t\/\% -point DFTS.%& -point DFT is further broken

down into two% -point DFTs, and so on. Equation(8.2) can be rewritten as:

The first half FFT,

N N
2 k k 2 k 1 k, .1 N
n n _ )
HK) = | S hpnWy ™|+ W Sy, W™ | = H(k) + WTH  (K) k=01,.5 -1;
n=0 2 n=0 2
and the second half FFT,
N N
N 2 k k 2 k 1 k 1 N
n n _
HEk+38=| 3 h2nwg Wy hzmwg = Ho()-WHI(K) k=015 -1;
n=0 n=0

N N
5-1 =1

2T
N
where W =e

1 k 1 k .
Ho(k) = 3 W™ andH1(K) = 5 hyn W™ The WK term above is
n=0 2 n=0 2
, are combined in a butterfly,

(k)

using the phase factors¥dnd -WK. This decomposition and recombination of a N-point DFT are

called the phase factor. The tv%) -point DF'P%(k)

illustrated in Figure 8.4.
Even Time Groupi

ho—— ot >H(0)
hy—» Ho (1)
h4—P
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MN2—> Harg ~ 1 > H(N/2-1)
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N/2 point DFTH1(2) ) > H(N/2+2)
' 1 :

hN_l—» Hl% - 1% _\vl\le/2'1 > H(N_l)

Figure 8.4: DIT Decomposition of a N-point FFT
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Figure 8.5 shows the generalized butterfly computational structure for DIT FFT. In this fig-
ure, “Re” denotes the real part of a complex number; while “Im” denotes the imaginary part of the

complex number.

Two complex data points, X(n) and X(m), are extracted from the memory. X(m) is multi-
plied by a complex exponential phase factor. The resulting real and imaginary parts are separated,
combined with the respective parts of X(n) and written back to the memory . After the transformed
data pair is written back to the memory, the process begins again on a different pair of memory
locations, using an updated phase factor value. The process continues until the required number of

butterflies has been computed.

Re X(n} X Re Y(n)

6—>Re Y(m)
T(k)
Upper half

Re X(m} +

& Lower half

Im X(n) ><“ig}—>|m Y(n)
v+ +

Im X(m) D; - O—>Im Y(m)

COH

>
O

Figure 8.5: Generalized Butterfly Computation Diagram

The above computational structure can be implemented on our enhanced pseudo-vector

machine as follows.

In this implementation, a complex number, X(n) = Re X(n) + j Im X(n), is represented using

one word of data (32 bits): upper halfword for Re X(n); and lower halfword for Im X(n).

Two new vectors are created. Each element in these new vectors consists two phase factors.
Each element in the first vector consists of a concatenation of two phase factass {cas , sin }; and

each element in the second vector consists of a concatenation of two phase facters {-sin , cos },
where6 = % ,i:O,...,g -1. Each phase factor is assumed to be represented by a halfword data

(16 bit); and each element in the new vectors is assumed to be 32 bit wide.
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The computational structure shown in Figure 8.5 can be broken down into two halves: an
upper half and a lower half, each consists of two multiplications and three additions. The two mul-
tiplications and the first addition can be mapped onto a compound CVA, as follows. To perform,
say, the upper half of the butterflyglstreams in <{Re X(0),Im X(0)},{Re X(1),Im X(1)},....{Re
X(N-1), Im X(g -1)}>; while L, streams in <{Re W, Im W% {Re W1, Im WY,... {Re WNZL 1m

N _ 40
WN'2-33> “or equivalently, <{cos 0, sin 0}, {co%T ,S?KF } {CO%[ ,S%[ b feddz 0
. ZITEN—]_D N
sin“ 2 O}>.
N

At the same time, operands W, X, Y and Z are all put in a “cross sourcing” mode, as shown

in Figure 8.6.

Lo Ly

3

& 0

Z o

X = ™ Re W,...,Re W21 P2

c g 7| B ReEW,..., >

= oy mul | ReWImX(0),..., ReWN2 1 imX (N/2-1)
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| ELx
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< '3 J

(0]

Qv:av A

s Figure 8.6: Implementing Part Of Butterfly For DIT FFT

The output of this compound CVA is a temporary vector, T(k), kzg..., -1. This vector is
also shown in Figure 8.5. This vector is then added to the vector for Re X(n) to obtain the vector
for Re Y(n); and subtract from the vector for Re X(n) to obtain the vector for Re Y(m). Three CVA
instructions (one as shown in Figure 8.6, followed by two vector additions) are required for one
half of the butterfly. To merge tw% -point DFTSs, six CVA instructions are required, or 6*N+C

cycles, for some fixed constant cost C.

It should be noted that the vector computations (or the CVA executions) are only effective if
the number of sample points are large (during the final stages of recombinations). When the
decomposition is down to such a point where the number of sample points is small (2, 4 or 8, etc.),
then a conventional loop-based DSP style of executions will be more efficient. This can be carried

out on this machine using the PVA executions.
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CHAPTER 9

SUMMARY

Many today’s mobile applications require the underlaying execution machines to take
advantage of the parallelism that frequently found in these applications. But in some other point in
time, they also require the machines to perform control intensive functions. Besides performance,
the design of these machines is also severely constrained hatteare costandpower con-

sumption

In this dissertation, we proposed a processing paradigm, callgusthalo-vector machine
for executing these applications. This machine attempts to expldibt@owerandhigh perfor-
manceaspects of vector processing paradigm to efficiently extract and exploit the ILP in the appli-

cationswhenever possibld he strength of vector processing arises from:

. The ability to pipeline various operations on a data stream (to improve performance);
. Result produced by a functional unit is routed directly to its destination functional unit,
instead of being broadcast to the entire datapath;

. Lower instruction fetch bandwidth.

Efficient data storage and movements and lower instruction fetch bandwidth could also
mean lower power consumption. The strength of vector processing makes it very suitable for the

low-cost, low-power embedded computing systems.

Various design aspects and some of their unique features of this machine are summarized
below [Lee99e,Lee99f].

Sharing of Functional Units Between Scalar and Vector Executions

In this machine, both scalar and vector executions are performed using a single, integrated

datapath. In particular, both scalar and vector execution modes use the same set of functional units.
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Thus, arithmetic functions that are available to scalar executions, are also available to vector exe-

cutions - an efficient use of hardware resources.
CVA vs. PVA Executions - Choosing The Best Execution Mode For A Given Critical Loop

The vector execution mode, in this machine, can be further divideddatwnical Vector
Arithmetic (CVA) mode andPseudo-Vector Arithmeti@PVA) mode. The former is used for a
“true” vector processing paradigm; while the latter is used for program loops that are difficult or

impossible to vectorize (in a conventional sense).

Two vector instructions are added to the M-CORE ISA: a CVA instruction and a PVA
instruction. These instructions can optionally and independently, enable or disable two input data

streams (g and Ly) and one output data stream (S).

There three types of CVA executions on this machownpound CVAreduction CVAand
hybrid CVA These three types of CVA represent some basic vector arithmetic commonly found in

DSP and scientific computations.

For PVA executions, the heads of the input data queues are accessed by reading from regis-
ter RO and R1. In addition, an instruction in the PVA loop body can be selected as the instruction
that will enqueue data to the output stream - the result written back by this instruction is used as
the data for the output stream. This instruction can be specified by using a label called “cs-store”
located within the loop body; or, equivalently, by specifying the index of the instruction (relative

to the PVA instruction) in the PVA instruction itself.

Table 9.1 summarizes the speedups for various execution modes on this machine.

Table 9.1: Speedups For Various Execution Modes

Without a TM With a 512-byte TM
Execution Modes Overall Speedups During| Overall Speedups During
Speedups | Loop Executions | Speedups | Loop Executions
CVA-Only Without early 1.585 4.002 N.A.2 N. A2
Executions termination
With early 1.560 4.340 1.617 4.617
termination
CVA/PVA Executions 1.673 4.306 1.734 4.396

1. Not affected by TM.
2. Results are not available.



140

When executing in a PVA mode, the performance can be significantly improved by remov-
ing the overheads for: (i) loop control; (ii) cs-load operations; and (ii) cs-store operations. The

overall speedup, by usiranly the PVA construct, is 1.488.

By usingonly the CVA construct, the overall speedup improves the performance even more
significantly. The overall speedup for CVA-only executions with early termination is 1.617. The
CVA executions allow the executions of multi-cycle functions from different iterations (in the

original loop) to overlap in time.

When combining both CVA and PVA executions, the performance improves even further.
The overall speedup, in this case, is 1.734. For loops that are highly vectorizable, it is best to vec-
torize them using the CVA construct. For loops that are not CVA vectorizable, PVA construct can
be used instead. In addition, there are also certain loops that are best vectorized using a combina-
tion of both constructs. By allowing the use of both vectorizing constructs, a compiler is given all
the flexibilities to vectorize a program loop, to achieve the best possible speedup and power con-

sumption.
Using The Temporary Memory For Better Performance and Lower Power

Performance of vector executions is frequently limited by the memory bandwidth. Increas-
ing the bandwidth by adding the number of memory read and write ports is an expensive proposi-
tion. In this dissertation, we proposed using a small Temporary Memory (TM) to increase the
effective memory bandwidth during CVA executions. With the use of a 512-byte TM, the CVA

executions can perform two data reads and one data write, all in a single cycle.

In some sense, TM has replaced the roles of vector registers in the conventional vector
machines. Like its vector register counterpart, TM can be used to improve performance (by reduc-

ing the memory conflicts), as well as to save access power to the larger memory modules.

Compared with the vector registers, however, TM is more flexible, in terms of allocating and
organizing these temporary storage spaces. Vector registers in the conventional vector machines
typically have a fixed size and length. With the TM, a compiler can trade off between the vector
length and the number of vectors that can be allocated into TM. A drawback of using TM, how-
ever, is the extra overheads in specifying the vector length, strides and element sizes prior to each
vector execution. These overheads, however, can be easily amortized over the executions of longer

vectors.
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Without TM, performance for vector operations that perform two data reads and one data
write per cycle will be impacted. Their throughput rates, in this case, were degraded from one
result per cycle, to one result every two cycles. For CVA/PVA executions, the removal of TM

reduces the overall speedup from 1.734 to 1.673.
Register Overlay and Temporary Registers

In this dissertation, we had also discussed various aspects of machine states maintenance,
with respect to interrupt on vector executions. We introduced the conceggister overlayand
temporary registersin an attempt to reduce the interrupt response latency for vector executions.

The latter is an important design factor for many real-time applications.

A temporary register used to store temporary data streamed in from the memory; while an
overlaid register is used to store the load addresses corresponding to the data fetched into its tem-
porary register. During a context switch, all temporary registers are not saved as part of the vector

execution contexts.
Instruction Fetch Memory Bandwidth Reductions

Vectorization drastically reduces the instruction fetch bandwidth. The CVA execution, in
particular, is inherently low in this bandwidth requirement. After fetching all the setup and initial-
ization code, a CVA execution has no further instruction request for the rest of its vector execu-

tions.

Vectorization via a PVA construct also reduces the instruction fetch bandwidth drastically. It
does so by reducing the loop size significantly. This involves removing from the loop body, some
instructions that specify certain repetitive operations, such as cs-load, cs-store, and loop control

operations.

The instruction fetch bandwidth for PVA executions can be further reduced by using a loop
cache that attempts to cachk the instructions, not just those instructions that will cause a mem-
ory conflict with data references. This loop caching scheme, proposed in this dissertation, gives
first priority to those instructions that will cause a data reference conflict. After these essential
instructions are allocated into the loop cache, the latter then tries to capture all other instructions,

without replacing any essential instructions.

Using this loop caching scheme, the PVA executions can aledorbst allthe instruction

requests coming from the processor core during loop executions.
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Appendix A: Critical Loop Vectorizations and Cycle
Saving Calculations

A.1 Benchmark “auto”
A.1.1Critical Loop 1

Table A.1.1: Vectorizing Critical Loop 1

Address Opcode//; Assembly Code Using PVA Constiuct Using CVA Construct

00000308 940b //; stw r4,(rll) | PVA @S, #1 movi r4,1

0000030a 203b //; addi r11,4 cs-store: CVA mov r4, @P,
0000030c 2004 //; addi  r4,1 addi  r4.# add @P, r3, {r3,@S}
0000030e 0dd4 //; cmplt  r4,r13 N

00000310 e7fb //; bt 0x0000308 movi 5,1

CVA add @LO, r5, @S

a. Essential instruction

Table A.1.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000308 target 2100 - - -

00000310 bt 2100 00000308 | 2097 (99.9) 3(0.143)

This loop performs vector initialization, C[i] = i, where i=0,1,2,3...
Estimated execution cycles = 7 x 2097 + 6 x 3 = 14697
Average number of iterations per invocation = 2100/3 = 700

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 3 + 1(MO conflict) = 25

cs-store saving: 3 x 2100 - 25/2 = 6288

Ip-ctl saving: 3 x 2097 + 2 x 3 - 25/2 = 6285

Total saving = 6288 + 6285 = 12573

(i) CVA-Only executions

A temporary vector is created. This temporary vector can be stored in MO or M1. TM is not used.

First CVA instruction ($=ts=1):

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)
+1(t) + 1() - 1 + 1(extra “mov” inst.)= 10

Execution time: 3 x 10 + 2100 = 2130

Second CVA instruction (1, t=0):

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)
+ 1(exit) + 1(p) + O(ty) - 1 + 1(extra “mov” inst.)= 10

Execution time: 3 x 10 + 2100 = 2130

CVA-only saving = 14697 - 2130 - 2130 = 10437
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(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core

Base machine:

IReq from core during loop executions: 6 x 2097 + 5 x 3 = 12597

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 3 + 1 x 2100 = 2118
CVA-only executions:

IReq from core during CVA executions: 7 x 2 (setup code/vector inst.) x 3 = 42

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 3 + 1 (essential inst.) = 19
PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA/PVA executions: 7 x 2 (setup code/vector inst.) x 3 =42

A.1.2 Critical Loop 2:

Table A.1.3: Vectorizing Critical Loop 2

Address Opcode//; Assembly Code Using PVA Constiuct Using CVA Construct

000010d2  950e //; stw r5,(r14)| PVA @S, #1 CVA mov r5, @S;
000010d4 203e//;addi  r14,4 | cs-store:

000010d6 01b6 //; decne r6 mov 5. rf

000010d8 eT7fc //; bt 0x010d2 ’

a. Essential instruction

Table A.1.4: Profile For Critical Loop 2

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

0000010d2 | target 705 - - -

0000010d8 | bt 705 000010d2 704 (99.9) 1(0.142)

This loop performs vector initialization, C[i] = r5, for some scalar r5.
Estimated execution cycles =6 x 704 + 5 x 1 = 4229
Average number of iterations per invocation = 705/1 = 705

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs =8 x 1 + 1(MO conflict) =9

cs-store saving: 2 x 705 - 9/2 = 1406

Ip-ctl Saving: 3 x 704 +2 x 1 -9/2 =2110

Total saving: 1406 + 2110 = 3516

(i) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2)
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+1(exit) + 1(p) +0() -1 =8
Execution time =8 x 1 + 705 = 713
CVA saving = 4229 - 713 = 3516

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core

Base machine:

IReq from core during loop executions: 6 x 704 + 5 x 1 = 4229

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 1 + 1 x 705 = 711
CVA-only executions:

IReq from core during CVA executions: 6 (setup code/vector inst.) x 1 =6

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 1 + 1 (essential inst.) = 7
PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA/PVA executions: 6 (setup code/vector inst.)x 1 =6

A.1.3Summary

Total program execution cycles: 26381
Total number of cycles in loops: 14697 (loop 1) + 4229 (loop 2)

= 18926 or 71.76% of program execution time.
Average number of iterations per invocation = (700+705)/2 = 702.5

(i) PVA-Only executions

cs-store saving: 6288 + 1406 = 7694

Ip-ctl Saving: 6285 + 2110 = 8395

Total cycle saving: 7694 + 8395 = 16089;%cycle saving: 16089/26381=0.6099
Speedup during loop executions = 18926/(18926 - 16089) = 6.671 (perf. imp. = 0.8501)
Overall speedup: 26381/(26381 - 16089) = 2.563 (perf. imp. = 0.6098)

Table A.1.5: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 8395 0.3182
cs-load-oh 0 0
cs-store-oh 7694 0.2917
Total 16091 0.6099

(i) CVA-Only executions

Total cycle saving: 10437 + 3516 = 13953

Speedup during loop executions = 18926/(18926-13953)= 3.806 (perf. imp. = 0.7373)
Overall speedup = 26381/(26381 - 13953) = 2.123 (perf. imp. = 0.5290)
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(iii) CVA/PVA executions

Total cycle saving: 12573(PVA for loopl) + 3516(CVA for loop2) = 16089

Speedup during loop executions = 18926/(18926 - 16089) = 6.671(perf. imp. = 0.7373)
Overall speedup: 26381/(26381 - 16089) = 2.563 (perf. imp. = 0.6098)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core

Base machine:

IReq from core overall: 20695

IReq from core during loop executions: 12597 + 4229 = 16826

PVA-only executions:

IReq from core reduced = 16826 - (2118 + 711) = 13997

Normalized IReq from core during PVA executions = (2118 + 711)/16826 = 0.168
IReq from core overall = 20695 - 13997 = 6698

Normalized IReq from core overall = (20695 - 13997)/20695 = 0.3237

CVA-only executions:
IReq from core reduced = 16826 - (42 + 6) = 16778

Normalized IReq from core during CVA executions = (42+6)/16826 = 2.853°x 10
Normalized IReq from core overall = (20695 - 16778)/20695 = 0.1893

CVA/PVA executions:
IReq from core reduced = 16826 - (42 + 6) = 16778

Normalized IReq from core during CVA/PVA executions = 48/16826 = 2.853% 10
Normalized IReq from core overall = (20695 - 16778)/20695 = 0.1893

Table A.1.6: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.168 2.853 x 18 2.853 x 10° 0.3237 0.1893 0.1893

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory reduced = 16826 - (19 + 7) = 16800

Normalized Ifetch from memory during PVA executions: (19 + 7)/16826 = 1.545x10
Ifetch from memory overall = 20695 - 16800 = 3895

Normalized Ifetch from memory overall = (20695 - 16800)/20695 = 0.1882

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
Ifetch from memory: same as those for IReq from core
CVA/PVA executions:
Ifetch from memory: same as those for IReq from core
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Table A.1.7: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only- | CVA-Only | CVA/PVA | PVA-Only- | PVA-Only- | CVA-Only | CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
1545x10° | 1.545x108 | 2.853x10° | 2.853x 10° 0.1882 0.1882 0.1893 0.1893




A.2 Benchmark “blit”

147

A.2.1Critical Loop 1

Table A.2.1: Vertorizing Critical Loop 1

uct

Using CVA Construc

Address Opcode //; Assembly Code Using PVA Const
00000304 8ale //; ldw rlo,(r14)PVA @LO,@S, #5
00000306 25f4 //; decne r4 mov 3, r0
00000308 12a7 //; mov r7,r/10| mov r7,r3
0000030a  0b97//; Isr Isr r7,r9
0000030c  1e37//; or Isl r3,rl
0000030e 12a3//; mov r3,r10| cs-store:
00000310 970d//; stw r7,(r13)| or 3.1
00000312 1b13//; Isl r3,rl '
00000314 203e//; addi ri4,4

00000316 203d//; addi ri3,4

00000318 e7f4/l; bt 0x0000304

Setup a temporary vector T

; T[] = Isr(A[i], r9)

mov
CVA

r5, r9

:@L1 < TIi]

mov
CVA

r5, rl

Isr @LO, 15, @S;

Isl @LO, r5, @P,

or @L1, @P, @S;

2 Essential instructions

Table A.2.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000304 target 3000 - - -

00000318 bt 3000 00000304 | 2997 (99.9) 3 (0.100)

This loop performs vector operations C[i] = Isr(A[i], r9) | IsI(A[i], r1), for some scalars rl and r9.
Estimated execution cycles = 14 x 2997 + 13 x 3 = 41997
Average number of iterations per invocation = 3000/3 = 1000

(i) PVA-Only executions
Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)
+ 1(exit) = 9 cycles
Total setup/exit costs = 9 x 3 + 1(MO conflict) = 28

Cycles per iteration: 5

Cycle saving per iteration = 14 - 5 = 9 (3 for Ip-ctl, 3 for cs-load, 3 for cs-store)

cs-load saving: 3 x 3000 - 28/3 = 8991
cs-store saving: 3 x 3000 - 28/3 = 8991
Ip-ctl saving: 3 x 2997 + 2 x 3 - 28/3 = 8988
Total saving = 8991 + 8991 + 8988 = 26970

(i) CVA-Only executions

A temporary vector is stored in TM. Strip-mining for TM is needed (see Section 6.8 on page 104).

First CVA instruction gzl, =0):

Setupl/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)
+ 1(exit) + 1(p) + O(ty) - 1 + 1(extra “move” inst.) = 10

Second CVA instruction g1, t=1):

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2)
+1(exit) + 1(p) + 1(1) - 1 + L(extra “move” inst.) = 12 cycles
Setup/exit costs per invocationd{x) = 10 + 12 = 22 cycles per invocation

In each invocation, vector length n=1000.
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Execution time per invocation = 24 + (n/128+1) x (43&,0 + 2n = 2544

There are a total of 3 invocations.
CVA-only saving = 41997 - 3 x 2544 =

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM

TM is used to store the temporary vector.

CCVA:22; n=1000;

With no TM:

Execution time: @ya + n + 2n = 3022

With TM = 256 bytes:

Execution time using strip-mining: 24 + (n/64+1) x (43 ¢&) + 2n = 3064 (> execution time without using TM)
With TM = 1024 bytes: no stripe mining necessary.

Execution time: Gya + N +n = 2022

Table A.2.3: CVA Executions Using Various Sizes of TM

TM Sizes| Using TM? Exe. Time per | Total Exe. | CVA-only Cycle

(bytes) Invocation Time Saving
0 N 3022 9066 32931

64 N 3022 9066 32931

128 N 3022 9066 32931

256 N 3022 9066 32931

512 Y 2544 7632 34365

1024 Y 2022 6066 35931

(v) IReq From Core

Base machinne:

IReq from core during loop executions: 12 x 2997 + 11 x 3 = 35997

PVA-only executions:

IReq from core during PVA executions: 7 (setup code/vector inst.) x 3 + 5 x 3000 = 15021
CVA-only executions:

IReq from core during CVA executions: 15 (setup code/vector inst.) x 3 =45

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 3 + 1 (essential inst.)
+ 4 x 3000 (non-essential inst.) = 12021

PVA-only with all inst. caching:

Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 3 + 1 (essential inst.)
+ 4 x 4 (non-essential inst.) = 38

CVA-only executions: 15 (setup code/vector inst.) x 3 =45

CVA/PVA executions: 15 (setup code/vector inst.) x 3 =45
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Table A.2.4: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construc
00000356 1227 //; mov r7,r2 PVA @LO,@S, #5 | Setup a temporary vector T
00000358 0ba7//; Ist 7l | mov r3.r® | ......

0000035a  1e37 //* or mov r?’ rg T = Isr(Alil, 19)
0000035c  970d //; stw  r7,(r13) Imo" r7’5 mov 15, rl

0000036e 1223 //; mov  r3,r2 ol r3,r 1 CVA Isr @LO, 15, @S;
00000360 820e //; ldw  r2,(r14) | 'S X rorl

00000362 25f4 //; decne r4 cs-store: -@L1 <---- TIi]

00000364 1b93 //; Isl| or  r3,7# mov  r5, r9

00000366 203e //; addi  r14,4 CVA Isl @LO, 15, @P,
00000368 203d //; addi  r13,4 or @L1, @P, @S;
0000036a e7f4//; bt ~ 0x00000356

a Essential instructions

Table A.2.5: Profile For Critical Loop 2

Address Entry Type Execution | Branch Target| Taken count Not taken
Counts (%) count (%)

00000356 target 3000 - - -

0000036a bt 3000 00000356 2997 (99.9) 3(0.100)

This loop performs vector operations C[i] = Isr(A[i], r1) | IsI(A[i], r9), for some scalars rl and r9.
Estimated execution cycles = 14 x 2997 + 13 x 3 = 41997
Average number of iterations per invocation = 3000/3 = 1000

(i) PVA-Only executions

Stall cycles due to MO conflicts = 2

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)
+ 1(exit) = 9 cycles

Total setup/exit costs = 9 x 3 + 2(MO conflicts) = 29

Cycles per iteration: 6

Cycle saving per iteration=14-5=9

cs-load saving: 3 x 3000 - 29/3 = 8990

cs-store saving: 3 x 3000 - 29/3 = 8990

Ip-ctl saving: 3 x 2997 + 2 x 3 - 29/3 = 8987

Total saving = 8990 + 8990 + 8987 = 26967

(i) CVA-Only executions

First CVA instruction (=1, 1=0):

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exit)

+1(t) + 0(ty) - 1 + 1(extra “move” inst.) = 10 cycles

Execution time = 3 x 10 + 3000 = 3030

Second CVA instruction g1, t=1):

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2)
+1(exit) + 1(p) + 1(1) - 1 + L(extra “move” inst.) = 12 cycles

Setup/exit costs per invocationd{x) = 10 + 12 = 22 cycles per invocation

In each invocation, vector length n=1000.
Execution time per invocation = 24 + (n/128+1) x (43&,0 + 2n = 2544

There are a total of 3 invocations.
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CVA-only saving = 41997 - 3 x 2544 = 34365

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM

TM is used to store the temporary vector.

CCVA=22; n=1000;

With no TM:

Execution time: Gy + N + 2n = 3022

With TM = 256 bytes:

Execution time using strip-mining: 24 + (n/64+1) x (43 ¢&) + 2n = 3064 (> execution time without using TM)
With TM = 1024 bytes: no stripe mining necessary.

Execution time: @y + N+ n = 2022

Table A.2.6: CVA Executions Using Various Sizes of TM

TM Sizes| Using TM? Exe. Time per | Total Exe. | CVA-only Cycle

(bytes) Invocation Time Saving
0 N 3022 9066 32931

64 N 3022 9066 32931

128 N 3022 9066 32931

256 N 3022 9066 32931

512 Y 2544 7632 34365

1024 Y 2022 6066 35931

(v) IReg From Core

Base machinne:

IReq from core during loop executions: 12 x 2997 + 11 x 3 = 35997

PVA-only executions:

IReq from core during PVA executions: 7 (setup code/vector inst.) x 3 + 5 x 3000 = 15021
CVA-only executions:

IReq from core during CVA executions: 15 (setup code/vector inst.) x 3 =45

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 3 + 3 (essential inst.)
+ 4 x 3000 (non-essential inst.) = 12021

PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 3 + 3 (essential inst.)
+ 2 x 4 (non-essential inst.) = 32

CVA-only executions: 15 (setup code/vector inst.) x 3 =45
CVA/PVA executions: 15 (setup code/vector inst.) x 3 = 45

A.2.3Summary

Total program execution cycles: 84739
Total number of cycles in loops: 41997 (loop 1) + 41997 (loop 2)= 83994
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or 99.18% of program execution time.
Average number of iterations per invocation = 1000

(i) PVA-Only executions

cs-store saving: 8991 + 8990 = 17981

cs-store saving: 8991 + 8990 = 17981

Ip-ctl Saving: 8988 + 8987 = 17975

Total cycle saving: 17981 + 17981 + 17975 = 53937

Speedup during loop executions = 83994/ (83994 - 53937) = 2.794 (perf. imp. = 0.6421)
Overall speedup: 84739/(84739 - 53937) = 2.751 (perf. imp. = 0.6365)

Table A.2.7: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 17975 0.2121
cs-load-oh 17981 0.2122
cs-store-oh 17981 0.2122
Total 53937 0.6365

(ii) CVA-Only executions
Total cycle saving: 34365 (loop 1) + 34365 (loop 2) = 68730

Speedup during loop executions = 83994/(83994-68730)= 5.503 (perf. imp. = 0.8183)
Overall speedup = 84739/(84739 - 68730) = 5.293 (perf. imp. = 0.8111)

(iii) CVA/PVA executions

Total cycle saving: 34365 (CVA loop 1) + 34365 (CVA loop 2) = 68730
Speedup during loop executions = 83994/(83994-68730)= 5.503 (perf. imp. = 0.8183)
Overall speedup = 84739/(84739 - 68730) = 5.293 (perf. imp. = 0.8111)

(iv) CVA Executions Using Various Sizes of TM

Table A.2.8: CVA Executions Using Various Sizes of TM

CVA-Only Executions CVA/PVA Executions
TM Sizes Total Cycle | Speedup Overall Total Cycle | Speedup Overall
(bytes) Saving |DuringLoop| Speedup Saving |DuringLoop| Speedup
Executions Executions

0 65862 4.632 4.489 65862 4.632 4.489
64 65862 4.632 4.489 65862 4.632 4.489
128 65862 4.632 4.489 65862 4.632 4.489
256 65862 4.632 4.489 65862 4.632 4.489
512 68730 5.503 5.293 68730 5.503 5.293
1024 71862 6.923 6.581 71862 6.923 6.581
2048 71862 6.923 6.581 71862 6.923 6.581
4096 71862 6.923 6.581 71862 6.923 6.581

(v) IReq From Core
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Base machinne:
IReq from core overall: 78448
IReq from core during loop executions: 35997 + 35997 = 71994

PVA-only executions:

IReq from core reduced = 71994 - (15021 + 15021) = 41952

Normalized IReq from core during PVA executions = (15021 + 15021)/71994 = 0.4173
Normalized IReq from core overall = (78448 - 41952)/78448 = 0.4652

CVA-only executions:
IReq from core reduced = 71994 - (45 + 45) = 71904

Normalized IReq from core during CVA executions = (45 + 45)/71994 = 1.256x 10
Normalized IReq from core overall = (78448 - 71904)/78448 = 0.0834

CVA/PVA executions:
IReq from core reduced = 71994 - (45 + 45) = 71904

Normalized IReq from core during CVA/PVA executions = (45 + 45)/71994 = 1.250x 10
Normalized IReq from core overall = (78448 - 71904)/78448 = 0.0834

Table A.2.9: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.4173 1.250 x 10° 1.250 x 10° 0.4652 0.0834 0.0834

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory reduced = 71994 - (12021 + 12021) = 47952

Normalized Ifetch from memory during PVA executions: (12021 + 12021)/71994 = 0.339
Normalized Ifetch from memory overall = (78448 - 47952)/78448 = 0.3887

PVA-only with all inst. caching:
Ifetch from memory reduced = 71994 - (38 + 32) = 71924

Normalized Ifetch from memory during PVA executions: (38 + 32)/71994 = 9.723x 10
Normalized Ifetch from memory overall = (78448 - 71924)/78448 = 0.0832

CVA-only executions:
Ifetch from memory: same as those for IReq from core

CVA/PVA executions:
Ifetch from memory: same as those for IReq from core

Table A.2.10: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only - CVA-Only CVA/PVA PVA-Only - | PVA-Only - CVA-Only CVA/PVA
essential all inst. Executions Executions essential all inst. Executions Executions
inst. caching caching inst. caching caching
0.339 9.723x 19 | 1.250x 1® | 1.250 x 10° 0.3887 0.0832 0.0834 0.0834
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A.3 Benchmark “compress”
A.3.1Critical Loop 1

Table A.3.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code  Using PVA Construct Using CVA Construc
00000c32 950e //; stw r5,(r14) | PVA @S, #1 CVA mov 15, @S;
00000c34 203e//; addi rl4,4 cs-store:

00000c36 01b6 //; decne r6 mov 5. r#

00000c38 e7fc/l; bt 0x00000c3p ’

a. Essential instruction

Table A.3.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000c32 target 7969 - - -

00000c38 bt 7969 00000304 | 7968 (100) 1 (0.00)

This loop performs vector initialization, C[i] = r5, for some scalar r5.
Estimated execution cycles =6 x 7968 + 5 x 1 = 47813 or 9.81% execution time.
Average number of iterations per invocation = 7969

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8 cycles
Total setup/exit costs = 8 x 1 + 1(MO conflict) =9

Cycles per iteration: 6

Cycle saving per iteration =5

cs-store saving: 2 x 7969 - 9/2 = 15934

Ip-ctl saving: 3 x 7968 + 2 x 1 - 9/2 = 23902

Total saving = 15934 + 23902 = 39836

Speedup during loop executions = 47813 / (47813 - 39836) = 5.994 (perf. imp. = 0.8332)
Overall speedup = 487021/(487021-39836) = 1.089 (perf. imp. = 0.0817)

Table A.3.3: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 23902 0.0491
cs-load-oh 0 0
cs-store-oh 15934 0.0327
Total 39836 0.0818

(i) CVA-Only executions

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)

+1(ty) + 0 - 1=

Execution time =8 x 1 + 7969 = 7977
CVA saving = 47813 - 7977 = 39836

8
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Speedup during loop executions = 47813 / (47813 - 39836) = 5.994 (perf. imp. = 0.8332)
Overall speedup 487021/(487021-39836) = 1.089 (perf. imp. = 0.0817)

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReg From Core

Base machinne:

IReq from core overall: 355216

IReq from core during loop executions: 5 x 7968 + 4 x 1 = 39844

PVA-only executions:

IReq from core during PVA executions =6 x 1 + 1 X 7969 = 7975

IReq from core reduced = 39844 - 7975 = 31869

Normalized IReq from core during PVA executions = 7975/39844 = 0.2002
Normalized IReq from core overall = (355216 - 31869)/355216 = 0.9103

CVA-only executions:

IReq from core during CVA executions=6x1=6

IReq from core reduced = 39844 - 6 = 39838

Normalized IReq from core during CVA executions = 6/39844 = 1.506% 10
Normalized IReq from core overall = (355216 - 39838)/355216 = 0.8878

CVA/PVA executions:
IReq from core during CVA/PVA executions=6x1 =6
IReq from core reduced = 39844 - 6 = 39838

Normalized IReq from core during CVA/PVA executions = 6/39844 = 1.506% 10
Normalized IReq from core overall = (355216 - 39838)/355216 = 0.8878

Table A.3.4: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.2002 1.506 x 10 1.506 x 10 0.9103 0.8878 0.8878

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 1 + 1 (essential inst.) =7
Ifetch from memory reduced = 39844 - 7 = 39837

Normalized Ifetch from memory during PVA executions: 7/39844 = 1.75%x10
Normalized Ifetch from memory overall = (355216 - 39837)/355216 = 0.8878

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory




CVA/PVA executions:
IReq from core = Ifetch from memory
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Table A.3.5: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only - CVA-Only CVA/PVA PVA-Only - | PVA-Only - CVA-Only CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
1.757 x 10* | 1.757 x 10* | 1.506 x 16" | 1.506 x 10* 0.8878 0.8878 0.8878 0.8878
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A.4 Benchmark “des”
A.4.1Critical Loop 1

Table A.4.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Cod¢ Using PVA Construct Using CVA Construct

000008ac a702//; Idb r7,(r2) | PVA @LO,@L1, ct=1,#1 | CVA cmpne.ct=1 @LO,@L1;
000008b0  0Of67 //; cmpne 7,16
000008b2 01c2//; clrt  r2
000008b4 €005 //; bt 0x008c(
000008b6 2002 //; addi r2,1
000008b8 2003 //; addi  r3,1
000008ba 0184 //; declt r4
000008bc  eff7 //; bf 0x008ac

a. Essential instruction

Table A.4.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)
000008ac target 1269 - - -
000008b4 bt 1269 000008hb6 0 (0) 1269 (100)
000008ba target 1269 - - -
000008bc bt 1269 000008ac | 1128 (88.9) | 141 (11.1)

This loop reads two vectors sequentially and finds the first i that satisfies: A[i] != BJi].
Estimated execution cycles = 12 x 1128 + 11 x 141 = 15087
Average number of iterations per invocation = 1269/141 = 9

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1)
+ 1(exit) = 9 cycles

Total setup/exit costs = 9 x 141 + 1(MO conflict) = 1270

Saving per iteration: 12 -1 = 11 (4 for Ip-ctl-oh, 7 for cs-load-oh)

cs-load saving: 7 x 1269 - 1270/2 = 8248

Ip-ctl saving: 4 x 1128 + 3 x 141 - 1270/2 = 4300

Total saving: 8248 + 4300 = 12548

(i) CVA-Only executions

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1)
+ 1(exit) + 1(p) + O(1) -1 = 9 cycles

Execution time = 9 x 141 + 1269 = 2538

CVA saving = 15087 - 2538 = 12549

(i) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).
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(v) IReq From Core

Base machinne:

IReq from core during loop executions: 10 x 1128 + 9 x 141 = 12549

PVA-only executions:

IReq from core during PVA executions: 7 (setup code/vector inst.) x 141 + 1 x 1269 = 2256
CVA-only executions:

IReq from core during CVA executions: 7 (setup code/vector inst.) x 141 = 987

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 141 + 1 (essential inst.) = 988

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 7 (setup code/vector inst.) x 141 = 987
CVA/PVA executions: 7 (setup code/vector inst.) x 141 = 987

A.4.2 Critical Loop 2

Table A.4.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construc

00000a62 950e //; stw r5,(r14) | PVA @S#1 CVA mov 15, @S;
00000a64 203e //; addi ri4,4 cs-store:

00000a66 01b6 //; decne 6 mov 15, r&t

00000a68 e7fc//; bt 0x00000a62 '

a. Essential instruction

Table A.4.4: Profile For Critical Loop 2

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000a62 target 33 - - -

00000a68 bt 33 00000a62 32 (97.0) 1(3.03)

This loop performs vector initialization, C[i] = r5, for some scalar r5.
Estimated execution cycles = 6 x 33 = 198
Average number of iterations per invocation = 33

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setupl/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup and exit costs = 8 x 1 + 1(MO conflict) = 9

cs-load saving: 0

cs-store saving: 2 x 33 - 9/2 = 62

Ip-ctl saving: 3 x 33 - 9/2 =95

Total saving = 62 + 95 = 157

(i) CVA-Only executions
Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) +
+1(t,) +0(y -1=8

Executiontime=8x 1+ 33 =41
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CVA saving = 198 - 41 = 157

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core

Base machinne:

IReq from core during loop executions: 5x 32+ 4 x 1 =164

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 1 + 1 x 32 = 38
CVA-only executions:

IReq from core during CVA executions: 6 (setup code/vector inst.)x 1 =6

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 1 + 1 (essential inst.) = 7

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 7 (setup code/vector inst.)x 1 =7
CVA/PVA executions: 7 (setup code/vector inst)x 1 =7

A.4.3 Summary

Total execution cycles: 586643
Total execution cycles in loops: 15087 + 198 = 15285 or 2.61% of total execution time.
Average number of iterations per invocation = (15087 x 9 + 33 x 198)/15285 = 9.31

(i) PVA-Only executions

Total cs-load saving = 8248

Total cs-store saving = 62

Total Ip-ctl saving = 4300 + 95 = 4395

Total cycle saving: 12548+ 157 = 12705

Speedup during loop executions = 15285/ (15285 - 12706) = 5.929 (perf. imp. = 0.8313)
Overall speedup: 586643/(586643-12706) = 1.022 (perf. imp. = 0.0215)

Table A.4.5: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 4395 0.0075
cs-load-oh 8248 0.0141
cs-store-oh 62 0.0001
Total 12705 0.0217

(i) CVA-Only executions

CVA-only with no early termination

Total saving: 157 (loop2)

Speedup during loop executions = 15285/ (15285 -157) = 1.010 (perf. imp. = 0.0099)
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Overall speedup: 586643/(586643-157) = 1.000 (perf. imp. = 0.0000)

CVA-only with possible early termination
Total saving: 12550 + 157 = 12707

Speedup during loop executions = 15285/ (15285 - 12706) = 5.929 (perf. imp. = 0.8313)

Overall speedup: 586643/(586643-12706) = 1.022 (perf. imp. = 0.0215)

(iii) CVA/PVA executions
Total saving: 12550(CVA or PVA for loop2) + 157(CVA or PVA for loop2) = 12707

Speedup during loop executions = 15285/ (15285 - 12706) = 5.929 (perf. imp. = 0.8313)

Overall speedup: 586643/(586643-12706) = 1.022 (perf. imp. = 0.0215)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReg From Core

Base machinne:

IReq from core overall: 519037

IReq from core during loop executions: 12549 + 164 = 12713

PVA-only executions:

IReq from core reduced = 12713 - (2256 + 38) = 10419

Normalized IReq from core during PVA executions = (2256 + 28)/12713 = 0.1804
Normalized IReq from core overall = (519037 - 10419)/519037 = 0.9799

CVA-only executions:

IReq from core reduced = 12713 - (987 + 6) = 11720

Normalized IReq from core during CVA executions = (987 + 6)/12713 = 0.0781
Normalized IReq from core overall = (519037 - 11720)/519037 = 0.9774

CVA/PVA executions:

IReq from core reduced = 12713 - (987 + 6) = 11720

Normalized IReq from core during CVA/PVA executions = (987 + 6)/12713 = 0.0781
Normalized IReq from core overall = (519037 - 11720)/519037 = 0.9774

Table A.4.6: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.1804 0.0781 0.0781 0.9799 0.9774 0.9774

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory reduced = 12713 - (988 + 7) = 11718

Normalized Ifetch from memory during PVA executions: (988+7)/12713 = 0.0783
Normalized Ifetch from memory overall = (519037 - 11718)/519037 = 0.9774

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory




CVA/PVA executions:
IReq from core = Ifetch from memory
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Table A.4.7: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only- | CVA-Only | CVA/PVA | PVA-Only- | PVA-Only- | CVA-Only | CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
0.0781 0.0781 0.0781 0.0781 0.9774 0.9774 0.9774 0.977
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A.5 Benchmark “engine”

A.5.1Critical Loop 1

Table A.5.1: Vertorizing Critical Loop 1

uct Using CVA Construc

Address Opcode //; Assembly Code Using PVA Const
000002d2  a76d //; ldb r7,(rl3,6)| PVA @LO, ct=0,#1
000002d4 205d //; addi  r13,6 cmplt 10, 1
000002d6  0d27 //; cmplt

000002d8 e7fc //; bt 0x000002d2

mov r5, r2
CVA cmplt.ct=0 @LO, r5;

a. Essential instruction

Table A.5.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

000002d2 target 16874 - - -

000002d8 bt 16874 000002d2 | 11995 (71.1)| 4879 (28.9)

This loop reads a vector A sequentially and finds the first i that satisfies: A[i] < r2, for some scalar r2. Vector A is not

sorted.

Estimated execution cycles = 6 x 11995 + 5 x 4879 = 96365
Average number of iterations per invocation = 16874/4879 = 3.46

(i) PVA-Only executions
Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8
Total setup/exit costs = 8 x 4879 + 1(MO conflict) = 39033
cs-load saving: 3 x 16874 - 39033/2 = 31106

Ip-ctl saving: 2 x 11995 + 1 x 4879 - 39033/2 = 9353

Total saving = 31106 + 9353 = 40459

(i) CVA-Only executions

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit)
+1(ty) + O(ty - 1 + 1(extra “move” inst.) = 9 cycles
Execution time = 4879 x 9 + 16874 = 60785

CVA-only saivng = 96365 - 60785 = 35580

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM

N.A. (TM not used).

(v) IReq From Core
Base machinne:

IReq from core during loop executions: 5 x 11995 + 4 x 4879 = 79491

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 4879 + 1 x 16874 = 46148

CVA-only executions:

IReq from core during CVA executions: 6 (setup code/vector inst.) x 4879 = 29274




162

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 4879 + 1(essential inst.) = 29275

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 4879 = 29274
CVA/PVA executions: 6 (setup code/vector inst.) x 4879 = 29274

A.5.2 Critical Loop 2

Table A.5.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construc

0000030e a76c//; Idb r7,(r12,6) | PVA @LO, ct=0, #1| mov r5, r2

00000310 205c//; addi r12,6 cmplt 10, 12 CVA cmplt.ct=0 @LO, r5;
00000312 0d27 /l; cmplt  r7,r2
00000314 e7fc/l; bt 0x0000030e

a. Essential instruction

Table A.5.4: Profile For Critical Loop 2

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

0000030e target 17309 - - -

00000314 bt 17309 0000030e | 12430 (71.8)| 4879 (28.2)

This loop reads a vector A sequentially and finds the first i that satisfies: A[i] < r2, for some scalar r2. Vector A is not
sorted.

Estimated execution cycles = 6 x 12430 + 5 x 4879 = 98975
Average number of iterations per invocation = 17309/4879 = 3.56

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8
Total setup/exit costs = 8 x 4879 - 1(MO conflict) = 39033

cs-load saving: 3 x 17309 - 39033/2 = 32411

Ip-ctl saving: 2 x 12430 + 1 x 4879 - 39033/2 = 10223

Total saving = 42634

(i) CVA-Only executions

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit)
+1(ty) + O(ty - 1 + 1(extra “move” inst.) = 9 cycles

Execution time = 4879 x 9 + 17309 = 61220

CVA-only saivng = 98975 - 61220 = 37755

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).
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(v) IReq From Core

Base machinne:

IReq from core during loop executions: 5 x 12430 + 4 x 4879 = 81666

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 4879 + 1 x 17309 = 46583
CVA-only executions:

IReq from core during CVA executions: 6 (setup code/vector inst.) x 4879 = 29274

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 4879 + 1(essential inst.) = 29275

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 4879 = 29274
CVA/PVA executions: 6 (setup code/vector inst.) x 4879 = 29274

A.4.3 Summary

Total execution cycles: 2000000
Total execution cycles in loops: 96365 + 98975 = 195340 or 9.77% of total execution time.
Average number of iterations per invocation = (3.46 x 96365 + 3.56 x 98975)/195340 = 3.51

(i) PVA-Only executions

cs-load saving = 31106 + 32411 = 63517

Ip-ctl saving = 9353 + 10223 = 19576

Total cycle saving: 63517 + 19576 = 83093

Speedup during loop executions = 195340 / ( 195340 - 83093) = 1.740 (perf. imp. = 0.4253)
Overall speedup: 2000000/(2000000 - 83093) = 1.043 (perf. imp. = 0.0412)

Table A.5.5: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 19576 0.0098
cs-load-oh 63517 0.0318
cs-store-oh 0 0
Total 83093 0.0416

(i) CVA-Only executions

CVA-only with no early termination

Total saving: 0

Speedup during loop executions = 1 (perf. imp. = 0.0000)
Overall speedup: 1 (perf. imp. = 0.0000)

CVA-only with possible early termination

Total cycle saving:35580 (loop 1) + 37755 (loop 2) = 73335

Speedup during loop executions = 195340 / ( 195340 - 73335) = 1.601(perf. imp. = 0.3754)
Overall speedup: 2000000/(2000000 - 73335) = 1.038 (perf. imp. = 0.0366)



(i) CVA/PVA executions
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Total cycle saving:40459 (PVA for loop 1) + 42634 (PVA for loop 2) = 83093
Speedup during loop executions = 195340 / ( 195340 - 83093) = 1.740 (perf. imp. = 0.4253)
Overall speedup: 2000000/(2000000 - 83093) = 1.043 (perf. imp. = 0.0412)

(iv) CVA Executions Using Various Sizes of TM

N.A. (TM not used).

(v) IReq From Core

Base machinne:
IReq from core overall: 1058154
IReq from core during loop executions: 79491 + 81666 = 161157

PVA-only executions:
IReq from core reduced = 161157 - (46148 + 46583) = 68426
Normalized IReq from core during PVA executions = (46148 + 46583)/161157 = 0.5754
Normalized IReq from core overall = (1058154 - 68426)/1058154 = 0.9353

CVA-only executions:
IReq from core reduced = 161157 - (29274 + 29274) = 102609
Normalized IReq from core during CVA executions = (29274 + 29274)/161157 = 0.3633
Normalized IReq from core overall = (1058154 - 102609)/1058154 = 0.9030

CVA/PVA executions:
IReq from core reduced = 161157 - (29274 + 29274) = 102609
Normalized IReq from core during CVA/PVA executions = (29274 + 29274)/161157 = 0.3633
Normalized IReq from core overall = (1058154 - 102609)/1058154 = 0.9030

Table A.5.6: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.5754 0.3633 0.3633 0.9353 0.9030 0.9030

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory reduced = 161157 - (29275 + 29275) = 102607

Normalized Ifetch from memory during PVA executions: (29275+29275)/161157 = 0.3633
Normalized Ifetch from memory overall = (1058154 - 102607)/1058154 = 0.9030

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only and CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.5.7: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only- | CVA-Only | CVA/PVA | PVA-Only- | PVA-Only- | CVA-Only | CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
0.3633 0.3633 0.3633 0.3633 0.9030 0.9030 O.903(|) 0.903
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A.6 Benchmark “fir_int”
A.6.1 Critical Loop 1

Table A.6.1: Vertorizing Critical Loop 1

”

Address Opcode //; Assembly Code Using PVA Construct Using CVA Constru
000002f8  243e /I; subi ri4,4 PVA @LO,@L1, #3| CVA mul @LO, @L1, @P,
000002fa 8607 //; ldw r6,(r7) mov r5, r¢t add r3, @P, r3;
000002fc  851e//; ldw r5,(r14,4) 15

000002fe  01bl//; decne rl e T 18

00000300 0356 //; mul  r6,r5(2 cycle) add ™ T

00000302 1c64//; add r4,r6

00000304 2037 //; addi r7,4

00000306 e7f8//; bt 0x000002f8

a Essential instructions

Table A.6.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

000002f8 target 70482 - - -

00000306 bt 70482 000002f8 68382 (97) | 2100 (2.98)

This loop computes an inner product describet{by A[i]*BIi].
|

Estimated execution cycles in loops = 12 x 68382 + 11 x 2100 = 843684 or 69.74%
Average number of iterations per invocation = 70482/2100 = 33.6

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1)
+ 1(exit) = 9 cycles

Total setup/exit costs = 9 x 2100 + 1(MO conflict) = 18901

Cycles per iteration: 13

Cycle saving per iteration = 8 (5 for cs-laod; 3 for Ip-ctl)

cs-load saving: 5 x 70482 - 18901/2 = 342960

Ip-ctl saving: 3 x 68382 + 2 x 2100 - 18901/2 = 199896

Total saving = 342960 + 199896 = 542856

Speedup during loop executions = 843684 / (843684 - 542856) = 2.805 (perf. imp. = 0.6435)

Overall speedup = 1209720/(1209720-542856) = 1.814 (perf. imp. = 0.4487)

Table A.6.3: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 199896 0.1652
cs-load-oh 342960 0.2835
cs-store-oh 0 0.0000
Total 542856 0.4487

~



(i) CVA-Only executions
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Setupl/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(exit)
+15(2) + (1) - 1 =11 cycles
Execution time = 11 x 2100 + 70482 = 93582
CVA-only saving: 843684 - 93582 = 750102

Speedup during loop executions = 843684/ ( 843684 - 750102) = 9.015 (perf. imp. = 0.8891)
Overall speedup: 1209720/(1209720-750102) = 2.632 (perf. imp. = 0.6201)

(iii) CVA/PVA executions

Total saving = 750102 (use CVA)

Speedup during loop executions = 843684/ ( 843684 - 750102) = 9.015

Overall speedup: 1209720/(1209720-750102) = 2.632

(iv) CVA Executions Using Various Sizes of TM

N.A. (TM not used).

(v) IReq From Core

Base machinne:

IReq from core overall: 705966

IReq from core during loop executions: 9 x 68382 + 8 x 2100 = 632238

PVA-only executions:

IReq from core during PVA executions: 7 (setup code/vector inst.) x 2100 + 3 x 70482 = 226146
IReq from core reduced = 632238 - 226146 = 406092
Normalized IReq from core during PVA executions = 226146/632238 = 0.3577
Normalized IReq from core overall = (705966 - 406092)/705966 = 0.4248

CVA-only executions:

IReq from core during CVA executions: 7 (setup code/vector inst.) x 2100 = 14700
IReq from core reduced = 632238 - 14700 = 617538
Normalized IReq from core during CVA executions = 14700/632238 = 0.0233
Normalized IReq from core overall = (705966 - 617538)/705966 = 0.1253

CVA/PVA executions:
IReq from core during CVA/PVA executions: 7 (setup code/vector inst.) x 2100 = 14700

IReq from core reduced = 632238 - 14700 = 617538
Normalized IReq from core during CVA/PVA executions = 14700/632238 = 0.0233
Normalized IReq from core overall = (705966 - 617538)/705966 = 0.1253

Table A.6.4: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.3577 0.0233 0.0233 0.4248 0.1253 0.1253

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions = 7 (setup code/vector inst.) x 2100 + 2 (essential inst.)
+ 1 x 70482 (non-essential inst.) = 85184
Ifetch from memory reduced = 632238 - 85184 = 547054
Normalized Ifetch from memory during PVA executions: 85184/632238 = 0.1347
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Normalized Ifetch from memory overall = (705966 - 547054)/705966 = 0.2251

PVA-only with all inst. caching:
Ifetch from memory during PVA executions = 7 (setup code/vector inst.) x 2100 + 2 (essential inst.)

Ifetch from memory reduced = 632238 - 14706 = 617532
Normalized Ifetch from memory during PVA executions: 14706/632238 = 0.0233
Normalized Ifetch from memory overall = (705966 - 617532)/705966 = 0.1253

CVA-only executions:
IReq from core = Ifetch from memory

CVA/PVA executions:
IReq from core = Ifetch from memory

+ 1 x 4 (non-essential inst.) = 14706

Table A.6.5: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only - CVA-Only CVA/PVA PVA-Only - | PVA-Only - CVA-Only CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
0.1347 0.0233 0.0233 0.0233 0.2251 0.1253 0.1257 0.125
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A.7 Benchmark “g3fax”

A.7.1Critical Loop 1

Table A.7.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code

Using PVA Const

uct

Using CVA Construc

00000316 01b3//; decne r3 PVA @LO, #1
00000318 a602 //; Idb r6,(r2) add r4, 1@
0000031a 2002 //; addi r2,1

0000031c 1c64//; add r4,r6

0000031e e7fb//; bt 0x00000316

CVA mov @LO, @P,
add r3, @P, r3;

a. Essential instruction

Table A.7.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000316 target 87538 - - -

0000031e bt 87538 000002d2 | 87488 (99,9)| 50 (0.0571)

This loop performs a vector sum, describedZ)y Al
|

Estimated execution cycles =7 x 87488 + 6 x 50 = 612716
Average number of iterations per invocation = 87538/50 = 1750.8

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8
Total setup/exit costs = 8 x 50 + 1(MO conflict) = 401
cs-load saving: 3 x 87538 - 401/2 = 262414

Ip-ctl saving: 3 x 87488 + 2 x 50 - 401/2 = 262364
PVA-only saving: 262414 + 262364 = 524778

(i) CVA-Only executions

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit)

+1(t) + 1(-1 =9 cycles

Execution time = 9 x 50 +87538 = 87988
CVA-only saving: 612716 - 87988 = 524728

(iii) CVA/PVA executions

Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM

N.A. (TM not used).

(v) IReq From Core
Base machinne:

IReq from core during loop executions: 6 x 87488 + 5 x 50 = 525178

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 50 + 1 x 87538 = 87838

CVA-only executions:
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IReq from core during CVA executions: 6 (setup code/vector inst.) x 50 = 300

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 50 + 1(essential inst.) = 301

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 50 = 300
CVA/PVA executions: 6 (setup code/vector inst.) x 50 = 300

A.7.2 Critical Loop 2

Table A.7.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construc
000003f2  baOe //; stb rlo,(r14) | PVA @S, #1 mov r5, r10

000003f4 200e//; addi ri4,1 cs-store: CVA mov 15, @S

000003f8  effb //; bf 0x000003f2 ’

a. Essential instruction

Table A.7.4: Profile For Critical Loop 2

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

000003f2 target 86717 - - -

000003f8 bt 86717 000003f2 | 82885 (95.6)| 3832 (4.42)

This loop performs vector initialization, C[i] = r10, for some scalar r10.
Estimated execution cycles = 6 x 82885 + 5 x 3832 = 516470
Average number of iterations per invocation = 86717/3832 = 22.63

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 3832 + 1(MO conflicts) = 30657

cs-store saving: 2 x 86717 - 30657/2 = 158106

Ip-ctl saving: 3 x 82885 + 2 x 3832 - 30657/2 = 240991

Total saving = 158106 + 240991 = 399097

(i) CVA-Only executions
Since §=1 and §=0, CVA saving = PVA saving = 399097

(iii) CVA/PVA executions
Same as CVA-only or PVA-only executions

(iv) CVA Executions Using Various Sizes of
N.A. (TM not used).

(v) IReq From Core
Base machinne:
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IReq from core during loop executions: 5 x 82885 + 4 x 3832 = 429753

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 3832 + 1 x 86717 = 109709
CVA-only executions:

IReq from core during CVA executions: 6 (setup code/vector inst.) x 3832 = 22992

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 3832 + 1(essential inst.) = 22993

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.
CVA-only executions: 6 (setup code/vector inst.) x 3832 = 22992
CVA/PVA executions: 6 (setup code/vector inst.) x 3832 = 22992

A.4.3Summary

Total execution cycles: 2000000

Total execution cycles in loops: 612716 + 516470 = 1129186 or 56.65% of total execution time.

Average number of iterations per invocation = (1750.8 x 612716 + 22.63 x 516470)/1129186
=960.4

(i) PVA-Only executions

cs-load saving: 262414

cs-store saving: 158106

Ip-ctl saving: 262364 + 240991 = 503355

Total cycle saving: 262414 + 158106 + 503355 = 923875

Speedup during loop executions = 1129186/(1129186-923875) = 5.500 (perf. imp. = 0.8182)
Overall speedup: 2000000/(2000000-923875) = 1.859 (perf. imp. = 0.4621)

Table A.7.5: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 503355 0.2517
cs-load-oh 262414 0.1311
cs-store-oh 158106 0.0791
Total 923875 0.4619

(i) CVA-Only executions

CVA-only saving: 524728(loop1) + 399097 (loop2) = 923825

Speedup during loop executions = 1129186/(1129183-923825) = 5.499 (perf. imp. = 0.8182)
Overall speedup: 2000000/(2000000-923825) = 1.858 (perf. imp. = 0.4621)

(iii) CVA/PVA executions

CVA/PVA saving: 524778(PVA for loopl) + 399097(CVA or PVA for loop2) = 923857
Speedup during loop executions = 1129183/(1129183-923857) = 5.500 (perf. imp. = 0.8182)
Overall speedup: 2000000/(2000000-923857) = 1.859 (perf. imp. = 0.4621)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).




(v) IReq From Core

Base machinne:
IReq from core overall: 1681130

IReq from core during loop executions: 525178 + 429753 = 954931

PVA-only executions:
IReq from core reduced = 954931 - (87838 + 109709) = 757384
Normalized IReq from core during PVA executions = (87838 + 109709)/954931 = 0.2069
Normalized IReq from core overall = (1681130 - 757384)/1681130 = 0.5495

CVA-only executions:
IReq from core reduced = 954931 - (300 +22992) = 931639
Normalized IReq from core during CVA executions = (300 +22992)/954931 = 0.0244
Normalized IReq from core overall = (1681130 - 931639)/1681130 = 0.4458

CVA/PVA executions:
IReq from core reduced = 954931 - (300 +22992) = 931639
Normalized IReq from core during CVA/PVA executions = (300 +22992)/954931 = 0.0244
Normalized IReq from core overall = (1681130 - 931639)/1681130 = 0.4458
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Table A.7.6: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.2069 0.0244 0.0244 0.5495 0.4458 0.4458

(vi) IFetch From Memroy

PVA-only with essential inst. caching:
Ifetch from memory reduced = 954931 - (301 + 22993) = 931637
Normalized Ifetch from memory during PVA executions: (301 + 22993)/954931 = 0.0244
Normalized Ifetch from memory overall = (1681130 - 931637)/1681130 = 0.4458

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory

CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.7.7: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only - CVA-Only CVA/PVA PVA-Only - | PVA-Only - CVA-Only CVA/PVA
essential all inst. Executions Executions essential all inst. Executions Executions
inst. caching caching inst. caching caching
0.0244 0.0244 0.0244 0.0244 0.4458 0.4458 0.445§ 0.445




A.8 Benchmark “g721”

A.8.1Critical Loop 1
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Table A.8.1: Vertorizing Critical Loop 1

Using PVA Const

uct

Using CVA Construc

Address Opcode //; Assembly Code
0000088a 01b9//; decne 9
0000088c  c70c //; Idh r7,(r12)
0000088e  241c//; subi  rl2,2
00000890 d702//; sth r7,(r2)
00000892 2412 //; subi  r2,2
00000894 e7fall; bt 0x0000088

PVA @LO, @S, #1
cs-store:

mov  r0, r®

CVA mov @LO, @S;

a. Essential instruction

Table A.8.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

0000088a target 990 - - -

00000894 bt 990 00000304 792 (80) 198 (20)

This loop performs a vector move CJi] = Al[i].
Estimated execution cycles = 9 x 792 + 8 x 198 = 8712 or 2.87% execution time.
Average number of iterations per invocation = 990/198 = 5

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1
Setupl/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)
+ 1(exit) = 9 cycles

Total setup/exit costs = 9 x 198 + 1(MO conflict) = 1783

Cycle saving per iteration = 9 -1(extra “mov”)=8

cs-load saving: 3 x 990 -

1783/3 = 2376

cs-store saving: 2 x 990 - 1783/3 = 1386

Ip-ctl saving: 3 x 792 + 2 x 198 - 1783/3 = 2178

Total saving = 2376 + 1386 + 2178 = 5940

Speedup during loop executions = 8712/(8712 - 5940) = 3.143 (perf. imp. = 0.6818)

Overall speedup = 303885/(303885-5940) = 1.020 (perf. imp. = 0.0196)

Table A.8.3: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 2178 0.0072
cs-load-oh 2376 0.0078
cs-store-oh 1386 0.0046
Total 5940 0.0196

(i) CVA-Only executions

Setupl/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)
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+ 1(exit) + 1(p) + O(1) - 1 = 9 cycles
Execution time =9 x 198 + 990 = 2772
CVA saving = 8712 - 2772 = 5940
Speedup during loop executions = 8712/(8712 - 5940) = 3.143 (perf. imp. = 0.6818)
Overall speedup = 303885/(303885-5940) = 1.020 (perf. imp. = 0.0196)

(iii) CVA/PVA executions

Total saving = 5942 (CVA or PVA for loopl)

Speedup during loop executions = 8712/(8712 - 5942) = 3.143 (perf. imp. = 0.6818)
Overall speedup = 303885/(303885-5942) = 1.020 (perf. imp. = 0.0196)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core

Base machinne:

IReq from core overall: 256025

IReq from core during loop executions: 7 x 792 + 6 x 198 = 6732

PVA-only executions:

IReq from core during PVA executions = 7 (setup code and vector inst.) x 198 + 990 = 2376
IReq from core reduced = 6732 - 2376 = 4356

Normalized IReq from core during PVA executions = 2376/6732 = 0.3584

Normalized IReq from core overall = (256025 - 4356)/256025 = 0.9830

CVA-only executions:

IReq from core during CVA executions = 7 (setup code and vector inst.) x 198 = 1386
IReq from core reduced = 6732 - 1386 = 5346

Normalized IReq from core during CVA executions = 1386/6732 = 0.2059
Normalized IReq from core overall = (256025 - 5346)/256025 = 0.9791

CVA/PVA executions:

IReq from core during CVA/PVA executions = 7 (setup code and vector inst.) x 198 = 1386
IReq from core reduced = 6732 - 1386 = 5346

Normalized IReq from core during CVA/PVA executions = 1386/6732 = 0.2059
Normalized IReq from core overall = (256025 - 5346)/256025 = 0.9791

Table A.8.4: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.3584 0.2059 0.2059 0.9830 0.9791 0.9791

(vi) IFetch From Memroy

PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 7 (setup code and vector inst.)x198 + 1(essential inst) = 1387

Ifetch from memory reduced = 6732 - 1387 = 5345
Normalized Ifetch from memory during PVA executions: 1387/6732 = 0.2059
Normalized Ifetch from memory overall = (256025 - 5345)/256025 = 0.9791

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:




IReq from core = Ifetch from memory

CVA/PVA executions:
IReq from core = Ifetch from memory
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Table A.8.5: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only- | CVA-Only | CVA/PVA | PVA-Only- | PVA-Only- | CVA-Only | CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
0.2059 0.2059 0.2059 0.2059 0.9791 0.9791 0.9791 0.979
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A.9 Benchmark “jpeq”
A.9.1 Critical Loop 1

Table A.9.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code  Using PVA Construct Using CVA Construc
000003cc 9105 //; stw r1,(r5) PVA @S, #1 mov r5,rl

000003ce 2035 //; addi r5,4 cs-store: CVA movr5, @S;
000003d0 01b6 //; decne 6 mov  rl. P

000003d2 e7fb //; bt 0x000003ce '

a. Essential instruction

Table A.9.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

000003cc target 2625 - - -

000003d2 bt 2625 000003cc | 1752 (66.7) | 873 (33.3)

This loop performs vector initialization, C[i] = r1, for some scalar rl.
Estimated execution cycles =7 x 1752 + 6 x 873 = 17502
Average number of iterations per invocation = 2625/873 = 3.01

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 873 + 1(MO conflict) = 6985

cs-store saving: 2 x 2625 - 6985/2 = 1758

Ip-ctl saving: 3 x 1752 + 2 x 873 - 6985/2 = 3510

Total saving = 1758 + 3510 = 5268

(i) CVA-Only executions

Setupl/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)
+1(t,) + Ot - 1 + 1(extra “mov” inst.) = 9 cycles

Execution time = 9 x 873 + 2625 = 10482

CVA-only saving: 17502 - 10482 = 7020

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReqg From Core
Base machinne:

IReq from core during loop executions: 5 x 1752 + 4 x 873 = 12252

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 873 + 1 x 2625 = 7863
CVA-only executions:

IReq from core during CVA executions: 6 (setup code/vector inst.) x 873 = 5238
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(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 873 + 1(essential inst.) = 5239

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 873 = 5238
CVA/PVA executions: 6 (setup code/vector inst.) x 873 = 5238

A.9.2 Critical Loop 2

Table A.9.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construc
0000042c  960e //; stw ré,(rl4) | PVA @S, #1 mov  r5, r6

0000042e 203e//; addi rl4,4 cs-store: CVA movr5, @S;
00000430 01bd//; decne rl13 mov 6. ré

00000432 e7fb //; bt 0x0000042c '

a. Essential instruction

Table A.9.4: Profile For Critical Loop 2

Address Entry Type Execution  Branch Taken count | Not taken
Counts Target (%) count (%)

0000042c | target 32595 - - -

00000432 | bt 32595 0000042c | 31995 (98.2) | 600 (1.8)

This loop performs vector initialization, C[i] = r6, for some scalar r6.
Estimated execution cycles = 6 x 31995 + 5 x 600 = 194970
Average number of iterations per invocation = 32595/600 = 54.325

(i) PVA-Only executions

Stall cycles due to MO conflicts = 0

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 600 + 1(MO conflict) = 4801

cs-store saving: 2 x 32595 - 4801/2 = 62790

Ip-ctl saving: 3 x 31995 + 2 x 600 - 4801/2 = 94785

Total saving = 62790 + 94785 = 157575

(ii) CVA-Only executions

Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)+1Q(t) - 1 =8
Execution time = 8 x 600 + 32595 = 37395

CVA-only saving: 194970 - 37395 = 157575

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core
Base machinne:
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IReq from core during loop executions: 5 x 31995 + 4 x 600 = 162375

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 600 + 1 x 32595 = 36195
CVA-only executions:

IReq from core during CVA executions: 6 (setup code/vector inst.) x 600 = 3600

(vi) IFetch From Memroy

PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 600 + 1(essential inst.) = 3601

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 6 (setup code/vector inst.) x 600 = 3600
CVA/PVA executions: 6 (setup code/vector inst.) x 600 = 3600

A.9.3Critical Loop 3

Table A.9.5: Vertorizing Critical Loop 3

Address Opcode //; Assembly Code Using PVA Constryct Using CVA Construgt

00000442 a604 //; Idb r6,(r4) PVA @LO,@L1, #3 Not vectorizable.
00000444  12b7 //; mov r7’rll | mov r7.r1f
00000446  1d67 //; ixh r7,ré ixh 7,(51
00000448 860a//; ldw  r6,(r10) | X rer
0000044a Olbc//; decne rl12 sth  r1,(7f
0000044c  d607 //; sthr6,(r7) // not ¢
0000044e 2004 //; addi r4,1
00000450 203a//; addi rl0,4
00000452 e7f7/l; bt 0x0000044

[2)

N

a Essential instructions

Table A.9.6: Profile For Critical Loop 3

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000442 target 18600 - - -

00000452 bt 18600 00000442 | 18000 (96.8)| 600 (3.2)

Estimated execution cycles = 13 x 18000 + 12 x 600 = 241200
Average number of iterations per invocation = 18600/600 = 31

(i) PVA-Only executions

Stall cycles due to MO conflicts = 2

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1)
+ 1(exit) = 9 cycles

Total setup/exit costs = 9 x 600 + 2(MO conflicts) = 5402

Cycle saving per iteration = 13 - 4 = 9 (3 for Ip-ctl, 6 for cs-load)

cs-load saving: 6 x 18600 - 5402/2 = 108899

Ip-ctl saving: 3 x 18000 + 2 x 600 - 5402/2 = 52499

PVA-only saving = 108899 + 52499 = 161398

(i) CVA-Only executions
N.A.




(iii) CVA/PVA executions

Same as PVA-only executions
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(iv) CVA Executions Using Various Sizes of TM

N.A.

(v) IReq From Core
Base machinne:

IReq from core during loop executions: 10 x 18000 + 9 x 600 = 185400

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 600 + 3 x 18000 = 57600
CVA-only executions: N.A.

CVA/PVA executions:

IReq from core during CVA/PVA executions: 6 (setup code/vector inst.)x600 + 3x18000 = 57600

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 600 + 3(essential inst.) = 3603

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only executions.

A.9.4 Critical Loop 4

Table A.9.7: Vertorizing Critical Loop 4

Using CVA/PVA Const

Address Opcode //; Assembly Code Using PVA Construct
0000045e  240d //; subi ri3,1 PVA @LO,@L1, #6
00000460 a61d//; Idb ré,(r13,1)| mov 6, r0
00000462 3c16//; Isli 16,1 Isli r6,1
00000464 14b6//; rsub  r6,r11 rsub  r6,r1
00000466 1c76//; add re,r7 dd 6.1%
00000468 870c //; ldw  r7,(r12) | @ ro,r
0000046a Olba//; decne sth r1,(r6}
0000046¢ d706 //; sth r7,(r6) //not cs

0000047e 203c//; addi r12,4

00000470 e7f4/l; bt 0x0000045e

CVA

PVA

Isli @LO, 1, @P,
rsub @P, r11, @S;

@LO, #3

mov r6, r
add r6, r#
sthrl, (r6%

a Essential instructio

ns

Table A.9.8: Profile For Critical Loop 4

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

0000045e target 18600 - - -

00000470 bt 18600 0000045e | 18000 (96.8)] 600 (3.2)

Estimated execution cycles = 14 x 18000 + 13 x 600 = 259800
Average number of iterations per invocation = 18600/600 = 31

uct
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(i) PVA-Only executions

Stall cycles due to MO conflicts = 2

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(exit) =9
Total setup/exit costs = 9 x 600 + 2(MO conflicts) = 5402

Saving per iteration = 14 - 6 = 8 (3 for Ip-ctl, 5 for cs-load)

cs-load saving: 5 x 18600 - 5402/2 = 90299

Ip-ctl saving: 3 x 18000 + 2 x 600 - 5402/2 = 52499

PVA-only saving: 90299 + 52499 = 142798

(i) CVA-Only executions
N.A.

(iii) CVA/PVA executions
The temporary vector produced by the first CVA instruction can be stored in MO/M1. TM is not used.
CVA instruction (p=ts=1):
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exip) + 1ty - 1
=10 cycles
Eecution time = 10 x 600 + 18600 = 24600
PVA instruction:
Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8 cycles
Execution time = 8 x 600 + 4 x 18600 = 79200
CVA/PVA saving: 259800 - 24600 - 79200 = 156000

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core

Base machinne:

IReq from core during loop executions: 11 x 18000 + 10 x 600 = 204000

PVA-only executions:

IReq from core during PVA executions: 7 (setup code/vector inst.) x 600 + 5 x 18600 = 97200
CVA-only executions: N.A.

CVA/PVA executions:

CVA instruction:

IReq from core during CVA executions: 7 (setup code/vector inst.) x 600 = 4200

PVA instruction:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 600 + 3 x 18600 = 59400
Total IReq from core: 4200 + 59400 = 63600

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 600 + 3(essential inst.)
+ 2 x 18600 (non-essential inst.) = 41403

PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 600 + 3(essential inst.)
+ 2 x 4 (non-essential inst.) = 4211

CVA-only executions: N.A.
CVA/PVA executions:

CVA instruction:
Ifetch from memory during CVA executions: 7 (setup code/vector inst.) x 600 = 4200
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PVA instruction:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 600 + 3(essential inst.) = 3603
Total IReq from core: 4200 + 3603 = 7803

A.9.5Critical Loop 5

Table A.9.9: Vertorizing Critical Loop 5

Address Opcode //; Assembly Code Using PVA Construgt Using CVA Construgt

00000614 c702//; Idh r7,(r2) PVA @LO,@L1,@S, #2| CVA mul @LO,@L1,@S
00000616 a603//; Ido  r6,(r3) mov  r3. r¢
00000618 Olbl //, decne rl Cs_store:,

0000061a 0367 //; mul r7,r6 (2 cycle | 3 R
0000061c d702//; sth  r7,(r2)” [ MY TS

0000061e 2012 //; addi r2,2
00000620 2003 //; addi r3,1
00000622 e7i8//; bt 0x000006114

~—

a. Essential instruction

Table A.9.10: Profile For Critical Loop 5

Address Entry Type Execution| Branch Tar- | Takencount| Not taken
Counts get (%) count (%)

00000614 target 18048 - - -

00000622 bt 18048 00000614 | 17766 (98.4)] 282 (1.6)

This loop performs a vector multiplication A[i] = AJi] * B[i]. Vector length is always 64.
Estimated execution cycles = 13 x 17766 + 12 x 282 = 234342
Average number of iterations per invocation = 18048/282 = 64

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2)
+ 1(exit) = 10

Total setup/exit costs = 10 x 282 + 1(MO conflicts) = 2821

saving per iteration: 14 - 4 = 10 (3 for Ip-ctl, 4 for cs-load, 3 for cs-store)

cs-load saving: 4 x 18048 - 2821/3 = 71252

cs-store saving: 3 x 18048 - 2821/3 = 53204

Ip-ctl saving: 3 x 17766 + 2 x 282 - 2821/3 = 52922

PVA-only saving: 71252 + 53204 + 52922 = 177378

(i) CVA-Only executions

Vector duplications is used for this loop (see Section 6.10 on page 108).

Overhead for vector duplications = 282 x 7 = 1974 cycles.

Vector length = 64 halfwords or 128 bytes. Strip-mining of TM not necessary.

Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2) + 1(exit) +2(tp)
+0(ts) - 1 = 11 cycles

Execution time = 1974(vector duplications) + 11 x 282 + 18048 = 23124

CVA-only saving: 234342 - 23124 = 211218

(iii) CVA/PVA executions
Same as CVA-only executions
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(iv) CVA Executions Using Various Sizes of TM
No TM:

Execution time = 11 x 282 + 18048 x 2 = 39198
Total saving = 234342 - 39198 = 195144

TM is 64 bytes:

In each invocation, vector length, n = 64 (or 128 bytes). TM needs to be strip-mined.
Execution time per invocation: 24 + (64/32)x(43+12) + 64 = 198

Total execution time = 198 x 282 + 1974(vector duplications) = 57810 (> 39198). TM not used.

TM is 128 bytes or larger:
CVA-only saving: 234342 - 23124 = 211218

Table A.9.11: CVA Executions Using Various Sizes of TM

TM Sizes| Using TM? Total Exe. | CVA-only Cycle Speedups during
(bytes) Time Saving executions of loop %
0 N 39198 195144 5.978

64 N 39198 195144 5.978

128 Y 23124 211218 10.134

256 Y 23124 211218 10.134

512 Y 23124 211218 10.134
1024 Y 23124 211218 10.134

(v) IReq From Core

Base machinne:

IReq from core during loop executions: 9 x 17766 + 8 x 282 = 162150

PVA-only executions:

IReq from core during PVA executions: 8 (setup code/vector inst.) x 282 + 2 x 18048 = 38352
CVA-only executions:

IReq from core during CVA executions: 8 (setup code/vector inst.) x 282 = 2256

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 8 (setup code/vector inst.) x 282 + 2(essential inst.) = 2258

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 8 (setup code/vector inst.) x 282 = 2256
CVA/PVA executions: 8 (setup code/vector inst.) x 282 = 2256

A.9.6 Summar

Total cycles in loops = 17502 + 194970 + 241200 +259800 + 234342 = 947814 or 49.02%

Average number of iterations per invocation = (17502 x 3.01 + 194970 x 5.49 + 241200 x 31 +
259800 x 31 + 234342 x 64.00)/947814 = 33.39

(i) PVA-Only executions

Total cs-load saving: 108899(loop3) + 90299(loop4) + 71252(loop5) = 270450
Total cs-store saving: 1758(loopl) + 62790(loop2) + 53204(loop5) = 117752
Total Ip-ctl saving: 3510(loopl) + 94785(loop2) + 52499(loop3) + 52499(loop4)
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+ 52922(loop5) = 256215
Total saving = 270450 + 117752 + 256215 = 644417
Speedup duirng loop executions: 947814/(947814-644417) = 3.124 (perf. imp. = 0.6799)
Overall speedup: 2000000/(2000000-644417) = 1.475 (perf. imp. = 0.3220)

Table A.9.12: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 256215 0.1281
cs-load-oh 270450 0.1352
cs-store-oh 117752 0.0589
Total 644417 0.3222

(i) CVA-Only executions

Total cycles in loops = 17502(loopl) + 227565(loop2) + 234342(loop5) = 479409

Total CVA-only saving: 7020(loop1) + 189570(loop2) + 211218(loop5) = 407808
Speedup duirng loop executions: 479409/(479409- 407808) = 6.696 (perf. imp. = 0.8506)
Overall speedup: 2000000/(2000000-407808) = 1.256 (perf. imp. = 0.2039)

(iii) CVA/PVA executions
Total saving: 7020(CVA for loop1) + 189570(CVA for loop2) + 161400(PVA for loop3)

+ 156000(combination of CVA and PVA) + 211218(CVA for loop5) = 725208
Speedup during loop executions = 947814/(947814-725208) = 4.258 (perf. imp. = 0.7651)
Overall speedup = 2000000/(2000000-725208) = 1.569 (perf. imp. = 0.3626)

(iv) CVA Executions Using Various Sizes of TM

No TM or TM is 64 bytes (not used).

CVA-only executions:

Total cycles in loops = 17502(loopl) + 227565(loop2) + 234342(loop5) = 479409

Total CVA-only saving: 7020(loop1) + 189570(loop2) + 195144 (loop5) = 391734
Speedup duirng loop executions: 479409/(479409-391734) = 5.468 (perf. imp. = 0.8171)
Overall speedup: 2000000/(2000000-391734) = 1.244 (perf. imp. = 0.1959)

CVA/PVA executions:
Total saving: 7020(CVA for loopl) + 189570(CVA for loop2) + 161400(PVA for loop3)

+ 156000(combination of CVA and PVA) + 195144(CVA for loop5) = 709134
Speedup during loop executions = 947814/(947814-709134) = 3.971(perf. imp. = 0.7482)
Overall speedup = 2000000/(2000000-709134) = 1.5493 (perf. imp. = 0.3546)

Table A.9.13: CVA Executions Using Various Sizes of TM

CVA-Only Executions CVA/PVA Executions
TM Sizes Total Cycle | Speedup Overall Total Cycle | Speedup Overall
(bytes) Saving DuringLoop| Speedup Saving DuringLoop| Speedup
Executions Executions
0 391734 5.468 1.244 709134 3.971 1.549
64 391734 5.468 1.244 709134 3.971 1.549
128 407808 6.696 1.256 725208 4.258 1.569
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Table A.9.13: CVA Executions Using Various Sizes of TM

CVA-Only Executions CVA/PVA Executions
TMSizes "rotaiCycle | Speedup | Overall | Total Cycle| Speedup | Overall
(bytes) Saving |DuringLoop| Speedup Saving |DuringLoop| Speedup
Executions Executions
256 407808 6.696 1.256 725208 4.258 1.569
512 407808 6.696 1.256 725208 4.258 1.569
1024 407808 6.696 1.256 725208 4.258 1.569

(v) IReq From Core
Base machinne:
IReq from core overall: 1528812
IReq from core during loop executions (all 5 loops):
12252 + 162375 + 185400 + 204000 + 162150=726177

PVA-only executions:

IReq from core reduced = 726177 - (7863+36195+57600+97200+38352) = 488967

Normalized IReq from core during PVA executions:
(7863+36195+57600+97200+38352)/726177=0.3267

Normalized IReq from core overall = (1528812 - 488967)/1528812 = 0.6802

CVA-only executions:

IReq from core during CVA executions: 12252(loop1)+162375(loop2)+162150(loop5)=336777
IReq from core reduced = 336777 - (5238(loop1) + 3600(loop2) + 2256(loop5) )= 325683
Normalized IReq from core during CVA executions = (5238 + 3600 + 2256)/336777 = 0.0329
Normalized IReq from core overall = (1528812 - 325683)/1528812 = 0.7870

CVA/PVA executions:

IReq from core during CVA/PVA executions:
5238(loop2)+3600(loop2)+57600(loop3)+63600(loop4)+2256(loop5)=132294

IReq from core reduced = 726177 - 132294 = 593883

Normalized IReq from core during CVA/PVA executions = 132294/726177 = 0.1822

Normalized IReq from core overall = (1528812 - 593883)/1528812 = 0.6115

Table A.9.14: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.3267 0.0329 0.1822 0.6802 0.7870 0.6115

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during loop executions: 5239(loop1l) + 3601(loop2) + 3603(loop3) + 41403(loop4)
+ 2258(loop5) = 56104

Ifetch from memory reduced = 726177 - 56104 = 670073

Normalized Ifetch from memory during PVA executions: 56104/726177 = 0.0773

Normalized Ifetch from memory overall = (1528812 - 670073)/1528812 = 0.5617

PVA-only with all inst. caching:
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Ifetch from memory during loop executions:; 5239(loop1) + 3601(loop2) + 3603(loop3) + 4211(loop4)
+ 2258(loop5) = 18901
Ifetch from memory reduced = 726177 - 18901 = 707276

Normalized Ifetch from memory during PVA executions: 18901/726177 = 0.0260
Normalized Ifetch from memory overall = (1528812 - 707276)/1528812 = 0.5374

CVA-only executions:

Ifetch from memory during loop executions:; 5238(loop1l) + 3600(loop2) + 2256(loop5) = 11094

Ifetch from memory reduced = 336777 - 11094 = 325683

Normalized Ifetch from memory during PVA executions: 11094/336777 = 0.0329
Normalized Ifetch from memory overall = (1528812 - 325683)/1528812 = 0.7870

CVA/PVA executions:
Ifetch from memory during loop executions:; 5239(loop1) + 3600(loop2) + 3603(loop3) + 7803(loop4)
+ 2256(loop5) = 22500
Ifetch from memory reduced = 726177 - 22500 = 703677

Normalized Ifetch from memory during PVA executions: 22500/726177 = 0.0310
Normalized Ifetch from memory overall = (1528812 - 703677)/1528812 = 0.5397

Table A.9.15: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only- | CVA-Only | CVA/PVA | PVA-Only- | PVA-Only- | CVA-Only | CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
0.0773 0.0260 0.0329 0.0310 0.5617 0.5374 O.787(|) 0.539
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A.10 Benchmark “map3d”
A.10.1Critical Loop 1

Table A.10.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construc

00000458 ¢702//; Idh r7,(r2) PVA @LO, ct=0, #1| mov r4, r3

0000045a 2012 //; addi r2,2 cmplt 3, ré CVA cmplt.ct=0 r4, @LO;
0000045¢c  0d73//; cmplt  r3,r7
0000045e €002 //; bt 0x00000464
00000460 Olbe //; decne r14
00000462 eT7fall; bt 0x00000458

a. Essential instruction

Table B.10.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)
00000458 target 96604 - - -
0000045e bt 96604 00000464 | 7155 (7.41) | 89449 (92.6)
00000462 bt 89449 00000458 | 89449 (100) 0 (0)

This loop performs reads in a vector A sequentially and find the first i that satisfies r3 < A[i]. Vector A is not sorted.
Estimated execution cycles = 6 x 7155 + 8 x 89449 = 758522 or 37.93% of total execution time.
Average number of iterations per invocation = 96604/7155 = 13.5

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8
Total setup/exit costs = 8 x 7155 + 1(MO conflict) = 57241

cs-load saving: 3 x 96604 - 57241/2 = 261192

Ip-ctl saving: 4 x 89449 + 2 x 7155 - 57241/2 = 343486

Total saving = 261192 +343486 = 604678

Speedup during loop executions = 758522/(758522- 604678) = 4.930 (perf. imp. = 0.7972)
Overall speedup = 2000000/(2000000-604678) = 1.433 (perf. imp. = 0.3022)

Table A.10.3: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 343486 0.1717
cs-load-oh 261192 0.1306
cs-store-oh 0 0
Total 604678 0.3023

(i) CVA-Only executions

CVA-only with no early termination

Cycle saving: 0

Speedup during loop executions = 1 (perf. imp. = 0.0000)
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Overall speedup = 1 (perf. imp. = 0.0000)

CVA-only with possible early termination

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(RO) + 1(exj) + 1(t
+ 0(t) - 1 + 1(extra “mov” inst.) = 9 cycles

Execution time = 9 x 7155 + 96604 = 160999

CVA-only saving: 758522 - 160999 = 597523

Speedup during loop executions = 758522/(758522- 597523) = 4.711 (perf. imp. = 0.7877)

Overall speedup = 2000000/(2000000-597523) = 1.426 (perf. imp. = 0.2987)

(iii) CVA/PVA executions

CVA/PVA saving: 604678 (PVA for loop1)

Speedup during loop executions = 758522/(758522- 604678) = 4.930 (perf. imp. = 0.7972)
Overall speedup = 2000000/(2000000-604678) = 1.433 (perf. imp. = 0.3022)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core

Base machinne:

IReq from core overall: 1463233

IReq from core during loop executions: 7 x 89449 + 5 x 7155 = 661918

PVA-only executions:

IReq from core during PVA executions: 6 (setup code and vector inst.)x7155 + 1x96604 = 139534
IReq from core reduced = 661918 - 139534 = 522384

Normalized IReq from core during PVA executions = 139534/661918 = 0.2108

Normalized IReq from core overall = (1463233 - 522384)/1463233 = 0.6430

CVA-only executions:

IReq from core during CVA executions: 6 (setup code and vector inst.) x 7155 = 42930
IReq from core reduced = 661918 - 42930 = 618988

Normalized IReq from core during CVA executions = 42930/661918 = 0.0649
Normalized IReq from core overall = (1463233 - 618988)/1463233 = 0.5770

CVA/PVA executions:

IReq from core during CVA/PVA executions: 6 (setup code and vector inst.) x 7155 = 42930
IReq from core reduced = 661918 - 42930 = 618988

Normalized IReq from core during CVA/PVA executions = 42930/661918 = 0.0649
Normalized IReq from core overall = (1463233 - 618988)/1463233 = 0.5770

Table A.10.4: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.2108 0.0649 0.0649 0.6430 0.5770 0.5770

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 6(setup code and vector inst.)x7155 + 1(essential inst)

=42931

Ifetch from memory reduced = 661918 - 42931 = 618987




Normalized Ifetch from memory during PVA executions: 42931/661918 = 0.0649
Normalized Ifetch from memory overall = (1463233 - 618987)/1463233 = 0.5770
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PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory

CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.10.5: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only - CVA-Only CVA/PVA PVA-Only - | PVA-Only - CVA-Only CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
0.0649 0.0649 0.0649 0.0649 0.5770 0.5770 O.577(|) 0.577
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A.11 Benchmark “pocsag”

A.11.1Critical Loop 1

Table A.11.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Executior) Number Inst. Using PVA Con- Using CVA
Cycles Fetches struct Construct
000002de  0e21 //; tst r1,r2 4557 4557 mov r4,rl Not
000002e0 e80f //; bf 0x000002f0 | 2x2163 + 2394| 2x2163+2394 | PVA@LO,@L1,#5 Vectorizable.
000002e2 2419 //; subi r9, 1 2394 2394 tst  rarR
000002e4 a606 //; Idb r6,(r9) 2x239%4 2394 bf C‘ONTQ
000002e6 1767 //; xor rl2,ré 2394 2394 1210
000002e8 241a//;subi rl0, 1 2394 2394 xor r13'r1
000002ea a606 //;Idb  r6,(r10)| 2 x 2394 2394 )((Z%NT' rLa.r
000002ec 1767 /I; xor r13,ré 2394 2394 o 2.1
000002ee 3e12//; Isri 12,1 2394 2397 s e,
000002f0 0183 //; declt r3 4557 4557
000002fa  efec //; bf 0x000002de | 2x4410 + 147 | 2x4410+147
Total 46347 41559 - -

aEssential instructions

Table A.11.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)
000002de target 4557 - - -
000002e0 bf 4557 00000300 | 2163 (47.5) | 2394 (52.5)
000002f0 target 4557 - - -
000002fa bf 4557 000002de | 4410 (96.8) | 147 (3.23)

Estimated execution cycles = 46347 (see Table A.11.1)
Average number of iterations per invocation = 4557/147 = 31

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setupl/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) +1(R1)
+ 1(exit) + 1(extra “mov” inst.) = 10 cycles

Total setup/exit costs = 10 x 147 + 1(MO conflic) = 1471

cs-load saving: 6 x 2394 - 1471/2 = 13629

Ip-ctl saving: 3 x 4410 + 2 x 147 - 1471/2 = 12789

(i) CVA-Only executions
N.A.

(iii) CVA/PVA executions
Same as PVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A.

(v) IReq From Core
Base machinne:
IReq from core during loop executions:41559 (see Table A.11.1)
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PVA-only executions:

IReq from core during PVA executions: 7 (setup code/vector inst.) x 147 + 5 x 4557 = 23814
CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only executions.

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 147 + 2(essential inst.)
+ 3 x 4557 (non-essential inst.) = 14702

PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 7 (setup code/vector inst.) x 147 + 2(essential inst.)
+ 3 x 4 (non-essential inst.) = 1043

CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only with all inst. caching

A.2.2 Critical Loop 2

Table A.11.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code  Using PVA Construct Using CVA Construc
000003cc 1226 //; mov ré,r2 PVA #6 Not Vectorizable.
000003ce 0146 /; zextb r6 mov  r6,r2
000003d0  1c16//; add ré,rl zextb r6
000003d2 a606 //;1db r6,(r6) //not gsadd ré,rl
000003d4 01b4 /l; decne r4 Idb r6,(ré)
000003d6  1c63//; add r3,r6 add r3,ré
000003d8 3e82//; Isri 12,8 Isri r2,8
000003da e7f8//; bt 0x000003cc
Table A.11.4: Profile For Critical Loop 2
Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)
00000356 target 4044 - - -
0000036¢ bt 4044 00000356 3033 (75) 1011 (25)

Estimated execution cycles = 10 x 3033 + 11 x 1011 = 41451
Average number of iterations per invocation = 4044 x 1011 =4

(i) PVA-Only executions

Stall cycles due to MO conflicts = 0
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(exit) = 7 cycles
Total setup/exit costs = 7 x 1011 + O(MO conflict) = 7077
Ip-ctl saving: 3 x 3033 + 2 x 1011 - 7077 = 4044

(i) CVA-Only executions
N. A.

(iii) CVA/PVA executions

Same as PVA-only executions

(iv) CVA Executions Using Various Sizes of TM
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N.A. (TM not used).

(v) IReq From Core

Base machinne:

IReq from core during loop executions: 9 x 3033 + 8 x 1011 = 35385

PVA-only executions:

IReq from core during PVA executions: 5 (setup code/vector inst.) x 1011 + 6 x 4044 = 29319
CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only executions.

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 5 (setup code/vector inst.) x 1011
+ 6 x 4044 (non-essential inst.) = 29319

PVA-only with all inst. caching:
Ifetch from memory during PVA executions: 5 (setup code/vector inst.) x 1011
+ 6 x 4 (non-essential inst.) = 5079

CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only with all inst. caching.

A.2.3Summary

Total number of cycles in loops: 46347 + 41451 = 87798 or 61.21%
Average number of iterations per invocation = (46347 x 31 + 41451 x 4)/87798 = 18.3

(i) PVA-Only executions

cs-load saving: 13629

Ip-ctl Saving: 12789 + 4044 = 16833

Total saving: 13629 + 16833 = 30462

Speedup during loop executions = 87798/ (87798 - 30462) = 1.531 (perf. imp. = 0.3468)
Overall speedup: 143437/(143437 - 30462) = 1.270 (perf. imp. = 0.2126)

Table A.11.5: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 16833 0.1174
cs-load-oh 13629 0.0950
cs-store-oh 0 0
Total 30462 0.2124

(i) CVA-Only executions

Total cycle saving: 0

Speedup during loop executions = 1 (perf. imp. = 0.000)
Overall speedup =1 (perf. imp. = 0.000)

(iii) CVA/PVA executions
Total cycle saving (PVA for loopl and loop2) = 30462
Speedup during loop executions = 87798/ (87798 - 30462) = 1.531 (perf. imp. = 0.3468)
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Overall speedup: 143437/(143437 - 30462) = 1.270 (perf. imp. = 0.2126)

(iv) CVA Executions Using Various Sizes of TM

N.A. (TM not used).

(v) IReq From Core

Base machinne:

IReq from core overall: 147202
IReq from core during loop executions: 41559+ 35385 = 76944

PVA-only executions:

IReq from core reduced = 76944 - (23814 + 29319) = 23811

Normalized IReq from core during PVA executions = (23814 + 29319)/76944 = 0.6905

Normalized IReq from core overall = (147202 - 23811)/147202 = 0.8382

CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only executions.

Table A.11.6: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.6905 1.0000 0.6905 0.8382 1.0000 0.8382

(vi) IFetch From Memroy

PVA-only with essential inst. caching:
Ifetch from memory reduced = 76944 - (14702 + 29319) = 32923
Normalized Ifetch from memory during PVA executions: (14702 + 29319)/76944 = 0.5721
Normalized Ifetch from memory overall = (147202 - 32923)/147202 = 0.7763

PVA-only with all inst. caching:
Ifetch from memory reduced = 76944 - (1043 + 1011) = 74890
Normalized Ifetch from memory during PVA executions: (1043 + 1011)/76944 = 0.0267
Normalized Ifetch from memory overall = (147202 - 74890)/147202 = 0.4912

CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only with all inst. caching.

Table A.11.7: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only - CVA-Only CVA/PVA PVA-Only - | PVA-Only- | CVA-Only CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
0.5721 0.0267 1.0000 0.0267 0.7763 0.4912 1.0000 0.491




A.12 Benchmark “servo”
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Cycles in Loops = 0; Total cycle saving: 0; % cycle saving: 0

Speedup during loop executions: N.A.
Overall speedup = 1.

Table A.11.8: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 0 0
cs-load-oh 0 0
cs-store-oh 0 0
Total 0 0

Table A.11.9: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Table A.11.10: Normalized IFetch From Memory
During Loop Executions Overall
PVA-Only - | PVA-Only- | CVA-Only | CVA/PVA | PVA-Only- | PVA-Only- | CVA-Only | CVA/PVA
essential all inst. Executions Executions essential all inst. Executions Executions
inst. caching caching inst. caching caching
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000(|) 1.000
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A.13 Benchmark “summin”
A.13.1Critical Loop 1

Table A.13.1: Vertorizing Critical Loop 1

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construg
000002c2 1217 //; mov PVA @S, #4 movi r4,1
000002c4 0317 //; mul r7,r1 (2 cycles) mov  r7,r1 ;T[] =1
000002c6 2001 //; addi r1,1 mul  r7,r1 CVA mov r4, @P,
000002c8 3al7/l; asri 17,1 addi  r1.d add @P, r3, {r3,@S};
0000020a 0d31 //, Cmplt Cs_store R I
000002cc 9702 //; stw  r7,(r2) ; 73 : T2[i] = T1[i]2
000002ce 2032 //; addi  r2,4 asn 1/, CVA mul @LO, @LO, @S:
000002d0  e7f8//; bt oxoo00002c2|{ | ’ ’ ’
; Cli] = asri(T2[i],1)
CVA asri @LO, 1, @S;

a. Essential instruction

Table A.13.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Takencount| Nottaken
Counts Target (%) count (%)

000002c2 target 1550 - - -

000002d0 bf 1550 000002c2 1519 (98) 31(2)

This loop performs a vector operation described by CJi] = 53!)(ifor i=1,2,3...50.
Estimated execution cycles = 11 x 1519 + 10 x 31 = 17019

Average number of iterations per invocation = 1550/31 = 50

TM needs not be used (although it could be used for power reason).

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setupl/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8 cycles
Total setup/exit costs = 8x 31 + 1(MO conflict) = 249

Cycles per iteration: 5

Cycles saving per iteration = 11 - 5 = 6 (3 for cs-store, 3 for Ip-ctl)

cs-store saving: 3 x 1550 - 249/2 = 4526

Ip-ctl saving: 3 x 1519 + 2 x 31 - 249/2 = 4495

PVA saving: 4526 + 4495 = 9021

(i) CVA-Only executions

TM needs not be used in order to retain the same performance level. The two temporary vectors, T1 and T2, can be
stored in MO and M1, respectively (or in M1 and MO, respectively).

First CVA instructions:

Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)+11() - 1
+ 1(extra “mov” inst.) = 10

Second CVA instructions:

Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(RO) + 1(R1) + 1(R2) + 1(ex}) + 2(t
+0(t)-1=11

Third CVA instructions:

Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exif) + D(ty) - 1
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=9
Total setup/exit costs = 10 + 11 + 9 = 30 cycles
Execution time = 30 x 31 + 1550 x 3 = 5580
CVA-only saving = 17019 - 5580 = 11439

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReg From Core

Base machinne:

IReq from core during loop executions: 9 x 1519 + 8 x 31 = 13919

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 31 + 5 x 1550 = 7936
CVA-only executions:

IReq from core during CVA executions: (6+8+7) (setup code/vector inst.) x 31 = 651
CVA/PVA executions: same as CVA-only executions.

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 31 + 2(essential inst.)
+ 2 x 1550 (non-essential inst.) = 3288

PVA-only with all inst. caching:

Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 31 + 2(essential inst.)
+ 2 x 4 (non-essential inst.) = 196

CVA-only executions:

Ifetch from memory during CVA executions: (6+8+7) (setup code/vector inst.) x 31 = 651

CVA/PVA executions: same as CVA-only executions

A.13.2Critical Loop 2

Table A.13.3: Vertorizing Critical Loop 2

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construc

000002e0 1251 //; mov r1,r5 PVA #7 Not vectorizable
000002e2 1c71//; add rl,r7 mov r1,r5
000002e4 1276 //; mov ré,r7 add rl,r7
000002e6 2007 //; addi r7,1 mov r6,r7
000002e8 3c26 //; Isli 6,2 addi r7,1
000002ea 0d47/l; cmplt  r7,r4 Isli ré,2

000002ec 0561 //; sub rl,ré sub r1,ré6
000002ee e7f8//; bt 0x000002€0

Table A.13.4: Profile For Critical Loop 2

Address Entry Type Execution| Branch Tar-| Takencount| Not taken
Counts get (%) count (%)

000002e0 target 37200 - - -

000002ee bf 37200 000002e0 | 36456 (98) 744 (2)

Estimated execution cycles = 9 x 36456 + 8 x 744 = 334056
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Average number of iterations per invocation = 37200/744 = 50

(i) PVA-Only executions

Stall cycles due to MO conflicts = 0

Setup/exit costs per invocation = 1(CIR) + 2(instr. decode) + 1(exit) = 4 cycles
Ip-ctl saving: 3 x 36456 + 2 x 744 - 4 x 744 = 107880

Total saving = 107880

(i) CVA-Only executions
N.A.

(iii) CVA/PVA executions
Same as PVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core

Base machinne:

IReq from core during loop executions: 9 x 36456 + 8 x 744 = 334056

PVA-only executions:

IReq from core during PVA executions: 3 (setup code/vector inst.) x 744 + 6 x 37200 = 225432
CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only executions.

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 3 (setup code/vector inst.) x 744 +
+ 6 x 37200 (non-essential inst.) = 225432

PVA-only with all inst. caching:

Ifetch from memory during PVA executions: 3 (setup code/vector inst.) x 744
+ 6 X 4 (non-essential inst.) = 2256

CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only with all inst. caching.

A.13.3Critical Loop 3

Table A.13.5: Vertorizing Critical Loop 3

00000306 0d34 //; cmplt r4,r3
00000308 0243 //; movt  r3,r4 movt 13,18
0000030a 01bl//; decne r1
0000030c e7fa//; bt  0x0000030R

Address Opcode //; Assembly Code Using PVA Constfuct Using CVA Constru
00000302 8402 //; |dw r4,(r2) PVA @LO, #2 Not vectorizable

a. Essential instruction

~+
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Table A.13.6: Profile For Critical Loop 3

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000302 target 70000 - - -

0000030c bf 70000 00000302 | 60000 (85.7)| 10000 (14.3)

This loop finds the minimum element of a vector A, min(A[i]).
Estimated execution cycles: 8 x 60000 + 7 x 10000 = 550000
Average number of iterations per invocation = 70000/10000 = 7

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(exit) = 8 cycles
Total setup/exit costs = 8x 10000 + 1(MO conflict) = 80001

cs-load saving: 3 x 70000 - 80001/2 = 170000

Ip-ctl saving: 3 x 60000 + 2 x 10000 - 80001/2 = 160000

Total saving: 170000 + 160000 = 330000

(i) CVA-Only executions
N.A.

(iv) CVA Executions Using Various Sizes of TM
N.A.

(v) IReq From Core

Base machinne:

IReq from core during loop executions: 7 x 60000 + 6 x 10000 = 430000

PVA-only executions:

IReq from core during PVA executions: 5 (setup code/vector inst.) x 10000 + 2 x 70000 = 190000
CVA-only executions: N.A.

CVA/PVA executions: same as PVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 5 (setup code/vector inst.) x 10000 + 2(essential inst.) = 50002

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: N.A.
CVA/PVA executions: same as PVA-only with all inst. caching.

A.13.4Critical Loop 4

Table A.13.7: Vertorizing Critical Loop 4

Address Opcode //; Assembly Code Using PVA Construct Using CVA Construc
0000033c  910e //; stw rl,(rl4) | PVA @S, #1 CVA mov rl,@S
0000033e 203e//; addi ri14,4 cs-store:

00000340 01b2//; decne r2 mov  rirf

00000342 e7fc/l; bt 0x0000033c '

a. Essential instruction
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Table A.13.8: Profile For Critical Loop 4

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

0000033c target 37200 - - -

00000342 bf 37200 0000033c | 37169 (99.9)| 31 (0.1)

This loop performs vector initialization, C[i] = r1, for some scalar rl.
Estimated execution cycles: 6 x 37169 + 5 x 31 = 223169
Average number of iterations per invocation = 37200/31 = 1200

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8 cycles
Total setup/exit costs =8 x 31 + 1 =249

cs store saving: 2 x 37200 - 249/2 = 74276

Ip-ctl saving: 3 x 37169 + 2 x 31 - 249/2 = 111445

PVA-only saving = 74276 + 111445 = 185721

(ii) CVA-Only executions
Since =1, t=0, CVA saving = PVA saving = 185721

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReq From Core

Base machinne:

IReq from core during loop executions: 5 x 37169 + 4 x 31 = 185969

PVA-only executions:

IReq from core during PVA executions: 6 (setup code/vector inst.) x 31 + 1 x 37200 = 37386
CVA-only executions:

IReq from core during CVA executions: 6 (setup code/vector inst.) x 31 = 186

CVA/PVA executions: same as CVA-only executions.

(vi) IFetch From Memroy
PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6 (setup code/vector inst.) x 31 + 1(essential inst.) = 187

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.
CVA-only executions: 6 x 31 = 186
CVA/PVA executions: 6 x 31 = 186



A.13.5Critical Loop 5
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Table A.13.9: Vertorizing Critical Loop 5

Using CVA Constru

Ct

Address Opcode //; Assembly Code Using PVA Construct
00000358 860d //; ldw r6,(r13) PVA @LO,@L1,@S, #4
0000035a  870e //; ldw r7,(rl4) mov 6. r®

0000035¢c 0336 //; mul r6,r3 (2 cycle | 6, &

0000035e  1c67 //; add 17,6 M store

00000360 01b5 //; decne cs-store.

00000362 970e//; stw  r7,(r14) add 6, rf

00000364 203e//; addi rl4,4

00000366 203d //; addi rl3,4

00000368 e7f7 /l; bt 0x00000358

mov

r5, r3
CVA mul @LO, r5, @P,
add @P, @L1, @S;

a. Essential instruction

Table A.13.10: Profile For Critical Loop 5

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000358 target 36261 - - -

00000368 bt 36261 00000358 | 34751 (95.8)| 1510 (4.16)

This loop performs a vector operation described by, BJi] = r3 *A[i]+BJi], for some scalar r3.
Estimated execution cycles:14 x 34751 + 13 x 1510 = 506144
Number of iterations per invocation (fixed) = 24

(i) PVA-Only executions

Stall cycles due to MO conflicts = 2
Setupl/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R1) + 1(R2)

+ 1(exit) = 10

Total setup/exit costs = 10 x 1510 + 2 = 15102
Saving per iteration = 15 - 5 = 10 (3 for Ip-ctl; 4 for cs-load; 3 for cs-store)
cs-load saving: 4 x 36261 - 15102/3 = 140010
cs-store saving: 3 x 36261 - 15102/3 = 103749
Ip-ctl saving: 3 x 34751 + 2 x 1510 - 15102/3 = 102239
PVA-only savng: 140010 + 103749+ 102239 = 345998

(i) CVA-Only executions

This loop is CVA vectorizable using vector duplication on vector B (see Section 6.10 on page 108).
Loop 5 is an inner loop of a doubly nested loop. The profile of this doubly nested loop is shown below.

Table A.13.11: More Profile For Critical Loop 5

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)
00000346 target 1510 - - -
00000358 target 36261 - - -
00000368 bt 36261 00000358 | 34751 (95.8)| 1510 (4.16)
0000036e bt 1510 00000346 1480 (98) 30 (1.99)

The global pointer to vector B can be updated once for each outer loop invocation.
Thus overhead for vector duplications = 30 invocations x 7 cycles/invocation = 210 cycles.
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Setup/exit costs = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2) + 1(exif) + A(ty
- 1 + 1(extra “mov” inst.) = 12 cycles

Total setup/exit costs =12

Vector length per invocation = 24. No strip-mining of TM necessary.

Execution time: 210(overheads for vector duplication) + 12 x 1510 + 36261 = 54591

CVA-only saving: 506144 - 54591 = 451553

(iii) CVA/PVA executions
Same as CVA-only executions

(iv) CVA Executions Using Various Sizes of TM
No TM:
Total setup/exit costs =12

2 reads and 1 write are needed to produce 1 result. Not including vector setup, the throughput rate for CVA executions
is one result every 2 cycles, due to MO and/or M1 conflicts.

Execution time: 12 x 1510 + 36261 x 2 = 90642
CVA saving: 506144 - 90642 = 415502

In each invocation, vector length, n = 24 (or 96 bytes).

For TM of size 64 bytes: needs strip-mining

Execution time per invocation: 24 + (n/m+1) X (43 hfe) + N = 24 + (24/16+1)x(43+12) + 24 = 158
Total execution time = 158 x 1510 + 390(vector duplications) = 238970 (> 90642). TM not used.

For TM of size 128 bytes or larger: no strip-mining is necessary.
CVA saving = 451373

Table A.13.12: CVA Executions Using Various Sizes of TM

TM Sizes| Using TM? Total Exe. | CVA-only Cycle Speedups during

(bytes) Time Saving executions of loop %
0 N 90642 415502 5.584
64 N 90642 415502 5.584
128 Y 54591 451553 9.272
256 Y 54591 451553 9.272
512 Y 54591 451553 9.272
1024 Y 54591 451553 9.272

(v) IReq From Core

Base machinne:

IReq from core during loop executions: 10 x 34751 + 9 x 1510 = 361100

PVA-only executions:

IReq from core during PVA executions: 8 (setup code/vector inst.) x 1510 + 3 x 36261 = 120863
CVA-only executions:

IReq from core during CVA executions: 8 (setup code/vector inst.) x 1510 = 12080

CVA/PVA executions: same as CVA-only executions.

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 8 (setup code/vector inst.) x 1510 + 3(essential inst.) = 12083
PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions: 8 (setup code/vector inst.) x 1510 = 12080

CVA/PVA executions: 8 (setup code/vector inst.) x 1510 = 12080
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A.13.6Summary

Total execution cycles = 2000000
Total cycles in loops = 17019 + 334056 + 550000 + 223169 + 506144 = 1630388 or 81.52%
Average number of iterations per invocation = (50 x 17019 + 50 x 334056 + 7 x 550000

+ 1200 x 223169 + 24.01 x 542405)/1666649 = 173.9

(i) PVA-Only executions

cs-load saving: 170000 (loop3) + 140010(loop5) = 310010

cs-store saving: 4526(loopl) + 74276 (loop4) + 103749(loop5) = 182551

Ip-ctl saving: 4495(loopl) + 107880 (loop2) + 160000 (loop3) + 111445 (loop4) + 102239(loop5)
= 486059

Total saving = 310010 + 182551 + 486059 = 978620

Speedup during loop executions =1630388 /(1630388-978620) = 2.501 (perf. imp. = 0.6002)

Overall speedup = 2000000/(2000000-978620) = 1.958 (perf. imp. = 0.4893)

Table A.13.13: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 486059 0.2430
cs-load-oh 310010 0.1550
cs-store-oh 182551 0.0913
Total 978620 0.4893

Total cycles in loops = 17019 + 334056 + 550000 + 223169 + 506144 = 1630388 or 81.52%

(i) CVA-Only executions

Number of cycles in loops = 17019(loop1l) + 223169 (loop4) + 506144(loop5) = 746332
Total saving: 11439(loop1l) + 185721 (loop4) + 451553(loop5) = 648713

Speedup during loop executions =746332 /(746332-648713) = 7.645 (perf. imp. = 0.8692)
Overall speedup = 2000000/(2000000-648713) = 1.480 (perf. imp. = 0.3244)

(iii) CVA/PVA executions

Total saving: 11439 (CVA for loopl) + 107880 (PVA for loop2) + 330000 (PVA for loop3) +
185721 (PVA or CVA for loop4) + 451553 (CVA for loop5) = 1086593

Speedup during loop executions =1630388/(1630388-1086593) = 2.998 (perf. imp. = 0.6665)

Overall speedup = 2000000/(2000000-1086593) = 2.190 (perf. imp. = 0.5433)

(iv) CVA Executions Using Various Sizes of TM

No TM or TM is 64 bytes (not used).

CVA-only executions:

Total saving: 11439(loopl) + 185721 (loop4) + 415502(loop5) = 612662

Speedup during loop executions =746332 /(746332-612662) = 5.583 (perf. imp. = 0.8209)
Overall speedup = 2000000/(2000000-612662) = 1.442 (perf. imp. = 0.3065)

CVA/PVA executions:

Total saving: 11439 (CVA for loop1) + 107880 (PVA for loop2) + 330000 (PVA for loop3) +
185721 (PVA or CVA for loop4) + 415502 (CVA for loop5) = 1050542

Speedup during loop executions =1630388/(1630388-1050542) = 2.812 (perf. imp. = 0.6444)
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Overall speedup = 2000000/(2000000-1050542) = 2.106 (perf. imp. = 0.5252)

Table A.13.14: CVA Executions Using Various Sizes of TM

CVA-Only Executions CVA/PVA Executions
TMSizes MT5a1Cycle | Speedup | Overall | Total Cycle| Speedup | Overall
(bytes) Saving |DuringLoop| Speedup Saving |DuringLoop| Speedup
Executions Executions
0 612662 5.583 1.442 1050542 2.812 2.106
64 612662 5.583 1.442 1050542 2.812 2.106
128 648713 7.645 1.480 1086593 2.998 2.190
256 648713 7.645 1.480 1086593 2.998 2.190
512 648713 7.645 1.480 1086593 2.998 2.190
1024 648713 7.645 1.480 1086593 2.998 2.190
(v) IReg From Core
Base machinne:
IReq from core overall: 1532825
IReq from core during loop executions: 13919+334056+480000+185969+361100 = 1375044
PVA-only executions:
IReq from core during PVA executions:
7936(loop1)+225432(loop2)+190000(loop3)+37386(loop4)+120863(loop5)=581617
IReq from core reduced = 1375044 - 581617 = 793427
Normalized IReq from core during PVA executions = 581617/1375044 = 0.4230
Normalized IReq from core overall = (1532825 - 793427)/1532825 = 0.4824
CVA-only executions:
IReq from core during loop executions: 7936(loopl)+37386(loop4)+120863(loop5)=166185
IReq from core during CVA executions: 651(loop1)+186(loop4)+12080(loop5) = 12917
IReq from core reduced = 166185 - 12917 = 153268
Normalized IReq from core during CVA executions = 12917/166185 = 0.0777
Normalized IReq from core overall = (1532825 - 153268)/1532825 = 0.9000
CVA/PVA executions:
IReq from core during CVA/PVA executions:
651(loopl)+225432(loop2)+190000(loop3)+186(loop4)+12080(loop5) = 428349
IReq from core reduced = 1375044 - 428349 = 946695
Normalized IReq from core during CVA/PVA executions = 428349/1375044 = 0.3115
Normalized IReq from core overall = (1532825 - 946695)/1532825 = 0.3854
Table A.13.15: Normalized IReq From Core
During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.4230 0.0777 0.3115 0.4824 0.9000 0.3854




(vi) IFetch From Memroy

PVA-only with essential inst. caching:
Ifetch from memory during loop executions: 3288(loopl) + 225432(loop2) + 50002(loop3) + 187(loop4)
+ 12083(loop5) = 290992
Ifetch from memory reduced = 1375044 - 290992 = 1084052

Normalized Ifetch from memory during PVA executions: 290992/1375044 = 0.2116

Normalized Ifetch from memory overall = (1532825 - 1084052)/1532825 = 0.2928

PVA-only with all inst. caching:
Ifetch from memory during loop executions: 3288(loop1l) + 2256(loop2) + 50002(loop3) + 187(loop4)
+12083(loop5) = 67816
Ifetch from memory reduced = 1375044 - 67816 = 1307228

Normalized Ifetch from memory during PVA executions: 67816/1375044 = 0.0493
Normalized Ifetch from memory overall = (1532825 - 1307228)/1532825 = 0.1472

CVA-only executions:

Ifetch from memory during loop executions: 651(loopl) + 186(loop4) + 12080(loop5) = 12917
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Ifetch from memory reduced = 166185 - 12917 = 153268

Normalized Ifetch from memory during PVA executions: 12917/166185 = 0.0777
Normalized Ifetch from memory overall = (1532825 - 153268)/1532825 = 0.9000

CVA/PVA executions:
Ifetch from memory during loop executions: 651(loopl) + 2256(loop2) + 50002(loop3) + 186(loop4)
+12080(loop5) = 65175
Ifetch from memory reduced = 1375044 - 65175 = 1309869

Normalized Ifetch from memory during PVA executions: 65175/1375044 = 0.0474
Normalized Ifetch from memory overall = (1532825 - 1309869)/1532825 = 0.1455

Table A.13.16: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only - CVA-Only CVA/PVA PVA-Only - | PVA-Only - CVA-Only CVA/PVA
essential all inst. Executions Executions essential all inst. Executions Executions
inst. caching caching inst. caching caching
0.2116 0.0493 0.0777 0.0474 0.2928 0.1472 0.900 0.145
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A.14 Benchmark “ucbgsort”
A.14.1Critical Loop 1

Table A.14.1: Vertorizing Critical Loop 1

~+

Address Opcode //; Assembly Coge  Using PVA Constlluct Using CVA Construg
00000482 a703//; Idb r7,r3) | PVA  @LO, @S, #1| CVA mov @LO,@S;
00000484 b702//; stb r7,(r2) | cs-store:

00000486 1232 //; mov r2,r3 mov  r0. r®

00000488 0593 //; sub  r3,r9 ’

0000048a 0cc3//; cmphs  r3,r12

0000048c  e7fall; bt 0x000004B2

a. Essential instruction

Table A.14.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000482 target 675 - - -

0000048c bt 675 00000482 378 (56) 297 (44)

This loop performs a vector move, CJi] = A[i].
Estimated execution cycles = 9x 378 + 8 x 297 = 5778 or 0.58% of total execution time.
Average number of iterations per invocation = 675/297 = 2.27

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1

Setupl/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)
+ 1(exit) = 9 cycles

Total setup/exit costs = 9 x 297 + 1(MO conflict) = 2674

cs-load saving: 3 x 675 - 2674/3 = 1134

cs-store saving: 2 x 675 - 2674/3 = 459

Ip-ctl saving: 3 x 378 + 2 x 297 - 2674/3 = 837

Total saving: 1134 + 459 + 837 = 2430

Speedup during loop executions = 5778/(5778 - 2430) = 1.726 (perf. imp. = 0.4206)

Overall speedup = 1017501/(1017501-2430) = 1.002 (perf. imp. = 0.0020)

Table A.14.3: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 837 0.0008
cs-load-oh 1134 0.0011
cs-store-oh 459 0.0005
Total 2430 0.0024

(i) CVA-Only executions

Setupl/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R0) + 1(R2)
+ 1(exit) + 1(p) + O(1) -1 = 9 cycles
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Execution time = 9 x 297 + 675 = 3348

CVA saving = 5778 - 3348 = 2430

Speedup during loop executions = 5778/(5778 - 2430) = 1.726 (perf. imp. = 0.4206)
Overall speedup = 1017501/(1017501-2430) = 1.002 (perf. imp. = 0.0020)

(iii) CVA/PVA executions

Total saving: 2430 (using CVA or PVA)

Speedup during loop executions = 5778/(5778 - 2430) = 1.726 (perf. imp. = 0.4206)
Overall speedup = 1017501/(1017501-2430) = 1.002 (perf. imp. = 0.0020)

(iv) CVA Executions Using Various Sizes of TM
N.A. (TM not used).

(v) IReg From Core

Base machinne:

IReq from core overall: 804662

IReq from core during loop executions: 7 x 378 + 6 x 297 = 4428

PVA-only executions:

IReq from core during PVA executions: 7 (setup code/vector inst.) x 297 + 1 x 675 = 2754
IReq from core reduced = 4428 - 2754 = 1674

Normalized IReq from core during PVA executions = 2754/4428 = 0.6220

Normalized IReq from core overall = (804662 - 1674)/804662 = 0.9979

CVA-only executions:

IReq from core during CVA executions: 7 (setup code/vector inst.) x 297 = 2079
IReq from core reduced = 4428 - 2079 = 2349

Normalized IReq from core during CVA executions = 2079/4428 = 0.4695
Normalized IReq from core overall = (804662 - 2349)/804662 = 0.9971

CVA/PVA executions: same as CVA-only executions.

Table A.14.4: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.6220 0.4695 0.4695 0.9979 0.9971 0.9971

(vi) IFetch From Memroy

PVA-only with essential inst. caching:

Ifetch from memory during PVA executions: 7(setup code and vector inst.)x297 + 1(essential inst) = 2080
Ifetch from memory reduced = 4428 - 2080 = 2348

Normalized Ifetch from memory during PVA executions: 2080/4428 = 0.4697

Normalized Ifetch from memory overall = (804662 - 2348)/804662 = 0.9971

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only executions:
IReq from core = Ifetch from memory

CVA/PVA executions:



IReq from core = Ifetch from memory
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Table A.14.5: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only - CVA-Only CVA/PVA PVA-Only - | PVA-Only - CVA-Only CVA/PVA
essential all inst. Executions | Executions essential all inst. Executions | Executions
inst. caching caching inst. caching caching
0.4697 0.4697 0.4695 0.4695 0.9971 0.9971 0.9971 0.997
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A.15 Benchmark “v42bis”

A.15.1Critical Loop 1

Table A.15.1: Vertorizing Critical Loop 1

uct

Using CVA Construc

Address Opcode //; Assembly Code Using PVA Const
00000a0a 950e //; stw r5,(r14) | PVA @S, #1
00000a0c  203e//; addi ri14,4 cs-store:

00000a0e  01b6 //; decne 6 mov 5. r$t
00000al0 e7fc/l; bt 0x00000a0a ’

CVA mov 15, @S;

a. Essential instruction

Table A.15.2: Profile For Critical Loop 1

Address Entry Type Execution Branch Taken count| Not taken
Counts Target (%) count (%)

00000a0a target 8271 - - -

00000a10 bt 8271 00000a0a | 8270 (100) | 1(0.0121)

This loop performs vector initialization, C[i] = r5, for some scalar r5.

Estimated execution cycles = 6 x 8270 + 5 x 1 = 49625 or 2.48% of total execution time.
Average number of iterations per invocation = 8271

(i) PVA-Only executions

Stall cycles due to MO conflicts = 1
Setup/exit costs per loop invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit) = 8
Total setup/exit costs = 8 x 1 + 1(MO conflict) =9
cs-store saving: 2 x 8271 - 9/2 = 16538

Ip-ctl saving: 3 x 8271 + 2 x 1 -9/2 =24811
Total saving = 16538 + 24811 = 41349

Speedup during loop executions = 49631/(49631- 41349) = 5.993 (perf. imp. = 0.8331)
Overall speedup = 2000000/(2000000-41349) = 1.0211 (perf. imp. = 0.0201)

Table A.15.3: Performance Improvement for PVA-Only Executions

Types of Overhead | Cycle Saving % Cycle Saving
Eliminated
Ip-ctl-oh 24811 0.0124
cs-load-oh 0 0
cs-store-oh 16538 0.0083
Total 41349 0.0207

(i) CVA-Only executions

Setup/exit costs per invocation = 3(SSR) + 1(CIR) + 2(instr. decode) + 1(R2) + 1(exit)

+1() +0( - 1= 8

Execution time =8 x 1 + 8271 = 8279
CVA saving = 49625 - 8279 = 41346

Speedup during loop executions = 49631/(49631- 41346) = 5.991 (perf. imp. = 0.8331)
Overall speedup = 2000000/(2000000-41346) = 1.021(perf. imp. = 0.0201)




(i) CVA/PVA executions

Total saving = 41346 (use CVA or PVA)
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Speedup during loop executions = 49631/(49631- 41346) = 5.991

Overall speedup = 2000000/(2000000-41346) = 1.021

(iv) CVA Executions Using Various Sizes of TM

N.A. (TM not used).

(v) IReqg From Core

Base machinne:
IReq from core overall: 1660493
IReq from core during loop executions: 5 x 8270 + 4 x 1 = 41354

PVA-only executions:
IReq from core during PVA executions: 6 (setup code/vector inst.) x 1 + 8271 = 8277
IReq from core reduced = 41354 - 8277 = 33077
Normalized IReq from core during PVA executions = 8277/41354 = 0.2001
Normalized IReq from core overall = (1660493 - 33077)/1660493 = 0.9800

CVA-only executions:
IReq from core during CVA executions: 6 (setup code/vector inst.) x 1 =6
IReq from core reduced = 41354 - 6 = 41348

Normalized IReq from core during CVA executions = 6/41354 = 1.48x10
Normalized IReq from core overall = (1660493 - 41348)/1660493 = 0.9751

CVA/PVA executions: same as CVA-only executions.

Table A.15.4: Normalized IReq From Core

During Loop Executions Overall
PVA-Only CVA-Only CVA/PVA PVA-Only CVA-Only CVA/PVA
Executions. Executions Executions Executions Executions Executions
0.2001 1.45x1¢ 1.45x10% 0.9800 0.9751 0.9751

(vi) IFetch From Memroy

PVA-only with essential inst. caching:
Ifetch from memory during PVA executions: 6(setup code and vector inst.)x1 + 1(essential inst) = 7
Ifetch from memory reduced = 41354 - 7 = 41353

Normalized Ifetch from memory during PVA executions: 7/41354 = 1.693x10
Normalized Ifetch from memory overall = (1660493 - 41354)/1660493 = 0.9751

PVA-only with all inst. caching: same as PVA-only with essential inst. caching.

CVA-only and CVA/PVA executions:
IReq from core = Ifetch from memory

Table A.15.5: Normalized IFetch From Memory

During Loop Executions Overall
PVA-Only - | PVA-Only- | CVA-Only | CVA/PVA | PVA-Only- | PVA-Only- | CVA-Only | CVA/PVA
essential all inst. Executions Executions essential all inst. Executions Executions
inst. caching caching inst. caching caching
1.693x10% | 1.693x10° 1.45x10% 1.45x10% 0.9751 0.9751 0.9751 0.9751
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