
ABSTRACT

TECHNOLOGY-ORGANIZATION TRADE-OFFS IN THE

ARCHITECTURE OF A HIGH PERFORMANCE PROCESSOR

by

Oyekunle Ayinde Olukotun

Chair: Trevor N. Mudge

The design of computer architectures that reach the performance potential of

their implementation technologies requires a thorough empirical understanding of how

implementation technologies and organization interact. To help a designer gain this

understanding this thesis presents a design methodology that can be used to quantita-

tively analyze technology-organization interactions and the impact these interactions

have on computer performance. All Interactions between technology-organization

that a�ect performance can be analyzed as trade-o�s between CPU cycle time (tCPU)

and CPU cycles per instruction (CPI), the product of which is time per instruction

(TPI). For this reason TPI is used as the performance metric upon which the design

methodology is based. Two new analysis tools: 1) a timing analyzer for tCPU and

2) a trace-driven cache simulator for CPI are an integral part of the methodology.

The methodology is extensively validated using a high performance processor that is

implemented out of gallium arsenide chips and multichip module (MCM) packaging.

Besides demonstrating that this methodology is useful for optimizing computer per-

formance, the results of this validation also provide a number of architectural design

guidelines.

The task of optimizing the design of the �rst-level cache of a two- level

cache hierarchy is well suited to the methodology because the performance of the �rst

level cache is directly a�ected by both implementation technology and organization.

To provide the link between implementation technology and organization, simple

expressions are derived that provide the access time for on-chip and MCM based

caches of various sizes. This access time is on the critical path of the processor and so

directly a�ects tCPU. When the �rst-level cache has a pipeline depth of one, maximum

performance is reached with small caches that have short access times. When the

�rst-level cache is more deeply pipelined, higher performance is reached with larger

caches that have longer access times. This is possible because the potential increase

in CPI caused by deeper pipelining can be e�ectively hidden by using static compiler

scheduling techniques.

Applying the design methodology to other parts of the cache-hierarchy pro-

duces the following results. Second-level caches that are split between instructions

and data have performance and implementation bene�ts. The choice of write-policy

(write-back or write-through) depends on the e�ective access time of the next higher

level of the memory hierarchy. Adding concurrency to the cache-hierarchy in the

form of write-bu�ering of the second-level cache or a non-blocking �rst-level cache

provides modest reductions in CPI. When the reduction in CPI is weighed against

the increased implementation complexity and possible increase in tCPU these tech-

niques for improving performance are not nearly as e�ective as increasing the size

and depth of pipelining of the �rst-level cache.

TECHNOLOGY-ORGANIZATION TRADE-OFFS IN THE

ARCHITECTURE OF A HIGH PERFORMANCE

PROCESSOR

by

Oyekunle Ayinde Olukotun

A dissertation submitted in partial ful�llment

of the requirements for the degree of
Doctor of Philosophy

(Computer Science and Engineering)
in The University of Michigan

1994

Doctoral Committee:

Professor Trevor N. Mudge, Chairman
Associate Professor Richard B. Brown

Professor Jay W. Chapman

Professor John P. Hayes

Associate Professor Karem A. Sakallah

To my family and friends.

i

ACKNOWLEDGEMENTS

I would like to thank my dissertation committee members for their careful

reading of my thesis. The suggestions that they made have greatly improved the

presentation of my ideas. Special thanks go to Trevor Mudge who has been, through

out my years of graduate school, an advisor and a friend. Special thanks also go

to Karem Sakallah who was instrumental in the development of the timing analysis

tools.

I am grateful to my friends in the Robotics Laboratory especially Greg

Buzzard, Jarrir Charr, Russell Clapp, Joe Dionse, Paul Gottschalk, and Don Winsor

for all the good times we had together.

To the past and present members of the GMIPS group: Ajay Chandra

Je�rey Dykstra, Thomas Hoy, Thomas Hu�, Ayman Kayassi, David Nagle, Timo-

thy Stanley, Richard Uhlig, and Michael Upton I thank for making the lab an intel-

lectually stimulating place to be. Special thanks go to David Nagle for providing the

Macintosh on which most of this thesis was composed and for taking time to proof

read my papers.

Finally, I would like to thank my parents for their love and support

and Liza Barnes for putting up with me for all these years.

ii

TABLE OF CONTENTS

DEDICATION : i

ACKNOWLEDGEMENTS : ii

LIST OF TABLES : v

LIST OF FIGURES : vi

CHAPTER

1 INTRODUCTION : 1

1.1 Thesis Overview : 2

1.2 Contributions : 3

2 BACKGROUND : 4

2.1 A Metric for Computer Performance : : : : : : : : : : : : : : : 4
2.2 The CPI-tCPU trade-o� : 7

2.3 The Impact of Implementation Technology On Performance : : 12
2.4 Predicting Computer Performance|A Literature Review : : : : 24

3 A MICROPROCESSOR DESIGN METHODOLOGY : : : : 33

3.1 Multilevel Optimization : 33
3.2 Base Architecture : 36

3.3 Analysis of tCPU : 47

3.4 Analysis of CPI : 68
3.5 The Base Architecture Revisited : : : : : : : : : : : : : : : : : 81
3.6 Conclusions : 81

4 OPTIMIZING THE PERFORMANCE OF L1 CACHES : : 83

4.1 The L1 cache optimization problem : : : : : : : : : : : : : : : : 83

4.2 tCPU of the L1 Cache : 85

4.3 CPI of the L1 Cache : 96
4.4 L1 TPI : 115

4.5 Conclusions : 121

5 A TWO-LEVEL CACHE FOR A GAAS MICROPROCES-

SOR : 123

5.1 L2 organization : 123

iii

5.2 Write Policy : 133

5.3 Memory System Concurrency : : : : : : : : : : : : : : : : : : : 136

5.4 Conclusions : 145

6 CONCLUSIONS : 147

6.1 Summary of Results : 147

6.2 Limitations and Future Directions : : : : : : : : : : : : : : : : 150

A A SUSPENS MODEL FOR GAAS : : : : : : : : : : : : : : : : 152

APPENDIX : 152

BIBLIOGRAPHY : 155

iv

LIST OF TABLES

Table

2.1 Interdependencies between execution time factors. : : : : : : : : : : : 6

2.2 Common cache terminology : 11

2.3 A comparison of CMOS, Si bipolar and GaAs DCFL technologies : : 20

2.4 A comparison of on-chip and o�-chip packaging Technology. : : : : : 23

3.1 List of Benchmarks : 73

4.1 MCM parameters. : 88

4.2 Delay of components of the CPU datapath measured in gate delay D. 93

4.3 The delay of each loop measured in gate delay D. : : : : : : : : : : : 93

4.4 Performance of branch prediction versus number of branch delay slots 102

4.5 A summary of the 256 entry BTB performance. : : : : : : : : : : : : 104

4.6 BTB prediction performance. : 105

4.7 The increase in CPI due to load delay slots. : : : : : : : : : : : : : : 111

4.8 Time independent metrics for the L1 cache : : : : : : : : : : : : : : : 113

4.9 Minimum cycle times for L1 caches for B = 4 : : : : : : : : : : : : : 116

4.10 Minimum cycle times for L1 caches for B = 8 : : : : : : : : : : : : : 116

5.1 L2 miss ratios for the sizes and organizations of Figure 5.1 : : : : : : 125

v

LIST OF FIGURES

Figure

2.1 The �ve stages of instruction execution. : : : : : : : : : : : : : : : : : 8

2.2 Basic CPU instruction execution. : 8

2.3 Parallel instruction execution. : 8

2.4 Pipelined instruction execution. : 9

2.5 Relative improvement of microprocessor performance and VLSI tech-
nology. : 13

2.6 Circuit schematic of GaAs DCFL 2-input NOR gate : : : : : : : : : : 16

2.7 A comparison of CMOS, silicon bipolar and GaAs DCFL technologies 18

2.8 Power consumption versus number of gates for CMOS, silicon bipolar

and GaAs DCFL. : 19

3.1 Multilevel design optimization. : 36

3.2 The base architecture. : 37

3.3 RTL schematic of the CPU and L1 cache portions of base architecture. 41

3.4 The four types of feedback loop. : 44

3.5 Instruction dependencies and their corresponding feedback loop. : : : 45

3.6 The circuit model. : 52

3.7 The local time frame of phase �p. : 53

3.8 A k phase clock. : 54

3.9 The temporal operation of a latch. : : : : : : : : : : : : : : : : : : : 57

3.10 The base-architecture circuit model. : : : : : : : : : : : : : : : : : : : 63

3.11 Timing of the base architecture datapath. : : : : : : : : : : : : : : : 64

3.12 Timing after the addition of clock phase for the cache SRAMs. : : : : 65

3.13 Timing with a 2 cycle cache access. : : : : : : : : : : : : : : : : : : : 66

3.14 Timing with a 3 cycle cache access. : : : : : : : : : : : : : : : : : : : 67

vi

3.15 Timing when all phases equal to 1 ns or 2 ns. : : : : : : : : : : : : : : 68

3.16 Simulation with cacheUM. : 71

3.17 The e�ect of multiprogramming on CPI. : : : : : : : : : : : : : : : : 76

3.18 The e�ect of multiprogramming level on cache miss ratio. : : : : : : : 77

3.19 The e�ect of context switch interval level on cache miss ratio. : : : : 78

3.20 Performance losses of the base architecture. : : : : : : : : : : : : : : 80

4.1 The minimum delay arrangement of 2n L1 cache SRAM chips. : : : : 87

4.2 tMCM versus the number of L1 cache chips (n). : : : : : : : : : : : : : 89

4.3 A plot of tL1 versus SRAM chip size of SL1 = 4KW. : : : : : : : : : : 90

4.4 A plot of tL1 versus SRAM chip size. : : : : : : : : : : : : : : : : : : 91

4.5 The L1 cache datapath. : 92

4.6 Three clock schedules for L1 cache access. : : : : : : : : : : : : : : : 92

4.7 A plot of tCPU versus SRAM chip size of SL1 = 4KW : : : : : : : : : 93

4.8 tCPUversus cache size for the 4KB SRAM chip. : : : : : : : : : : : : 95

4.9 Static code size increase versus the number of branch delay slots. : : 101

4.10 E�ect of branch delay slots on L1-I performance: Wtr = 1W, BL1 = 4W.103

4.11 E�ect of branch delay slots on L1-I performance: Wtr = 2W, BL1 = 4W.103

4.12 E�ect of branch delay slots on L1-I performance: Wtr = 4W, BL1 = 8W.103

4.13 Branch delay slots versus L1-I cache size: Wtr = 1W, BL1 = 4W. : : 106

4.14 Branch delay slots versus L1-I cache size: Wtr = 2W, BL1 = 4W. : : 106

4.15 Branch delay slots versus L1-I cache size: Wtr = 4W, BL1 = 8W. : : 106

4.16 tCPU versus L1-I cache size: b = 2, Wtr = 4W, BL1 = 4W. : : : : : : 107

4.17 Histogram of e values for benchmark suite used in this study. : : : : : 109

4.18 Static address register distance versus load delay slots. : : : : : : : : 110

4.19 Load delay slots versus L1-D cache size: Wtr = 1W, BL1 = 4W. : : : 112

4.20 Load delay slots versus L1-D cache size: Wtr = 2W, BL1 = 4W. : : : 112

4.21 Load delay slots versus L1-D cache size: Wtr = 4W, BL1 = 8W. : : : 112

4.22 tCPU versus L1-D cache size: l = 2, Wtr = 2W, BL1 = 4W. : : : : : : 114

4.23 �CPI
CPI

for L1-D. : 115

4.24 Cache size versus number of delay slots: Wtr = 2W, BL1 = 4W. : : : 117

vii

4.25 Cache size versus number of delay slots: Wtr = 1W, BL1 = 4W. : : : 119

4.26 Cache size versus number of delay slots for BL1 = 4W and PL1 = 6 cycles.119

4.27 L1-I cache size versus L1-D cache size: b = 3, l = 2, Wtr = 4W,

BL1 = 4W. : 120

5.1 Performance of various L2 sizes and organizations. Direct-mapped

caches have a 6 cycle access time; 2-way set-associative caches have a

7 cycle access time. : 124

5.2 The L2-I speed-size trade-o� with a 4KW L1-I. : : : : : : : : : : : : 126

5.3 The L2-D speed-size trade-o� with a 4KW L1-D. : : : : : : : : : : : 127

5.4 The e�ect of branch delay slots on a single level I-cache. : : : : : : : 129

5.5 The performance gain from the improved architecture. : : : : : : : : 131

5.6 A comparison between the CPI of the base architecture and the im-
proved architecture. : 132

5.7 Write policy-L2 access time trade-o� for the base architecture. : : : : 134

5.8 The performance improvement gained from adding more concurrency

to the memory system. : 137

5.9 Optimized architecture. : 139

5.10 Performance Improvement using a Non-blocking cache. with a miss

penalty is 10 CPU cycles. : 140

5.11 The performance of blocking and non-blocking 2KW L1-D caches. : : 142

5.12 The performance of blocking and non-blocking 4KW L1-D caches. : : 143

5.13 The performance of blocking and non-blocking 8KW L1-D caches. : : 144

viii

CHAPTER 1

INTRODUCTION

Since 1985 microprocessor based systems have doubled their performance

every three years [HP90]. This performance growth, which is better than in any

other class of computer, is mainly due to improvements in microprocessor implemen-

tation technologies. To sustain this growth rate it will be necessary to use the best

implementation technologies available and to optimize microprocessor designs with

respect to these technologies. This design optimization process will require a design

methodology that uses the low-level constraints of the implementation technology to

guide the high-level design decisions of the microprocessor's organization. However,

a performance-directed design methodology alone will not be enough to produce op-

timized microprocessor designs. Analysis tools that can support this methodology

e�ectively will also be required. These tools must be capable of accurately predict-

ing the performance of candidate microprocessor designs so that designers can make

quantitative comparisons.

This thesis develops a multilevel optimization design methodology that de-

liberately takes implementation technology into account when making computer or-

ganization decisions. The basis of this design methodology is an analysis of the per-

formance of an architecture using the metric of average time per instruction. Average

time per instruction is the product of two components: average number of cycles per

instruction and cycle time. To estimate the contribution of each of each of these

components to average time per instruction two new analysis tools are used. The

tools include a family of trace driven simulators for estimating the average number of

cycles per instruction of a particular architecture and a timing analyzer for estimating

1

2

the cycle time of a particular architecture. These tools are employed together with

the design methodology in the design of a high performance gallium arsenide (GaAs)

microprocessor. This design exercise shows that the design methodology can be used

to increase computer performance.

1.1 Thesis Overview

The �rst two chapters of this thesis provide the background and a survey of

the pertinent literature, describe the design methodology and present the design tools

that are necessary to support it. The last three chapters validate the design method-

ology by showing how the design of a high performance processor implemented from

high-speed technologies can be optimized for performance. Based on this optimization

example general conclusions about computer architecture are made.

Chapter 2 presents a measure of computer performance that is based on

program execution time. Each of the components of this performance measure is

examined and the trade-o�s between these components are introduced. These trade-

o�s are treated in detail in Chapters 4, 5 and 6. Chapter 2 concludes with a review

of previous research in the areas of performance evaluation and high performance

computer design. This review serves as the departure point for the work presented in

the rest of this thesis.

Chapter 3 presents the multilevel optimization design methodology. The

methodology explores the computer design space using the new design tools for trace-

driven simulation and timing analysis. The motivation for each of these design tools

is explained and novel features of the design tools are described in detail. This

chapter also introduces the design of a GaAs microprocessor that implements themips

instruction set. This microprocessor and the technologies used in its implementation

serve as the case study that are used to show the improvement in performance that

is possible with the use of multilevel optimization.

Using the multilevel optimization, Chapter 4 examines the problem of �nd-

ing an optimal primary cache size for a microprocessor. It extends previous work

3

in this area by accurately considering the e�ects that varying cache size and degree

of cache pipelining have on performance. This chapter shows that if the e�ects of

the implementation technology and organization are considered together the design

that results has higher performance than would be predicted by considering either

technology or organization alone.

Using the results of Chapter 4, Chapter 5 further applies the design method-

ology to the design of a two-level cache for a high-performance microprocessor im-

plemented with GaAs and high-density packaging. Again the impact of considering

implementation technology on the design of the memory hierarchy are a di�erent and

higher performance design.

Chapter 6 presents the conclusions, the limitations and the future directions

of the work results presented in Chapters 3{5.

1.2 Contributions

This thesis makes three major contributions:

1. A new design methodology for computer design which includes:

� the multilevel optimization approach

� new tools for timing analysis

� new tools for trace-driven simulation

2. A very extensive validating case study of the design methodology using a GaAs

processor.

3. General guidelines for computer design that are the result of the case study.

CHAPTER 2

BACKGROUND

Chapters 3 and 4 present new methods for evaluating the impact of imple-

mentation technology in the early stages of computer design. This chapter provides

the background necessary to put this work in context. The chapter begins by de�ning

a way of measuring computer hardware performance. This performance metric will be

used throughout the thesis to characterize and compare di�erent architectures. Next

we asses the impact of VLSI technology on computer performance and argue for the

use of GaAs and multi-chip module packaging as high-performance microprocessor

implementation technologies. Given a performance metric and an implementation

technology a computer designer is faced with the task of detailed performance eval-

uation to determine the best design. Many performance evaluation techniques have

been proposed and some of them are reviewed later in this chapter. Most of these

techniques have one of two problems: either they do not predict performance ac-

curately enough to make the right design trade-o�s or they neglect the impact of

technology entirely. Developing solutions to these problems motivates the multilevel

design methodology that will be presented in Chapter 3.

2.1 A Metric for Computer Performance

To make comparisons among computers based on performance and to ob-

jectively compare the merits of di�erent design choices we need a way of quantifying

computer performance. In this chapter we will de�ne a computer performance metric

based on total program execution time that can be used for this purpose. Program

4

5

execution time has both hardware and software components. Here we concentrate on

the hardware components. Each of the hardware components will be examined and

the trade-o�s among these components that take place during the course of computer

design will be explained. We will also show how these components in turn depend on

implementation technology and computer organization factors.

The best metric for computer performance is program execution time [HP90].

However, to make this performance metric an accurate predictor of real world com-

puter performance the programs must be selected so that they are representative of

the work environment for which the computer is intended [Smi85a]. More will be said

about benchmark selection in Chapter 3.

Program execution time (texec) can be expressed as

texec = I � CPI� tCPU (2:1)

where I is the number of useful instructions executed, CPI is the average number of

cycles per instruction and tCPU is the CPU cycle time. The number I is also referred

to as the

instruction path length. The three components of (2.1) depend on four basic

factors:

1. implementation technology

2. computer organization

3. instruction set architecture

4. compiler technology

Furthermore, each component of execution time depends on at least two of

the basic factors. This interdependence among the components of execution time and

the basic factors is illustrated in Table 2.1.

The primary focus of this study is on how the implementation technology

and the computer organization factors a�ect performance. However, as Table 2.1

shows the choice of instruction set architecture (ISA) and compiler a�ect both the

6

Factors I CPI TCPU

implementation technology � �
computer organization � �
instruction set architecture � �
compiler technology � �

Table 2.1: Interdependencies between execution time factors. The dependence of a

execution time component on a particular factor is shown by a �.

path length (I) and CPIcomponents of computer performance. In order to isolate the

e�ect that these components have and to make the results of our studies relevant to

high-performance computer design in general it is important that we choose an ISA

that has been tuned for high- performance implementation.

For the studies in this thesis we have chosen the mips R3000 ISA for the

following reasons. The mips R3000 has good optimizing compilers and analysis tools

for generating program address traces. The mips R3000 is a reduced instruction

set computer (RISC) architecture. RISC ISAs have a number of characteristics that

make them well suited to high-performance implementations. Recent studies have

shown that, for most programs, RISC ISAs result in longer instruction sequences

than complex instruction set computer (CISC) ISAs, such as the VAX, but even with

similar hardware implementations, RISC architectures are able to execute the same

programs in far fewer cycles [BC91]. Therefore, the execution time of RISC architec-

tures is lower than that of CISC architectures. Furthermore, the simplicity of RISC

architectures makes them amenable to implementation in high-speed technologies,

where resources are limited [Kat85].

The same instruction set architecture and compiler are used for all perfor-

mance evaluations, then the instruction path length (I) can be factored out of (2.1),

yielding an expression for the average time per instruction (TPI):

TPI = CPI� tCPU (2:2)

TPIis a good metric to use to compare di�erent implementations of the same ISA

because it focuses the attention on those parts of the performance equation, namely

7

CPI and cycle time, that are a�ected by the design of computer hardware. For this

reason, the rest of this thesis will use TPI as the metric for evaluating computer

performance.

2.2 The CPI-tCPU trade-o�

One of the most important trade-o�s in computer hardware design is be-

tween CPI and tCPU. This trade-o� exists because techniques for reducing one of the

components of TPI tend to increase the other component. For instance, if a change is

made to the computer organization to reduce CPI it is very likely that this change will

also increase tCPU. Likewise, changes in organization or technology that are made to

reduce tCPU usually increase CPI. This basic trade- o� makes it di�cult to optimize

the performance of a computer by only considering one of the components of TPI.

The best performing architecture can only be achieved by looking at the impact of

the design choices on TPIas a whole. In order to do this we must gain some insight

into the nature of the CPI-tCPU trade-o� by looking at how time is spent executing

instruction in a computer system. There are two major contributors to the time spent

executing instructions in a computer system: �rst, the time spent executing instruc-

tions in the CPU and second, the time spent accessing instructions and data from

the memory hierarchy. The next two sections explain how the CPI-tCPU trade-o�

manifests itself in the design of the CPU and of the memory-hierarchy.

2.2.1 The CPI-tCPU trade-o� in the CPU

Typically, RISC architectures use �ve distinct stages to execute simple in-

structions, such as ALU instructions, load instructions, store instructions and branch

instructions (Figure 2.1).

To maintain a uniform instruction execution process, every instruction must

pass through each of these �ve stages. However, not all instructions make use of all

stages. For example, the ALU and branch instructions do not use the MEM stage

Figure 2.2 shows the execution time line, of a hypothetical CPU that uses the �ve

8

IF RD EX MEM WB
1. IF|instruction fetch

2. RD|read register and instruction decode

3. EX|execution

4. MEM|memory access

5. WB|register write back

Figure 2.1: The �ve stages of instruction execution.

IF RD EX MEM WB
IF RD EX MEM WB

IF RD EX MEM WB
IF RD EX MEM WB

instruction

i
i +1
i +2
i +3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 400
t CPU1 tCPU2 t CPU3 t CPU4time

Figure 2.2: Basic CPU instruction execution.

stages shown in Figure 2.1. In this basic CPU a new set of instructions (set size = 1)

is issued every 10 time units. If we de�ne tCPU as the shortest time period between

two consecutive sets of instructions. Then the tCPU of this CPU is 10 time units.

Assuming a perfect memory hierarchy, the CPI for this CPU is 1.0 because a new

instruction is issued every cycle. Thus this CPU's TPI is 10 time units. Parallelism

and pipelining are two methods for decreasing the TPI of the basic CPU shown in

Figure 2.2. Parallelism decreases CPI by duplicating functional unit resources in the

CPU so that the instruction issue set size can be increased. Figure 2.3 shows the

instruction execution time-line for a machine with an instruction issue set size of two.

The CPI of

this CPU is 0.5 while the tCPU remains ten time units. This results in

IF RD EX MEM WB
IF RD EX MEM WB

IF RD EX MEM WB
IF RD EX MEM WB

2 4 6 8 10 12 14 16 18 20 22 24 26 28 300
t CPU1 t CPU2 t CPU3time

instruction

i
i +1
i +2
i +3

IF RD EX MEM WB
IF RD EX MEM WB

i +4
i +5

Figure 2.3: Parallel instruction execution.

9

IF RD EX MEM WB
IF RD EX MEM WB

IF RD EX MEM WB
IF RD EX MEM WB

2 4 6 8 10 12 14 16 18 200
t CPU1time

instruction

i
i +1
i +2
i +3

IF RD EX MEM WB
IF RD EX MEM WB

i +4
i +5

t CPU2 t CPU3 t CPU4 t CPU5 t CPU6 t CPU7 t CPU8 t CPU9 t CPU10

Figure 2.4: Pipelined instruction execution.

a TPI of 5 time units. However, this perfect speedup of a factor of

two over the basic model is achievable providing that two mutually inde-

pendent (parallel) instructions can be issued every cycle. However, If the instruction

stream that is being executed does not contain enough instruction level parallelism to

issue two instructions every cycle, the CPI would be greater than 0.5. Furthermore,

the implementation of an instruction parallel machine requires the duplication of func-

tional units and register ports. Therefore, given the same implementation technology,

the parallel machine will have a longer cycle time due to the greater signal propaga-

tion delay and loading of the extra interconnections of the added functional units and

register ports. Thus, due to the inherent limits of instruction level parallelism and

the increase in cycle time that results from a more complex implementation, there is a

limit to the amount of performance that parallel CPU implementations can provide.

In contrast to CPU parallelism, making the CPU pipelined reduces the pe-

riod of time between the issue of successive sets of instructions (tCPU) by overlapping

the stages of instruction execution. Figure 2.4 shows the basic CPU organized as a

�ve-stage pipeline. The tCPU of this CPU is reduced to 2 time units. Assuming a

perfect memory system, the CPI is still 1 because an instruction issues every tCPU.

This gives a maximum performance of 2 time units per instruction which is equal to

the basic machine's TPI(Figure 2.2) divided by the depth of the pipeline, 5. However,

there are two factors that prevent most pipelined machines from reaching their max-

imum performance. First, are pipeline hazards which increase CPI. Pipeline hazards

arise when an instruction depends on a previous instruction that, due to pipelining,

10

has not completed execution. Some pipeline hazards can be eliminated by adding

bypassing or forwarding hardware. As an example of a pipeline hazard that cannot

be eliminated in this way, consider a load instruction at position i in Fig. 2.4. This

instruction will not complete until stage MEM. An ALU instruction following it in

position i+ 1 would be forced to stall for one cycle in order to execute in stage EX.

Such stalls increase CPI and decrease performance. Second, latch overhead limits the

reduction of tCPU. In

order to implement a pipelined CPU, the pipeline stages must be

separated by latches. The delay of these latches causes the pipelined ma-

chine's tCPU to be greater than tCPU of the unpipelined machine divided by the pipeline

depth. Making a pipeline deeper increases the number of pipeline hazards and makes

the latch overhead into a larger fraction of tCPU. This leads to diminishing perfor-

mance gains as the pipeline is made deeper. Just as in parallelism, there is a limit to

the performance increase that pipelining can provide.

2.2.2 The CPI-tCPU in the Memory Hierarchy

This section examines how the CPI-tCPU trade-o� manifests itself in

the design of the memory hierarchy. In the following discussion, the focus

will be on the cache hierarchy | the part of the memory hierarchy between the CPU

registers and main memory. The CPU registers provide the link between the CPU

and the cache hierarchy. Instructions and data are fetched from the �rst level of

the cache hierarchy and placed in these registers during the IF and MEM execution

stages. Fetching instructions and data may be accomplished in one CPU cycle if the

data is present in the �rst level cache, but if the data is not present in this cache,

it can take many CPU cycles to fetch the data. The cache organization determines

whether the data will be found in the cache. Table 2.2 presents a summary of the

terminology that has been used to describe cache organizations and that we will use

in this thesis.

The time it takes for the CPU to access data that hits in the cache is

a function of the cache's organization and the cache's implementation technology.

11

Cache A small fast memory that duplicates the active parts of a

slower, larger memory. A cache is speci�ed by its size, number

of sets, associativity, line size, fetch policy, replacement policy

and write policy.

Line (Block) The smallest unit of cache data that is associated with a tag.The
tag indicates which line of the main memory is occupying a

particular cache line.

Set A group of two or more cache lines in which a memory line may

reside.

Associativity The cache set size, i.e., the number of cache lines in which a

memory line may reside. Caches with a single set of lines are
called fully-associative. Caches with a set size of one are called
direct-mapped.

Fetch policy The algorithm that determines when and what data to transfer
from main memory to the cache. The amount of data that is

transferred after a cache miss is called the fetch size or re�ll size

Replacement
policy

The algorithm that determines which cache line to replace in
a set-associative cache. The two most common policies are to
replace the least recently used (LRU) line in the set or to replace
a line at random.

Write policy The method that determines what happens when the CPU
writes into the cache. The two basic policies are: 1) write-
through, in which both the cache and the memory are updated;
and 2) write- back, in which only the cache is updated. In the

write-back policy, memory is updated when the previously mod-

i�ed (dirty) cache line is replaced.

Miss ratio The ratio between the number of references that are not found in
the cache to the total number for references made to the cache.

Miss or re�ll
penalty

The time it takes to re�ll the cache after a miss.

Table 2.2: Common cache terminology (adapted from [Smi82])

12

Typically, the cache's access time grows with its size and set-associativity. In contrast,

the cache miss ratio decreases with the cache's size and set associativity. These facts

underlie the trade-o� between miss ratio and access time. Larger, more set associative

caches have lower miss ratios, but longer access times. If the cache determines the

cycle time, as the �rst level cache usually does, this trade-o� between miss ratio and

access time is equivalent to the CPI-tCPU trade-o�. In the higher levels of the cache

hierarchy the trade-o� between miss ratio and access time only a�ects CPI.

The trade-o� between miss ratio and access time does not completely

cover the cache design space. Parallelism (multi-ported) and pipelining can

also be applied to improve the performance of caches.

Again, all design decisions can be formulated as trade-o�s between CPI and

tCPU. The design of cache-hierarchies for high performance

microprocessors using these techniques will be covered in Chapters 4

and 5.

2.3 The Impact of Implementation Technology On Perfor-

mance

A computer's implementation technology consists of the integrated circuits

and packaging from which it is fabricated. The performance of this technology is

the key factor in determining computer performance. This has always been the case

and was recognized in the early days of supercomputer design by Thornton [Tho63].

The performance of a particular combination of technologies can be estimated by

the number of gates times the clock frequency that a system implemented in these

technologies would have. The resulting estimate is measured in units of gate-Hz and

is called computational capacity. The computational capacity determines the speed

and organizational complexity of a computer. In general, more complex computer

organizations have lower clock frequencies because they require more gates than less

complex computer organizations.

To gain some insight into how the increase in computational capacity and

13

1

10

100

1000

10000

1975 1980 1985 1990 1995

R
el

at
iv

e
Im

pr
ov

em
en

t

Year

Frequency

Performance

Density

Technology

Figure 2.5: Relative improvement of microprocessor performance and VLSI technol-
ogy [Bak90, HP90, SLL89]

computer performance are related,

Figure 2.5 shows the relative improvement in performance of microcomput-

ers and the relative improvement of VLSI technology over the last �fteen years. The

vertical axis shows the relative improvement and the horizontal axis the year. The

clock frequency of VLSI designs has increased by a factor of 17% per year. The inte-

gration density (number of logic gates per chip) has increased by 33% per year. The

total improvement from technology is 56% per year. This assumes that a doubling

in clock frequency and a doubling in integration density results in a quadrupling in

technology improvement. Furthermore, this rate of increase in technology shows no

signs of abating in the near future (next ten years). In the same period, micropro-

cessors have improved in performance (millions of instructions per second) by 35%

per year This �gure shows that all increases in microprocessor performance can be

attributed to either increases in clock frequency, or increases in integration density.

In fact, the improvements in technology have outstripped improvements in micropro-

cessor performance. There are three reasons for this. First, the increase in memory

speed has not matched the increase in CPU speed. Second, for reasons stated in

14

Section 2.2.1, adding parallelism to the CPU (more gates) has diminishing returns in

performance. Third, microprocessor organizations have not always been optimized to

their implementation technologies.

Through the use of the design methodology and computer organization

ideas this thesis presents, we will show how microprocessor performance can

be optimized for advanced implementation technologies. This methodology is based

on an understanding of the interaction between these implementation technologies

and computer organization. To provide a basis for the material presented later in

the thesis, the rest of this section provides an overview of microprocessor implemen-

tation technologies and also introduces a simple model that can used to compare

these technologies in terms of computational capacity and power consumption. Sim-

ple comparisons like these provide a valuable estimate of the relative capabilities of

alternative implementation technologies. These estimates are useful in making design

decisions at the organizational level. The section ends with a review of static tim-

ing analysis techniques that, given technology parameters, can be used to get more

accurate measures of system clock frequency than the simple models.

Microprocessors performance has bene�tted most from advances in VLSI

technology. VLSI requires transistors with high packing density, low power dissipation

and high yield. The metal-oxide semiconductor (MOS) transistor embodies all these

attributes, thus making it an ideal candidate for VLSI [Ong84]. Two properties in

particular make the MOS transistor a good building block for VLSI circuit designers.

First, the MOS gate capacitor does not draw any static current. This serves to isolate

each gate from the next stage and makes it possible to build low power circuits with

gates that drive many other gates (high fanout). Second, the MOS gate is a capacitor

and so it can store charge. This allows a single MOS transistor to act as a memory

device, albeit for short periods of time. This capability has been very useful in the

design of dynamic logic circuits that have low power and high density [Wan89].

Using CMOS (complementary MOS) transistors it is possible to design and

fabricate circuits that dissipate very little power (no static power) and have high

noise margins. For these reasons CMOS has become the dominant technology for

15

both microprocessors and memory. The data in Figure 2.5 show how the integration

density and speed of silicon (Si) MOS technology has increased over the last 15 years.

If CMOS technology has a weakness, it is its inability to switch large ca-

pacitive loads rapidly. This weakness is becoming more of a liability as die sizes and

clock frequencies increase making necessary to switch long, highly capacitive wires

quickly. In contrast to CMOS, bipolar devices switch quickly and can drive large

capacitive loads, but dissipate large amounts of power. By integrating bipolar de-

vices and CMOS devices on the same die it is possible to have the advantages of

both types of device. These BiCMOS (bipolar CMOS) chips use CMOS devices for

most of the logic functions and bipolar devices where large current drives or analog

circuit functions are required. Careful design of BiCMOS IC's is required to ensure

that bipolar devices are used only where necessary in order to avoid excessive power

consumption. BiCMOS has been used very successfully in high-speed, high-density

SRAMs [Bak90].

Recently, gallium arsenide (GaAs) has emerged as a VLSI implementation

technology for high speed applications [LB90]. Gallium arsenide has the advantage

of higher electron mobility and higher peak electron velocity at lower electric �elds

than silicon. This makes it possible to design circuits that switch more quickly over a

smaller voltage swing than similar circuits fabricated in silicon. Furthermore, GaAs

forms a semi-insulating substrate which reduces the parasitic capacitance of on-chip

interconnections. However, GaAs technology has signi�cant drawbacks compared to

silicon: GaAs material is more di�cult to process and GaAs circuit structures have

much lower noise margins. These drawbacks lead to lower chip densities and lower

yields [LS88]. Furthermore, because GaAs does not have a stable native oxide, MOS

type transistors cannot be fabricated.

The most mature GaAs device is the metal-semiconductor �eld e�ect

transistor (MESFET). MESFETs have a Schottky barrier diode as the gate.

Unlike the MOS capacitor, this diode conducts static current when the gate is being

driven. This limits the fan-out of GaAs circuits and prevents the use of dynamic

circuit structures.

16

A B

V = 2.0 VDD

Q4Q2Q1

Q3

F = A + B

next stage

Figure 2.6: Circuit schematic of GaAs DCFL 2-input NOR gate with a fanout of 1.
All transistors are E-mode except for Q3

GaAs MESFETs can be fabricated as depletion mode (D-mode) transistors

that are normally on or enhancement mode (E-mode) transistors that are normally

o�. Figure 2.6 is a schematic of a direct coupled FET logic (DCFL) circuit in which

a 2-input NOR gate with a fanout of 1. The structure of DCFL circuits is similar

to E/D NMOS circuits except that NAND structures do not work well and pass

transistor and dynamic circuits do not work at all. The operation of a DCFL circuit

is similar to current steering logic. The Q3 transistor supplies current that is either

steered through Q1 or Q2 if either are on, otherwise the current turns Q4 on. The

current steering operation of DCFL has the bene�t that it creates very little di

dt
noise

[HCLC91].

A computer designer would like to know the relative performance of the

various VLSI technologies. Although it is impossible to get a completely accurate

measure of the performance of a computer design in a particular technology without

a complete implementation, it is possible to develop close approximations to per-

formance. Bakoglu has developed a model for CPU performance called SUSPENS

(Stanford University System Performance Simulator) [Bak87]. SUSPENS is an an-

17

alytical model that is primarily used for predicting tCPU based on technological pa-

rameters. Organizational parameters that a�ect tCPU are also included in the model.

The factors that SUSPENS models are:

� Device Properties: the drive capability and the input capacitance of the tran-

sistors.

� On-chip interconnections: the number of levels, electrical characteristics, and

packing density of on-chip interconnect.

� O�-chip interconnections: the number of levels, electrical characteristics, and

packing density of the chip-to-chip interconnect.

� Power dissipation: the power dissipation density of the module on which the

chips are packaged.

� Implementation: the average on-chip interconnection lengths, the average num-

ber of gates per clock cycle, and the average fan-out per gate.

SUSPENS models interactions between these factors together with Rent's rule [Rad69]

to predict the die size, clock frequency (1=tCPU) and power dissipation of the CPU.

Rent's rule is an empirical formula that relates the number of I/O pins to the number

of gates in a block of logic. This relationship can be expressed as

Np = KN�

g

where Np is the number of I/O pins, � is the Rent's constant, Ng is the number

of gates in the logic block, and K is a proportionality constant. The constants K

and � are determined empirically and change with di�erent CPU organizations (e.g.

microprocessors, minicomputers, supercomputers).

Figure 2.7 shows a comparison between CMOS, silicon bipolar and gallium

arsenide chips. The CMOS and silicon bipolar data come from

[Bak90]. The GaAs data is based on a new SUSPENS model that we have

developed for Vitesse VSC2 technology [VIT91] (see Appendix A). In the comparison,

18

1

10

100

1000

10000

1000 10000 100000 1000000

C
lo

ck
 fr

eq
ue

nc
y

(M
H

z)

Gates per chip

1 um CMOS

1 um GaAs DCFL

1 um Si bipolar

Figure 2.7: A comparison of CMOS, silicon bipolar and GaAs DCFL technologies.

The average logic depth is 10 gates and number of interconnection levels is 4 for all

technologies.

the transistor length, the number of levels of on-chip interconnect and Rent's con-

stants are kept the same for all three technologies. The data shows that at very low

levels of integration (1 000 gates) the silicon bipolar technology has the highest clock

frequency. However, GaAs technology has the highest clock frequency for integration

densities greater than 4 000 gates.

The power dissipation of each chip is limited to 10W. This power dissipation

constraint severely limits the clock frequency of silicon bipolar chips as the integration

density increases beyond 10 000 gates. The power dissipation of a GaAs chip can be

reduced by scaling down the average size of the transistors in a gate. At around

40 000 gates the transistors are of minimum size, and no further scaling is possible:

it is no longer possible to limit the power dissipation to 10W for integration levels

greater than 40 000 gates. Figure 2.7 shows the line for GaAs ending at 40 000 gates.

CMOS reaches the power dissipation limit at 300 000 gates. Figure 2.7 shows the line

for CMOS ending at 300 000 gates. The current of bipolar gates can be limited so

that the chip always satis�es the power dissipation limit. Doing this slows the bipolar

19

1

10

100

1000 10000 100000 1000000

P
ow

er
 (

W
)

Gates per chip

1 um CMOS

1 um GaAs DCFL

1 um Si bipolar

Figure 2.8: Power consumption versus number of gates for CMOS, silicon bipolar and

GaAs DCFL.

chips down. Figure 2.8 shows power consumption versus integration density for the

three technologies.

The CPU clock frequency of GaAs is determined by the average gate delay

and the average number of gates per CPU clock cycle. The gate delay increases

linearly with the fan-out of a gate. The fanout of a

gate can be de�ned as the ratio of the total width of the transistors

that are being driven divided by the width of the driver transistor. In order

to include the loading of the interconnect between the driver transistor and the driven

transistors the length of interconnect Lint can be multiplied by a proportionality

constant �int that converts the loading of a unit length of interconnect into equivalent

transistor gate width. The fanout (FO) of the gate in Figure 2.6 is given by

F0 =
W4 + �intLint

Wdriver

(2:3)

where W4 is the

input gate width of Q4 of the next stage, Lint is the length of the interconnect

between the output of the NOR gate and the input of Q4 andWdriver is the gate width

20

Ng Dc Tg fc P

Technology (mm) (ps) (MHz) (W)

CMOS 1 000 1 1 000 97 1

Si Bipolar 1 000 1 65 1500 10

GaAs DCFL 1 000 2 126 792 1

CMOS 10 000 5 1 500 67 2
Si Bipolar 10 000 5 290 330 10

GaAs DCFL 10 000 6 164 607 6

CMOS 100 000 23 2 300 40 8
Si Bipolar 100 000 23 3 50 27 10

Table 2.3: A comparison of CMOS, Si bipolar and GaAs DCFL technologies. Ng is
the number of gates, Dc is the length of the side of the square die, Tg is the average
gate delay, fc is the clock frequency and P is the power dissipation of the die.

of driver transistor (Q1 or Q2). As integration density increases, the size of the driver

is reduced to conserve power, thus reducing its input capacitance. At the same time,

the loading of the interconnect increases, because on average the gates being driven

are farther away. This results in a drastic increase in fanout as integration density

increases. This increase in fanout causes the rapid decline in clock frequency for

integration densities from 2 000 to 60 000 gates (see Figure 2.7).

It is possible to compare single chip and multiple chip implementations in

the di�erent technologies. Table 2.3, which is based on Figure 2.7, shows that a

100 000 gate CPU implemented as a single chip in 1�m CMOS can achieve a clock

frequency of 40 MHz dissipating 8 W of power. A single chip implementation in GaAs

DCFL is not possible within the power constraints. A ten chip implementation of the

same CPU in GaAs will have a clock frequency of 607 MHz and a power dissipation

of 60 W. Assuming that the packaging technology does not a�ect maximum clock

frequency, the power dissipation has been increased by a factor of 7.5, but the perfor-

mance has increased by almost a factor of 15. Clearly, when the e�ect of inter-chip

interconnection delay is included this performance will be reduced somewhat. At the

lowest integration level (1 000 gates) GaAs DCFL achieves half the speed of silicon

21

bipolar at one tenth the power dissipation.

The integration density and power dissipation of a CPU usually depend on

its cost and performance. At the high end of the spectrum are supercomputers, which

have low integration density, high clock frequency, high power dissipation and high

cost. High performance packaging and cooling are necessary to reduce the impact on

system performance of multiple chip crossing delays and to remove the large amounts

of heat generated by the chips. The CRAY-1, CRAY-2 and CRAY-3 machines de-

signed by Seymour Cray are the best examples of this class of CPU [Rus78, KH87]. At

the low end of the spectrum are single chip microprocessors fabricated from CMOS,

with high integration density, low clock frequency, low power dissipation and low cost.

GaAs DCFL technology changes the nature of the trade-o�s between

integration density, power dissipation and performance. At integration den-

sities of thirty to forty thousand gates, GaAs DCFL technology provides three to

four times the performance of CMOS for twice as much power dissipation. In addi-

tion, at this integration density GaAs has twice the performance of silicon bipolar

for the same power dissipation. For integration densities less than 40 000 gates the

current mode logic (CML) used in Si bipolar achieves higher clock frequencies. For

integration densities much greater than 40 000 gates the power dissipation of CML be-

comes unacceptably high. If the power dissipation could be controlled at integration

densities greater than 100 000 gates, CMOS technology would have a higher clock fre-

quency. It should be noted that it is possible to implement CML in GaAs and achieve

even higher frequencies than Si bipolar, but high power dissipation results and, con-

sequently, clock frequency declines rapidly as integration density increases [Bak90].

Finally, it should be noted that this comparison is based on 1990 technologies. Smaller

minimum feature sizes will achieve higher clock frequencies and less power dissipation

for the same number of gates. However, the relative speed-power-density product of

di�erent implementation technologies is expected to remain constant.

We have seen that at the integration density of forty thousand gates GaAs

technology has superior performance and power dissipation to silicon technology.

Forty thousand gates is a signi�cant because it provides adequate integration density

22

to implement a RISC CPU [HCS+87, Jou89]. However, this is an insu�cient integra-

tion density to implement a cache memory with a miss ratio small enough to make

it useful. Therefore it is necessary to use high-performance packaging techniques to

ensure the high on-chip performance of GaAs is not wasted by excessive chip crossing

delays.

Until recently, high performance packaging had been an area that was

largely ignored by the designers of microprocessor based systems because

the speed of the chips used in these systems did not warrant

advanced packaging techniques. However, the speed of the integrated

circuits implemented in high-speed technologies such as BiCMOS and GaAs

have reached the point where the interconnections between them now limit total

system performance. Furthermore, due to the lower die yield and higher cost of large

chips, it could become more cost e�ective to combine smaller chips that have higher

die yield and lower cost with high-performance packaging than it is to use one large

chip [SM91]. This situation motivates us to study the impact that high-performance

packaging has on the system-level performance of a microprocessor.

High-performance multichip module (MCM) packaging allows a bare chip

(the integrated circuit die without a chip-carrier) to be mounted on a sub-

strate in close proximity to other chips. This arrangement has a

number of advantages over conventional packaging that uses individual chip-

carriers and printed circuit boards (PCBs). Mounting the chips directly on the sub-

strate allows many more signal I/Os and power connections to be made. This sig-

ni�cantly increases the chip I/O bandwidth. MCM packages also allow much closer

spacing between chips than conventional packaging, thus reducing the chip-to-chip

propagation delay and increasing the packaging e�ciency. The packaging e�ciency

is measured by the ratio of active circuit area of the chips to area of the package is

increased from 10% for PCB technology to 30{75% for high density MCMs [Rec89].

MCMs also provide much denser wires than PCBs. These wires have lower values

of parasitic capacitance and inductance, but usually have higher resistance per unit

length than PCB wires. The combination of

23

Parameter ULSI Thin Film Ceramic PCB

No. layers 2{5 4{9 60 40
Wire pitch (�m) 1{4 25{75 90{200 150{250

Typical Size (cm� cm) 3� 3 10� 10 10� 10 60� 60

Rint (
/cm) 100{1000 3{10 0.4{2 0.5

Cint (pF/cm) 1.5 1.0 2.0 0.8

CintRint (ps/cm
2) 150{1500 3{10 0.8- 4 0.4

Dielectric constant 3.9 2.5{4.0 5-10 4.0

Time of
ight (ps/cm) 70 50{70 75{100 70

Power Density (W/cm2) 40 20 4 0.5
Cost highest �! lowest

Table 2.4: A comparison of on-chip and o�-chip packaging Technology [Bak90, Rec89,

Tum91].

short wiring distances, high wiring densities and superior electrical proper-

ties of the wiring give MCMs low latency and high-bandwidth chip-to-chip intercon-

nections. This combination also makes it possible to use smaller drivers that have

lower power dissipation and faster switching times. However, even though the chips

on an MCM may dissipate less power, packaging the same number of chips in a much

smaller area, greatly increases the power density of an MCM compared to that of a

PCB. Therefore, MCM technology must also be accompanied by more e�cient cooling

technology.

MCM packaging has been implemented in several technologies, including

chip on co�red multilayer thick �lm ceramic on ceramic substrates; and thin �lm

polymers on silicon or ceramic substrates [Tum91]. Table 2.4 compares the wire

density, electrical and thermal performance of these technologies with ultra large

scale integration (ULSI) and conventional PCB packaging technology. The table

shows that the time of
ight of electrical signals is roughly equal for all the packaging

technologies. However, the large interconnect resistance of the ULSI interconnections

causes them to behave as distributed RC lines instead of a transmission lines. The

delay of a distributed RC line is proportional to CintRint. The interconnections in

thin �lm MCM technology also behave as distributed RC lines. In contrast, the low

resistance of the ceramic MCM and PCB interconnections allows transmission line

behavior (time of
ight) to characterize the delay. The costs in the table show that

24

ULSI will be the most expensive. The reason for this is that large chips have very

low yields which makes them expensive.

Due to the superior electrical properties, the small size and low weight of

MCM packages this technology will see wide spread use in the computer industry in

the years to come.

2.4 Predicting Computer Performance|A Literature Re-

view

In this section we will review the techniques that other researchers

have used to predict computer performance. Most of these techniques base

their predictions solely on CPI. The presentation of these techniques is divided into

two sections that discuss the CPU and memory components of computer performance.

The discussion within each of the sections covers the spectrum of performance pre-

diction techniques that range from analytical to simulation methods.Because the lit-

erature in these areas is extensive, we limit the presentation to those papers that are

directly related to the work described in this thesis.

Analytical models provide a low computation time method for estimating

computer performance which allows the rapid exploration of large portions of the

design space covered by the model. The low-computation time comes at the price

of the accuracy of the performance predictions. In contrast to analytical modeling,

detailed simulations can provide very accurate performance predictions, but require

long computation times. We will see that in practice researchers trade o� computa-

tion time and prediction accuracy by combining elements of analytical models and

elements of simulation.

2.4.1 Predicting CPU Performance

Most researchers have relied on simulation to determine the number of cy-

cles spent processing instructions in the CPU. The most direct simulation technique

is instruction interpretation of the program by a simulator that models the CPU

25

organization. Researchers have used this simulation technique to evaluate a variety

of architectures (see for example [SWP86]). The major drawback of this approach is

long execution times. It can take from 1 000 to 10 000 real CPU cycles to simulate one

model CPU cycle, depending on the complexity of the model. This slow simulation

speed severely limits the size of the programs that can be simulated and the parts

of the design space that can be explored. To speed up the simulation process and

allow the evaluation of larger programs, trace-driven simulation techniques have been

developed. The traces consist of a sequence of instruction and data addresses that

are generated during the execution of the computer program. These traces can be

collected while the program is being simulated. Once a trace has been collected it

can be used repeatedly. Trace driven simulation is much more e�cient than direct

simulation because no explicit instruction interpretation is required in the simulation

process. This increase in e�ciency can provide an order of magnitude speedup over

direct simulation. Trace-driven simulation has been used extensively to study CPU

performance [KD78] and memory hierarchies [Smi82].

Recently, very e�cient trace-collection techniques have been

developed that are based on direct program execution instead of simulation[MIP88,

SCH+91]. These techniques have enabled

the tracing of much larger programs; however, they require a real machine

that implements the instruction set architecture of the computer that is being simu-

lated. The idea behind the direct execution technique is to transform the program,

by adding extra instructions to the program's object �le, so that it monitors its own

execution. Such a program transformation must not a�ect the

normal execution of the program. The monitoring code can be used to gen-

erate traces for performance analysis by other programs. Direct execution techniques

can generate traces at a rate that is up to two orders of magnitude faster than simula-

tion based trace-collection techniques. In fact, in most cases it is quicker not to save

the trace at all, but instead, to perform the CPU or memory hierarchy analysis as

the trace is produced. Doing this makes it possible to simulate traces that far exceed

the disk capacity of the computer on which the simulation is being performed.

26

To further increase the speed and generality of performance predictions, re-

searchers have used statistics derived from program traces to construct performance

models. These models are then used, instead of the traces, to predict CPU perfor-

mance. This approach was pioneered by Peuto and Shustek [PS77] who used a CPU

timing model to predict the performance of the IBM 370/168 and the Amdahl 470

v/6. A more recent example of this approach is the computer architects workbench

[MF88]. This work uses compile time analysis to predict the performance of a variety

of architectures. A further example of this approach is the work done by Emma and

Davidson [ED87] to develop performance models for CPU pipelines. They present a

set of trace reductions to simplify the collection of statistics that characterize the per-

formance of a large class of pipelines. These statistics show that increasing pipeline

depth monotonically increases the CPI of a program due to increases in data and

control dependencies. However, as we saw in Section 2.2.1, increasing pipeline depth

decreases the cycle time (tCPU). They develop an analytical model and use it explore

this CPI-tCPU trade-o�. The optimal pipeline length is shown to be nopt =
p

�,

where
 is the ratio of circuit delay to latch overhead and � is a factor that is in-

versely proportional to control and data dependency delay. Other papers have also

investigated the CPI-tCPU trade-o� for CPU pipelines. The �rst to do this was a

paper by Kunkle and Smith [KS86]. This paper studies the CRAY-1S using simula-

tion of the Lawrence Livermore Loops and analytical timing constraints that build

on work done by Fawcett [Faw75]. Their results show that 8 to 10 levels of gate delay

per pipe segment yields the optimum overall performance for the �rst 14 Lawrence

Livermore Loops [McM72]. Dubey and Flynn have developed an analytical model to

explain these results [DF90]. Their equation for optimal pipeline depth has the same

avor as that of Emma and Davidson's.

2.4.2 Cache Hierarchy Performance

There are four aspects to cache design: the cache organization, the per-

formance evaluation methodology, the performance metric and the implementation

technology. The goal of cache design is to determine a cache organization that max-

27

imizes performance given certain implementation technology parameters such as cir-

cuit speed, cost, physical size and power consumption. However, the choice of perfor-

mance evaluation methodology and performance metric will a�ect this design choice.

The dominant method of cache performance

evaluation is trace-driven simulation [Smi82]. In this review of cache design

we will show how researchers have evolved from evaluating caches with short single-

application traces using miss ratio as the performance metric to evaluating caches

with long multiprogramming traces using execution time as the performance metric.

This evolution has deepened the understanding of cache behavior and has resulted

in improved cache designs. This review will also show how researchers have incorpo-

rated technology parameters into the cache design problem. Finally, we will review

techniques for speeding up cache performance evaluation through the use of novel

trace-driven simulation techniques.

A. J. Smith has written a comprehensive summary of cache design that

analyzes most of the cache organization design alternatives listed in Table

2.2 with trace-driven simulation using miss ratio as the performance metric [Smi82].

Smith gives
exibility and repeatability as reasons for using trace-driven simulation,

but also cautions that cache performance is very dependent on the workload [Smi85a].

A real workload includes the e�ects of multiprogramming and operating system (OS)

code which are di�cult to simulate with the direct simulation trace generation method

used by Smith. To simulate the e�ect of multiprogramming, Smith creates a mul-

tiprogramming trace by interleaving the traces from 3 or 4 programs together us-

ing a round-robin scheduling policy with 10 000 memory references between context

switches. The total length of the multiprogramming traces was one million memory

references. In a later paper, Smith argues that the caches should be
ushed between

context switches to reduce the sensitivity of the results to the number of programs

used to simulate multiprogramming [Smi87].

Measurements taken from real computer systems showed miss ratios that

were higher than those predicted by trace driven simulation [Cla83]. This

observation has led researchers to obtain longer traces that include realistic OS and

28

multiprogramming memory references [ASH86, AKCB86]. In particular, Agarwal's

results show that: 1) OS code can have a miss ratio that is twice as high as applica-

tion code; 2) purging the cache on context switches severely increases the miss ratio

of large caches; 3) context switch intervals are not constant; and 4) trace lengths

for multiprogramming traces should be longer than one million memory references

[AHH88].

The trend in cache research to use more realistic traces was accompanied

by a change in the performance metric from cache miss ratio to e�ective memory

access time [Smi87, Aga88]. E�ective memory access time (teff) is de�ned as teff =

tcache + Mcache � tmiss, where tcache is the access time of the cache, Mcache is the

miss ratio of the cache and tmiss is the time it takes to fetch a cache line from main

memory. E�ective memory access time is a better performance metric for a computer

with a cache than miss ratio because it re
ects execution time. The use of e�ective

access time directly exposes the CPI-tCPU trade-o� for caches. In contrast, the use

of miss ratio is only indirectly related to this trade-o�. As an example, consider

organizational changes such as increasing set-associativity or line size that decrease

miss ratio, but that may increase tcache or tmiss. The result of such changes will be a

lower miss ratio but may be a higher e�ective access time.

The values of tcache and tmiss can only be determined with

knowledge of the implementation technologies of the computer. This knowl-

edge is vital, as Hill shows in [Hil87], in order to arrive at a cache organization that

maximizes performance. Using e�ective access time, Hill compares the miss ratios

of caches of varying set associativities. The absolute miss ratio di�erence between

set-associativities decreases as caches get larger. Furthermore, for caches of 32 KB or

larger the miss ratio reduction

from set-associativity does not make up for the increase in tcache and re-

sults in a larger e�ective access time. Hill estimates the increase in tcache from set-

associativity for caches implemented in TTL, ECL and custom CMOS technologies.

Przybylski has used Agarawal's improved traces to evaluate various cache

organizations [Prz90a]. He makes a cogent argument for using execution time instead

29

of miss ratio as the cache performance metric. This metric allows the exploration

of trade-o�s among cache size, cache cycle time, set associativity, cache cycle time,

cache line size, and main memory speed. The trace-driven simulator used to evaluate

these trade-o�s keeps an accurate account of all cycles spent in the memory system.

Przybylski's results show that for common implementation technologies, performance

is maximized for cache sizes in the 32{128KB range. His set- associativity results are

similar to those of Hill. He shows that the cache line size that maximizes performance

is much smaller than the line size that minimizes the miss ratio [Prz90b]. One of

the major conclusions of Przybylski's study of single-level caches is that for high

performance processors, multi-level cache hierarchies are needed in order to bridge

the gap between CPU cycle time and main memory access time.

On-chip microprocessor caches are of special interest because they must be

implemented in a limited amount of silicon area [SH87]. Alpert and Flynn have

analyzed on-chip caches of equal area [AF88]. Their results show that when overhead

of tag area is included in the silicon area that is consumed by the cache, large block

sizes give the highest performance. Furthermore, when the overhead cost is high,

caches that fetch partial blocks perform better than caches that fetch entire blocks.

Hill and Smith have also investigated on-chip microprocessor caches and have come

to similar conclusions [HS84]. Duncombe has investigated how the access time of

on-chip caches varies with caches-size and aspect ratio [Dun86]. He shows that the

aspect ratio of a cache can have a signi�cant e�ect on access time. For this reason

cache organizations that could be implemented as square arrays had the fastest access

times for their size.

Recently, many researchers have investigated two level caches [BW87, BW88,

BWL89, BKB90, BKW90, PHH89, SL88, Smi85b, Wil87]. Two-level caches have been

motivated by the need for a fast uniprocessor to close the speed gap between the CPU

and memory [RTL90] and the need for shared-memory multiprocessors to reduce bus-

tra�c [LLG+90, LT88]. One of the �rst comprehensive studies of the performance

of two-level caches was by Short and Levy [SL88]. They evaluated a variety of two-

level cache organizations based on execution time using a trace-driven cycle-by-cycle

30

simulator. They concluded that second-level caches provide performance gains when

main-memory access times are long or when �rst-level caches are small. Short and

Levy also investigated the e�ect of varying the write policy at both levels of cache,

but did not consider write-bu�ering. Przybylski extends their work by examining the

trade-o� between miss ratio and second-level cache access time [PHH89]. His results

show that the �rst-level cache reduces the number of references to the second-level

cache, without reducing the number of second-level misses. This has the e�ect of

skewing the trade-o� in favor of the miss ratio over the access time, because the

second-level cache is not referenced as much as it would be in a single level system.

Przybylski concludes that for the best performance the second-level

caches should be larger and more set-associative, to lower the miss ratio, than

a single-level cache in the same system would be. All experiments were conducted

with a write-back �rst-level cache. The write-policy of the second-level cache was not

considered.

Besides the techniques for e�cient trace generation that were described in

the section on CPU performance, researchers have exploited the properties of the

traces themselves to reduce the trace-length and thus speedup cache simulation.

Smith was the �rst to develop this approach in a technique called trace deletion

[Smi77]. This technique, which is based on page reference traces, deletes references

to the top D elements of an LRU stack.

Smith shows that the reduced trace can be used to simulate a memory larger

than D pages to produce the same number of page faults, providing that the same

page size and the LRU replacement algorithm are used. Puzak has extended Smith's

technique to the simulation of set-associative caches [Puz85]. Puzak uses a reduced

trace generated by references that miss in a direct-mapped cache (cache �lter) to

simulate caches which have a greater degree of set associativity or larger size. Other

techniques for trace compression can reduce the trace signi�cantly, however, they

cannot guarantee accurate performance evaluation [Aga88, LPI86], especially

when the memory-system uses concurrency, e.g. overlap between

instruction and data references or write bu�ers.

31

Cache simulation speed can also be increased by e�ciently simulating mul-

tiple cache con�gurations at the same time. Mattson et al. have determined the

miss ratios of all caches with a certain block size with one pass through the trace

[MGS+70]. Their simulation approach is based on the fact that stack replacement

algorithms like LRU guarantee the inclusion property. The inclusion prop-

erty holds whenever the contents of a smaller cache are always a subset of the contents

of a larger cache. When inclusion

holds it guarantees that a reference that is a hit in a smaller cache

will always be a hit in the larger cache. Mattson's stack simulation

technique has been extended to cover set-associative caches and various block

sizes [TS71, HS89]. Stack simulation has also been adapted to the simulation of write-

back caches, where the number of dirty-misses is an important parameter [TS89].

However, even though stack simulation techniques can be used to speed up simulation

by as much as an order of magnitude, they cannot be used to predict the performance

of cache-hierarchies with prefetch, or write-back bu�ers, or that use concurrency to

improve performance.

sectionThen Why This Research?

Microprocessor implementation technology has progressed to the point

where it is now possible in CMOS to put the CPU,
oating point unit

(FPU), cache management unit (CMU), and the �rst level of cache on

single chip. Using advanced packaging techniques with high speed technolo-

gies that have less integration density than CMOS, such as GaAs, it is possible to

put the CPU, other system level components and an appreciable amount of cache on

a single substrate. In order to

fully exploit the performance potential of such systems it is necessary that

the system organization be optimized to the technology. Although researchers have

made signi�cant contributions to computer design and computer performance eval-

uation, except for a few notable exceptions [KS86, Hil87], most have ignored the

quantitative exploration of the interaction of technology and organization. Research

in this area is particularly important if microprocessor performance is to keep pace

32

with technological improvement.

This thesis will use a multilevel optimization design methodology to

quantitatively explore the e�ect of technological constraints such as gate-

speed, integration density, interconnection delay and system partitioning, together

with organizational variables such as parallelism, pipelining and memory hierarchy

design on performance as measured by average time per instruction (TPI). Putting

these disparate issues in terms of TPI clari�es the trade-o�s between them and makes

it possible to optimize computer design in a straightforward way.

Our focus will be limited to the memory hierarchy, because the memory

hierarchy determines, to a large extent, the performance of a

computer, particularly high performance computers. Furthermore, the

memory system components use the majority of the system resources and

dissipates most of the power.

CHAPTER 3

A MICROPROCESSOR DESIGN

METHODOLOGY

The goal of this chapter is to introduce a new performance directed design

methodology for microprocessor design. This methodology will be used in later chap-

ters to optimize the design of a GaAs microprocessor. The base architecture of this

processor will also be introduced in this chapter. The implementation of this design

methodology requires performance analysis techniques that are capable of accurately

predicting TPI. The development of two new performance analysis tools for this

purpose will be explained and evaluated using the GaAs microprocessor architecture.

3.1 Multilevel Optimization

Many design automation researchers have advocated a top-down methodol-

ogy for digital system design. In this methodology, the design starts with an initial

high-level speci�cation of the organization which is decomposed and re�ned into a

low-level physical implementation. In the process, the design is transformed between

di�erent abstraction levels (e.g. register transfer level (RTL), gate level, transistor

level), and is optimized separately at each level. Top-down design makes it possible

for a team of designers to manage the immense complexity of present day digital sys-

tems design; however, because interaction between the abstraction layers is ignored,

a purely top-down approach will lead to computer designs with a performance that

is lower than the capabilities of the implementation technology.

33

34

It has been recognized for some time that the low-level physical character-

istics of a particular technology should be used to guide higher level design decisions.

Mead and Conway, in their classic book on VLSI design [MC80], stress that physical

design issues, such as layout, interconnect and timing, are critical to the quality of

the design, and therefore, should be considered early in the course of a design. More

recently, researchers in the area of high- level synthesis of digital systems from ab-

stract behavioral level speci�cations have also recognized the importance of physical

implementation issues on the performance of the design [MK90]. In both of these

cases the metric of performance has been cycle time.

In the previous chapter it was argued that TPI is the correct performance

metric to use to evaluate computer hardware. Given TPI as the performance metric,

it is not enough just to consider how implementation technology considerations should

guide organizational decisions to achieve a lower cycle time (tCPU), it is also necessary

to consider how these design decisions a�ect the average number of cycles executed

per instruction (CPI). To use TPIto guide the design requires an integrated design

methodology. Our integrated design methodology is called multilevel optimization.

In multilevel optimization, optimizations are performed across traditionally separate

abstraction levels to achieve higher system performance. Multilevel optimization

relies heavily on the ability to accurately predict the performance at each abstraction

level in order to evaluate the impact of design trade-o�s on system performance, and

may require design iteration among the levels as the design progresses.

The performance prediction tools that are necessary to support multilevel

optimization are a trace driven simulator and a timing analyzer. Trace driven sim-

ulation provides a an accurate prediction of CPI and timing analysis based on im-

plementation technology dependent delay parameters is used to accurately predict

tCPU. During delay analysis, close attention must be paid to the delay caused by

the interconnect and multiplexing of a design to ensure accurate delay predictions.

Accurate delay predictions are important because, when implementation details are

considered, the design space can be discontinuous [MK90]. In a discontinuous design

space, a small change in organization or in a particular delay may cause a signi�cant

35

decrease or increase in tCPU.

A base architecture is de�ned as a register transfer level (RTL) organization

and a set of implementation technologies. It is important that the base architecture be

as simple as possible in order to accurately assess the performance impact of making

it more complicated. Taking the base architecture as a starting point in the design

space, and using the performance analysis tools, multilevel optimization proceeds as

follows. The base architecture is simulated to establish a base level of performance. In

order to explore the e�ect of changes in the base architecture a set of candidate designs

is encoded into the trace-driven simulator and changes to the RTL model are made to

re
ect the new organization. The performance of the set of designs is simulated using

trace-driven simulation to reveal the general nature of the CPI-tCPU trade-o�. Once

this trade-o� has been established, delay modeling, timing analysis and layout provide

the technology constraints. These technology constraints make the CPI-tCPU trade-

o� speci�c and allow the selection of the highest performing design choice. The RTL

speci�cation represented by this design choice becomes the new base architecture.

This process of generation and evaluation of organizations continues until the design

meets the performance speci�cations. The resulting multilevel design methodology is

diagrammed in Figure 3.1.

This thesis presents the multilevel optimization of a high performance mi-

croprocessor implemented in GaAs and multichip module technology. Through the

analysis of this speci�c example we will draw some general conclusions about the in-

teraction between the organization and implementation of microprocessors. The next

section describes a base architecture. This is followed by sections on the performance

prediction tools. In the chapters that follow, this architecture will be improved using

multilevel optimization.

36

RTL system
design

Partitioning
layout
interconnect

Parameterizable
trace-driven
simulation

Program
traces

CPI X

Timing
analysis

tCPU = TPI

Delay
macro-models

Implementation
Technology

Figure 3.1: Multilevel design optimization.

3.2 Base Architecture

3.2.1 System Level Organization

The system level organization base architecture that serves as the starting

point for the design example and that is used throughout this thesis is diagrammed

in Figure 3.2.

This architecture includes a single-chip pipelined integer CPU and a single-

chip
oating-point processor unit (FPU) both of which are based on the mips instruc-

tion set architecture [Kan87]. The architecture also includes a two-level cache which

comprises of a high-speed, low-latency primary (L1) cache and a much larger, high

bandwidth secondary (L2) cache. The L1 cache, which is split into I-cache (instruc-

tions) and D-cache (data), and the L2 tags are to be implemented with 1K � 32-bit

SRAMs. Finally, the base architecture includes a cache management unit (CMU)

chip. The CPU, FPU, CMU and SRAM chips are being designed and fabricated in

37

CPU

CMU
L1-D cache

4 KW
4 W line

L2 cache (unified)
256 KW

32 W line

L1 refill
4 W

I-in
1 W

D-in
1 W

D-out
1 W

L 2
addrL2 cache tags

8 KW
MCM

L2 tag

Main memory

I-addrL1-I cache
4 KW

4 W line

1 W

4 W

4 W

write-back

mem
addr

FPU

tag tag

D-addr

D-in
1 W

Memory
controller

Figure 3.2: The base architecture.

38

Vitesse's HGaAs III process [VIT89]. All of these chips will be mounted as unpack-

aged die and interconnected on a MCM. The boundaries of the MCM are shown in

Figure 3.2 by the grey region. The target cycle time for this architecture is 4 ns. This

will provide a peak instruction execution rate of 250 million instructions per second

(MIPS).

The rationale behind the base-architecture is to design an organization that

is a simple as possible using GaAs and MCM technology. We will see that as the thesis

progresses the design will becomemore complex. However, complexity is added only if

it provides a measurable impact in performance and is feasible within the constraints

of the implementation technology. This is the essence of the multilevel optimization

design methodology.

In order to provide enough memory for a processor of this speed, assuming

several megabytes are needed per MIP, main memory sizes in the range of 512MB to

4GB are required[Jou90]. Main memories of this size require hundreds of DRAMS

and have access times of between 300 and 400 ns. To hide this main memory access

time from the CPU requires the use of a two-level cache hierarchy. The details of this

cache-hierarchy are presented below.

The L1 cache provides single cycle read access to the CPU. It is organized as

separate direct-mapped 4KW1 instruction (L1-I) and data (L1-D) caches. The line

size and fetch size are both 4 W. A direct mapped organization is chosen for the L1

cache because this provides the fastest e�ective access time [Hil88]. The reason for

selecting a 4KW cache size is that the OS page-size is 4KW. Thus it is possible to use

untranslated bits to index directly into the cache without the need for extra hardware

resources to solve the synonym problem [WBL89]. Once a 4KW cache size has been

selected, 4 W is the largest re�ll and line size that can be used to re�ll a cache line

in a single access, assuming the cache is constructed from 1K � 32 b chips. Single

access re�ll greatly simpli�es the L1 cache-control logic. The penalty for re�lling a 4

W line from the L2 cache is 6 CPU cycles.

11W = 4B = 32 b; one word = four bytes = 32 bits

39

The behavior of writes (stores) to the L1-D cache follows a simple write-

through write-miss-invalidate policy. Writes that hit in the cache take a single cycle.

In this cycle the cache tags are checked, and the data are written into the cache. If

the address hits in the cache, then CPU processing continues. If the address misses

in the cache, then the CPU must stall for a cycle while the line is invalidated, since it

now contains corrupted data. No data are lost because all data that is written is sent

to an 8-entry deep write-bu�er that is placed between L1-D and L2. This write-bu�er

allows the CPU to continue processing using the single cycle access L1 cache while the

data is written to the slower L2 cache. When an L1 cache miss occurs the CPU has

to stall until the write bu�er has been emptied and the cache line has been re�lled.

Waiting for the bu�er to empty before fetching the new line from the L2 cache is the

simplest way to ensure that ordering of reads and writes in the instruction stream is

preserved with respect to the L2 cache.

Details of the L2 cache organization are as follows. Following the lead of

earlier work on two-level caches, we use a uni�ed direct-mapped L2 write-back cache

[SL88, WBL89, Prz90a, TDF90]. The size of this cache is 256KW and it is constructed

from 8K � 8 b BiCMOS SRAMs that have an access time of 10 ns. A cache of this

size will not �t on the MCM, and therefore it must be placed on a PCB. The extra

communication delay from the MCMmodule to the board adds 2 cycles to the 4 cycle

L2 cache access time, yielding the re�ll penalty of 6 cycles. The re�ll path between

the L2 and L1 caches is 4 W wide and is shared between the L1-I and L1-D caches.

To compensate for the large main memory access time the line size and re�ll size of

the L2 cache is 32 W. The actual re�ll penalties for this line size are roughly 140

CPU cycles if the line to be replaced has not been modi�ed (clean) and almost 240

cycles if the line has been modi�ed (dirty). These penalties assume a main memory

bus with a peak bandwidth of 266 MB/s [Tho90]

The CMU contains the translation lookaside bu�er (TLB) logic, the write

bu�er, and the cache controllers for both levels of cache. The TLB is organized as

a 2-way set-associative 32 entry cache for instructions and a 2-way set-associative 64

entry cache for data. It requires 4Kb of memory. The TLB is managed by software

40

[Kan87]. The write bu�er is a 64 b wide 8 entry shift register. The cache controller

manages the re�ll of the L1 cache from the L2 cache and the re�ll of the L2 cache

from main memory. The cache controller also manages the emptying of the write

bu�er into the L2 cache. Placing the L2 cache tags on the MCM reduces their access

time. This is important because the L2 is a write-back cache and so the cache tags

must be checked before the write is performed. If the cache tags were constructed

from the same SRAMs as the L2 cache and placed on the PCB the L2 write time

would double.

3.2.2 Register Transfer Level Organization

An RTL schematic of the CPU and L1 cache datapath used in the base

architecture is shown in Figure 3.3. The major components of the datapath are the

following combinational circuits:

� Register File: The 32W � 32 b register �le (RF), with two read ports and one

write-port. The RF is capable of performing a read or write in half of a CPU

cycle.

� ALU: The arithmetic and logic unit that is capable of producing a new result

every cycle.

� Shifter: The barrel shifter, which is capable of left or right shifts of 0 through

31 bits in a single cycle.

� Comparator: The comparison unit which is capable of comparing two operands

for equality in under half of a cycle.

� Next-PC: The next program counter (PC) unit, which contains a PC incre-

menter for computing the PC for the sequential instruction, and a PC adder

for computing the branch target.

� L1-I cache: The data half of the level-one cache, which has a single cycle access

time.

41

Comparator

Register File

MUX1 MUX2

ALU Shifter

MUX3

MUX4

MUX5

L1-D cache

L13

L12

Addr

Data-In

Data-out

L1-I cache

Instruction

Next-PC

PC

Immediate

L14

L10

L7

L3

L1

L11

L9

L5

L4

L6

MEM forward

EX forward

IF

R

EX

MEM

L8

W

L2

RF Addr

W

L16

L15

Figure 3.3: RTL schematic of the CPU and L1 cache portions of base architecture.

42

� L1-D cache: The instruction half of the level-one cache, which has a single cycle

access time.

These components are interconnected using multiplexers and latches. The base ar-

chitecture executes instructions in a �ve-stage pipeline. The pipeline stages are in-

struction fetch (IF), register �le read (R), execute (EX), memory access (MEM) and

register �le write (W). The parts of the datapath represented by each of these stages

is indicated by the labels on the right and left of Figure 3.3.

The CPU executes three classes of instructions: execute, memory and branch.

The execution of each class of instruction takes a di�erent route through the datap-

ath. All instructions are fetched from the L1-I cache during the IF stage. Execute

and memory instructions can modify the register �le and so require all �ve stages

for complete execution. In contrast, branch instructions only require the �rst three

stages for complete execution. Execute instructions compute new data in the execute

stage, using either the ALU or the shifter, and do nothing in the MEM-stage. Mem-

ory instructions use the EX-stage ALU to perform the address calculation and use

the MEM-stage to fetch data from or send data to the L1-D cache. Branch instruc-

tions compute the branch condition in the �rst half of the execute stage using the

comparator. The branch condition is then used to control a multiplexer which selects

either the branch target address or the next sequential instruction address, which by

then, has already been computed in the Next-PC unit.

There are two forwarding paths: EX forward and MEM forward. These

provide a way to avoid data hazards between dependent instructions without stopping

the
ow of instructions through the pipeline (stalling). The EX forward is used to

forward data between two instructions that are adjacent in the instruction stream.

The MEM forward is used to forward the data between two instructions that are

one instruction apart. An instruction that is separated by more than one instruction

from an instruction on which it is dependent can read its operands directly from the

register �le.

Data and control dependencies in the instruction stream create feedback

loops in the RTL structure. Each feedback loop has a latency which is de�ned as the

43

number of CPU cycles it takes to go once around the loop. This latency is equal to

the instruction dependency distance. The instruction dependency distance determines

the minimum distance between the dependent instructions in the instruction stream

that make use of the feedback loop. Dependent instructions that use a particular

feedback loop but are closer than the loops' instruction dependency distance must be

separated by independent instructions or stall cycles.

Identifying feedback loops in the RTL structure of a microprocessor is im-

portant because these loops will be used to interpret the output of in timing analysis

algorithms later in this chapter.

In the base architecture there are four types of feedback loop which corre-

spond to four classes of dependencies between instructions. These feedback loops and

the instruction dependencies that require them are shown in Figures 3.4 and 3.5. The

four types of feedback loop are the EX loop, which has a latency of one cycle; the

MEM loop, which has a latency of two cycles; the BR loop which has a latency of two

cycles and the RF loop which has a latency of three cycles. The propagation delay

of the EX loop, assuming that an ALU instruction is being executed, is the sum of

the following components:

� multiplexers MUX1 or MUX2

� latches L6 or L7

� ALU

� latch L9,

� multiplexer MUX4

� interconnect

The propagation delay of the EX loop, assuming that a Shift instruction is being

executed, is the sum of delays of the following components:

� multiplexer MUX3

� latches L6 or L7

� Shifter

44

Branch-loop

EX loop

MEM loop

RF loop

BR loop

Comparator

Register File

MUX1 MUX2

ALU Shifter

MUX3

MUX4

MUX5

L1-D cache

L13

L12

Addr

Data-In

Data-out

L1-I cache

Instruction

Next-PC

PC

Immediate

L14

L10

L7

L3

L1

L11

L9

L5

L4

L6

MEM-forward

EX-forward

L8

L2

RF Addr

L16

L15

Figure 3.4: The four types of feedback loop.

45

IF R EX MEM W

IF R EX MEM W

IF R EX MEM W

IF R EX MEM W

Instruction

Time (cycles)

i

i + 1

i + 2

i + 3

1 2 3 4 5 6 7 8 9 10

(1)

(2)(3)

(4)

1. EX loop
2. MEM loop
3. BR loop
4. RF loop

Figure 3.5: Instruction dependencies and their corresponding feedback loop.

� latch L9

� multiplexer MUX4

� interconnect

The propagation delay of the MEM loop is the sum of delays of the following com-

ponents:

� multiplexers MUX1 or MUX2

� latches L6 or L7

� ALU

� latch L9

� L1-D cache read

� latch L11

� latch L13

� multiplexer MUX5

46

� interconnect

The propagation delay of the BR loop is the sum of delays of the following compo-

nents:

� next PC logic

� latch L5

� L1-I cache read

� latch L4

� RF read

� multiplexers MUX1 or MUX2

� latches L6 or L7

� comparator

� interconnect

The propagation delay of the RF loop is the sum of delays of the following components:

� RF read

� multiplexers MUX1 or MUX2

� latches L6 or L7

� ALU

� latch L9

� L1-D cache read

� latch L11

� multiplexer MUX5

� RF write

� interconnect

47

The propagation delay and latency of a feedback loop impose a lower limit

on the cycle time of the CPU. Propagation delay and latency also provide the basis

of the CPI-tCPU trade-o� for CPU pipelines. Increasing the level of pipelining of any

of the feedback loops increases the latency and may possibly decrease the CPU cycle

time. However, increasing latency of a feedback loop implicitly increases the instruc-

tion dependency distance. This, in turn, increases the number of stall cycles, which

increase CPI. The exact nature of the trade-o� depends on the clocking scheme used

in the datapath and the values of propagation delay. Due to the complex nature of

the interaction between clocking schemes and propagation delay, a complete analysis

of this interaction requires the aid of timing analysis. A timing analysis technique

that is capable of analyzing the trade-o�s among the latency of the feedback loops,

propagation delay and CPU cycle time will be described in the next section.

3.3 Analysis of tCPU

After a review of static timing analysis that points out some of the de�cien-

cies with previous work in this section describes a new timing analysis technique that

is ideally suited for use in a multilevel optimization design methodology.

3.3.1 Previouus Timing Analysis Research

In Section 2.3 we saw that rough predictions of the clock frequency can be

determined using very simple analytical models. This sort of analysis is useful for

comparing di�erent technologies. But we need much more timing accuracy to ana-

lyze the CPI-tCPU trade-o�s that will be required for high-performance architecture

optimization. To provide more detailed timing analysis than a SUSPENS

model researchers have developed timing analyzers. The drawback to using

these timing analyzers is that the design must be worked out to a lower level of detail

than would be necessary with a SUSPENS model. So they cannot be used in the

early stages of computer design. But the accuracy and speed of timing analyzers

make them very useful tools in the intermediate and later stages of design. In this

48

thesis we argue for the use of timing analysis tools for making architectural trade-o�s.

This is a new idea and we have developed a new type of timing analyzer to make this

sort of analysis easier. In the following paragraphs we will brie
y review previous

timing analysis research to set the stage for the new timing analyzer that is to be

described in Chapter 3.

To analyze the timing of the digital circuits used in a modern microprocessor

a timing analyzer must be able to analyze circuits that have arbitrary topologies, feed-

back, level sensitive latches and multiphase clocking schemes. Several \static" timing

analysis techniques have been developed to do this. These techniques can be used

to accurately predict tCPU given technology parameters and a suitable description of

the design, and thus provide an important part of the link between implementation

technology and performance. The remainder of this section surveys the work in the

area of static timing analysis.

Static timing analysis is a technique for e�ciently predicting the timing

behavior of digital systems. Static timing analysis achieves its e�ciency by ignoring

most of the functionality of the circuit; it concerns itself only with circuit propagation

delay and synchronization. There are two parts to static timing analysis. The �rst

part is determining the propagation delays of the combinational logic and synchroniz-

ing elements (registers,
ip-
ops, latches) in the circuit. The models used in this delay

analysis may be at the register, gate, or transistor levels, or may include a mixture of

all three levels. The second part may be to determine the optimal clocking schedule

(highest clock frequency) or it may be to validate correct operation with a speci�c

clock schedule. The second part, optimal clocking or validation, is based on the values

of propagation delay produced by the delay analysis. Although, these two parts are

distinct, many timing analysis tools combine them [Agr82, Dag87, Jou87, Ous85].

Many papers have appeared on static timing analysis of synchronous digital

circuits over the last 30 years [Hit82]. However, most of this work has concentrated

on circuits with edge-triggered
ip-
ops as opposed to level-sensitive latches. Circuits

with
ip-
ops are easier to analyze than circuits with level-sensitive latches because

ip-
ops decouple the input of the latch from the output of the latch. This decoupling

49

breaks any clocked feedback paths so that, for the purposes of timing analysis, the

circuit may be treated as a directed acyclic graph (DAG) and thus analyzed using

a breadth-�rst search algorithm [CLR90]. More recently, researchers have devised

timing analysis techniques for circuits with level-triggered latches [Agr82, Che88,

DR89, Szy86, Ous85, UT86, WS88].

One of the earliest attempts to analyze the timing of MOS VLSI circuits with

level-sensitive latches was made by Agrawal [Agr82]. Agrawal describes a procedure

that uses binary-search to �nd the highest clock frequency that a circuit will operate

at without violating latch setup time or hold time. This algorithm requires the user

to input the minimum and maximum frequency clock wave forms. The analysis al-

gorithm takes advantage of the fact that level-sensitive latches allow combinational

delay elements between them to \share" time between clock phases. This sharing

will increase the maximum clock frequency at which the circuit can operate correctly.

However, Agrawal only allows sharing among phases that are in the same clock cycle.

Jouppi has also used the idea of sharing to analyze MOS VLSI circuits with level sen-

sitive latches that use a two-phase non-overlapping clocking scheme [Jou84]. Jouppi

used the term of \borrowing" to describe sharing. Although Jouppi's Timing Veri�er

(TV) program considers clocking, the main contribution of this work is in the delay

analysis of MOS VLSI circuits.

Szymanski developed LEADOUT, which is a static timing analysis tool

for MOS circuits with level-sensitive latches [Szy86]. LEADOUT correctly

handles multi-phase clocks. However, the user must specify the clock schedule. A

novel feature of LEADOUT is that it compiles the timing constraint equations of the

circuit from a causality graph for each clock phase. Once the timing equations have

been compiled they can be quickly and repeatedly solved, using simple relaxation,

with di�erent clock schedules and delay models. LEADOUT was one of the �rst

timing analysis tool to decouple the delay models from the clocking analysis.

Pearl is a CMOS timing analyzer that, like LEADOUT, begins by con-

structing a causality graph that represents the dependency of each node in the circuit

[Che88]. This causality graph is used to generate a set of linear inequalities that

50

capture the spacing constraints between all pairs of clock edges used in the circuit.

The minimum clock cycle time can be determined by solving the set of inequalities as

a linear program. Although it is not necessary to completely specify the duration of

the clock phases as in LEADOUT, Pearl requires the ordering of clock edges. There-

fore, Perl may not �nd the minimum clock cycle time if this requires the clock edges

to be reordered. Furthermore, in level-sensitive latch circuits that contain feedback,

spacing constraints between pairs of clock edges are not su�cient to capture all the

timing constraints in the circuit. In such cases, Pearl may produce an invalid cycle

time which is too short.

Wallace recognized the distinction between the two parts of timing analysis,

and, therefore, the goal of the Abstract Timing Veri�er (ATV) program was to develop

a timing analysis tool that had no built-in model of delay [WS88]. As such, ATV has

been used to analyze transistor level, gate level and register transfer level circuits.

ATV uses a dependency graph (causality graph) that supports reference frames as

input. These frames of reference are used to analyze circuits in which the clock

schedule is unspeci�ed. Using reference frames ATV can generate spacing constraints

between pairs of clock edges which could be solved as a linear program as was done

in Pearl. Like Pearl, ATV requires the user to specify the ordering of clock edges and

thus su�ers from the same problems. ATV provides a method for analyzing circuits

with level-sensitive latches in which critical paths extend over multiple cycles. The

method consists of unrolling the dependency graph a user speci�ed number of clock

cycles. However, it is not clear whether this method can be used to analyze circuits

with feedback loops that contain level-sensitive latches.

Recently, Dagenais has developed a technique for synthesizing optimal clock-

ing schedules for synchronous circuits [Dag87, DR89]. The technique correctly ana-

lyzes circuits with multi-phase clocking and feed-back loops of level-sensitive latches.

Dagenais' approach is based on timing intervals. A timing interval is associated with

each edge of the clock phases used in the circuit. These intervals are used to gen-

erate timing constraints for the circuit. These timing constraints are nonlinear and

so cannot be solved using linear programming techniques. An iterative algorithm

51

is used to �nd the optimal clocking schedule. The tool that implements this algo-

rithm is called TAMIA. TAMIA analyzes MOS transistor-level circuits. TAMIA is

restricted to a single iteration of the algorithm because of the long processing time of

the transistor-level delay model. Dagenais does not explore the possibility of compil-

ing the timing constraints so that the compute intensive delay calculation only needs

to be performed once.

3.3.2 The checkTC and minTC Timing Analysis Tools

CheckTC andminTC are timing analysis tools developed by Sakallah, Mudge

and Olukotun to analyze and optimize the cycle time of general synchronous circuits

[SMO90a, SMO90c, SMO90b]. These tools can be used to answer the following ques-

tions about the cycle time of a digital circuit:

� Will the circuit function correctly at a particular cycle time?

� What is the minimum cycle at which the circuit can operate?

� What are the critical circuit paths that limit the cycle time?

� What is the trade-o� between cycle time and latency of the critical path?

MinTC uses a general timing model of synchronous digital circuits to generate timing

constraints which simply and precisely capture the conditions for the correct operation

of the circuit. These timing constraints can then be used to verify that the circuit

functions correctly given a speci�c clock schedule or they may be used to �nd the

optimal clock schedule (i.e. minimum cycle time).

The checkTCandminTC tools have all the bene�ts and also make up for some

of the de�ciencies of previous work. These tools properly analyze digital circuits with

feedback loops, multi-phase circuits and multi-phase clocking schemes. In addition,

there is no built in model of delay so the tools can be used at any design level that

has the notion of synchronizer elements (
ip-
ops or lathes).What distinguishes these

tools from previous work is the ability to �nd the minimumcycle time of these general

digital circuits.This ability makes minTCideally suited for trade-o�s between latency

52

3

φp3

Synchronizer

∆13

∆23

∆31

1

2

φ
p2

φp1

∆12

Propagation
Delay

Figure 3.6: The circuit model.

and cycle-time, where the minimum cycle time for each value of latency ensures an

accurate analysis of the trade-o�. All this is accomplished by the timing tools using

a very simple and intuitive timing model.

A Timing Model for Synchronous Circuits

The timing analysis tools are based on a simple circuit model. This circuit

model has two components: synchronizer elements and propagation delay elements.

Each synchronizer has three ports: a data-input port, a data-output port and a clock

port. A circuit is de�ned by the interconnection of the output ports and input ports

of di�erent synchronizers through propagation delay elements and by the assignment

of a clock phase signal to each synchronizer clock port. An example circuit is shown

in Figure 3.6.

The temporal relationships that are required for the correct operation of a

circuit expressed using the circuit model can be divided into three classes:

� Relationships between the di�erent clock phase signals that control the syn-

chronizer clock ports.

� Relationships between the arrival and the departure times of data signals at

the input port of a synchronizer and the controlling clock phase signal of the

53

Passive Intervalφp

0 (T - T) TC p C

time

Active Interval

Rising
edge

Falling
edge

Figure 3.7: The local time frame of phase �p.

synchronizer.

� Relationships between the propagation delay elements and the arrival and de-

parture times of data signals at the synchronizers.

In the following, these three classes of temporal relationships will be developed into

a temporal model for synchronous digital systems. The model is general enough to

model both level sensitive and edge-triggered latches. However, in this development

we will assume that all synchronizers are level sensitive latches because edge-triggered

latches can be treated as special cases of level sensitive latches.

Clock signals are used to control the
ow of data signals through latches.

Each latch is controlled by a single clock phase of a clock schedule that may contain

multiple clock phases. A clock phase �p, with a phase width of Tp and a cycle time of

TC is shown in Figure 3.7. The local time frame of a clock phase starts at the falling

edge of the phase and extends from 0 to TC. This time frame is divided into two

time intervals| a passive interval followed by an active interval. The passive interval

starts at the falling edge, ends at the rising edge, and has a duration of TC � Tp.

The active interval starts at the rising edge and extends to the falling edge and has a

duration of Tp. During the active interval the latch is enabled and data signals may

propagate from the input port to a�ect the value of the output port of the latch. At

the end of the active interval the signal at the output port is latched and will not

change again until the end of the passive interval.

Each clock phase �p of an arbitrary k-phase (�1; �2; : : : ; �k) clock schedule

54

T1

T

e

e

e

e

Tk

T3

T2

0

time
k

C

1

2

3
¥
¥
¥

φ

φ

φ

φ

2

1

3

k

Figure 3.8: A k phase clock. The phase shift E12 translates times from �1 to �2
.

with a common cycle time TC may be described by its phase width Tp and its phase

ending time ep. The ending time ep of a clock phase is the end of its active interval

relative to an arbitrarily selected global time phase. Given the description of each

clock phase we can de�ne the relationship between the local time frame of any pair of

clock phases �i and �j. This relationship is de�ned in terms of a phase shift operator:

Eji = TC � [(ei � ej) mod TC] (3:1)

Eij represents the shift in time necessary to translate times in the local time frame

of phase �i to the local time frame of phase �j. Figure 3.8 shows an example clock

schedule in which �k is the global clock phase.

A latch i can be characterized by the following �ve parameters:

� pi: the clock phase that controls the latch.

� Si: the setup time before the end of the active interval of pi during which the

signal at the input port must remain stable.

55

� Hi: the hold time after the end of the active interval during which the signal at

the input port must remain stable.

� �i: the minimum propagation delay from the input port to the output port.

� �i: the maximum propagation delay from the input port to the output port.

The arrival and departure times of data at the input port of a latch i are

modeled with four variables:

� ai: the earliest arrival time of a signal transition.

� Ai: the latest arrival time of a signal transition.

� di: the earliest departure time of a signal transition.

� Di: the latest departure time of a signal transition.

These variables are all de�ned in the local time frame of the clock phase that controls

the latch. The synchronization performed by an ideal latch i i.e. a latch whose

propagation delay is zero may now be speci�ed as a relationship between the arrival

times and the departure times of the latch i as follows:

di = max(ai; Tc � Tpi) (3:2)

Di = max(Ai; Tc � Tpi) (3:3)

Equation 3.2 speci�es that the earliest departure time di must occur at the later of

the earliest arrival time ai and the rising edge of �pi. Equation 3.3 speci�es that the

latest departure time di must occur at the later of the latest arrival time Ai and the

rising edge of �pi.

To ensure that the latch actually latches data properly, there are other

constraints on the arrival and departure times of signals at a latch that must be

satis�ed. To provide enough time to change the state of a latch before the end of

the active interval the latest arrival time Ai must occur before the setup time Si.

To ensure that the data in signal does not change before the state of the latch has

56

stabilized, the earliest arrival time ai must occur after the latch's hold timeHi. These

constraints are modeled by the following inequalities:

Ai � TC � Si (3:4)

ai � Hi (3:5)

At any point in time, the data signal at the input port of a latch can be

in one of three di�erent states: changing, stable-new and stable-old. The changing

state starts at the earliest arrival time ai and ends at the latest arrival time Ai and

represents the period of time the data signal is unstable. The stable-new state starts

at Ai and ends with the falling edge of the clock phase that controls the latch Tpi.

The stable-old state starts at the falling edge of the clock and ends at ai. These states

are shown in Figure 3.9 for the three cases of the temporal relationship among Tpi,

ai and Ai.

In the circuit model latches are interconnected by propagation delay ele-

ments. Each propagation delay element between a latch j and a latch i is character-

ized by the following parameters:

� �ji: the minimum propagation delay of the element.

� �ji: the maximum propagation delay of the element.

Given these parameters we can now temporally model the propagation of data be-

tween latches j and i by the following equations:

ai = min
j2FIi

dj + �j + �ji � Epjpi
(3:6)

Ai = max
j2FIi

Dj +�j +�ji �Epjpi
(3:7)

Equation 3.6 expresses the earliest arrival time of a signal at latch ai as the minimum

value for all latches j that fan-in to latch i (FIi) of the sum of the earliest departure

time of latch j and the minimumpropagation delay between the latches. Equation 3.7

expresses the latest arrival time of a signal at latch Ai as the maximum value for all

latches j that fan-in to latch i (FI i) of the sum of the latest departure time of latch

57

C pi
(T - T)

i

T
C

a A
i

d
i

D i

0

p
i

φ

Hi Si

φp
i

C pi
(T - T)

i

T
C

a A
i

d
i
D i

0

Hi Si

(a) (b)

φp
i

C pi
(T - T)

i

T
C

a A
i

d
i

D i

0

Hi Si

Old stable signal

New stable signal

Changing signal

Key

(c)

Figure 3.9: The temporal operation of a latch.

58

j and the maximum propagation delay between the latches. In both equations the

phase shift operator Epjpi
is used to translate the temporal variables of latch j into

the time frame of latch i. The delay in (3.6) is referred to as the short path delay

while the delay in (3.7) is referred to as the long path delay.

Given a circuit that satis�es the circuit model we can construct a temporal

model for this circuit using (3.1){(3.7). The next section will show how the temporal

model of a circuit can be used for to verify that a circuit works correctly given a

speci�c clock schedule (timing veri�cation) or to determine the optimal clock schedule

(optimal clocking).

Timing Veri�cation and Optimal Clocking

Timing veri�cation checks that a circuit with a fully speci�ed clock sched-

ule does not violate any setup or hold constraints. The algorithm used to perform

this check, checkTC, is described in [SMO90b] and uses a relaxation scheme to �nd

the arrival and departure times of all the latches. The algorithm starts by setting

the early departure time di of each latch i to its maximum value of TC � Si and

by setting the late departure time Di to its minimum value of TC � Tpi. Then the

algorithm iteratively applies the synchronization equations (3.2){(3.3) and the prop-

agation equations (3.6){(3.7) to all latches until the time values of the latch variables

stop changing. The arrival times are then compared with the setup and hold time

constraints (3.4){(3.5) to check for violations. This procedure can also be used to

�nd the slack times of (3.4) and (3.5). Slack time is the amount of time that must

be added to Ai or subtracted from ai so that inequalities (3.4) and (3.5) become

equations. If the slack time of a latch i is zero, i.e, ai = Hi or Ai = TC � Si, then

there is a latch j for which ai = dj + �j + �ji � Epjpi
or Ai = Dj +�j +�ji � Epjpi

.

The short or long path from latch j to latch i is said to be critical. Critical paths

may extend through multiple latches and may form feedback loops like the ones in

Section 3.2.2. Short critical paths a�ect the cycle time because they limit the amount

of overlap or increase the amount of non-overlap between clock phases through the

hold time constraints | the relationship between the falling edge of the phase that

59

controls the driving latch and the rising edge of the phase that controls the driven

latch. The more overlap there is between clock phases the lower the cycle time. Long

critical paths a�ect cycle time by placing a lower bound on time between the rising

edge of the phase that controls the driving latch and the falling edge of the phase

that controls the driven latch through the setup time constraints.

Given a clock with k phases, the optimal clock schedule for a digital circuit is

an assignment of the phases of the clock schedule to the latches and the arrangement

of the clock edges of the clock schedule so that the circuit operates at its minimum

cycle time. In order for a circuit to operate correctly at its minimum cycle time the

clock schedule must ensure that all setup and hold constraints are met, that signals

on the critical path are never delayed because they arrive at a latch before the rising

edge of the clock, and that the phase widths are as short as possible to limit the e�ect

of the hold time constraints.

Finding the optimal clock schedule of a circuit with feedback loops and level

sensitive latches is a di�cult problem because the equations are coupled in two ways.

Firstly, the arrival and departure times of the latches and thus the critical paths

depend on the clock schedule. Secondly, due to the feedback loops it is not clear

where to begin analyzing the circuit. Clearly, an iterative optimization method is

necessary to �nd the minimum cycle time that satis�es the set of coupled equations

produced by the timing model.

To �nd the minimum cycle time the variable TC must be minimized subject

to the constraints imposed by (3.1){(3.7). However, due to the presence of mod, min-

imum and maximum expressions, these equations are nonlinear. To avoid the com-

putational expense of solving a nonlinear optimization problem, the mod, minimum

and maximum expressions can be replaced with linear inequalities. This transforms

the nonlinear optimization problem into a linear optimization problem and allows a

solution to be found using linear programming [Mur83].

The transformation of the nonlinear timing model into a linear model is as

follows. The phase shift operator (3.1) contains a mod expression. To remove this

mod expression we must restrict, somewhat, the generality of the model. This is

60

done by ordering the ending times of the phases relative to the global phase so that

e1 � e2 � : : : � ek1 � ek. With this phase ordering we can transform (3.1) into:

Eji =

8><
>:

ei � ej if ei > ej

TC + ei � ej if ei � ej

(3:8)

The implicit phase ordering required by the use of (3.8) may lead the linear program-

ming algorithm to �nd a cycle time that is not optimal. In such cases a di�erent

phase ordering must be considered. The synchronization equations, (3.2){(3.3), are

transformed into the following inequalities:

di � ai (3:9)

di � TC � Tpi (3:10)

Di � Ai (3:11)

Di � di (3:12)

The propagation equations, (3.6){(3.7) are transformed into the following inequalities:

ai � di + �j + �ji � Epjpi
; j 2 FI i (3:13)

Ai � di +�j +�ji � Epjpi
; j 2 FIi (3:14)

The transformed timing model can be solved using linear programming

[SMO90b]. However, because the minima and maxima have been changed into in-

equalities, the solution found may violate one or more of the hold constraints. This

may happen because the inequalities do not capture an essential characteristic of

minimum and maximum functions: that the minimum or maximum of a set must be

a member of the set. To see how this can cause a problem, consider a latch i on a

critical long path and on a critical short path. The upper bounds of di and Di are

both TC. If Di is greater than Ai and Di is greater than TC � Tpi, latch i cannot be

on a critical long path, because if it were, we could reduce Di and thus reduce TC,

therefore Di must be either equal to Ai or equal to TC � Tpi. In contrast, consider

latch j, on the critical short path that fans into latch i. If dj is greater than aj and

61

greater than TC � Tpj , then ai may satisfy its hold time constraint when in reality

it should not. In this case there are no constraints that will force di equal to ai or

equal to TC � Tpi. Although this is a problem, it happens rarely in the analysis of

real circuits and it is always detectable when it does happen.

The short-path hold violation problem can be completely eliminated by re-

stricting the timing constraints. This is done by assuming the worst case early de-

parture time of di = TC � Tpi. This eliminates (3.13) and replaces it with a set of

clock constraints like:

Tt � TC + Est �
^

i;j2ST

�j + �ji �Hi (3:15)

where ST is the set of all pairs of latches i; j for which clock phase t controls latch

j and phase s controls latch i. Using these clock constraints it is possible to prove

that solution to the linear timing model will always satisfy all timing constraints

[SMO90c]. However, due to the worst case assumption of the early departure time the

cycle time may be greater than minimum clock cycle time. Even so, these constraints

are not as restrictive as the requirement for non-overlapping clock phases. The two-

phase non-overlapping clocking scheme has been used extensively in the design of

VLSI digital systems [GD85]. This scheme requires that any two connected latches

must be controlled by two non-overlapping clock phases. This requirement makes the

short-path propagation equations and the hold time constraints redundant. However,

non-overlapping clocks may increase the cycle time.

The timing analysis technique that has been described here has advantages

over previous schemes. First and foremost the timing model is simple. The tim-

ing model properly analyzes level-sensitive latches as well as edge-triggered
ip-
ops.

It also captures short and long path propagation delays and circuits with feedback.

Lastly, there is a separation between timing analysis and the propagation delay anal-

ysis on which timing analysis is based. This allows the minTC timing analysis tool to

be used at the transistor, gate or register transfer level. In the next section we apply

the timing analysis tool to the RTL model of the GaAs mips microprocessor.

62

3.3.3 Timing Analysis of the Base Architecture

As example of the utility of minTCthe latency-tCPU trade-o� of the base

architecture will be investigated. MinTC takes as input a textual representation of

the circuit model described above and produces the optimal clock schedule given a

particular ordering of the clock phases. The result is output produced in both a

textual and graphical format. The graphical format shows the clock phases and the

state of data at the input port of each latch. Figure 3.10 shows the circuit model

that corresponds to the RTL structure in Figure 3.3. The values of the propagation

delay elements are calculated using the formulas below. The actual delay values come

from circuit simulation using SPICE models of the key datapath elements (register

�le, ALU, multiplexers) and estimations of on-chip interconnect [Dyk90, HCHU91].

The o�-chip MCM delay was calculated using a transmission line model of the MCM

interconnect to the 4KW cache SRAM array [MBB+91].

�1 2;�1 3;�4 2;�4 3 = register-�le read = 1.2 ns

�2 6;�3 7;�3 8 = 4-input-mux = 0.4 ns

�6 5;�7 5 = comp. + next-PC-mux = 1.5 ns

�6 9;�7 9 = ALU-add = 2.0 ns

�8 10 = shift. = 1.5 ns

�9 11;�11 13; = MCM-interconnect = 0.9 ns

�9 6;�9 7;�9 8;�10 6;�10 7;�10 8 = 2-input-mux + 4-input-mux = 0.6 ns

�9 14;�10 14 = 2-input-mux = 0.2 ns

�13 6;�13 7;�13 8;�15 6;�15 7;�15 8; = 2-input-mux + 4-input-mux = 0.6 ns

�14 15 = interconnect = 0.1 ns

�13 1;�15 1 = 2-input-mux = 0.2 ns

�13 6;�13 7;�13 8;�15 6;�15 7;�15 8 = 2-input-mux + 4-input-mux = 0.6 ns

�5 16;�16 4; = MCM-interconnect = 0.9 ns

�4 17 = interconnect = 0.1 ns

It is assumed that the minimum propagation delays are equal to the maximum prop-

agation delays. All latches have an input port to output port propagation delay of

0.2 ns except latches L11 and L16 which have propagation delay times equal to the

63

4 1

16

L13

L14φ1

9,10

L10

L7

L3φ2

L1

L11φ1

9

L9

L5

L4

L6 L8φ1

L2

L16

L15

L17

φ1

φ2

φ2 φ2

φ2φ2

φ2 φ1

φ1

φ1

φ2

9,10 13,15 17 39,10 3 13,15 179,10 2 13,15

4

4 1

87

5

6,7 17

1411

Figure 3.10: The base- architecture circuit model. The numbers in the propagation

delay element(s) specify the input latch(s) of the element.

64

4.833.63
φ

1

3.47 5.03
φ

2

13 (0 .5) 1
3.970.37

φ
1

4 (1 .4) 3
1.2 4.93

φ
2

16 (5 .1) 4
3.53

φ
1

4 (0 .3) 17
3.83

φ
2

7 (1 .7) 5
1.5 2.37

φ
1

5 (1 .1) 16
2.6 3.47

φ
2

7 (2 .2) 9 φ
2

9 (1 .1) 11
4.57

φ
1

11 (5 .1) 13
4.9

φ
2

stable old stable new changing
latch phase

13 (0.8) 7
0.67

φ
1

∆11 13 + ∆11 = 5.1

latch (delay)

3.97

2.87 ∆9 11 + ∆9 = 1.1∆13 7 + ∆13 = 0.8

∆7 9 + ∆7 = 2.2

Figure 3.11: Timing of the base architecture datapath. All times are in nanoseconds.

The latch names and phase names on the left refer to the signal waveforms. The latch
names and delays on the right are the critical long path to the latches labeled on the

right.

SRAM access time of 4.2 ns. The setup and hold times of all latches except latch L1

are 0.1 ns. Latch L1 has a setup time of 1.0 ns which is the write time of the register

�le.

The propagation delays shown above and the clock phase assignment of

Figure 3.10 (speci�ed in the original design of the datapath) results in the clock

schedule and timing waveforms shown in Figure 3.11. This �gure does not include

some of the latches because either their timing waveforms are identical to one of the

latches that is shown or they are not on any critical paths. The cycle time is 5.03 ns.

The critical long paths that constrain the minimum clock time are indicated in the

�gure with arrows between the latest departure time of the source latch and the latest

arrival time of the destination latch. These arrows are labeled with the long path

delay between these latches. The critical long path corresponds to the MEM loop

and includes latches 7, 9, 11, and 13. However, even though latch 9 is on the critical

65

0.4 3.5
φ

1

3.2 4.9
φ

2

3.9 4.9
φ

3

13 (0 .5) 1
3.70.1

φ
1

4 (1 .4) 3
1.8 4.8

φ
2

16 (5 .1) 4
3.4

φ
1

4 (0 .3) 17
3.7

φ
2

7 (1 .7) 5
2.1

φ
1

5 (1 .1) 16
3.2

φ
2

13 (0 .8) 7
3.70.4

φ
1

7 (2 .2) 9
2.6

φ
2

9 (1 .1)11
4.3

φ
3

11 (5 .1) 13
4.5

φ
2

stable old stable new changing
phaselatch

∆16 4 + ∆16 = 5.1

∆5 16 + ∆5 = 1.1

∆4 2 + ∆4 = 1.4

∆2 7 + ∆2 = 0.5

latch (delay)

∆7 5 + ∆7 = 1.7

Figure 3.12: Timing after the addition of clock phase for the cache SRAMs.

long path and has a late arrival time of 2.6 ns, its late departure time is delayed until

3.47 ns by the rising edge of �2 (see Figure 3.11). This delay could be eliminated by

extending the rising edge of �2 to the left by 0.87 ns. However, this cannot be done

because it would result in hold time violations.

By introducing another phase to control the L1-D cache address latch (11)

into the clock schedule we can reduce the cycle time to 4.9 ns (see Figure 3.12). This

reveals that it is, in fact, the branch loop that is the critical long path not the MEM

loop as the result of Figure 3.11 indicates. The total delay around this loop is 9.8 ns.

This loop has a two cycle latency and so results in a cycle time of 9:8
2
= 4:9 ns.

To further reduce the cycle time the pipeline depth of the MEM loop must

be increased. The pipeline-depth of the branch loop must also be increased. This can

be done by introducing another latch in the SRAM. The access time of the memory

is increased by 0.2 ns to include the extra propagation delay of the latch. The result

is a dramatic decrease to a cycle time of 3.33 ns (see Figure 3.14). This cycle time is

equal to 10
3
. The cycle can be reduced even further by adding another pipe stage to

66

0.4 2.2
φ

1

0.97 2.2
φ

3

2.93 3.33
φ

2

13 (0 .5) 1
0.1

φ
1

4 (1 .4) 3
1.8 3.23

φ
2

16 (5 .3) 4
1.83

φ
1

4 (0 .3) 17
2.13

φ
2

7 (1 .7) 5
2.1

φ
1

3 (0 .5) 7
0.1 0.4

φ
1

9 (1 .1)11
0.7

φ
3

11 (5 .3) 13
2.93

φ
2

stable old stable new changing

7 (2.2) 9
2.6

φ
2

5 (1 .1) 16
3.2

φ
2

phaselatch

latch (delay)

∆16 4 + ∆16 = 5.1

∆5 16 + ∆5 = 1.1

∆7 5 + ∆7 = 1.7

∆2 7 + ∆2 = 0.5

∆4 2 + ∆4 = 1.4

Figure 3.13: Timing with a 2 cycle cache access.

each of the BR and MEM loops. This reduces the cycle time to 3.0 ns and increases

the latency of the BR and MEM loops to 4 cycles. The clock schedule that results is

shown in Figure 3.14 The cycle time is now limited by the EX loop. Furthermore, the

delay in the BR and MEM loops could be increased by 0.45 ns, and 0.6 ns respectively,

possibly by increasing the L1 cache size.

Increasing the depth of pipelining in the BR and MEM loops is not done

by explicitly changing the circuit model, instead, it is done by modifying the timing

model equations and re-solving the linear program (LP). This takes less than a second

on a high-performance workstation because the model for the RTL is quite small (72

variables and 120 constraints). However, for circuits at the gate or transistor level the

LP may have thousands of variables and constraints and would take a long time to

solve. But, it may not be necessary to completely resolve the LP. Using sensitivity or

post-optimal analysis the solution to the modi�ed LP can be obtained from a previous

optimal solution with far less computation [Mur83].

The clock schedules shown in Figures 3.11{3.14 might be di�cult to generate

67

0.1 1.9
φ

1

1.8 2.8
φ

3

2.3 3
φ

2

13 (0 .5) 1
2.8

φ
1

1 (1 .4) 3
1.5

φ
2

16 (5 .5) 4
2.4

φ
1

4 (0 .3) 17
0.4

φ
2

7 (1 .7) 5
1.8

φ
1

5 (1 .1) 16
2.9

φ
2

9 (0 .8) 7
2.80.1

φ
1

7 (2 .2) 9
2.3

φ
2

9 (1 .1) 11
0.4

φ
3

11 (5 .5) 13
1.3

φ
2

stable old stable new changing
phaselatch

latch (delay)

∆9 7 + ∆9 = 0.8

∆7 9 + ∆7 = 2.2

Figure 3.14: Timing with a 3 cycle cache access.

because the clock phases cannot be derived from a single clock phase using delays

and inverters. If this is indeed a problem, the timing model may be modi�ed so that

the phases width Tpi of each clock phase �i uses one of two timing variables TpA or

TpB , where TpA + TpB = TC. Adding these constraints may cause the cycle time to be

increased. Figure 3.15 shows clock schedule and timing waveforms of the three cycle

L1 cache access circuit of Figure 3.14 for which all phases have the same duty cycle

or an inverted duty cycle.

Other constraints can be added to the minTC timing model to model various

phenomena. The e�ect of clock skew can be modeled by adding or subtracting a �xed

delay from the propagation delay equations (3.6){(3.7) depending on whether the

clock skew increases or decreases the propagation time between latches. Synchronizing

elements that have more complex synchronizing behavior than latches can also be

modeled.

68

2.91.9
φ

1

1.8 2.8
φ

3

2 3
φ

2

13 (0 .5) 1
2.5

φ
1

1 (1 .4) 3
1.3

φ
2

16 (5 .5) 4
2.2 2.4

φ
1

4 (0 .3) 17
0.2

φ
2

7 (1 .7) 5
1.6 1.8

φ
1

5 (1 .1) 16
2.7 2.9

φ
2

9 (0 .8) 7
2.50.1

φ
1

7 (2 .2) 9
2.1 2.3

φ
2

9 (1 .1) 11
0.2 0.4

φ
3

11 (5 .5) 13
1.3

φ
2

stable old stable new changing
latch phase

latch (delay)

Figure 3.15: Timing when all phases equal to 1 ns or 2 ns.

3.4 Analysis of CPI

For the base architecture and the other architectures that will be investigated

in this thesis, CPI can be expressed as:

CPI = 1 +
CPU� stallcycles + memory� stallcycles

instructioncount
(3:16)

where CPU-stall cycles are the number of extra cycles spent processing instructions

such as loads, branches, and
oating-point operations, and memory-stall cycles are

the number of extra cycles spent fetching instructions and loading and storing data.

To predict the CPI of a particular architecture, a hybrid of trace driven simulation

and trace statistics driven performance modeling will be used. The simulators, the

benchmark traces, and the CPI of the base architecture will be described in the

sections that follow.

69

3.4.1 Trace Driven Simulation

We have developed a family of trace-driven simulators system to count the

number of cycles spent in the CPU and in the memory system. They are all based on

the mips suite of program performance analysis tools, pixie and pixstats [MIP88].

The number of cycles that are spent processing instructions in the CPU can be pre-

dicted by analyzing each basic block 2 using a performance model of individual in-

struction execution times to predict how many cycles each basic block would take to

execute. The number of cycles is multiplied by the number of times the basic block is

executed to yield the number of cycles that are spent executing in each basic block.

This technique has the advantage that once the basic block execution counts have

been collected di�erent architectures can be evaluated quickly by re-analyzing the

basic blocks using a di�erent performance model. Furthermore, collecting basic block

execution statistics is far less time consuming than full trace-driven simulation.

While this technique works relatively well for components with very small

amounts of bu�ering and concurrency like the mips CPU and FPU, it does not work

very well for components with large amounts of bu�ering such as the cache memory

system because the e�ect of such components is spread out over many basic blocks.

To predict the performance of cache memory system, full trace-driven simulation must

be performed. The number of cycles predicted by the two types of simulator can be

added together to provide the total number of cycles spent processing instructions.

The drawback in using this technique is that it does not model concurrency between

the cache- memory system and CPU. However, a complete trace simulation of the

CPU and cache memory system together of the base architecture has shown that

for
oating-point intensive benchmarks, the benchmarks which are most a�ected by

this inaccuracy, this technique overestimates the number of cycles by at most 10%

[Nag90]. For most integer benchmarks the e�ect is negligible. Furthermore, most

of the inaccuracy is due to an over estimation of CPU cycles. The inaccuracy in

cache-memory cycles is less than 1%.

2The instructions between branches.

70

The cache simulator we have developed, called cacheUM is capable of ac-

curately modeling a wide variety of two-level cache memory organizations. The or-

ganizational parameters that may be varied include split or uni�ed instruction and

data caches, line size, associativity, fetch policy, TLB size, and the virtual-to-physical

translation method. The number of cycles it takes to access each level of the memory-

hierarchy may also be varied. The simulator also models the e�ect of a multiprogram-

ming environment. The parameters of the multiprogramming environment that may

be varied include the number of processes that may execute concurrently (multipro-

gramming level) and the time slice (quantum) of CPU time given to each processor.

To prepare for a cache simulation it is necessary to instrument the bench-

marks and to create a custom cache simulator. The benchmarks are instrumented

to produce address traces by the pixie program. Pixie takes an object �le and

augments it with extra instructions at basic block entry points and data reference

instructions, so that when the augmented object �le is executed, it produces a trace

of instruction and data reference addresses. Instrumented object �les grow in size

by six to seven times. Associated with an instrumented object �le is a system call

�le. System call �les enable the simulator to switch among processes when voluntary

system call instructions are executed. A system call �le that contains the addresses

of all system call instructions is generated for each benchmark. A custom cache sim-

ulator program is created for each memory organization. This is done by producing

a custom C program from a con�guration �le that describes the parameters of the

organization. The resulting cache simulator runs e�ciently because it contains only

the code necessary to simulate one memory con�guration and all the memory con�g-

uration parameters are constants. A full multiprogram cache simulation executes at

the rate of 240 000 references per second on a mips RC3240 (a 15{20 MIPS system),

i.e, a slow down of a factor of eight.

The parts of cache simulation with cacheUM are shown in Figure 3.16, they

are: the process controller, the instrumented benchmarks, and the custom cache sim-

ulator. The process controller uses Unix pipes to map the output �le descriptor of

each benchmark trace to a unique input �le descriptor of the cache simulator. Each

71

Syscall files�

Benchmark
traces�

Cache
configuration�

Process control �
1. process ordering
2. process time slice
3. degree of multiprogramming
4. Voluntary context switches�

Custom
cache

simulator�

Cycle
counts�

Process
configuration�

Figure 3.16: Simulation with cacheUM.

benchmark represents a single process. Context switching among benchmark pro-

cesses is simulated by switching among the input �le descriptors from which traces

are read. During initialization of a simulation run, the cache simulator reads a process

con�guration �le and the system call �les. The process con�guration �le speci�es the

multiprogramming level and the order in which the processes will run. During simu-

lation, a context switch is scheduled whenever either the program counter references

a system call instruction, or after a time slice has elapsed. The next process that is

scheduled for execution is selected using a round-robin schedule. When a benchmark

terminates, the next benchmark in the execution order is started. This continues

until the execution of all benchmarks is complete.

The trace simulation method described here has three advantages. First, it

allows the e�cient simulation of very long traces. This technique is able to simulate

billions of memory references. Previous techniques have been limited to contiguous

traces of under 500 000 reference [AHH89]. Second, this method can realistically

simulate a multiprogramming environment. Third, this simulation method allows the

same multiprogram simulation trace to be used repeatedly without the need to store

the trace. Other methods for generating multiprogramming traces rely on the con-

text switching of a real operating system and therefore are not repeatable [BKW90].

72

Furthermore, the multiprogramming parameters of this simulation method may be

varied without changing the operating system. The disadvantage of this simulation

method is that it does not include kernel references between process context switch

points.

3.4.2 Benchmark Traces

The importance of a realistic workload to obtaining meaningful predictions

of cache performance has been recognized for some time [Smi85a, AHH89]. More

recently, the importance of long traces for obtaining accurate performance �gures of

large caches has also been demonstrated [Sto90, BKW90].

The issue of realistic benchmarks is addressed in this study by using a set of

real benchmarks that is representative of the workload of an engineering workstation

environment. These benchmarks are listed in Table 3.1. To be even more realistic,

an attempt was made to simulate the e�ect of an interactive user in a graphical win-

dowing environment. This is done by interleaving the X-window application xlswins

that lists all active windows on a display in between the context switch points of all

the other benchmarks. The xlswins runs until it executes a system call, at which

point the next benchmark is switched in.

A benchmark can be characterized by the average number of instructions

between voluntary context switches caused by system calls and by the ratio of work-

ing set size to total number of references made by the benchmark. The characteristics

of the xlswins benchmark are quite di�erent from all the other benchmarks. The

average number of instructions between system calls for xlswins is 796; the next

highest average is for the tex benchmark which has an average of 9 236. All other

benchmarks have much lower averages. In fact, the xlswins accounts for 93% of all

system calls made by the entire workload, yet it creates only 2.2% of the instruction

references. The ratio of working set to trace length is also much higher for xlswins

than the other benchmarks. The xlswins benchmark has a ratio of 0.53W per in-

struction reference. The individual benchmark with the next highest ratio is the gcc

benchmark which has a ratio of 0.0062W per instruction reference. The ratio for all

73

Benchmark Description Inst. Loads Stores Syscalls Unique
Addr.

(M) (% inst.) (% inst.) (% inst.) (KW)

5diff File comparison (I) 218.3 15.3 3.4 305 277.4
awk string matching and process-

ing (I)

209.5 19.0 12.6 101 723.3

doducd Monte Carlo simulation (D) 96.3 31.0 10.0 427 168.1
espresso Logic minimization (I) 238.0 19.9 5.6 17 233.6
gcc C compiler (I) 235.7 23.3 13.8 487 1460.0
integral Numerical Integration (D) 110.5 37.0 10.4 12 423.9
linpackd Linear equation solver (D) 4.0 37.4 19.7 10 33.2
loops First 12 Livermore kernels

(D)
275.5 29.3 10.9 3 56.2

matrix500 500 � 500 matrix operations
(S)

202.2 24.3 3.5 10 327.6

nroff Text formatting (I) 15.7 22.4 10.8 1701 42.0
small Stanford small benchmarks

(I/S)
16.7 19.9 8.8 0 50.4

spice2g6 Circuit simulator (S) 297.3 29.8 8.6 395 216.2
tex Typesetting (I) 133.8 30.2 14.2 697 466.0
wolf33 Simulated annealing place-

ment (I)
115.4 30.0 7.5 407 200.2

xlswins X-windows application (I) 52.2 22.5 17.7 65294 2672.8
yacc Parser generator (I) 193.9 19.6 2.4 49 197.4

Total 2414.9 24.7 8.7 69915 7548.4

Table 3.1: List of benchmarks that were used to create the multiprogramming traces.

Integer benchmarks are denoted by (I), single precision
oating point benchmarks by
(S), and double precision
oating point by (D).

74

benchmarks excluding xlswins is 0.0021W per instruction reference. The di�erence

in characteristics between xlswins and the other benchmarks is analogous to the

di�erence in the behavior of system kernels references to user references [AHH89].

Therefore, the xlswins benchmark also serves to approximate the referencing behav-

ior of the missing kernel references. However, because the references of the xlswins

benchmark and the other benchmarks are uncorrelated, the xlswins benchmark is

only a crude approximation of system kernel references.

The issue of adequate trace-length actually involves two other issues: ensur-

ing that the cache initialization transient does not distort the miss ratio results and

generating enough misses to get an accurate measure of the miss ratio. Researchers

have addressed the �rst issue by de�ning two types of miss ratio: cold-start and warm-

start [EF78]. The cold-start miss ratio is calculated by counting the number of misses

that occur starting from an initially empty cache. The warm-start miss ratio is cal-

culated by �rst allowing every line in the cache to generate one miss before recording

misses for that line. Agarwal has re�ned the de�nition of the boundary between the

cold-start and warm-start region to include the case where the trace does not contain

enough unique addresses to �ll up the cache. In this case warm-start is de�ned to be

the point at which the trace has brought its working-set into the cache [AHH89]. A

method for detecting when the warm-start region begins is to plot the total number

of �rst time misses to a cache line as a function of trace-length. The knee of this

curve indicates the boundary between the cold-start and warm-start region of the

trace. Using this method, a cold-start region of a multiprogramming trace with ten

processes for a 1 Mb cache is reported to be 600K references.

In this thesis cold-start miss ratios will be used exclusively. This is done

for two reasons. Firstly, the multiprogram traces used in this thesis are three orders

of magnitude longer than the cold-start region for large caches reported in [AHH89].

Therefore, the misses of the cold-start region contribute negligibly to the overall miss

ratio. Secondly, the multiprogram traces represent the complete execution of the

applications that are contained in the trace. In reality, at the beginning of execution

an application will have to \warm" the cache by loading its working set into the

75

cache. Furthermore, there is a possibility the application will be switched out before

it leaves the cold-start region. In such cases it may have to reload its working set.

Using the cold-start miss ratio with a trace that includes many processes captures all

these e�ects.

The issue of trace length and its e�ect on the accuracy of miss ratio has been

studied by Stone in [Sto90]. Using a Bernoulli process approximation to the cache-

miss process, estimates for adequate trace lengths for cache simulation are presented.

Stone recommends that 100 misses per cache set are required for reasonably accurate

miss ratios. To see how this recommendation a�ects trace length we will calculate

the trace length necessary to accurately predict the miss ratio of the largest cache

considered in this thesis. This cache is a 1MW direct-mapped cache with a line size

of 32W which results in 32K sets. Assuming a miss ratio of 0.002, to achieve 100

misses per set requires a trace length of 1.6 billion references. The traces used for the

experiments in this thesis is 2.5 billion references long.

Another important aspect of realistic trace-driven cache simulation is to en-

sure that the number of unique addresses in the trace exceeds the size of the caches

that are being simulated. Doing this makes it impossible for the cache to hold the

working sets of all processes at all times. To satisfy this requirement, in our experi-

ments, the number of unique addresses in the trace used in this thesis is ten times as

large as the largest cache size that is simulated.

3.4.3 The E�ects of Multiprogramming on Cache Perfor-

mance

One of the novel features of the trace-driven cache simulator we have devel-

oped is its ability to simulate a multiprogramming workload. To see how important

this is ant to select the values of multiprogramming level and process switch interval

that are appropriate for a system as fast as ours we have used the base architecture

and the cache simulator described above to investigate the e�ect of the multiprogram-

ming environment has on cache performance.

76

2 4 8 16
1

1.2

1.4

1.6

1.8

2

2.2

C
P

I

Processes

0.01

 0.1

 1

Time-slice
 (million cycles)

Figure 3.17: The e�ect of multiprogramming on CPI.

Figure 3.17 shows how CPI varies with the number of processes and the

duration of the time slice. Observe that the degradation in CPI due to increasing

the number of concurrently executing processes decreases as the duration time-slice

increases. The reason for this is that the shorter the time-slice the less time a process

has to \warm" the cache with its working set. Therefore, there is a higher probability

that a process that is switched out will return to �nd a portion of its working set in the

cache. However, as the number of processes increases, this probability also decreases.

This e�ect diminishes as the time-slice increases because each process brings more of

its working set into the cache and more completely displaces the working set of all

other processes.

To see more precisely what e�ect the number of processes has on the cache-

hierarchy the miss ratios for the L1 and L2 caches are plotted in Figure 3.18 for a

varying number of processes. This �gure shows that for a time slice of 0.1 million

cycles, performance degrades only slightly as the level of multiprogramming increases.

The underlying mechanism for this e�ect appears to be the following: some of the

77

2 4 8 16
0

0.01

0.02

0.03

0.04

0.05

0.06

M
is

s
R

at
io

Processes

L1-D miss ratio

L2 miss ratio

L1-I miss ratio

Figure 3.18: The e�ect of multiprogramming level on cache miss ratio. This data was
collected for a time-slice of 0.1 million cycles

lines brought into the cache by a process that is subsequently switched out will be

evicted before the process is restarted. The number of lines that are evicted before

a process restarts increases with the number of processes between restarts, i.e., as

the level of multiprogramming increases. The L1 caches are too small to show this

e�ect in a pronounced way. For instance, the L1-I miss rate changes by only 1% and

the L1-D miss rate changes by only 2%. However, the L2 cache is big enough to

simultaneously contain lines from several processes and so its miss rate changes by

250%. Fortunately for overall performance, this is 250% of a very small number (�

0.4%, see Figure 3.18) and so the e�ect on the overall system CPI is small.

Performance is improved signi�cantly by increasing the time-slice (see Fig-

ure 3.19). This is due to the greater opportunity of reusing data that has been brought

into the cache. In contrast to multiprogramming level results, the miss ratio of the

L1 cache is more adversely a�ected by the variation in time slice than the L2 cache.

The miss ratio of the L1 cache improves by over 50% as the length of the time slice

is varied from 0.01 million cycles while the miss ratio of the L2 cache improves by

78

0.01 0.1 1
0

0.02

0.04

0.06

0.08

0.1

0.12

M
is

s
R

at
io

Time-slice (million cycles)

L1-D miss ratio

L1-I miss ratio

L2 miss ratio

Figure 3.19: The e�ect of context switch interval level on cache miss ratio. This data
was collected with a multiprogramming level of eight processes.

less than 30% as the time-slice is varied over the same range. The reason for this is

that the L2 cache is large enough to capture portions of the working sets of several

processes over the period of several context switches. Therefore it is less a�ected

by increases in time slice (time between context switches) than the L1 cache whose

contents are completely replaced after each context switch. In other words, if data

that are fetched into the L1 cache during a particular time-slice is not reused during

that time-slice they will have to be fetched again, but if the same data fetched into

the L2 cache they may not have to be fetched again.

It is clear from Figure 3.19 that selecting a time slice that is too short will

result in poor cache performance [BKW90]. To guide the selection of a realistic time

slice we examined the literature. Clark et al. have investigated the frequency with

which context switches and interrupts occur on a VAX 8800 using a hardware monitor

[CBK88]. They report an average of 7.7 milliseconds between context switches. This

time would translate into 1.9 million cycles for a computer with a 4 nanosecond cycle

time. However, this represents a context switch interval that is too long; it ignores

79

I/0 and timer interrupts which cause operating system kernel code to be executed,

thus having a negative e�ect on cache performance similar to context switching. If we

assume that I/0 devices and timer interrupts are una�ected by a shorter CPU cycle

time, we could use Clark's �gure of 0.9 milliseconds between any interrupt to take

these interrupts into account. This time represents 225 000 4 nanosecond cycles. In

the rest of the experiments presented in this thesis a time slice of 250 000 cycles for our

experiments. This time-slice results in an average of 150 000 cycles between context

switches when all system call context switches are also included. This �gure excludes

the contribution to context switches of the xlswins benchmark. It is interesting to

note that faster machines may achieve lower cache miss rates because they execute

more instructions between context switches. However, the time between context

switches will not scale linearly with machine performance. For example a comparison

between the VAX 11/780 and VAX 8800 reveals a factor of 3 increase in the time

between context switches, but the performance di�erence between the machines is a

factor of �ve [CBK88]. Furthermore, the trend toward operating systems in which

many of the traditional functions of the kernel (virtual memory, �le system) are

performed by independent user level processes will lead to much shorter context switch

intervals [ALBL91].

The architecture supports process identi�ers (PIDs) that are included as

pre�xes to virtual addresses so that each process has a distinct address space. This

improves performance by eliminating the need to
ush the caches and the translation-

lookaside bu�er (TLB) after every context switch [Aga88]. The simulator also models

this feature. The virtual to physical mapping of addresses is performed using random

page assignment.

3.4.4 Base Architecture CPI

The performance of the base architecture is shown in Figure 3.20 for a tCPU

of 4 ns. Also shown is the performance loss breakdown from each of the components

of the system as di�erent gray levels. The horizontal axis at 1.0 CPI represents the

contribution of single cycle instruction execution. The white region labeled by Proc.

80

1.75

Base arch.
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

CPI

0.232

0.1

0.101

0.023

0.073

0.068

0.153

Proc.

L1-I miss

L1-D miss

L1 writes

WB

L2-I miss

L2-D miss

0.023

Figure 3.20: Performance losses of the base architecture.

81

represents the processor stalls resulting from load delays, branch delays and multicycle

operations. The portion of the histogram above this region is the contribution to CPI

from the cache system which will be the focus of this thesis.

3.5 The Base Architecture Revisited

The CPU in the base architecture is di�erent from the mips R3000 in two

important respects: 1) it does not have a load-aligner, and 2) it does not have an

integer multiplier/divider.

The load aligner was left out of the CPU because analysis of the benchmarks

showed that, overall, partial word loads only comprise 2% of the total number of

instructions that are executed. The absence of a load-aligner would require all partial

word load instructions to take an extra cycle to align the data using the shifter. This

would increase the CPI by the number of partial word loads that are executed. The

benchmarks with the most partial word loads are nroff with 15%, tex with 6.5%

and gcc with 2.6%. Most other integer benchmarks have far fewer partial word loads

and
oating point benchmarks have none.

The load aligner has a delay which is roughly 50% of the ALU add time.

This delay is on the MEM loop from the L1-D cache. This extra delay will add

from 10-50% to tCPU. Given the cost in chip area and the increase in cycle time of

including a load-aligner against the potential increase in CPI from excluding a load

aligner, it was decided to leave it out. An integer multiplier/divider was not included

in the CPU because these functions can be executed in fewer cycles using the FPU.

3.6 Conclusions

A multilevel optimization design methodology leads to high performance

microprocessor designs by using the characteristics of the implementation technolo-

gies to direct decisions at higher levels of design. This design methodology relies on

being able to accurately predict the performance of an architecture using TPI. The

analysis techniques used to provide this performance prediction are timing analysis

82

and trace-driven simulation. While neither of these techniques are new, the tools

that have been developed for this thesis have new features that improve both their

accuracy and versatility compared to previous work. The timing analysis tools use a

new timing model. This model makes it possible to �nd the minimum cycle time of

and critical path circuits of a wider class of digital circuits than previously possible.

Trace driven simulation has been made more realistic using novel ways to simulate a

multiprogramming workload. This simulator was used to explore the e�ect of multi-

programming parameters on cache performance. The combination of these analysis

techniques for architecture optimization are a unique contribution to the �eld of com-

puter design.

CHAPTER 4

OPTIMIZING THE PERFORMANCE OF L1

CACHES

The organization of the L1 cache has a unique position in the cache hierarchy

because it a�ects both tCPU and CPI directly. This chapter shows the use of the

multilevel design optimization methodology to the design of an L1 cache

4.1 The L1 cache optimization problem

The objective of the L1 cache optimization problem is to maximize the per-

formance within the constraints of the implementation technology. To begin the mul-

tilevel optimization approach we must speci�cally characterize how the organization

a�ects TPI.

Restating the equation for TPI as a function of the vector of parameters, P ,

that characterize the L1 cache organization gives

TPI(L1) = CPI(P)� tCPU(P) (4:1)

Elements of P include: L1 cache size, L1 cache associativity, L1 cache access time and

L1 cache access latency. Optimization of performance with respect to any of these

parameters, say Pi, occurs when

dTPI

dPi

=
dCPI

dPi

tCPU +
dtCPU

dPi

CPI = 0

Rearranging this equation yields

CPI0

CPI
= �t

0

CPU

tCPU

83

84

Since TPI and CPI are not analytic functions we make use of the discrete form of the

equation instead
�CPI(Pi)

CPI(Pi)
= ��tCPU(Pi)

tCPU(Pi)
(4:2)

This equation states that with respect to L1 cache, performance is maximized when

any change in parameter Pi produces an equal relative change in CPI as it does in

tCPU.

Given a speci�c implementation technology, the function tCPU(L1) can be

expressed as

tCPU(P) = f(tL1; lL1) (4:3)

where tL1 is the time it takes to fetch instructions or data from the L1 cache and

lL1 is the latency of the datapath loop of which the cache is a part. The latency of

the datapath loop is determined by the clocking scheme used to control the datapath

latches. In general, tCPU is an increasing function of cache access time tL1 which can

be expressed as

tL1 = g(SsL1; AL1) (4:4)

where SL1 is the size of the cache and AL1 is the set associativity of the cache. Larger

and more set-associative caches have longer access times.

Given a constant latency and transfer time to the next lower level cache (L2)

in the memory hierarchy, the function CPI(P) can be expressed as

CPI(P) = h(mL1; tCPU; lL1) (4:5)

where mL1 is the miss ratio of the cache. CPI is an increasing function of cache miss

ratio. If we hold the latency and transfer times of the L2 cache and the main memory

constant, CPI decreases with increasing tCPU because fewer cycles are required to ac-

cess these levels of memory. The dependence of CPI on lL1 is more subtle. In general

CPI is an increasing function of lL1 because this latency creates instruction execution

cycles in which no useful instructions can be executed (delay slots). Branch predic-

tion and reordering of instructions to �ll these delay slots are not always successful.

Furthermore, aggressive software techniques used to �ll branch (BR loop) delay slots

85

often replicate code, resulting in larger static code size which may lead to a higher

L1-I cache miss ratio.

Because of the complex way TPI changes with di�erent organizations of the

L1 cache, the functions f , g, and h can only be found by simulation.

4.2 tCPU of the L1 Cache

In this section we will de�ne the function f(tL1; lL1). The speci�c timing

results of Section 3.3.3 will be generalized so that they can be applied to the class of

organizations with the same general RTL structure as the base architecture. Speci�-

cally we will estimate the e�ect of cache size on the cycle time of the base architecture.

In the analysis that follows it is assumed that the EX loop has a latency of

one. This assumption is made because the ALU loop has the smallest total delay. All

other loops include the cache access time which, for reasonable cache sizes (miss ratio

less than 50%), will always be slower than the ALU in all technologies. Therefore,

increasing the latency of the ALU loop would have no e�ect on the cycle time unless

the other loops are heavily pipelined.

To convince the reader that the ALU will normally be faster than memory

access, the relative speeds of the ALU add time and memory access time in CMOS

technology will be compared. In CMOS, unlike GaAs, it is possible to integrate a

reasonable amount of cache on the same chip as the CPU. This eliminates two chip

crossing boundaries and greatly reduces the L1 cache access time. To begin the

comparison we de�ne the gate delay, D, to be the gate delay measured on a ring-

oscillator where each stage has a fanout of three. Given this de�nition of D, it can

be shown that a 64 b group-4 carry lookahead adder has a delay of 12D [WF82].

The access time taccess of on-chip SRAM can be estimated using the following

empirical formula developed by Mark Johnson

taccess = D(1 + 1:5 log2N) (4:6)

where N is the number of bits in the SRAM [Joh91a]. The rationale for this equation

is as follows. The optimum aspect ratio for an SRAM is one [Wan89]. Doubling

86

both sides of a square array quadruples the number of bits in the SRAM and adds

approximately 3D to the access time due to longer wires, extra bu�ering and extra

levels of decoding logic. Therefore, doubling the size of the cache increases the access

time by 3D
2
= 1:5D. The constant 1D term accounts for the minimum delay of the

sense ampli�er and wordline driver circuits.

We can use (4.6) to de�ne tL1 for on-chip direct-mapped caches. The SRAM

size with an access time of 12D, equal to the delay of the adder in an ALU, is between

128 and 256 b. A cache of this size is far too small, especially considering that a 32�32

register �le has 1024 b. The smallest cache of reasonable size is 16Kb (2KB) and

has an access time of 22D. Thus, even in the case of CMOS where the cache can be

placed on the same chip as the ALU, the EX loop is still the fastest path.

Chapter 2 showed that using GaAs technology it is not possible to place

the L1 cache on the same chip as the CPU, because a chip of this size has a power

consumption that is too high and a yield that is too low to be practical. Therefore the

cache must be constructed of individual cache SRAMs that are placed on an MCM.

In this arrangement the chip-to-chip delay of the MCM from the CPU to the cache

SRAMs, which is denoted by tMCM, is an appreciable component of tL1. The equation

for tL1 that includes the round trip delay tL1 from the CPU to the cache and back is

tL1 = taccess+ 2tMCM (4:7)

where taccess is de�ned by (4.6).

In general tMCM is dependent upon the electrical characteristics of the MCM

interconnect (R, L and C) and the longest distance from the CPU to any cache

SRAM. Given n, the number of SRAM chips in the L1-I or L1-D cache, tMCM can be

approximated by the following linear equation

tMCM = k0 + k1n (4:8)

where k0 is a constant term associated with the delay of the o�-chip drivers and

receivers and k1 is a linear coe�cient that represents the additional delay per chip. If

n is the number of chips in the L1-I or L1-D cache, then to minimize interconnection

87

CPUL1-I L1-D d 2n

d n/2 d n/2

 d 2n

Figure 4.1: The minimum delay arrangement of 2n L1 cache SRAM chips.

delay these chips should be arranged as closely as possible to a
q
n=2�

p
2n rectangle

as shown in Figure 4.1. If the CPU is placed in the middle of the long side of this

rectangle, the maximum length l of a wire from the CPU to any chip is d
p
2n where

d is the average chip pitch. More speci�cally, the term d is de�ned as the average of

the horizontal h and vertical v pitches of the chip, where h and v include the width

of an adjacent wiring channel and any extra space necessary to connect the chip to

the MCM.

The value of the linear coe�cient can be expressed as

k1 = Z0Cbond + 2d
2
RMCMCMCM (4:9)

where Z0 is the characteristic impedance of the MCM interconnect and RMCM and

CMCM are the resistance and capacitance per unit length of interconnect. This equa-

tion is a modi�ed form of an equation for the packaging delay of interconnect presented

in [Bak90]. The �rst term of (4.9) is the delay due to parasitic capacitance of the

bonding method and the pad that connects the chip to the MCM. The second term

is the distributed RC delay of the MCM interconnection lines and is proportional to

the square of the length of the MCM interconnect that is being driven. However,

this length is proportional to the square root of the number of chips in the cache n,

making the second term linear in n. Equation (4.9) assumes the interconnect is quite

88

Parameter Value

RMCM 1.07
/mm

LMCM 0.272 nH/mm

CMCM 0.108 pF/mm

RMCMCMCM 0.116 ps/mm2

Z0 50

Cbond 0.90 pF

Table 4.1: MCM parameters.

lossy and so neglects any delay from transmission line behavior.

To validate the expression for k1 and to get an accurate measure of the

interconnect delay of the MCM, layouts for cache with 4, 6, 11, and 21 chips were

simulated with HSPICE [Met90]. The details of these simulations are presented in

[KSH+91]. These simulations assumed an SRAM chip with dimensions of 3.8mm �

6.8mm and an MCM with a wire pitch of 40�m. A wire pitch of 40�m results in a

32 b wiring channel that is 1.3mm wide. This in turn results in a d of 6:6mm. The

other parameters that are necessary to calculate k1 are listed in Table 4.1. Combining

them yields

k1 = (50
)(0:9 pF) + 2(6:6mm)2(0:116 ps=mm2) (4.10)

= (45 ps) + (10:1 ps) (4.11)

= 55:1 ps (4.12)

From (4.11) it is clear that most of the additional delay that comes from adding extra

cache chips is due to the parasitic capacitance of Cbond. Therefore, reducing Cbond

would provide the most signi�cant reduction in tMCM. Unfortunately, the values of

Cbond assume
ip-chip bonding which is the highest performance bonding method that

presently exists [Bak90], and there is little that can be done to reduce Cbond below

the value of 0.90 pF. Given this situation, the parameters of the MCM interconnect

RMCM and CMCM must be reduced in order to reduce the MCM delay.

Figure 4.2 plots the results of the simulations which correspond to values of

n of 4, 6, 11 and 21. A least- squares linear curve �t to these points has parameters

89

J

J

J

J

500

700

900

1100

1300

1500

1700

1900

0 5 10 15 20 25

t M
C

M
 (

ps
)

 n

k = 55.31

k = 5770

Figure 4.2: tMCM versus the number of L1 cache chips (n).

k0 = 577 ps and k1 = 55:3 ps. The value of k1 is very close to the value of k1 calculated

in (4.12), validating expression (4.9) for k1.

Equation (4.7) can now be rewritten as

tL1 = (1 + 1:5B)D +
4SL1

B

"
Z0Cbond+ 2

�
d15
p
2
(B�15)

�2
RMCMCMCM

#
+ 2k0 (4:13)

where B = log2N and d15 is the chip pitch for a 215 = 16Kb chip. The term�
d15
p
2
(B�15)

�
assumes that the chip pitch grows or shrinks by a factor of

p
2 as

the number of bits in the chip grows or shrinks by a factor of 2. We could take the

derivative of (4.13) with respect to B and set the result equal to zero in order to

obtain the chip size that minimizes tL1 for a given cache size SL1, however, it is more

interesting to plot the equation in order to see the trend that develops as the chip

size is varied.

Figure 4.3 is a plot of (4.13) for a cache size 4KW (16KB), which is the size

used in the base architecture. The plot shows that taccess increases linearly and tMCM

decreases exponentially with each doubling of SRAM chip size. The linear increase

in taccess is a direct consequence of (4.6). The explanation of the exponential decrease

90

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

5

10

15

20

25

30

35

40

45

50

T
im

e
(D

)

SRAM size

t access

MCM2t

t L1 = t access MCM2t+

Figure 4.3: A plot of tL1 versus SRAM chip size of SL1 = 4KW.

in tMCM is more involved. The main reason for the decrease in tMCM is that fewer

chips are required to implement the cache as the SRAM chip size increases. Although

larger SRAM chips have a longer chip pitch d, which tends to increase k1, the largest

component of k1 is Z0Cbond which is not dependent on d. The net e�ect of these

factors is a decrease in tMCM as SRAM chip size increases.

The L1 access time reaches a minimum between SRAM chip sizes of 4KB

and 8KB. From this, it is clear that larger SRAM chips do not necessarily o�er

better overall access time. On the contrary, smaller SRAM chips coupled with MCM

packaging can achieve lower overall access times. Furthermore, we shall see that small

SRAM chips with fast access times have other advantages.

To investigate how the tL1 versus SRAM chip size curve changes with the

larger sizes of the L1 cache (SL1), Figure 4.4 was plotted. Values of SL1 from 4KW

to 32KW are shown. As the cache size grows the optimum cache access time moves

to larger SRAM sizes. However, the optimum point is not pronounced and an SRAM

size of 4KB represents a good choice for all cache sizes less than 32KW.

Equation (4.13) de�nes function g (4.4) for an MCM based direct-mapped

L1 cache. This equation can be combined with the latency of the BR loop for L1-I

��

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

20

40

60

80

100

120

140

160

180

200

t L1
 (

D
)

SRAM size

32KW

16KW

8KW

4KW

Figure ���� A plot of tL� versus SRAM chip size�

and the latency of the MEM loop for L��D to determine the function f in ����� for

both L��I and L��D� We will consider latency values for these loops of two	 three	 and

four cycles� These latency values correspond to L� cache delays of one	 two	 and three

cycles� The structure of the L� cache datapath is shown in Figure ��
� All memory

con�gurations	 regardless of latency	 will use this structure� In the MCM L� cache

analysis the latency of the BR loop and MEM loop will be varied by changing the

clock schedule� The way in which this is accomplished is shown in Figure ���

When the CPU datapath is analyzed with minTC	 using the L� cache access

times from Figure ��� and the GaAs CPU datapath parameters listed in Tables ��

and ���	 the plot shown in Figure ��� results� The value of D used to generate these

�gures is �
� ps�

The BR loop is the critical path for latency values of two and three because

it has a larger amount of delay than the MEM loop� When the latency of the BR

loop is two	 the minimum cycle time occurs with an SRAM size of �KB� This is the

same as the size with the lowest access time in Figure ���� However	 when the latency

�

Column Decoder�

R
ow

 D
ecoder�

Sense Amplifier/
Write Driver�

2 x 2
Memory Array�

N� M�

2�M�

B�

C�

φ�B�

φ�C�

Pad
Driver�

2�M�

N�

2�M�

Pad
Driver� MCM�

MCM�

Address�

Data In�

Data Out�

CPU chip� SRAM chip�

A�

D�

φ�A�

φ�D�

Pad
Rcv.�

Pad
Rcv.�

Pad
Driver� MCM� Pad

Rcv.�

Figure ��
� The L� cache datapath� The latches used in an SRAM read cycle are
labeled by the letters A	 B	 C and D� A is the CPU address latch	 B is the SRAM
address latch	 C is the SRAM data output latch and D is the CPU data input latch�

MCM�

SRAM�

A�

B�

C�

D�

MCM�

φ�1�

2�φ�

φ�1�

1 cycle�

MCM�

SRAM�

A�

B�

C�

D�

MCM�

φ�1�

2�φ�

φ�1�

1 cycle�

φ�1�

1 cycle�

MCM�

SRAM�

A�

B�

C�

D�

MCM�

φ�1�

φ�1�

φ�1�

φ�1�

1 cycle�

1 cycle�

1 cycle�

�a� �b� �c�

Figure ���� Three clock schedules for L� cache access� �a� one cycle access	 �b� two
cycle access and �c� three cycle access� The clock phase assignments are examples�
Analysis of a speci�c circuit with minTC will provide the phase assignment with the
optimum cycle time� As shown in Figure ���
	 a special memory clock phase may be
necessary to reach the optimal cycle time�

��

Component Delay
ALU ��D
Register�read �D
Register�write �D
Multiplexor �� � dlog� inputse�D
Comparator �D
Latch
D

Table ��
� Delay of components of the CPU datapath measured in gate delay D�

Loop Delay
EX loop
�D
BR loop ��� � tL��I�D
MEM loop �
� � tL��D�D

Table ���� The delay of each loop measured in gate delay D�

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB
15

20

25

30

35

40

45

t C
P

U
 (

D
)

SRAM size

BR-loop(3)

BR-loop(2)

ALU-loop(1)

Figure ���� A plot of tCPU in units of gate delay �D� versus SRAM chip size for
SL� � �KW� The number in parentheses is the latency of the loop�

��

is increased to three the minimum cycle time changes to
KB� The reason for this is

that the longest propagation delay in the circuit places a lower bound on the cycle

time� This will always be the case unless the circuit is wave�pipelined �WMF����

The lower bound on tCPU imposed by the SRAM access time sets the tCPU for

SRAM sizes larger than
KW for a BR loop latency of three� Therefore	 increasing

the latency of the BR loop will only reduce the CPU cycle time for SRAM sizes of

KW and smaller� For these sizes the increase in tMCM and the decrease in taccess

equalizes the delay between the latches and makes it possible for deeper pipelining

to reduce the cycle time� However	 it is not necessary to increase the latency of the

BR loop before the bene�ts of a short SRAM access time can be observed� Even for

a latency of three	 a �KW cache implemented from
KB SRAMs achieves a lower

cycle time than one implemented from �KB SRAMs	 despite the fact that the total

access time of the cache made from the
KB SRAMs is greater than the total access

time of the cache made from the �KB SRAMs�

To reduce the lower bound on tCPU of taccess	 it is possible to move the latch

labeled A in Figure ��
 to a position after the row and column decoders� Doing this

will increase the number of bits that must be latched in the SRAM and results in a

non�standard SRAM design� However	 if a custom SRAM is being designed for an

on� chip cache	 the reduction in tCPU could make this SRAM design worthwhile�

In the remainder of the analysis of L� caches the cache will be implemented

from �KB SRAMs because �KB represents a good compromise between the shorter

access times o�ered by smaller SRAMs and the short overall L� cache access times

o�ered by larger SRAMs� Shorter L� cache access time becomes important when the

cache is increased beyond �KW� For cache sizes greater than ��KW Figure ��� shows

that SRAMs larger than �KB provide lower tL� times� However	 larger SRAMs in

GaAs are di�cult to fabricate	 have poor yield	 and consume relatively large amounts

of power� Thus �KB represents a good compromise� In CMOS the choice of SRAM

size might be di�erent	 but the same sort of analysis to quantify the relationship

between speed and size is applicable�

Given an SRAM size of �KB	 Figure ��� plots the minimumcycle time for L�

�

1KW 2KW 4KW 8KW 16KW 32KW
15

20

25

30

35

40

45

t C
P

U
 (

D
)

L1 cache size

BR-loop(3)

BR-loop(2)

MEM-loop(3) or BR-loop(4)

MEM-loop(2)

Figure ���� tCPUversus cache size for the �KB SRAM chip�

cache sizes that vary from �KW to �
KW� As expected	 the cycle time monotonically

increases with increasing cache size� The �gure shows that for MEM loop and BR

loop latency values of two	 the BR loop is always critical and so sets the cycle time�

Due to the two�cycle latency	 tCPU increases at a rate that is half of the rate at which

tL� increases� When the latency values of the MEM loop and BR loop are equal to

three	 for cache sizes smaller than �KW the SRAM access time taccess limits tCPU to

a value of
��
D� However	 even if this were not the case	 the EX loop delay would

limit tCPU to
�D� For cache sizes larger than �KW	 the BR loop again becomes the

critical path and tCPU increases at a third of the rate of tL�� The value of taccess limits

the tCPU for all cache sizes when the latency values of the MEM loop and the BR

loop are greater than or equal to four�

Figure ��� de�nes �����	 the function tCPU�L�� � f�tL�� lL��	 for the L� cache

sizes and loop latency that will be used in the remainder of this thesis� The results

presented in this �gure do not include the e�ects of clock skew� However	 using an

H�tree clock distribution network it is possible to control clock skew to �� ps or less

��

in a �
� �
 cm area on an MCM �Bak���� This amount of clock skew is less than ��

of the cycle times we consider	 therefore clock skew will have a very small e�ect on

overall performance�

In summary	 this section has developed the following formula�

tL� � �� � ��
B�D �
�SL�
B

�
Z�Cbond �

�
d��
p

�B����

��
RMCMCMCM

�
�
k�

which can be used to predict the access time of MCM based caches in terms of

normalized gate delay D� This formula was used to investigate the speed�size design

space for SRAMs� It was shown that with MCM packaging technology	 for the same

sized cache	 larger SRAMs do not necessarily result in lower cache access times�

In fact	 when the caches are integrated with the rest of the CPU datapath	 the

optimal clock schedule favors smaller SRAMs with lower access times� With these

considerations coupled with the addition of yield and power arguments	 a �KB SRAM

was selected as the best SRAM chip size of the L� cache� Finally	 the CPU cycle time

that results when this SRAM chip is used for various sizes of L� cache was presented�

��� CPI of the L� Cache

In this section the e�ect that the L� cache organization has on CPI will be

investigated by considering the L��I and L��D caches separately� Once the optimal

L��I and L��D caches have been determined they will be combined into one coherent

architecture� To facilitate the separation of the L� cache into instruction and data

parts it will be assumed that the write�bu�er has read con�ict checking hardware�

This will allow L� cache misses to fetch data from the L
 cache immediately	 without

waiting for the write�bu�er to empty� Making this change lessens the impact of the

L� miss ratio on the performance of the write�bu�er� It also isolates the e�ect on

CPI of those factors that are directly related to the organization of the L� cache�

The e�ect that write�policy and write�bu�er organization has on performance will be

fully investigated in Chapter
� Even though the L��I and L��D are separate	 misses

on either one will stall the entire CPU until the data is fetched from the L
 cache or

from main memory�

��

Equation ���
� shows that the CPI is a function of three factors that are

determined by the L� organization� L� cache miss ratio	 tCPU	 and L� cache read

latency� The e�ect of these factors will be determined using trace�driven simulation�

����� CPI of the L��I Cache

As long as the CPU is executing instructions sequentially	 the latency of the

L��I cache access has no e�ect on CPI� However	 when a control transfer instruction

�CTI� is executed	 the next instruction to be fetched must be delayed until its address

is known� Assuming that the branch condition of a conditional branch CTI can be

evaluated in one cycle	 the next instruction is delayed by lBr � � cycles	 where lBr is

the latency of the BR loop� These cycles are called branch delay slots� Since most

applications dynamically execute control transfer instructions ���
�� of the time	 a

unit increase in lL��I will result in a ���
�� increase in CPI� In order to reduce this

e�ect on CPI a number of hardware and software schemes have been devised to reduce

the e�ect of branch delay slots �Smi��	 LS��	 MH��	 Lil��	 HCC��	 KT���� Two

representative schemes are evaluated here� hardware�based branch target bu�ering	

and software�based delayed branching with optional squashing�

A branch target bu�er �BTB� is a cache whose entries contain address tags

and target addresses of branch instructions� Every instruction address is checked

against the BTB�s address tags� Those addresses that hit are predicted to be branches�

The BTB simulated here uses a
 b �bit� prediction scheme that is described in �LS����

If the BTB predicts a branch taken	 the target address is used as the next instruction

address� If the BTB could be accessed in a single cycle and its predictions were always

correct	 it would completely hide the e�ect of branch delay slots� The size of the BTB

that will be evaluated in this study is

� entries� With two �
 b addresses plus
 b of

prediction per entry	 the BTB requires approximately
KB of SRAM storage� This

size represents the upper limit of an SRAM that could be placed on the GaAs CPU

chip� Furthermore	 larger BTBs will have access times that are too long to allow

single cycle access	 assuming that the EX loop sets the cycle time�s lower bound�

In order to use delayed branches with optional squashing to reduce the ef�

��

fect of delay slots	 the compiler must �ll the delay slots of each branch instruction

with useful instructions that are taken from among the instructions before the branch

instruction	 after the branch instruction	 or from the branch target instructions� In�

structions taken before the branch can always be executed no matter what direction

the branch takes� In contrast	 instructions from after the branch must be squashed if

the branch is taken and instructions from the branch target must be squashed if the

branch is not taken� Squashing requires dynamically converting the instructions to

noop instructions� There is usually a code expansion associated with this approach

because in order to schedule branch delay slots with instructions from the branch

target the instructions must be replicated�

Evaluating the performance of these schemes for reducing the impact of

branch delay slots requires knowledge of the number of delay slots	 the number of

these that are �lled	 the e�ect on CPI of the reduced static code size with the BTB	

and the e�ect of the expanded static code size with delayed branches� To provide

this information	 a post�processor for mips object code was developed for mapping

instruction addresses from those of the mips code �which assumes one branch delay

slot� to those of a target architecture having a di�erent number of delay slots� Using

the information contained in this �le during cache simulation	 instruction addresses

are translated from the mips I object code to the addresses of the object code of the

architecture that is being simulated�

The post processor can create translation �les to simulate ISAs with any

number of delay slots� A �le for an ISA without any delay slots is used for the BTB

experiments� Such a �le can be produced by	 �rst of all	 removing all noop instructions

that appear after control transfer instructions �CTI� to create code without delay

slots� Following this	 the mapping between the basic block entry points of the original

object code and the transformed code is recorded in the translation �le� The code for

a single delay slot ISA is the same as that produced by the mips compiler� However	

the mips ISA does not include optional squashing and so it cannot �ll the delay

slot with instructions from after the branch or from the branch target� Cases where

the compiler was unable to �nd an instruction from before the branch have a noop

��

instruction following the branch� This case is covered in the general �two or more�

delay slot insertion scheme described below�

In the procedure for general delay slot insertion	 b is the number of branch

delay slots in the ISA that is to be simulated and r is the number branch delay slots

that are �lled from before the branch and s is the number of delay slots that must

be �lled from the sequential path or from the branch target path �b � r � s��

�� Check to see if the mips compiler inserted a noop instruction after the CTI� If

it did	 the CTI cannot be moved any higher in the basic block	 Therefore	 set

r � �� s � b and go to step ��

� Move the CTI up in the basic block as far as allowed by the data dependencies

of the instructions that are above the branch� Besides the CTI	 no attempt is

made to rearrange other instructions in the basic block� Set r and s�

�� Determine the prediction of the CTI� Backward branches and unconditional

jumps are predicted to be taken� Forward branches are predicted to be not

taken�

�� Insert s noop instructions after CTI that are predicted to be taken in order to

simulate the instructions that are replicated from the target path� After doing

this	 set s � � for register�indirect jumps because the target of these jumps is

not computable at compile time�

After this procedure is completed	 associated with each CTI is the number	 s	 of

instructions in the delay slots that may need to be squashed and a �ag that indi�

cates whether the CTI is predicted to be taken or not�taken� The value of s	 the

branch prediction along with the basic�block entry�point mappings are placed in the

translation �le�

The idea behind the translation �les is to use a trace from a computer with

an ISA that has c branch delay slots to simulate the instruction referencing behavior

of a computer with b branch delay slots	 where b is not equal to c� Cache simulation

using the translation �les works as follows� Each basic block entry�point instruction

���

address that comes from an instrumented benchmark is translated to a new address

using the data in the translation �le� This address is used to simulate l sequential

instructions	 where l is the length of the translated basic�block� For the purpose of

cache simulation	 we are not concerned with the speci�c mechanism used to squash

instructions in the delay slots	 we are only concerned that the correct instruction

reference stream is produced� To get the correct reference stream	 it is su�cient to

check the prediction of each CTI� If the prediction of the CTI is that it will be taken

and the prediction is correct	 then the value of s associated with the CTI is added

to the instruction address of the target basic block thus leaving l � s instructions

to be executed in the target basic block� This assumes that s instructions of the

target basic block have been executed in the delay slots of the CTI� If there are less

than s instructions in the target basic block then the delay slots are assumed to be

padded with noop instructions� If the prediction is that the CTI will be taken and

the prediction is incorrect	 then the instruction address of the sequential basic block

is left unchanged� Doing this simulates the e�ect of the extra delay slot instruction

references� If the prediction is that the CTI will not be taken and the prediction is

correct	 then no action is taken because the sequential instructions are in the delay

slots of the CTI� However	 if the CTI is predicted not to be taken and the prediction

is incorrect	 then s extra instruction references are made in the sequential basic block

before control is transferred to the target basic block�

Figure ��� shows	 for � to � delay slots	 the average static code size increase

for all the benchmarks �referenced to that of an ISA having no delay slots�� The

increase arises from �lling the delay slots of the ��� of CTIs that are predicted to be

taken� Measurements taken from our benchmarks indicate that the mips compiler is

able to �ll
�� of all �rst branch delay slots with instructions from before the CTI�

For CTIs predicted to be taken	 this number decreases to

�� The rest of the delay

slots for these CTIs must be �lled with instructions from the branch target� The

delay slots of register indirect jumps cannot be �lled with target instructions and so

are �lled with noop instructions� Register indirect jumps make up roughly ��� of

the CTIs in our benchmarks�

���

sp
ic

e2
g6

do
du

cd

w
ol

f3
3

lo
op

s

xl
sw

in
s

es
pr

es
so gc

c

in
te

gr
al te
x

ya
cc

sm
al

l

5d
iff

m
at

rix
50

0

lin
pa

ck
d

aw
k

nr
of

f

0

5

10

15

20

25

30

35

st
at

ic
 c

od
e

si
ze

 in
cr

ea
se

 (
%

)

1

2

3

branch delay slots

Figure ���� Static code size increase versus the number of branch delay slots�

The increase in CPI as the number of branch delay slots increases comes

from two sources� ��� increases in the number of L��I cache misses due to the larger

code size and �
� the extra instruction references that are executed when the static

branch prediction is incorrect� In addition	 the two sources are related because more

instruction references tend to create more L��I cache misses� To measure the e�ect

of the extra L��I cache misses	 various L� cache con�gurations were simulated as the

number of branch delay slots was varied from � to �� Apart from delay slots	 the other

major parameters that were varied in these simulations were the L��I cache size	 SL�	

the line or block size	 BL�	 and the L� miss penalty	 PL��

In general	 the L� miss penalty PL� in CPU cycles for o��MCM L
 caches

is calculated using the following formula�

PL� �

�
���
��ns � BL����ns

Wtr
�

tCPU

�
��� ������

where BL� is the block or line size of the L� cache and Wtr is the transfer width from

the L
 cache to the L� cache� This formula re�ects that BL� is an integer multiple

��

Delay CTIs Predicted Taken CTIs Predicted Not�Taken Cycles per Additional

slots � of total � correct � of total � correct CTI CPI

� �� �� �� �� ��	�
 	�	�

 �� �� �� �� ����� 	�	��

� �� �� �� �� ���� 	�	��

Table ���� Performance of branch prediction versus number of branch delay slots� The
numbers of predict�taken and predict�not� taken CTIs are expressed as percentages
of the total number of CTIs that were executed� The CTIs made up �� � of all
instructions that were executed�

of Wtr� This formula models the fact that it takes � ns to drive the address o� of the

MCM and to receive the data back from the L
 cache SRAMs	 and that the L
 cache

cycle time is �� ns�

Using ������	 cache experiments were performed for L��I cache sizes from

�KW to �
KW	 for transfer widths from �W to �W	 and for the branch delay slots

from � to �� The rest of the system con�guration is the same as the base architecture

with the changes that were described at the beginning of this section� The results of

the L��I cache experiments are shown in Figures ��������
� These �gures reveal

that the number of delay slots has a measurable impact on the performance of the

L��I cache� This impact diminishes as the cache size and transfer width are increased�

For the smallest L��I cache size of �KW ��KB� the rate of increase in CPI is roughly

���� per delay slot for a transfer size of � W� When the transfer size is increased to

�W the rate of CPI increase drops to ����
 per delay slot� For the largest L��I cache

size of �
KW	 the rate of increase in CPI as the number of delay slots increases is

quite small� The rate of increase varies from ����� to ����� CPI per delay slot as the

transfer width is increased from �W to �W�

The block size is optimized for the lowest CPI for each value of transfer

width used in the L��I experiments� For transfer widths of � and
W the block size

of �W is optimal� The optimal block size increases to �W when the transfer width

is increased to �W� Even larger optimal block size would result if an interleaved L

cache that had a higher transfer rate than one transfer per �� ns�

Table ��� lists	 for �	
 and � delay slots	 the static branch prediction statis�

���

B
B

B
B

J
J

J
J

H H
H

H

F F F
F

Ñ Ñ Ñ Ñ
É É É É

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1
-I

 C
P

I

Branch delay slots

1 KW

2 KW

4 KW

16
KW

8 KW

32
KW

Figure ����� E�ect of branch delay slots on L��I performance� Wtr � �W	 BL� � �W�

B
B

B
B

J
J

J
J

H H
H

H

F F F
F

Ñ Ñ Ñ Ñ
É É É É

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

L1
-I

 C
P

I

Branch delay slots

1 KW

2 KW

4 KW

16 KW
8 KW

32 KW

Figure ����� E�ect of branch delay slots on L��I performance� Wtr �
W	 BL� � �W�

B
B

B
B

J
J J

J

H H H H

F F F
F

Ñ Ñ Ñ Ñ
É É É É

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L1
-I

 C
P

I

Branch delay slots

1 KW

2 KW

4 KW

16
KW

8 KW

32
KW

Figure ���
� E�ect of branch delay slots on L��I performance� Wtr � �W	 BL� � �W�

���

Benchmark BTB hit incorrect BTB miss BTB miss
prediction taken not taken

�diff ����� ����� ���� ����
awk ����� ����
 ���� ��

doducd ����� ���
� ����
�

espresso �
���
���

�
� ��
�
gcc ����� ����� ����� ��
�
integral ����� ���
� ���� ��
�
linpackd ����� �
��
 ���� ����
LFK�� ������ ��
� ���� ����
matrix��� ����� ���� ���� ����
nroff ���
� ���� ���� ���

small ����� ���
� ���� ����
spice�g� �
��� ����� ��
�
�
�
tex �
��� ����
 ����
 ����
wolf�� �����

��� ���
� ���

xlswins ����
 ����
 �
�
� ����
yacc ���
� ����� ��

 ��
�

Harmonic mean ����� �
�
�
���
���

Table ��
� A summary of the

� entry BTB performance� The numbers are expressed
as percentages of the total number of CTIs�

tics	 cycles per branch	 and additional CPI due to extra instruction reference cycles�

The data in this table support two conclusions� First	 static branch prediction with

optional squashing is an e�ective scheme for mitigating the branch�delay penalty� For

example	 since ��� of instructions executed are CTIs	 three branch delay slots could

increase CPI by ���� in fact	 the increase is only ����	 a reduction of nearly ��� due

to good branch prediction� Secondly	 the e�ect of instruction cache misses should not

be ignored when considering the performance of aggressive static branch prediction

schemes� Though this is less important for large caches and small miss penalties	 it is

noteworthy that the increase in CPI due to increased cache misses with three delay

slots is �� for a �K�W L��I cache with a ���cycle miss penalty �see Figure ������

The performance of the

� entry BTB is summarized in Table ��
 for all

benchmarks� The data shows that although the BTB achieves a hit rate of over ���	

incorrect predictions reduce its overall branch prediction accuracy to ���� This is still

��

Delay Cycles per Extra
slots CTI CPI
� ���� ���
�

 ���
 ����

� ���
 ����

Table ���� BTB prediction performance�

better than the static prediction accuracy of ���� However	 the overall e�ectiveness

of the BTB method is reduced because an extra cycle is required to update the BTB

with the correct information every time there is a BTBmiss or an incorrect prediction�

When these cycles are included in the branch penalty	 the performance of the BTB

is reduced to that shown in Table ����

A comparison of Tables ��� and ��� shows that the static scheme performs

better� This is because static rearrangement allows ��
 to ��� of the delay slots to be

�lled with instructions from before the CTI	 so that fewer cycles are wasted even if

the CTI prediction is incorrect� The BTB scheme loses one cycle per delay slot every

time a CTI misses the BTB or the CTI prediction is incorrect� One could argue that

the relatively small size of the BTB compromises its performance� recall	 though	 that

the BTB was restricted to

� entries to ensure single cycle access	 which is necessary

to make this scheme worthwhile� Though they did not investigate the e�ects of code

expansion	 other researchers have shown that static branch prediction techniques

using sophisticated program pro�ling and fetch strategies are competitive with much

larger BTBs �HCC��	 KT���� Of course	 for static prediction	 the additional CPI

due to increased L��I misses �see Table L��I�
wpt� must be considered� for small

cache sizes and large miss penalties	 this would give the performance edge to the

BTB approach� Nevertheless	 because its performance is roughly comparable and its

hardware cost is lower	 the static prediction scheme is used in the remainder of the

L��I cache experiments�

Figures ��������
 plot the total CPI for the same values of L��I cache size	

numbers of delay slots	 and transfer widths that were used in Figures ��������
 Two

���

Delay slots

B

B

B

B

B B

J

J

J

J

J J

H

H

H

H
H H

F

F

F

F
F F

1KW 2KW 4KW 8KW 16KW 32KW
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

C
P

I

Cache size

B 3

J 2

H 1

F 0

Figure ����� Branch delay slots versus L��I cache size� Wtr � �W	 BL� � �W�

Branch delay

B

B

B

B

B B

J

J

J

J
J J

H

H

H

H
H H

F

F

F

F
F F

1KW 2KW 4KW 8KW 16KW 32KW
1.7

1.8

1.9

2

2.1

2.2

2.3

C
P

I

Cache size

B 3

J 2

H 1

F 0

Figure ����� Branch delay slots versus L��I cache size� Wtr �
W	 BL� � �W�

Delay slots

B

B

B

B

B B

J

J

J

J
J J

H

H

H

H
H H

F

F

F

F
F F

1KW 2KW 4KW 8KW 16KW 32KW
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

C
P

I

Cache size

B 3

J 2

H 1

F 0

Figure ���
� Branch delay slots versus L��I cache size� Wtr � �W	 BL� � �W�

���

B

BB

B

B

B

B

J

JJ

J

J

J

J

H
HH

H

H

H

H

F
FF

F

F

F

F

Ñ
ÑÑ

Ñ
Ñ

Ñ

Ñ

É
ÉÉ

É
É

É

É

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

3 3.5 4 4.5 5 5.5 6

C
P

I

tCPU (ns)

B 1KW

J 2KW

H 4KW

F 8KW

Ñ 16KW

É 32KW

Figure ����� tCPU versus L��I cache size� b �
	 Wtr � �W	 BL� �
W� The curves
are not smooth because of the ceiling function in ������

observations can be made from these �gures� First	 as expected	 doubling the transfer

width dramatically decreases CPI because it reduces the miss penalty of both L��I

and L��D� The e�ect of a wide transfer width is most pronounced for the smallest size

cache of �KW� For this size an increase in transfer width from �W to �W reduces

the CPI by ���� For the largest L��I cache size of �
KW	 the reduction in CPI for

the same increase in transfer width is ���� Second	 is that for all transfer widths that

were considered	 it is always possible to decrease the CPI of the system by doubling

the cache size and increasing the number of delay slots by one	 for L��I cache sizes

of ����KW� The reason for this is that in this region of L��I cache size the relative

increase in CPI from increasing the number of delay slots ���������
� is less than the

decrease in CPI from doubling the cache size ����
���
��

The function h of ���
� which relates CPI to the organization of the L�

cache also depends on tCPU� This dependence is illustrated in Figure ���� which plots

the tCPU versus cache size tradeo� for a system having two branch delay slots and a

transfer width of �W� If the number of delay slots is changed	 smaller caches will be

���

a�ected more by the code size increase� Likewise	 smaller caches are a�ected more

by changes in transfer width because they have higher miss ratios� Figure ���� shows

that CPI decreases as tCPU increases because the miss penalty of the L� cache in

cycles de�ned in ������ decreases as tCPU increases� Furthermore	 the miss penalty of

the L
 cache	 i�e� the main memory access time	 expressed in CPU cycles decreases

as tCPU increases�

����� CPI of the L��D Cache

The L��D cache supplies data to the CPU when load instructions are exe�

cuted� The number of CPU cycles	 between the execution of a load instruction and

the time at which the data arrives at the CPU is determined by lMem��	 where	 lMem

is the latency of the MEM loop� These cycles are called load delay slots�

The mips ISA provides only one memory addressing mode for all load in�

structions� This mode	 called register plus displacement	 uses a �� b signed displace�

ment from a �
 b general purpose register �GPR�� To aid our discussion of load delay

slots	 the following fragment of code	 including the lw instruction is given as an

example�
subu r5, r5, r4

lw r3, 100(r5)

�������

addu r4, r3, r2�

c�

d�

The lw instruction loads a word from memory location ��� plus the contents of ad�

dress register r� into r�� It is preceded by an instruction that subtracts the contents

of r� from r� and places the contents in r�� It is followed by instruction that adds

the contents of r� to r� and places their sum into r�� We de�ne c as the number of

instructions between the last instruction to modify the address register and the load

instruction	 d to be the number of instructions between the load instruction and the

�rst instruction that uses the result of the load	 e to be the sum of c and d	 and l to

���

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

ct
io

n
of

 lo
ad

 in
st

ru
ct

io
ns

e = c + d
≥

Figure ����� Histogram of e values for benchmark suite used in this study�

be the number of load delay slots in the ISA� In this example	 it is possible to execute

the lw directly after the subu instruction	 implying c � �	 but the add instruction

cannot be executed until l cycles after the lw instruction�

If nothing is done to hide the lost cycles due to load delay slots	 the CPI

will increase by the fraction of instructions that are loads	 times the number of load

delay slots in the ISA� In the benchmark suite used in our experiments this fraction

is ��

� To reduce the e�ect of load delay slots	 load instructions can be moved up in

the program	 away from the ALU instructions that depend on them	 so that d � l�

This may be done statically at compile time or dynamically at execution time� The

restriction that a load instructions must execute after the instruction that modi�es

its address register limits the number of delay slots that can be hidden to e�

The number of delay slots that can be hidden is determined from a distribu�

tion of e values	 such as Figure ����� The large fraction �over ���� of loads that have

e values of three or more demonstrates great opportunity for moving load instruc�

tions away from where their results are used� The reason for this high percentage of

loads having e � � is that most variable references are to global static variables or

���

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
ra

ct
io

n
of

 lo
ad

 in
st

ru
ct

io
ns

e = c + d
≥

Figure ����� Static address register distance versus load delay slots�

to local automatic variables whose address registers do not change often� Program

measurements reveal that over ��� of array and structure references are to global

variables and over ��� of scalar references are to local variables �PS�
�� The mips

compiler allocates most global static variables from a ��KB area of memory called

the gp area� Variables in this area are addressed using a single dedicated register that

is set once at the beginning of the program� Local automatic variables are addressed

using the stack pointer register	 which only changes at procedure call entry points�

Furthermore	 the mips compiler attempts to address as many memory locations as

possible from the same address register �CCH�����

Though	 Figure ���� would indicate that most load delay slots can be hidden

dynamically for an ISA with l � �	 the presence of control transfer instructions reduces

the number of opportunities for hiding load delay slots at compile time� Figure ����

illustrates this by presenting the data of Figure ���� with the restrictions introduced

by basic block boundaries� These boundaries prevent load instructions from being

moved away from the instructions that use them	 causing the value of c to be reduced�

A comparison of Figures ���� and ���� shows clearly that these boundaries change

���

Static Dynamic
Delay Delay slots CPI Delay slots CPI
slots per load per load
� ��
� ���
 ���� ����

 ���
 ���� ���� ���

� ��
� ��
� ���� ����

Table ���� The increase in CPI due to load delay slots�

the distribution of e	 so that far fewer delay slots can be hidden in an ISA having

� � l � ��

Based on the data in Figures ���� and ����	 Table ��� shows the CPI increase

that results from �	
 and � load delay slots� The data in this table is calculated

using a dynamic frequency for load instructions of ��

� Even though the data in

Table ��� shows that dynamic load delay slot hiding could potentially be much better

at hiding load delay slots than static instruction scheduling	 dynamic schemes would

require out�of�order instruction execution	 extra register��le ports	 and a separate

load address adder� This extra hardware will increase the cycle time� Rather than

trying to estimate the change in tCPU	 we assume static instruction scheduling in

the remainder of this analysis	 and refer to Table ��� to estimate the performance

of dynamic scheduling or to estimate how much the cycle time could be increased

in a dynamic scheme before it reaches the performance crossover point with static

instruction scheduling�

Figures �������
� show CPI versus L��D cache size for � through � delay

slots and for transfer widths of �W and �W� As in the L��I experiments the block

sizes of the caches have been optimized for the re�ll latency and transfer rate� Each

�gure shows the e�ect that load delay slot values	 varying between zero and three	

have on CPI� We assume that load instructions are interlocked� This avoids the code

expansion associated with the need to insert noop instructions into load delay slots

which cannot be �lled with useful instructions� Figure ��
� shows that the e�ect

of load delay slots becomes more signi�cant for values greater than one� In fact	 in

order to decrease CPI after increasing the number of load delay slots from one to two

��

B

B

B

B
B

B

J

J

J

J
J

J

H

H

H

H
H

H

F

F

F

F
F

F

1KW 2KW 4KW 8KW 16KW 32KW
1.8

2

2.2

2.4

2.6

2.8

3

C
P

I

Cache size

B 3

J 2

H 1

F 0

Delay slots

Figure ����� Load delay slots versus L��D cache size� Wtr � �W	 BL� � �W�

B

B

B

B
B

B

J

J

J

J
J

J

H

H

H

H
H

H

F

F

F

F
F

F

1KW 2KW 4KW 8KW 16KW 32KW
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

C
P

I

Cache size

B 3

J 2

H 1

F 0

Delay cycles

Figure ��
�� Load delay slots versus L��D cache size� Wtr �
W	 BL� � �W�

Delay slots

B

B

B

B

B
B

J

J

J

J

J
J

H

H

H

H

H
H

F

F

F

F

F
F

1KW 2KW 4KW 8KW 16KW 32KW
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

C
P

I

Cache size

B 3

J 2

H 1

F 0

Figure ��
�� Load delay slots versus L��D cache size� Wtr � �W	 BL� � �W�

���

L��I L��D
Cache size MPI �� RM MPI � � RM

�KW ���
� �����

KW ����� ���� ���

 ����
�KW ����� ���� ����
 ���

�KW ����
 ���� ����� ����
��KW ����� ��

 ����� ��
�
�
KW ����� ��

 ����
 ��
�

Table ���� Time independent metrics for the L� cache� The number of misses is
expressed by the misses per instruction �MPI� ratio� The ratio of misses of one cache
size and a cache of twice the size is denoted by RM� The value ��RM indicates the
fraction of misses that were eliminated�

requires a four�fold increase in cache size	 and this can only be done if the original

cache is
KW or smaller�

In comparisons with results of the L��I experiments shown in Figures �����

���
	 Figures �������
� show that the L��D cache has a wider variation in CPI over

the same range of cache sizes� In the case of the �W transfer width and zero delay

slots the range of CPI for L��I is ��

 while the range of CPI for L��D is ���� There

are two reasons for this� The �rst is that instruction references have higher temporal

and spatial locality than data references and thus create fewer cache misses� The

second reason is that changing the L��D cache size a�ects the number of writes in the

write bu�er� Although	 the write bu�er never �lls up �recall that L��D uses a write

back policy� an L� cache miss must wait for a write in progress to complete before

fetching data from the secondary cache� Larger L��D caches decrease the frequency

of these waits and so improve the performance of the machine by more than the

decrease in miss ratio� The performance of write bu�ers will be fully investigated in

the next chapter� However	 the fact that write bu�er performance a�ects the overall

performance of the system implies that ignoring it will lead to inaccurate performance

predictions�

Table ��� presents the time independent performance metrics for L��I and

L��D caches with a block size of �W� The poorer locality of data accesses is shown

by the increased values of misses per instruction �MPI�� Even though data accesses

���

B

BB

B

B

B

B

J

JJ

J

J

J

J

H
HH

H

H

H

H

F
FF

F
F

F

F

Ñ
ÑÑ

Ñ
Ñ

Ñ

Ñ

É
ÉÉ

É
É

É

É

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3 3.5 4 4.5 5 5.5 6

C
P

I

tCPU (ns)

B 1K

J 2K

H 4K

F 8K

Ñ 16K

É 32K

Figure ��

� tCPU versus L��D cache size� l �
	 Wtr �
W	 BL� � �W�

have poorer locality	 doubling the cache is equally e�ective at reducing misses� The

reduction in the number of misses is between ��� and ��� for each doubling of cache

size of both L� caches� This is consistent with the data reported by other researchers

�Sto����

Figure ��

 is the result of plotting CPI versus tCPU for various L��D cache

sizes� The parameters used in this �gure are two load delay slots and a transfer width

of
W� Varying the number of delay slots will shift the plot up or down without

changing the shape of the plot� Changing the transfer width will a�ect the smaller

caches more because they have larger values of MPI� Figure ��

 shows that increasing

tCPU lowers CPI which gives the illusion of increased performance if CPI is used as

the performance metric� The �gure also shows larger caches have lower values of CPI	

which might also indicate that they provide higher levels of performance� However	

the next section will show that when TPI is used as the performance metric di�erent

conclusions will result�

��

B
B

B
B B B

J
J

J J J J

H H H H H H

1KW 2KW 4KW 8KW 16KW 32KW
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPI

Cache size

B 3

J 2

H 1

Delay cycles
CPI∆

Figure ��
�� �CPI
CPI for L��D�

��� L� TPI

In this section the results of the L��I and L��D CPI experiments are com�

bined with the tCPU data to predict the performance of L� caches�

Pipelining cache access has the potential to decrease tCPU	 but in order to

increase system performance	 the relative decrease in tCPU	
�tCPU
tCPU

	 must be greater

than the relative increase in CPI	 �CPI
CPI

� In Figure ��
� �CPI
CPI

is plotted for L��D caches

in order to assess the tCPU change required to improve performance� The relative CPI

is measured against the CPI of an ISA with no load delay slots� This �gure shows

that as the number of delay slots is increased	 the relative decrease in tCPU required

to improve performance grows larger� For
 delay slots	 the decrease is less than ����

This suggests that performance will be improved if tCPU can be reduced by more that

���� The �gure also shows that as the cache size grows	 the required improvement

in tCPU grows larger	 suggesting that pipelining the cache access path is less e�ective

for larger caches� In general	 this result indicates that if the CPI of a system is low	

deep pipelining will require signi�cant reductions in tCPU before the performance of

���

L1 size

1KW

2KW

4KW

8KW

16KW

32KW

BR-
loop(1)

10.0

10.1

10.3

10.9

12.0

14.2

BR-
loop(2)

5.0

5.1

5.2

5.4

6.0

7.1

BR-
loop(3)

3.5

3.5

3.5

3.6

4.0

4.7

BR-
loop(4)

3.5

3.5

3.5

3.5

3.5

3.5

MEM-
loop(1)

9.2

9.4

9.6

10.1

11.2

13.4

MEM-
loop(2)

4.6

4.7

4.8

5.1

5.6

6.7

MEM-
loop(3)

3.5

3.5

3.5

3.5

3.7

4.5

MEM-
loop(4)

3.5

3.5

3.5

3.5

3.5

3.5

Table ���� Optimal cycle times for L� caches for B � �� All times are in nanoseconds�
The numbers in parentheses specify the latency of the loop�

L1 size

1KW

2KW

4KW

8KW

16KW

32KW

BR-
loop(1)

10.0

10.1

10.3

10.8

11.8

13.7

BR-
loop(2)

5.0

5.1

5.2

5.4

5.9

6.9

BR-
loop(3)

3.5

3.5

3.5

3.6

3.9

4.6

BR-
loop(4)

3.5

3.5

3.5

3.5

3.5

3.5

MEM-
loop(1)

9.2

9.4

9.6

10.0

11.0

13.0

MEM-
loop(2)

4.6

4.7

4.8

5.0

5.5

6.5

MEM-
loop(3)

3.5

3.5

3.5

3.5

3.7

4.3

MEM-
loop(4)

3.5

3.5

3.5

3.5

3.5

3.5

Table ����� Optimal cycle times for L� caches forB � �� All times are in nanoseconds�
The numbers in parentheses specify the latency of the loop�

the system increases�

To determine exactly how tCPU varies with cache size and pipeline depth we

used minTC to estimate tCPU for L� cache sizes of � to �
KW� Tables ��� and ����

tabulate the output of minTC for block sizes of �W and �W� In these tables the

latency of the BR loop and MEM loop is varied between � and �� The timing analysis

of each loop was performed with circuit structures that include the loop and the EX

loop� This was done to ensure that only the EX loop or the loop of interest would

be on the critical path� The data in Tables ���� ���� di�ers from the data shown in

Figure ��� because the extra tag SRAMs have been added to the delay calculations�

The data in Table ��� for a block size of �W shows that for a latency value

of one the BR loop and MEM loop limit tCPU to greater than �� ns� Since	 a latency of

one corresponds to zero delay slots	 this data clearly demonstrates that requiring the

���

B

B

B
B

B

B
J

J

J
J

J

JH

H

H
H

H

H

F

F

F

F

F

F

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

É

É

É

É
É

É

Ç

Ç

Ç

Ç
Ç

Ç

Å

Å

Å

Å Å

Å

M

M

M

M

M

M

2KW 4KW 8KW 16KW 32KW 64KW
6

7

8

9

10

11

12

13

T
P

I (
ns

)

Total L1 cache size

B l=3, b=1

J l=2, b=1

H l=1, b=3

F l=1, b=1

Ñ l=1, b=2

É l=3, b=2

Ç l=2, b=2

Å l=2, b=3

M l=3, b=3

Delay

Figure ��
�� Cache size versus number of delay slots� Wtr �
W	 BL� � �W�

L� cache to be accessed in the same cycle as the execution unit will lead to excessively

long cycle times compared to the ALU add time which is
�� ns in this case� When

the latency values of the BR loop and MEM loop are increased to � the EX loop is

critical for all cache sizes and the cycle time is limited to ��
 ns�

The data in Table ���� shows that when the block size is increased to �W

the minimum cycle times of the CPU will be decreased for cache sizes larger than

�KW and for loop latency values less than �� The reason for this is that half as many

tag SRAMs are required for these caches which reduces the MCM delay�

So far the L� cache experiments have been presented in terms of L��I or

L��D� In order to combine a particular L��I organization and an L��D organization

we take the maximum tCPU of each as the new system cycle time tCPU� The result of

doing this is shown in Figure ��
��

A number of conclusions can be drawn from Figure ��
�� It shows that when

the L� cache is divided equally between L��I and L��D	 performance is maximized

���

when the number of branch delay slots is equal to the number of load delay slots	 i�e�	

b � l� This follows from the fact that pipelining the di�erent sides of the L� cache

to di�erent depths causes the tCPU set by one side to be shorter than that of the

other� Since the side with the longest cycle time will set the system cycle time	 the

extra pipelining on the other side will be wasted	 i�e�	 there will be extra CPI without

the bene�t of reducing tCPU� Figure ��
� also shows that for every combination of

load and branch delay slots	 there is an L� cache size that maximizes performance�

Maximum performance is reached for medium size caches at TPI � ���ns	 when

b � �	 l � �	 SL� � ��KW	 and tCPU � ��
 ns� This observation brings us to the �nal

observation	 namely	 that increasing the number of branch and load delay slots is able

to increase performance because doing so reduces the dependence of tCPU on the size

of the cache� This allows larger caches to be accessed without increasing cycle time�

If dynamic out�of�order load execution were used instead of static load delay

scheduling	 a new maximum performance of TPI � ��
ns could be reached when the

number of branch and load delay slots are both equal to three �l � �� b � �� and

the combined L� cache size is ��KW� The value of TPI is strongly dependent on the

cycle time� We calculate that if the implementation of the out�of�order load execution

required more than a ��� increase in tCPU the performance of the dynamic scheme

would be worse than the performance of the best organization with static load delay

scheduling�

Di�erent L� penalties change the performance and location of the optimal

design points� higher penalties increase both the L� cache size and pipeline depth

and lowers overall performance as shown in Figure ��

� Lower penalties have the

opposite e�ect	 as shown in Figure ��
�	 where maximum performance is reached

at TPI � ����ns �b �
	 l �
	 SL� � ��KW	 and tCPU � ��
 ns�� Smaller re�ll

penalties also make it possible to take advantage of the fact that increasing the

number of branch delay slots increases CPI less than a comparable increase in load

delay slots� This can be done by using a larger size L��I cache than L��D cache and

pipelining the access of the L��I cache more deeply� When this is done	 as shown in

Figure ��
�� 	 the maximum performance is reached at TPI � ��
ns �SL��I � �
KW

���

B

B

B

B
B

B

J

J

J

J
J

J

H

H

H

H H

H

F

F

F

F
F

F

Ñ

Ñ

Ñ

Ñ Ñ

Ñ

É

É

É

É É

É

Ç

Ç

Ç

Ç Ç

Ç

Å

Å

Å

Å
Å

Å

M

M

M

M

M

M

2KW 4KW 8KW 16KW 32KW 64KW
6

7

8

9

10

11

12

13

14

15

16

T
P

I (
ns

)

Total L1 cache size

B l=3, b=1

J l=2, b=1

H l=1, b=3

F l=1, b=1

Ñ l=1, b=2

É l=3, b=2

Ç l=2, b=2

Å l=2, b=3

M l=3, b=3

Delay slots

Figure ��

� Cache size versus number of delay slots� Wtr � �W	 BL� � �W�

B

B

B B

B

B

J

J

J
J

J

J

H

H

H H

H

H

F

F

F
F

F

F

Ñ

Ñ

Ñ Ñ

Ñ

Ñ

É

É

É
É

É

ÉÇ

Ç

Ç
Ç

Ç

Ç

Å

Å

Å

Å Å

Å

M

M

M

M
M

M

2KW 4KW 8KW 16KW 32KW 64KW
6

7

8

9

10

11

12

T
P

I (
ns

)

Total L1 cache size

B l=3, b=1

J l=2, b=1

H l=1, b=3

F l=1, b=1

Ñ l=1, b=2

É l=3, b=2

Ç l=2, b=2

Å l=2, b=3

M l=3, b=3

Delay slots

Figure ��
�� Cache size versus number of delay slots for BL� � �W and PL� � � cycles�

�
�

B

B

B

B

B

B

J

J

J

J

J

J

H

H

H

H

H

H

F

F

F

F

F

F

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

É

É

É

É

É

É

1KW 2KW 4KW 8KW 16KW 32KW
6.5

7

7.5

8

8.5

9

T
P

I (
ns

)

L1-D cache size

B 1KW

J 2KW

H 4KW

F 8KW

Ñ 16KW

É 32KW

L1-I cache size

Figure ��
�� L��I cache size versus L��D cache size� b � �	 l �
	 Wtr � �W	
BL� � �W�

�
�

and SL��D � �KW�� This performance is the maximum that any of the L� cache

organizations attained� The reason for the di�erences in the organizations L��I and

L��D are due to longer BR loop delay compared to the MEM loop and the lower

branch delay slot CPI penalty of increasing the number of delay slots compared to

the load delay slot�

��� Conclusions

In this chapter the multilevel design optimization procedure has been applied

to the design of an L� cache� Doing this has revealed a number of general principles

for on�chip and on�MCM L� cache design�

Temporal analysis of on�chip and MCM�based caches showed that the access

time of on�chip caches increases logarithmically with increases cache size and that

the access time of MCM�based caches increases linearly with increases in cache size�

The expression for on�chip cache access time is technology independent	 while the

expression for MCM based caches uses the electrical parameters of the MCM and

chip bonding method� The expressions can be used to determine how the access time

varies with cache size for on�chip caches and cache size and SRAM chip size for MCM

based caches�

Analysis of base architecture showed that for reasonable caches sizes	 the

L� caches will determine the cycle time� Furthermore	 unless access to the L� caches

is pipelined	 tCPU will be up to a factor of �ve longer than the time it takes to

perform integer addition� To further characterize the design space� MinTC was used

to investigate the tradeo� among tCPU	 L� cache sizes	 SRAM sizes and degree of

pipelining� The results showed that in the case of MCM based caches	 larger SRAM

chips with longer access times do not necessarily provide the lowest overall cache

access time� Furthermore	 in a pipelined cache environment	 trading less SRAM

access time for more MCM delay to equalize the delays between the latches can lead

to lower values of tCPU� Trace�driven simulation was used to simulate a range of L��I

and L��D cache sizes	 block sizes	 and L� miss penalties� Using novel trace�driven

�

simulation methods	 the e�ect of the number of branch and load delay slots has on

CPI was evaluated� The results of the branch�delay experiments showed that delayed

branching with optional squashing can provide better performance than a BTB that

is small enough to allow single cycle access� The extra cache misses caused by the

larger code size of the statically�scheduled scheme causes a small increase in CPI that

is comparable to the increase in CPI caused by the branch delay slots� The e�ect

of the load�delay slots cannot be hidden as well as branch delay slots with static

instruction scheduling�

The individual results of this chapter were combined into one graph using

TPI as the performance metric� This graph reveals that there are signi�cant perfor�

mance bene�ts to deeply pipelining the L� cache for a CPU with a peak execution

rate of one instruction per cycle� The conclusion is that adding latency in terms of

cycles can improve overall performance because the e�ect of these extra cycles can

be hidden� Further	 more latency can be tolerated on the L��I side than the L��D

side because the extra cycles created by branch delay slots are easier to hide� This

suggests that for maximumperformance the L��I should be larger and pipelined more

deeply than L��D� Finally	 this chapter shows that the bene�ts of adding latency to

the cache access path are two fold� First	 it reduces the tCPU and the dependence

of tCPU on cache access time� Second	 it allows larger caches to be accessed without

increasing tCPU	 thus lowering CPI� These results suggest that the cache size versus

set� associativity tradeo� may need to be re�examined� If tCPU is less dependent on

the access time of pipelined L� caches	 then increasing the associativity of the cache

to lower the miss ratio will have a larger performance bene�t for pipelined caches�

CHAPTER �

A TWO�LEVEL CACHE FOR A GAAS

MICROPROCESSOR

In the last two chapters we have argued that besides pipelined L� caches	

L
 tags should be placed on the CPU to speed up L
 writes� The performance

of a processor could be increased greatly if the entire L
 cache could be placed on

the MCM	 however	 MCM area and power constraints prevent this� Therefore	 it is

necessary to determine exactly how to get the maximum performance from a limited

MCM area� In this chapter the trade�o�s between technology and organization will

be investigated for MCM technology and two�level cache organizations� To help with

this	 the knowledge of L� cache design trade�o�s that was gained from the last chapter

will be used together with new insights that are gained from a study of other aspects

of the cache organization� The speci�c organizational issues that will be addressed

are the L� cache write policy	 the organization of the L
 cache and the concurrency

in the cache�hierarchy� These issues will be considered in the context of a GaAs CPU

that is implemented using MCM technology�

��� L� organization

The e�ects of secondary cache size and organization on performance are in�

vestigated by looking at four candidate cache organizations� uni�ed direct�mapped	

uni�ed two�way associative	 split direct�mapped and split two�way associative� To

model the multiplexing and comparison logic necessary to implement two�way asso�

ciative caches the access time of the these caches is increased from � to � cycles	 or

�
�

�
�

 16K 32K 64K 128K 256K 512K 1024K
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

C
P

I

L2 cache size (words)

unified 1-way split 1-way unified 2-way split 2-way

Figure
��� Performance of various L
 sizes and organizations� Direct�mapped caches
have a � cycle access time�
�way set�associative caches have a � cycle access time�

by ������ A split cache is logically partitioned into instructions and data� A split

cache can be implemented by using the high�order bit of the cache index to interleave

between the instruction and data halves of the cache� Doing this to a direct�mapped

cache does not increase the access time or require more cache access bandwidth�

Figure
�� shows the performance of these four cache organizations� This

�gure shows that for a direct�mapped and two�way associative cache	 splitting does

almost as well as a uni�ed cache for cache sizes of ��KW to
�
KW� For cache size

of ��
�KW	 performance is improved�

Two processes access the secondary cache� instruction fetching and data

accessing� These two processes never share address space in main memory	 but in the

cache they can interfere with one another because of mapping con�icts �two memory

locations mapped to the same cache block�� Mapping con�icts are more signi�cant

in direct mapped caches than caches with higher degrees of set associativity	 and

contribute more to performance degradation�

�

uni�ed split uni�ed split
size �words� ��way ��way
�way
�way

��K ��
� ����� ���
 ����
�
K ���� ����
���
�
�
��K ���� ���� ���
 ����

�
�K
���
��� ����
���

�K ���� ���� ���� ��
�

�
K ���� ���� ���� ����

��
�K ���� ���� ��
� ��
�

Table
��� L
 miss ratios for the sizes and organizations of Figure
��� The miss ratios
are expressed as the number of misses per ���� instructions�

Cache misses can be classi�ed into compulsory	 con�ict and capacity misses

�Hil���� In a fully�associative cache	 all misses are classi�ed as either compulsory or

capacity misses� In a set�associative cache the number of misses minus the number

of misses of a fully�associative cache of the same size are classi�ed as con�ict misses�

The results in Figure
�� show that the con�ict misses between instruction and data

references can be reduced without a�ecting access time by dividing the cache into

separate instruction and data portions	 provided the cache size is large �greater than

�MW� as shown in Table
��� For smaller caches the capacity misses of the data

accesses of a cache that is half the size are greater than the instruction and data

con�ict misses� As the cache size grows	 both con�ict and capacity misses decrease	

but con�ict misses decrease at a slower rate for each doubling in cache size �HP����

Splitting the cache can reduce the miss ratio for large caches	 because as the cache

size increases	 con�ict misses comprise a larger component of the miss ratio�

To further describe the e�ect that splitting the L
 cache has on performance

the speed�size trade�o� curves for the L
 instruction cache �L
�I� and L
 data cache

�L
�D� are shown in Figures
�
 and
��� The e�ect of writes on L
�D is ignored in

order to simplify the comparison between L
�I and L
�D� The data in the �gures are

the result of varying the speed and size of the L
�I and L
�D caches from the base

architecture� Both sets of curves show the same trend� the marginal performance

increase due to increasing cache size is smaller for larger cache sizes� However	 the

exact shape and value of the L
�I and L
�D speed�size trade�o� curves is quite dif�

�
�

B

B

B

B

B
B

B

J

J

J

J

J
J

J

H

H

H

H

H
H

H

F

F

F

F

F
F

F

Ñ

Ñ

Ñ

Ñ

Ñ
Ñ

Ñ

E

E

E

E

E
E

E

C

C

C

C

C
C

C

Å

Å

Å

Å

Å
Å Å

M

M

M

M

M
M M

N

N

N

N

N
N N

Ö

Ö

Ö

Ö

Ö
Ö Ö

 8K 16K 32K 64K 128K 256K 512K
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

I r
ea

d
C

P
I

L2-I size (words)

B 10

J 9

H 8

F 7

Ñ 6

E 5

C 4

Å 3

M 2

N 1

Ö 0

L2-I access time
(CPU cycles)

Figure
�
� The L
�I speed�size trade�o� with a �KW L��I�

�
�

B

B

B

B

B

B

B

J

J

J

J

J

J

J

H

H

H

H

H

H

H

F

F

F

F

F

F

F

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

É

É

É

É

É

É

É

Ç

Ç

Ç

Ç

Ç

Ç

Ç

Å

Å

Å

Å

Å

Å

Å

M

M

M

M

M

M

M

N

N

N

N

N

N

N

Ö

Ö

Ö

Ö

Ö

Ö
Ö

 8K 16K 32K 64K 128K 256K 512K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
 r

ea
d

C
P

I

L2-D size (words)

B 10

J 9

H 8

F 7

Ñ 6

É 5

Ç 4

Å 3

M 2

N 1

Ö 0

L2-D access time
(CPU cycles)

Figure
��� The L
�D speed�size trade�o� with a �KW L��D�

�
�

ferent� The L
�I cache CPI degradation varies from ���� to ���
 and the curves are

�atten out for cache sizes greater than �
�KW� For cache sizes larger than �
�KW

the change in CPI is less than ���� per doubling in cache size� In contrast	 L
�D the

cache CPI degradation varies from ��� to ��� and it is still decreasing at the rate of

����CPI per doubling in cache size at a cache size of
�
KW� This data suggests that

the optimum data cache size is roughly � times as large as the optimum instruction

cache� Two�way associative split L
 caches show the same trends	 although the curves

are shifted downward due to the lower miss rates and the L
�D cache performance

improves more than the L
�I cache�

Thus we see that the speed�size trade�o�s for secondary instruction and data

parts of a split secondary cache are quite di�erent� To take advantage of this fact	

the L
�I cache should be implemented in a faster technology than the L
�D cache

even if the speed is bought at the cost of density� To see how to do this for the base

architecture	 consider the curve for the zero cycle L
�I cache in Figure
�
� For a

cache size of �
KW the performance of the zero cycle cache is better than a

�KW

��cycle access cache� The reason for this is that with a zero cycle L
�I cache L��I

misses are free� Although it is impossible to construct a zero cycle cache	 it is possible

to change the two�level instruction cache into a single level �
KW� This can be done

using the cache pipelining techniques that were discussed in Chapter �� Figure
��

shows the e�ect of branch delay slots on a single level I�cache with a �
W block

size� This �gures shows that the block size of �
W is e�ective at reducing the extra

misses caused by increasing the number of branch delay slots� For example	 the total

increase in CPI of increasing the number of branch delay slots in a �
KW cache is

���
��

Figures
�
	
�� and the results of Chapter
 indicate that performance can

be increased by using a single level �
KW I�cache with a branch delay of three

instead of a two level I�cache ��KW L��I� with a branch delay of one� To match the

pipelining of the I�cache the number of load delay slots must be increased to two�

However	 Figure
�� clearly shows that it is not pro�table to trade speed for size in

the case of L
�D� Therefore	 the two level organization of the L
�D cache should not

�
�

B
B

B
B

J
J

J J

H H H H

F F F
F

Ñ Ñ Ñ
Ñ

É É É É

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

L1
-I

 C
P

I

Branch delay slots

4KW

2KW

1KW

8KW

16KW
32KW

Figure
��� The e�ect of branch delay slots on a single level I�cache�

be changed�

A �
KW cache with a �
W block size will require �� �KW SRAMS� This

number of chips together with all others on the MCM is at the outer limit of packing

and power density� It is also at the limit for forced air cooling� To reduce the area and

cooling requirements the size of the I�cache can be reduced to ��KW� If this is done	

CPI of the I�cache will increase by almost ��� from ���
 to ��

� However	 the CPI can

be brought back down again if the I�cache can be made
�way set associative� This

reduces the CPI of the I�cache down to ���
 which is slightly better than a �
KW

cache�

Two�way set associative caches have lower miss ratios and hence lower values

of CPI loss but they also have greater access times �Hil���� However	 a pipelined cache

lowers or eliminates the dependence of tCPU on the cache access time and so makes set�

associativity more attractive� With the GaAs and MCM technology that has been

proposed in this thesis	 a ��KW cache that is part of a BR loop with a latency of four

�three branch delay slots� is not on the critical path that sets tCPU� In fact there are

more than
 ns to spare before the Br loop becomes critical� In this technology	
 ns

���

is enough time to implement set�associativity	 especially if the I�cache tags are placed

in the cache management unit �CMU� chip� The total amount of memory required

for the tags is
�Kb�� This assumes that the L��D cache has an �W block size	 that

the I�cache uses virtual tags and that the L��D cache uses physical tags� Placing the

caches onto the CMU would also reduce the number of pins on the CMU chip by ��	

further reducing the power consumption of the chip�

Reducing the size of the I�cache by half and making it
�way set�associative

reduces power	 cooling requirements and MCM area and increases access time	 but

still results in increased performance� This performance improving trade�o� between

size and speed is made possible by pipelining the cache� Once
�way set associativity

has been implemented there is little reason not to make the cache ��way set associative

because this only requires two more comparators inside the CMU and two extra

SRAM output enable lines� The bene�ts of ��way associativity are that the I�cache

CPI loss is reduced for ���
 to ���� and that the size of the tag memory is reduced

from
�Kb to
�Kb� The size of tag memory will decrease because a ��way set

associative ��KW cache with a �KW page size can use physical tags which require

fewer bits than virtual tags �
� versus �
��

The performance gain from modifying the base architecture in the way we

have described above is shown by the di�erence between the �rst and second columns

of Figure
�
� The performance of the improved architecture is

� better than the

base architecture� Most of the performance increase is a product of the reduced cycle

time ���
 ns versus
�
 ns� that the improved organization permits� However	 the time

spent in the memory system has been reduced from
�� ns per instruction to ��� ns

per instruction which is a

� increase in memory system performance� Figure
��

shows a comparison between the CPI of the base architecture and the CPI of the

improved architecture� This �gure shows that the CPI of the improved architecture

is �
� worse than the base architecture� This increase is due to the fact that the

speed of the L
 cache and main memory do not scale with a decrease in cycle time

�tag memory � L��I tags � L��D tags � ��KW���b

��W
� �KW���b

�W
� ��Kb

���

Base arch. Improved arch.
0

1

2

3

4

5

6

7

8

9

TPI (ns)

6.405

0.401

0.404

0.1220.291
0.273

0.614

4.804

0.44

0.468

0.0850.314

0.318

Proc.

L1-I miss

L1-D miss

L1 writes

WB

L2-I miss

L2-D miss

0.085

0.122

8.52

6.41

t = 3.5 ns
CPU

t = 5.2 ns
CPU

Figure
�
� The performance gain from the improved architecture�

��

1.64

1.84

t = 3.5 ns
CPU

t = 5.2 ns
CPU

Base arch. Improved arch.
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CPI

0.232

0.077

0.078

0.0230.056

0.054

0.118

0.372

0.126

0.134

0.024

0.09

0.091

Proc.

L1-I miss

L1-D miss

L1 writes

WB

L2-I miss

L2-D miss

0.024

0.023

Figure
��� A comparison between the CPI of the base architecture and the improved
architecture� Note that in the improved architecture there are no L
�I misses because
the I�cache is single level�

���

and that more cycles are wasted from the extra branch and load delay slots in the

improved architecture�

��� Write Policy

In this section the e�ect of write policy on system performance is studied�

Four write�policies are considered	 they are� the write�back policy used in the L�

cache experiments	 the write�miss�invalidate policy used in the base architecture	 a

new policy called write�only	 and �nally	 subblock placement �HP���� The write�back

policy uses the four entry deep write�bu�er de�ned in the base architecture� The

other three write�through policies use a one word wide	 eight entry deep write bu�er�

In the write�back policy used in this study	 writes that hit in the cache take

two cycles� Writes that miss in the cache take one cycle to check the tags plus the re�ll

penalty to fetch the new block into the cache �write�allocate� followed by a cycle to

actually perform the write into the cache� If the cache block that is replaced is dirty	

the block is placed into the ��entry�deep	 block size wide write bu�er� Finally	 the tag

bit that indicates that the new block is dirty is set� In the write�miss�invalidate policy	

write hits take one cycle and write misses take two cycles� It is possible to complete

write hits in a single cycle because the tag is checked while the data is written to the

cache� If a miss is detected	 a second cycle is used to invalidate the corrupted block�

No previously written information is lost by doing this because all writes are sent

to the write bu�er� The write�only policy modi�es write�miss�invalidate by updating

the tag on a write�miss and marking the block as write�only� This allows one�cycle

completion of subsequent writes to the block� All reads that map to a write�only

block miss and cause the block to be reallocated�

In subblock placement each tag has four extra valid bits� one for each of

the four words in the block� A write�miss causes the address portion of the tag to be

updated in the next cycle� If the write was a word�write	 the corresponding valid bit

is turned on and all other bits are turned o�� Subsequent word writes to the block

update the valid bits in one cycle� However	 partial word writes to the block do not

���

w
rit

e-
ba

ck

w
rit

e-
in

va
l.

w
rit

e-
on

ly

su
b-

bl
oc

k

w
rit

e-
ba

ck

w
rit

e-
in

va
l.

w
rit

e-
on

ly

su
b-

bl
oc

k

w
rit

e-
ba

ck

w
rit

e-
in

va
l.

w
rit

e-
on

ly

su
b-

bl
oc

k

w
rit

e
ba

ck

w
rit

e-
in

va
l.

w
rit

e-
on

ly

su
b-

bl
oc

k

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

C
P

I

L1 misses

Write hits

Write misses

Write buffer

L2 misses

4 cycle L2 6 cycle L2 8 cycle L2 10 cycle L2

1.72

1.68
1.64 1.64

1.78
1.75

1.73 1.72

1.83 1.84 1.84 1.82

1.89

1.97 1.97 1.96

Figure
��� Write policy�L
 access time trade�o� for the base architecture�

update the valid bits�

The performance of the base architecture using these four write�policies is

compared based on CPI in Figure
�� for L
 access times of two to ten CPU cycles�

These access times assume a two cycle latency to account for L
�tag checking and

the communication delay between the L� and L
 caches� Single reads and writes of

L
 take the full access time� However	 a stream of writes may overlap one or both

cycles of latency� Figure
�� shows that for L
 access times of less than � cycles	

write�through policies achieve higher performance	 while for L
 access times greater

than � cycles	 the write�back policy achieves higher performance� The reason is that

for a �KW cache	 writes hit in the cache most of the time� Since writes make up a

����

 fraction of instructions	 the constant ����� loss in CPI from
�cycle write�hits

��

�Write hits in Figure
��� shown by the write�back policy indicates a hit rate of ����

In contrast	 the write�through policies lose signi�cantly less performance due to two�

cycle�write�misses because the write�miss rate is only
�� However	 write� through

polices waste many more cycles on average waiting for the write bu�er to empty

before fetching the data for a L� read miss than a write�back policy� The number of

cycles it takes to empty the write�bu�er is determined by the e�ective access time

of the secondary cache� This assumes that changes in L
 cache size can be related

to changes in e�ective L
 cache access time �Prz��a�� At some value of e�ective L

access time the extra time spent waiting for the write�bu�er in the write�through

policies will be greater than the cost of two�cycle�write�hits in the write�back policy�

This results in a trade�o� between write policy and e�ective L
 cache access time�

We note that the exact nature of this trade�o� depends on the L� read miss ratio

and therefore on L� size� However	 the L
 access time at which a write�back policy

becomes the better choice grows with L� cache size because larger L� caches have

fewer read and write misses� This analysis of write�policies assumed a uniprocessor

with a dedicated connection between the L� and the L
 cache� If the L
 cache is

shared	 as it might be in a multiprocessor	 contention for the L
 cache would increase

its e�ective access time thereby favoring a write�back cache organization�

Figure
�� shows that for the region of L
 access time in which a write�

through policy is most e�ective �� and � cycles� write�only performs almost as well

as subblock placement� The reason for this is that most of the performance gain

�greater than ���� from subblock placement over write�miss�invalidate comes from

writes misses that cause subsequent writes to hit� The extra performance gain from

read hits that would otherwise have missed is less than
��� Write�only requires less

tag memory than subblock placement ��Kb for a �KW cache with a �W block size��

Furthermore	 write�only does not need the ability to read and write the tag RAM in

the same cycle�

Using a write�through cache increases the number of slots in the write�

bu�er by a factor of two �� deep instead of � deep�	 but decreases its width from four

words to one word� The accompanying factor of four reduction in I�O requirements	

���

from

� pins to �� pins	 may enables the write�bu�er to be implemented on the

CMU chip� Thus	 a write�only policy provides higher performance and a cheaper and

simpler implementation than a write�back policy for the L
 access times of the base

architecture�

��� Memory System Concurrency

In this section we will evaluate techniques that improve performance by

allowing more concurrency between memory accesses� The amount of concurrency

will be limited to a modest increase in hardware complexity� Non�blocking data

caches that allow more than a single miss to be outstanding at a time will also be

investigated �Kro��	 SF����

With a split two�level data cache and a single�level instruction cache	 in�

struction and data accesses are completely independent� Thus after an L��I miss it is

possible to re�ll the L��I cache from the L
�I cache while the write�bu�er continues

to empty into the L
�D cache� This provides a decrease in CPI of ������

To allow data�reads to bypass data�writes in the write�bu�er usually requires

that all eight entries of the write�bu�er associatively match the address of the missed

block� If a match is made	 then all entries ahead	 including the matched entry	 must

be �ushed to keep the state of the L
�D cache consistent� However	 if an extra dirty

bit is added to the L��D tags� The cache need only be �ushed when dirty blocks

are replaced in the cache� No associative matching is needed� This scheme works

because the write�only policy ensures that all writes allocate a block in the L��D

cache� The write�bu�er can only contain parts of dirty blocks� Therefore	 to keep the

L
�D cache consistent it is only necessary to �ush the write�bu�er when these blocks

are replaced� Experiments show that this scheme achieves �
� of the performance

increase of associative matching� However	 this performance increase is very modest�

only a ����
 decrease in CPI�

A large component of L
 cache performance loss is due to L
�D dirty misses�

The reason for this is that when a L
�D block that is dirty must be replaced	 the dirty

���

Write only I WB bypass D WB bypass L2 WB
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CPI

0.372

0.126

0.134

0.002
0.09

0.091

0.372

0.126

0.134

0.002
0.079

0.091

0.372

0.126

0.134

0.002
0.067

0.091

0.372

0.126

0.134

0.002
0.067

0.081

Proc.

L1-I miss

L1-D miss

L1 writes

WB

L2-I miss

L2-D miss

1.82 1.81
1.80 1.79

Figure
��� The performance improvement gained from adding more concurrency to
the memory system�

���

block is �rst written to main memory and then the requested block is read from main

memory which almost doubles the miss penalty over that of replacing a clean block�

To reduce the L
 miss penalty	 a single �
 word block write�bu�er or dirty bu�er

can be added to the L
�D cache� Now it is possible to read the requested block

before the dirty block is written� However	 the performance improvement from doing

this is only a ���� decrease in CPI� The reason that adding a dirty bu�er does not

decrease the CPI more is that most L
 cache misses are clustered at context switches�

Therefore	 the next miss usually has to wait for the entry in the bu�er to written to

main memory�

The total performance improvement from adding concurrency to the system

is a ����
 decrease in CPI� It is clear that increasing concurrency in the memory

system in these limited ways adds much less to the performance of the memory

system than the basic cache size	 organization and speed optimizations discussed in

the previous sections� In fact	 it is questionable	 whether the last optimization is

worth implementing at all given the increase in control logic and memory that it

requires� If an L
 dirty bu�er is not implemented the optimized architecture that

results from the improvements we have outlined in this chapter are diagrammed in

Figure
��

Recently	 non�blocking data caches have been proposed as a method for

increasing the memory bandwidth of an L��D cache� A non�blocking cache allows

more than one cache miss to be serviced at the same time� This is done by allowing

the processor to continue executing instructions after a load instruction that causes a

cache miss� The processor will stall only if an instruction following load is dependent

on the result of the load instruction or if the number of outstanding cache misses

exceeds the capacity of the implementation of the non�blocking cache�

Figure
��� shows the potential bene�t of a non�blocking cache� It shows

that when there is more than one miss outstanding a non�blocking cache can improve

performance� In this example the number of cycles it takes to execute the instruction

sequence is reduced by two thirds by using a non�blocking cache� To be e�ective a

non�blocking L� cache requires a pipelined L
 cache so that new requests for data

���

CPU�

CMU�

L1-D cache
4 KW

4 W line�

L2-D cache
256 KW

32 W line�

L1-I refill
1 W�

I-in
1 W�

D-in
1 W�

D-out
1 W�

L2-D cache
addr�

L2-D cache
tags

8 KW�

MCM�

Main memory�

I-addr�L1-I cache
16 KW

4-way set associative
32 W line�

1 W�

L1-D cache
refill 4 W�

write-back�

mem
addr�

FPU�

D-addr�

D-in
1 W�

Memory
controller�

1 W�

Figure
��� Optimized architecture�

���

L1

L2

L3

U1

U2

U3�

instruction�

0

10

20

30

31

32��

0

1

2

10

11

12�

Non-blocking
cache�

Blocking
cache�

Figure
���� Performance Improvement using a non�blocking cache� The instructions
L�	 L� and L� represent load instructions that cause cache misses� The instructions
U�	 U� and U� are instructions that use the results of the loads�The numbers under
the heads represent the times at which each of the instructions are issued assuming
a miss penalty is �� CPU cycles�

can be sent to the L
 cache every cycle�

The implementation of a non�blocking cache presented in �Kro��� uses miss

information�status holding registers �MSHRs� to hold the status information for out�

standing misses� One MSHR is required for each outstanding miss� An MSHR that

is associated with a miss contains the L� cache index of the miss and the CPU des�

tination register of the load instruction� This information is used to prevent other

misses to the same L� cache block from requesting data from the L
 cache and to

send data from the L� cache to the correct CPU register� In this implementation	 a

non�blocking cache requires the register �le to be written after the normal execution

of a load instruction has completed� To provide this capability	 an extra port must

be added to the register �le� Scoreboarding logic is used to ensure that the processor

will stall if an instruction requires the data from an outstanding miss�

We have developed a new method of estimating the performance improve�

ment of non�blocking caches� This method can simulate a non�blocking cache con�g�

uration with any number of MSHRs and any miss penalty using a single pass of the

trace� The method assumes that the L
 cache is pipelined and that it can accept a

new request for data every cycle� The method can use any of the write�policies dis�

cussed in Section
�
� However	 to simplify the simulation	 a write�back policy with

���

no�allocate on a write miss is assumed	 but the e�ect of write bu�ering is ignored

because it is small� The method assumes that the processor stalls in the event of an

L
 miss�

L� cache misses can be classi�ed into two classes� �� those that can be

overlapped with previous L� misses and
� those that cannot be overlapped with

previous L� misses� L� cache misses can be overlapped whenever there is a free

MSHR and there is an outstanding miss� A miss is said to be outstanding between

the time the load instruction that causes it is issued and the time an instruction that

uses the result of the load is issued� For example	 in Figure
��� a miss caused by L� is

outstanding between L� and U�� Other misses	 those of L� and L� can be overlapped

with the L� miss during this period� However	 if there are only two MSHRs	 miss L�

can not be overlapped and instead must be serviced after the data for miss L� has been

returned by the L
 cache� To minimize the complexity and maximize the speed of a

non�blocking cache implementation one should use the fewest number of MSHRs that

provide adequate performance� Because these MSHRs must be searched associatively

after each L� cache miss� The classi�cation procedure described below can determine

the maximum number of MSHRs registers needed to support the maximum number

of concurrent misses for any set of benchmarks and cache sizes�

Misses are classi�ed using a FIFO queue� The entry at the head of the

queue	 h	 contains the time at which the data from the most recently used miss was

used� The tail of the queue	 t	 contains the time of the most recent miss� The number

of entries o between the h and t is the number of outstanding misses� Given m	

the number of MSHRs in a particular non�blocking cache implementation	 if a miss

occurs and o � m the miss is classi�ed as overlapped� otherwise	 when o � m	 the

miss is classi�ed as a non� overlapped miss� The time in clock cycles between a miss

and t is called the degree of non�overlap n� The time in clock cycles between a load

instruction that misses and an instruction that uses that result of the load is u�

For an overlapped miss the number of cycles given by the max��� n � u� is

the number of cycles that can not be hidden� For a non�overlapped miss the number

of cycles given by u is the number of cycles that can be hidden if the CPU does not

��

O-1

NO-1

O-2

NO-2

O-3

NO-3

O-4

NO-4

O-n

NO-n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of Misses

0 1 2 3 4 5 6 7 >8

Figure
���� The performance of blocking and non�blocking
KW L��D caches� Frac�
tion of misses that are non�overlapped �NO� and overlapped �O� are shown for each
number of MSHRs� The number of MSHRs appears after the dash in each label� The
numbers by the grey levels represent the number of cycles that can be hidden for NO
misses and the number of misses that cannot be hidden for O misses�

stall until an instruction that uses the result of a load	 i�e�	 the processor continues to

fetch and execute instructions until the instruction that needs the cache�miss data is

fetched� Doing this requires register scoreboarding logic	 but does not require a non�

blocking cache� Figures
����
��� plot the results of the simulation for blocking and

non�blocking direct�mapped L��D caches sizes that vary from
KW to �KW and for

varying numbers of MSHRs� The number of MSHRs varies from �	 which corresponds

to a blocking cache	 to �� To assess the limits in the performance increase from a non�

blocking cache a con�guration with an in�nite number of MSHRs is also simulated�

The results show that	 at best	 for architectures that execute one instruction per

cycle	 non�blocking caches can fully overlap only ��� of the misses� Thus	 with a

���

O-1

NO-1

O-2

NO-2

O-3

NO-3

O-4

NO-4

O-n

NO-n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of Misses

0 1 2 3 4 5 6 7 >8

Figure
��
� The performance of blocking and non�blocking �KW L��D caches� Frac�
tion of misses that are non�overlapped �NO� and overlapped �O� are shown for each
number of MSHRs� The number of MSHRs appears after the dash in each label� The
numbers by the grey levels represent the number of cycles that can be hidden for NO
misses and the number of misses that cannot be hidden for O misses�

���

O-1

NO-1

O-2

NO-2

O-3

NO-3

O-4

NO-4

O-n

NO-n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of Misses

0 1 2 3 4 5 6 7 >8

Figure
���� The performance of blocking and non�blocking �KW L��D caches� Frac�
tion of misses that are non�overlapped �NO� and overlapped �O� are shown for each
number of MSHRs� The number of MSHRs appears after the dash in each label� The
numbers by the grey levels represent the number of cycles that can be hidden for NO
misses and the number of misses that cannot be hidden for O misses�

��

dynamic frequency of load instructions of ��

	 a L��D cache miss ratio of ���	 and

a miss penalty of �� CPU cycles	 the decrease in CPI that would result from using

a non�blocking cache is ���

� This performance bene�t is too small to justify the

added complexity and possible increase in cycle time of a non�blocking cache� The

�gures also show that a non�blocking cache with � MSHRs is almost as good as a

cache with an in�nite number of MSHRs� The maximum number of MSHRs that

were used in any of the benchmarks was ���

��� Conclusions

This chapter has discussed two�level cache hierarchies for MCM based caches�

Trace�driven simulation was used to explore the technology�organization trade�o�s�

Experiments with four L
 cache organizations show that splitting the cache

into instructions will reduce the performance of the L
 cache until the caches are

large� However	 an analysis of the speed�size trade�o� for split caches reveals that for

the L��I cache the curves are almost �at for large caches� In contrast	 for the L��D

cache	 the curves are sloping downward for the largest cache size� This indicates the

L
�I cache should be smaller and faster than the L
�D cache� Furthermore	 small fast

caches of the size that can feasibly be placed on the MCM provide higher performance

than larger�slower L
�I caches that are placed o� of the MCM� The opposite is true

of an L
�D cache� here	 larger	 slower o��MCM caches provide higher performance�

The results of Chapter � show that larger and slower L� caches are pro�table

when the L� cache is pipelined� These results along with area and power constraints of

the MCM technology are used to justify changing the base architecture to a single level

��way set�associative ��KW I�cache� The single level cache has the added advantage

that the cost of L��I misses is eliminated� The o��chip L
 cache is made into an L
�D

cache� The number of branch delay slots is increased to three and the number of the

load delay slots is increased to two� Making these changes to the base architecture

leads to a substantial increase in performance�

Experiments that were conducted to evaluate the e�ect of changing L� write�

���

policy and of increasing the concurrency in the cache� hierarchy� These experiments

showed that	 for CPU cycle times of
 to �� ns	 where L� miss penalties of under ��

cycles are expected	 a write�only policy is better than a write�back policy� Relatively

less performance is gained by using extra hardware to add concurrency to memory

accesses through the use of a dirty bu�er	 through data�read con�ict checking in the

write bu�er	 or through the use of non�blocking L��D caches�

CHAPTER �

CONCLUSIONS

In this chapter we will summarize the results and the limitations of the

design methodology	 performance data and conclusions presented in this thesis� The

limitations will suggest future directions for work�

��� Summary of Results

We have presented a multilevel�optimization design methodology for inves�

tigating the trade�o�s that can be made between technology and organization of

computer designs using time per instruction as the performance metric� This design

methodology includes the use of delay�macro modeling	 timing analysis and trace�

driven simulation� New tools and analysis techniques were presented for all of these

tasks� The design methodology has been extensively validated using a microprocessor

design implemented using GaAs and MCM packaging technology� The design method�

ology begins with a base architecture and improves upon it by using simulation tools

to exploring design alternatives�

Chapter
 showed that when time per instruction is used as the performance

metric	 all architectural trade�o�s can be expressed as trade�o�s between the average

number of cycles per instruction �CPI� and the cycle time �tCPU��

Chapter � presented the multilevel design methodology and the associated

performance analysis tools� Finally	 Chapter � proposed a base architecture as a point

of departure for the design trade�o�s studied throughout the rest of the thesis� We

have used timing analysis tools �checkTCand minTC� to investigate the latency�tCPU

���

���

tradeo� in the base architecture� This investigation showed that a substantial reduc�

tion in tCPU can be achieved by increasing the pipeline depth of the BR�loop and the

MEM�loop which contain the L��D cache and L��I cache respectively� To measure

CPI we have used trace�driven simulation� Because the credibility of trace�driven

simulation is dependent on the traces and the way in which the traces are simulated	

we have used sixteen realistic benchmarks which are simulated in a multiprogramming

environment� The one de�ciency in the traces is the absence of operating system ref�

erences� The values of CPI obtained from these simulations include all processor stalls

from multicycle instructions such as loads	 branches	 and �oating point operations	

which are required for an accurate measure of performance�

Chapter � showed that the access time of on�chip and MCM caches can be

estimated using simple expressions� These expressions were used to investigate the

speed�size tradeo� for on�chip and MCM�based caches� The results showed that for

a �xed cache size	 smaller SRAM chips can provide lower overall access times	 even

though they take up more MCM area than larger SRAM chips� When the access

times of MCM based caches are combined with timing analysis the results show that

smaller SRAMS have the added advantage of balancing the MCM delay with the

SRAM access time� This makes it possible to increase the pipeline depth of the cache

loops and thus reduce tCPU� The tradeo� between larger SRAMS with longer SRAM

access times or smaller SRAMS with longer MCM delay favors smaller SRAM chips�

Furthermore	 smaller SRAMS have higher yield and thus lower cost which is very

important in a an immature technology like GaAs DCFL�

Chapter � also shows that unless the datapath loops that contain the L�

caches are pipelined to a depth of two or more	 the access time of on�chip or MCM

based caches will cause the cycle time to be much longer than the minimum set by

the ALU add time� However	 if the pipeline depth of the cache loops is increased

enough it is possible to ensure that the EX�loop will set the cycle time	 even for large

caches ��
KW�� Increasing cache�loop pipeline depth increases the number of delay

slots	 which increases CPI�

The extra delay slots caused by increasing the pipeline depth of the cache

���

loops can be hidden by static compile time instruction scheduling schemes or dynamic

hardware schemes� Experiments that were conducted to investigate both of these

schemes for loads and branches show that static schemes work better at �lling branch

delay slots	 but that dynamic schemes work better for �lling load delay slots� The

speci�c results for static branch prediction show that the increase in CPI due to the

extra instruction cache misses caused by the larger code size should not be ignored	

especially if the block size of the cache is small ��W� or the re�ll rate is low �less

than �W per cycle�� Furthermore	 with static schemes	 the increase in CPI from up

to three delay slots can e�ectively be hidden� When these results are combined with

cache simulation and timing analysis	 the results show that increasing the pipeline

depth of the cache loops will increase the performance of a processor because it moves

the optimal performance design point to lower cycle times and larger caches�

In Chapter
	 the organization of a two�level cache hierarchy was inves�

tigated� The results showed that split cache organizations are roughly equal to the

uni�ed cache performance for caches larger than

�KW� Furthermore	 the speed�size

tradeo� for instruction and data caches is quite di�erent� For highest performance	

instruction caches should be smaller by a factor of eight and faster than data caches�

Based on this information and the results of Chapter �	 a number of changes are

made to the base architecture� The L��I cache is increased in size	 set�associativity

and its access is more deeply pipelined� The L��I cache is re�lled directly from main

memory� The L��D cache is also pipelined and the L
 cache is made into a dedicated

L
�D cache� Making these changes increases performance substantially�

Chapter
 also presents the results of studies of L��D cache write�policy	 L

cache speed�size trade�o�s	 and memory system concurrency� These results suggest

that for L
 speeds of � cycles or less write�through policies provide higher perfor�

mance	 but for L
 speeds of greater than � cycles a write�back policy provides higher

performance� The simulations that included modest increases in concurrency to the

cache�hierarchy showed little performance improvement� Despite this small improve�

ment	 a new technique was proposed to allow loads to pass stores in the write bu�er

without the use of associative matching logic� This technique which only �ushes the

�
�

write bu�er when dirty lines in the L��D cache are replaced achieves over ��� of the

performance of associative matching logic�

��� Limitations and Future Directions

In this thesis the focus has been on the cache hierarchy� Little has been said

about the CPU or the FPU� We have argued that the pipeline depth of the EX�loop

should not be increased because this would require latency values of �ve or more in

the BR�loop and MEM�loop� At present	 in GaAs	 it is possible to perform a �
 b

integer addition in under
 ns and so pipelining the ALU would only be required to

obtain GHz operation� However	 in CMOS	 which is a slower more dense technology

increasing the pipeline depth of the EX�loop might improve performance� Further�

more	 CMOS provides the integration density to implement the dynamic delay�slot

hiding mechanisms that will surely be necessary to hide �ve or more delay slots�

Due to the higher integration densities available in CMOS technology	 there

are organizations that are realizable in CMOS that are not practical in GaAs� The

most important of these is the ability to issue more than one scalar instruction in a

cycle	 which has been termed superscalar �Joh��b�� However	 all studies that have

been done of these organizations have largely neglected the implementation details

and the e�ect that the multiple instruction issue logic	 will have on cycle time� Non�

blocking caches have been suggested to satisfy the data bandwidth requirements for

superscalar processors� It is clear that due to the extra silicon real�estate that will be

necessary to implement the multiple instruction issue and execution logic the sizes of

the on�chip caches will be reduced compared to a scalar processor� Therefore	 it would

be interesting to extend the results of Chapters � and
 by comparing the performance

of a large pipelined o��chip cache with a small on�chip nonblocking cache�

There are two issues in trace driven cache simulation that need more at�

tention� These are more realistic traces and the e�ect of context switching on cache

performance� To accurately simulate the performance of real computer systems long

traces that include operating system kernel references are a necessity� However	 the

�
�

only way to get distortion free kernel references are with a hardware monitor� Un�

fortunately	 most hardware monitors only collect short traces� Therefore getting long

traces that include kernel references is a di�cult problem� Chapter � showed that

decreasing context switch times can reduce the performance of a cache signi�cantly�

Therefore	 it would be interesting to characterize exactly the context switch rate of

high performance processor in a multiprogramming environment	 and e�ect it has on

cache performance�

In conclusion	 this thesis has demonstrated that exploring trade�o�s between

implementation technology and system organization can lead to higher performance

computer designs and that the implementation technology of an architecture must be

considered in order to provide accurate and credible performance predictions� It is my

hope that the results contained in this thesis will lead other researchers to consider

the trade�o�s between implementation technology and organization�

APPENDIX A

A SUSPENS MODEL FOR GAAS

This appendix describes a SUSPENS model for GaAs which has been adapted

from a SUSPENS model for NMOS that is described in �Bak���� In the description of

each of the calculation steps that follows the changes that were made to the NMOS

model to accommodate GaAs are noted�

�� Based on the number of logic gates on a chip Ng	 the average interconnection

length R in units of gate pitch is calculated using Rent�s rule�

R �

�

�
�
Np����

g � �

�p���� � �
� � �Np����

g

�� �p��

	
� � �p��

� �Np��
g

The Implementation dependent parameters which include the Rent�s constants

that are used in the equation above and throughout the model are listed in the

table below�

Wire length Pin count Pin count

Logic Rent�s Rent�s Proportionality

depth constant constant constant

fld p � K

���
 ��� ���� ���

� The interconnection pitch pw and the number of wiring layers nw an the average

fan�out of the gates fg combined with the average interconnection length are

used to calculate the average gate dimension using�

dg �
fgRpw
ewnw

�

�
�

where ew is the e�ciency of interconnections which is related to k the width�

to�length �W�L� ratio of the input transistors by ew � ���
� ���

k�

�� The chip size Dc	 and average interconnection length lav are calculated using�

Dc �
q
Ngdg

lav � Rdg

�� The input gate capacitance Cgin is calculated using

Cgin � kCtr

where Ctr is the input capacitance of a minimum size input transistor�

� So far we have stayed fairly close to the NMOS SUSPENS model from here on

the model is changed to follow the delay and power model developed for Vitesse

��� micron Gallium Arsenide process in �SJ����

�� The fan�out FO is determined from average number of gates that are driven

fg	 the average interconnection length lav	 the transistor to interconnect load

proportionality constant �int and the W�L ratio of th gate k using

FO � fg �
lav�int

k

�� The average gate delay Tg from

Tg � k� � FOk� �RintCint

l�av

�RintlavCgin

where k� and k� are technology dependent delay parameters	 Rint and Cint are

the resistance and capacitance per unit length of interconnect� The �rst two

terms of the equation above are the delay of driving the gates in the next stage

and the interconnect between this stage and the next stage� The third term is

the distributed�RC delay of the interconnect� The fourth term is the delay due

to the resistance of the interconnect and the input capacitance of the gates of

the next stage�

�
�

�� The clock frequency fc is calculated using

fc �

�
fldTg �RintCint

D�
c

�
Dc

vc

	
��

where vc is the on�chip electromagnetic wave propagation speed� The �rst term

of this equation is the delay of logic gates	 the second term is the distributed�RC

delay of a signal that travels halfway across the chip and the third term is the

time�of��ight delay�

�� the number of pins Np of the chip is calculated using Rent�s rule

Np � KN�
g

��� The power consumption of the chip Pc is calculated using

Pc � Ngpgk �
�

�
NpIIOVEE

where pg is the power consumption of a gate with k � �	 IIO is the output pad

current and VEE is the power supply voltage� The �rst term of this equation is

the power consumption of the gates	 the second term is the power consumption

of the I�O pads�

��� The technology dependent parameters used in the GaAs SUSPENS model are
listed below�

Parameter Value
pw ��
 �m
nw �
fg �
Ctr ���
 fF
k� ���
 ps
k� ���� ps
Rint ����� ���m
Cint ��
� fF��m
pg ��� �A��m
IIO
� mA
VEE
 V

BIBLIOGRAPHY

�AF��� D� B� Alpert and M� J� Flynn	 �Performance trade�o�s for microprocessor
cache memories	� IEEE MICRO	 vol� �	 Aug� �����

�Aga��� A� Agarwal	 Analysis of Cache Performance for Operating Systems and
Multiprogramming� Kluwer Academic Publishers	 �����

�Agr�
� V� D� Agrawal	 �Synchronous path analysis in MOS circuit simulator	� in
Proc� ��th ACM�IEEE Design Automation Conf�	 pp� �
����
	 ���
�

�AHH��� A� Agarwal	 J� Hennessy	 and M� Horowitz	 �Cache performance of oper�
ating system and multiprogramming workloads	� ACM Trans� Computer
Systems	 vol� �	 pp� �������	 Nov� �����

�AHH��� A� Agarwal	 J� Hennessy	 and M� Horowitz	 �An analytical cache model	�
ACM Trans� Computer Systems	 vol� �	 May �����

�AKCB��� C� Alexander	 W� Keshlear	 F� Cooper	 and F� Briggs	 �Cache mem�
ory performance in a UNIX environment	� Computer Architecture News	
vol� ��	 pp� �����	 June �����

�ALBL��� T� E� Anderson	 H� M� Levy	 B� N� Bershad	 and E� D� Lazosska	 �The
interaction of architectures and operating system design	� in Proc� �th Int�
Conf� Architectural Support for Programming Languages and Operating
Systems �ASPLOS�IV�	 pp� �����
�	 Apr� �����

�ASH��� A� Agarwal	 R� L� Sites	 and M� Horowitz	 �ATUM� A new technique
for capturing address traces using microcode	� in Proc���th Annual Int�
Symp� Computer Architecture	 pp� �����
�	 �����

�Bak��� H� B� Bakoglu	 �A system level circuit model for multiple and single�chip
CPUs	� in IEEE Int� Solid State Circuits Conf�	 pp� �������	 Feb� �����

�Bak��� H� B� Bakoglu	 Circuits	 Interconnections	 and Packaging for VLSI� Read�
ing	 Massachusetts� Addison�Wesley Publishing Company	 �����

�BC��� D� Bhandarkar and D� W� Clark	 �Performance from architecture� Com�
paring a RISC and CISC with similar hardware organization	� in Proc�
�th Int� Conf� Architectural Support for Programming Languages and Op�
erating Systems �ASPLOS�IV�	 pp� �������	 Apr� �����

�

�
�

�BKB��� H� O� Bugge	 E� H� Kristiansen	 and B� O� Bakka	 �Trace�driven simu�
lations for a two�level cache design in open bus systems	� in Proc��
th
Annual Int� Symp� Computer Architecture	 pp�

��

�	 June �����

�BKW��� A� Borg	 R� E� Kessler	 and D� W� Wall	 �Generation and analysis of very
long address traces	� in Proc��
th Annual Int� Symp� Computer Architec�
ture	 pp�
���
��	 June �����

�BW��� J��L� Baer and W��H� Wang	 �Architectural choices for multilevel cache
hierarchies	� in Proc� Int� Conference on Parallel Processing	 pp�

��
��	
unknown �����

�BW��� J��L� Baer and W��H� Wang	 �On the inclusion properties for multi�level
cache hierarchies	� in Proc���th Annual Int� Symp� Computer Architec�
ture	 pp� �����	 June �����

�BWL��� J��L� Baer	 W��H� Wang	 and H� M� Levy	 �Organization and performance
of a two�level virtual�real cache hierarchy	� in Proc���th Annual Int� Symp�
Computer Architecture	 pp� �������	 June �����

�CBK��� D� W� Clark	 P� J� Bannon	 and J� B� Keller	 �Measuring vax ���� per�
formance with a histogram hardware monitor	� in Proc���th Annual Int�
Symp� Computer Architecture	 pp� ������
	 June �����

�CCH���� F� Chow	 S� Correll	 M� Himestei	 E� Killian	 and L� Weber	 �How many
addressing modes are enough 	� in Proc�
nd Int� Conf� Architectural Sup�
port for Programming Languages and Operating Systems �ASPLOS�II�	
pp� �����
�	 Oct� �����

�Che��� J� J� Cherry	 �Pearl� A CMOS timing analyzer	� in Proc�
�th ACM�IEEE
Design Automation Conf�	 pp� �����
�	 �����

�Cla��� D� W� Clark	 �Cache performance in the VAX�������	� ACM Trans� Com�
puter Systems	 vol� �	 pp�
����	 Feb� �����

�CLR��� T� H� Cormen	 C� E� Leiserson	 and R� L� Rivest	 Intoduction to Algo�
rithms� MIT Press and McGraw�Hill	 �����

�Dag��� M� R� Dagenais	 Timing Analysis for MOSFETs� An Integrated Approach�
PhD thesis	 McGill University	 ���� University Street	 Montreal	 Quebec	
Canada H�A
A�	 June �����

�DF��� P� K� Dubey and M� J� Flynn	 �Optimal pipelining	� Jour� Parallel and
Distributed Computing	 vol� �	 Jan� �����

�DR��� M� R� Dagenais and N� C� Rumin	 �On the calculation of optimal clocking
parameters in synchronous circuits with level�sensitive latches	� IEEE
Trans� Computers	 vol� �	 pp�
���
��	 Mar� �����

�
�

�Dun��� R� R� Duncombe	 �The SPUR instruction unit� An on�chip instruction
cache memory for a high performance VLSI multiprocessor	� Technical
Report UCB�CSD ������	 Computer Science Division	 University Of Cal�
ifornia	 Berkeley	 Aug� �����

�Dyk��� J� A� Dykstra	 High�Speed Microprocessor Design With Gallium Arsenide
Very Large Scale Integrated Digital Circuits� PhD thesis	 University of
Michigan	 Ann Arbor	 �����

�ED��� P� G� Emma and E� S� Davidson	 �Characterization of branch and data de�
pendencies in programs for evaluating pipeline performance	� IEEE Trans�
Computers	 vol� C���	 July �����

�EF��� M� C� Easton and R� Fagin	 �Cold�start vs� warm�start miss ratios	� Com�
munications of ACM	 vol�
�	 pp� ������
	 Oct� �����

�Faw�
� B� K� Fawcett	 �Maximal clocking rates for pipelined digital sys�
tems	� Master�s thesis	 Dept� Elec� Eng�	 University of Illinois	 Urbana�
Champaign	 ���
�

�GD�
� L� A� Glasser and D� W� Dobberpuhl	 The Design and Analysis of VLSI
Circuits� Reading	 Massachusetts� Addison�Wesley	 ���
�

�HCC��� W� W� Hwu	 T� M� Conte	 and P� P� Chang	 �Comparing software and
hardware schemes for reducing the cost of branches	� in Proc���th Annual
Int� Symp� Computer Architecture	 pp�

��
��	 June �����

�HCHU��� T� Hoy	 A� Chandra	 T� R� Hu�	 and R� Uhlig	 �The design of a GaAs
microprocessor�� ���� VLSI Contest Report	 May �����

�HCLC��� R� S� Hinds	 S� R� Canaga	 G� M� Lee	 and A� K� Choudhury	 �A
�K
GaAs array with ��K of embedded SRAM	� IEEE Jour� of Solid�State
Circuits	 vol�
�	 pp�
�
�

�	 Mar� �����

�HCS���� M� Horowitz	 P� Chow	 D� Stark	 R� T� Simoni	 A� Salz	 S� Przybylski	
J� Hennesssy	 G� Gulak	 and A� A� J� M� Acken	 �MIPS�X a
��MIPS
peak	 �
�bit microprocessor with on�chip cache	� IEEE Jour� of Solid�
State Circuits	 vol� SC�

	 pp� �������	 Oct� �����

�Hil��� M� D� Hill	Aspects of Cache Memory and Instruction Bu�er Performance�
PhD thesis	 University of California	 Berkeley	 �����

�Hil��� M� D� Hill	 �A case for direct mapped caches	� Computer	 vol�
�	 pp�

�
��	 Dec� �����

�Hit�
� R� B� Hitchcock	 Sr�	 �Timing veri�cation and the timing analysis pro�
gram	� in Proc� ��th ACM�IEEE Design Automation Conf�	 pp�
������	
���
�

�
�

�HP��� J� L� Hennessy and D� A� Patterson	 Computer Architecture A Quantita�
tive Approach� San Mateo	 California� Morgan Kaufman Publishers	 Inc�	
�����

�HS��� M� D� Hill and A� J� Smith	 �Experimental evaluation of on�chip micro�
processor cache memories	� in Proc���th Annual Int� Symp� Computer
Architecture	 pp� �
�����	 June �����

�HS��� M� D� Hill and A� J� Smith	 �Evaluating associativity in CPU caches	�
Computer Sciences Technical Report �
�	 Computer Sciences Depart�
ment	 University of Wisconsin	 Madison	 Feb� �����

�Joh��a� M� Johnson	 �Private communication�� May �����

�Joh��b� M� Johnson	 Superscalar Microprocessor Design� Englewood Cli�s	 NJ�
Prentice Hall	 Inc�	 �����

�Jou��� N� P� Jouppi	 Timing Veri�cation and Performance Improvement of MOS
VLSI Designs� PhD thesis	 Stanford University	 Stanford	 CA ����
�
��
	
Oct� �����

�Jou��� N� P� Jouppi	 �Timing analysis and performance improvement of MOS
VLSI designs	� IEEE Trans� Computer�Aided Design	 vol� CAD��	
pp� �
����
	 July �����

�Jou��� N� P� Jouppi	 �A
��MIPS sustained �
�bit CMOS microprocessor with
high ratio of sustained to peak performance	� IEEE Jour� of Solid�State
Circuits	 vol�
�	 pp� �������
�	 Oct� �����

�Jou��� N� P� Jouppi	 �Improving direct�mapped cache performance by the addi�
tion of a small fully�associative cache and prefetch bu�ers	� in Proc��
th
Annual Int� Symp� Computer Architecture	 pp� �������	 June �����

�Kan��� G� Kane	 MIPS R
�� RISC Architecture� Englewood Cli�s	 New Jersey�
Prentice Hall	 �����

�Kat�
� M� G� Katevenis	 Reduced Instruction Set Computer Architectures for
VLSI� Cambridge	 Massachusetts� THE MIT Press	 ���
�

�KD��� B� Kumar and E� S� Davidson	 �Performance evaluation of highly concur�
rent computers by deterministic simulation	� Communications of ACM	
vol�
�	 pp� �������	 Nov� �����

�KH��� D� Kiefer and J� Heightley	 �CRAY�� a GaAs implemented supercomputer
system	� in Proc� of GaAs Integrated Circuits Symposium	 �����

�Kro��� D� Kroft	 �Lockup�free instruction fetch�prefetch cache organization	� in
Proc� �th Annual Int� Symp� Computer Architecture	 pp� �����	 June �����

�
�

�KS��� S� R� Kunkle and J� E� Smith	 �Optimal pipelining in supercomputing	� in
Proc���th Annual Int� Symp� Computer Architecture	 pp� �������	 June
�����

�KSH���� A� I� Kayassi	 K� A� Sakallah	 T� Hu�	 R� B� Brown	 T� N� Mudge	 and
R� J� Lomax	 �The e�ect of mcm technology on system performance	�
in ���� Multichip Module Workshop� Extended Abstract Volume	 Mar�
�����

�KT��� M� Katevenis and N� Tzartzanis	 �Reducing the branch penalty by rear�
ranging instructions in a double�width memory	� in Proc� �th Int� Conf�
Architectural Support for Programming Languages and Operating Systems
�ASPLOS�IV�	 pp� �
�
�	 Apr� �����

�LB��� S� I� Long and S� E� Butner	 Gallium Arsenide Digital Integrated Circuit
Design� New York	 New York� McGraw�Hill Publishing Co�	 �����

�Lil��� D� J� Lilja	 �Reducing the branch penalty in pipelined processors	� IEEE
Computer Magazine	 vol�
�	 pp� ���

	 July �����

�LLG���� D� Lenoski	 J� Laudon	 K� Gharachorloo	 A� Gupta	 and J� Hennessy	 �The
directory�based cache coherence protocol for the DASH multiprocesoosr	�
in Proc��
th Annual Int� Symp� Computer Architecture	 pp� �����
�	 May
�����

�LPI��� S� Laha	 J� H� Patel	 and T� K� Iyer	 �Accurate low�cost methods for per�
formance evaluation of cache memory systems	� IEEE Trans� Computers	
vol� ��	 pp� ��

�����	 Nov� �����

�LS��� J� K� F� Lee and A� J� Smith	 �Branch prediction strategies and branch
target bu�er design	� IEEE Computer Magazine	 vol� ��	 pp� ��

	 Jan�
�����

�LS��� S� I� Long and M� Sundarm	 �Noise�margin limitations on Gallium Ar�
senide VLSI	� IEEE Jour� of Solid�State Circuits	 vol�
�	 pp� �������	
Aug� �����

�LT��� T� Lovett and S� S� Thakkar	 �The Symmetry multiprocessor system	� in
Proc� Int� Conference on Parallel Processing	 p� unknown	 unknown �����

�MBB���� T� N� Mudge	 R� B� Brown	 W� P� Birmingham	 J� A� Dykstra	 A� I�
Kayssi	 R� J� Lomax	 O� A� Olukotun	 K� A� Sakallah	 and R� Millano	
�The design of a micro�supercomputer	� Computer	 vol�
�	 Jan� �����

�MC��� C� Meade and L� Conway	 Introduction to VLSI Design� Reading	 Mas�
sachusetts� Addison�wesley	 �����

�McM�
� F� H� McMahon	 �FORTRAN CPU performance analysis	� tech� rep�	
Lawrence Livermore Laboratories	 ���
�

���

�Met��� Meta�software�	 HSPICE User�s Manual H����	 �����

�MF��� C� L� Mitchell and M� J� Flynn	 �A workbench for computer architects	�
IEEE Design and Test of Computers	 pp� ���
�	 Oct� �����

�MGS���� R� L� Mattson	 J� Gecsei	 J� Slutz	 D� R�	 and I� L� Traiger	 �Evaluation
techniques for storage hierarchies	� IBM Systems Journal	 vol� �	 no�
	
pp� ������	 �����

�MH��� S� McFarling and J� Hennessy	 �Reducing the cost of branches	� in
Proc���th Annual Int� Symp� Computer Architecture	 pp� �������	 june
�����

�MIP��� MIPS Computer Systems	 Inc	 MIPS RISCompiler Languages Program�
mer�s Guide	 Dec� �����

�MK��� M� McFarland and T� J� Kowalski	 �Incorporating bottom�up design
into hardware synthesis	� IEEE Trans� Computer�Aided Design	 vol� �	
pp� �����
�	 Sept� �����

�Mur��� K� G� Murty	 Linear Programming� John Wiley ! Sons	 Inc�	 �����

�Nag��� D� Nagle	 �A �oating point simulator�� Internal Research Report	 May
�����

�Ong��� D� G� Ong	 Modern MOS Technology� Processes	 Devices	 � Design�
New York	 New York� McGraw�Hill Book Company	 �����

�Ous�
� J� K� Ousterhout	 �A switch�level timing veri�er for digital MOS VLSI	�
IEEE Trans� Computer�Aided Design	 vol� CAD��	 pp� �������	 July
���
�

�PHH��� S� Przybylski	 M� Horowitz	 and J� Hennessy	 �The performance impact
of block sizes and fetch strategies	� in Proc���th Annual Int� Symp� Com�
puter Architecture	 pp� �����
�	 June �����

�Prz��a� S� A� Przybylski	 Cache and Memory Hierarchy Design� San Mateo	 Cal�
ifornia� Morgan Kaufman Publishers	 Inc�	 �����

�Prz��b� S� A� Przybylski	 �The performance impact of block sizes and fetch strate�
gies	� in Proc��
th Annual Int� Symp� Computer Architecture	 pp� ����
���	 June �����

�PS��� B� L� Peuto and L� J� Shustek	 �An instruction timing model of CPU
performance	� in Proc� �th Annual Int� Symp� Computer Architecture	
pp� ��
����	 unknown �����

�PS�
� D� Patterson and C� S"equin	 �A VLSI RISC	� IEEE Computer Magazine	
vol� �
	 pp� ��
�	 Sept� ���
�

���

�Puz�
� T� R� Puzak	 Analysis of Cache Replacement Algorithms� PhD thesis	
University of Massachusetts	 ���
�

�Rad��� C� Radke	 �A justi�cation of and improvement on a useful rule for pre�
dicting circuit to pin ratios	� in Proc� �th ACM�IEEE Design Automation
Conf�	 pp�

��
��	 �����

�Rec��� J� H� Reche	 �High density multichip interconnect for advanced packag�
ing	� in NEPCON West Proceedings	 pp� ���������	 Mar� �����

�RTL��� D� Roberts	 G� Taylor	 and T� Layman	 �An ECL RISC microprocessor
designed for two�level cache	� in Proc� IEEE COMPCON	 p� ���	 Feb�
�����

�Rus��� R� M� Russell	 �The CRAY�� computer system	� Communications of
ACM	 vol�
�	 pp� ����
	 Jan� �����

�SCH���� C� Stephens	 B� Cogswell	 J� Heinlein	 G� Palmer	 and J� Shen	 �Instruc�
tion level pro�ling and evaluation of the IBM RS�����	� in Proc���th
Annual Int� Symp� Computer Architecture	 pp� �������	 May �����

�SF��� G� Sohi and M� Franklin	 �High bandwidth data memory systems for
superscalar processors	� in Proc� �th Int� Conf� Architectural Support for
Programming Languages and Operating Systems �ASPLOS�IV�	 pp�
��
�
	 Apr� �����

�SH��� H� Scales and P� Harrod	 �The design and implementation of the MC�����
cache memories	� in Proc� IEEE Int� Conf� Computer Design	 pp�
���

��	 unknown �����

�SJ��� S� Stritter and M� Johnson	 �Preliminary benchmark of Vitesse GaAs��
MIPS Computer Systems Report	 Feb� �����

�SL��� R� T� Short and H� M� Levy	 �A simulation study of two�level caches	�
in Proc���th Annual Int� Symp� Computer Architecture	 pp� �����	 June
�����

�SLL��� D� P� Seraphim	 R� C� Lasky	 and C��Y� Li	 Principles of Electronic Pack�
aging� New York	 New York� McGraw�Hill	 Inc�	 �����

�SM��� H� Sachs and H� McGhan	 �Future directions in Clipper processors	� in
Proc� IEEE COMPCON SPRING ���	 pp�
���
��	 Mar� �����

�Smi��� A� J� Smith	 �Two methods for the e�cient analysis of memory address
trace data	� IEEE Trans� Software Engineering	 vol� SE��	 pp� ������	
Jan� �����

�Smi��� J� E� Smith	 �A study of branch prediction strategies	� in Proc� �th Annual
Int� Symp� Computer Architecture	 pp� ��
����	 July �����

��

�Smi�
� A� J� Smith	 �Cache memories	� ACM Computing Surveys	 vol� ��	
pp� ����
��	 Sept� ���
�

�Smi�
a� A� J� Smith	 �Cache evaluation and the impact of workload choice	� in
Proc��
th Annual Int� Symp� Computer Architecture	 pp� �����	 June
���
�

�Smi�
b� A� J� Smith	 �Problems	 directions and issues in memory hierarchies	� in
Proc� ��th Annual Hawaii Conf� System Sciences	 pp� �������	 Dec� ���
�

�Smi��� A� J� Smith	 �Line �block� size choice for CPU cache memories	� IEEE
Trans� Computers	 vol� C���	 pp� ��������
	 Sept� �����

�SMO��a� K� A� Sakallah	 T� N� Mudge	 and O� A� Olukotun	 �Analysis and design of
latch�controlled synchronous digital circuits	� in Proc�

th ACM�IEEE
Design Automation Conf�	 �����

�SMO��b� K� A� Sakallah	 T� N� Mudge	 and O� A� Olukotun	 �checkTc and mintc �
Timing veri�cation and optimal clocking of synchronous digital circuits	�
in Proc� IEEE Conf� Computer�Aided Design	 �Santa Clara	 California�	
Nov� �����

�SMO��c� K� A� Sakallah	 T� N� Mudge	 and O� A� Olukotun	 �A timing model of
synchronous digital circuits	� Technical Report CSE�TR������	 Univer�
sity of Michigan	 Dept of EECS	 Ann Arbor	 MI ������
�

	 �����

�Sto��� H� S� Stone	 High�Performance Computer Architecture� Addison�Wesley
Publishing Co�	 �����

�SWP��� J� E� Smith	 S� Weiss	 and N� Y� Pang	 �A simulation study of decoupled
architecture computers	� IEEE Trans� Computers	 vol� �
	 pp� ��
���
	
Aug� �����

�Szy��� T� G� Szymanski	 �LEADOUT � A static timing analyzer for MOS cicuits	�
in Proc� IEEE Conf� Computer�Aided Design	 pp� �������	 �����

�TDF��� G� Taylor	 P� Davies	 and M� Farmwald	 �The TLB slice# a low�cost high�
speed address translation mechanism	� in Proc��
th Annual Int� Symp�
Computer Architecture	 pp� �

����	 June �����

�Tho��� J� E� Thornton	 Considerations In Computer Design� Leading Up To
The CONTROL DATA ����� Control Data Corp�	 �����

�Tho��� M� Thorson	 �ECL bus controller hits
�� Mbytes�s	� Microprocessor Re�
port	 vol� �	 pp� �
���	 Jan� �����

�TS��� I� L� Traiger and D� R� Slutz	 �One�pass technique for the evaluation of
memory hierarchies	� Technical Report RJ ��
	 IBM Research	 July �����

���

�TS��� J� G� Thompson and A� J� Smith	 �E�cient �stack� algorithms for analy�
sis of write�back and sector memories	� ACM Trans� Computer Systems	
vol� �	 Feb� �����

�Tum��� R� R� Tummala	 �Electronic packaging in the �����s# a perspective from
America	� IEEE Trans� Components	 Hybrids and Manufacturing Tech�
nology	 vol� ��	 pp�
�
�
��	 June �����

�UT��� S� H� Unger and C��J� Tan	 �Clocking schemes for high�speed digital sys�
tems	� IEEE Trans� Computers	 vol� C��
	 pp� ������
	 Oct� �����

�VIT��� VITESSE Semiconductor Corp�	 Gallium Arsenide Integrated CFoundry
Design Manual Version ���	 Mar� �����

�VIT��� VITESSE Semiconductor Corp�	 Foundry Design Manual Version ���	
Mar� �����

�Wan��� N� Wang	 Digital MOS Integrated Circuits� Design for Applications� En�
glewood Cli�s	 New Jersey� Prentice Hall	 �����

�WBL��� W��H� Wang	 J��L� Baer	 and H� M� Levy	 �Organization and performance
of a two�level virtual�real cache hierarchy	� in Proc� of the ��th Annual
International Symposium on Computer Architecture	 pp� �������	 June
�����

�WF�
� S� Wasser and M� Flynn	 Introduction to Arithmetic for Digital Systems
Designers� Holt	 Rinehart and Winston	 ���
�

�Wil��� A� W� Wilson	 Jr�	 �Hierarchical cache�bus architectures for shared mem�
ory multiprocessors	� in Proc���th Annual Int� Symp� Computer Architec�
ture	 pp�
���

	 June �����

�WMF��� D� Wong	 G� D� Micheli	 and M� Flynn	 �Inserting active delay elements
to achieve wave pipelining	� in Proc� IEEE Conf� Computer�Aided Design	
pp�
���
��	 �����

�WS��� D� E� Wallace and C� H� S"equin	 �ATV� An abstract timing veri�er	� in
Proc�
�th ACM�IEEE Design Automation Conf�	 pp� �
���
�	 �����

