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Abstract

Disaggregated Memory Architectures for Blade Servers

by

Kevin Te-Ming Lim

Co-Chairs: Trevor N. Mudge and Steven K. Reinhardt

Current trends in memory capacity and power in servers indicate the need for memory
system redesign. First, memory capacity is projected to grow at a smaller rate relative to
the growth in compute capacity, leading to a potential memory capacity wall in future
systems. Furthermore, per-server memory demands are increasing due to large-memory
applications, virtual machine consolidation, and bigger operating system footprints. The
large amount of memory required for these applications is leading to memory power
being a substantial and growing portion of server power budgets. As these capacity and
power trends continue, a new memory architecture is needed that provides increased
capacity and maximize resource efficiency.

This thesis presents the design of a disaggregated memory architecture for blade

servers that provides expanded memory capacity as well as dynamic capacity sharing



across multiple servers. Unlike traditional architectures that co-locate compute and
memory resources, the proposed design disaggregates a portion of the servers’ memory,
which is then assembled in separate memory blades optimized for both capacity and
power usage. The servers access memory blades through a redesigned memory hierarchy
that is extended to include a remote level that augments local memory. Through the
shared interconnect of blade enclosures, multiple compute blades can connect to a single
memory blade and dynamically share its capacity. This sharing increases resource
efficiency by taking advantage of the differing memory utilization patterns of the
compute blades. In this thesis, two system architectures are evaluated that provide
operating system-transparent access to the memory blade; one uses virtualization and a
commodity-based interconnect, and the other uses minor hardware additions and a high-
speed interconnect. Both are able to offer up to ten times higher performance over
memory-constrained environments. Finally, by extending the principles of disaggregation
to both compute and memory resources, new server architectures are proposed that
provide substantial performance-per-cost benefits for large-scale data centers over

traditional servers.



Chapter 1

Introduction

Current hardware and software trends indicate an impending memory capacity wall
that is hindering the full utilization of per-server compute resources. Compute capacity is
growing at a fast rate due to the increasing number of central processing unit (CPU) cores
per chip. Designs from AMD and Intel will have as many as 8 CPU cores per chip in the
near future, and these numbers are expected to continue to increase [9]. To effectively
utilize this growing compute capacity, there needs to be a matching increase of memory
capacity. Further increasing the pressure on capacity, memory requirements of
applications and operating systems are rising, with examples including in-memory
databases, search engine indices, OS footprint growth, and virtual machine consolidation
[15]. These combined trends require increased scaling in memory capacity in order to
meet hardware and software demands. However, aggregate projections of memory
capacity growth per CPU socket show that capacity is unable to keep up with these
demands [86]. Memory is already one of the most important resources in servers, and left
unchecked, the impending memory capacity wall will lead to future systems being
underutilized due to lack of memory capacity.

Concurrently, the memory system is becoming a larger contributor to total server

power and costs [29] due to the high operating speeds of memory and large memory



capacities that must be provisioned for expected workload requirements. This problem is
magnified by the many servers in large scale data centers. In recent years, data centers
have grown in size and importance to the computer industry [11, 68]. One of the primary
factors of their growth is the emergence of the internet sector, especially in large-scale
applications such as web search. These sectors have data centers that scale up to
thousands of servers, as evidenced by companies such as Google and Microsoft having
hundreds of thousands of servers spread across several globally distributed locations [35].
At this scale, the power and cost efficiency of servers is closely linked to total operating
costs. The large contribution of memory system to both power and costs therefore makes
it critical to have highly efficient and well utilized memory resources in servers across the
entire data center.

This thesis examines the dual needs of addressing the memory capacity wall and
having power and cost-efficient memory resources in large-scale environments. Given
these needs, it is apparent that new memory architectures are required that can provide
expanded memory capacity and more efficient memory resources. Due to their targeted
use in large-scale environments, these architectures must be designed to exploit the
economies of scale, taking advantage of the lower costs of high-volume components
while minimizing the use of custom components. At the same time, when designing these
memory systems, there are new opportunities to significantly improve their effectiveness.
One such opportunity is optimizing for the ensemble, which refers to a group of closely
located servers. When viewed at an ensemble level, there is time-varying, differing
memory usage across servers due to different applications and workload inputs. This

variability can be leveraged to provision resources for the expected sum of memory usage



across the ensemble, as opposed to the current standard practice of provisioning each
server for the expected worst case memory usage. Additionally, the increased prevalence
of blade servers — with their fast, shared interconnection networks — and virtualization
software — with its support for hardware indirection — offer unique opportunities for
efficient memory architectures that provide shared, expanded capacity in an operating
system and application-transparent fashion.

In this thesis, these unique opportunities are explored in order to design a new,
disaggregated memory architecture. The concept of disaggregation is used to refer to the
separation of a resource from its traditional location within a compute server, and the
assembly and use of that resource in such a way that promotes utilization and cost
efficiency across the ensemble. Specifically | consider, separating a portion of the
memory resources from compute servers, and organizing that memory in a cost and
power-efficient manner that allows their utilization to be maximized across all of the
servers. These memory resources are assembled in a specially designed memory blade
that provides remote, expanded capacity to compute blades within an enclosure. The
memory blade’s capacity is dynamically allocated among the connected compute blades.
The memory blade and two system architecture designs to access the blade are evaluated
and are shown to effectively meet the goals of expanding capacity along with improving
cost and power efficiency. Finally the principles of disaggregation are applied at a
broader scale, and new server architectures are proposed for large-scale data centers that

offer substantial performance and cost benefits over conventional servers.



Before discussing the disaggregated architectures in detail, a closer examination of the
current memory capacity and power trends, new opportunities for memory system

efficiency, and current work must be considered.

1.1 Memory Capacity Trends

In recent years, memory capacity has become a crucial yet limited resource in
commodity systems. On the capacity demand side, current studies project an increased
number of cores per socket, with some studies predicting a two-fold increase every two
years [9]. As the number of cores per socket increases, the memory requirement to
effectively utilize all of those cores also scales. Applications are requiring increasing
amounts of memory capacity to deal with demands from web 2.0 applications, in-
memory databases, and virtual machines [15]. Furthermore, operating systems are
growing in memory footprint, with each successive generation of Windows requiring
more memory [54]. However, from a supply point of view, memory capacity growth is
unable to keep up. The International Technology Roadmap for Semiconductors (ITRS)
estimates that the pin count at a socket level is likely to remain constant [86]. As a result,
the number of channels per socket is expected to be near-constant. In addition, the rate of
growth in dual in-line memory module (DIMM) density is starting to wane, growing at a
rate of two-fold every three years versus the previous rate of two-fold every two years.
Additionally the DIMM count per channel is declining (e.g., two DIMMSs per channel on
Double Data Rate 3 (DDR3) interfaces versus eight for DDR1 interfaces) [42]. Figure 1
aggregates these trends to show historical and extrapolated increases in processor
computation and associated memory capacity. The processor line shows the projected

trend of cores per socket, while the dynamic random access memory (DRAM) line shows
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Figure 1: Projected annual growth in number of cores and memory capacity.

The expected number of cores per socket (blue line) is growing at a faster rate than
the expected DRAM capacity (orange line). On average, memory capacity per
processor core is extrapolated to decrease 30% every two years.

the projected trend of capacity per socket given DRAM density growth and DIMM per
channel decline. If these trends continue, the growing imbalance between supply and
demand may lead to commodity memory capacity per core dropping by 30% every two
years. If not addressed, future systems are likely to be performance-limited by inadequate
memory capacity.

At the same time, several studies show the contribution of memory to the total cost
and power consumption of future systems increasing from its current value of about 25%
[56, 67, 61]. A survey of memory costs of differing technology types and capacities,
discussed in greater detail in Chapter 6, shows that the costs of higher speed, higher
capacity memory can easily rival the cost of the processor. New generations of memory
reduce power consumption, but these reductions are offset by the faster operating

frequencies and the larger memory capacities that are being used. Furthermore, certain
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Figure 2: Intra- and inter-server variations in memory utilization.

(@) The amount of granted memory for TPC-H queries can vary by orders of
magnitude. Note the memory usage is on a log sacle. (b) “Ensemble” memory usage
trends over one month across 11 servers from a cluster used for animation rendering.
Note the variability in utilization across the servers at any given time point.

recent memory technologies such as Fully-Buffered DIMMs (FB-DIMM) require
additional hardware that increases power consumption [36]. As memory power trends
higher, it will increase ownership costs as more energy will be required to adequately
cool the servers.

There are new technologies emerging to improve memory capacity, including the use
of alternative memory technologies such as Flash [94] or Phase Change Memory [57] as
main memory, 3D stacked DRAM [51], and buffers [4] or ASICs [20] to increase the
allowable DIMMs per memory channel. These technologies are all promising in

increasing memory capacity, but each has different drawbacks, including asynchronous
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read/write performance, lifetime wear-out concerns, configuration flexibility, and non-
commaodity costs. Despite these alternatives, DRAM currently remains the primary option

for main memory capacity.
1.2 Heterogeneity Opportunities in Enterprise Workloads

These challenges in memory capacity and power present a unique opportunity for
research and development. Recent studies have pointed to a new possibility to address
these challenges—namely that of optimizing for the ensemble [75], referring to a group
servers physically located near each other. For example, several studies have shown that
there is significant temporal variation in the usage of resources like CPU time or power,
both across and within applications. There are analogous trends in memory usage based
on variations across application types, workload inputs, data characteristics, and traffic
patterns. Figure 2(a) shows how the memory allocated for queries by a standard
transaction processing benchmark, TPC-H, can vary widely. There are several orders of
magnitude difference in memory allocated between the smallest and largest queries,
demonstrating the large memory variations within an application. Figure 2(b) presents a
high-level illustration of the time-varying memory usage of 11 randomly-chosen servers
from a 1,000-CPU cluster used to render a recent animated feature film [1]. Each line
illustrates a server’s memory usage varying from a low baseline when idle to the peak
memory usage of the application. As can be seen, there is variation in the memory usage
across all servers at any time. These results point to the opportunity for a solution that
provisions server memory for the typical usage, with the ability to dynamically add

memory capacity across the ensemble. This solution can reduce costs and power by



avoiding the over provisioning that results from allocating each system for its worst-case

memory usage.

1.3 Blade Servers

One solution for addressing resource efficiency for servers has been the blade server
environment. In such an environment, individual servers are in a “blade” form-factor,
which is smaller than its 1U or 2U counterparts by excluding components such as fans,
power supplies, and 1/O devices. Instead these blades plug into an enclosure which
provides shared resources for those excluded components and other features such as
network switches. By sharing resources, blade systems are able to be more efficient than
traditional servers; for example, fans and power supplies can be sized for and operate in
more efficient ranges. Because they are targeted towards enterprise environments, blade
servers typically have support for management processors that allow remote control over
server hardware and power settings. Additionally, blade vendors often include or support
virtualization software to provide greater flexibility and control over the operating
systems being run. By offering improved resource efficiency through sharing resources,
blade servers offer unique possibilities for new memory system designs that address the

previously discussed power and capacity concerns.

1.4 Thesis Statement

To address the issues arising from memory capacity and power trends, this thesis
explores new memory architectures that utilize the opportunities presented by ensemble-
level optimizations and blade server infrastructures. Specifically this thesis presents the

design and evaluation of a disaggregated memory architecture that is inspired by



reassessing traditional memory systems which co-locate compute and memory resources.
Instead, a portion of memory resources are separated from servers and are organized in a
shared, remote memory pool, and the servers’ memory hierarchies are extended to
include a remote memory level. This pool, provided through a capacity-optimized
memory blade, is shared among compute servers within an enclosure to provide dynamic
memory capacity allocation. Compared to the state of the art, the memory blade is unique
in enabling both capacity expansion as well as dynamic capacity sharing. Importantly, the
disaggregated architecture leverages both the shared, high-speed interconnects found in
blade systems, as well as the dynamic variations in workload memory requirements.
Through memory blade-specific power optimizations, and by right-provisioning memory
capacity at an ensemble level, disaggregated memory can address the power and cost
problems that plague current servers. By amortizing the memory blade costs across
multiple servers in addition to its other benefits, the architecture offers significant cost
advantages over state of the art techniques that only expand capacity for a single server.
This thesis evaluates two system architectures that provide access to the memory blade
and provide operating system-transparent capacity expansion. The first design requires
changes only in hardware, while the second design limits changes to only the software
layer. The memory blade and these two architectures are evaluated through simulation
across a range of workloads, as well as on utilization traces across multiple live-data
centers, and are shown to provide on average a 10 fold performance improvement
compared to a memory constrained baseline. To further elucidate the software
requirements, a software-based prototype of disaggregated memory is developed by

modifying the Xen hypervisor, an open-source software project. This prototype is used to



validate some of the previous simulation findings, and its development leads to several
interesting insights into the software-aspects of disaggregated memory.

Finally, disaggregated memory is used as a cornerstone for a more advanced server
architecture which uses compute disaggregation, optimized cooling and packaging, and
low-power storage alternatives. These new server architectures are designed and
evaluated for large-scale data centers, specifically warehouse-computing environments,
and are found to provide significantly higher performance per cost efficiency compared

to traditional servers.

1.5 Contributions

This thesis makes the following contributions:

e Identification of memory capacity and power as system-limiting factors in future
servers

e Design of a disaggregated memory architecture for blade systems, providing an
expanded and shared remote memory capacity

e Evaluation using simulation of two implementations of disaggregated memory that
focus on either hardware or software changes

e Development and evaluation of a software-based prototype of disaggregated memory
using the Xen hypervisor

e Design of new disaggregation-based server architectures that leverage low power
components, redesigned packaging, and disaggregated memory

e Evaluations demonstrating the effectiveness of the server architectures on novel,

warehouse-computing oriented workloads
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1.6 Organization

The rest of the thesis is organized as follows: Chapter 2 contains background on many
of the key concepts that are central to this work, including current memory architectures,
servers, and blade systems. Chapter 3 discusses the disaggregated memory architecture,
covering the design of the memory blade, and two system architectures that are used to
access the memory blade. This architecture is evaluated, primarily through simulation, in
Chapter 4. The development of the software-based prototype of disaggregated memory is
covered in Chapter 5. Chapter 6 explores the evolution of disaggregated memory to
disaggregated server architectures and evaluates these architectures on novel, data center-
oriented workloads. Chapter 7 discusses related work in the memory and server

architecture space. Chapter 8 presents future work and Chapter 9 concludes the thesis.

11



Chapter 2

Background

This chapter presents the background for several key topics, including main memory
architectures, server designs and blade servers, and data centers. The motivation for this
thesis is driven by the current limitations of main memory architectures in providing
adequate memory capacity in the future, and rising demands for that memory capacity. At
the same time, inefficiencies in server architectures and the emergence of the blade
infrastructure offer new opportunities for improving the resource efficiency of both
memory architectures and servers. Finally background on data centers and their growing
importance to the computer industry is discussed. Based on growth of large-scale data

centers, they will likely be a driver of server-class computer design in the near future.

2.1 Current Main Memory Architectures

2.1.1 Main Memory Architecture and DRAM

Commaodity-class x86-based servers typically have one or two CPU sockets connected
to a northbridge chipset, or memory controller hub. The northbridge is connected to
several banks of dual in-line memory module (DIMMs) slots, and provides the
communication between the CPU and the dynamic random access memory (DRAM) that

is placed into the DIMM slots. In more recent processors, such as the AMD Opteron and

12



Phenom, and the Intel Core i7 and latest Xeon, the northbridge is integrated onto the
processor die, thereby directly connecting the processor to the DIMM slots. The on-die
northbridge configuration provides lower latency, faster access to the DRAM, but is
conceptually very similar to the traditional design with a discrete northbridge. In these
commodity x86 servers, the main memory consists solely of DRAM, which comes in
several interfaces including double dynamic rate (DDR), DDR2, DDR3, and Fully-
Buffered DIMM (FB-DIMM). Each successive DDR generation offers higher speed and
all DDR types assume a parallel bus interconnect, while FB-DIMM assumes a serial
point-to-point link. In addition, the successive DDR generations have supported increased
DRAM densities and lower operating voltages, thereby reducing the power generated.
DDR interfaces use a parallel bus architecture that requires the processor’s memory
controller to be connected to all of the memory slots. Because of the electrical complexity
involved in the parallel bus wiring, the bus architecture is a limiting factor in the total
number of DRAM devices that can be connected, the density of those memories, and the
transfer speed of the interconnect. Achieving higher memory capacity and faster speeds
thus leads to expensive and complex electrical signaling. This electrical complexity is
one factor why server-class motherboards — which typically offer a large memory

capacity — cost a significant amount higher than traditional desktop-class motherboards.

2.1.2 Recent Designs for Increased Capacity

The emergence of FB-DIMM was driven largely by the limitations of the traditional
parallel bus memory architecture. FB-DIMM instead uses a serial, point-to-point link,
requiring far fewer wires that run at a higher frequency. The high-speed serial interface
allows more DIMMs to be connected to the processor and higher overall bandwidths. FB-
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DIMM modules use DDR2-based DRAM devices to provide memory capacity, but have
an additional chip on each module called an Advanced Memory Buffer (AMB). The
AMB is responsible for reading the data from the DDR2 memory devices and converting
it to the serial interface. However, there are drawbacks to FB-DIMM primarily due to the
AMB chip, which is located on every DIMM. The first drawback is increased memory
access latency due to converting the parallel DDR memory interface to the FB-DIMM
serial interface. Because there is a large performance difference in memory speed and
processor speed, for many applications memory latency can be one of the main factors in
overall performance. The extra latency from FB-DIMM can thus result in slower
performance compared to architectures using DDR interfaces. The second drawback is
that the AMB draws a large amount of power [36]. Especially in servers with large
memory capacities, where memory power can be quite high and even comparable to
overall processor power, the power required for the AMB exacerbates the situation.
Higher power consumption affects cost in terms of both higher power costs to run the
systems, as well as higher cooling costs for the extra heat that is generated. Finally, the
AMB itself adds to the cost of each of the DIMMs, resulting in higher prices than DDR
DIMMs of comparable speed and capacity. The added costs reduce the usefulness of FB-
DIMM for high-volume markets, such as large-scale data centers. Furthermore, the costs,
high power, and increased latencies point to the inadequacies of FB-DIMM to fully
address the memory capacity needs faced by current memory architectures.

Although FB-DIMM is unlikely to become a ubiquitous solution — for example, AMD
announced it has no future plans to use FB-DIMM [23] - it does highlight several key

needs for future memory architectures. First, memory latency is an important component
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for overall performance, and new architectures should avoid increasing latency in the
common or most frequent access paths. Second, new technologies are needed to expand
memory capacity beyond the current limitations faced by the parallel bus architecture. As
will be described in the next section, it is necessary to have more memory capacity to
match the compute capacity that is increasing with the growth of multi-core processors.
Finally, memory power is an important consideration, especially for server-class
computers. Resources must be efficiently utilized to maximize the amount of work done
per watt.

Beyond FB-DIMM, there have been several newly proposed memory technologies to
attempt to increase memory capacity. AMD has announced a product called G3MX [4],
which is similar to FB-DIMM, but instead places the buffer chip on the motherboard.
This configuration avoids the cost and power overheads that are incurred by an AMB
being on every FB-DIMM. However, this technology has not been introduced into the
market as of 2010. It is unclear if there will be a high-volume market that will drive
commoditization costs. Furthermore, including the buffers on the motherboard will
increase motherboard costs.

Cisco has released an Extended Memory Blade server [20] which utilizes an ASIC
plugged into a separate CPU socket to provide expanded capacity. The ASIC allows
multiple DIMMs to be mapped into a single DIMM slot, surpassing the normal electrical
limitations of standard processor memory channels. However, this architecture imposes
non-commodity costs on all servers that require large memory, requires custom hardware

and motherboard from Cisco, and is unlikely to reach high-volume markets.
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Another technology is 3D stacked memory [51], which incorporates DRAM chips
directly onto the processor die. This stacking can likely provide greater densities than is
available with current DRAM, but like the other solutions incurs significant non-
commodity costs. Additionally, the 3D stacked memory architecture could be more
limiting in the possible memory configurations available if the only processor can only
access the 3D stacked DRAM as main memory. This architecture would require a new
processor model in order to obtain greater memory capacity, which would discourage
high-volume markets that may have wide variety of memory capacity needs.

Although each of these solutions offer potential memory capacity increases, most offer
only a one-time increase. In addition, they suffer from not being applicable to high-
volume markets, making them inappropriate for cost-effective designs. The memory
blade, on the other hand, minimizes the non-commaodity parts and amortizes their costs
across multiple servers, enabling cost-effective capacity expansion. Additional benefits
are gained through dynamically sharing the memory blade capacity. Lastly, most of these
technologies are orthogonal to the memory blade design, and can be utilized by the

memory blade if commaoditization drives their costs down.

2.1.3 Distributed Shared Memory Architecture

A processor’s memory controller is typically connected directly to the accessible
DIMM slots. However, in a distributed shared memory (DSM) system, multiple
processors are connected to each other using a coherent interconnect, and processors can
address other processors’ memory in a single global, unified address space. Server-class
processors such as the AMD Opteron and Intel Xeon support DSM through a multi-
socket architecture, in which a single motherboard has two or more processor sockets
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connected by a coherent interconnect. These configurations are known as symmetric
multiprocessing (SMP), where several identical processors share main memory. Most
systems are limited to 4 sockets [23], but with additional circuitry and logic, much larger
systems can be created, such as those historically offered by SGI [55]. In a DSM system,
when a processor must access another processor’s memory, the original processor
generates a memory request. The memory request is sent to the processor connected to
the memory, which completes the request on behalf of the original processor and returns
the data. Memory contents across the different memories, as well as the caches of the
processors, are kept up-to-date using a coherency protocol.

Distributed shared memory systems can provide a larger memory capacity than is
possible with a single processor socket by sharing the memory of several processors.
However, there are several drawbacks to increasing capacity by using a DSM system.
First, latency to access another processor’s memory is higher than accessing local
memory because the request must traverse sockets to the other processor, and must take
part in the coherency protocol to get the proper data. The increased latency has motivated
the development of multiple schemes that utilize either hardware or software to minimize
the latency. Second, multi-processor motherboards cost more than single-processor
motherboards due to their extra materials, complex electrical wiring required, and lower-
volume market. Thus DSM systems can be a costly way to obtain greater memory
capacity. Lastly, although DSM systems increase the total memory capacity, the capacity-
per-socket ratio, or compute-to-memory ratio, is not changed. Because the compute-to-
memory ratio is unchanged, although DSM systems will alleviate situations where the

performance is memory capacity-bound, they will not address situations where each of
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the processors requires more capacity. Such situations will continue to have under-

utilized compute resources.

2.2 Software Needs for Memory Capacity

To understand the needs for large memory capacities, current software resource
demands must be examined. Due to the large gap between processor performance and
disk performance, applications rely on main memory capacity to store and retrieve data
with high performance. The reliance on main memory is especially true with the rise of
latency-sensitive applications specifically in the internet sector. There has been an
emergence of data-rich, highly interactive “web 2.0” applications where low latency, on
the millisecond timescale for user response, is extremely important to overall user
experience, and thus crucial to end metrics such as total number of visitors to a website,
or total number of order transactions. To support these applications — which are as widely
varied as web search, social networking, blogs, and real-time chat — there has been
significant effort to ensure they maximize the use of main memory and minimize the
accessing of data from disk. These performance optimizations are evidenced by efforts of
Google and Yahoo! to specifically make their web search indexes fit into main memory,
and the wide-spread use of a main memory based caching layer, memcached [32], in
infrastructures such as Facebook or LiveJournal. In particular, memcached works by
having a distributed cache that utilizes the main memory of servers to cache objects, such
as the results of a database query or a page rendering. The servers running memcached
can be standard servers running applications such as web search, or can be dedicated
caching servers. In large-scale infrastructures, there may be hundreds of computers

dedicated to being memcached servers to provide high performance, and more
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importantly, fast response times. As web 2.0 infrastructures continue to grow and scale
out, they will be one of the largest driving factors behind the need for greater memory
capacity.

Similarly, there is also a growth in memory capacity demand in the database segment.
Database management systems (DBMS) are seeing an increase in in-memory database
systems (IMDS), which store an entire database in main memory [48]. This configuration
is contrary to traditional DBMS, which store databases on disk. Significantly higher
performance can be achieved by having the entire database in main memory because
memory is an order of magnitude faster to access than disk both in terms of latency and
bandwidth. This performance improvement is beyond what is achievable by caching a
traditional disk-based DBMS in memory. Caching can speed up accesses to read objects
by storing them in memory, but writing objects still pays the performance overhead of
accessing the disk. Furthermore, IMDS are optimized to operate within memory, and
avoid some of the overheads that disk-based DBMS have in maintaining data on disk.

Another key driver of memory capacity needs is virtualization software. Virtualization
is increasingly being used to provide consolidation of servers in data centers.
Virtualization enables software implementations of full-machines, called virtual
machines (VM), to be used in place of individual servers. Virtualization provides each
VM the appearance of being its own machine through the use of a virtual machine
monitor (VMM), or hypervisor. The hypervisor is a small layer of software that abstracts
the underlying system’s physical hardware in a manner that enables the VMs to be
agnostic to actual hardware. This abstraction allows VMs to run (in the ideal case) on any

hardware that is supported by the hypervisor without needing reconfiguration. Moreover,
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it allows multiple VMs to share a single machine by multiplexing the hardware at the
hypervisor level. Operating systems typically expect to have full and sole control of the
server’s hardware, and thus servers normally only run a single operating system. Through
the support and indirection of the hypervisor, virtualization can surpass this limitation
and allow multiple operating systems to run simultaneously; for example, one VM can be
running Windows XP, another VM can be running Debian Linux, and yet another could
be running Red Hat Linux, all at the same time.

This ability to run multiple operating systems is especially useful for servers in data
centers. Often times such servers are utilized only lightly, but cannot be consolidated
because they are running applications that require separate servers. This limitation may
be either due to compatibility reasons (e.g., one application needs Windows Server, and
another needs Linux), application requirements, or security reasons (e.g., isolation).
Without virtualization, each instance of these applications would require their own
server, which comes with the costs of purchasing, running, and managing that server.
With virtual machines, each of those applications can be run in a separate VM, and those
VVMs can be consolidated onto a single server, assuming it has enough compute, memory,
and storage resources. Virtual machine consolidation can greatly reduce the amount of
running servers required in a data center, especially when the servers are not consistently
under heavy utilization. Furthermore, the appearance of VMs as full systems can help
ease implementation of services. For example, in Amazon’s Elastic Compute Cloud [84],
VMs give the users “full” systems which can be used for individual purposes.
Unfortunately, when consolidating virtual machines, memory capacity can be a

bottleneck preventing further consolidation, especially for virtual machines with low
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levels of processor utilization. Consolidated VMs require the server have memory
capacity to hold the entirety of their memory; thereby the consolidation of multiple VMs
onto a single server greatly increases the memory resource pressure on that server. Thus
in these VM environments, it is very important to have a large memory capacity to
support the high levels of consolidation.

As discussed in this section, there are multiple software trends driving the need for
increased memory resources — specifically memory capacity. Applications and software
such as web 2.0, in-memory databases, and virtualization all require large memory
capacities to achieve high overall system performance. As applications with large main
memory requirements continue to become more prevalent, it will be important that new

memory architectures are able to supply them with adequate capacity and resources.

2.3 Servers and Blade Systems

Server infrastructures are undergoing a design evolution that seeks to increase their
efficiency and reduce costs, while also providing maximum flexibility. Blade servers are
a prime example of such an evolution. To understand the need behind the design
evolution, some background information on commodity-class servers must be reviewed.
Servers found in data centers typically come in form-factors of 1U or 2U, which refers to
their vertical height being 1.75” or 3.5”, respectively. These servers are rack mounted, in
which they are connected to a standardized chassis that measures 19” wide. Typical racks
are 42U tall, allowing twenty-one to forty-two servers per standard rack. There are more
advanced designs that allow mounting of servers on both the front and back of the rack,
thereby doubling the number of servers per rack. A 1U or 2U server contains all

traditional computer components, including motherboard, processor, RAM, 1/0O devices
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such as Ethernet network interface cards (NICs), and typically one or more hard drives.
Also included are one or more power supplies (if more are needed for redundancy) and
cooling fans to pull cold air from outside of the server, pass the air over the components,
and exhaust the air out the other side. 1U servers are traditionally single or dual-socket
systems, and are often the mainstay of large-scale data centers for their combination of
cost, size, compute power, and flexibility. 2U servers offer more capacity for
components, such as quad-socket systems, or multiple disk drives.

Blade systems are intended to improve upon the design of servers by offering greater
flexibility in form-factor and configuration, and reducing the redundant resources among
groups of servers. Instead of requiring servers to be a 1U or 2U form-factor, individual
blade servers, or compute blades, plug into a rack-mounted enclosure, allowing a greater
flexibility in form-factor and arrangement. The flexibility allows blade servers to better
match the configurations and arrangements needed by applications while requiring less
real estate than traditional 1U servers. For example, the HP c-Class blade system has an
enclosure that has a 10U form factor and can support up to 16 servers per enclosure.
Blade infrastructures that are focused on server density, such as the HP Blade PC, can
have up to 20 blade servers per 3U. Blade systems often provide modularity in the type of
blades that can be used. The server, or compute blade, is the most common form, but
there can also be storage blades that contain disks, and 1/0 blades that contain 1/0 adapter
cards such as graphics cards or networking cards. The blade enclosure contains a
backplane that has electrical connectors that the blades physically plug into. Additionally
the backplane provides resources such as power and interconnect (e.g., Ethernet and PCI

Express). Blade servers are an important market segment for major companies such as
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HP, Dell, IBM, and Sun. Because they are targeted towards enterprises, they often
include advanced manageability features such as on-board management processors and
power and cooling control, as well as reliability features such as redundant power
supplies, fans, and networking.

Beyond having a more flexible form-factor, one of the key improvements of blade
systems over traditional servers is having a shared infrastructure. Traditional rack-
mounted servers are isolated and each one has its own individual components. For
example, each server has a power supply, cooling fans, and networking hardware.
However, this isolation and redundancy can be wasteful — the power supplies are often
forced to run in less efficient ranges of operation if servers are lightly utilized; cooling
fans are forced to be smaller, less efficient form-factors to fit in a 1U or 2U case, and may
be underutilized depending on the activity level of the servers. Blade systems address
these inefficiencies by providing power, cooling, and integrated networking resources at
the enclosure level. This resource sharing allows for cooling fans to be larger and more
efficient and the power supplies to be run at more efficient operating ranges (i.e., high
utilization) by taking advantage of the varying utilization profiles of the compute blades
[58]. Additionally, the cost of the components is amortized across all of the compute

blades that populate the enclosure.

2.4 Data Centers

Companies use data centers to house and run their large collections of servers. These
data centers are buildings that have dedicated capacity to house, power, cool, and manage
the servers. There has been significant growth in the data center segment, driven by the

internet sector and cloud computing. Internet companies such as Microsoft, Google, and
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Yahoo! have invested millions of dollars in purchasing land, building, and running data
centers, and continue to expand their capacity [93]. Similarly, there has been an
emergence of cloud computing, in which third-party companies manage servers and
infrastructure, and sell compute time and capacity to end users. The actual details of the
infrastructure and management can be abstracted away from the end users, allowing them
to focus only on the actual workloads being run. Cloud computing benefits the end users
by allowing them to use as much compute power as necessary; as the users’ applications
require more processing power, more compute resources can be utilized from the cloud
on an on-demand basis. With the emergence of cloud computing companies such as
Amazon have dedicated large amounts of compute resources and are continually
expanding their data centers. The large scale internet sector and cloud computing data
centers all have unique requirements compared to smaller deployments, and house
thousands of servers running a variety of core applications or services such as web
servers, web search, e-mail, and job schedulers. Due to this massive scale, efficiency at
all levels of operation is very important. For example, millions of dollars have been
invested in the development of power-efficient data centers that are optimized to
maximize cooling effectiveness and minimize power losses. Some recent data centers are
being built in colder climates to take advantage of ambient external air cooling; other data
centers have been built near power sources such as dams to provide cheap electricity
[63].

Because of the enormous scale of these data centers, for the design of domain-specific
architectures can be feasible and cost-effective. Both Google and Yahoo! have their own

optimized server enclosures [85]. Furthermore, companies have put millions of dollars
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into designing unique cooling infrastructures. There have also been efforts by Microsoft
and Google in using shipping containers to house servers, providing a flexible and cost-
effective building unit for data centers [35]. Based on the millions of dollars being put
forth towards these efforts, and the sheer scale of these data centers, domain-specific

architectures that offer significant power or cost advantages can be quite feasible.
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Chapter 3

Disaggregated Memory Architecture

In order to address the memory capacity and power problems discussed previously,
new architectural solutions are needed that can provide both transparent memory capacity
expansion to match computational scaling, and transparent memory sharing at the
ensemble level. In addition, given the large-scale data centers that these architectural
solutions are targeted towards, it is important for these approaches to require at most
minor changes to ensure that their costs do not outweigh their benefits. When considering
the design of new memory architectures, blades servers offer an interesting platform due
to their fast, shared interconnection networks and support of virtualization software. The
increased market adoption of blade servers helps make them a viable platform for new
memory architectures.

This thesis proposes a new architectural building block, a memory blade, which
provides transparent memory expansion and sharing for commodity-based designs. The
design of the memory blade is discussed in this chapter, and the memory blade is used to
propose two new disaggregated memory architectures. Both architectures augment the
memory hierarchy with a remote memory level whose capacity is provided by the
memory blade. The first solution requires no changes to existing system hardware, using

support at the virtualization layer to provide page-level access to a memory blade across a
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commodity interconnect. My second solution proposes minimal hardware support on
every compute blade, but provides finer-grained access to a memory blade across a

coherent network fabric for commodity software stacks.
3.1 Disaggregated Memory Concept

There are four key observations that motivate the development of disaggregated

memory:

(1)  The emergence of blade servers with fast shared communication fabrics in the
enclosure enables separate blades to share resources across the ensemble.

(2)  Virtualization provides a level of indirection that can enable OS- and
application-transparent memory capacity changes on demand.

(3) Market trends towards commodity-based solutions require special-purpose
support to be limited to the non-volume components of the solution.

(4)  The footprints of enterprise workloads vary across applications and over time;
but current approaches to memory system design fail to leverage these

variations, resorting instead to worst-case provisioning.

Based on these observations, this thesis argues for a re-examination of conventional
designs that co-locate memory DIMMSs in conjunction with computation resources. These
designs connect DIMMs through conventional memory interfaces and the processor
controls them through on-chip memory controllers. Instead, this thesis proposes a
disaggregated multi-level design which provisions a separate memory blade, connected at
the 1/0 or communication bus. The concept of disaggregation refers to the separation of

memory from its location within the compute blade, and the use of that memory in a way
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that promotes resource and cost efficiency across the ensemble. In this design, a portion
of the memory resources are separated from the compute blades within an enclosure, and
this memory is organized on a memory blade to maximize the efficiency across the whole
ensemble. Thus the memory blade comprises arrays of commodity memory modules
assembled to maximize density and cost-effectiveness. Importantly, the memory blade
provides an extra, remote memory capacity to the compute blades. The memory hierarchy
IS reorganized to support this remote level in an operating system-transparent fashion
through either modifications at the hypervisor level, or minor hardware changes.
Furthermore, the memory blade takes advantage of varying memory requirements by
allocating capacity on-demand to individual compute blades, allowing for more efficient

overall utilization of memory.
3.2 Memory Blade Architecture

3.2.1 Memory Blade Design

The design of the memory blade is illustrated in Figure 3(a). The memory blade
consists of a protocol engine, an interface bridge, a custom memory-controller ASIC (or a
light-weight CPU), and one or more channels of commodity DIMM modules. The
protocol engine and interface bridge are used to interface with the blade enclosure’s 1/0
backplane interconnect, providing connectivity to multiple compute blades. The custom
memory-controller handles requests from client blades to read and write memory, using
standard virtual memory techniques to translate the requested memory addresses to their
actual locations on the memory blade. Additionally the controller manages capacity
allocation and address mapping across the connected compute blades. The memory

blade’s channels of DIMM modules use either on-board repeater buffers or alternate fan-
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out techniques to allow each memory channel to support a high capacity. Optional
memory-side accelerators can be added for functions like compression and encryption.
The memory blade can either be designed as another blade in the system — supporting the
same form factor as the compute blades — or could alternatively be designed to fit into the
1/0 bays typically found in blade enclosures. The former design would provide more
physical space for DIMMSs, while the latter design would avoid replacing any compute
blades. In this thesis | assume the latter design, where the memory blade is situated in the
1/0 bay to maximize the amount of compute capacity per enclosure.

The memory blade requires some custom hardware, including the memory-controller
ASIC, the memory channels, and the motherboard. Although this custom hardware is
contrary to the goal of avoiding non-commodity components, the memory blade requires
no changes to volume blade-server designs, as it connects through standard 1/0O
interfaces. In this thesis PCI Express® (PCle®) or HyperTransport™ (HT™) are used as
the 1/O interconnect. Additionally, because the memory blade’s capacity is available to
all servers in the enclosure, its total costs are amortized over the entire server ensemble.
Furthermore, the memory blade design is straightforward compared to a typical server
blade, as it does not have the cooling challenges of a high-performance CPU and does not
require local disk, Ethernet capability, or other elements (e.g., management processor,
SuperlO, etc.). The simple design should minimize the cost of the custom hardware. To
further offset hardware costs, the memory blade’s DRAM subsystem is optimized for
power and capacity efficiency. Because client access latency is dominated by the
enclosure interconnect, resource efficiency optimizations are possible at the minor cost of

performance. For example, the controller can aggressively place DRAM pages into active
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Figure 3: Design of the memory blade.

(a) The memory blade architecture is shown in detail. The memory blade connects to
the compute blades via the enclosure backplane. (b) The address mapping data
structures that support memory access and allocation/revocation operations.

power-down mode, which reduces memory power by almost 90%, but takes an extra 6
DRAM cycles to transition into standby mode [64]. The controller can also map
consecutive cache blocks into a single memory bank to minimize the number of active
devices at the expense of reduced single-client bandwidth.

The design of the memory blade reflects deliberate choices to make a straightforward
design that would fit well in the commodity-based markets, but is by no means the only
feasible way a memory blade could be designed. The memory blade could possibly have
greater compute power than an ASIC, making it closer to a large-memory server. This

design was not pursued in favor of simplicity as it would require greater complexity in
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the programming of the memory blade and its interactions with the compute blades.
Although the memory blade uses either PCle or HT, nothing precludes it from using
other interconnects such as Infiniband® or QuickPath Interconnect. A memory blade
could also serve as a vehicle for integrating alternative memory technologies, such as
Flash or phase-change memory, possibly in a heterogeneous combination with DRAM,
without requiring modification to the compute blades. This configuration would need
more logic at the memory controller to communicate with the different memory types, as
well as policies for using one memory technology versus another, but the added design
complexity may be outweighed by the benefits from alternative memory technologies.

Many of these alternative designs are discussed in Chapter 8.
3.2.2 Memory Blade Mapping

The memory blade is designed to be shared by multiple compute blades. To provide
protection and isolation among shared clients, the memory controller translates each
memory address accessed by a client blade into an address local to the memory blade,
called the Remote Machine Memory Address (RMMA). In the proposed design, each
client manages both local and remote physical memory within a single System Memory
Address (SMA) space. Local physical memory resides at the bottom of this space, with
remote memory mapped at higher addresses. For example, if a blade has 2 GB of local
DRAM and has been assigned 6 GB of remote capacity, its total SMA space extends
from 0 to 8 GB. Each blade’s remote SMA space is mapped to a disjoint portion of the
RMMA space. This process is illustrated in Figure 3(b). The blade’s memory is managed
in large chunks (e.g., 16 MB) so that the entire mapping table can be kept in SRAM on

the memory blade’s controller. For example, a 512 GB memory blade managed in 16 MB
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chunks requires only a 32,000 entry mapping table. Using these “superpage” mappings
avoids complex, high-latency DRAM page table data structures and custom translation
lookaside buffer (TLB) hardware. This architecture does not preclude shared-memory
communication among client blades, but in favor of a simplistic solution, it is not
included in this initial design. The implications of supporting distributed shared memory

are discussed in Chapter 8.
3.2.3 Remote Memory Allocation and Revocation

The memory blade’s total capacity is partitioned among the connected clients through
the cooperation of the virtual machine monitors (VMMSs) running on the client servers, in
conjunction with enclosure-, rack-, or datacenter-level management software. The VMMSs
in turn are responsible for allocating remote memory among the virtual machine(s)
(VMs) running on each client system. The selection of capacity allocation policies, both
among blades in an enclosure and among VMs on a blade, is a broad topic that deserves
separate study. Here the discussion is restricted to designing the mechanisms for
allocation and revocation.

Allocation is straightforward: privileged management software on the memory blade
assigns one or more unused memory blade superpages to a client, and sets up a mapping
from the chosen blade ID and SMA range to the appropriate RMMA range. Revocation is
required when there are no unused superpages, and some existing mapping must be
revoked so that memory can be reallocated. Capacity reallocation is a rare event
compared to the frequency of accessing memory using reads and writes. Consequently,

the design focuses primarily on correctness and transparency and not performance.
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When a client is allocated memory on a fully subscribed memory blade, management
software first decides which other clients must give up capacity, then notifies the VMMs
on those clients of the amount of remote memory they must release. There are two
possible approaches for freeing pages. First, most VMMs already provide paging support
to allow a set of VMs to oversubscribe local memory. This paging mechanism can be
invoked to evict local or remote pages. When a remote page is to be swapped out, it is
first transferred temporarily to an empty local frame and then paged to disk. The remote
page freed by this transfer is released for reassignment. Alternatively, many VMMs
provide a “balloon driver” [95] within the guest OS to allocate and pin memory pages,
which are then returned to the VMM. The balloon driver increases memory pressure
within the guest OS by requesting memory, forcing the OS to select pages for eviction to
satisfy the driver’s request. This approach generally provides better results than the
VMM’s paging mechanisms, as the guest OS can make a more informed decision about
which pages to page out to disk and may simply discard clean pages without writing them
to disk. Because the newly freed physical pages can be dispersed across both the local
and remote SMA ranges, the VMM may need to relocate pages within the SMA space to
free a contiguous 16 MB remote superpage.

Once the VMMs have released their remote pages, the memory blade mapping tables
may be updated to reflect the new allocation. It is assumed that the VMMSs can generally
be trusted to release memory on request; the unlikely failure of a VMM to release
memory promptly indicates a serious error and can be resolved by rebooting the client

blade.
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3.3 System Architecture with Memory Blades

While the memory-blade design enables several alternative disaggregated memory
architectures, two specific designs are discussed here, one based on making changes only
at the software stack, and another based on requiring only minor hardware changes.
Based on their implementation differences, the first design uses page swapping on remote
access, while the second design provides fine-grained remote access. In addition to
providing more detailed examples of possible disaggregated memory architectures, these
designs also illustrate some of the tradeoffs in the multi-dimensional design space for
memory blades. Most importantly, they compare the method and granularity of access to
the remote blade (page-based versus block-based) and the interconnect fabric used for

communication (PCI Express versus HyperTransport).
3.3.1 Page-Swapping Remote Memory (PS)

The first design avoids any hardware changes to the high-volume compute blades or
enclosure; the memory blade itself is the only non-standard component. This constraint
implies a conventional 1/0 backplane interconnect, typically PCle. This basic design is
illustrated in Figure 4(a).

Because CPUs in a conventional system cannot access cacheable memory across a
PCle connection, the system must bring locations into the client blade’s local physical
memory before they can be accessed. The Page-Swapping (PS) design leverages standard
virtual memory mechanisms to detect accesses to remote memory and relocate the
targeted locations to local memory on a page granularity. In addition to enabling the use
of virtual memory support, page-based transfers exploit locality in the client’s access

stream and amortize the overhead of PCle memory transfers. To avoid modifications to
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Figure 4: Page-Swapping (PS) Remote Memory Design.

(a) Disaggregated architecture that connects the compute and memory blades using a
commodity interconnect. No changes are required to compute servers and networking
on existing blade designs. Minor modules (shaded block) are added to the
virtualization layer. (b) The address mapping design places the extended capacity at
the top of the address space. In this example 2-8GB are remote memory.

application and OS software, this page management is implemented in the hypervisor or
VMM. The VMM detects accesses to remote data pages and swaps those data pages to
local memory before allowing a load or store to proceed.

The new page management scheme is illustrated in Figure 4(b). As mentioned
previously, when remote memory capacity is assigned to a specific blade, the SMA
(machine physical address) space is extended at that blade to provide local addresses for

the additional memory. The VMM assigns pages from this additional address space to

35



guest VMs, where they will in turn be assigned to the guest OS or to the applications.
However, because these pages cannot be accessed directly by the CPU, the VMM cannot
set up valid page-table entries for these addresses. It instead tracks the pages by using
“poisoned” page table entries without their valid bits set or by tracking the mappings
outside of the page tables (similar techniques have been used to prototype hybrid memory
in VMWare [98]). In either case, a direct CPU access to remote memory will cause a
page fault and trap into the VMM. On such a trap, the VMM initiates a page swap
operation. This simple OS-transparent memory-to-memory page swap should not be
confused with OS-based virtual memory swapping (paging to swap space), which is
orders of magnitude slower and involves an entirely different set of sophisticated data
structures and algorithms.

The PS design assumes page swapping is performed on a 4 KB granularity, a common
page size used by operating systems. Page swaps logically appear to the VMM as a swap
from high SMA addresses (beyond the end of local memory) to low addresses (within
local memory). To decouple the swap of a remote page to local memory and eviction of a
local page to remote memory, a pool of free local pages is maintained for incoming
swaps. The software fault handler thus allocates a page from the local free list and
initiates a DMA transfer over the PCle channel from the remote memory blade. The
transfer is performed synchronously (i.e., the execution thread is stalled during the
transfer, but other threads may execute). Once the transfer is complete, the fault handler
updates the page table entry to point to the new, local SMA address and puts the prior

remote SMA address into a pool of remote addresses that are currently unused.
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This design assumes minor coherence hardware support in every compute blade. The
added coherence filter hardware, CF, is shown.

To maintain an adequate supply of free local pages, the VMM must occasionally evict
local pages to remote memory, effectively performing the second half of the logical swap
operation. The VMM selects a high SMA address from the remote page free list and
initiates a DMA transfer from a local page to the remote memory blade. When complete,
the local page is unmapped and placed on the local free list. Eviction operations are
performed asynchronously, and do not stall the CPU unless a conflicting access to the in-

flight page occurs during eviction.

3.3.2 Fine-Grained Remote Memory Access (FGRA)

The previous solution avoids any hardware changes to the commodity compute blade,
but at the expense of trapping to the VMM and transferring full pages on every remote
memory access. The second design examines the effect of a few minimal hardware
changes to the high-volume compute blade to enable an alternate design that has higher
performance potential. In particular, this design allows CPUs on the compute blade to
access remote memory directly at cache-block granularity.

This approach leverages the glueless SMP support found in current processors. For

example, AMD Opteron™ processors have up to three coherent HyperTransport™ links
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coming out of the socket. The Fine-Grained Remote Memory Access (FGRA) design,
shown in Figure 5, uses custom hardware on the compute blade to redirect cache fill
requests to the remote memory blade. Although it does require custom hardware, the
changes to enable the FGRA design are relatively straightforward adaptations of current
coherent memory controller designs.

This additional hardware, labeled “Coherence filter” in Figure 5, serves two purposes.
First, it selectively forwards only necessary coherence protocol requests to the remote
memory blade. For example, the coherence filter can respond immediately to invalidation
requests because the remote blade does not contain any caches. Only memory read and
write requests require processing at the remote memory blade. In the terminology of
glueless x86 multiprocessors, the filter ensures that the memory blade is a home agent but
not a cache agent. Second, the filter can optionally translate coherence messages destined
for the memory blade into an alternate format. For example, HyperTransport-protocol
read and write requests can be translated into generic PCle commands, allowing the use
of commodity backplanes and decoupling the memory blade from specific cache-
coherence protocols and processor technologies.

Because FGRA allows the remote SMA space to be accessed directly by CPUs, VMM
support is not required; an unmodified OS can treat both local and remote addresses
uniformly. However, a VMM or additional OS support is required to enable dynamic
allocation or revocation of remote memory. Performance can also potentially be
improved by migrating the most frequently accessed remote pages into local memory,
swapping them with infrequently used local pages—a task that could be performed by a

VMM or by extending the non-uniform memory access support available in many OSes.
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Chapter 4

Evaluation of Disaggregated Memory

This chapter evaluates the proposed disaggregated memory architectures, specifically
examining the ability of the remote memory blade to effectively provide expanded
capacity and shared capacity. The two system architectures for accessing the memory
blade, PS and FGRA, are evaluated through simulation, and it is found that they are both
able to provide high performance, but there are interesting trade-offs and some counter-
intuitive results. The results show that memory disaggregation can provide significant
performance benefits (on average 10X) in memory-constrained environments.
Additionally, the sharing enabled by these solutions can enable large improvements in
performance-per-dollar (up to 87%) and greater levels of consolidation (3X) when
optimizing memory provisioning across multiple servers. Based on the results, some

alternative designs are explored, specifically for the FGRA solution.
4.1 Methodology

4.1.1 Simulation Methodology

In this work, the performance of the memory blade designs is measured primarily via
memory trace-based simulation because it makes it practical to process the billions of

main-memory references needed to exercise a multi-gigabyte memory system. The
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simulations are accomplished through a newly developed disaggregated memory
simulator that uses detailed traces of main-memory accesses to estimate the memory
blade’s performance. These traces have information such as the address being accessed
and the cycle of access. The simulator processes the traces and upon seeing a unique
page, places that page in the first memory hierarchy level with free space (either local
memory, remote memory, or disk, in that order). On subsequent access to the page, the
simulator first determines the location in the hierarchy of the memory being accessed,
and then simulates how long it would take to access the address based on any actions that
must be taken (e.g., a remote page being accessed must first be swapped to local memory
under the PS design). The simulator has multiple configurable parameters including: size,
latency, and bandwidth of local memory, remote memory and disk; latency and
bandwidth of the interconnect; hypervisor trap time; and packet processing time. The
final output of the simulator includes a variety of statistics, such as peak bandwidth used,
and the total cycles taken to complete the memory trace, which is the main performance
indicator. Other possible alternatives to trace-based simulation are discussed in Section
4.7.1.

Memory reference traces were collected from the COTSon simulator, a detailed full-
system simulator, used and validated in prior studies [8]. COTSon was modified to record
the physical address, CPU ID, timestamp and read/write status of all main-memory
accesses. To make it feasible to run the workloads to completion, a lightweight CPU
model was used for this simulation. (Each simulation still took between 1 to 2 weeks to
complete.) The simulated system has four 2.2 GHz cores, with per-core dedicated 64KB

L1 and 512 KB L2 caches, and a 2 MB L3 shared cache.
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Memory blade parameters

DRAM Latency 120 ns Map table 5ns Request_ packet 60 ns
access processing
DRAM_ 6.4 GBS T_ransfer page IKB Respon_se packet 60 ns
Bandwidth size processing
(a)

Workloads Footprint size
Low (zeusmp, gcc,

SPEC CPU | 5 large memory benchmarks: zeusmp, perl, gcc, bwaves, and perl, bwaves),

2006 mcf, as well as a combination of four of them, spec4p. Medium (mcf), High
(spec4p)

Nutch 0.9.1 search engine with Resin and Sun JDK 1.6.0, 5GB .
nutch4p Medium

index hosted on tempfs.

TPC-H running on MySQL 5.0 with scaling factor of 1. 2 copies
tpchmix of query 17 mixed with query 1 and query 3 (representing Medium
balanced, scan and join heavy queries).
pgbench TPC-B like benchmark running PostgreSQL 8.3 with pgbench High
and a scaling factor of 100.

Indexer Nutch 0.9.1 indexer, Sun JDK 1.6.0 and HDFS hosted on one High
hard drive.
SPECjbb 4 copies of Specjbb 2005, each with 16 warehouses, using Sun High
JDK 1.6.0.
(b)

Real-world traces

Resource utilization traces collected on 500+ animation rendering servers over a
Animation year, 1-second sample interval. The presented data is from traces of a group of 16

representative servers.
VM VM consolidation traces of 16 servers based on enterprise and web2.0 workloads,
consolidation maximum resource usage reported every 10-minute interval.

Resource utilization traced collected on 290 servers from a web2.0 company.
Web2.0 . . :

Traces are from sar with 1-second sample interval for 16 representative servers.

(©)

Table 1: Simulation parameters and descriptions of workloads and traces.

(@) The key simulation parameters used for the memory blade. (b) List of the
workloads used for trace-based simulation (c) Details of the real-world memory
utilization traces used in this thesis.

4.1.2 Simulation Parameters

The common simulation parameters for the remote memory blade are listed in Table
1(a). For the baseline PS, the memory blade interconnect is based loosely on a PCle 2.0
x2 channel and has a latency of 120 ns and bandwidth of 1 GB/s (each direction). For the

baseline FGRA, a more aggressive channel is assumed, e.g., based on HyperTransport™
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or a similar technology, with 60 ns latency and 4 GB/s bandwidth. Additionally, for PS,
each access to remote memory results in a trap to the VMM, and VMM software must
initiate the page transfer. Based on prior work [79], it is estimated that the total software
overhead is 330 ns (roughly 1,000 cycles on a 3 GHz processor), including the trap itself,
updating page tables, TLB shootdown, and generating the request message to the memory
blade. All of the simulated systems are modeled with a hard drive with 8 ms access
latency and 50 MB/s sustained bandwidth. Initial data placement is performed using a
first-touch allocation policy; pages are placed first in local memory until it is exhausted.
Any subsequent new pages are placed into local memory after a local page is evicted to
remote memory (if present), or disk.

The simulation model was validated on a real machine to measure the impact of
reducing the physical memory allocation in a conventional server. The real machine
tested was an HP c-Class BL465c server with 2.2GHz AMD Opteron 2354 processors
and 8 GB of DDR2-800 DRAM. To model a system with less DRAM capacity, the Linux
kernel was forced to reduce physical memory capacity using a boot-time kernel
parameter. The findings from reducing the physical memory capacity were in qualitative

agreement with the results obtained through trace-based simulation.

4.1.3 Workloads

The workloads used to evaluate the disaggregated memory architecture designs
include a mixture of Web 2.0-based benchmarks (nutch, indexer), traditional server
benchmarks (pgbench, TPC-H, SPECjbb®2005), and traditional computational
benchmarks (SPEC® CPU2006 — zeusmp, gcc, perl, bwaves, mcf). Additionally a multi-
programmed workload, spec4p, was developed by combining the traces from zeusmp,
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gcc, perl, and mcf. Spec4p offers insight into multiple workloads sharing a single server’s
link to the memory blade. Table 1(b) describes these workloads in more detail. The
workloads are further broadly classified into three groups—Ilow, medium, and high—
based on their memory footprint sizes. The low group consists of benchmarks whose
footprint is less than 1 GB, medium ranges from 1 GB to 1.75 GB, and high includes
those with footprints between 1.75GB and 3GB.

In addition to these workloads, the evaluation also uses traces of memory usage that
were previously collected from two real-world, large-scale data center environments
(Animation, and VM consolidation). To augment these traces, the memory usage in the
data center of a photograph hosting and printing website was also collected (web2.0). All
three data center traces are described in Table 1(c). The traces were each gathered for
over a month across a large number of servers and are used to guide the selection of
workloads to mimic the time-varying memory requirements of applications seen in real-
world environments.

To quantify the cost benefits of the new memory designs, a cost model was developed
for the disaggregated memory solutions and the baseline servers. Because the new
designs target the memory system, data specific to the memory system is presented. Price
data was gathered from public and industry sources for as many components as possible.
For components not readily available, such as the remote memory blade controller, a cost
range is estimated. Power and cooling costs are also included, given a typical 3-year
server lifespan. DRAM power calculators are used to evaluate the power consumption of
DDR?2 devices [64]. Estimates for the memory contributions towards power and cooling

are calculated by first calculating total memory power, and then calculating the total
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Figure 6: Capacity expansion results over memory-constrained baselines.

(a) Performance improvement of the two designs over M-app-75% provisioning;
(b) Speedup over M—med i an provisioning

contributions of this memory power to the total power and cooling costs assuming a 3-
year lifespan. The total power and cooling costs are calculated through previously

published equations by Patel and Shah [71].
4.2 Memory Expansion for Individual Benchmarks

The first experiments focus on the applicability of memory disaggregation to address

the memory capacity wall for individual benchmarks. To illustrate scenarios where
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applications run into memory capacity limitations due to a core-to-memory ratio
imbalance, each of the benchmarks are run on a baseline system with only 75% of that
benchmark’s memory footprint (M—app-75%). The baseline system must swap pages to
disk to accommodate the full footprint of the workload. The baseline system results are
compared with the two disaggregated memory architectures, PS and FGRA. In these
cases, the compute nodes continue to have local DRAM capacity corresponding to only
75% of the benchmark’s memaory footprint, but have the ability to utilize capacity from a
remote memory blade. The memory blade is allocated 32GB of memory as it is sufficient
to fit any application’s footprint. Figure 6(a) summarizes the speedup for the PS and
FGRA designs relative to the baseline. Both of the new solutions achieve significant
improvements, ranging from 4X to 320X higher performance. These improvements stem
from the much lower latency of the remote memory solutions compared to OS-based disk
paging. In particular, zeusmp, bwaves, mcf, specjbb, and spec4p show the highest benefits
due to their large working sets.

Interestingly, PS outperforms FGRA in this experiment, despite the expectations for
FGRA to achieve better performance due to its lower access latency. Further investigation
reveals that the page swapping policy in PS, which transfers pages from remote memory
to local memory upon access, accounts for its performance advantage. Under PS,
although the initial access to a remote memory location incurs a high latency due to the
VMM trap and the 4 KB page transfer over the slower PCle interconnect, subsequent
accesses to that address consequently incur only local-memory latencies. The FGRA
design, though it has lower remote latencies compared to PS, continues to incur these

latencies for every access to a frequently used remote location. Despite not supporting
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Figure 7: Capacity expansion results over worst-case provisioned baseline.
Slowdown of the two architectures versus worst-case (M—Max) provisioning.
page movement, FGRA outperforms the baseline. For further examination of the impact
of locality, Section 4.6 considers an FGRA design that supports page swapping.

Figure 6(b) shows a possible alternate baseline where the compute server memory is
set to approximate the median-case memory footprint requirements across the
benchmarks (M-median = 1.5GB). This baseline models a realistic scenario where all
servers are provisioned for the common-case workload, but can still see a mix of different
workloads. Figure 6(b) shows that the proposed solutions achieve performance
improvements only for benchmarks with high memory footprints. For other benchmarks,
the remote memory blade is unused, and does not provide any benefit. More importantly,
it does not cause any slowdown.

Finally, Figure 7 illustrates a baseline where the server memory is provisioned for the
worst-case application footprint (M-max = 4GB). This baseline models many current
datacenter scenarios where all servers are typically provisioned in anticipation of the
worst-case load, either across workloads or across time. The memory disaggregation
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Figure 8: Cost analysis of the memory blade.

Average performance-per-memory dollar improvement versus memory blade costs
relative to the total cost of 32GB of remote DRAM.

solutions are configured as in the previous experiment, with M—-median provisioned per-
blade and additional capacity provided by the remote blade. The results show that, for
workloads with small footprints, the new solutions perform comparably. For workloads
with larger footprints, going to remote memory causes a slowdown compared to local
memory; however, PS provides comparable performance in some large-footprint
workloads (pgbench, indexer), and on the remaining workloads its performance is still
within 30% of M-max. As before, FGRA loses performance as it does not exploit locality

patterns to ensure most accesses go to local memory.
4.3 Power and Cost Analysis

Using the methodology described in Section 4.1, the memory power draw of the
baseline M-median system is estimated to be 10 W, and the M-max system is 21 W. To
determine the power draw of the disaggregated memory solutions, it is assumed that local

memory is provisioned for median capacity requirements (as in M-median) and there is
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a memory blade with 32 GB shared by 16 servers. Furthermore, because the memory
blade can tolerate increased DRAM access latency, the design aggressively employs
DRAM low-power sleep modes. For a 16-server ensemble, the estimated amortized per-
server memory power of the disaggregated solution (including all local and remote
memory and the memory blade interface hardware, such as its controller, and 1/O
connections) is15 W.

Because the memory blade contains several custom designed components whose
prices are not readily available, a range of costs is considered. Figure 8 shows the
changes in the average performance-per-memory cost improvement over the baseline
M-max system as the memory blade cost varies. The goal of this evaluation is to
understand the memory blade’s performance-per-memory cost benefit based on how
much cost overhead the blade adds beyond the price of acquiring the remote memory
capacity. Therefore, to put the memory blade cost into context with the memory
subsystem, the cost is shown as a percentage of the total remote DRAM costs (memory
blade cost divided by remote DRAM costs), using 32 GB of remote memory. Note that
for clarity, the cost range on the horizontal axis refers only to the memory blade
interface/packaging hardware excluding DRAM costs (the fixed DRAM costs are already
factored in to the results). In other words, at 100% cost overhead the price of the memory
blade (backplane interface, memory controller and channels, packaging) is equal to the
cost of 32 GB of remote memory. Assuming commodity DDR2 memory prices, the total
cost for 32 GB of remote memory is $480.

As can be seen in Figure 8, the hardware cost break-even points for PS and FGRA are

high (260% and 120%, respectively) implying a sufficiently large budget envelope for the
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Figure 9: Consolidation improvements enabled by disaggregated memory.

Consolidation with disaggregated memory (PS) enables much greater consolidation
than state-of-the-art techniques (Current).

memory blade implementation. Based on the straightforward design and limited
functionality of the memory blade, it is expected that the overhead of a realistic
implementation of a memory blade could be below 50% of the 32 GB remote DRAM
cost, given 2010 market prices. This overhead can be reduced further by considering
higher capacity memory blades; for example, the cost overhead is likely to be below 7%

of the remote DRAM cost of a 256 GB memory blade.

4.4 Server Consolidation

Viewed as a key application for multi-core processors, server consolidation improves
hardware resource utilization by hosting multiple virtual machines on a single physical
platform. However, memory capacity is often the bottleneck to server consolidation
because other resources (e.g., processor and 1/0) are easier to multiplex, and the growing
imbalance between processor and memory capacities exacerbates the problem. This
effect is evident in the real-world web2.0 traces, where processor utilization rates are

typically below 30% (rarely over 45%) while more than 80% of memory is allocated,
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indicating limited consolidation opportunities without memory expansion. To address this
issue, current solutions either advocate larger SMP servers for their memory capacity or
sophisticated hypervisor memory management policies to reduce workload footprints.
However, these alternatives incur performance penalties, increase costs and complexity,
and do not address the fundamental processor-memory imbalance.

Memory disaggregation enables new consolidation opportunities by supporting
processor-independent memory expansion. With memory blades available to provide the
second-level memory capacity, it is possible to reduce each workload’s processor-local
memory allocation to less than its total footprint (M-max) while still maintaining
comparable performance (i.e., <3% slowdown). This workload-specific local vs. remote
memory ratio determines how much memory can be freed on a compute server (and
shifted onto the memory blade) to allow further consolidation. Unfortunately, it is not
possible to experiment in live datacenters to determine these ratios. Instead, the typical
range of local-to-remote ratios is determined using the simulated workload suite. This
range is then used to investigate the potential for increased consolidation using resource
utilization traces from production systems.

The consolidation benefits are evaluated using the web2.0 workload (CPU, memory
and 10 resource utilization traces for 200+ servers) and a sophisticated consolidation
algorithm similar to that used by Rolia et al. [78]. The algorithm performs multi-
dimensional bin packing to minimize the number of servers needed for given resource
requirements. The other two traces are not considered for this experiment. One real-world
trace, Animation, is CPU-bound and runs out of CPU before it runs out of memory, so

memory disaggregation does not help. However, as CPU capacity increases in the future,
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there will likely be a similar situation as web2.0. VM consolidation, on the other hand,
does run out of memory before it runs of out CPU, but these traces already represent the
result of consolidation. In the absence of information on the prior consolidation policy, it
is hard to make a fair determination of the baseline and the additional benefits from
memory disaggregation over existing approaches.

As shown in Figure 9, without memory disaggregation, the state-of-the-art algorithm
(“Current”) achieves only modest hardware reductions (5% processor and 13% memory)
because limited memory capacity precludes further consolidation. In contrast, page-
swapping-based memory disaggregation corrects the time-varying imbalance between
VM memory demands and local capacity, allowing a substantial reduction of processor
count by a further 68%. These results show that disaggregated memory can offer
substantial improvements in VM consolidation in memory-constrained environments.
This will be crucial for future data centers to enable consolidation to reduce server power

and costs.
4.5 Ensemble-level Memory Sharing

This section examines the benefits of disaggregated memory in multi-workload server
ensembles with time-varying requirements. By dynamically sharing memory capacity at
an ensemble level, disaggregated memory can potentially exploit the inter- and intra-
workload variations in memory requirements. This variation is highlighted by the
difference between the peak of sums and the sum of peaks. The peak of sums is the
maximum total memory required across the ensemble at any single point in time. On the
other hand, the sum of peaks is the sum of the worst-case memory requirements of all the
servers based on the applications being run. In conventional environments, servers must
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be provisioned for the worst-case memory usage (sum of peaks) to avoid potentially-
catastrophic performance losses from underprovisioning (which may lead to
swapping/thrashing). However, the peak of sums is often much smaller than the sum of
peaks as servers rarely reach their peak loads simultaneously; systems provisioned for
worst-case demands are nearly always underutilized. Ensemble-level sharing allows
servers to instead be provisioned for the sum of peaks, saving costs and power.

The potential of ensemble-level memory blade sharing is evaluated for a 16-server
blade enclosure running a mix of enterprise workloads with varying memory
requirements (similar to the scenario shown in Figure 2(b)). The three real-world
enterprise datacenter workload traces are examined (Animation, VM consolidation, and
web2.0), and a mixed workload trace is created using the simulated workloads to mimic
the same memory usage patterns. Each trace is divided into epochs and the processing
done per epoch is measured. These rates are compared across different configurations to
estimate performance benefits. To focus solely on the achievable performance by remote
memory, a simple policy is assumed where, at the beginning of each epoch, each
compute blade requests the additional memory it needs from the memory blade. (In a
task-scheduling environment, this could be based on prior knowledge of the memory
footprint of the new task that will be scheduled.) For the cost of the memory blade, the
price is conservatively estimated to be approximately that of a low-end system. Based on
the discussion in Section 4.3, this estimate is expected to be conservative because of the
limited functionality and hardware requirements of the memory blade versus that of a

general purpose server.
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Figure 10: Ensemble level sharing results.

(a) Performance-per-dollar as remote memory capacity is varied. (b) Slowdown
relative to per-blade worst-case provisioning (M-max) at cost-optimal provisioning.

Figure 10(a) shows the performance-per-memory-dollar improvement, normalized to
the M—-max baseline, for PS over a range of remote memory sizes. These results focus on
the PS design because the FGRA design is not as competitive due to its inability to
migrate frequently accessed data to local memory (see Section 4.2). Figure 10(a) shows
that both the VM consolidation and web2.0 traces benefit substantially from ensemble-

level provisioning, gaining 78% and 87% improvement in performance-per-dollar while
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Figure 11: Alternate FGRA design that supports page movement.

Normalized performance when FGRA is supplemented by NUMA-type optimizations.
Several large memory workloads significantly benefit from exploiting locality.

requiring only 70% and 85% of the sum-of-peaks memory capacity, respectively. These
savings indicate that the remote memory capacity can be reduced below worst-case
provisioning (sum of peaks) because demands in these workloads rarely reach their peak
simultaneously. In contrast, the peak of sums closely tracks the sum of peaks in the
Animation trace, limiting the opportunity for cost optimization.

The results indicate that a cost-optimized disaggregated memory is able to provide a
performance-per-dollar improvement compared to the M-max baseline (worst-case
provisioning). It is also important to understand the raw performance of the disaggregated
memory solution relative to the M-max baseline to ensure the performance obtained is at
an acceptable level. Figure 10(b) shows the performance sacrificed by the per-workload
cost-optimal design (as determined by the performance-per-dollar peak for each workload
in Figure 10(a)). There is minimal performance loss for the web2.0 and VM consolidation
traces (5% and 8%), indicating that disaggregated memory can significantly improve
cost-efficiency without adversely affecting performance. For the Animation traces there is
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Figure 12: Alternate FGRA designs that tunnels accesses over PCle.

Normalized performance loss from tunneling FGRA accesses over a commodity
interconnect. Performance decreases by at most 20%.

a larger performance penalty (24%) due to its consistently high memory demands.
Compared to the M-median baseline, the disaggregated memory designs show

substantial throughput improvements (34-277X) for all the traces.
4.6 Alternate Designs
4.6.1 FGRA with Page Migration

As discussed earlier, the FGRA design suffers relative to PS because it does not exploit
locality by swapping heavily used remote pages to local memory. This disadvantage can
be addressed by adding page migration to FGRA, similar to existing CC-NUMA
optimizations (e.g., Linux’s memory placement optimizations [18]). To study the
potential impact of this enhancement, a hypothetical system was modeled that tracks page
usage and swaps the most highly used pages into local memory at 10 ms intervals. Figure
11 summarizes the speedup of this system over the base FGRA design for M-median

compute blades. For the high-footprint workloads that exhibit the worst performance with
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FGRA (mcf, SPECjbb, and SPEC4p), page migration achieves 3.3-4.5X improvement,
with smaller (5-8%) benefit on other high-footprint workloads. For all workloads, the
optimized FGRA performs similarly to, and in a few cases better than, PS. These results

motivate further examination of data placement policies for FGRA.

4.6.2 FGRA Tunneled Over PCle

The hardware cost of FGRA can be reduced by using a standard PCle backplane (as in
the PS design) rather than a coherent interconnect, as discussed in Section 3.3.2. This
change incurs a latency and bandwidth penalty as the standardized PCle interconnect is
less aggressive than a more specialized interconnect such as cHT. Figure 12 shows the
change in performance relative to the baseline FGRA. Performance is comparable,
decreasing by at most 20% on the higher memory usage workloads. This performance
loss may be acceptable if the costs of extending a high-performance interconnect like

CHT across the enclosure backplane is high.
4.6.3 Simulated Hypervisor Sensitivity Study

The sensitivity of these results to the VMM overhead and memory latency parameters
in Table 1 was also studied. For a range of conservative values, there was no qualitative
difference in the results (less than 2% performance difference), so these sensitivity results

are omitted for brevity and clarity.
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4.7 Discussion

4.7.1 Simulation Methodology

There are several options for evaluating the memory architectures, including trace-
based simulation, detailed execution-driven simulation, and software or hardware
implementation. The end goal of the evaluation is to determine the performance of the
two designs on a variety of large memory workloads that may touch several gigabytes of
memory (which can take up to several hours of real-world time). Thus the key
requirements for the evaluation are the ability to: (1) flexibly model designs with
different interconnect types and software interactions, (2) quickly achieve performance
numbers so that multiple large workloads can be tested, and (3) be developed in a
reasonable amount of time to expedite the memory blade research.

Trace-based simulation, which processes main-memory access traces to estimate the
overall performance of a design, is the only option that allows all three requirements to be
met. Although this method does not provide the most accurate model of the memory
designs, it allows flexibility in the parameters modeled, can quickly process large
amounts of memory-traces, and can be developed quickly due to its straightforward
nature. Detailed execution-driven simulation offers accurate and flexible models, but has
significant slowdown compared to real-world run-times due to the details that are
modeled. A software implementation may be inadequate to model some of the fine-
grained design details, such as transactions on a cache-block level, and a hardware
implementation may take a significant amount of time to develop. However, these

options have their benefits in providing greater detail than is possible with simulation.
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Chapter 5 examines a prototype of a software implementation that is developed to greater

understand the software-implications of disaggregated memory.

4.7.2 Evaluation Assumptions

The trace-based simulations do not model interconnect routing, arbitration, buffering,
and QoS management in detail. If interconnect utilization is not near saturation, these
omissions will not significantly impact transfer latencies. The results of the simulations
confirm that per-blade interconnect bandwidth consumption falls well below the
capabilities of PCle and HT. However, the number of channels to the memory blade may
need to be scaled with the number of supported clients.

Although this modeling forgoes the ability to model overlap between processor
execution and remote memory accesses with trace-based simulations, the memory
reference traces are originally collected from a simulator that does model overlap of local
memory accesses. Additionally, the overlap for remote accesses is likely to be negligible
due to the relatively high latencies to the remote memory blade. The trace simulation
methodology is unable to model the actual content of memory because the size of the
traces would be intractable if all updates to memory content were included. Thus the
simulator models the location of pages in the memory hierarchy, but not their actual
content. Despite these limitations, because the focus of the evaluation in this chapter is on

the performance of the memory blade, these drawbacks are minimal.
4.7.3 Impact of the Memory Blade on Ensemble Manageability
Memory disaggregation has both positive and negative impacts on enterprise system

reliability, availability, security, and manageability. From a reliability perspective,
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dynamic reprovisioning provides an inexpensive means to equip servers with hot-spare
DRAM; in the event of a DIMM failure anywhere in the ensemble, memory can be
remapped and capacity reassigned to replace the lost DIMM. However, the memory
blade also introduces additional failure modes that impact multiple servers. A complete
memory-blade failure might impact several blades, but this possibility can be mitigated
by adding redundancy to the blade's memory controller. It is likely that high availability
could be achieved at a relatively low cost, given the controller’s limited functionality. To
provide security and isolation, the memory blade design enforces strict assignment of
capacity to specific blades, prohibits sharing, and can optionally erase memory content
prior to reallocation to ensure confidentiality. From a manageability perspective,
disaggregation allows management software to provision memory capacity across blades,

reducing the need to physically relocate DIMMs.
4.8 Summary

A detailed, simulation-based evaluation of disaggregated memory shows that it
effectively provides expanded memory capacity and memory sharing, enabling
significant performance and cost benefits. This expanded capacity can be leveraged to
enable greater levels of consolidation, removing memory capacity as a bottleneck. The
two proposed memory architectures for accessing the memory blade, PS and FGRA, each
provide good performance but have interesting tradeoffs. In particular, it was expected
that the FGRA design would outperform the PS design due to its higher speed, lower
latency interconnect and fine grained access. However, the swapping of remote data to

local memory proved to be much more important to overall performance. This result was
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confirmed by evaluations of alternate FGRA designs that supported such data movement

indicated the importance of those policies.
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Chapter 5

Hypervisor Prototype of Disaggregated Memory

The simulation-based evaluations from the previous chapter are crucial for providing
good performance estimates of a range of disaggregated memory designs. However,
because simulation models components at a high level, it is of limited help in
illuminating the system-level implications of the new memory architectures. To gain a
better understanding of these implications, such as the extent of software-stack changes
required and hardware-software interactions, a software prototype is developed for this
thesis that implements the primary functionality of disaggregated memory. The PS
design is used as the basis of the prototype because the main changes required are in
software, specifically within the hypervisor. This chapter details the work done in
prototyping the PS design by modifying the Xen hypervisor to support detecting,
accessing, and managing remote memory.

Section 5.1 describes the motivation behind the development of a prototype, detailing
some of the benefits it provides. Section 5.2 describes the design decisions that influence
the prototype. Section 5.3 details the changes made to the hypervisor to implement
disaggregated memory, and in Section 5.4 the prototype is evaluated and used to verify
some of the results obtained through simulation. Section 5.5 discusses some of the unique

lessons learned from doing the implementation.
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5.1 Motivation

A real-world prototype of disaggregated memory, either in hardware or software, can
serve to complement the findings that are obtained through simulation by providing a
different level of implementation detail. The simulation methodology described in
Chapter 4 allows for very flexible analysis of the two disaggregated memory
architectures, but has some limitations in illustrating the system-level interactions of the
designs. The simulator models components such as CPU, memory, and interconnect by
abstracting lower-level details to achieve a trade-off between accuracy and simulation
time. As a result, there are certain hardware behaviors and aspects that are not modeled in
detail, and therefore their interactions with the memory designs cannot be observed via
simulation. For example, the simulator does not model the performance impact of the
hardware virtualization support that has been added to recent x86 processors. Because
both disaggregated memory designs utilize virtualization, the impact of hardware
virtualization support on the memory designs is not apparent through simulation. Thus
the development of a prototype can serve as an important validation for simulations to
ensure that, to a first order, the primary aspects that influence performance are modeled.
It can further serve to help identify interesting interactions between the new memory
architectures and real-world hardware.

Another motivation for the development of a prototype of disaggregated memory
stems from the trace-based simulations used in this work. One drawback to the trace-
based simulation methodology is the inability to track the contents of memory. Because
the traces record billions of accesses to multiple gigabytes of memory, the size of the

traces would become unwieldy if they included the contents of each memory access.
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While this does not preclude performance studies on multi-level memory hierarchies, it
does prevent studies of designs where the memory content is important, such as content-
based page sharing at the memory blade level. As opposed to simulation, a prototype can
properly update the contents of memory, enabling experiments that need memory
contents to be faithfully tracked.

Beyond these benefits, a disaggregated memory prototype can also help to identify the
full extent of the modifications required at the hardware- or software-level. It can also
enable full-scale, large-memory workloads to be run in a reasonable amount of time
compared to detailed, execution-driven simulation. Because of these reasons, a prototype
of disaggregated memory is developed for this thesis to provide a more complete

understanding of the new memory architectures

5.2 Prototype Design Choices

One of the primary decisions in developing a prototype is whether it should be
implemented in hardware, software, or a combination of the two. In this thesis, a
software-based prototype of disaggregated memory is developed by modifying a
hypervisor to support remote memory. A software-based prototype is chosen because of
the availability of open-source hypervisors, the established hypervisor development
community, and the ability to run the prototype on multiple different machines if needed.
A hardware prototype, on the other hand, is not considered due to money and time
constraints. Building the disaggregated memory hardware — the memory blade and the
interconnection hardware — could be expensive due to the custom components, and
potentially not flexible enough to test a wide variety of parameters and configurations.

Additionally, a hardware prototype would likely require software modifications to
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support accessing the remote memory, and the creation of both hardware and software
infrastructures would lead to lengthy development times.

Based on the decision to develop a software-based prototype, the PS design is chosen
for implementation because it primarily requires software changes to existing systems.
However, the PS design has certain aspects that are not amenable to being implemented
in a software prototype. Therefore it is important to discuss first, the primary elements of
the design, and second, how those elements will be reproduced in a software-based
prototype.

The primary hardware and software components of the PS disaggregated memory

architecture include:

1. A memory blade that provides remote memory capacity to multiple compute
servers, connected via a commaodity interconnect.

2. Hypervisor support for detecting accesses to remote regions, obtaining remote
pages, and evicting local pages.

3. Hypervisor paging or balloon driver support for dynamic memory capacity

reallocation.

In a software-based prototype, the memory blade, the interconnect, and its remote
capacity do not exist and must instead be emulated. The memory blade and interconnect
are emulated through small routines in the hypervisor that implement their general
behavior and roughly estimate their performance. The remote capacity is emulated by
dividing up the physical machine’s capacity into “local” and “remote” regions, and
adding in small delays to emulate remote access latencies. The method for tracking these

regions is discussed in further detail below. In a real implementation, the memory blade
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would be connected to multiple compute blades. To avoid the complexity of having
multiple systems communicating over an interconnect, a single, multi-socket system can
instead act as both “compute blades” and the “memory blade” by treating each CPU
socket as an individual “blade.” The hypervisor running on the system would then act as
a global supervisor of the compute and memory “blades,” handling memory allocation
policies. (Although this multi-socket division capability is not currently present, the
prototype has been designed in a way that supports its implementation.)

To address the second component, modifications are made to an open-source
hypervisor to support detecting and handle accesses to regions of remote memory. The
hypervisor functionality is extended to support having a system memory address space
that is made up of memory local to the system, and memory that is remote. Additionally
the hypervisor is modified to implement the page-swapping functionality of the PS
design. The full details of these modifications are described in the next section.

The final component, support for dynamic memory capacity reallocation, can be
implemented through appropriate modification of the hypervisor or balloon driver.
However, this feature is complex and dependent upon a working prototype of
disaggregated memory that supports multiple clients. Because of time constraints,
dynamic memory capacity reallocation is not currently supporte