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ABSTRACT

Improving Processor
Performance by Dynamically Pre-
Processing the Instruction
Stream

by
James David Dundas

Chairman: Trevor Mudge

The exponentially increasing gap between processors and off-chip memory, as mea-
sured in processor cycles, is rapidly turning memory latency into a major processor perfor-
mance bottleneck. Traditional solutions, such as employing multiple levels of caches, are
expensive and do not work well with some applications. We evaluate a technique, called
runahead pre-processing, that can significantly improve processor performance.

The basic idea behind runahead is to use the processor pipeline to pre-process instruc-
tions during cache miss cycles, instead of stalling. The pre-processed instructions are used
to generate highly accurate instruction and data stream prefetches, while all of the pre-pro-
cessed instruction results are discarded after the cache miss has been serviced: thisalowsus
to achieve aform of very aggressive speculation with asimplein-order pipeline. The princi-

pal hardware cost is a means of checkpointing the sequential state of the register file and



memory hierarchy while instructions are pre-processed. As we discard all pre-processed
instruction results, the checkpointing can be accomplished with a modest amount of hard-
ware.

The instruction and data stream prefetches generated during runahead episodes led to a
significant performance improvement for all of the benchmarks we examined. We found
that runahead typically led to about a 30% reduction in CPI for the four Spec95 integer
benchmarks that we simulated, while runahead was able to reduce CPI by 77% for the
STREAM benchmark. Thisis for afive stage pipeline with two levels of split instruction
and data caches: 8KB each of L1, and IMB each of L2. A significant result is that when the
latency to off-chip memory increases, or if the caching performance for a particular bench-
mark is poor, runahead is especially effective as the processor has more opportunities in
which to pre-process instructions. Finally, runahead appears particularly well suited for use
with high clock-rate in-order processors that employ relatively inexpensive memory hierar-

chies.
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Chapter 1

Runahead

The severe device count constraint forced upon the design space of a Gallium Arsenide
processor led us to consider a number of unorthodox architectural ideas. One of these was
runahead pre-processing. The basic ideaisto allow asimple, yet very fast, processor pipe-
line to pre-process instructions during cache miss cycles, instead of stalling.

The pre-processed instructions are used to generate highly accurate instruction and data
stream prefetches by detecting cache misses before they would otherwise occur, while al of
the pre-processed instruction results are eventually discarded. This allows us to achieve a
form of very aggressive speculation with asimple in-order pipeline. The principal hardware
cost isameans of checkpointing the sequential state of the register file and memory hierar-
chy while instructions are pre-processed. Since we discard all results that are computed dur-
ing runahead episodes after the cache miss has been serviced, the checkpointing can be
accomplished with a modest amount of hardware.

By waiting until cache misses occur before generating prefetches, runahead adds a
highly responsive feedback component to the memory hierarchy: the greater the cache miss
penalty, the more opportunitiesthere are for prefetching, which tend to reduce the frequency
of future cache misses. Conversdly, if an application enters a phase whereits hit rateis high,

few prefetches are generated.



1.1 Basic runahead theory

When a runahead processor detects an L1 instruction or data cache miss it records the
instruction address of the faulting access and enters runahead mode. A demand fetch
request for the missing instruction or data cache line is generated if necessary. The proces-
sor also checkpoints the register file, RF, by copying its contents to a backup register file, or
BRF. The processor then pre-processes subsequent instructions while the cache missis ser-
viced. The goal isto generate prefetches for instructions and data that will be needed in the
near future. If apre-processed load or store generates a cache miss the processor can gener-
ate a prefetch for the missing line. Similarly, instruction fetch misses in the instruction
cache during runahead become instruction stream prefetches. Because the value returned
from a cache miss cannot be known ahead of time, it is possible for pre-processed instruc-
tions to be dependent upon invalid data. Rather than terminating runahead we allow regis-
ters and data cache values to have an explicit “invalid” state during runahead. Denoting this
value, INV, requires an extra bit associated with each register in the RF as well as with each
word in the L1 data cache (if byte or half-word addressing is allowed, additional bits are
required). Pre-processing of most instructions consists of the usual steps of fetch, decode,
and execute, with some changes to deal with INV data. Also stores are treated dightly dif-
ferently. The actions associated with pre-processing can be summarized as follows:

1. register-to-register instructions mark their destination register INV if any of their

source registers are marked INV. (They can also replace an INV value in their des-
tination register if al sources are VALID).

2. load instructions mark their destination register INV if any of three cases arises:
i. if the baseregister used to form the effective addressis marked INV, or
ii. acache missoccurs, or

iii. the target word in the cache is marked INV as aresult of a preceding store dur-
ing the same runahead episode (see next case).



(They can also replace an INV valuein their destination register if none of the pre-
ceding three cases apply).

3. storeinstructions do not write data into the cache or main memory. They do, how-
ever, mark the referenced cache item INV, if the base register used in address cal-
culation is VALID and the target line isin the cache.

4. conditional branch instructions are resolved normally if their branch condition is
VALID. If itis marked INV, the outcome is determined by whatever branch predic-
tion strategy the processor employs, and the processor continues to pre-process
instructions down the predicted path.

5. indirect branch instructions (the target of the branch is obtained from a register)
in which the register is marked INV stall the processor pipeline until normal oper-
ation resumes.

6. instruction cache misses during runahead generate instruction stream prefetches.

The above actions were formulated from straightforward considerations of read-after-
write dependencies, however they do not always accurately anticipate what occurs during
actual execution. Action 3 does not account for the case when stores cause a cache miss or
cannot compute their target addresses because their base register is marked INV. Such stores
cannot mark thelr target word INV. It thus follows that subsequent loads have a small possi-
bility of introducing apparently VALID data into the RF, which should have been INV.
Action 4 does not account for the case when an unresolvable conditional branch is mispre-
dicted. Finaly, action 5 does not account for the case when an instruction cache miss causes
the processor to not pre-process one or more taken branch or ALU instructions, which can
insert uncertainty into the RF and PC state during runahead.

To summarize, the above runahead pre-processing actions result in values in the RF that
cannot be trusted with certainty: there is a small possibility that a VALID register should be
marked INV and vice versa. Asthe valuesin the RF during runahead are only used to gener-
ate prefetches, they do not affect the sequential state of the machine. Actions taken by the

processor during runahead episodes cannot affect program correctness.
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After the cache miss that initiated runahead mode is serviced, the processor resumes
execution at the PC of the faulting instruction, and the RF is restored from its backup, the
BRF. The runahead valid bits in the RF and the L1 data cache are then set to the VALID
state. The L1 data cache runahead valid bits for a given line are also set to the VALID state

whenever anew line of datais alocated in the cache.

1.2 Some Runahead Examples
An example sequence of code is shown in Figure 1.1. Note that the sub-block runahead

valid bitsin the L1 data cache are not shown for this example, and that only the first eight
general purpose registers are considered. The runahead valid bits for these registers are col-
lectively referred to asthe Invalid Register Vector (IRV). A register ismarked INV if its cor-

responding bit inthe IRV isaO.

Figure 1.1  Basic runahead example

Comment Instruction IRV State
rrrrrrrr
] 01234567

dcache miss load r1, 0(r2) [T011117117]
INV result add r1, r2, r3 [TO101I11T1]
bad address load r4, 4(r3) (1 010071T711]
correct result sub r6, r2, r5 [TO0OT001T1IT1]
prefetch if miss load r5, 0O(rb5) (101007711

Thefirst instruction in the sequence is aload that missesin the L1 data cache, causing
the processor to enter runahead. The bit in the IRV corresponding to the destination register
of theload (rl) is marked INV (with a zero) in the IRV. The second instruction sources an
INV register (rl). Itsdestination register (r3) is subsequently marked INV. The third instruc-
tion is another load. This load cannot properly form its target address, since it sources an

INV register (r3). Asaresult thisload cannot generate arunahead prefetch, and has to mark
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its destination register (r4) as INV. The fourth instruction can source VALID registers (r6
and r2), which it uses to compute a new value for (r5), which remains VALID. The final
instruction in the sequence is another load. This load can compute a VALID address using
r5. If the load hitsin the L1 data cache, then it marks its destination register (r5) as VALID
after reading the data from the cache. If the load missesin the cache, then it marksits desti-
nation register (r5) as INV, and generates a prefetch for itstarget line.

This process continues until the memory hierarchy is able to service the L1 data cache
miss corresponding to the first instruction. When this occurs, the processor |eaves runahead
mode and restarts execution at the instruction that initiated runahead (the first instruction in
Figure 1.1). Before the processor can leave runahead mode it has to reset al of the IRV and
L1 data cache sub-block valid bits to the VALID state, and perform the 1:1 copy from the
BRF registersto their counterpartsin the RF.

Once the processor has left runahead mode it restarts execution at the PC of the first
instruction shown in Figure 1.1. Since the miss corresponding to the load has already been
serviced, it is guaranteed to hit in the L1 data cache. The following add instruction is then
able to execute normally. The third instruction may generate aL 1 data cache miss. If it does
not, then it can execute in the normal fashion. If it does generate a cache miss, then the pro-
cessor re-enters runahead starting at the second load instruction. Assuming that the second
load did not generate a L1 data cache miss, then the fourth instruction (the subtract) can
execute normally. Finaly, if the last instruction in the example generated a prefetch during
the previous runahead episode, and that prefetch has been serviced, then the load will not
generate an L1 data cache miss. If the prefetch has not been serviced, then the processor

will re-enter runahead mode.



Another runahead example is shownin Figure 1.2.

Figure 1.2  Stores during runahead

Comment Instruction IRV State
rrrrrorrr
012345617
dcache miss load r1, 0(r2) [T0111111]
INV dcache word ~ store r2, 0O(rl) [TO0111111]
is r4 valid? load r4, 4(r3) 10117271 1T1]

Note that the first instruction in the sequence is the same as that in the previous example.
It has generated a runahead-initiating L1 data cache miss, and marked its destination regis-
ter INV asin the previous example. The second instruction is a store that needs to use an
INV register (rl) to calculate its target address. Since it cannot determine its target address,
it cannot mark its target word in the L1 data cache as INV, even if it isin the cache. Asa
result, the subsequent load instruction cannot know for certain if the word it attemptsto read
from the L1 data cache is INV or not, as it could be read-after-write dependent upon the
store instruction (in which case the datain the cache is stale). As these dependencies should
be relatively rare, the processor should always assume that any word in the L1 data cache
that it reads that is not marked as INV, is actually VALID. However, if a dependence does
exist, aload can unknowingly add an “undetectable” INV value to the register file.

A third runahead example is shown in Figure 1.3. This example illustrates the effect of

branches during runahead.



Figure 1.3  Dependent branches during runahead

Comment Instruction IRV State
rrrrrorrr
012345617
dcache miss load r1, 0(r2) [TOITT1T1T1T71T]
dependent branch blt r1, |oop (TOTTTT1TT1T]
prefetch if miss? load r4, 4(r3) (TOTT?771TT1TT1]

The first instruction initiates runahead as before. Note that the conditional branch is
dependent upon the INV register generated by the load miss (rl). A runahead processor
implementing a conservative runahead scheme would simply halt pre-processing at the
INV-dependent branch in order to avoid polluting the L1 data cache. A runahead processor
implementing a more aggressive runahead scheme would continue to pre-process instruc-
tions past the branch, using its branch prediction unit to predict the likely path of future exe-
cution. In preliminary tests with our current smulator we found that the aggressive scheme
always provided superior performance. For thisreason al of the runahead simulation results

that we present are for processors models that use the aggressive scheme.

1.3 Dissertation Organization

The dissertation is organized as follows. Chapter 2 discusses previous research work.
Chapter 3 describes the methodology. Chapter 4 presents experimental results for abaseline
runahead processor model. Chapter 5 presents an analysis of the effectiveness of runahead
at both the function and instruction level, aswell asastudy of register and instruction usage.
Chapter 6 describes simulation results for more advanced runahead processor models, in
which the effects of instruction cache misses, memory hierarchy bandwidth, and wrong-

path effects are eliminated. Chapter 7 describes simulation results for reduced-cost



runahead processor models. Chapter 8 presents a summary of our work. Chapter 9 con-

cludes with a discussion of future work.



Chapter 2

TheMemory Latency Problem

Processor clock rates have been increasing at about 40% per year, accounting for much
of the 59% per year increase in performance [1]. During this time, the access time of com-
modity DRAM has been decreasing at only 7% per year [2], resulting in an exponentially
increasing cycle time gap between processors and main-memory. Unless clever architec-
tural tricks are employed, Amdahl’s Law [2] tells us that memory latency effects will even-
tually dominate the execution time of applications. There are many different established

methods of attacking the problem of memory latency.

2.1 Caches

The classic method of reducing the impact of memory latency isto employ one or more
levels of high-speed cache memory [3]. Caches work by exploiting locality of reference,
meaning that if a dataitem is referenced once, then that item, or one near it in the address
space, is likely to be referenced in the future. Locality of reference is exploited by holding,
or caching, recently referenced dataitemsin asmall, fast, memory located close to the pro-
cessor. While adataitem is in the cache, subsequent accesses to it have a much lower
latency than a main memory access. Caches work well for applications whose address

streams exhibit locality, however many important applications do not. Nevertheless, caches



still form the backbone of high-performance memory systems, and can be made very effec-

tive when combined with other latency reduction and toleration techniques.

2.2 Perform other useful work during cache miss cycles

One way to add a measure of memory latency tolerance is to allow a processor to con-
tinue to perform useful work while acache missis serviced. This can be donein avariety of
ways. Non-blocking L1 data caches [4] allow a processor to continue to access the cache
while amissis serviced. Processors that allow the out-of-order completion of instructions
[2] can continue to execute instructions while a data cache missis serviced. Thisalows a
processor to tolerate cache miss latency by attempting to keep the execution units busy
while a cache missis serviced. A conceptually ssimilar approach is taken by coarse-grained
multi-threaded processors, which can switch between independent threads of execution

when a cache miss is detected [5].

2.3 Use the available memory bandwidth more effectively

Another way to reduce latency is to control the store traffic to the lower levels of the
memory hierarchy. Reducing store traffic allows the lower levels of the memory hierarchy
to concentrate on servicing demand misses, which must be fulfilled quickly in order to
maintain a high rate of execution, unlike store traffic, which is only needed to ensure consis-
tency throughout the memory hierarchy.

The easiest way to reduce store traffic is to use a write-back, as opposed to a write-
through data cache [3]. While write-back caches make sense for the lower levels of the
memory hierarchy where accesses are less frequent, using awrite-back L1 cache can com-

plicate processor design [6].
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If the priority of store traffic can be made lower than that of missfill requests, then the
average latency of missfill requests can be lowered by allowing them to proceed ahead of
earlier stores. This requires both a relaxed memory consistency model [2], as well as a
means of checking to ensure that miss fill request and store addresses do not conflict. One
way of lowering the priority of store traffic is to place them into a buffer, where they can be
deferred until the off-chip memory is not busy servicing miss fill requests. The easiest way
to do thisisto place storesinto a FIFO queue called awrite buffer [2]. Loads that pass stores
in the buffer must compare their target address to the target addresses of the storesin the
buffer. The performance of write buffers can be increased by coalescing stores in the buffer
that map to the same block of memory. This further reduces the amount of store traffic by
combining requests that map to the same line into a single access to the next level of the
memory hierarchy. An even more advanced way of controlling store traffic is to employ a
write cache [7]. A write cache is essentially a coalescing write buffer with an LRU line
replacement policy, as opposed to a FIFO replacement policy, turning the buffer into a
cache. This allows the write cache to coal esce even more stores, resulting in an even greater

reduction in store traffic.

2.4 Increase the bandwidth of the memory hierarchy

A low latency memory hierarchy is not enough to ensure adequate performance on
many applications [8]. Memory bandwidth is also very important. Bandwidth can be
increased in many different ways. Cache and main memory bandwidth can be increased by
employing wider cache lines or memory buses, pipelining accesses, and interleaving cache

and memory banks. Main memory bandwidth can be increased even more by employing
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exotic DRAM types, such as RAMBUS, as opposed to traditional commodity-type DRAMs

9.

2.5 Statically schedule loads before stores

One way to reduce the effects of memory latency isto statically schedule code such that
loads are moved as far as possible before any subsequent dependent instructions. This will
allow an aggressive processor to start loads earlier than usual, increasing the likelihood that
some or all of any cache miss latency will be hidden by the time any load-dependent
instructions are ready for issue. This approach is limited by the ability of the compiler to
statically detect dependencies between load and store instructions, among other things.
Although some dependence analysis can be done statically, in the general case it is difficult
to move loads before stores due to the problem of memory dependences between them.
These potential hazards can only be detected after address cal culations have been per-
formed, which themselves, require hazard detection. The solution to this problem isreferred
to as memory disambiguation [10].

Although pure hardware memory disambiguation techniques, such as the store-buffer,
can allow loads to pass stores dynamically, additional performance can be obtained by
improving the static code schedule beyond that obtainable with standard compiler optimiza-
tions. One way of doing thisisto employ hybrid hardware-software memory disambigua-
tion, a recent example of which is[10], which introduced the memory conflict buffer
(MCB). The MCB is a hardware device used to detect dependencies between reschedul ed
load instructions and any subsequent store instructions. This allows the traditional |oad
instructions to be split into two parts: a preload instruction that can be scheduled by the

compiler before any prior ambiguous stores, and a check instruction located at the position
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of the original (non-rescheduled) load instruction. The preload instruction executes before
the ambiguous stores, and records its target address and destination register in an MCB
entry. Any stores that execute after the preload, but before the check instruction, access the
MCB. If astore target address matchesthat of any MCB entries, then one or more load-store
conflicts exist, and the target registers of the corresponding preload instructions are marked
invalid in the MCB. If and when the corresponding check instructions are executed, they
access the MCB to seeif their corresponding preload conflicted with a store. If a conflict
exists, the check instruction causes the processor to branch to a prel oad-specific fixup rou-
tine that fixes the error. This is done by re-executing the load instruction, as well as any

load-dependent instructions that were rescheduled by the compiler.

2.6 Executing loads early

The conventional five-stage pipeline [11] uses an adder in the ALU to compute |oad-
store target addresses. This improves performance by reducing the branch misprediction
penalty, since the ALU execute stage is the first stage that instructions enter once they are
issued. Unfortunately, this comes at the price of aload hazard.

A hardware load-use interlock is control hardware that is added to a pipeline that detects
data dependencies, or load hazards, between load destination registers and subsequent
dependent instructions [2]. The interlock hardware can stall the pipeline until any data
dependencies can be resolved. This results in increased design complexity, however this
allows the compiler to ignore the pipeline implementation, if correct operationisall that is
needed. An alternative is to require that the compiler to either insert independent instruc-

tions, or NOPs, into the dots after aload that can result in adata hazard [11]. This approach
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makes the compiler’s job harder, as well as that of any future processor designers that may
wish to radically change the microarchitecture of a subsequent implementation.

The work in [12] first proposed eliminating the load-use interlock (LUI) in the tradi-
tional five-stage pipeline by performing load/store address calculation in a stage before the
ALU execute stage. This allows loads to execute in the same stage as ALU operations,
which when combined with result forwarding, allows load-data dependent ALU instruc-
tions to be issued immediately after aload. This replaces the load-use interlock with an
address-generation interlock, which occurs less often in typical applications. For this reason
this pipeline organization is often referred to as the address generation interlock (AGI) orga-
nization. Unfortunately it delays branch resolution by an additional cycle, resulting in an
increased branch misprediction penalty. In [11] this trade-off was evaluated, and concluded
that afive stage AGI pipeline had to have a branch misprediction rate no greater than 20% in
order to beat the performance of the traditional LUI pipeline. This pipeline organization has
been employed in Intel 1486, Pentium, Cyrix M1, and R8000 processors [11]. Note that
while the AGI organization was initially proposed in [12], they concluded that the extra
adder that it required was expensive enough to make the LUI organization more attractive at
the time.

Another way to perform loads early in a pipeline is to detect them early, and attempt to
access the data cache ahead of time by predicting the load target address. Thisideawasfirst
explained in [13] where the concept of the load target buffer (LTB) was introduced. The
LTB isatable indexed by the processor PC. Each entry of the LTB contains fields that hold
the previous target address of aload instruction, the difference between the target addresses

of the last two executions of the load (the stride), and some status bits. The LTB is accessed
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in parallel with the instruction cache in the fetch stage of a pipeline. If the PC hitsin the
LTB, then the pipeline is fetching aload instruction. If on a hit, and the status bits indicate
that the target address and stride should be trusted based upon the prior history of the load,
then a speculative load from the address previous_address + stride is immediately issued to
the data cache, when possible. If the speculative load hits in the data cache, and the pre-
dicted address is correct, then the load latency is hidden. In [13] it was concluded that the
latency to the L1 data cache must be at least five cyclesto justify the use of amoderate sized
LTB.

In [14] amethod is presented to reduce load latency by performing effective address cal-
culation in parallel with data cache access within the cache access stage. They employed a
simple carry-free addition circuit that can compute the cache set index portion of the effec-
tive address with asingle level of logic. Assuming that no carries are generated within, or
propagated to, the set index portion of the address, the set index can usually be computed by
simply ORing the set index portion of the address operands together. This very fast compu-
tation of the set index allows them to perform set index calculation in series with data cache
access. The tag portion of the effective address can be computed in parallel with the cache
lookup, as well as the actual effective address of the load. This allows them to perform
many loads one cycle earlier than would otherwise be the case. If the carry-free addition
wasincorrect, or if the data cache port is busy, the load is performed in the customary MEM
stage of the pipeline.

The authors in [15] went on to combine the idea of the LTB [13] with their earlier work
on Fast Address Calculation [14] to reduce load latency even further. They proposed the

Base Register and Index Cache (BRIC), a cache of general purpose register values that is
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accessed in the fetch stage in parallel with the instruction cache. Each entry in the BRIC
contains aregister pair consisting of the base and index (if used) register values correspond-
ing to aload instruction. These register values are used in conjunction with the load offset
(if any) and some predecode information from the instruction cache to allow load instruc-
tions to obtain their address operands by the beginning of the decode stage of the pipeline.
The pipeline can then use Fast Address Calculation (FAC) [14] to potentially accessthe data
cache during the decode stage of the pipeline. If this succeeds, then two cycles of |oad
latency are hidden. If the BRIC misses, the register values read during the decode stage can
be used to perform the cache access during the execute stage of the pipeline using FAC.
Thiswill still hide one cycle of load latency. If the FAC fails, then the data cacheis accessed

in the usual fashion during the MEM stage of the pipeline.

2.7 Data Prefetching
Data prefetching can reduce average memory latency by bringing data close to the pro-

cessor beforeit is needed. The problem of course is selecting which datato prefetch. If data
is prefetched into the L1 cache, then useless prefetches will replace other lines. As these
other lines were probably fetched as a result of actual misses as opposed to prefetches,
replacing these lines with useless prefetches can degrade performance. Thisisreferred to as
cache pollution [3]. If datais prefetched into a buffer where it waits for a demand miss
before it is moved into the cache, pollution effects can be reduced, although useless
prefetches can still reduce performance by increasing memory traffic. Prefetching into a
buffer also introduces coherency problems, as the buffer contents must be checked every

time that a store is committed.
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The most elementary form of data prefetching is provided by having cache lines larger
than the largest addressable data item. This brings additional data items into the cache,
where they may be used before they are displaced from the cache. Other forms of data

prefetching can generally be divided into hardware and software approaches.

2.7.1 Hardware data prefetching

Hardware data prefetching techniques allow the processor to generate prefetch requests
without the intervention or knowledge of the compiler. Thisis more versdtile, asit alows
prefetching to be employed on legacy code, and across platforms.

The earliest form of hardware prefetching, sequential prefetching [3], generates
prefetches for one or more lines located immediately after areferenced line in the address
gpace. When this is done on every access, it is referred to as aways-prefetch. Generating
sequential prefetches only when a reference to the current line missesis referred to as
prefetch-on-miss. It is also possible to perform tagged-prefetch, a variation of always-
prefetch, in which sequential prefetches are generated whenever a previously prefetched
line is accessed. One of the problems with sequential prefetching is that prefetched lines
that are not referenced in the near future can displace useful lines from the cache, resulting
in cache pollution. Sequential prefetch can also generate a great deal of additional traffic,
which can swamp the connection to memory.

A conceptually similar approach, the data stream buffer, was proposed in [16]. The data
stream buffer generates fetch requests for sequential lines after amissing line. These lines
are fetched into the FIFO stream buffer, where they can be subsequently placed into the
cacheif the processor requests them. Since the stream buffer does not place prefetched lines

into the cache until they are requested, cache pollution is kept to a minimum. Note that both
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the stream buffer and sequential prefetching are conceptually similar to having very large
cache lines, however using a stream buffer requires that the cache and buffer be kept coher-
ent at all times. One of the problems with both the stream buffer and sequential prefetching
isthat prefetches are only generated for lines located after a missing line in the address
space. Another problem with using the stream buffer for data stream prefetching isthat mul-
tiple stream buffers are usually required for adequate performance, multiplying the coher-
ency problem.

In[17] amore advanced sequential prefetching scheme for shared memory multiproces-
sors was proposed and evaluated. They compared the simple sequential prefetching tech-
nique [3], with an adaptive technique of their own design. Their adaptive sequential
prefetching technique can dynamically adjust the number of sequential lines that are
prefetched after a miss during program execution. This approach can even turn off prefetch-
ing if the program isin aregion where prefetching is detrimental to performance, and subse-
guently re-enable prefetching if it detects that it would have benefited from prefetching.

More advanced hardware data prefetching methods attempt to generate prefetches for
non-sequential lines. These approaches are particularly suited for processors executing sci-
entific code, which typically access very large sparse matrices. The stride prefetch cache
[18] can generate prefetches by using stride information obtained from vector memory
operations to generate the prefetch addresses. Unfortunately this only works for vector
machines, athough one could use the PowerPC load/store with update instructionsin asim-
ilar fashion under certain circumstances.

Conventional processors can generate strided prefetches by caching information about

the history of memory operations. This was first done by [19] with their Reference Predic-

18



tion Table (RPT). The RPT is atable that contains information about loads and stores exe-
cuted in the recent past. The table is accessed by a L ookahead Program Counter (LA-PC)
which is simply a register that runs ahead of the conventional program counter, using a
branch target buffer to (hopefully) stay on the proper path of execution. If at any time the
LA-PC “hits” in the RPT, then the LA-PC points to a likely future execution of aload or
store instruction. Each entry of the RPT contains the previous target address of the load or
store, the difference between the target addresses of the last two executions of the instruc-
tion (the stride), and some state information. If the state information for the entry indicates
that the reference information can be trusted, then a potential prefetch with the target
address previous_address + stride is generated if the target address misses in the cache, and
there is no outstanding fetch to that addressin progress.

In [20] the Stride Prediction Table (SPT) was proposed. It is conceptually very similar
to those developed by [19] and [21]. The primary difference between the SPT and the RPT
[19] is that the SPT isindexed by the PC, while the RPT is indexed by the lookahead PC
(LA-PC), which can move ahead of the PC. This means that the RPT can generate
prefetches earlier than the SPT. The approach taken by [21] is similar to the SPT.

The authors of [19] continued their work with the RPT, and proposed three variants in
[22]. The basic scheme uses the PC to index into the RPT, similar to that described in [20].
The lookahead scheme is basically the same as that described earlier in [19], except that an
additional iteration count field is added to the RPT that allows the LA-PC to continue to
generate prefetches when it has moved multiple loop iterations ahead of the PC. The corre-
lated scheme attemptsto correlate prefetches with changesin loop level, unlike the previous

table approaches.
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The authors of [23] recognized that the reference prediction table (RPT) described in
[22] could not keep up with the issue rate of superscalar processors, as it could only scan
one instruction at atime. Their basic idea is the same, except that they use a modified
branch target buffer (BTB) called aprogram progress graph (PPG). Instead of outputting the
predicted taken target address, the PPG outputs a pointer to the next branch on the predicted
path of execution in the PPG. In other words, the PPG provides away to away to jump
between basic blocks in arapid fashion. The output of the PPG is applied to their supersca-
lar reference prediction table (SRPT). When the output of the PPG is applied to the SRPT,
any cached stride information about any loads or stores in the predicted future basic block
of instructions drop out of the SRPT automatically in parallel, and are then used to generate

hardware prefetches in the same manner as that described by [22].

2.7.2 Software data prefetching

Software prefetching was first proposed in passing in [3], and expanded upon without
evaluationin [24]. The genera ideaisto add ainstruction or instructionsto the ISA that can
compute atarget address using the same addressing modes as the |oad and store instructions
already present in the ISA. These instructions can be used to probe the L1 data cache for the
presence of agiven block of data. If the desired block is not in the cache, then a prefetch for
the missing block is generated. These prefetches are generally non-binding, i.e. they are
dropped if they would cause an exception, and they prefetch into the cache, not the register
set. In other words, non-binding prefetches cannot cause incorrect program execution. Soft-
ware prefetching is generally only effective for scientific applications that stride linearly

through large matrices in a predictable manner.
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In [25] a simple heuristic was proposed to decide where to insert the prefetch instruc-
tions. If an innermost loop induction variable is used to generate aload or store address,
then the loop step is added to the induction variable and a prefetch instruction for that target
address expression is inserted into the code by the compiler. This prefetch instruction can
then generate prefetches for data one loop iteration before it is needed. This smple method
inserts too many prefetch instructions, resulting in wasted execution dots. In an attempt to
solve this problem a heuristic that predicts which accesses are likely to cause cache misses
was proposed. The overflow iteration is defined as the maximum number of loop iterations
whose data accesses can fit into the cache. Any data dependence that is carried by aloop for
more iterations than the overflow iteration is likely to cause amiss. Prefetches are only gen-
erated for these accesses. This simple heuristic made software prefetching practical, at least
for scientific applications that stride through large matrices in aregular fashion.

Additional software prefetching work was performed by [26]. They developed the con-
cept of the prefetch distance, or the number of loop iterations a data item should be
prefetched before its first use. The prefetch distance is based upon system memory latency
and the estimated execution time of one loop iteration, and allows them to generate
prefetches several iterations before the data will be needed, increasing the likelihood that
prefetched data will be available by the time the first use of the data occurs. Asthe prefetch
distance can befairly large, prefetched data is sent to a buffer where it waits until needed by
the cache. This avoids displacing useful data from the cache, however this comes at the cost
of keeping datain the buffer and cache coherent.

The authors of [27] considered using software prefetching with a shared-memory multi-

processor. Their scheme was somewhat different as their prefetch instructions could fetch
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multiple cache lines. Furthermore, they assume that cache coherence is maintained via soft-
ware, making all prefetches binding, which forces the compiler to carefully consider control
and data dependences before inserting prefetch instructions. This requires the compiler to
be very conservative, greatly reducing the performance benefits of prefetching.

In [28] an attempt was made to use software prefetching on integer benchmarks. Very
small caches were used with arelatively small miss penalty in conjunction with a prefetch
buffer. The prefetch buffer helped to reduce the amount of pollution, which is critical when
software prefetching is used for integer codes whose access patterns are typically difficult to
predict. Their results were mixed.

The authors of [29] introduced an algorithm for inserting software prefetches that per-
forms two very important tasks. Their algorithm employs software pipelining in order to
ensure that the accesses in each iteration of aloop are covered by software prefetches. The
algorithm a so performs locality and reuse analysis to predict which accesses and loop itera-
tions require prefetches given known cache parameters, leading to the prefetch predicate.
For example, if every n-th iteration of a particular accessin aloop is predicted to cause a
cache miss, then theloop is unrolled by afactor of n, and asingle prefetch is generated. This
avoids the cost of executing n-1 redundant prefetches.

The general consensus up to this point isthat software prefetching is generally only use-
ful for scientific codes that access matrices in a predictable fashion. A number of recently
developed software prefetching schemes have been devel oped to address this shortcoming.

The authors of [30] developed away to generate useful software prefetches for pointer-
intensive integer programs. Their scheme inserts software prefetch instructions at procedure

call sitesthat passed pointers as arguments. The pointers are used to specify the prefetch tar-
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get addresses. This takes advantage of the fact that pointer arguments are likely to be deref-
erenced during a procedure call.

The authors of [31] examined ways to generate software prefetches for pointer-intensive
integer programs that employ recursive data structures. A recursive data structure (RDS) isa
heap-allocated object, such asalinked-list, tree, or graph, whose individual nodes are linked
together via pointers. A node pointer is a pointer within an RDS node that points to an adja-
cent node. The basic ideais to insert software prefetches for one or more nodes that are
likely to be accessed in the future, every time a given node in the RDS is traversed. They
came up with two different ways of inserting software prefetches. The first, which they call
greedy prefetching, inserts software prefetches for every node pointer in each RDS node.
This causes the processor to issue prefetch instructions for all of the possible successor
nodes of a given node when that node is traversed. They expanded upon this idea to create
history-pointer prefetching. This approach adds a new pointer, called the history pointer, to
each node of the RDS. These history pointers point to nodesthat are likely to be visited sev-
eral traversalsin the future. Software prefetches that are issued for these pointers are more

selective, and are more likely to be serviced by the time the processor visits the future node.

2.7.3 Hybrid hardware-software data prefetching

One of the problems with relying on software prefetch instructions is that even if every
dynamic execution of a prefetch instruction generates a useful prefetch, the instructions still
waste issue dots. A similar fault can be found with table-based hardware prefetching meth-
ods: relying on the hardware to allocate table entries can waste a great deal of hardware.

Combining aspects of both methods can result in improved performance.
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The authors of [32] took the idea of the reference prediction table [19] one step further
by placing their instruction stride table (IST) under compiler control. This allows the use of
amuch smaller table, on the order of 4-8 entries as opposed to 1K entries or more, as entries
are only allocated for accesses for which the compiler is certain will benefit from prefetch-
ing. Their IST is also more versatile, since it alows the compiler to not only specify the
stride of the prefetches, but the number of prefetches to generate for each IST entry. Unlike
the other table-driven approaches, the IST only generates prefetches when the current
access misses in the cache. Thisalowsthe IST to be placed off-chip.

The authors of [33] combined the basic ideas of the IST [32] and the prefetch predicates
of [29] to form the runahead table. The major difference between the IST and the runahead
table isthat the runahead table can initiate prefetches whenever the processor PC touches an
entry in the table. They a so eliminate redundant prefetches by adding predicate information

to each entry, which is conceptually similar to that employed in [29].
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Chapter 3

Runahead Simulation M ethodology

The preliminary studies that we reported in [35] did not consider instruction stream,
pipeline, or wrong path speculation effects. Wrong path speculation is of particular impor-
tance, asinstruction pre-processing on the wrong path may generate useless prefetches. Fur-
thermore, the memory hierarchy that the preliminary simulations assumed was rather
smple.

Unfortunately, creating a simulator that can accurately model arunahead pipelineisa
non-trivial task. Trace driven simulation methods cannot be used to model wrong path
effects or, just asimportant, the state of the register file, caches, and main memory during
runahead episodes. This led us to conclude that a processor model that could actually exe-
cute code was needed.

We added a significant amount of code on top of an existing simulation tool, ATOM
[34], to alow us to obtain both a cycle-accurate model of a pipeline, including wrong path
effects during both runahead episodes and normal operation, as well as away to deal with

O/S cdlsand thelike.

3.1 The basic idea behind the simulator

The ssimulator models a runahead processor consisting of a pipeline and several caches.

During normal (non-runahead) operation the simulated pipeline retires benchmark instruc-
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tionsin lockstep with the workstation that is executing the instrumented benchmark. Imme-
diately after the smulated pipeline retires a given instruction, the workstation retires the
sameinstruction. If, for example, the instruction is a store, then the workstation executes the
store immediately after the ssimulated pipeline retires the store. Subsequent load instructions
in the ssimulated pipeline can access the store data, as well as the rest of main memory, by
computing the load target address using simulated register values and using a pointer con-
taining this address to access main memory. This alows the ssimulated pipeline to treat the
workstation’s main memory as its main memory, allowing us to avoid having to deal with
the problem of modeling the state of main memory.

ALU instructions are ssimulated exactly as they would behave in areal pipeline. Their
operands are read from a simulated register file, the actual result is computed and subse-
guently committed to the simulated register file, if the instruction reaches the writeback
stage of the pipeline without getting squashed. Branch instructions are treated in a similar

manner.

3.2 How the workstation and simulator interact

The retiring of instructions in lockstep with the workstation processor is performed by
adding a function call before every instruction in the benchmark using ATOM. These func-
tion calls form a one-way bridge between the workstation and simulator. Enough informa-
tion is passed to the simulator by each function call to allow the simulated pipeline to
emulate unimplemented instructions, such as system calls and floating point instructions.
When the simulated pipeline retires an instruction, the function call has completed, and con-
trol is passed back to the workstation processor. The workstation processor then immedi-

ately executes the instruction in the benchmark corresponding to that which the simulated
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pipeline just retired, thus keeping the workstation and simulated processors in lockstep.
Unimplemented instructions are emulated by syncing the state of the simulated processor’s
register file and PC to that of the workstation processor after unimplemented instructions

have been executed by the workstation processor.

3.2.1 Simulation example

Suppose that we have a very short benchmark consisting of the four instructions shown

in Figure3.1:

Figure 3.1  Uninstrumented benchmark

PC Instruction

0 add rl, r2, r3
4 | oad r2, 0(rl)
8 store rd, 32(r2)
c store r2, 36(r2)

ATOM is used to insert function calls to two different functions at various pointsin the
benchmark. Thefirst function call, | ni ti al i zeSi mul at or, synchronizes the register
file and program counter state of the simulated and workstation processors at the start of the
simulation. This function call isinserted before the first instruction of the benchmark. This
ensures that the simulated and workstation processors start execution at the same point in
the benchmark, and that their register files contain the same values.

A second function call, Ermul ati onBri dge, isthelink between the sequentia state
of the workstation and the simulated processor. Every time that Enul at i onBri dge is
called, the simulated processor “clocks’ itself until it retires an instruction in the instru-
mented benchmark corresponding to its twin in the uninstrumented benchmark. When the

call isfinished, the state of the simulated processor’s register file and updated PC are the
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same as that of the workstation processor. Also, the state of main memory, which is
accessed by both the simulated processor and the workstation processor, is updated when
the workstation processor executes the instruction once the Ermul at i onBr i dge call is
finished.

The instrumented benchmark is shown in Figure 3.2. Note that the instructions in the
instrumented benchmark that correspond to their counterparts in the original uninstru-
mented benchmark are shown in bold text. The smulator function calls are also shown. The
values under the PC heading correspond to the instruction addresses of the instructions in
the uninstrumented benchmark. The IPC, or instrumented-PC, values are the actual
addresses of the instructions in the instrumented benchmark. The function calls that are
inserted between the instrumented instructions force “sequential” instrumented instructions

to be separated by avalue of 4+ bytes in the address space, as opposed to 4.

Figure 3.2 Instrumented benchmark

PC IPC Instruction
- - InitializeSimulator(r0, r1, ..., r31, |1PC=0, PC=0)
Emul ati onBridge(r0, r1, ..., r31, |PC=0)
0 0 add rl, r2, r3
Emul ationBridge(r0, r1, ..., r31, |PC=4+J)
4 4+% load r2, 0(r1l)
Emul ati onBridge(r0, r1, ..., r31, |PC=8+29)
8 8+20 store r4, 32(r2)
Enul ati onBridge(r0, r1, ..., r31, |1PC=c+39d)
c c+3d store r2, 36(r2)

Note that every call to Enul ati onBri dge has as arguments the contents of the
entire integer register set, as well as the instrumented program counter value, as they exist

before the workstation processor executes each instruction in the instrumented benchmark
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corresponding to the instructions in the uninstrumented benchmark. These values are only
used to detect ssimulator bugs, and to provide awork-around for instructions that the ssimula-
tor does not implement. These values are simply ignored when the simulated processor is
executing user-level integer instructions. The simulated processor actually fetches, decodes,
executes, and retires the fixed-point user-level instructions in the instrumented benchmark
corresponding to their counterparts in the uninstrumented benchmark. The Ermul at i on-

Br i dge function handles runahead episodes by ending the function call only when the
pipeline retires a non-runahead instruction. This allows the simulated pipeline to go down

wrong paths, etc., during runahead episodes exactly as area pipeline would.

3.2.2 Modeling the instruction stream

One of the consequences of relying upon instrumentation is that the instructions that the
simulator executes are no longer located at sequential addresses due to the function calls
inserted before each instruction. Therefore, the simulated processor maintains a value, 1PC,
or Instrumented Program Counter, that is used instead of the conventional PC, or Program
Counter. Whenever the simulated processor wants to update its IPC in order to determine
the fetch address of the next instruction, it has to scan through the text portion of the address
space, starting at the un-incremented value of the IPC, until it finds the next “sequential”
instruction in the instrumented benchmark corresponding to the next sequential instruction
in the uninstrumented benchmark. This is done by looking for a branch-to-subroutine
(unconditional branch) instruction to the known starting address of the Enul at i on-
Bri dge function. The next “sequentia” instruction is located a fixed number of instruc-

tions after this branch-to-subroutine instruction. This IPC value is used to fetch instructions
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using a pointer into the main memory of the workstation. Taken branches and jumps are
handled by computing the new value of the IPC in the conventional manner.

As the IPC does not point to sequential addresses, due to the intervening instructions
used to perform the Emmul at i onBr i dge function calls, it cannot be used to simulate
instruction stream effects such as cache misses. To get around this we need a way to trans-
late the non-sequential 1PC values into sequential PC values that can be applied to an
instruction cache model. Note that smply dividing the IPC by afixed integer will not suffice
as ATOM frequently inserts a random number of NOPs between function calls. We created
atable that can be used to quickly trandate IPC values to their PC counterparts in the fetch
stage of the simulated processor. Thistableis created duringthel ni ti al i zeSi nul a-
t or call before the simulator starts execution. These translated PC values can then be
applied to a simulated instruction cache in order to accurately model instruction cache miss
effects. While these trandated PC values are more than accurate enough to use to measure
instruction stream statistics, they cannot be used to access the contents of the workstation’s

memory. Thisiswhy our simulated processor has separate L 2 instruction and data caches.

3.2.3 Unimplemented instructions

When our ssmulated processor fetches an unimplemented instruction (floating point or
PALCODE ingtruction), it smply tags that instruction as unimplementable, and alowsit to
flow down the ssimulated pipeline asaNOP. If the instruction reaches the writeback stage of
the pipeline, the writeback stage detects that it is an unimplemented instruction. It then
squashes all of the instructions in the pipeline, including the unimplemented instruction.
However, before it can continue, it has to deal with the effects of the unimplemented

instruction. As the smulator does not actually execute these unimplemented instructions, it
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takes acopy of the updated register file contents as they would be if the instruction had actu-
ally executed, as passed to the smulator viathe next Enul at i onBri dge call, and places
it into the smulated register file. Thisnext Enmul at i onBr i dge call also suppliesthe IPC
of the next sequential instruction, which is used to restart the simulated instruction fetch.
Thisisone of the few places where the simulator actually needs ATOM in order to function
properly. Note that unimplemented instructions are rarely encountered in the benchmarks

that were simulated.

3.2.4 Side effects of instrumentation

Another problem with relying upon instrumentation is that adding the function calls
before every instruction in abenchmark expands the size of the benchmark by about afactor
of 40. For most benchmarks this is not a problem. However, if a benchmark executable is
sufficiently large before instrumentation, the code expansion caused by instrumentation can
“break” branches in the benchmark by placing the instrumented branch target out of the
portion of the address space that the branch instruction can jump to using an immediate off-
set obtained from the instruction word. ATOM automatically fixes “broken” branches by
trapping and using fixup code to obtain the proper branch target. Unfortunately it is not
practical for our simulator to use this approach. We use the processor state passed to the
simulator viathe Errul at i onBr i dge calls as awork-around.

The simulated processor automatically compares the register file and 1PC state of the
simulated processor to that of the workstation processor at the beginning of every Enul a-
ti onBri dge cal. Thiswas done originally to detect errors while we were debugging the
simulator, however we can a so use this functionality to fix the branch problem. If the smu-

lated processor executes a “broken” branch it will jump to the wrong target. This will be
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immediately detected after the first Enmul at i onBr i dge call after the branch retires, asa
mismatch between the workstation IPC and the simulated processor updated IPC. When
this occurs, the simulator flushes the pipeline, and restarts instruction fetch at the updated
IPC supplied by the Errul at i onBri dge call. Thisresultsin a5 cycle “branch fixup”
penalty, which is not significantly greater than our simulated pipeline’s 2 cycle mispredicted
branch penalty.

Most of the SPEC benchmarks that we examined do not contain any broken branches as
aresult of instrumentation. The benchmarks that do have this problem only have to perform
this fixup afew thousand times, at most, during simulations that last for 100 million instruc-

tions. This cannot have a noticeabl e effect on our simulation results.

3.3 Pipeline Model
Asrunahead isideally suited to simple, yet fast, pipelines, we decided to use an in-order

five-stage Address Generation Interlock, or AGI [12] pipeline with our simulator. A block
diagram of the AGI pipelineis shown in Figure 3.3. We assume that our smulated pipeline

isrun at aclock speed of 1 GHz.
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Figure 3.3  Block Diagram of the AGI Pipeline

3 FETCH
access L1 instruction cache

determine next IPC
detect instruction cache hit/miss

DECODE
decode instruction

— read operands from register file
compute branch targets
predict branches

ADDRESS < iy
compute memory addresses

predicted TAKEN and unconditional branches

1
\l/ forward ADDRESS

EXECUTE <
compute ALU results
access L1 data cache for LOADS
resolve conditional and indirect branches

resolve indirect and mispredicted conditional branches

1
\]/ forward ADDRESS and EXECUTE

WRITEBACK
update register file
commit STORES to queue and data cache
emulate UNIMP by flushing pipeline

NOTE: Address results are for instructions that compute an
address and place the result in a register. These are neither load nor
store instructions.

The FETCH stage of the pipeline attempts to fetch a single instruction each cycle from
the L1 instruction cache. The FETCH stage stalls on L1 instruction cache misses if
runahead is not enabled. A branch predictor is also read out of atagless array of 1024 2-bit
counters which employ the Smith Algorithm [37]. This 2-bit prediction is used during the
DECODE stage to predict conditional branches, and is updated during the WRITEBACK

Stage.
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The DECODE stage decodes a single instruction each cycle. It also reads instruction
operands from the simulated register file, predicts branch outcomes using the output of the
branch prediction unit, and computes branch targets. If a conditional branch is predicted
TAKEN, or if an unconditional branch is decoded, then the FETCH stage is immediately
notified so that it can fetch the branch target instruction. If this prediction is correct, then
there is no branch penalty. All branch mispredictions are detected in the EXECUTE stage,
resulting in a two cycle misprediction penalty. Indirect branches (branches which obtain
their target address from a register) are resolved in the EXECUTE stage, and their target
addresses are not predicted.

The ADDRESS stage computes load and store addresses using register values that were
read in the DECODE stage. This stage aso executes |oad-address instructions, which sim-
ply compute an address and place the result in aregister. Note that since we perform address
computationsin a stage before the EXECUTE stage, we have to provide an address-genera-
tion interlock. Basically if aload, store, or load-address instruction is address operand
dependent upon an immediately previous ALU or load instruction result, then it must stall
in the ADDRESS stage until the EXECUTE result can be forwarded via the forwarding
paths. Thisis a one cycle stall in this pipeline, assuming that the EXECUTE stage itself
does not stall.

The EXECUTE stage executes ALU instructions using register operands. It also redi-
rects the FETCH stage when it detects that conditional branches have been mispredicted or
when an indirect branch is executed, resulting in a two-cycle penalty. Loads are also exe-
cuted in this stage by accessing the contents of the workstation’s memory using the load tar-

get address as a pointer.
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The WRITEBACK stage is where simulated instruction results are committed to the
simulated register file. Unimplemented instructions (floating point and PALCODE instruc-
tions) are emulated in this stage by flushing the pipeline and syncing the simulated proces-
sor IPC and register file contents with the state of the workstation processor at the next
Enul at i onBri dge call, resulting in a5 cycle penalty. This pipeline model is slightly
unusual in that store instructions commit in the WRITEBACK stage, rather than in EXE-
CUTE with the load instructions. Thisis a consequence of our simulation methodology, in
which the state of main memory is not updated (by the workstation) until simulated instruc-
tions actually exit the pipeline. As aconsequence, loads that are dependent upon stores must
stall in the EXECUTE stage until their dependent store retires. This rarely happens, so we
can ignore the occasional stall cycle introduced. Aninterlock is provided to check for loads
that map to the same doubleword as stores. Asthe L1 data cache is awrite-through allocate-
on-store-miss cache, stores retire when they update the L1 data cache and add a store-
through request to the L2 data cache store-through queue. The 2-bit counter array is also
updated with conditional branch outcomes during WRITEBACK.

Pipeline hazards are handled by stalling the pipeline if necessary, and forwarding results
where possible via a full complement of forwarding paths. Back-to-back dependent ALU
instructions do not require any stalls, nor do back-to-back dependent LOAD-ALU (the
ALU instruction is dependent upon the LOAD result) instructions. As was mentioned ear-
lier, an address-generation interlock is provided to ensure that load, store, and load-address
instructions obtain the proper operands for their address computations in the ADDRESS

Stage.
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3.4  Processor model including the memory hierarchy

A block diagram of the smulated processor is shown in Figure 3.4.

Figure 3.4 Block Diagram of the Baseline Processor Model

FETCH [
PF?ERDAIIEI:FI':I%N 1024 2-b counters
DECODE 1024 entry RBR
UNIT
ADDRESS
8 KB L1 L1 8 KB
32 B line [INSTRUCTION DATA 32 B line
4 GB/s CACHE EXECUTE CACHE |B8CBIs
$ WRITEBACK $
IPREFETCH IFETCH DSTORE DFETCH DPREFETCH
UNIFIED
1MB L2 L2 1 MB
32 B line| INSTRUCTION DATA 32 B line
64GB/s|  cacHE CACHE |6:4GBI/s
MAIN 32 B block
MEMORY 1.6 GB/s

3.4.1 L1 instruction cache

The L1 instruction cache is an 8KB direct-mapped virtual cache with a 32B line size.
Each access takes a single cycle, and reads a single 4B instruction word. As the processor
model assumes a 1 GHz processor clock frequency, this corresponds to a peak L1 instruc-
tion cache bandwidth of 4 GB/s. L1 instruction cache misses are serviced by placing afetch

request into the L1 instruction fetch queue. Thisis an 8 entry queue that communicates
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instruction fetch requests to the L2 instruction cache. The instruction fetch queue also pro-
vides the functionality of Miss Status Holding Registers, or MSHRs, making the L1 instruc-
tion cache non-blocking, which allows the cache to continue to service accesses during
runahead episodes.

An 8 entry instruction prefetch queue is also provided that communicates instruction
prefetch requests to the L2 instruction cache. This queue isidentical to the instruction fetch

gueuein all respects.

3.4.2 L2 instruction cache

The L2 instruction cacheis a IMB direct-mapped virtual cache with a32B line size. In
the baseline model each instruction fetch or prefetch request takes a minimum of 25 cycles
to complete after arequest has been placed into the instruction fetch or prefetch request
gueue. It is assumed that L2 instruction cache accesses are pipelined such that fetch and
prefetch requests can be pipelined through the L2 cache 5 cycles apart, and that each access
of the L2 instruction cache has a latency of 5 cycles. The amount of time required to get
requests from the L 1 instruction cache to the L2 queue, plus any time it takes to get them to
the off-chip L2 instruction cache from the L2 queue is emulated by requiring requeststo sit
in the L2 queue for at least 10 cycles after the L1 instruction cache places them in the L2
gueue. Once the request has been in the L2 queue for at least 10 cycles, it takes 5 cyclesto
access the L2 instruction cache, assuming that no other higher priority accesses are arbitrat-
ing for access to the cache. If the request hitsin the L2 instruction cache, then it hasto sit in
the L2 queuefor 10 additional cyclesto model thetimeit takes to transfer the L2 instruction
cache line to the L1 instruction cache. Adding all of these times together gives us a mini-

mum time to service an L1 instruction cache miss of 25 cycles. If afetch or prefetch request

37



misses in the L2 instruction cache a request is added to the unified main memory queue.
Once the request has sat in the unified main memory queue for at least 10 cyclesitiseligible
to access the main memory, if the memory is available. Accessing the main memory takes
80 cycles, after which the request must sit in the unified main memory queue for another 10
cycles. Once the request has sat in the unified queue for the final 10 cyclesthe main memory
unified queue entry is freed, and the L2 instruction cache is filled. The corresponding
request in the L2 queue then has top priority for access to the L2 instruction cache, which
takes an additional 5 cycles. After the second L2 instruction cache access occurs, the
request is freed in the L2 queue after an additional 10 cycles. When thisfinal 10 cyclesis
completed, the L1 instruction cache is filled, completing the instruction fetch/prefetch
cycle. Thetiming for an L1 instruction cache access that misses in the L2 instruction cache
istherefore: 1+10+5+ 10+ 80+ 10+ 5+ 10 + 1 = 132 cycles. A timing diagram that
illustrates the minimum timing for L2 instruction cache accessesis provided in Figure 3.5.

Note that thistiming aso appliesto the L2 data cache.

Figure 3.5  Minimum L2 cache access timing

L2 CacheMiss L 2 CacheHit
Start L1 FinishL1 Start L1 FinishL1
access access access access
L 1 cache access: 1 1
+ +
Wait in L2 queue: 10 10
+ +
Access L 2 cache: 5

Wait in Unified Main Memory Queue:

Access Main Memory:
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Other fetch or prefetch requests behind the original request in the L2 instruction fetch or
prefetch queue can access the L2 instruction cache while the original request waits on main
memory. This makes the L2 instruction cache non-blocking. As 32B fetch or prefetch
requests can access the L2 instruction cache 5 cycles apart, the L2 instruction cache has a
peak bandwidth of 6.4 GB/s. Demand fetch requests in the fetch queue are given priority

over prefetch requests in the prefetch queue in order to improve performance.

3.4.3 L1 data cache

The L1 data cache is an 8KB direct mapped virtual cache with a 32B line size. Each
access reads either a 32b word or a 64b doubleword. This resultsin a peak L1 data cache
bandwidth of 8 GB/s. Note that our simulation methodology requires that we perform loads
and stores in separate stages. We do not model contention for the L1 data cache between
loads and stores in separate stages as areal implementation would perform loads and stores
in the same stage. L1 data cache misses are serviced by placing afetch request in the L1
data cache fetch queue. L1 data cache prefetch requests are handled by the L1 data cache
prefetch queue.

Asthe L1 data cache is a store-through cache, we have to provide a means of sending
store-throughs to the L2 data cache. This is done with an 8 entry non-coalescing store
gueue. Stores place their store datainto the store queue when they retire. Stores must stall in
the WRITEBACK stage if a store queue entry is not available. This queue does not allow
store-dependent fetch or prefetch requeststo forward data out of the queue. Thisisnot asig-
nificant performance problem as the L1 data cache performs store miss allocation, which
makes it unlikely that a store dependent demand fetch or prefetch request will occur soon

after a store-through is placed in the store queue.
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3.4.4 L2 datacache

The L2 data cache is very similar to the L2 instruction cache, with the exception that it
must also handle store traffic. Access latency, size, bandwidth, and queue timing are the
same asthe L2 instruction cache. A diagram that illustrates the minimum timing for L2 data
cache fetch and prefetch accessesis provided in Figure 3.5. Store-throughs are taken off of
the store queue one at atime and committed to the L2 data cache strictly in queue order. If a
miss occurs, a main memory fetch request is made for the missing line. Unlike the L1 data
cache, the L2 data cache is awriteback cache. If amissin the L2 data cache causes new data
to map to aline that has been modified by a store through, then the dirty line is read out of
the L2 data cache and written back to main-memory.

The L2 data cache must also respect read-after-write dependencies between store-
throughs and fetch and prefetch requests. This must be done to prevent the L1 data cache
from obtaining stale data due to a fetch or prefetch “passing” a dependent store-through.
This is done by checking the store-throughs already in the store queue for dependencies
with new fetch or prefetch requests. A fetch or prefetch request is assumed to have a depen-
dency upon an outstanding store-through if they map into the same cache line address. If
there is a dependency between an outstanding store-through and a demand fetch, then the
fetch is provided with a pointer (tag) to the dependent store-through. The L2 data cache will
not service the dependent fetch until the store-through that it is dependent upon has updated
the L2 data cache. The processor handles dependencies between prefetches and store-
throughs by dropping prefetches that map to lines for which there is an outstanding store-
through in the store queue. Thisis done before prefetches are placed into the prefetch

gueue. Note that fetch and prefetch store-through dependencies are rare asthe L1 data cache
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performs store-miss allocation. This makes it unlikely that a demand fetch or prefetch will
be generated soon after a store-through to the same cache line address is placed in the store
queue.

The L2 data cache attempts to maximize performance by prioritizing accesses. demand
fetches are allowed to proceed before prefetches and store-throughs, while prefetches are
given priority over store-throughs. This can lead to a deadlock condition if the highest prior-
ity fetch request is dependent (asindicated by the tags attached to each fetch request) upon a
store-through in the store queue. If thisis the case, the requestsin the store queue are given
priority until the store-through that the fetch in question is dependent upon commitsitself to
the L2 data cache. Also, prefetches and fetches in the queues can access the L2 data cache
while earlier requests that missed in the L2 data cache are serviced by the main memory.
Simulations that do not include L2 Data Cache

Some simulation models do not include an L2 data cache in order to increase the aver-
age access time to off-chip memory. When this is done the simulator simply uses the L2
data cache simulation code as a means to arbitrate between L 1-L 2 data fetch, prefetch, and
store-through requests for access to the unified main memory queue. This was done by
making two simple modifications to the L2 data cache ssmulation code: the L2 data cache
access time was set to zero and no lines are alocated in the L2 data cache. Also, requests do
not have to sit in the fetch or prefetch queues for any length of time before they can be
placed in the unified main memory queue. Store-throughs are sent directly from the store
gueue to the unified main memory queue. The minimum time for an off-chip accessis then
102 cycles. A diagram that illustrates the minimum timing for main memory accesses is

provided in Figure 3.6.
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Figure 3.6  Minimum L1 data cache miss timing for processors without L2 data cache

L1 CacheMiss
Start L1 FinishL1
access access
L 1 cache access:
Wait in fetch/prefetch queue:
Wait in Unified Main Memory Queue:

Access Main Memory:

3.4.5 Main Memory

The simulated main memory is assumed to be a high bandwidth pipelined memory.
Each main memory access either fetches or writes back 32B at atime. New accesses can be
started 20 cycles apart, resulting in a peak bandwidth of 1.6 GB/s. The main memory access
time is 80 cycles, but this does not take into account getting requests to and from main
memory itself.

A single 8 entry queue is provided to communicate fetch, prefetch, and writeback
regquests from the L 2 instruction and data caches to main memory. Requests are added to the
gueue by the L2 caches and are serviced by the main memory strictly in the order in which
they are placed in the queue. As with the other queues, requests must sit in the main mem-
ory queue for a minimum of 10 cycles to simulate the amount of time that it takes for
requests to travel to the main memory. Once fetch and prefetch requests are serviced by the
main memory they must sit in the queue for an additional 10 cycles to simulate the amount
of timethat it takesto transfer their data from the main memory to the L2 cache. The access

time of the main memory is 80 cycles, which results in a minimum time to access main
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memory from the L2 caches of 100 cycles, when the time that requests must sit in the
gueues behind other requests is taken into account. Writebacks from the L2 data cache to
the main memory only require 90 cycles to complete (minimum) as no data is returned to
the L2 data cache, although the queue entry that is occupied by the writeback is not freed for
an additional 10 cycles. Access ordering is maintained by using main memory queue entries
whose fetch or prefetch accesses gject dirty lines from the L2 data cache to perform write-

backs.

3.5 What the simulator does not model

As was mentioned earlier, the smulator emulates, rather than simulates floating point
code. Thisis not felt to be a problem because we intended from the start to only consider
integer benchmarks, which contain little or no floating point code. The simulator also emu-
lates, rather than smulates PALCODE (system calls, etc.). The side effects of not simulat-
ing O/S calls are minimal, as the SPEC benchmarks do not spend much time in the O/S.
Finally, our simulation models do not include virtual memory effects, such as TLB misses.
Page faults are modeled in a limited sense, as we drop prefetches that correspond to pages

that have not been demand fetched from.

3.6 Processor modifications to support runahead

The most important difference between a runahead pipeline and a normal pipelineis
that runahead instructions must be able to exist in the pipeline at the same time as normal
instructions, without affecting program correctness. This requires a number of minor modi-

fications to the pipeline control logic.
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3.6.1 Hazard logic modifications

Runahead instructions can be read-after-write (RAW) dependent upon earlier non-
runahead instructions that are in the pipeline when the processor enters runahead mode.
These dependencies should be detected in the usual fashion, and the forwarding paths
employed where possible.

However the reverse is not true. Non-runahead instructions cannot be read-after-write
dependent upon runahead instructions for two reasons. First, and most important, runahead
instructions are highly speculative by nature, and their results (in the general case) must be
discarded if the processor isto maintain program correctness. Second, runahead instructions
that are in execution represent an attempt to anticipate future events (hence the term “ pre-
processing”) with respect to any subsequently issued non-runahead instructions, and as such
these non-runahead instructions cannot be RAW dependent upon them. The pipeline control
logic must keep thisin mind. This requires that each instruction in the machine be provided
with a“runahead valid” (RV) bit that travelswith it through the pipeline, in afashion similar
to the usua “valid” (V) bit that allows the pipeline to flag bubbles. If a given instruction in
the pipeline has both its RV and V bits set to TRUE, then it is arunahead instruction. If the
RV bit is FALSE but the V bit is TRUE, then the instruction is a*normal” (non-runahead)

instruction. If the V bit is FALSE, then the “instruction” is a pipeline bubble.

3.6.2 Runahead instruction source and destination valid bits

Each instruction must also have a “runahead destination valid” (RDV) bit that travels
with it through the pipeline. The RDV hit is set to indicate if its result is (believed to be)
VALID during runahead episodes, and is used to update the IRV when and if the runahead

instruction reaches the writeback stage without getting squashed. In order to allow an
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instruction to determine if its result is runahead VALID when it executes, the instruction
must be able to know if its operands are VALID. Thisis done by providing a Runahead
Operand Valid (ROV) hit for each operand of every instruction in the pipeline. This bit is
read out of the IRV at the same time that the register file is accessed when the runahead
instruction is in the DECODE stage of the pipeline. If arunahead instruction obtains an
operand from aforwarding path, then the ROV bit of the forwarded value is obtained from
RDV hit of the instruction providing the forwarded value.

In generdl, if al of an instructions operands ROV bits are VALID, then its result has its
RDV bit set to VALID. If not, then its RDV bit is set to INV. Thisis true for ALU instruc-
tions and branches that update registers (unconditional and indirect branches). Load instruc-
tions are handled dlightly differently. If aload whose address operand register ROV hit is
VALID missesin the cache, then its load destination register hasits RDV bit set to the INV
state. The load destination register RDV bit isalso set to INV if its address operand regis-
ter's ROV hit is set to the INV state. If the operand register's ROV bit is marked VALID,
and the load hits in the cache, then load destination register is marked VALID if the target
word in the L1 data cache was not the target of a preceding runahead store. If the word was
the target of a preceding runahead store during that runahead episode, asindicated by the L1
data cache runahead valid bit for the target word, then the load destination register has its

RDV bit set to the INV state, indicating that was a runahead |oad-store dependency.

3.6.3 Entering runahead mode

A runahead pipeline treats load and store instructions dlightly differently than a normal
pipeline. During normal operation a runahead pipeline behaves exactly like a normal pipe-

line when loads and stores hit in the L1 data cache. When a load or store misses in the
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cache, arunahead pipeline makes a demand fetch request for the missing L1 data cache line
(if there is no outstanding fetch or prefetch request for the line) and enters the runahead pre-
processing mode of operation. If the instruction that missed in the L1 data cache is aload
instruction, then the pipeline sets the load destination register RDV bit to the INVALID
state. The RDV value is not allowed to update the IRV until the instruction reaches the
writeback stage of the pipeline without getting squashed. If the instruction is a store, then
there is no destination register to mark. However, the store instruction, as well as all subse-
guent store instructions during the runahead episode, are not allowed to update any level of
the memory hierarchy.

The next thing that happens is that the pipeline sets the RV bits of any non-runahead
instructions in the pipeline that were issued after the runahead-initiating instruction to the
TRUE state, making them runahead instructions. The FETCH logic aso hasaglobal RV bit
that is set to the TRUE state. This bit is used to set the RV bits of instructions that are
fetched to the proper state. The FETCH logic aso savesthe IPC of the load or store instruc-

tion so that it can re-fetch the instruction once the runahead episode has completed.

3.6.4 Pipeline operation during runahead mode

At this point the pipeline is in runahead mode. If the load or store instruction that initi-
ated runahead reaches the WRITEBACK stage of the pipeline without getting squashed by
an earlier non-runahead instruction, then several things happen.

First, the WRITEBACK stage saves the contents of the register file (RF) in the backup
register file (BRF). Thisis done to checkpoint the sequential state of the architected register

file. Thisis assumed to happen in a single cycle. At the same time, if the instruction is a
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load, then its RDV hit is used to update the IRV. Store instructions do not update the IRV as
they do not write to the RF.

After the runahead-initiating instruction completes in the WRITEBACK stage, subse-
guent runahead instructions commit their results, if any, to the RF and IRV. The sequential
state of the machine is safe as the IPC and RF state were checkpointed when the runahead-

initiating instruction reached the WRITEBACK stage.

3.6.5 Resuming normal operation

When the memory hierarchy has serviced the demand fetch (or prefetch if there was an
outstanding prefetch for the line in question) corresponding to the load or store missthat ini-
tiated runahead mode, the pipeline has to resume normal operation at the point in the
instruction stream where it entered runahead mode. This is done by performing the follow-
ing tasks.

First, it has to notify the FETCH stage to resume instruction fetch at the |PC of the load
or storeinstruction that initiated runahead mode. Second, it copies the checkpointed state of
the RF that was saved in the BRF back into the RF. Both of these actions are assumed to
take placein asingle cycle. The global RV bit in the FETCH stage is also set to FALSE.

Once thisis done, the FETCH stage will re-fetch the runahead initiating instruction.
However, ignoring any prior instruction cache misses, the later stages of the pipeline will
still contain runahead instructions. These instructions can still generate useful prefetches, so
they should not be squashed in the general case. However, they must not be allowed to cor-
rupt the newly restored sequential state of the processor. The newly restored RF state is pro-
tected by not allowing any remaining runahead instructionsin the pipeline to update the RF.

The newly restored IPC of the machine is protected by not allowing any remaining
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runahead branches or jJumps in the pipeline to redirect the FETCH stage. This is done by
squashing the first, if any, runahead branch instruction and subsequently fetched runahead

instructions that are in the pipeline when the processor resumes normal operation.

3.6.6 Instruction cache miss initiated runahead

In addition to the data stream runahead episodes initiated by load or store data cache
misses, arunahead processor can also enter runahead mode on an L1 instruction cache miss.
This instruction stream runahead is identical to load- and store-miss initiated runahead epi-
sodes, with the exception that the instructions in the missing instruction cache line cannot
be pre-processed during the runahead episode. Instead of simply stalling on an L1 instruc-
tion cache miss during normal operation, the runahead processor enters runahead mode as
described in the previous sections. Instruction fetch is redirected to that portion of the
address space that is likely to be close to the proper fetch target after the instructionsin the
missing instruction cache line. The simplest approach is to attempt to pre-process the
instructions located in the cache line sequentially after the missing instruction cache line. If
these instructions are in the L1 instruction cache, then they can be pre-processed, starting
with thefirst instruction in the cache line, in an attempt to generate data stream prefetchesin
the usual runahead fashion. If thislineis not in the instruction cache, then an instruction
stream prefetch can be generated for the missing line, and an attempt to pre-process the next
sequential line can be attempted. This process continues until the instruction cache miss
corresponding to the runahead initiating instruction fetch has been serviced, at which time
the processor resumes normal operation in the same fashion as for load- and store-miss ini-

tiated runahead episodes.
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One potential drawback of instruction-miss initiated runahead is that the instructions
that are not pre-processed in missing instruction cache lines introduce undetectable INV
valuesto the register file and data cache. If these values are used to generate prefetches then
some number of erroneous prefetches can be generated, which may affect performance. The
processor can also go down awrong path if a skipped instruction cache line contained a

taken branch, or an instruction that should have modified a branch condition.

3.6.7 Instruction cache misses during load and store miss initiated runahead

It is possible for instruction cache misses to occur during load- and store-miss initiated
runahead episodes. If this occurs, the runahead processor redirects its fetch stream to the
next sequential line in the instruction stream, which may or may not be in the cache. If itis
in the cache, then pre-processing continues at the first instruction in thisline. If not, then an
instruction stream prefetch can be generated. This approach is similar to instruction-miss

initiated runahead, and has the same drawbacks.

3.6.8 Branch prediction

In keeping with the small and simple, yet fast, processor model we chose to simulate a
rather simple branch prediction scheme. We use an array of 1024 tagless 2-bit counters
using the Smith Algorithm [37] for our dynamic predictors. In our branch prediction
scheme, conditional branches always update the dynamic predictor array when they reach
the WRITEBACK stage, whether they are runahead branches or non-runahead branches.
This allows runahead episodes to train the 2-bit counters for branches that have not yet been
encountered dynamically during normal operation, which can potentially improve their

accuracy.
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Unfortunately, this can cause branch mispredictions if the state of the 2-bit counters get
too far ahead of the sequential state of the program. This can happen if astatic branchis pre-
processed several times in rapid succession, during which the behavior of the branch
changes. This can be aleviated by saving runahead branch outcomesin aregister, and forc-
ing the processor to use these predictors, when available, instead of the 2-bit counters. This
register forms a bridge between the sequential state of the program and the “future” state of
the runahead-trained 2-bit counters. We call this register the Runahead Branch Register
(RBR).

The operation of the RBR is rather simple, which acts as a 1-bit wide circular queue.
Three modulo counters are used to access the RBR. The HEAD counter points to the entry
after the last predictor added to the RBR during runahead. The RA_TAIL counter points to
either the next predictor to be used during runahead (if RA_TAIL !=HEAD), or thelocation
in the RBR that will hold the next conditional branch outcome resolved during runahead (if
RA_TAIL == HEAD). The NORA_TAIL counter points to the next predictor to be used
during normal operation. If atail counter is equal to the HEAD counter, then no prediction
can be made with the RBR during the mode in question (RA_TAIL during runahead and
NORA_TAIL during normal operation).

Note that in this simple scheme it is possible for the HEAD counter to pass the
NORA_TAIL counter, causing the RBR to “overflow” and provide incorrect predictions.
This possibility is handled by flushing the RBR whenever it mispredicts a branch during
either runahead or normal operation. Flushing is performed from the tail pointer that pre-
dicted the mispredicted branch to the head pointer: flushing the entire RBR on a mispredic-

tion during normal operation, but only the known wrong path portion on a misprediction
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during runahead. RBR overflows can be reduced by making the RBR larger than the num-
ber of basic blocks pre-processed during atypical runahead episode. An eight entry RBR
should provide a comfortable margin of safety. We assume a 1024 entry RBR for all of our
studies in an attempt to determine the absolute best performance that can be obtained via
this method.

A pseudo-code listing of the behavior of the RBR is shown in Figure 3.7, while a short

example of RBR operation is given in Figure 3.8.
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Figure 3.7 Pseudo code description of Runahead Branch Register Behavior

* When the processor is reset:

HEAD = 0;
RA TAI L= 0;
NORA TAI L= 0;

When the processor resumes normal operation after leaving runahead mode:
RA TAIL = NORA_TAIL;

*  When branches are predicted:

if(instr->runahead == TRUE & RA TAIL != HEAD) {
instr->pred_branch_outcome = RBRIRA TAIL];
instr->rbr_used_to_predict = TRUE;
instr->tail _used = RA TAIL;
RA_TAI L++;

el se if(instr->runahead == FALSE &% NORA TAIL != HEAD) {
instr->pred_outcone = RBRI NORA TAIL];
instr->rbr_used_to_predict = TRUE;
instr->tail _used = NORA TAIL;
NORA_TAl L++;
RA_TAI L++;

el se {
instr->pred_outcone = TWD BI T_COUNTERS[ i nstr->P(C ;
instr->rbr_used_to_predict = FALSE;
}
* When branches areretired

if(instr->rbr_used_to_pred == TRUE) {

if(
instr->pred_outconme != instr->actual _outcone &&
i nstr->condi tion->runahead_valid == TRUE
) {
if(instr->runahead == TRUE) {
HEAD = instr->tail_used; // sone entries get flushed
RA TAIL = instr->tail_used;
el se {
HEAD = instr->tail_used; // all entries get flushed
RA TAIL = instr->tail _used;
NORA TAIL = instr->tail _used,;
}

}

i f(runahead == TRUE) {
if(instr->tail _used == HEAD) {
RBR[ HEAD] = instr->actual _outcong;

/] save result in RBR
HEAD++;
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Figure 3.8
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The example shown in Figure 3.8 represents the state of the RBR and its counters at the
start of the execution of a program. The topmost oval on the left hand side of Figure 3.8 rep-
resents aload or store instruction that has missed in the L1 data cache, causing the processor
to enter runahead mode. The pipeline generates a demand data stream fetch for the missing
line in the usual fashion, and continues to pre-process instructions. At some point after
entering runahead, the pipeline retires a branch instruction (branch A), and saves the out-
come of the branch in the RBR at the location pointed to by RA_TAIL, which isthen incre-
mented. A data stream prefetch is generated at some point after branch A, and two more
branch outcomes are saved in the RBR (branches B and C). At some point the demand fetch
that triggered the runahead episode is serviced, and the pipeline re-fetches the runahead ini-
tiating instruction. Thisis shown on the right hand side of Figure 3.8 with the re-issued load
or store instruction represented by the topmost oval. Asthe demand fetch has been serviced,
this instruction retires in the normal fashion, and the pipeline continues to execute instruc-
tions. At some point the pipeline reaches branch A, and isableto predict it using the predic-
tor A in the RBR. Eventually, the pipeline reaches the instruction that generated the data
stream prefetch in the previous runahead episode. Unfortunately, this prefetch has not yet
been serviced, and the pipeline enters runahead again. Branch B is subsequently pre-pro-
cessed a second time during runahead, only thistimethereisa predictor in the RBR that can
be used by the pipeline due to the overlap between the runahead episodes. The same hap-
pens for branch C. After using predictor C to predict branch C, the pipeline continues to
pre-process instructions, and eventually pre-processes branch D. Unfortunately, this
dynamic branch has not been pre-processed before, so thereis no predictor in the RBR that

can be used. Therefore, the pipeline predicts the branch using the 2-bit counters. When the
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branch is retired, the pipeline saves the branch outcome D in the RBR and continues. At
some point when the unserviced prefetch that initiated runahead has been serviced, the pipe-
line resumes normal execution at the point that the prefetch was generated. When this
occurs the RBR contains the outcomes of three branches, B, C, and D, that are still useful.
Note that this example ignores the effects of instruction cache misses: they are simply
ignored in our baseline runahead branch prediction scheme. As with any branch mispredic-
tion, if a skipped branch caused by an instruction cache miss results in an RBR branch
misprediction, the affected portions of the RBR are flushed. Also, as our runahead processor
continues to pre-process instructions past conditional branches that cannot be resolved with
VALID registers, we need a strategy to keep the RBR in sync with the aggressive pipeline.
This is done by smply assuming that the branch prediction scheme used is good enough to
keep the pipeline on the right path past unresolvable branches most of the time. When an
unresolvable conditional branch is retired during runahead the predicted outcome of the

branch, obtained from the 2-bit counters, is saved in the RBR.

3.6.9 Unimplemented instructions during runahead

While the pipeline can emulate unimplemented instructions during normal operation by
flushing the pipeline and re-syncing the state of the ssmulated processor to that of the work-
station processor, this cannot be done during runahead episodes. During runahead episodes
the ssimulator is no longer retiring instructions in “lockstep” with the workstation processor,
so there is no way for it to use the workstation as an emulation work-around for unimple-
mented instructions.

This leaves the runahead processor with two possible courses of action when it attempts

to retire an unimplemented instruction during runahead. It could simply treat the unimple-
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mented instruction as a bubble, and assume that the instruction would not re-direct the
instruction stream. This would work fine as long as the instruction is a floating point opera-
tion, or asimilar more-or-lessinnocuous instruction. We have chosen asimpler approach, in
which our pipeline haltsiif it attempts to retire an unimplemented instruction. If this occurs
during runahead the pipeline is flushed when normal operation resumes. If this occurs dur-
ing normal operation the next call to Enmul at i onBr i dge detects the unimplemented
instruction in the WRITEBACK stage and performs the pipeline flush and state synchroni-
zation. As unimplemented instructions are rare in SPEC integer benchmarks this approach

should not significantly affect performance.

3.6.10 Avoiding segmentation faults during runahead simulation

Dueto the highly speculative nature of runahead it is possible for the processor to gener-
ate erroneous prefetches. As our simulated pipeline actually reads load data values from the
workstation’s main memory when it simulates |oads during both runahead and normal oper-
ation, it is possible for our simulator to generate a segmentation fault if it attempts to load a
value from a speculative address that is incorrect. These accesses would quickly kill the
simulation if they were not detected before being allowed to access the contents of memory.

We solved this problem in atwo-fold fashion. First, we observed that if a runahead |oad
target address hits in either of the simulated data caches, then we know for certain that it is
safe for the simulator to access that address in the workstation’s memory as that line must
have been successfully allocated in the ssimulated cache at some point.

Segmentation faults can still occur for prefetches that in areal machine would have to
go all the way out to main memory. We detect potential segmentation faults for these

prefetches by maintaining a linked list of all of the virtual page numbers that have been
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demand fetched by the simulated processor during normal operation. This list is checked
whenever a data stream prefetch reaches the simulated main memory. If the virtual page
number corresponding to the prefetch does not exist in the linked list, then there is avery
good chance that a segmentation fault will occur if we allow the runahead prefetch to access
the contents of the workstation’s memory. These prefetches are dropped.

The performance of the linked list access is improved by “bumping” page number
entries that hit in the list to the head of the list. This reduces the average number of list
nodes that have to be examined. Note that thislist acts as an infinite TLB used with amain
memory that never swaps out pages.

A simpler approach is used to detect instruction fetches or prefetches that could cause a
segmentation fault. We avoid checking for bad addresses as long as instruction stream
fetches hit in the L1 instruction cache. If an instruction fetch or prefetch missesin the smu-
lated instruction caches, we can determine if it isan illegal instruction address by checking
to seeif it maps into the known limits of the text space for the instrumented benchmark.
These limits are obtained via ATOM when the simulator is initialized. If an attempted
instruction fetch or prefetch addressfalls outside of these limits, then the instruction fetch or
prefetch is dropped, and the FETCH stage halts. This can happen during normal operation
on amispredicted branch or jump, in which case fetch is restarted when the mispredictionis
detected in the EXECUTE stage of the pipeline. This can also happen during runahead if
the pipeline goes down a wrong path. When this happens, the FETCH stage is restarted if
the fetch attempt was caused by a mispredicted branch during runahead, or when normal

operation resumes when the runahead-initiating fetch has been serviced.
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3.7 Benchmarks
We chose to use the GO, PERL, VORTEX, and IJPEG benchmarks from the SPEC’ 95

Integer Suite[38] for the bulk of our simulation studies. The STREAM benchmark [39] was
also used in order to stress the memory hierarchy. As STREAM is afloating point bench-
mark we had to modify the code such that all of the data types were type unsi gned
| ong before we could use it with our simulator. The arguments that are passed to each
benchmark are provided in Table 3.1, “Benchmark Arguments,” on page 60. Descriptions of
each SPEC benchmark follow, all of which are assembled from [38]. Simulations of the
SPEC benchmarks were run for 100M instructions, while STREAM was run for 10M
instructions. All of the caches were cold-started, and statistics gathering was initiated at the
beginning of each simulation.
VORTEX

VORTEX is asingle-user object-oriented database transaction benchmark which exer-
cises a system kernel coded in integer C. The VORTEX benchmark is a derivative of afull
OODBMS that has been customized to conform to SPEC CINT95 guidelines.

Transactions to and from the database are translated though a schema in which the
benchmark is pre configured to manipulate three different databases. mailing list, partslist,
and geometric data. The benchmark builds and manipul ates three separate, but inter-related
databases based on the schema. The size of the database is scalable, and for CINT95 guide-
lines has been restricted to about 40MB. VORTEX been modified to not commit transac-
tions to memory in order to remove input-output activity from this CINT95 (component)
benchmark.

The workload is modeled after common object-oriented database benchmarks with

modificationsto vary the mix of transactions.
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GO
Go is a cpu-bound integer benchmark. It is an example of the use of artificial intelli-

gence in game playing. Go plays the game of go against itself. The benchmark is stripped
down version of a successful go-playing computer program. The benchmark is imple-
mented in ANSI C (with function prototypes). Thereis agreat deal of pattern matching and
look-ahead logic. Asis common in thistype of program, up to athird of the run-time can be
spent in the data-management routines.
IJPEG

The IJPEG benchmark performs jpeg image compression and decompression with vari-
ous parameters. Thisis acpu intensive benchmark.
PERL

The PERL benchmark performs text and numeric manipulations consisting of anagrams
and prime number factoring. As much as 10% of the time can be spent in routines com-

monly found in libc.a: malloc, free, memcpy, €tc.

3.7.1 System Issues

The benchmarks were compiled using the DEC OSF/1 AXP C Compiler version 3.11
supplied with OSF/1 version 3.2. The “-std1 -O2 -non_shared -r” flags were used as argu-
ments to the compiler. Instrumentation was performed with version 2.29 of ATOM running
on DEC 3000 workstations employing ALPHA 21064 CPUs. No flags were passed to

ATOM.
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Table 3.1 Benchmark Arguments

Benchmark

Data Set

VORTEX

“vortex vortex.raw”

reference data set

vortex.raw contains:

MESSAGE_FILE vortex.msg OUTPUT_FILE vortex.out
DISK_CACHE bmt.dsk RENV_FILE lendian.rnv
WENV_FILE lendianwnv PRIMAL_FILE vortex.pml
PARTS DB_FILE parts.db DRAW_DB_FILE draw.db
EMP_DB_FILE emp.db PERSONS FILE persons.1lk
PART_COUNT 16000 OUTER LOOP 1
INNER_LOOP 14 LOOKUPS 250

DELETES 8000 STUFF_PARTS 8000
PCT_NEWPARTS OPCT_LOOKUPS 0

PCT _DELETES O0PCT_STUFFPARTSO

TRAVERSE DEPTH 3FREEZE GRP 1
ALLOC_CHUNKS 10000 EXTEND_CHUNKS 5000
DELETE_DRAWS 1DELETE_PARTS 0

QUE_BUG 1000 VOID_BOUNDARY 67108864
VOID_RESERVE 1048576

GO

“go 10 13"
requiresjust over 100M instructionsto run to completion

IJPEG

“iijpeg

-image_file specmun.test.ppm
-compression.quality 25
-compression.optimize_coding 0
-compression.smoothing_factor 90
-difference.image 1
-difference.x_stride 10
-differencely_stride 10

-verbose 1

-GO.findoptcomp”

requiresjust over 100M instructionsto run to completion

PERL

“perl scrabbl.pl < scrabbl.in”
reference data set

STREAM

N = 400000

NTIMES=1

OFFSET =0

requiresjust over 10M instructionsto run to completion
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Chapter 4

Baseline Runahead Experiments

In this chapter we evaluate the runahead processor model described in Chapter 3. The
intent isto provide an overview of the general characteristics of runahead. Subsequent chap-
ters provide a more detailed analysis of runahead, as well as an examination of low-cost

implementations.

4.1 CPI results

The most important result that we can present for these preliminary smulations is the
improvement in CPI (Cycles Per Instruction) that can be obtained via runahead. Bar charts
that illustrate the CPI obtained for our baseline runahead processor model are shown in Fig-
ures 4.1 through 4.5. There are three stacked bars in each plot. The height of each bar, as
enumerated on the y-axis, represents the number of processor cycles that each 100M
instruction simulation required to complete. Each bar is broken down in to 9 parts, repre-
senting the contribution to processor CPI that each instruction class plus instruction cache
misses had to the overall CPI of the simulation. These classes include the following:

* L1linstruction cache misses

* Load instructions

» Storeinstructions

» Load-address instructions (these compute an address and place it into a register)
* ALU instructions
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* Indirect branch instructions

* Unconditional branch instructions

» Conditional branch instructions

» Unimplemented instructions (floating point and PALCODE)

The left-most of the three stacked bars represents the overall CPI of a baseline processor

that does not employ either runahead or prefetching of any kind. The center stacked bar rep-
resents the CPI of the runahead processor. The right-most stacked bar does not represent a
specific simulation, rather it represents the number of instructions (execute counts) of each
classthat were executed during normal operation by the processor. Cyclesthat the processor
spends in load- and store-miss initiated runahead episodes are attributed to load and store
instructionsin the CPI plots.

Theoverall CPI of each simulationis provided at the top of each bar. In order to ease the
comparison between the runahead and non-runahead simulation results, the load, store, and
instruction cache miss portions of the runahead processor stacked bar have their percentage
reductions over their equivalents in the non-runahead processor located next to them. Note
that the percentage reduction in CPI for loads and stores do not include cycles in which
loads and stores are retired: the latter are represented as the load and store portions of the
execute counts stacked bar. These percentage reduction figures include both data cache
miss, store queue, load-store dependency, and address generation interlock stalls. The load-
store dependency stalls are a by-product of our simulation methodology, which requires us
to execute loads and stores in separate stages of the pipeline.

Thefirst plot, shown in Figure 4.1, is for the GO benchmark. The overall CPI of the
runahead processor is a moderate 3.02, while the CPI of the runahead processor is 2.24.

Runahead was able to reduce overal CPI by a respectable 26%. About one-haf of the CPI
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improvement is attributable to reductions in instruction cache misses (75% reduction in
instruction cache miss CPl) due to instruction stream prefetches generated by runahead. The
rest of the CPI reduction came about as a result of data stream prefetching for loads and
stores. The load portion of pipeline CPI was reduced by 26%, while the store portion was
reduced by 35%.

The second plot, shown in Figure 4.2, is for the VORTEX benchmark. The overall CPI
for VORTEX israther high at 4.00, while the CPI of the runahead processor is 2.51, corre-
sponding to a 37% reduction in CPl. Aswas true for the GO benchmark, about half of the
improvement came from reductions in instruction cache misses, with runahead reducing the
instruction cache miss portion of CPI by 69%. The load portion of pipeline CPl was
reduced by 27%, and the store portion was reduced by 43%.

Thethird plot, shownin Figure 4.3, isfor the STREAM benchmark. Runahead was able
to reduce the overall CPI from 18.96 to 4.41, a 77% reduction. Runahead is able to improve
performance a great deal, with the load contribution towards pipeline CPI reduced by 83%,
and the store portion reduced by 79%. This superior performance is the result of four fac-
tors. First, the data cache miss rate is high, providing many opportunities for the processor
to enter runahead mode. Second, the benchmark strides linearly through memory, alowing
the runahead processor to nearly aways compute load and store addresses correctly during
runahead. Third, the benchmark itself is very small, resulting in avery small instruction
cache miss rate. This effectively eliminates instruction cache miss effects during runahead
episodes. Fourth, the processor does not suffer from branch mispredictions for STREAM,

as the benchmark consists of a sequence of loops that are executed many times.
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Thefourth plot, shown in Figure 4.4, isfor the IJPEG benchmark. Runahead was able to
reduce the overall CPI from 1.55 to 1.30, corresponding to areduction in CPI of 16%. In
gpite of this relatively small improvement, runahead was able to reduce the load portion of
pipeline CPI by 44%, and the store portion by 27%. These excellent load and store CPI
improvements do not trandate into a correspondingly large improvement in overal CPI as
IJPEG is ALU intensive, which can be seen in the execute counts bar. The situation on the
instruction stream side was similar for IJPEG: runahead was able to reduce the instruction
cache miss portion of CPI by 78%, but as the instruction cache miss rate for |JPEG is low,
this does not trandate into amajor performance improvement.

The results for the PERL benchmark are shown in Figure 4.5. Runahead was able to
reduce overall CPl 34% to 2.86 from 4.30. The store contribution to pipeline CPl was
reduced 42%, while that of loads was reduced 38%. The largest component of the overall
CPI for the non-runahead processor is attributable to instruction cache misses. Runahead
was able to reduce instruction cache CPI by 52%, the least of the instruction cache miss CPI

improvements of al of the benchmarks that were simulated.
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Processor CPI for the PERL Benchmark
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4.2 Memory Bandwidth

We measured the average bandwidth at various levels of the memory hierarchy during
our simulations and present the results in this section. Plots of the average memory system
bandwidth are shown in Figures 4.6 through 4.20. Each plot consists of two stacked bars:
one for the runahead processor, and one for a non-runahead processor. Each of these bars
has its bandwidth broken down into its component parts. Data stream bandwidths are bro-
ken down into store-through/writeback, prefetch, and demand fetch components. Instruc-
tion stream bandwidths are broken down into prefetch and demand fetch components. Note
that we do not present bandwidths for the L1 caches, as these numbers are not particularly
enlightening for arunahead processor which more or less constantly accessesthe L1 caches.

Also, note that our bandwidth numbers are for accesses that actually supply data: cache
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accesses that result in misses do not count towards our bandwidth numbers. Our memory
hierarchy requires all L2 cache accesses that miss to access the cache a second time; in
other words we do not simulate fetch-around. All main memory accesses count of course, as

misses do not occur at that level of the memory hierarchy.

4.2.1 Main memory bandwidth

The average main memory bandwidth for the GO benchmark is shown in Figure 4.6.
Note that both the runahead and non-runahead bandwidths are rather low, at 21.49 and 1.98
MB/s respectively. Thisis normal for the SPEC benchmarks, which tend to fit in large L2
caches. Even so, the runahead processor was able to increase the average main memory
bandwidth by afactor of ten over that of the non-runahead processor. Thisis a consequence
of prefetch traffic and the resulting CPI improvements, which reduce the amount of time
available for the main memory to service a given number of requests. Note that relatively
few instruction prefetches made it out to the main memory. Thisis a consequence of the
benchmark largely fitting in the IMB L2 instruction cache. Interestingly, there was very lit-
tle writeback traffic from the L2 data cache to the main memory for the GO benchmark.

The average main memory bandwidth for the VORTEX benchmark is shown in Figure
4.7. This benchmark requires significantly more main memory bandwidth (40.4 MB/s and
92.7 MB/s for the non-runahead and runahead processors respectively) than GO. VORTEX
generates a significant number of prefetch requests that reach main memory, enough of
which are useful enough to significantly reduce the number of demand data fetches. Instruc-
tion prefetches are kept to a minimum, while there is a significant amount of store traffic.

The main memory bandwidth for the PERL benchmark is shown in Figure 4.8. Aswith

VORTEX a significant amount of the main-memory bandwidth is used by both the
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runahead and non-runahead processors, however the average bandwidths are much lower
than the available bandwidth. The runahead main-memory bandwidth (80.3 MB/s) is
slightly more than twice that of the non-runahead main-memory bandwidth (39.6 MB/s).
Note that more than half of the demand fetch bandwidth is eliminated when runahead is
employed.

The main memory bandwidth plot for the STREAM benchmark is particularly interest-
ing, and isshown in Figure 4.9. The non-runahead processor produces arespectable average
bandwidth of 323 MB/s, however thisis greatly overshadowed by the bandwidth of the
runahead processor at 1.39 GB/s. This huge average runahead main memory bandwidth for
STREAM is very close to the peak 1.6 GB/s bandwidth that our simulated main memory
can provide. Although STREAM is a somewhat contrived benchmark, it is does indicate
that runahead can readily use a high bandwidth memory hierarchy when an application
exhibits particularly poor caching behavior. Note that most of the traffic for the runahead
processor are data stream prefetches, while the majority of the remainder is store traffic.
Few demand instruction or data fetches are presented to the main memory.

The main memory bandwidth for the IJPEG benchmark is shown in Figure 4.10. Note
that this benchmark requires relatively little main memory bandwidth, as do most of the
SPEC benchmarks. The non-runahead processor only produces an average bandwidth of
1.81 MB/s, while the runahead processor produces a somewhat higher bandwidth of 5.19
MB/s. Most of the bandwidth consists of data fetches and prefetches, with most of the
remainder consisting of instruction prefetch and fetch traffic. Thereisvirtually no writeback

traffic from the L2 data cache.
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Average Main Memory Bandwidth for IJPEG
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4.2.2 L2 data cache bandwidth

Unlike the relatively low main memory bandwidth produced for most of the bench-
marks, the small 8KB L1 data cache used in our simulations requires alarge amount of traf-
fic between the L1 and L2 data caches. Store traffic was a significant source of bandwidth
for al of the benchmarks, but did not even come close to saturating the L2 data cache as
none of the benchmarks used even half of the available bandwidth.

The average L2 data cache bandwidth for the GO benchmark is shown in Figure 4.11.
The non-runahead processor used an average of 1.27 GB/s, of which about two-thirds of
which were store-throughs from the write-through L1 data cache to the writeback L2 data
cache. The remaining traffic consists of demand data fetches. The runahead processor used

asignificantly greater average bandwidth of 1.77 GB/s. The store traffic still makes up about
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two-thirds of the total, however nearly half of the remainder is made up of data prefetches.
These relatively high average bandwidth figures imply that the GO benchmark is able to
make good use of the 6.4 GB/s peak bandwidth of the L2 data cache.

The L2 data cache bandwidth for the VORTEX benchmark, shown in Figure 4.12, has
even higher average bandwidths than those obtained for GO. The non-runahead processor
uses an average of 1.72 GB/s, most of which consists of store-throughs. The runahead pro-
cessor used a significantly larger average bandwidth of 2.77 GB/s. As with the GO bench-
mark, nearly half of the non-store bandwidth consisted of prefetch traffic.

As was the case for the main memory bandwidth, the L2 data cache bandwidth for the
STREAM benchmark, shown in Figure 4.13, is particularly interesting. The non-runahead
processor used arelatively low average bandwidth of 608 MB/s, most of which consists of
store-through traffic. The datafetch and prefetch L2 data cache bandwidths for the runahead
and non-runahead processors are virtually the same as their main memory counterparts,
which isintuitive given the lack of locality in the benchmark. The runahead processor gen-
erated an average L2 data cache bandwidth of 2.61 GB/s. Note that more than one-third of
the traffic was for data prefetch requests, and that very few demand fetches were requested.
The bulk of the traffic is of course store traffic. The total L2 data cache bandwidths for both
processor models are higher than their main memory counterparts due to the writeback L2
data cache, which coalesces multiple L2 data cache store-throughs into a single main mem-
ory writeback transaction.

The L2 data cache bandwidth for the IJPEG benchmark, shown in Figure 4.14, has

nearly the same bandwidths for both the non-runahead and runahead processors, at 1.87 and
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2.23 GB/s respectively. Nearly all of the traffic consists of store-throughs, however more
than half of the non-store traffic for the runahead processor consists of prefetches.

The runahead processor was able to significantly increase the L2 data cache bandwidth
for the PERL benchmark, shown in Figure 4.15, with an average runahead bandwidth of
1.82 GB/s as compared with 1.23 GB/s for the non-runahead processor. As was the case

with the IJPEG benchmark, most of the L2 data cache traffic consists of store-throughs.

74



Average L2 Data Cache Bandwidth for GO

2.5
tore traffic
.gata refetch
ata fetch
2.0+ .
@ 1.77 GB/s
m
€15¢ ]
i = 1.27 GB/s
Figure 4.11 o
=
210+t ]
©
m
05¢} i
0 N
on Runahead Runahead
Average L2 Data Cache Bandwidth for VORTEX
3
tore traffic 2.77 GB/s
.aata refetch
ata fetch
w i ]
= 2
Figure412  © 1.72 GB/s
=
S
=
o
g 1t i
m
N L

Non Runahead Runahead

75




Average L2 Data Cache Bandwidth for STREAM
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Average L2 Data Cache Bandwidth for PERL
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4.2.3 L2 instruction cache bandwidth

The L2 instruction cache bandwidths are not nearly as interesting as those for the data
stream side of the memory hierarchy. Thisis a consequence of the relatively good instruc-
tion stream caching behavior of most of the SPEC benchmarks. STREAM of course easily
fitsinto the L1 instruction cache.

The L2 instruction cache bandwidth for the GO benchmark is shown in Figure 4.16. The
non-runahead processor has alow average bandwidth of 352 MB/s, while the runahead pro-
cessor comes in at 858 MB/s. The overwhelming majority of the runahead processor’s L2
instruction cache bandwidth is made up of prefetch requests.

The results for the VORTEX benchmark, shown in Figure 4.17, exhibit significantly

greater bandwidths. The non-runahead processor uses an average of 583 MB/s, while the
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runahead processor uses 2.0 GB/s of bandwidth, the majority of which is for prefetch
requests.

The L2 instruction cache bandwidth for the STREAM benchmark, shown in Figure
4.18, is rather uninteresting. The non-runahead processor uses an average of 3.72 KB/s of
bandwidth for demand fetches, while the runahead processor uses 23.3 KB/s, most of which
consists of prefetch requests.

The runahead processor produced alarge increase in L2 instruction cache bandwidth for
the PERL benchmark, shown in Figure 4.19. The bandwidth increases from 580 MB/s for
the non-runahead processor to 2.61 GB/s for the runahead processor. Virtualy all of these
accesses hit in the L2 instruction cache, as instruction stream fetch and prefetch requests
comprise arather small proportion of total main memory bandwidth (Figure 4.8).

The instruction stream bandwidth for the IJPEG benchmark, shown in Figure 4.20, is
relatively low, even when runahead is employed, when compared to the figures obtained for
the other SPEC benchmarks. Thisis aresult of the relatively low L1 instruction cache miss

rate for the |l JPEG benchmark.
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4.3 Prefetching effectiveness over the course of runahead episodes

As these runahead simulations allow the processor to speculatively pre-process instruc-
tions past branches that cannot be resolved, there will likely be a significant number of
instructions that are pre-processed on wrong paths. These instructions can generate errone-

ous prefetches, evenif their register values are VALID.

4.3.1 Probability of remaining on the correct path during runahead

Aninstruction ison the proper path in arunahead episodeif al of the instructionsin the
runahead episode up to and including the instruction in question are executed during normal
operation at the conclusion of runahead, starting with the first instruction in the runahead

episode. Also, note that it is possible for the processor to re-enter runahead mode multiple
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times before al of the instructions in a given runahead episode are executed during normal
operation.

The x-axis of each plot represents the distance into the average runahead episode, in
instructions, with the x = 0 point indicating the instructions that initiate runahead mode. The
y-axis represents the probability that an instruction at a given point in the runahead episode
ison the right path. Measuring this was complicated somewhat by the fact that the processor
can execute the same dynamic instance of an instruction multiple times in successive
runahead episodes before the instruction is actually executed, if ever, during normal opera-
tion. Note that instructions skipped due to instruction cache misses are still considered to
have been pre-processed. The PCs of these skipped instructions are compared to those exe-
cuted when normal operation resumes in the same manner that instructions that are actually
pre-processed are. Each plot has three data sets, representing averages for load-, store-, and
instruction-miss initiated runahead episodes. We do not present STREAM results as the
simple nature of this benchmark virtually guarantees that the processor remains on the cor-
rect path during load- and store-miss initiated runahead episodes.

The first plot, shown in Figure 4.21, is for the GO benchmark. Note that the first two
instructions in both load and store-miss initiated episodes are always on the correct path.
The first instruction in a data stream runahead episode is always, by definition, aload or
store instruction. These instructions cannot of course redirect the instruction stream. The
second instruction in these episodes can be a conditional branch, which can of course be
mispredicted. Instructions after the branch can be on the wrong path. The store-miss initi-
ated runahead episodes are by far the most likely to stay on the right path during the average

runahead episode. Thisis aconsequence of their being initiated by store instructions, which

82



do not introduce INV valuesinto the processor register file. Any INV registers can of course
cause a branch to be mispredicted. In fact, for the GO Benchmark there is about an 80%
probability that a store-miss initiated episode is on the right path after 25 instructions. The
effect of INV registers can be seen in the data set for load-miss initiated episodes. Thereis
an immediate drop off in the probability after the first few instructionsinto the average load-
miss initiated episode. Even so, there is still about a 50% probability of runahead remaining
on the right path after 25 instructions. The instruction-miss initiated runahead data set is
interesting as it starts out at the x = 0 position with about a 75% probability of being on the
right path. Thisis a consequence of the fact that instruction missinitiated episodes are initi-
ated in the FETCH stage, where they can get squashed by instructions farther down the
pipeline. These brief instruction-miss initiated episodes still count however, because they
can generate alarge number of erroneous prefetches. Each instruction stream prefetch can
generate up to 8 skipped instructions. Instruction miss initiated episodes are also hampered
asthey skip instructions, some of which may have redirected the fetch stream. Thisis appar-
ent in the data set for the GO Benchmark, where the average instruction miss initiated epi-
sode only has about a 15% chance of being on the right path after 25 instructions have been
pre-processed.

The second plot, shown in Figure 4.22, is for the VORTEX benchmark. This plot
appears rather similar to the GO plot shown in Figure 4.21. As before, store-miss initiated
episodes are significantly more likely to stay on the right path during the average runahead
episode, with about a 93% probability after 25 instructions. The load-miss initiated data set
doesn’'t drop off quite as fast as that for the GO benchmark. Even so, there is still a greater

than 50% probability of load-missinitiated episodes being on the right path after 25 instruc-
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tions. Theinstruction missinitiated data set is exhibits worse performance than that for GO,
with only about a 10% chance of being on the right path after 25 instructions have been pre-
processed.

The results for the PERL benchmark are shown in Figure 4.23. As was the case for the
VORTEX benchmark, this plot appears similar to that obtained for the GO benchmark.

The data obtained for the IJPEG benchmark, shown in Figure 4.24, is particularly inter-
esting. Note that both load and store-miss initiated episodes have a very high probability of
being on the right path, even after 25 instructions have been pre-processed. Thisis aresult
of the relatively few branches in the benchmark that are dependent upon load-miss data.
Note that this result confirms our preliminary results reported in [36] where we found that
the aggressive and conservative runahead models reported virtually identical performance
improvements for IJPEG. |JPEG instruction miss initiated episodes also perform compara-
tively better than the other benchmarks, with a nearly 50% probability of being on the right

path after 25 instructions have been pre-processed.
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Figure 4.21

Figure 4.22
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Figure 4.23
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4.3.2 Number of runahead episodes of each type

The total number of runahead episodes that are initiated for each type of runahead is
shown in Figure 4.25. Note that |oad-miss initiated episodes outhumber store-miss epi-
sodes: this was expected as there are more load than store instructions executed in each
benchmark. Recall that the STREAM benchmark was simulated for 10M instructions, while

the SPEC benchmarks were ssmulated for 100M instructions.

4.3.3 Average number of prefetches generated per runahead episode

The average number of load, store, and instruction prefetches generated during each
type of runahead episode are shown in Figure 4.26. Note that store-miss initiated runahead
episodes always generate more data stream prefetches per episode than either load- or
instruction-miss episodes. Thisis a consequence of store misses not immediately seeding
the RF with INV values at the initiation of runahead. Interestingly, STREAM generates the
least data stream prefetches per episode of all of the benchmarks, yet it derives the most
benefit from runahead. Thisisaresult of itshigh missrate, and correspondingly larger num-
ber of runahead episodes. This can be seen in Figure 4.25. While STREAM generates the
most instruction prefetches on average, all of them are generated during instruction-miss
initiated runahead episodes, of which there are very few due to the extremely low instruc-

tion cache miss rate.
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4.3.4 Prefetching utility over the course of runahead episodes

We were particularly interested in finding out how effective runahead was over the
course of the average episode. We define a useful runahead prefetch as a prefetched line that
is accessed at least once during normal operation before it is either gjected from the L1
instruction or data cache, or the simulation ends. Accesses that occur during runahead do
not count, as these can be on the wrong path, and at any rate do not directly perform useful
work. Useless prefetches are of course the opposite of useful prefetches. they are never
accessed during normal operation before they are gjected from the L1 instruction or data
cache, or the simulation ends.

Having defined what we mean by useful and useless prefetches, we can now describe
the plots that we will useto illustrate the utility of runahead over the course of the average
episode. We want to be able to illustrate the number of useful vs. useless prefetches that
have been generated as a function of the number of instructions that have been pre-pro-
cessed. Note that these plots are cumulative as we want to show the utility of runahead up to
acertain number of instructionsinto the average episode. Dueto the different nature of load,
store, and instruction miss initiated runahead episodes, we have chosen to present separate
plots for each runahead episode type. These plots are shown in Figures 4.27 through 4.66.
Each plot contains 4 data sets, which allow us to break the useful and useless prefetches
down into prefetches generated on the right and wrong paths. Finally, as noted earlier the
average runahead episode is shorter than 100 instructionsin length. Because of thiswe limit
the x axis to a maximum of 100 instructions. Prefetches generated past this point are taken

care of by recording the total number of prefetches as spikes at x = 100.
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Load-miss initiated runahead
Thefirst set of plots, shown in Figures 4.27 through 4.29 is for the GO benchmark. The

first of these, shown in Figure 4.27, is for load prefetches generated during load-miss initi-
ated runahead episodes. Note that the mgjority of the prefetches fall into the useful/right-
path category, and that virtually all prefetches generated during the first five or so instruc-
tions into runahead fall into this category. After about five instructions significant numbers
of wrong path prefetches start to be generated. However, note that most of these are il
useful prefetches. Very few prefetches are generated past the 25th instruction into the aver-
age runahead episode, as indicated by the flat curves past that point. This indicates that the
overwhelming majority of the runahead-initiating misses hit in the L2 data cache. At that
point the overwhelming majority of prefetches are useful, and of these most are on the right
path. Useless/wrong-path prefetches make up less than 10% of the total, while very few use-
less/right-path prefetches are generated. Note that most usel ess/right-path prefetches should
have been useful, however they were gjected from the cache by other prefetches before they
could be accessed during normal operation. Figure 4.28 shows the breakdown for store
prefetches generated during load-miss initiated runahead episodes for GO. Note that this
plot is very similar to the load prefetch plot, the only noteworthy difference being that |oad-
missinitiated episodes tend to generate many more load prefetches than store prefetches for
the GO benchmark. Figure 4.29 shows the breakdown for instruction stream prefetches.
Note that both right- and wrong path useful prefetches predominate for the first 99 instruc-
tions of the average episode, and that nearly all prefetches fall into either useful prefetch
category during the first twenty or so instructions into the average episode. The number of
useful/right-path and usel ess/right-path prefetches spikes at 100 instructions in to the aver-

age episode. As was mentioned earlier, the points at x = 100 represent the total number of
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prefetches generated. These spikes are a result of a succession of instruction cache misses
that occur late during runahead episodes that last much longer than average. The plots for
the VORTEX, PERL, and IJPEG benchmarks are very similar to those obtained for GO, and
can be found in Figures 4.30 through 4.38.

The plots for the STREAM benchmark, shown in Figures 4.39 and 4.40, are particularly
interesting. Note that all of the prefetchesfall into the useful/right-path category. The access
pattern of STREAM is such that prefetched lines are not gjected until the data stream
“wraps around” the cache. Asthistakes quite afew cycles, even for arelatively small 8KB
cache, virtually all prefetched lines are accessed during normal operation before they are
gjected. Also, STREAM does not exhibit the “knees’ that the other benchmarks have: virtu-
aly al L1 data cache misses for STREAM have to go out to main memory, which pushes

the average runahead episode length out to close to 100 instructions. We do not present
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instruction prefetch results for STREAM due to its extremely low instruction cache miss

rate.
Data Stream Prefetch Utility for GO
LOAD prefetches during LOAD miss initiated runahead
1.0 T T T T T T T T T
“g — useful right path prefetches
= — useful Wr_oncT; path prefetches
< (0.8¢ — useless right path prefetches _
3 : useless wrong path prefetches
©
o}
e
s 0.6 ]
Figure 4.27 @
e
L
(&)
z 0.4+ -
o
©
@
o]
E 0.2 B N
>
p4
— N 1 " 1 " 1 "
0o 20 40 60 80 100

Instructions into Runahead Episode

92



Figure 4.28
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Instruction Stream Prefetch Utility for VORTEX
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Figure 4.34

Figure 4.35
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Data Stream Prefetch Utility for IJPEG
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Instruction Stream Prefetch Utility for IJPEG
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Data Stream Prefetch Utility for STREAM
STORE prefetches during LOAD miss initiated runahead
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Store-miss initiated runahead

Store-miss initiated runahead episodes are more promising as they do not add an INV
valueto theregister file a the initiation of runahead. Unfortunately, loads tend to outnumber
stores, which will result in more load than store miss initiated runahead episodes.

Thefirst set of plots, shown in Figures 4.41 through 4.43, isfor the GO benchmark. The
first of these plots, shown in Figure 4.41, isfor load prefetches. Note that virtually all of the
load prefetches generated are useful/right-path prefetches. Very few useless prefetches are
generated, and of these, useless/right-path prefetches predominate. A similar plot for store
prefetches is shown in Figure 4.42. The plot for instruction prefetches generated during
store-miss initiated episodes, shown in Figure 4.43, is very similar to that for instruction
prefetches generated during load-miss initiated runahead episodes, shown in Figure 4.29.

The only notable difference is that useful/right-path prefetches predominate over the entire
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course of the average runahead episode. Thisis due to the greater probability of staying on
the right path for store miss initiated runahead episodes, as can be seen in Figure 4.21. The
plotsfor the VORTEX, PERL, and | JPEG benchmarks are very similar to those obtained for
GO, and can be found in Figures 4.44 through 4.52. Note that the plotsfor STREAM shown
in Figures 4.53 and 4.54 are very similar to their load-miss initiated counterparts in Figures

4.39 and 4.40.
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Figure 4.43

Figure 4.44
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Figure 4.47

Figure 4.48
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Instruction Stream Prefetch Utility for PERL
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Figure 4.51
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Figure 4.53
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Data stream prefetching during instruction cache miss initiated runahead

Instruction miss initiated runahead is inherently more speculative than data stream miss
initiated runahead due to the uncertainty arising from the skipping of instructions. Note that
we do not present any results here for the STREAM benchmark due to its very low instruc-
tion cache missrate.

Thefirst set of plots, shown in Figures 4.55 and 4.56, are for the GO benchmark. The
first of these plots, Figure 4.55, isfor load prefetches. Note that useful prefetches outnumber
useless prefetches for about the first two dozen instructions into the average episode. After
this point the number of useless prefetches is approximately the same as the number of use-
ful prefetches. The situation is even worse for store prefetches, as shown in Figure 4.56.
Here useful prefetches are outnumbered by useless prefetches at the start of the average
runahead episode.

The second set of plots, shown in Figures 4.58 and 4.59, are for the VORTEX bench-
mark. Data stream prefetching during instruction cache miss initiated runahead episodes
makes no sense at al for VORTEX, as useless prefetches outnumber useful prefetches right
from the start.

Thethird set of plots, shown in Figures 4.61 and 4.62, are for the PERL benchmark. As
with GO, some number of useful load prefetches are generated during the first few instruc-
tions of the average runahead episode. This situation quickly changes however, with useless
prefetches outnumbering useful prefetches. Interestingly, most of the useful load prefetches
are on the wrong path. The situation reverses for store prefetches. most store prefetches are

useful.
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The fourth set of plots, shown in Figures 4.64 and 4.65, are for the IJPEG benchmark.
Most of the load and store prefetches are useful, although for store prefetches the ratio
approaches unity for runahead episodes that pre-process more than about 50 instructions.
Instruction stream prefetching during instruction cache miss initiated runahead

Data stream prefetches may suffer more from instruction cache miss effects than
instruction stream prefetches as the accuracy of data stream prefetches can be affected by
both register dependences upon skipped instructions and skipped branches. The validity of
instruction stream prefetch addresses is affected primarily by the processor missing
branches in skipped instruction cache lines. Thisimplies that the processor may benefit
more from instruction than data prefetching during instruction cache miss initiated
runahead episodes. As before, we do not present STREAM results here due to the extremely
low instruction cache miss rate for this benchmark.

Thefirst plot is for the GO benchmark, and is shown in Figure 4.57. Useful prefetches
outnumber useless prefetches by awide margin for the first two dozen or so instructionsinto
the average episode, after which the number of useless prefetches starts to become signifi-
cant. This comes about due to a tapering off of the number of useful prefetches that are on
theright path, which islargely a consequence of the processor missing taken branchesin the
instruction cache lines that are skipped. The number of wrong path prefetches, both useful
and useless, tend to increase linearly. Note that the wrong path curves tend to have a more or
less staircase shape, and that the width of each step isabout 8 instructions. Thisisaresult of
the fact that most of the wrong path prefetches are sequentially clustered after the runahead

initiating miss, and that the instruction cache line width is 8 instructions.
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The plots for the VORTEX and PERL benchmarks, shown in Figures 4.60 and 4.63
respectively, show essentially the same behavior as GO.

Thefinal plot isfor the IJPEG benchmark, and is shown in Figure 4.66. 1JPEG exhibits
different behavior, with useful/right path prefetches dominating all other types. Unfortu-

nately |JPEG does not suffer much from instruction cache misses, even without runahead.
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Figure 4.58

Figure 4.59
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Data Stream Prefetch Utility for PERL
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Data Stream Prefetch Utility for IJPEG
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4.4  Measurements of miss-prefetch spatial locality

Plots that illustrate the spatial locality between runahead-initiating misses and subse-
guently generated prefetches are provided in Figures 4.67 through 4.75.

The x = 0 point on each plot represents the cache line address of each runahead-initiat-
ing L1 data cache miss. The other points on the x-axis represent the distance in cache lines
between the address of each runahead-initiating miss and any prefetches that are generated
during the corresponding runahead episode. For example, X = 1 represents the address of the
next sequential line in the address space after the address that caused the runahead-initiating
miss. The y-axisis a cumulative value. Its value at a particular x, say x = 35, represents the
cumulative total of all runahead prefetches generated for any of the 35 sequential line

addresses after the address of the missthat initiated runahead. The negative portion of the x-
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axis represents addresses before the runahead-initiating miss. The extreme datapointsat X =
+/- 100 lines represent the total number of runahead prefetches generated including those
whose addresses correspond to lines that are at least 100 lines distant from their correspond-
ing runahead-initiating misses. We include cumulative totals for both useful and useless

prefetches on each plot.

4.4.1 Data stream prefetch locality

The fact that our ssmulated runahead processor can generate data stream prefetches dur-
ing load-, store- and instruction-miss initiated runahead episodes complicates things some-
what. It does not make sense to talk about locality between data stream prefetches and
runahead-initiating instruction stream accesses. For this reason the data stream prefetch
locality plots that we present in this section are only for data stream prefetches that are gen-
erated during runahead episodes that are initiated on data cache misses. At any rate, rela-
tively few data stream prefetches are generated during instruction stream runahead
episodes.

Thefirst data stream locality plot isfor the GO benchmark, and is shown in Figure 4.67.
Aswe saw earlier in the prefetch utility plots, virtually all of the prefetches are useful. The
spikes at x = +/-100 indicate that most of the prefetches are for lines at addresses far
removed from that of their runahead initiating miss. Note that while virtually all of the use-
less prefetches fall into this category, a small fraction of the useful prefetches show some
gpatia locality with the runahead initiating miss. The plot for PERL, shown in Figure 4.68,
isvery similar to that for GO.

The third data stream prefetch locality plot is for the VORTEX benchmark, and is

shown in Figure 4.69. Nearly one-half of the prefetches are for lines that are located a small
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positive distance from their runahead initiating miss. Nearly all of the remaining prefetches
arefor linesthat show little spatial locality. Again, note that very few prefetches are useless,
and that most of the useless prefetches show little spatial locality with their runahead-initiat-
ing miss.

The fourth data stream prefetch locality plot is for the IJPEG benchmark, and is shown
in Figure 4.70. As with GO and PERL, most of the prefetches are for lines that show little
gpatia locality, and there are very few useless prefetches. The staggered nature of the useful
prefetch curve is due to the way in which 1JPEG structures it accesses.

The final data stream prefetch locality plot is for the STREAM benchmark, and is
shown Figure 4.71. Many of the useful prefetches are for lines that are a small positive dis-
tance from their runahead initiating miss: these represent prefetches for the array that
caused the runahead-initiating miss. The spikes at x = +/- 100 represent prefetches gener-
ated for arrays other than the one containing the runahead-initiating miss. Prefetchesfor one

array exhibit no locality with respect to accesses in another, as the arrays do not overlap.
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Figure 4.69

Figure 4.70

Data Stream Prefetch Locality for VORTEX
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Data Stream Prefetch Locality for STREAM
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4.4.2 Instruction stream prefetch locality

The instruction stream prefetch locality plots require some additional discussion before
we can present them. The locality between instruction stream prefetches generated during
runahead episodes that are initiated by instruction stream accesses is easy to calculate and
understand. However, the locality of instruction stream prefetches generated during data
stream access initiated runahead is not quite so straightforward. We define the locality of
these instruction stream prefetches to be difference between the cache line addresses of the
instruction prefetches and the cache line address of the PC of the load or store access that
initiated the runahead episode. Aswas the case with the prefetch utility plots, we do not pro-
vide a plot here for the STREAM benchmark due to its extremely low instruction cache

missrate.
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Thefirst instruction stream prefetch locality plot isfor the GO benchmark, and is shown
in Figure 4.72. This plot looks nothing like its data stream counterpart in Figure 4.67. The
overwhelming majority of the prefetches are for linesthat are a small positive distance from
their runahead initiating miss. This was expected, as instruction stream accesses typically
exhibit a significant amount of spatial locality, which iswhy sequential prefetching tech-
niques work well with the instruction stream of most applications. Most of the prefetches
that are generated for lines very close to their runahead initiating miss are useful; theratiois
lower the farther away they are generated. This was also expected. The plots for the VOR-
TEX and IJPEG benchmarks, shown in Figures 4.73 and 4.74 respectively, are essentially
similar to that for GO.

The fourth instruction stream prefetch locality plot is for the PERL benchmark, and is
shown in Figure 4.75. Thisfigure is essentially similar to that for GO, with the exception
that the majority of the prefetchesthat are generated are useless. Even so, prefetchesthat are

generated for lines very close to that of the runahead initiating miss are likely to be useful.
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Instruction Stream Prefetch Locality for GO
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Instruction Stream Prefetch Locality for IJPEG
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4.5 What happens to potential data stream prefetches during runahead

Many of the pre-processed load and store instructions are unable to generate prefetches
for avariety of reasons.

» theinstruction could not generate its target address with a VALID register, or
the instruction hit in the L1 data cache, obviating the need to prefetch, or

» ademand fetch or prefetch for the missing line was already in progress, or

» the prefetch queue was full, forcing the processor to drop the prefetch, or

» the prefetch missed in the L2 data cache but its virtual page had not yet been the
target of a demand fetch (page fault).

If apotential prefetch does not fall into any of the above categories, it will eventually be

serviced by the memory hierarchy. Once thisoccursit is still possible for the prefetch to fall
into the useless prefetch category if its corresponding line in the L1 data cache is not
accessed during normal operation beforeit is cast out of the cache, or the simulation ends.

We have divided up all of the potential load and store prefetches encountered during
each simulation into the above categories, and present them in Figure 4.76. There are two
stacked bars for each of the benchmarks: one each for load and store instructions. The
height of each bar represents the total number of loads and stores that are preprocessed dur-
ing the course of each simulation. Note that it is possible for this number to be quite high:
the number of loads and stores pre-processed during the STREAM simulation exceeds the
number of instructions of all typesthat are actually executed during the course of the simu-
lation. Thisis a consequence of the processor spending more time in runahead than in nor-
mal operation.

From Figure 4.76 it can be seen that a small fraction of the pre-processed loads and
stores generate prefetches. For the SPEC benchmarks most of the potential prefetches are

lost as they either hit in the L1 data cache or their address register isINV. Thefirst category
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ismisleading, as the fact that their accesses hit in the L1 data cache means that a prefetch is
unnecessary. For this reason we have reproduced the plot in Figure 4.76 in Figure 4.77, with
the L1 data cache hit category removed.

For the SPEC benchmarks most of the potential prefetches that can compute their target
addresses, and that do not correspond to an in-flight fetch or prefetch, actually generate
prefetches that are useful. Very few are dropped due to page faults or afull prefetch queue.
The only SPEC benchmark that has to drop a significant number of prefetches due to afull
gueue is VORTEX, which it does for store prefetches.

The STREAM benchmark exhibits different behavior. A very large fraction of the
potential prefetches correspond to lines for which there is already an outstanding prefetch.
The nature of the benchmark leads to agreat deal of overlap between consecutive runahead
episodes. Very few are dropped due to an outstanding demand fetch; again the nature of the
benchmark ensures that most accesses that go out to off-chip memory are prefetches and not
demand fetches. A large fraction of the potential prefetches are dropped due to a full data
stream prefetch queue. Increasing the size of the prefetch queue cannot improve perfor-
mance as the main memory interface is already saturated with fetch, prefetch, and store-
through requests. STREAM has an average main memory bandwidth of 1.39 GB/s, corre-

sponding to an 87% utilization of peak bandwidth (Figure 4.9).
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4.6 Branch Prediction Effects

Branch mispredictions can cause a runahead processor to pre-process instructions down
wrong paths, which can reduce performance by generating useless prefetches.

A runahead processor may be able to reduce the number of branch mispredictions dur-
ing both runahead and normal operation by pre-processing branch instructions before they
are executed during normal operation. Conditional branch outcomes are recorded in the
Runahead Branch Register (RBR) during runahead episodes for use during normal opera-
tion as branch predictors. The RBR contents can also be used during runahead episodes that
overlap with previous episodes. In this way the RBR functions as a small window into the
likely future outcome of conditional branches. Refer to Chapter 3 for more details on RBR
operation.

The number of outcomes that are added to the RBR is proportiona to the length of the
average runahead episode, which is roughly equal to the average latency to off-chip mem-
ory. Thisleads to an interesting trade-off: a runahead processor with a high latency to off
chip memory may have a better branch misprediction ratio than arunahead processor with a
low latency off-chip memory. The potentially improved branch misprediction rate, com-
bined with the longer runahead episode length, may allow arunahead processor with a high
latency (or inexpensive) off chip memory hierarchy to have performance competitive, or
perhaps even superior to, a runahead processor with alow latency (or expensive) off-chip
memory hierarchy.

One factor that can affect the accuracy of predictorsin the RBR is L1 instruction cache
misses. Our baseline runahead processor can enter runahead mode on instruction cache

misses, and once in runahead mode continues to pre-process instructions even if subsequent
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instruction cache misses occur. The processor does this by assuming that the instructions in
the missing instruction cache line are not of critical importance during runahead and ssmply
skips over them sequentially until either normal operation resumes, or it finds a sequential
instruction cache line to pre-process. This skipping of instructions can cause the RBR to
yield incorrect predictors if the skipped instructions would have modified a branch condi-
tion or contain a taken branch.

In order to address these concerns we present several sets of branch misprediction data
for each of our benchmarks. The baseline for comparison is a non-runahead processor using
1024 2-hit counters to predict conditional branches. Several runahead processor configura-
tions are compared with this basdline. All of them have a 1024 entry RBR in addition to the

1024 2-hit counters. These moddls are as follows;

1. Runahead with real L2 instruction and data caches
2. Runahead with perfect L1 instruction cache and real L2 data cache
3. Runahead with perfect L1 instruction cache and no L2 data cache

The first model is the standard runahead processor model that we have been using all
along. Thismodel can incur instruction cache misses which can interfere with the operation
of the RBR. The second model has a perfect L1 instruction cache, and is intended to illus-
trate more clearly the performance enhancing capabilities of the RBR approach. The third
model is the same as the second, only it has no L2 data cache. The lack of an L2 data cache
dramatically increases the length of the average runahead episode, which provides the pro-

cessor with more opportunities to add branch outcomes to the RBR.
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4.6.1 Branch misprediction rates

We present our branch misprediction statistics in Figures 4.78 through 4.82 with a series
of four stacked bars for each benchmark: one bar for the non-runahead processor and one
each for the three different runahead processor configurations. The height of each bar repre-
sents the total number of conditional branches executed in the benchmark in question. Asa
result all of the bars for each benchmark are the same height. However, each bar is divided
into two sections representing the number of branches predicted with the RBR and the num-
ber of branches predicted with the 2-bit counters. The overall branch misprediction rate
(percentage) for each processor configuration is provided at the top of the each bar. The
branch misprediction rates for branches predicted with the RBR and 2-bit counters are pro-
vided to the right of their portion of each bar.

Theresults for the STREAM benchmark are shown in Figure 4.78. Note that the branch
misprediction rate for all of the processor configurations is zero. The non-runahead proces-
sor naturally has to use the 2-bit counters to predict all of its benchmarks, while the
runahead processors use the RBR to predict all of their branches. The RBR is able to pro-
vide predictors for all of the conditional branches as aresult of the regular behavior of the
STREAM benchmark. The small size of the STREAM executable also helpsin that there
are virtually no instruction cache misses. The fact that the branchesin STREAM are inde-
pendent of the streaming data also helps. The RBR works very well for this benchmark,
unfortunately the simple nature of this benchmark does not require sophisticated branch
prediction: static branch prediction would suffice.

The results for the IJPEG benchmark are shown in Figure 4.79. This benchmark exhib-

its markedly different behavior than STREAM: the RBR is effectively utilized during
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runahead episodes, but the realistic nature of IJPEG as compared to STREAM keeps things
under control. For the baseline runahead processor the RBR misprediction rate is afairly
low 8.98%. Unfortunately only 13% of the conditional branches are serviced by the RBR,
preventing it from contributing much to the overall branch misprediction rate of 10.12%.
The 2-hit counters have a misprediction rate of 10.26%, which is only dlightly higher than
the 2-bit counter rate for the non-runahead processor. Thisis aresult of instruction cache
misses during runahead, which can cause the processor to go down wrong paths and/or miss
conditional branches during runahead. Both can result in the 2-bit counters getting improp-
erly updated during runahead, and can also cause outcomes to be added in the wrong
sequence to the RBR. This results in mispredictions that would otherwise not happen. This
can be seen in the third stacked bar, which is for the runahead processor with a perfect L1
instruction cache. Note that both the 2-bit counter (10.24%) and RBR (8.56%) branch
misprediction rates are reduced, resulting in an overall branch misprediction rate of 10.05%.
Unfortunately, this overall branch misprediction rate is still close to that of the non-
runahead processor without the RBR. The fourth stacked bar represents a runahead proces-
sor identical to that of the third, only without an L2 data cache. The lack of an L2 data cache
significantly increases the length of the average runahead episode, providing the processor
with more opportunities to add outcomes to the RBR. Removing the L2 data cache allows
the RBR to service 39% of the conditional branches, with a misprediction rate of 5.23%.
The longer runahead episodes also provide more opportunities to train the 2-bit counters,
resulting in an improved misprediction rate of 9.84%. The overall misprediction rate for this

runahead processor is asignificantly improved 8.56%.

131



The results for the VORTEX benchmark are shown in Figure 4.80. Unfortunately
runahead does not help the branch misprediction rate for this benchmark at al. The non-
runahead processor is able to get a respectably low misprediction rate of 6.65% with only
the 2-bit counters. The baseline runahead processor (second stacked bar) increases this
somewhat to an overal rate of 7.95%. Nearly half of the conditional branches are serviced
by the RBR, at a 7.66% misprediction rate, while the remainder are serviced by the 2-bit
counters, at a8.16% misprediction rate. The situation isimproved somewhat when a perfect
L1 instruction cache is used (third bar). Here the overall misprediction rate of 6.67% is
nearly identical to that of the non-runahead processor, with a significantly lower rate of
4.81% provided by the RBR. Thisimproved RBR performance is offset by the 2-bit counter
misprediction rate of 8.16%. Eliminating the L2 data cache makes things worse with an
overall misprediction rate of 8.34%, an RBR rate of 7.12%, and a 2-bit counter rate of
10.19%.

Theresults for the GO benchmark are shown in Figure 4.81. Runahead is ableto consis-
tently improve the branch misprediction rate for this benchmark. The non-runahead proces-
sor (first bar) has a rather high misprediction rate of 21.95%. This is improved upon
somewhat with the baseline runahead processor (second bar) which achieves an overall rate
of 21.09%, with an RBR rate of 20.41% and 2-bit counter rate of 21.49%. The mispredic-
tion rate improves even more when a perfect L1 instruction cache is added (third bar) pro-
viding an overall rate of 20.75%. Eliminating the L2 data cache provides a large
misprediction rate improvement (fourth bar), with an overall rate of 16.73%. The RBR

misprediction rate is reduced to 13.31%, and the 2-bit counter rate to 20.88%.
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The results for the PERL benchmark are shown in Figure 4.82. The non-runahead pro-
cessor utilizing only the 2-bit counters (first bar) provides a misprediction rate of 10.86%.
The baseline runahead processor (second bar) has a somewhat worse overall misprediction
rate of 13.19%. Thisislargely the result of the rather large RBR misprediction rate of
16.66%, and is caused by instruction cache misses during runahead which alow the RBR to
get out of sync with the instruction stream. When a perfect L1 instruction cache is used
(third bar), the situation improves. While the overall misprediction rate is not significantly
improved (10.34%), the RBR rate does come down to 9.45%. The best results are obtained
when the L2 data cache is deleted (fourth bar). When thisis done the overall branch mispre-
diction rate drops to 9.84%. Thisis entirely due to the RBR rate dropping to 8.65%, as the
2-bit counter rate increases dightly to 11.63%

Note that increasing the length of the average runahead episode does not necessarily
trandate into afourfold increase in the proportion of branches serviced by the RBR. Thisis
a consequence of our using aggressive runahead, which relies upon branch prediction to
resolve conditional branches during runahead that cannot be resolved with VALID registers,
aswell asanincrease in overlap between successive runahead episodes, which prevents the
addition of branchesto the RBR. If a branch prediction is incorrect, then the processor will
go down the wrong path during the runahead episode. This can add many wrong path
branch outcomes to the RBR, which are likely to be incorrect. The RBR detects these cor-
rupted entries and flushes them when the processor discovers that a conditional branch has
been mispredicted with the RBR. Whileit is possible to flush additional incorrect predictors
from the RBR before they cause mispredictions during normal operation, it is not possible

to flush the 2-bit counters. This inability to unwind the 2-bit counter state leads us to con-
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clude that it may be possible to improve performance if 2-bit counter updates are not

allowed during runahead.

134



Figure 4.78
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igure 4.80

Figure 4.81
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Conditional Branch Statistics for PERL
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4.6.2 Runahead Branch Register Utilization

These ssimulations assume that the RBR can hold up to 1024 predictors in an attempt to
ensure that RBR size is not a performance limiting factor. The average number of outcomes
added to the RBR during runahead is a particularly useful statistic. Unfortunately thisis not
the entire picture, as runahead episodes can overlap, during which time outcomes cannot be
added to the RBR. Instead, outcomes are read out of the RBR (non-destructively) for use as
predictors during runahead. This results in an interesting trade-off: less overlap allows the
processor to potentially add more outcomes to the RBR for use during normal operation, but
the presence of overlap allows the processor to use the RBR as a predictor during runahead,
which may increase the likelihood that runahead will stay on the proper path and generate

more useful prefetches than would otherwise be the case.
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We have measured the above statistics for each of the three runahead processor configu-
rations previoudly described, and present the results for each benchmark in Figure 4.83. The
height of each stacked bar in Figure 4.83 represents the number of outcomesin the RBR at
the conclusion of the average runahead episode. These outcomes are divided into two cate-
gories: those corresponding to branches that overlap with prior runahead episodes, and
those that were added to the RBR during the current runahead episode. As was mentioned
earlier, the overlap outcomes were used as predictors during runahead, while the non-over-
lap outcomes were added to the RBR during runahead. Thereis also an AVERAGE case for
each runahead processor configuration, which is simply the mean of the resultsfor all of the
benchmarks.

Note that for amost all of the benchmarks there are more RBR outcomes used as pre-
dictors during runahead then there are outcomes added to the RBR. The only exception to
thisruleis STREAM. The average number of outcomes in the RBR increases significantly
when a perfect L1 instruction cache is used (the center group). The average number of out-
comes in the RBR is directly related to the average number of outcomes added to the RBR,
which is proportional to the number of instructions actually preprocessed on average. Hence
reducing the instruction cache miss rate (or simulating a perfect instruction cache) is one
way of increasing RBR utilization.

Eliminating the L2 data cache (right-most group) significantly increases the length of
the average runahead episode, which increases the number of branches pre-processed. This
can be readily seen in Figure 4.83. The only exception is the STREAM benchmark, which

does not benefit from the L2 data cache due to its lack of data stream locality.
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4.7 Summary and Conclusions

The highlights of our experimental results are as follows:

Runahead leads to a significant reduction in CPI for al of the benchmarks that
were examined. Thereductionin CPI attributable to runahead ranges from 16% for
| JPEG to 77% for STREAM.

Data stream prefetches generated during load and store miss initiated runahead
episodes are highly likely to be useful: typically at least 90% of prefetched lines
are accessed at least once during normal operation. Data stream prefetches gener-
ated after an instruction cache missis detected are less likely to be useful, however
very few of these are generated.

Instruction stream prefetches generated during runahead episodes are likely to be
useful: typically about two-thirds of prefetched lines are accessed at least once

during normal operation.
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* Runahead can improve conditional branch prediction accuracy to some extent for
some benchmarks. Our results indicate that attempting to save branch outcomes
during runahead for use during normal operation will not noticeably improve per-
formance in most cases.

* Theprice of these improvementsis an increase in the bandwidth that the L2 caches
and main memory buses must supply. Main memory bus utilization can become a
bottleneck for some benchmarks, such as STREAM. Fortunately most of the bus
bandwidth dedicated to prefetching is useful.

The most important result of these experimentsisthat it is possible to achieve good per-
formance with even a simple pipeline when runahead is employed. Other than the poten-
tially troublesome register file save and restore operation, the hardware required to
implement runahead is rather modest, and should not impact the cycle time of an aggressive
Processor.

Allowing the processor to generate data stream prefetches during instruction cache miss
initiated runahead episodes appears to be of dubious utility. Any data stream prefetches that
are generated are about as likely to be useless as they are to be useful. However, the rela
tively few data stream prefetches that were generated in this fashion did not have a notice-
able impact on our simulations.

Allowing the processor to generate instruction stream prefetches will improve perfor-
mance. Instruction prefetches generated during load- and store-miss runahead episodes are
more likely to be useful than their instruction-missinitiated runahead counterparts, although
the majority of the latter are still useful. Reducing the number of instruction prefetches that
are generated, particularly those generated late in the average runahead episode, may

improve performance.
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Chapter 5

Runahead at the Instruction and Function level

Thus far we have confined ourselves to looking at the effects that runahead has on over-
all performance statistics: CPl, number of prefetches generated, etc. Unfortunately, these
statistics do not give us any information about what is happening during runahead for indi-
vidual functions or instructions. This chapter addresses these concerns.

We modified our smulator such that it could record information about runahead on a
per instruction basis. This was done by associating counters with every instruction in the
benchmark. These counters record the following statistics:

* ThePC, IPC, mnemonic, and registers used by the instruction

* number of useless prefetches generated by the instruction

* number of useful prefetches generated by the instruction

* number of times aline prefetched by an instruction is accessed during normal
operation

* number of demand fetches generated by the instruction during normal operation

* number of timesaline demand fetched by an instruction is accessed during normal
operation

* number of times the instruction is executed during normal operation

* number of timesthe instruction is pre-processed during runahead
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We also wanted to be able to determine exactly where in the benchmark source code
each of the prefetch-generating instructions are. This was done by having ATOM record the

function, source file name, and line number for every instruction in each benchmark.

51 Processor Model

All of the smulation results reported in this chapter are for processors that have perfect
L1 instruction cache. This was done to remove second order effects from our processor
model, as our intent is to examine what happens when instructions are actually pre-pro-
cessed. In al other respects the runahead and non-runahead processor models are the same

as those described in Chapter 3.

5.1.1 The distribution of prefetches on a per-function basis

In this section we present a breakdown of prefetch activity in each function. Tables 5.1
through 5.4 contain alisting of the top 40 prefetch producing functions in each benchmark.
STREAM results are not provided, as this benchmark does not perform any function calls.
Each entry provides the function name, the number of prefetches generated by instructions
within the function, the fraction of the prefetches that were useful, and the fraction of all
prefetches that were generated by the function. This last entry is used to sort the table

entries in descending order.
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Table 5.1 Prefetches Generated by Most Prolific Functions in GO
Prefetches Fraction of Fraction of
Function Name Generated Prefetches that all Comment
by Function are Useful Prefetches
blockuc 179100 0.921173 0.088261
addlist 150427 0.786355 0.074131
mrglist 76359 0.947786 0.037630
dellist 68390 0.935195 0.033703
chckside 65733 0.938844 0.032393
lupdate 52084 0.968052 0.025667
getterr 51463 0.849620 0.025361
getefflibs 46609 0.938124 0.022969
bestpot 42462 0.928148 0.020925
cpylist 41615 0.983011 0.020508
check_ex 38542 0.903741 0.018994
undercut 36995 0.910285 0.018231
Idndate 36097 0.945923 0.017789
radiatepiece 35322 0.944850 0.017407
adpot 33612 0.961353 0.016564
upltr 32795 0.940845 0.016161
iscaptured 31468 0.952205 0.015507
getarmyuc_pot 30681 0.880023 0.015120
findshapes 28236 0.989092 0.013915
fixcnprot 26140 0.891048 0.012882
newalive 24763 0.942333 0.012203
rmpot 23162 0.955919 0.011414
getarmyex_pot 22247 0.940037 0.010963
getarmynbp 21797 0.811625 0.010742
markspot 21764 0.974959 0.010725
extendforeyes 21295 0.933412 0.010494
startalive 20871 0.877150 0.010285
pointeyes 19663 0.865789 0.009690
getarmyth_pot 19606 0.905437 0.009662
getarmycn_pot 19418 0.875322 0.009569
evalibsterr 19245 0.924136 0.009484
getarmylibs 17697 0.946319 0.008721
canrunhere 17379 0.885494 0.008564
getarmytv_pot 15599 0.891211 0.007687
Icombine 15307 0.969360 0.007543
findblock 15212 0.911320 0.007496
cntterr 15212 0.936563 0.007496
genrestatk 14330 0.942917 0.007062
initarmyalive 13245 0.843488 0.006527
livesordies 13119 0.926443 0.006465
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Table 5.2 Prefetches Generated by Most Prolific Functions in IJPEG

Prefetches Fraction of Fraction of
Function Name Generated Prefetches that all Comment
by Function are Useful Prefetches

rgb_ycc_convert 644767 0.989852 0.750714
rgb_ycc_start 43508 0.780730 0.050657
decode_mcu 26810 0.942186 0.031215
jpeg_idct_islow 19038 0.998949 0.022166
h2v2_merged_upsample 15500 0.989097 0.018047
memset 12792 1.000000 0.014894 libc/memset.s
fullsize_smooth_downsample 9404 0.870693 0.010949
h2v2_smooth_downsample 8227 1.000000 0.009579
encode_one_block 7081 0.797486 0.008245
sep_downsample 6168 1.000000 0.007182
spec_difference_images 5085 0.984267 0.005921
forward_DCT 4624 0.994810 0.005384
expand_right_edge 4207 1.000000 0.004898
pre_process_context 3689 0.995392 0.004295
jpeg_fdct_islow 3090 1.000000 0.003598
encode_mcu_huff 3047 1.000000 0.003548
fix_huff_tbl 2813 0.991824 0.003275
decompress_data 2547 1.000000 0.002966
merged_2v_upsample 2488 1.000000 0.002897
start_pass_merged upsample 2427 1.000000 0.002826
process_data_simple_main 2261 1.000000 0.002633
compress_output 2017 0.731780 0.002348
_divl 1830 1.000000 0.002131 libc/divrem.s
jpeg_read scanlines 1790 1.000000 0.002084
compress_data 1711 0.906487 0.001992
fill_bit_buffer 1688 0.999408 0.001965
compress_first_pass 1598 0.948686 0.001861
memcpy 947 1.000000 0.001103 libc/memcpy.s
encode_mcu_gather 836 0.997608 0.000973
access virt_barray 788 0.623096 0.000917
htest_one_block 787 0.872935 0.000916
decompress 731 0.998632 0.000851
spec_define_subimage_int 661 0.998487 0.000770
_doprnt 620 1.000000 0.000722 libc/doprnt.c
free 599 0.994992 0.000697 libc/malloc.c
gen_huff_coding 550 1.000000 0.000640
malloc 500 0.994000 0.000582 libc/malloc.c
cartesian_alloc 494 0.961538 0.000575 libc/malloc.c
start_input_pass 489 0.883436 0.000569
read_markers 441 0.968254 0.000513
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Table 5.3 Prefetches Generated by Most Prolific Functions in PERL

Prefetches Fraction of Fraction of
Function Name Generated Prefetches that all Comment
by Function are Useful Prefetches
malloc 570019 0.884549 0.300116 [ibc/malloc.c
eva 253016 0.999186 0.133213
cmd_exec 237005 0.999439 0.124783
regexec 150807 1.000000 0.079400
str_gets 133191 0.998851 0.070125
str_sset 129381 0.991629 0.068119
hsplit 124980 0.606377 0.065802
str_new 54913 0.992916 0.028912
memmove 47028 0.998830 0.024760
safemalloc 34438 0.987369 0.018132
str_nset 33081 0.979535 0.017417
hfetch 27634 0.980097 0.014549
cartesian_alloc 18238 0.797291 0.009602 libc/malloc.c
do_match 16457 0.992830 0.008665
memcpy 15958 0.915904 0.008402 libc/memcpy.s
str_grow 10661 0.936591 0.005613
hash_insert 10439 0.985631 0.005496 libc/malloc.c
memset 8958 0.998326 0.004716 libc/memset.s
hstore 7888 0.901242 0.004153
cartesian_insert 5562 0.922869 0.002928 libc/malloc.c
nsavestr 2675 0.875888 0.001408
yyparse 2048 0.878906 0.001078
str_magic 816 0.976716 0.000430
yylex 776 0.905928 0.000409
stabent 374 0.903743 0.000197
free 359 0.774373 0.000189 libc/malloc.c
cartesian_free 260 0.934615 0.000137 libc/malloc.c
make_op 143 0.958042 0.000075
cartesian_merge 138 0.949275 0.000073 libc/malloc.c
op_new 131 0.984733 0.000069
cartesian_growheap?2 125 1.000000 0.000066 libc/malloc.c
scanident 123 0.959350 0.000065
realloc 124 0.951613 0.000065 libc/malloc.c
yyerror 111 0.333333 0.000058
scanstr 100 0.960000 0.000053
__filbuf 94 1.000000 0.000049 libe/filbuf.c
str_free 91 0.890110 0.000048
make_acmd 91 0.978022 0.000048
block_head 79 1.000000 0.000042
main 60 0.900000 0.000032
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Table 5.4 Prefetches Generated by Most Prolific Functions in VORTEX

Prefetches Fraction of Fraction of
Function Name Generated Prefetches that all Comment
by Function are Useful Prefetches

memset 306155 0.999824 0.176391 libc/memset.s
Chunk_ChkGetChunk 235250 0.964973 0.135539

TmFetchCoreDb 95140 0.979241 0.054815

memcpy 72160 0.962486 0.041575 libc/memcpy.s
Mem_GetWord 62077 0.982200 0.035766

Grp_GetRegion 46910 0.939139 0.027027

TransGetMap 46152 0.993326 0.026590

OaGet 44366 0.969346 0.025561

Ut_StackTrack 43600 0.668991 0.025120

Tree_CompareKey 42506 0.899308 0.024490

C_ReFaxToDb 38364 0.975263 0.022103

Mem_GetAddr 31738 0.997416 0.018286

malloc 24902 0.924745 0.014347 libc/malloc.c
SpclAddintoTree 24739 0.996605 0.014253

Ut_MoveBytes 21900 0.993607 0.012618

Person_Import 18599 0.984462 0.010716
Grp_GetFrozenEntry 17318 0.965412 0.009978

SaFindin 17101 0.945442 0.009853

OmGetObjHdr 16641 0.886545 0.009588

Grp_GetEntry 15760 0.999873 0.009080

Kernel GetAttrinfo 14922 1.000000 0.008597

__divlu 13990 0.992995 0.008060 libc/divrem.s
OaGetObject 13866 0.984494 0.007989

Tree Addinto 12999 0.833141 0.007489

OaUpdateObject 12830 0.995012 0.007392

Void_ExtendCore 12824 0.988459 0.007389
Tree_RecurseSearch 11986 0.930502 0.006906

sprintf 11949 0.302536 0.006884 libc/sprintf.c
Trans_FetchAttrOffset 11217 0.999554 0.006463
Chunk_ChkPutChunk 10887 0.982824 0.006273

OmGetObject 10736 0.792288 0.006186

printf 10621 0.147350 0.006119

Ut_PrintErr 10480 0.955057 0.006038

EnvFetchAttrOffset 10376 0.912298 0.005978

Tmilsvalid 10356 0.968231 0.005967

EnvFetchObjSize 9851 0.998985 0.005676

C_GetObjectimage 9836 0.999593 0.005667
Tree_GetRecursePos 9729 0.998664 0.005605

Ut_CompareString 9500 0.941579 0.005473
Mem_NewChunkChunk 9450 0.994074 0.005445
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5.1.2 The distribution of prefetches on a per-instruction basis

We were particularly interested in finding out which instructions were the most effective
at generating prefetches during runahead. It turns out that a small fraction of the load and
store instructions tend to generate most of the prefetches. Thisisillustrated in Figure 5.1.
The load and store instructions in each benchmark are sorted based upon the number of
prefetches that they generate. The instructions in this sorted list are then divided into 10
groups, or deciles, each of which generate approximately 10% of the total prefetches. The
first decile in each stacked bar (depicted at the top of each bar) corresponds to a very small
fraction of the total number of load and store instructions that generate prefetches. The size
of the deciles increase as you move down each bar, corresponding to the lower number of
prefetches generated by each load and store instruction in the deciles. In other words, the
load and store instructions in the higher deciles are more effective at generating prefetches.
Note that we provide the number of instructions in each decile to the right of each stacked
bar.

For example, only 15 instructions generate 10% of the prefetches for the GO bench-
mark. The next 10% of the prefetches are generated by 30 instructions. The number in each
decile increases swiftly until we reach the tenth decile, which consists of 8634 instructions.
The decile breakdowns for the rest of the SPEC benchmarks are similar to that for GO. The
very small number of instructions in the STREAM benchmark result in 90% of the

prefetches being generated by only 9 instructions.
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It is possible of course that the utility of the prefetches generated in each decile may be
quite different. For example, the fact that alarge number of prefetches are generated by the
relatively few instructions in the first decile is of little importance if a majority of the
prefetches generated by them are useless. Similarly, the large number of instructionsin the
10th decile may be more important if most of the useful prefetches that are generated arein
this decile. To address these concerns we computed the fraction of the total prefetchesin
each decile that are useful for each benchmark. These fractions are provided in Figure 5.2.

The fraction of the prefetchesin each decile that are useful is consistently high for al of
the benchmarks. As we have seen in earlier chapters, all of the prefetches generated by
STREAM are useful, which manifests itself as a straight-line across the top of Figure 5.2.
The rest of the benchmarks are not quite as well behaved, but they are fairly consistent
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across the deciles nonetheless, indicating that we can safely assume that the proportion of
useful to useless prefetches is uniform across the deciles for al of the benchmarks.

If this was not the case, then we could easily use the compiler to improve runahead per-
formance even more. Suppose, for example, that first few deciles of instructions for a
benchmark produce nearly all of the useful prefetches. Thisimplies that the overwhelming
bulk of the large number of load and store instructions in the remaining deciles are produc-
ing useless prefetches. Using this information we could have the compiler mark the load
and store instructions in the useless deciles such that the processor will not generate
runahead prefetches for them on a miss during runahead. This could dramatically cut down
on the number of useless prefetches that are generated, and lead to a significantly better uti-

lization of the memory hierarchy as well as better performance overall.

149



Fraction of prefetches in each decile that are useful

1-1 T T T T T T T T T T
1.0+ - ]
[} r X
509 7 T N
Z 0.8 | .
o 0.7+ —ao .
o — Ioes
igure 5.2 :5’_) 0.6r —\s/grs;[g)r(n ‘
S 05¢ ]
S 04 .
£ 03} .
£ 02t -
0.1 |
0123 4 5 6 7 & 9 10
Decile

5.1.3 Where are the most useful loads and stores in the source code?

We now present an analysis of the load and store instructions in the top decile of each
benchmark. Compiler register usage conventions are provided in Table 5.5, “DEC OSF/1
Alpha Register Usage,” on page 166.

The GO benchmark
In the top decile for GO, four of the fifteen instructions in the decile are in the

addl i st () function. Thisfunction isshown in Figure 5.3.
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Figure 5.3 addlist() function from the GO benchmark

int addlist(int value,int* head){ #4 Idl a2, 0(al)

register int ptr,optr; #2 sdaddq a2, a5, t2
if(list[*head] > value){ /* add to front of list */ Idl vO, 0(t2)
ptr = *head; cnplt a0, vO, t3

*head = freelist;
Dot o= i 0 ; . beq t3, 0x10032758
freelist = links[freelist]; '
l'inks[*head] = ptr; I dg t0, -24936(gp)
list[*head] = val ue; ldg t1, -24944(gp)
return( TRUE) ;
}
if(list[*head] == val ue)return(FALSE);
optr = *head;
\Ahile(tl){ i nksfopt 1] #1 s4addq a4, tl1, a2
ptr = links[optr];
if(list[ptr] >= val ue){ ldl a3, 0(a2)
if(list[ptr] == value)return(FALSE);

links[optr] = freelist;
list[freelist] = val ue;
freelist = links[freelist];
links[links[optr]] = ptr;
return( TRUE);

} s4addq a3, tl1, a2
optr = links[ptr]; #15 I dl a4, 0(a2)
if(list[optr] >= val ue){

if(list[optr] == value)return(FALSE);

links[ptr] = freelist;
list[freelist] = val ue;
freelist = links[freelist];
links[links[ptr]] = optr;
return( TRUE) ;

}
ptr = links[optr];
if(list[ptr] >= value){
if(list[ptr] == value)return(FALSE);

links[optr] = freelist;
list[freelist] = val ue;
freelist = links[freelist];
links[links[optr]] = ptr;
return( TRUE);

}

optr = links[ptr];

if(list[optr] >= val ue){
if(list[optr] == value)return(FALSE);
links[ptr] = freelist;
list[freelist] = val ue;
freelist = links[freelist];
links[links[ptr]] = optr;
return(TRUE);

}

The third most productive prefetch instruction is in the function under cut () , shown

in Figure 5.4.
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Figure 5.4 undercut() function from the GO benchmark

int undercut(int s,int dir,int dir2,int c,int udir,int udir2){
int Icount = 0, rcount=0,sn, g, uc, cval,dist;

sn = s-dir: addq s2, s2, tl12

il Idq t5, -28352(gp)
sn +=dir; s8addq t12, t5, s6
g = board[sqrbrd[sn][udir]]; addq s6, t8, t6
dist = dstbrd[sn][udir]; #3 1'dl 's4, 0(t6)

uc = grcolor[g];

if((gralive[g] < SMOTHERED || gralive[g] > DEAD) &&
uc == 1-c && canundercut(sqrbrd[sn][udir],dir2,sn,dist)){
| count ++;

}

if((gralive[g] == SMOTHERED || grthreatened[g]) &% uc == c &&
dist < 2)
| count ++;

g = board[sqrbrd[sn][udir2]];

dist = dstbrd[sn][udir2];

uc = grcolor[g];

if((gralive[g] < SMOTHERED || gralive[g] > DEAD) &&
uc == 1l-c && canundercut (sqrbrd[sn][udir2],-dir2,sn,dist)){
rcount ++;

}
if((gralive[g] == SMOTHERED || grthreatened[g]) &% uc == c &&
dist < 2)
rcount ++;
}whil e(edge[sn] !'= 0 & (edge[sn] !'= 1 || edge[sn-dir] != 2));
cval = 0;
if(rcount)cval += 4;
if(lcount)cval += 4;
return(cval);

The 5th and 13th most productive prefetch instructions are in the function del -

l'i st(),showninFigure5.5.
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igure 5.5 dellist() function from the GO benchmark

/* delete value fromsorted list at *head. return true if
successful */
int dellist(int value,int* head) {

register int ptr,optr; #5

if(list[*head] >= val ue){ Idl a2, 0O(al)
if(list[*head] != val ue)return(FALSE); s4addq a2, ab, t1l
ptr = *head; Idl vO, 0(t1l)
*head = links[*head]; cnplt vO, a0, t2
links[ptr] = freelist; bne t2, 0x100329f 4

freelist = ptr;
return( TRUE) ;

optr = *head;

whi | e(1){ #13S4addq a4, t0, a2
ptr = links[optr]; Idl a3, 0(a2)
if(list[ptr] >= value){

if(list[ptr] != value)return(FALSE);

links[optr] = links[ptr];

links[ptr] = freelist;
freelist = ptr;

return( TRUE) ;
}

optr = links[ptr];

if(list[optr] >= value){
if(list[optr] != value)return(FALSE);
links[ptr] = links[optr];
links[optr] = freelist;

freelist = optr;

return( TRUE) ;

}

ptr = links[optr];

if(list[ptr] >= value){
if(list[ptr] !'= value)return(FALSE);
links[optr] = links[ptr];

links[ptr] = freelist;

freelist = ptr;

return( TRUE);

}

optr = links[ptr];

if(list[optr] >= value){
if(list[optr] != value)return(FALSE);
links[ptr] = links[optr];
links[optr] = freelist;

freelist = optr;

return( TRUE);

}

}

The 9th, 11th, 12th, and 14th most productive prefetches are located in the function

bl ockuc() , whichisshownin Figure 5.6.
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Figure 5.6  blockuc() function from the GO benchmark

int blockuc(int arny,int s){

int ptr,ptr2,rlist = EQL, c,craw, so, sd,i, | dtnp,sn; Ida sp, -256(sp)
c = grecolor[list[arnygroups[arny]]]; I dahgp, 6(t12)
if(ltrgd[s] == 4 || ltrgd[s] == 5) stq ra, 0O(sp)
for(ptr = nblbp[s]; ptr != EQ.; ptr = links[ptr]){ Ida gp, -21552(gp)
if(edge[list[ptr]] == edge[s] && edge2[s] < 4 && stq sO0, 8(sp)
edge2[list[ptr]] < edge2[s]) #14 Sta sl 16(sp)
findblock(s,list[ptr],&list,c); stgq s6, 56(sp)
if(edge[list[ptr]] >= edge[s])continue; stgq s2, 24(sp)
findbl ock(s,list[ptr],&list,c); stq s3, 32(sp)
} stgq s4, 40(sp)
else if(ltrgd[s] == 3){ stq s5, 48(sp)
i =fdir[s]; addl a0, 0, a0
for(ldtmp = Idir[i]; i < ldtnmp; ++i){ stq al, 216(sp)
sn =s + nbr[i]; 1dgq s5, -29448(gp)
i f(board[sn] == NOGROUP)conti nue;
if(grlibs[board[sn]] != 2)continue;
for(ptr = grlbp[board[sn]]; ptr != EQO.; ptr = links[ptr])
if(lnbn[list[ptr]] > 1)addlist(list[ptr],&list); Idg t5, -29032(gp)
} #9 sd4addgq a0, t5, t6
if(lnbf[s][c] == 1 && grlibs[lgr[s]] == 2) L 1ldqg t10, -29184(gp)
addlist(s,&list); Igldgl g(tG)
for(ptr = nblbp[s]; ptr != ECL; ptr = links[ptr]){ isdla tg tO’(tS?’ t8
?f(edge[l@st[ptr]] < edge[s])continue; s4addq't9, t10, t11
if(inbf[list[ptr]][1-c] !=0){ ldl t12, O(t11)
addlist(list[ptr],&list); stl t12, 176(sp)

if(Inbn[list[ptr]] < 3)
addlist(s,&list);

}
if(Inbn[list[ptr]] == 4)addlist(list[ptr],&list);
}

}
if(rlist == EQL){
if(ld[s] == NEUTRALLD){
crawl = FALSE;
so = sd = NOSQUARE;

for(ptr = nblbp[s]; ptr != EQL; ptr = links[ptr]){
if(edge[list[ptr]] == edge[s]){
so = list[ptr];

crawl = TRUE;

}

if(edge[list[ptr]] < edge[s]){
sd = list[ptr];
}

}
if(Inbf[s][c] > 1)addlist(s,&list);
else if(craw){
if(lnbn[so] == 3 & Inbf[so][c] == 1 && so != NOSQUARE)
addl i st(so, &list);
el se addlist(s,&list);

}
else if(sd !'= NOSQUARE && I nbf[s][c] > 1l)addlist(sd, &list);
el se addlist(s,&list);

}
if(grthreatened[lgr[s]])
addlist(s,&list);

for(ptr = nblbp[s]; ptr != ECQL; ptr = links[ptr]){
if(edge[list[ptr]] > edge[s] &&
(edge2[s] > 3 || edge2[list[ptr]] != edge2[s]))continue;

if(Inbf[list[ptr]][1-c] != 0){
addlist(list[ptr],&list);
if(Inbn[list[ptr]] < 3)

addlist(s,&list);

} ldg ra, 0(sp)
else if(board[list[ptr]+list[ptr]-s] == NOGROUP){ #12|dq s0, 8(sp)
if(Inbf[list[ptr]+list[ptr]-s][1-c] != 0) ldg s1, 16(sp)
addlist(list[ptr],&list); Idq s2, 24(sp)
} Idl vO0, 184(sp)
else for(ptr2 = nblbp[list[ptr]]; ptr2 != EQL; ptr2 = links[ptr2]) #11|dq s3, 32(sp)
if(edge[list[ptr2]] > edge[s] && Inbn[list[ptr2]] > 2) Idq s6, 56(sp)
addlist(list[ptr2],&list); 1dq s4, 40(sp)
} I dq s5, 48(sp)
I da sp, 256(sp)
return(rlist); ret zero, (ra), 1
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The 6th and 7th most productive prefetches are located in the function cpyl i st (),

shownin Figure5.7.

Figure 5.7 cpylist() function from the GO benchmark

void cpylist(int listl,int *list2){ /* copy listl to list2. list2 nust be enpty */
register int ptr,ptr2;

if(listl == EQL)return;
*list2 = freelist;

ptr2 = freelist; s4addq a2, a0, t2
ptr = listl; sd4addq vO, a0, t4
V\hi:?(tlf{t 2 = 1istlptr] g7 1dl t3, 0(t2)
ist[ptr = list[ptr]; -
ptr = links[ptr]; - stl t3, O(t4)
if(ptr == EQL) br eak;
— i . s4addq a2, al, t5
$tr2 links[ptr2]; #6 ldl a2, o(t5)
freelist = links[ptr2];

links[ptr2] = EQ.;

The 10th most productive instruction is located in the function nr gl i st (), shownin

Figure 5.8.
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igure 5.8 mrglist() function from the GO benchmark

/* merge listl into list2, leaving |istl unchanged. return
* nunber of elenents added to list2
*/

int mmglist(int listl, int* list2){
register int ptri,ptr2, count,tenp,tenp2;
count = 0O;
if(listl == EQL)return(0);
if(*list2 == EQL){
cpylist(listl, list2);
ptrl = *list2;
while(ptrl !'= EQL){
++count ;
ptrl = links[ptri];

return(count);
if (list[listl] < list[*list2]) {

tenp = *list2;
*list2 = freelist;

freelist = links[freelist];
links[*list2] = tenp;
list[*list2] = list[listl];
ptrl = links[listl];
++count ;
}

else if(list[listl] == list[*list2])
ptrl = links[listl];

else ptrl = listl;

ptr2 = *list2;
while(ptrl !'= EQL){

/* guaranteed that list[ptrl] > list[ptr2] */
#10 S4addq a4, a3, to

if(links[ptr2] == EQL){ Idl a0, 0(t0)
links[ptr2] = freelist; lda t6, -13594(a0)
while(ptrl != EQL){ bne t6, 0x10032570
list[freelist] = list[ptri];
ptr2 = freelist;
freelist = links[freelist];
ptrl = links[ptri];
++count ;

}
links[ptr2] = EQ;
return(count);

}
temp2 = list[links[ptr2]];
if(list[ptrl] < tenp2){
tenp = links[ptr2];

links[ptr2] = freelist;
ptr2 = freelist;
freelist = links[freelist];
links[ptr2] = tenp;
list[ptr2] = list[ptrl];
++count ;
ptrl = links[ptri];
}

else if(list[ptrl] == tenp2)
ptrl = links[ptri];

else ptr2 = links[ptr2];

}

return(count);
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The 8th most

in Figure5.9.
igure 5.9

productive instruction is located in the function f i ndshapes() , shown

findshapes() function from the GO benchmark

voi d findshapes(int fsqr,int Isqr){

int
int
int
int
int
int
t =
for

s, sh;

top; /* start at this point */

bot; /* stop when get past this point */

width; /* width of rectangle */

right; /* right edge of rectangle */

color, point,t,b,1,r,left,up;

b =1 r = TRUE;, /* do all patterns at top,

(sh = 0; sh < nunshapes; ++sh){

i f (shapes[sh]. xsize > boardsi ze ||
conti nue;

bot = Isqr;

left xval [fsqr] - shapes[sh].xsize + 1;

if(left <0O)left = 0;

up = yval [fsqr] - shapes[sh].ysize + 1;

if(up < O)up = 0;

top = up * boardsize + left;

bottom etc */

shapes[sh] . ysi ze > boardsi ze)

i f(xval [bot] + shapes[sh].xsize > boardsize)
bot -= xval [bot] + shapes[sh].xsize - boardsi ze;
if(yval[bot] + shapes[sh].ysize > boardsize)

bot -= boardsize * (yval[bot] + shapes[sh].ysize - boardsize);
right = xval [bot];
width = right - xval[top] + 1;
t = yval[top] == 0;
b = yval [bot] == boardsi ze-shapes[sh].ysize;
| = xval[top] == 0;
r = xval [bot] == boardsi ze- shapes[sh] . xsi ze; ldg t9, -22840(gp)
color = vclr[val ues[ shapes[sh].startpoint]]; #8 s4addq a0, t9, t12
poi nt = poi nts[shapes[sh].startpoint]; Idl t11, 0(t12)
swi t ch(shapes[ sh] . where) { stl t11, 192(5p)

case ANYWHERE:
for(s =top; s <= bot; ++s){
if(xval[s] > right)s += boardsize - width;
i f(grcol or[board[s+point]] col or & match(sh, s))
addl i st (sh, &hapebrd[s]);
el se if(grcol or[board[s+point]]
mat ch2(sh, s))
addl i st (sh, &hapebrd[s]);
el se if(shapebrd[s] != EQL)
del li st (sh, &hapebrd[s]);
}

br eak;
case TOP:
if(t)for(s =top; s <top + width; ++s)
if(grcolor[board[s+point]] == color && match(sh,s))
addl i st (sh, &hapebrd[s]);
el se if(grcol or[board[s+point]]
mat ch2(sh, s))
addl i st (sh, &hapebrd[s]);
el se if(shapebrd[s] !'= EQL)
del li st (sh, &hapebrd[s]);

== 1-color &&

== 1-col or &&

br eak;
( DELETI A)

case RIGHT:
if(r)for(s = bot; s >= top;
i f(grcol or[board[s+point]]
addl i st (sh, &hapebrd[s]);
el se if(grcol or[board[s+point]]
mat ch2(sh, s))
addl i st (sh, &hapebrd[s]);
el se if(shapebrd[s] != EQL)
del li st (sh, &hapebrd[s]);
}

br eak;

}

s -= boardsize){
col or & match(sh,s))

== 1-color &&
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The IJPEG Benchmark
The 1JPEG benchmark is rather different from most of the benchmarks that we have

examined in that prefetch generation is largely confined to avery small section of the code.
Virtually all of the instructions in the top 7 deciles are confined to the bracketed lines of

source codeinthefunctionr gb_ycc_convert (), shownin Figure 5.10.

Figure 5.10 rgb_ycc_convert() function from the IJPEG benchmark

METHODDEF voi d

rgb_ycc_convert (j_conpress_ptr cinfo,
JSAMPARRAY i nput _buf, JSAMPI MAGE out put _buf,
JDI MENSI ON out put _row, int num.rows)

nmy_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int r, g, b;

register INT32 * ctab = cconvert->rgb_ycc_tab;

regi ster JSAMPROWN i nptr;

regi ster JSAMPRON out ptr0O, outptrl, outptr2;

regi ster JDI MENSI ON col ;

JDI MENSI ON num col s = ci nf o->i nage_wi dt h;

while (--numrows >= 0) {
inptr = *input_buf++;
outptr0 = out put _buf[0][output_row;

outptrl = output_buf[1][output_row;
outptr2 = output_buf[2][out put_row ; Top 39 nost productive
out put _r ow+; instructions
for (col = 0; col < numcols; col++) {
r = GETJSAMPLE(i nptr[RGB_RED|); (~70% of prefetches)
g = GETJSAWPLE(i nptr[ RGB_GREEN]);

b = GETISAMPLE(i nptr[ RGB_BLUE]);
inptr += RGB_PI XELSI ZE;

/* 1f the inputs are 0.. MAXJSAMPLE, the outputs of these equations
* nmust be too; we do not need an explicit range-limting operation.
* Hence the value being shifted is never negative, and we don’t
* need the general RIGHT_SH FT nmacro.

*/

[* Y */
outptrO[col] = (JSAWPLE)

((ctab[r+R_Y_OFF] + ctab[g+G Y _OFF] + ctab[b+B_Y_OFF])
>> SCALEBI TS);

[* Cb */
outptrifcol] = (JSAMPLE)

((ctab[r+R_CB_OFF] + ctab[g+G CB OFF] + ctab[b+B CB OFF])
>> SCALEBI TS);

[* O */
outptr2[col] = (JSAMPLE)

((ctab[r+R_ CR OFF] + ctab[g+G CR OFF] + ctab[b+B_CR OFF])
>> SCALEBI TS);
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The PERL Benchmark
Most of the instructions in the top deciles of the PERL benchmark are in the libc code.

Unfortunately, we did not have access to the libc source code. Note that 30% of the
prefetches are generated withinthemal | oc() function (Table 5.3).
The VORTEX Benchmark

The first decile of prefetches for VORTEX are generated by two instructions that are in
thelibc menset () function. Unfortunately, we did not have access to the libc source code.
However, the second decile of prefetches are generated by two instructions that are in the

Chunk_ChkGet Chunk() function, whichisshownin Figure5.11.

Figure 5.11 Chunk_ChkGetChunk() function from the VORTEX benchmark

bool ean ChkGet Chunk (nuntype ChunkNum i ndext ype | ndex,
size_t SizeOUnit, ft F, It Z zz *Status)

indextype StackPtr = O;

Mem ChunkExpanded = 0;
i f (ChunkExists (ChunkNum McStat))
i f (Chunk_|sData ( ChunkNum
/1 macro = ((Theory->Fl ags[ ChunkNun] & |s_Data)) B
. 0x100441e4:1dq  vO, -19216(gp)
&&  Chunk_l sNurrer i (ChunkNum _ _ 0x100441c8: zap  t0, OxfO, t2
&& (size_t)Unit_Size ( ChunkNum) == SjizeOfUnit) 0x100441d0: | dq v0, 0(v0)
0x100441d4: 1 dq  t3, 16(v0)
StackPtr = Stack_Ptr —(ChunkNum; 0x100441d8: s4addqt2, t3, t4
if (Index >= StackPtr) 0x100441€0: 1 dl  t1, 0(t4)
) _ 0x100441e4:and  t1, Ox8, t5
I (SetGetSw ) 0x100441e8:beq  t5, 0x10044260
Status = Set_EndOf Set; 0x10044lec:and  t1, 0x40, t6
0x100441f0: beq 16, 0x10044260
else { 0x100441f4:1dq  t8, O(vO0)
DunpChunkChunk (0, ChunkNum) ; 0x100441f8:zap  t0, OxfO, t7
*Status = Err_l ndexQut Of Range; 0x100441f c: s8addqt7, t8, t9
} L #4 0410044200:1dq a0, O(t9)
} L #3  0x10044204: I dI t10, -28(a0)
0x10044208: cnpeq a2, t10, tl1l
}oelse { o } _ 0x1004420c: beq  t11, 0x10044260
if ((size_t)Unit_Size (ChunkNum) !'= SizeOf Unit)

*Status = Err_BadUnit Type;

} else {
*Status = Err_BadChunk;

}
DunmpChunkChunk (0, ChunkNumj;
}
}

TRACK( Tr ackBak, " ChkGet Chunk\ n") ;
return( STAT) ;

}
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The STREAM benchmark
Aswe mentioned earlier the STREAM benchmark is quite small, and nearly al of the

prefetches are generated by only nineinstructions. Because of this we have reproduced here
the disassembled code that makes up the mai n() function of STREAM. The size of the
code requires us to break it up into two sections in Figures 5.12 and 5.13. Each of the
instructions in the figures has its source code line number, PC, and mnemonic. They also
have their ranking in terms of the number of prefetches that they generate, with #1 indicat-
ing the instruction that generates the most prefetches, #2 the next most prolific instruction,
etc. Note that thisis only done for the top 20 prefetch-generating instructions. It should also
be noted that the top 9 instructions each generate approximately 10% of the total number of

prefetches.
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Figure 5.12

int

First portion of the main () function from the STREAM benchmark

mai n()

register intj, k;
unsi gnedl ongscal ar, t;

scal ar = 3;

for (k=0; k<NTIMES; k++)

{

for (j=0; j<N j++)
clil =aljl;

for (j=0; j<N; j++)
b[j] = scalar*c[j];

for (j=0; j<N, j++)
clil = a[j]l+b[jl;

for (j=0; j<N, j++)
a[j] = b[j]+scalar*c[j];

return 0;

M Tﬁ?
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0x120001f cO:
0x120001f c4:
0x120001f c8:
0x120001f cc:
0x120001f dO:
0x120001f d4:
0x120001f d8:
0x120001f dc:
0x120001f eO0:
0x120001f e4:
0x120001f e8:
0x120001f ec:
0x120001f f O:
0x120001f f 4:
0x120001f f 8:
0x120001f fc:
0x120002000:
0x120002004:
0x120002008:
0x12000200c:
0x120002010:
0x120002014:
0x120002018:
0x12000201c:
0x120002020:
0x120002024:
0x120002028:
0x12000202c:
0x120002030:
0x120002034:
0x120002038:
0x12000203c:
0x120002040:
0x120002044:
0x120002048:
0x12000204c:
0x120002050:
0x120002054:
0x120002058:
0x12000205c:
0x120002060:
0x120002064:
0x120002068:
0x12000206¢:
0x120002070:
0x120002074:

Idaht2, 73(gp)

bis zero, zero, t1
I dg_uzero, 0(sp)
lda t2, 480(t2)
Idaht2, 73(t2)

lda a2, -15392(gp)
bis t2, t2, a4

| daha2, 73(a2)

bis t2, t2, a3

bis t2, t2, a5

bis zero, zero, tO
Idg vO, -32624(gp)
Ida al, -31264(gp)
bis zero, zero, zero
ldg t6, 24(al) #4
ldg t4, 8(al) #17
Idg t3, 0(al)

ldg t5, 16(al) #16
addgal, 0x20, al
stq t6, 24(v0) #5
cnpeq al, a2, t7
stq t3, 0O(v0) #15
stgq t5, 16(v0) #19
stq t4, 8(v0)
addqv0, 0x20, vO
beq t7, 0x120001ff8
bis zero, zero, tO
I dg a0, -32640(gp)
Idg vO, -32624(gp)
bis zero, zero, zero
ldg t3, 24(v0) #3
ldg t8, O(vO) #18
ldg t12, 16(v0)
Idg t10, 8(v0) #20
s4subqt3, t3, t4
stq t4, 24(a0) #2
s4subqgt 12, t12, t2
stq t2, 16(a0)
s4subqgt 10, t10, t11
stq t11, 8(a0)
s4subqt8, t8, t9
stqg t9, 0(a0)
addqa0, 0x20, a0
cnpegal, a3, t5
addqv0, 0x20, vO
beq t5, 0x120002038



Figure 5.13

nt

mai n()

register
unsi gnedl

scalar =

for (k=0;
{

for (j=0;

clil

for (j=0;

b[j]

for (j=0;

clil

for (j=0;

afjl

put s(“Fini shed the main |oop”);

return O;

Second portion of the main() function from the STREAM benchmark

intj, k;
ongscal ar, t;
3;

k<NTI MES; k++)
J<N j++)

=a[jl;

J<Nj+H)

= scalar*c[j];

J<N j++)
=a[jl+b[j];
J<Nj++)

= b[j]+scalar*c[j];
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0x120002078:
0x12000207c:
0x120002080:
0x120002084:
0x120002088:
0x12000208c:
0x120002090:
0x120002094:
0x120002098:
0x12000209c:
0x1200020a0:
0x1200020a4:
0x1200020a8:
0x1200020ac:
0x1200020b0:
0x1200020b4:
0x1200020b8:
0x1200020bc:
0x1200020c0:
0x1200020c4:
0x1200020c8:
0x1200020cc:
0x1200020d0:
0x1200020d4:
0x1200020d8:
0x1200020dc:
0x1200020€0:
0x1200020e4:
0x1200020e8:
0x1200020ec:
0x1200020f 0:
0x1200020f 4:
0x1200020f 8:
0x1200020f c:
0x120002100:
0x120002104:
0x120002108:
0x12000210c:
0x120002110:
0x120002114:
0x120002118:
0x12000211c:
0x120002120:
0x120002124:
0x120002128:
0x12000212c:
0x120002130:
0x120002134:
0x120002138:
0x12000213c:
0x120002140:
0x120002144:
0x120002148:
0x12000214c:
0x120002150:
0x120002154:
0x120002158:
0x12000215c:
0x120002160:
0x120002164:
0x120002168:
0x12000216¢c:
0x120002170:
0x120002174:
0x120002178:
0x12000217c:
0x120002180:
0x120002184:
0x120002188:
0x12000218c:

bis zero, zero, tO
ldg vO, -32624(gp)
ldg a0, -32640(gp)
lda al, -31264(gp)
ldg t6, 0(a0)

ldg t7, O(al)

ldg t2, 16(al) #6
ldg t9, 8(a0)

ldg t10, 8(al) #14
addq t6, t7, t8

ldg t5, 24(al)
addq al, 0x20, al

ldg t4, 24(a0) #1
ldg t12, 16(a0)
addq a0, 0x20, a0
stqg t8, O(v0) #13
cnpeq a0, a4, t7
addq t4, t5, t6
addg t9, t10, t11
stq t6, 24(v0) #7
addq t12, t2, t3
stqg t3, 16(v0)
stq t11, 8(vO0)
addq vO, 0x20, vO

beq t7, 0x120002088
bis zero, zero, tO
ldg vO, -32624(gp)
ldqg a0, -32640(gp)
lda al, -31264(gp)
bis zero, zero, zero

ldg t8, 0(vO0)

ldg t10, 0(a0)
ldg t12, 8(v0)
s4subqg t8, t8, t9
addg t9, t10, t11
ldq t5, 16(v0) #8
ldg t9, 24(v0)
s4subq t12, t12, t2
ldqg t3, 8(a0) #12
addq vO0, 0x20, vO

stq t11, O(al)
s4subg t5, t5, t6
ldg t11, 24(a0) #11

s4subqg t9, t9,
ldg t7, 16(a0)
addq a0, 0x20, a0
addg t2, t3, t4
stq t4, 8(al)
cnpeq a0, a5, t2
addq t10, t11, t12
addq t6, t7, t8
stq t12, 24(al) #9

t10

stqg t8, 16(al)

addq al, 0x20, al
beq t2, 0x1200020f0
addl t1, Ox1, t1

crmpeq t1, Ox1, t3

beq t3, 0x120001fe8
ldg t12, -32608(gp)
| dah a0, -1(gp)

Ida a0, 30528(a0)
bsr ra, puts

bis zero, zero, zero
ldg ra, 0(sp)

bis zero, zero, vO
I dg_u zero, 0O(sp)
Ida sp, 16(sp)

ret zero, (ra), 1
bis zero, zero, zero
I dg_u zero, 0(sp)



5.2 Register file effects

We were also interested in finding out which registers and instructions were used during
runahead episodes to generate prefetches and to keep the processor on the right path. If the
processor typically only uses a small subset of the instruction set and register file during
runahead, then it may be practical to design a very simple runahead co-processor that can
pre-process the instruction stream in parallel with a more advanced processor that actually
executes applications.

In our preliminary runahead studies described in [35] we presented some early register
file statistics. Unfortunately, we only measured the average number of VALID registers that
werein the register file over the course of the average runahead episode. While this datawas
interesting, it left quite a bit to be desired as one would expect that some registers would be
more useful during runahead than others.

We added code to the simulator that examines al of the instructions in a given runahead
episode every time that aregister value is used to perform atask of interest. Every instruc-
tionin agiven runahead episode is saved in alinked list. When aregister is used to generate
a prefetch address, for example, the ssmulator scans backwards through the linked list to
determine which instructions and registers contributed to computing the that register’s
value. When we find an instruction that computes a value that is needed to compute this
final result, we record the instruction type and destination register number in an array:

prefetch_regINSTR_TYPE][INSTR_DEST REG]++;

Similar counters are used to record the instruction and register information used to
resolve conditional and indirect branches. In order to keep the statistics meaningful, we

divide the ALPHA instructions that can update registers into several classes:
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* load

» |oad-address (these compute an address and place it in the destination register)
» unconditional_branch (the return address is written to aregister)

* indirect_branch (the return addressis written to aregister)

e add sub (add, sub, etc.)

e compare (cmpeqg, cmple, etc.)

* logica (and, or, eqv, €tc.)

» conditional_move (cmoveq, etc.)

* byte _manipulation (shift, mask, insert, extract, zap, €tc.)

multiply
This approach captures register values that are computed during runahead episodes,

however many register values used during runahead are computed during normal operation.
These values are covered by adding anon_runahead instruction category.

Suppose, for example, that we have a runahead episode as depicted in Figure 5.14. In
this example runahead is initiated with aload miss (instruction a). After preprocessing a
number of instructions, the processor generates a data stream prefetch using register r3 after
detecting aload miss (instruction h). When the prefetch is generated the ssmulator scans
backwards through the linked list containing the instructions in the runahead episode up to
that point to determine how the value in register r3 was computed. The immediately preced-
ing instruction (g) is aload-address instruction that computes r3 using r4 as an operand. The
simulator records this information by incrementing prefetch_reggload_address][3]. At this
point the simulator needsto find the source of the register r4, which asit turns out isthe des-
tination of instruction f, an add instruction. The simulator then increments
prefetch_reggadd sub][4]. Instruction f needs rl and r2 as sources, which are provided by
instructions e and d respectively. This process continues until the simulator finds the
runahead initiating instruction, which is the first instruction in the linked list containing the
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runahead instructions. At this point the register sources r5, r6, and r7 are still unaccounted
for. Asthese register values were not computed during the runahead episode, they must
have been computed during normal operation. The simulator records this by incrementing
prefetch_regs[non_runahead][5], prefetch_regs[non_runahead][6], and
prefetch_reggnon_runahead][7]. Note that r31 is hard-wired to the value zero. We do not

trace uses of r31 for this reason. Compiler register usage conventions are provided in Table

55.
Figureb.14
Normal o Comments Counter action
Operation Instr s still need r5 r6 r7 prefetch_regs[non_runahead][5, 6, 7]++
Runahead 5 |oad r0, 0(r2) load miss
Initiated
b  loadr9, 0(r1) (not an r3 source)

c and r4, 16, r7 found r4, need r5 r6 r7 prefetch_regs[logical][4]++

d  multr2,r6,r7 found r2, need r4 r5 16 r7  prefetch_regs[multiply][2]++

e slirl, r4, r5 found r1, need r2 r4 r5 prefetch_regs[byte_manip][1]++
f  addr4,r1, r2 found r4, need rl r2 prefetch_regs[add_sub][4]++
g Idar3, 32(r4) found r3, need r4 prefetch_regs[load_address][3]++

h  loadr21,32(r3) need to find r3 sources

Prefetch/

Generated

165



Table 5.5

DEC OSF/1 Alpha Register Usage

Register Name Software Use and Linkage
Name
r0 vO Used for expression evaluations and to hold integer function results.
rl..r8 t0 .. t7 Temporary registers; not preserved across function calls.
r9..rl4 0.5 Saved registers; their values must be preserved across function calls.
r15 FPor s6 Frame pointer or a saved register.
rl6..r21 a0 .. ab Argument registers; used to pass the first 6 integer type arguments;
their values are not preserved across procedure calls.
r22..r25 t8..t11 Temporary registers; not preserved across procedure calls.
r26 ra Contains the return address; used for expression evaluation.
r27 pv or t12 Procedure value or atemporary register.
r28 a Assembler temporary register; not preserved across procedure calls.
r29 GP Global pointer.
r30 SP Stack pointer.
r3l zero Always has the value 0.

From “ Alpha Architecture Reference Manual,” Part I11 p 1-1,
Digital Equipment Corporation 1992.

5.2.1 Data stream prefetch address computation

The technique described in the previous section was used to record the sources of data
stream prefetch addresses. We have chosen to present these statistics using 3D bar charts,
which are shown in figures 5.15 through 5.19. The height of each bar in the figures repre-
sents the number of times that an instruction from a particular class (x-axis) wrote avalueto

its destination register (y-axis) that was used to compute aload or store address that gener-

ated a data stream prefetch.

The prefetch register statistics for the GO benchmark are shown in Figure 5.15. Note
that for the GO benchmark most of the register values are computed by either |oad-address
instructions during runahead or by non-runahead instructions. These |oad-address and non-

runahead instructions tend to write to either r29 (the stack pointer) or r30 (the global
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pointer). Virtually all of the remaining register values are provided by add_sub, load, or
non_runahead instructions.

The VORTEX benchmark register usage, shown in Figure 5.16, is similar to that of the
GO benchmark. Many of the register values used are produced by non_runahead instruc-
tions, of which VORTEX tends to use the stack pointer (r30) by far the most. Many of the
values that are computed during runahead are load-address instruction updates of either the
global pointer (r29) or the stack pointer (r30).

The PERL benchmark prefetch register usage, shownin Figure 5.17 issimilar to that for
GO and VORTEX. Many of the register values used are produced by non-runahead instruc-
tions, with the stack (r30) and global (r29) pointers being by far the most updated registers.

The register usage for the IJPEG benchmark, shown in Figure 5.18, is rather different
than that for GO and VORTEX. By far the bulk of the prefetch addresses are computed with
register values that are not modified during runahead. Of these registers, the one that is
employed the most is r16, an argument register. Other non-runahead updated registers that
see frequent use are the integer function result register (r0), saved registers (r9-r13), argu-
ment registers (r17-r21), return address register (r26), and the stack pointer (r30).

The register usage for the STREAM benchmark, shown in Figure 5.19, uses far fewer
instruction and register resources than the other benchmarks. About two-thirds of the
prefetch calculations are performed with add-subtract instructions that update either a tem-
porary (r16 and rl17), or rO, which in this case is used to hold expression results instead of
function results. The remainder of the register values are obtained from non-runahead
instructions that update the same registers. Note that it is easy to verify the information in

Figure 5.19 by examining the STREAM instructionsin Figures 5.12 and 5.13.
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Figure5.15 Source of Data Stream Prefetch Addresses for GO
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Figure5.16 Source of Data Stream Prefetch Addresses for VORTEX

Register Updates (x10°)

Instruction
Tl non-runahead
conditional move Iog;é/fl manipulation
compare
OHNM<rm©,\ Tamp add-S‘L-Ib
® unconditional branch

load address

load

Destination Register

168



Figure5.17 Source of Prefetch Addresses for PERL
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Figure5.18 Source of Data Stream Prefetch Addresses for IJPEG
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Figure5.19 Source of Data Stream Prefetch Addresses for STREAM
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5.2.2 Branch condition computation

The branch condition source registers for the GO benchmark are shown in Figure 5.20.
Note that most of the branch conditions are computed using runahead loads or non-
runahead instructions. The remaining values are supplied primarily by add_sub, compare,
and load_address instructions. The rest of the SPEC benchmarks use a similar mix of
instruction types, with some variation in the registers used. These results are provided in
Figures 5.21 through 5.23. Note that |JPEG uses relatively few loads during runahead to
compute branch conditions. The correspondingly fewer load misses during runahead
increase the likelihood that branches can be resolved with VALID registers, which in turn
makes it more likely that the processor will stay on the proper path during runahead.

The branch conditions for the STREAM benchmark are shown in Figure 5.24. Aswith
the prefetch registers, the branch condition calculations require relatively few registers.
Add_sub and compare instructions perform most of the work, while the remaining values
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are provided by non_runahead instructions. The information in Figure 5.24 can be verified

by examining the instructionsin Figures 5.12 and 5.13.

Figure5.20 Source of Branch Conditions for GO
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Figure5.21  Source of Branch Conditions for VORTEX
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Figure5.22 Source of Branch Conditions for PERL
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Figure5.23 Source of Branch Conditions for IJPEG
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5.2.3 Indirect branch target computation

Measurements of the instructions and registers that were used to compute indirect

branch targets were performed, the results of which are shown in Figures 5.25 through 5.28.

The STREAM benchmark is not shown as it does not contain any indirect branches. The

behavior of the GO benchmark, shown in Figure 5.25, is representative of al of the SPEC

benchmarks. Load instructions that update r26 (the return address register) or r27 (integer

function result register) provide the bulk of the values that are computed during runahead

episodes. These are supplemented by non-runahead instructions that provide values already

inr26 and r27 at the initiation of runahead. The remainder of the values are largely obtained

using r29 (global pointer) or r30 (stack pointer).

Figure5.25 Source of Indirect Branch Targets for GO
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Figure5.26  Source of Indirect Branch Targets for PERL
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Figure5.27 Source of Indirect Branch Targets for VORTEX
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Figures5.28 Source of Indirect Branch Targets for IJPEG
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5.2.4 Data stream prefetch base address registers

The data stream prefetch address information provided in Figures 5.15 through 5.19 do
not provide a complete picture of how prefetch addresses are formed. Instead, they provide
aglobal view of how prefetch addresses are computed. This can confuse the issue as the 3-
D plots place al registers which contribute towards address computation on an equal foot-
ing, in which load and store prefetch base address registers are mixed in with other registers
that are only indirectly involved in the computation.

We addressed these concerns by recording the number of times each register was used
as arunahead load or store prefetch base address register. The counts for each register in the
register fileis presented in a series of stacked bar charts shown in Figures 5.29 through 5.38.

These bars are divided up into usage counts for both useless and useful prefetches.
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It is apparent from the plots that the global (r29) and stack pointers (r30) are typically
the most commonly used base registers for load prefetches during runahead. The stack
pointer is the most commonly used base register for store prefetches, while the global
pointer is never used for stores in the benchmarks. These results indicate that the stack and
global pointers are the most commonly used base registers for runahead prefetches overall,
and that they are not merely used indirectly for prefetch address computation. Registers
other than the global and stack pointers are used to hold pointer and array addresses.

From the plots, and from our examination of the benchmark source code, it appears that
for most of the benchmarks prefetches are generated for an approximately equal mix of
array/pointer, global, and stack references. The IJPEG and STREAM benchmarks are an
exception to this rule, as most of their prefetches are generated for array references. The
load and store instructions that generate the most prefetches per instruction (i.e. the most
efficient instructions) tend to generate prefetches for array or pointer accesses. The global
and stack prefetches are generated by less efficient instructions, however this low efficiency

per instruction is offset by the large number of instructionsin this category.
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Figure 5.31

Figure 5.32
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Load Prefetch Address Registers for PERL
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Load Prefetch Address Registers for STREAM
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5.3 Summary and Conclusions

We have shown that much of the work that is performed during runahead is confined to
asubset of the instruction set and register file. Load and store prefetch addresses are almost
entirely computed with a combination of load, load_address and add_sub instructions. The
resolution of most indirect branches can also be performed with the above combination of
instructions. Conditional branches require only the addition of compare instructions to the
above mix. Theregistersthat are needed to compute results during runahead are also largely
segregated to a subset of the register file. These results imply that it would be possible to
perform runahead with a very ssmple coprocessor that would only implement a small por-
tion of the instruction set. Instructions that are not implemented can simply be treated as
NOPs, and their destination registers marked as INV.

We have also shown that for most of the benchmarks prefetches are generated for an
approximately equal mix of array/pointer, global, and stack references. The IJPEG and
STREAM benchmarks are an exception to this rule, as most of their prefetches are gener-
ated for array references. The load and store instructions that generate the most prefetches
per instruction (i.e. the most efficient instructions) tend to generate prefetches for array or
pointer accesses. The global and stack prefetches are generated by less efficient instructions,
however this low efficiency per instruction is offset by the large number of instructionsin

this category.
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Chapter 6

Probing the Limits of the Baseline Technique

The baseline runahead processor model that was used in the preceding chapters suffers
from avariety of effectsthat can reduce performance. We address these effects in this chap-
ter in an attempt to determine the maximum data stream performance gains that can be had

when runahead is employed.

6.1 Instruction cache misses during runahead

Instruction cache misses can affect the performance of a runahead processor in several
ways. The most obvious effect isthat they can cause the processor to suffer from a dearth of
instructions to pre-process. If the processor can find other instruction cache linesto pre-pro-
cess, then it can continue the runahead episode. Unfortunately, dependences upon the
instructions that are not pre-processed can cause the processor to generate useless
prefetches. These dependences can also cause the processor to incorrectly resolve condi-
tional branches, sending the processor down an incorrect path. Wrong path effects also
occur when the processor cannot pre-process taken branches in the skipped instruction
cachelines.

Eliminating the effects of instruction cache missesis simple enough for the purposes of

this study: ssimply simulate a processor that has a perfect L1 instruction cache.
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6.2 Increasing the length of the average runahead episode

The length of the average runahead episode is approximately equal to the average access
time to off-chip memory. Increasing this access time may allow the processor to increase the
number of prefetches that are generated per runahead episode, and may even lead to an
improvement in performance. The simplest way to increase the length of the average
runahead episode isto simply eliminate the L2 data cache from the memory hierarchy.

Unfortunately, eliminating the L2 data cache from the baseline processor can cause
other problems. The high bandwidth and store coalescing effect of the write-back L2 data
cache kept the store-through policy of the L1 data cache from inhibiting performance. Elim-
inating the L2 data cache can make the store-queue a bottleneck, causing the processor to
stall. One solution is to modify the store queue such that it can coalesce requests, allowing
store-through requests that map to the same line to be collapsed into a single request. We
also consider increasing the bandwidth of the main memory interface in order to alleviate

bandwidth effects.

6.3 Wrong path effects during runahead

Unresolvable conditional branches during runahead episodes will send the processor
down the wrong path if they are mispredicted. This can result in the generation of useless
prefetches, aswell asin missed opportunities for the generation of useful prefetches.

These effects can be eliminated in smulation if an oracle conditional branch predictor is
used during runahead episodes. This can be done by saving atrace of conditiona branch
outcomes during atraining run, and then using this trace as an oracle predictor during sub-

sequent simulation runs. Unresolvable indirect branches also limit performance gains by
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forcing the processor to stall during runahead. This problem can be solved in a similar man-

ner by using atrace of indirect branch targets during runahead.

6.4 Runahead Models

We created several new runahead processor models based upon the modifications
described in the preceding sections.
Runahead Processor (RA)

Thisisthe same as the runahead processor used in Chapter 4, with the addition of a coa-
lescing store queue and a perfect L1 instruction cache. There is also anon-runahead version
of this processor (NORA).

Runahead + No L2 Data Cache (NOL2)

Thisisthe same as the above RA processor, only with the deletion of the L2 data cache.
This reduces the minimum access time to off chip memory to 102 cycles from 132 cycles
for the RA processor model (assuming an L2 data cache miss). See Figures 3.5 and 3.6 for
more details of the timing of the memory hierarchy. There is aso anon-runahead version of
this processor (NORA_NOL2).

Runahead + No L2 Data Cache + High Bandwidth Main Memory (HIGHBW)

Thisisthe same as the NOL 2 processor, only with the main memory interface modified
such that it can accept a new fetch, prefetch, or store-through request every processor cycle.
This corresponds to a main memory with a peak bandwidth of 32 GB/s as compared to the
1.6 GB/s assumed for all other simulations. The latency of main-memory accesses is
unchanged. This extremely high figure is unattainable in a practical implementation at the
present time, but we wanted to see what would happen if this was not the case. Thereisaso

anon-runahead version of this processor (NORA_HIGHBW).
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Runahead + No L2 Data Cache + High Bandwidth Main Memory + Perfect Control (PERFECT)
This is the same as the HHGHBW processor, with the addition of perfect condi-

tional and indirect branch resolution during runahead episodes. Note that the pro-
cessor only uses the branch traces during runahead episodes: it has to use the two-
bit counters and RBR to predict branches during normal operation. As this proces-
sor model only employs oracle prediction during runahead its non-runahead

equivalent is the same as that for HIGHBW (NORA_HIGHBW).

6.5 Simulation Results
6.5.1 CPI

The CPI results for the processor models described in the previous section are provided
in Figures 6.1 through 6.5. As before, the CPI for each simulation is represented as a
stacked bar, which is broken down into its component contributions by instruction class.
The overall CPI for each configuration is provided as anumber on top of each bar, while the
percentage reduction in load and store CPI (not counting cycles in which loads and stores
areretired) is provided to the right of each bar. These percentage reductionsin CPl arerela-
tive to that of the equivalent non-runahead processor, which is indicated with a diagonal
line.

We had hoped initially to show that deleting the L2 data cache would improve perfor-
mance by providing the processor with more opportunities to pre-process instructions. This
istrue for the STREAM benchmark for one configuration shown in Figure 6.1. It turns out
that a runahead processor without an L2 data cache and with a very high bandwidth main
memory (HIGH_BW) does indeed have a CPI (3.28) significantly lower than that of the

runahead processor with an L2 data cache (RA) (4.35). Unfortunately thisimproved perfor-
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mance islargely dueto the higher bandwidth main memory interface of the HIGH_BW pro-
cessor. When a standard bandwidth main memory interface is employed, the CPI of a
runahead processor without an L2 data cache (NOL 2) is high enough (5.19) to make its per-
formance somewhat worse than that of the runahead processor with an L2 data cache (RA).
Asvirtualy al off-chip memory requests for this benchmark have to go out to main mem-
ory the L2 data cache simply gets in the way. The RA processor forces off-chip accesses to
check the L2 data cache for a hit before starting main memory accesses. This means that for
the STREAM benchmark having an L2 data cache increases the latency of off-chip memory
accesses by 30 cycles. This increases the average runahead episode length for the RA pro-
cessor relative to that of the NOL 2 processor, resulting in more opportunities to prefetch
and a correspondingly lower CPI. Paradoxically, the latency increasing effect of the L2 data
cache for STREAM works against the non-runahead processor (NORA), causing it to have
ahigher CPI than its counterpart that does not (NORA_NOL 2). Note that the runahead pro-
cessor with perfect branch and jump prediction during runahead (PERFECT) achieves
exactly the same performance as its counterpart that employs conventional conditional
branch prediction and indirect branch resolution during runahead (HIGHBW). Thisisa
consequence of the highly predictable conditional branches and lack of indirect branch
instructionsin the STREAM benchmark.

The resultsfor the VORTEX benchmark, shown in Figure 6.2, are more interesting than
those for STREAM. The percentage reduction in overall CPI is significantly greater for the
runahead configurations that do not have L2 data caches. The RA processor has an overall
CPI of 1.90, 21% lower than its non-runahead counterpart (NORA). A runahead processor

without an L2 data cache (NOL 2) has a CPI of 4.27, 38% less than that of its non-runahead
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counterpart (NORA_NOL 2). Unfortunately the NOL2 CPI is significantly greater than that
of either the RA or NORA processors. Increasing the bandwidth of the main memory leads
to a significant reduction in overall CPI, with the HIGHBW runahead processor coming in
with aCPl of 3.24, but thisis only a 39% reduction over that of the equival ent non-runahead
processor (NORA_HIGHBW). Adding perfect conditional branch prediction and indirect
branch resolution during runahead improves performance somewhat (PERFECT) with an
overal CPl of 2.98, 44% less than its non-runahead counterpart (NORA_HIGHBW). The
CPI results for the GO and PERL benchmarks, shown in Figures 6.3 and 6.4 respectively,
are similar to those reported for VORTEX. Note that we were unable to simulate the
HIGHBW and PERFECT processor models for PERL due to the extremely large amount of
memory required to record runahead episode information for this benchmark.

The CPI results for the IJPEG benchmark are shown in Figure 6.5. As with the VOR-
TEX benchmark, the percentage reductions in CPI for the runahead processors without L2
data cache are significantly greater than those that have L2 data caches. The RA processors
has an overall CPI of 1.27, 12% less than its non-runahead counterpart (NORA). The equiv-
alent processor without an L2 data cache (NOL2) has a CPI of 1.93, 35% less than its non-
runahead counterpart (NORA_NOL2). Interestingly, the NOL2 CPI is only 34% greater
than that of the NORA processor. Increasing the main memory bandwidth led to modest
improvements in CPI, with the non-runahead NORA_HIGHBW processor obtaining a CPl
of 2.65, only 10% less than its normal bandwidth counterpart NORA_NOL?2. The high
bandwidth runahead processor HIGHBW achieved a CPI of 1.66, 37% less than
NORA_HIGHBW. Thisisonly dlightly better percentage-wise than the 35% reduction that

the NOL 2 processor obtained. Note that the runahead processor with perfect conditional
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branch prediction and jump resolution during runahead (PERFECT) obtained only dlightly
better performance than its HIGHBW counterpart. This is a consequence of the high proba
bility that the processor will stay on the proper path during runahead episodes, as can be
seen in Figure 6.14. Finally, note that deleting the L2 data cache made runahead signifi-
cantly more effective for IJPEG, even though the data cache miss rate for IJPEG isrela

tively low.
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Figure 6.1

Figure 6.2
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Figure 6.3

Figure 6.4
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6.5.2 Prefetching utility over the course of runahead episodes

The ability of runahead to generate useful prefetches over the course of the average
runahead episode is of particular interest. This information is provided in Figures 6.6
through 6.10. We have included the prefetch utility for the baseline runahead processor
model used for the studies described in Chapter 4. This model (BASELINE_RA) differs
from the RA model used in this chapter in that it has areal, as opposed to perfect, L1
instruction cache, aswell as a non-coalescing store queue.

The results for the GO benchmark are shown in Figure 6.6. Note that the cumulative
number of useful prefetches for the BASELINE_RA processor is virtually identical to that
of the RA processor for about the first 10-15 instructions into the average runahead episode.

Thisisaresult of the relatively few instruction cache misses that occur early in the average

193



BASELINE_RA runahead episode. Thismakesit more likely that the BASELINE_RA pro-
cessor will stay on the right path and have instructions to pre-process. As expected, the RA
processor is more effective than the BASELINE_RA processor, producing slightly more
useful prefetches and dlightly fewer useless prefetches. The processor configurations that do
not include L2 data cache (NOL 2, HIGHBW, and PERFECT) are more interesting. These
processors generate about 50% more useful prefetches than the RA and BASELINE_RA
processors. This is due to the increased length of the average runahead episode, providing
more opportunitiesto prefetch. We had hoped that the useful prefetch curves for the proces-
sors without L2 data cache would have the same slope as the early portion of the
BASELINE_RA and RA curves, but without a drop off in the number of prefetches gener-
ated due to L2 data cache hits. Unfortunately this was not the case: the no-L2 processors
have only produced about half as many useful prefetches as the with-L2 processors 25
cycles into the average runahead episode. This is a consequence of increased overlap
between runahead episodes. Overlap comes about when runahead episodes are initiated on
load or store misses whose instructions have aready produced a runahead prefetch in a pre-
ceding runahead episode. These episodes spend a great deal of time pre-processing instruc-
tions that were already pre-processed in preceding episodes, and may only be able to
generate useful prefetches towards the end of the episode where there islittle or no overlap.
This explains the lower slope of the useful prefetch curves for the no-L2 processors. The
PERFECT processor curves are particularly interesting. The total number of useful
prefetches is nearly the same as those of the NOL2 and HIGHBW processors, while the
number of useless prefetches for PERFECT islessthan half of that of NOL2 and HIGHBW.

Thisisaresult of the perfect conditional branch prediction and indirect branch target resolu-
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tion of the PERFECT processor during runahead episodes. Interestingly, the useful prefetch
curvefor the PERFECT processor appears to be nearly linear. The perfect branch prediction
increases the amount of overlap between episodes, resulting in fewer prefetches being gen-
erated during the early portion of the average episode. This is compensated for later in the
average episode, where there is less overlap, and the other processor configurations are less
likely to be on the proper path. The plots for the VORTEX, PERL, and IJPEG benchmarks,
shown in Figures 6.7 through 6.9, are very similar to that for GO.

The plot for the STREAM benchmark, shown in Figure 6.10, is particularly interesting.
By design STREAM does not benefit to any meaningful extent from an L2 data cache. This
can be seen in the plot for the STREAM benchmark, in which the useful-prefetch plots for

all of the runahead processors are very similar.
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6.5.3 Probability of remaining on the correct path during runahead

We present here plots that illustrate the probability that the processor ison the right path
at agiven distance into the average runahead episode. An instruction is on the proper path if
all of theinstructionsin the runahead episode up to and including the instruction in question
are executed during normal operation at the conclusion of the runahead episode, starting
with the first instruction in the episode. We do not include RA processor model results as
they are virtually identical to those for the BASELINE _RA model presented in Chapter 4.
These similar results indicate that instruction cache misses during load and store miss initi-
ated runahead episodes are not a significant source of wrong path effects. The plotsin Fig-
ures 6.11 through 6.14 are for the runahead processor models without L2 data cache and

with perfect L1 instruction cache (NOL2 and HIGHBW). For most of the plots the
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HIGHBW and NOL 2 processors exhibit nearly identical behavior. We will refer to both
models together unless stated otherwise. We do not present STREAM results as the proces-
sor always stays on the right path during runahead. Note that the plots can exhibit erratic
behavior near the x = 100 position on the x-axis. Prefetching reduces the average memory
latency on a miss during normal operation, resulting in a relatively small number of long-
latency episodes. The smaller number of episodes contributing towards the average creates
the seemingly erratic behavior.

Thefirst plot is for the GO benchmark, and is shown in Figure 6.11. Aswas reported in
Chapter 4, the probability of remaining on the correct path drops off rather precipitoudy for
load-miss initiated runahead. The drop off for store-miss initiated runahead is less severe,
however both runahead episode types have only about a 20% chance of being on the correct
path after pre-processing 100 instructions. Fortunately, most of the wrong path prefetches
generated by GO are useful.

The plot for the VORTEX benchmark, shown in Figure 6.12, exhibits afairly high prob-
ability of remaining on the correct path even after 100 instructions. Store-miss initiated
runahead has about an 80% probability of remaining on the correct path, while load-miss
has about a 60% probability. The plot for PERL, shown in Figure 6.13, is similar to that for
VORTEX, only with the probability of remaining on the correct path about 50% after 100
instructions.

As was noted in Chapter 4, IJPEG has a high probability of remaining on the proper
path during runahead. This can be seen in Figure 6.14. Note that the probabilities remain
high throughout the life of the typical episode, and that the values are nearly identical for

both load- and store-miss initiated runahead.
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6.5.4 Number of runahead episodes

The number of load- and store-missinitiated runahead episodes for each benchmark and
runahead processor configuration are provided in Figure 6.15. Generally speaking, the num-
ber of runahead episodes decreases when runahead is more effective due to the elimination
of instruction cache misses, deletion of the L2 data cache, addition of a higher bandwidth
main-memory, or the elimination of wrong path effects. Thisis true for all of the bench-
marks, with the exception of the NOL 2 configuration for PERL, which has adightly larger
number of episodes than either the RA-BASE or RA configurations. The larger number of
prefetches that are generated when the L2 data cache is deleted can increase the total num-
ber of runahead episodes if the prefetches are not serviced by the time that the processor
actually executes the prefetch-generating instructions. Also, note that the rather low number
of runahead episodes for STREAM is due to the lower number of instructions that were
simulated for this benchmark: 10M vs. 100M for the others. STREAM spent by far the larg-

est fraction of its execution time pre-processing instructions.
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6.5.5 Average number of prefetches generated per runahead episode

Figures 6.16 and 6.17 provide the average number of instruction, load, and store
prefetches that are generated during each type of runahead episode for all of the processor
configuration and benchmark combinations. Note that the average number of prefetches
generally increase as we make runahead more effective by adding a perfect instruction
cache, deleting the L2 data cache, increasing main-memory bandwidth, and eliminating
wrong path effects. The only exception to this rule is the STREAM benchmark, where the
average number of load prefetches falls instead of rising for the NOL 2 processor. It turns
out that the runahead processors were dropping about 75% of all prefetch requests for
STREAM dueto afull prefetch queue, as can be seenin Figure 4.76. This, plus the fact that

STREAM does not benefit from the L2 data cache, indicate that the main-memory band-
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width is the performance bottleneck for STREAM. This was expected due to the nature of
the benchmark. The HIGHBW and PERFECT processor models simulate a much higher
main-memory bandwidth, 32 GB/s vs. 1.6 GB/s, allowing the processor to handle more
prefetches. This shows up as a significant increase in the average number of prefetches gen-
erated per runahead episode. These additional prefetches lower the L1 data cache missrate,
resulting in a significant drop in the number of runahead episodes. This offsets the increase
in the average number of prefetches generated to some extent.

Note that load-miss initiated episodes generally generate fewer prefetches per-episode
than store-miss initiated episodes. Load misses immediately seed the RF with INV values,
reducing the ability of the processor to compute prefetch addresses. Thisis offset by the sig-
nificantly larger number of load-miss episodes, as can be seen in Figure 6.15. Also note that
load-miss initiated episodes tend to generate more |oad than store prefetches, indicating that
load-misses tend to be clustered. Store-miss initiated episodes behave in a similar manner,

as we expected.
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Figure 6.16
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6.5.6 Off-chip fetch and prefetch traffic

The total off-chip data stream fetch and prefetch traffic is provided for each benchmark
in Figure 6.18. A stacked bar is used to represent the individual contributions of prefetches
and demand fetches towards the total traffic. Note that off-chip traffic refers to all prefetch
and fetch requests from the L 1 data cache to either the L2 data cache or main memory.

In all cases the amount of demand fetch traffic is reduced as runahead is made more
effective by adding a perfect L1 instruction cache, deleting the L2 data cache, increasing
main-memory bandwidth, or eliminating wrong path effects. Note that the runahead proces-
sor models without L2 data cache replace more than half of their demand fetch requests
with prefetch requests. Virtually al of the demand fetch traffic is replaced with prefetchesin
the STREAM simulations. Also, the total data stream traffic generally increases to some
extent when runahead is employed. There is a small jump in overall traffic for the NOL2
processor: thisis due to an increase in wrong path prefetching during the longer runahead

episodes. The PERFECT model eliminates most of thisincrease.
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6.6 Summary and Conclusions
We had hoped that by extending the length of the average runahead episode by deleting

the L2 data cache we would be able to achieve runahead processor performance that would
surpass that of a runahead processor that had an L2 data cache. This was not the case, even
though the effectiveness of runahead istypically significantly increased by removing the L2
data cache. Failing at this, we hoped that at the very least we would be able to match the
performance of non-runahead processors that incorporated L 2 data cache. Thiswas not true,
even when we eliminated wrong path effects during runahead by using a trace of condi-
tional branch outcomes and indirect branch targets, in addition to dramatically increasing

the bandwidth of the main memory interface.
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The runahead processor models without L2 data cache are competitive in the sense that
they do achieve performance that is reasonably close to their non-runahead counterparts that
include L2 data cache, yet at aconsiderably lower cost to the user. The cost of implementing
runahead is certainly much lower than the cost of purchasing large off-chip L2 data cache
SRAMS and the requisite interface, even with the potentially expensive cost of integrating
the BRF with the architected register file. Thislast concern is addressed in Chapter 7.

We have also demonstrated that the probability of the processor remaining on the cor-
rect path during load- and store-miss initiated runahead episodes is fairly high, even when
the average runahead episode length is significantly increased by deleting the L2 data cache.
The GO benchmark is a notable exception to thisrule, however thisis mitigated by the large
fraction of wrong path prefetches that are useful rather than useless. We have also shown
that instruction cache misses are not a significant source of wrong path effects during load-

and store-missinitiated runahead episodes.

208



Chapter 7

Simplifying the Runahead Processor

The runahead processor models that have been used thus far achieve good performance,
but this comes at a cost. There are a number of modifications that may lead to a significant
reduction in the implementation cost and complexity of runahead. We address these con-

cernsin this chapter.

7.1  Eliminating the register file save and restore operation

The runahead processor implementations that were used in the previous chapters all
assumed that the sequential state of the architected register file could be checkpointed by
saving the contents of the RF in the BRF at the initiation of runahead, and restoring the con-
tents at the resumption of normal operation. These operations were assumed to take placein
asingle cycle, which may be unredlistic.

However, the register file save and restore operation is not needed to guarantee proper
program execution during normal operation. All the processor hasto do is guarantee that the
sequential state of the architected register file and memory hierarchy are not corrupted dur-
ing runahead. No other guarantees (other than not causing exceptions) have to be made, as
runahead episodes are entirely speculative and all results computed during runahead are dis-

carded.
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One way to simplify the register file checkpoint operation isto simply do away with the
register file save and restore operations, while retaining the BRF. The RF is then used to
hold the sequential state of the architected register file, while the BRF is used during
runahead episodes. The processor directs register reads to only the RF during normal opera-
tion. Writes are committed to both the RF and BRF during normal operation. When the pro-
cessor is in runahead mode registers are only read from and written to the BRF. Thus the
sequential state of the architected register file in the RF is protected, while allowing
runahead instructions to have access to aregister file.

The drawback with this approach is that the BRF will typically contain some number of
stale values at the conclusion of each runahead episode. These stale values are generated by
writing runahead instruction results to the BRF, which will almost always differ from their
checkpointed counterparts in the RF. If these stale values in the BRF are overwritten with
fresh results during normal operation before the next runahead episode begins, then the per-
formance of this register file configuration will be on a par with that of the baseline
runahead register file configuration. Any stale values are not overwritten will be INV at the
start of the next runahead episode. This can affect performance by reducing the number of
load and store addresses that can be computed during runahead, as well as introducing
wrong path effects. The generation of additional erroneous prefetches can be prevented by
adding a“stale” bit to every register in the BRF. These extra bits are contained in a vector,
which we call the SRV, or Stale Register Vector, which is similar to the IRV. The exact oper-
ation of this new interface to the register files, which we refer to as RA_NOCOPY, is

described using pseudo-code in Figure 7.1.

210



Figure 7.1  Operation of the RA_NOCOPY register file implementation

1. When runahead isinitiated:
for(X = 0; X < 31; X++) {

i f(SRV[X] == STALE)

IRV[X] = INV, // stale values in the BRF show up as INV here
/1 at the start of the runahead epi sode
el se
IRV X = VALID
SRV[ X = NOT_STALE;

}
SRV[31] = NOT_STALE; // r31 is hardwired to zero
IRV[31] = VALID

2. Instruction | writes Result R to register X:
if(l->runahead == TRUE) {

SRV[ X] = STALE; // BRF[X] is only stale after end of RA episode
I RV[ X] = R>valid;
BRF[ X] = R->value; // BRF value is now “ahead” of seq state in RF
}
el se {
SRV[ X] = NOT_STALE;
BRF[ X] = R->value;// previously stale values get fresh data now
RF[ X] = R->val ue;
}
SRV[ 31] = NOT_STALE;

IRV[31] = VALID

3. Instruction | reads operand O from architected register X in the register set:
if(l->runahead == TRUE) {

O >value = BRF[X];
O>valid = IRV[X];
}
el se {
O >value = RF[X];
O>valid = TRUE
}
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7.2  Eliminating the BRF altogether
It is possible to further reduce the cost of implementing runahead by eliminating the

BRF. Checkpointing the sequentia state of the RF can then be accomplished by ssimply pre-
venting runahead instructions from updating the sequential state of the architected register
filein the RF, and relying upon the pipeline forwarding paths to supply runahead instruc-
tions with the results of prior runahead instructions.

A drawback of this approach is that register updates during runahead, that are not for-
warded before their instruction exits the pipeline, are forever lost to any subsequent RAW
dependent instructions in that runahead episode. Since these instructions do not update the
RF, any attempt to read the destination register in the RF by the dependent runahead instruc-
tion will result in the reading of a stale value. The processor should keep track of these stale
values in order to keep the number of erroneous prefetches to a minimum. This can be done
by adding a*“stale” bit to every register in the RF, which as with the RA_NOCOPY imple-
mentation is referred to as the SRV, or Stale Register Vector. If aregister is the target of an
attempted update during runahead, then its stale bit is set to the STALE state. Runahead
instructions treat operands marked STALE in the sameway that INV register operandswere
in the previous runahead processor models. Note that register file valid bits are not needed
asINV values are a proper subset of STALE values. The operation of thisregister fileimple-

mentation, which we refer to as RA_NOBREF, is described using pseudo-code in Figure 7.2.
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Figure 7.2  Operation of the RA_NOBREF register file implementation

7.3

implementations. These were performed with perfect L1 instruction caches and coalescing
store queues, as was done for the studies in Chapter 6. We also decided to perform these
simulations both with and without the L2 data cache. Eliminating the L2 data cache

increases the length of the average runahead episode. Thiswill increase the number of stale

1

2.

We have performed a number of runahead simulations to evaluate our new register file

When runahead is initiated:
for(X = 0; X < 32; X++) {

SRV[ X] = NOT_STALE;
}

Instruction | writes Result R to register X
i f(l->runahead == TRUE) {

SRV X] = STALE;// This bit also indicates that the RF[X] is INV
/1 The value in the RFis now “stale” for all subsequent instrs

/1 during this runahead epi sode

SRV[31] = NOT_STALE; // r31 is hardwired to zero

}
el se {

RF[ X] = R->val ue;
}

Instruction | reads operand O from architected register X in the register set
i f(l->runahead == TRUE) {

O>value = RF[X;
i f(SRV[X] == STALE)
O >val i d= FALSE;
el se
O >val i d= TRUE;

}
el se {
O >value = RF[X];
O>valid = TRUE
}

Simulation Results
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registersin the BRF at the initiation of runahead for the RA_NOCOPY model, and will

cause the RA_NOBRF model to rapidly run out of VALID registers.

7.3.1 CPI

The CPI for each of the benchmarksis provided in Figures 7.3 through 7.7. The CPI for
each processor configuration is given via a stacked bar, which illustrates the CPI contribu-
tion of each instruction class. The overall CPI of each configuration is provided as a number
on top of each stacked bar, along with a percentage reduction in overall CPI over that of the
non-runahead processor. The percentage reduction in CPI for loads and stores over that of
the equivalent non-runahead processor is provided to the right of each stacked bar. Proces-
sor configurations that include an L2 data cache are on the right side of each figure, while
those that do not include an L2 data cache are to the | eft.

The CPI figures for the GO benchmark are shown in Figure 7.3. The simplified register
file models do not drastically affect performance for this benchmark aslong as the processor
has an L2 data cache. The runahead processor that does not perform the register save and
restore operation between the RF and BRF (RA_NOCOPY) incurs only adight increase in
CPI (1.5%) over the runahead processor that does perform the save and restore operation
(RA). When the BRF is eliminated (RA_NOBRF) the CPI increases over that of the base-
line runahead processor by 6%. However thisis still a 9% improvement over the CPI of the
non-runahead (NORA) processor. These relatively good performance numbers for the sim-
plified register file runahead processors worsen significantly when the L2 data cache is
eliminated. This reduces the ability of the RA_NOCOPY processor to generate useful
prefetches. This can be seen in Figure 7.3, where the RA_NOCOPY processor without an

L2 data cache has a CPI that is 16% greater than that of the RA runahead processor. Note
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that thisis still a 28% reduction in CPI over the non-runahead (NORA) processor. The
RA_NOBRF processor performs even worse, with a 29% increase in CPI over the RA pro-
cessor, corresponding to a 20% reduction in CPl over the NORA processor. A prefetch util-
ity plot for GO is provided in Figure 7.8. Note that the RA_NOCOPY processor generates
amost as many useful prefetches as the RA processor, unfortunately thisis offset by a dou-
bling in the number of useless prefetches. As we expected, the RA_NOBRF processor gen-
erates most of its prefetches very early in the average episode. These prefetches are
generated early enough to keep wrong path effects to a minimum, as relatively few useless
prefetches are generated. Unfortunately RA_NOBRF only generates about half as many
prefetches as the other processor models.

The performance of the simplified register file runahead processors for the PERL bench-
mark, shown in Figure 7.4, is similar to that for GO. For the processors with L2 data cache,
eliminating the BRF save and restore operation (RA_NOCOPY)) resultsin a5% increasein
CPI over the baseline runahead processor (RA), while eliminating the BRF completely
(RA_NOBREF) resultsin a12% increase in CPI. Eliminating the L2 data cache worsens per-
formance considerably, with the RA_NOCOPY processor increasing CPI by 14%, and the
RA_NOBREF processor increasing CPI by 31% over the RA processor. A prefetch utility
plot for PERL is provided in Figure 7.9. Note that RA_NOBRF produces very few useless
prefetches. Other than that, the plot is similar to that for GO.

The performance for the IJPEG benchmark, shown in Figure 7.5, was similar in some
respects to that obtained for the GO and PERL benchmarks. There was virtually no penalty
for either of the simplified register file models as long as an L2 data cache was included in

the processor models. Eliminating the L2 data cache led to a modest gap in performance,

215



with the RA_NOCOPY model incurring a 6% penalty, and the RA_NOBRF model incur-
ring a 10% penalty over that of the RA processor. A prefetch utility plot for IJPEG is pro-
vided in Figure 7.10. Aswith PERL, RA_NOBRF produces very few useless prefetches.
Other than that, the plot is similar to those for GO and PERL.

Interestingly, the RA_NOCOPY configurations were able to achieve virtualy identical
performance to the RA processors for the VORTEX benchmark. This can be seen in Figure
7.6. The RA_NOCOPY incurred a CPI penalty of approximately 2% over that of the RA
processor, even when the L2 data cache was eliminated. The performance of the
RA_NOBRF processors was not as impressive, with a 32% penalty for the processor model
without L2 data cache, and a 12% penalty for the processor model with an L2 data cache. A
prefetch utility plot for VORTEX is provided in Figure 7.11. Aswith PERL and IJPEG,
RA_NOBRF produces very few useless prefetches.

Asusual the performance of the STREAM benchmark, as shownin Figure 7.7, is partic-
ularly interesting. Eliminating the RF save and restore operation, while retaining the BRF,
leads to an 8% reduction in CPI for RA_NOCOPY over RA without the L2 data cache, and
a10% reduction when the L 2 data cache isincluded in the processor models. The reason for
thisisrather subtle. All other things being equal, stale registers in the BRF delay the onset
of prefetching in the average runahead episode for RA_NOCOPY, as stale registers must be
overwritten with fresh data before they can be used to generate VALID prefetch addresses.
This can be seen in Figure 7.12, which illustrates the prefetch utility for the RA,
RA_NOCOPY, and RA_NOBRF processors. Note that many of the RA_NOCOPY
prefetches are generated late in the average runahead episode, and that both processor con-

figurations produce virtually the same number of prefetches (note the spikes at the x = 100
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point for the RA_NOCOPY and RA useful prefetch curves). Delaying the onset of prefetch-
ing makes it more likely that the prefetches that are generated will be serviced by the time
that the processor actually executes the prefetch-generating instructions during normal
operation. A problem with thisisthat it is highly dependent upon the processor staying on
the correct path late into the average runahead episode, which is especialy difficult to do
when runahead is initiated with stale values in the register file. Thisis not a problem for
STREAM, which has a 0% branch misprediction rate during both runahead and normal
operation. Finally, note that the RA_NOBRF model is able to produce nearly as many
prefetches as the other processor models. The performance gap is due to two factors. First,
there are not quite as many prefetches generated, accounting for some of the gap. Second,
the prefetches that are generated are generated early in the episode. These prefetches are
less likely to be serviced by the time the processor actually needs the data. At first glance it
appears that it should not matter at what point a prefetch is generated in the episode. How-
ever, overlap between runahead episodes makes it more likely that prefetches generated late
in a given episode will be serviced before their corresponding prefetch generating instruc-
tion is executed during normal operation.

In general, the worsening relative performance of the RA_NOBRF processor when the
L2 data cache isremoved is aresult of the increased length of the average runahead episode.
As this register file configuration does not allow register file updates during runahead, the
number of stale registers in the RF increases dramatically the longer the processor remains
in runahead mode. Thisis of particular importance when the L2 data cache is removed, as
the increased length of the average runahead episode increases the degree of overlap with

prior episodes. This increased overlap moves the bulk of the prefetches generated with the
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RA processor model farther into the average runahead episode. Unfortunately, when the
processor is prevented from updating the register file during runahead it is more likely to be
unable to compute prefetch addresses at this increased distance into the average episode,
resulting in many missed opportunities to prefetch and a corresponding decrease in
runahead effectiveness for the RA_NOBRF scheme.

Similarly, the performance of RA_NOCOPY relative to RA generaly worsens when the
L2 data cache is removed. Thisis again the result of the longer average runahead episode
length, which means that more registers are updated in the BRF on average during
runahead, resulting in more stale values in the BRF at the conclusion of the average
runahead episode than there would be if the processor had an L2 data cache. The presence
of stale registersin the BRF at the initiation of runahead also makes it less likely that the
RA_NOCOPY processor will stay on the correct path, further lowering performance.

Interestingly, there is a subtle advantage to not having a BRF in that when register file
writes are not allowed during runahead, ALL of the registersin the RF are non-stale until
they are the target of aretired runahead instruction, at which point they become stale. This
is not true for the RA_NOCOPY scheme, in which on average severa registersin the BRF
are stale when runahead isinitiated. This means that eliminating the L2 data cache will typ-

ically result in worsened performance for RA_NOCOPY schemerelative to the RA scheme.
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7.3.2 Stale Registers

As was mentioned earlier, the RA_NOCOPY processor configuration relies upon regis-
ter file writes to both the RF and the BRF during normal operation to keep the state of the
two register files coherent enough to allow the processor to generate useful prefetches dur-
ing runahead episodes using only the values in the BRF. Any registers in the BRF that have
been updated during a given runahead episode are considered stale during normal operation
until they have been overwritten with fresh values. Stale valuesin the BRF at the start of the
next runahead episode can cause the processor to go down the wrong path, generate useless
prefetches, or miss opportunities to generate useful prefetches.

In order to get an idea of how effective register file updates during normal operation are
at keeping the RF and BRF contents coherent, we recorded which registersin the BRF were
stale at both the conclusion and initiation of runahead episodes. This gives us a stale count
at runahead initiation and conclusion for each register in the BRF. Combining this informa-
tion with the number of runahead episodes allowed us to compute the probability that a
given register in the BRF is stale at both the conclusion and initiation of runahead episodes
for the RA_NOCOPY processor configuration.

Thisinformation is provided in Figures 7.13 through 7.17. The bars on the top half of
each figure represent the probability that each register is stale at the conclusion of the aver-
age runahead episode, while the bars on the lower half of each figure represent the probabil-
ity that each register remains stale at the initiation of the next runahead episode. The lower
bars are aways of alower magnitude than the upper bars due to the fact that BRF registers
cannot become stale during normal operation. The average probability that aregister in the

BRF is stale is provided to the right of each collection of bars. Note that this average is for

224



only 31 registers, since r31 can never become stale as it is hard wired to the value zero.
Finally, these figures provide data for two processor configurations: one with an L2 data
cache, and one without. Removing the L2 data cache dramatically increases the length of
the average runahead episode for most programs, which should also increase the probability
that BRF registers are stale.

The stale value probabilities for the GO benchmark are provided in Figure 7.13. Note
that, as predicted, the probability that the average register is stale at the conclusion of
runahead is significantly higher for the processor that does not have an L2 data cache. These
registers are also more likely to remain stale at the initiation of the next runahead episode,
delaying the onset of prefetching. The plots for the rest of the SPEC benchmarks are simi-
lar; we do not discuss them here for this reason. Note that the data cache behavior of the
STREAM benchmark is such that the probabilities are essentially unchanged when the L2

data cache isremoved. This can be seenin Figure 7.17.
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Probability of Stale Values in BRF for VORTEX
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Probability of Stale Values in BRF for STREAM
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scheme can be compensated for as their counterparts in the RF are, by definition, not stale.
As the processor knows which registers are stale in the BRF, it isarelatively simple matter,
in theory, for the processor to provide a non-stale value from the RF when its counterpart in
the BRF is stale during runahead. This can be done by providing yet another set of bits to
the BRF on a per-register basis, which we can call the REVERSE bits. These new bits are
used to hold the state of the SRV bits at the initiation of runahead (recall that the SRV bits
are set to the NOT_STALE state after using their values to modify their counterparts in the
IRV). The REVERSE bits now indicate whether or not a particular register in the BRF is
stale as aresult of awrite during the previous runahead episode. When aregister is the tar-

get of awrite during runahead its REVERSE bit is cleared, and its SRV bit is set (as before).
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If aregister in the BRF contains a stale value from the last episode, and its REVERSE bit is
set, then anon-stale value can be read from the RF instead of the BRF. This complicatesthe
RA_NOCOPY scheme somewhat, and as a result we did not simulate this approach. Even
so, it would be much easier to implement the REVERSE bits than the RF-BRF save and

restore operation used in the baseline runahead register file configuration.

7.4  Eliminating the L1 data cache runahead valid bits

The L1 data cache valid bits that were employed in al of the runahead processor config-
urations considered up to this point are another source of potential savings. Requiring every
word in the L1 data cache to have a dedicated runahead valid bit can require a significant
amount of storage: 2K bits of storage for the 8KB L1 data cache that we assumed for our
simulations. Thisis twice the number of bits required to implement a 32x32 register file,
ignoring implementation details of course.

Eliminating the runahead valid bits in the L1 data cache also simplifies the pipeline to
some extent, as the validity of load results during runahead is now a function of only the
validity of the load address register and the presence of the target line in the L1 data cache:
the status of the non-existent runahead valid bit is removed from this logic. Of course, this
simplification does not come without potential problems. Removing the L1 data cache
runahead valid bits means that there is now no way for the processor to detect dependencies
between runahead stores and subsequent RAW dependent |oads during the same runahead
episode. This cannot cause improper program execution, but it can cause a degradation in
the performance gains obtainable via runahead.

In order to evaluate the potentially negative effects of eliminating the runahead valid bits

from the L1 data cache we simulated two different runahead processor configurations,
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referred to asRA_NOVALID. Neither have runahead valid bitsin their L1 data cache. They
assume that all data read from the L1 data cache on a cache hit during runahead is VALID
and free of dependencies with any stores that may have preceded the load in the runahead
episode. As before, we also wanted to see what effect increasing the average runahead epi-
sode length has on performance. We use the non-runahead (NORA) and baseline runahead
(RA) processor configurations, with and without the L2 data cache, as our basis of compar-
ison. Note that the RA_NOVALID processor isidentical to the RA processor in every

respect except itslack of L1 data cache runahead valid bits.

7.4.1 CPI

The CPI figures for these simulations are provided in Figures 7.18 through 7.22. Our
resultsindicate that eliminating the L1 data cache runahead valid bits resultsin virtually no
change in performance. The only exception to this rule is the PERL benchmark, which suf-
fered a modest reduction in performance when the L2 data cache was removed (Figure
7.20). These resultsindicate that eliminating the L1 data cache runahead valid bits can save

asignificant amount of hardware, without affecting performance.
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Processor CPI for the PERL Benchmark
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Processor CPI for the VORTEX Benchmark
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7.5 Summary and Conclusions

This chapter addresses concerns about the implementation cost of runahead. Our pri-
mary concern, was that the register file save and restore operation used to copy the contents
of the architected register file between two register filesin asingle cycle at both the initia-
tion and completion of runahead, was too complex to implement in a reasonabl e fashion.

We have demonstrated that there is little effect on performance if the register file save
and restore operation is eliminated by having the processor write to both the BRF and RF
during normal operation, while using only the BRF during runahead. This eliminated the
save and restore operation, but it requires the addition of a STALE bit to each BRF register

to indicate which values in the BRF are stale at the initiation of runahead.

233



We also considered a runahead processor implementation that did not employ a second
register file (the BRF) for use during runahead episodes. This implementation prevents
runahead instructions from updating the RF, which checkpoints the architected register file
state. The drawback with this approach is that the only way that would-be register file
updates during runahead can communicate their values to dependent instructionsis by using
the forwarding paths. If avalue is forwarded during runahead, then it can be used by a sub-
sequent dependent instruction. If however, the source instruction retires before a dependent
runahead instruction can forward the value, the value is lost. We found that this scaled back
approach generally achieved dightly better than half of the runahead performance gains that
are possible with the baseline runahead register file implementation.

As the sequential state of the memory hierarchy is checkpointed during runahead by
preventing pre-processed stores from modifying the contents of memory;, it is possible for
pre-processed |oads to read stale values from the data cache. Our baseline runahead proces-
sor appended arunahead valid bit to every word in the L1 data cache, which allows the pro-
cessor to detect when aload has placed a stale value into the RF during runahead. This
information is used to reduce the number of erroneous prefetches that are generated. We
found that there was virtually no change in processor performance when these valid bits
were eliminated. Thisis a significant result, as 2Kb of storage is required to implement the
runahead valid bits for an 8 KB cache.

These results indicate that it is possible to use the runahead technique to good effect,
while reducing the amount of hardware required to implement runahead to a very small

amount.
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Chapter 8

Summary and Conclusions

We have proposed a collection of processor modifications, collectively referred to as
runahead, that can significantly improve processor performance. The basicideaisto use the
processor pipeline to pre-process instructions during instruction and data cache miss cycles,
instead of stalling. This allows a processor to generate accurate instruction and data stream
prefetches by detecting many demand cache misses before they would otherwise occur. All
pre-processed instruction results are discarded when normal operation resumes, as we are
only interested in generating prefetches: this alows us to obtain aform of very aggressive
speculation with asimple in-order pipeline.

The most important result of our experimentsisthat it is possible to achieve good per-
formance with a simple in-order pipeline when runahead is employed. The implementation
cost of runahead is low, with the majority of the hardware cost consisting of a means of
checkpointing the sequential state of the architected register file. Checkpointing the state of
the memory hierarchy is performed by preventing pre-processed store instructions from
modifying the contents of memory.

Some highlights of our results are as follows. These results are for afive stage pipeline

with two levels of split instruction and data caches: 8KB each of L1, and 1IMB each of L2.
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» Instruction and data stream prefetches generated during runahead episodes led to a
significant reduction in CPI for al of the benchmarks that were examined. The
reduction in CPI attributable to runahead ranges from 16% for 1JPEG to 77% for
STREAM.

» About 2 to 3 prefetches are generated during the average runahead episode.
Increasing the length of the average runahead episode by eliminating the L2 data
cache typically doubles the number of data stream prefetches that are generated
during the average runahead episode.

» Data stream prefetches generated during load and store miss initiated runahead
episodes are highly likely to be useful: typically at least 90% of prefetched lines
are accessed at |least once during normal operation. Data stream prefetches gener-
ated after an instruction cache missis detected are less likely to be useful, however
very few of these are generated.

* Instruction stream prefetches generated during runahead episodes are highly likely
to be useful: typically about two-thirds of prefetched lines are accessed at |east
once during normal operation.

* Runahead can improve conditional branch prediction accuracy to some extent for
some benchmarks. Our results indicate that attempting to save pre-processed
branch outcomes for use during normal operation as predictors will not signifi-
cantly improve performance in most cases.

* Theprice of these improvementsis an increase in the bandwidth that the L2 caches
and main memory must supply. Fortunately most of the bandwidth dedicated to
prefetching is useful.

Some additional highlights from our studies are as follows:

Improving the effectiveness of runahead

We had hoped that by extending the length of the average runahead episode, by deleting
the L2 data cache, we would be able to achieve runahead processor performance that would

surpass that of a more expensive runahead processor that included an L2 data cache. This
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was not the case, even though the longer runahead episodes significantly increased the
effectiveness of runahead.

Failing at this, we hoped that at the very least we would be able to match the perfor-
mance of non-runahead processors that included L2 data cache. This was not the case, even
when we eliminated wrong path effects during runahead by using a trace of conditional
branch outcomes and indirect branch targets, in addition to dramatically increasing the
bandwidth of the main memory interface. The runahead processor models without L2 data
cache are competitive in the sense that they do achieve performance that is reasonably close
to their non-runahead counterparts that include L2 data cache, yet at a considerably lower
cost.

Reducing the implementation cost of runahead

Our baseline runahead processor used a rather simplistic method of checkpointing the
sequential state of the architected register file during runahead episodes, in which the RF
contents are copied in asingle cycle to a backup register file, or BRF, at the initiation of
runahead, then restored when normal operation resumes. We found that there islittle perfor-
mance degradation if the register file save and restore operation is eliminated by having the
processor write to both the BRF and RF during normal operation, while using only the BRF
during runahead. Writing to both register sets during normal operation helps to keep the
BRF contents coherent with their counterparts in the RF, however some number of stale val-
ues are typically in the BRF at theinitiation of runahead.

We a so considered an even simpler implementation that did not employ a second regis-
ter file (the BRF) for use during runahead episodes. This implementation does not allow

runahead instructions to update the RF, which checkpoints the architected register file state.
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A drawback of this approach is that the only way that would-be register file updates during
runahead can communicate their values to dependent instructions is by using the forwarding
paths. If arunahead instruction retires before a dependent runahead instruction can forward
the value, the value is lost. We found that this scaled back approach generally achieved
dightly better than half of the runahead performance gains that are possible with the base-
line runahead register file implementation.

Since the sequentia state of the memory hierarchy is checkpointed during runahead by
preventing pre-processed stores from modifying the contents of memory, it is possible for
pre-processed loads to read stale values from the data cache. Our baseline runahead proces-
sor appended arunahead valid bit to every word in the L1 data cache, which allows the pro-
cessor to detect when a pre-processed load has placed a stale value into the RF. This
information is used to reduce the number of erroneous prefetches that are generated. We
found that there was virtually no change in processor performance when these valid bits
were not used. Thisis asignificant result, as 2Kb of storage is required to implement the

runahead valid bits for an 8 KB cache.
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Chapter 9

Future Work

There are anumber of areasin which the performance of runahead can be enhanced. We

address some of these areas in this chapter.

9.1 Pre-process more than one instruction per cycle

We have seen that increasing the average latency to off-chip memory can significantly
improve the effectiveness of runahead, by increasing the number of instructionsthat are pre-
processed during the average runahead episode. Unfortunately, the increased effectiveness
of runahead is not enough to completely offset the loss of the L2 data cache. Increasing the
number of instructions that are pre-processed during the average runahead episode can also
be accomplished by pre-processing more than one instruction per cycle. The best way of
doing this would be to use runahead with an in-order multiple issue processor: an out-of-
order runahead processor would be unnecessarily complex.

One of the problems with in-order multiple issue processorsis the inflexibility of thein-
order model: instruction issue stalls once an instruction in the window cannot issued, which
can occur for a variety of reasons. Since runahead episodes are entirely speculative, and all
results are discarded, a multiple-issue runahead processor could relax its instruction issue
policies during runahead episodes by turning instructions that would otherwise stall the

issue logic into NOPs in order to keep the issue rate as high as possible. This, plus the fact
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that runahead processors do not stall on cache misses, could keep the runahead I1PC signifi-
cantly higher than it would be during normal operation. Thisincreased |PC during runahead
episodes may alow the processor to generate enough additional prefetches to dramatically
improve performance, perhaps even enough to provide superior performance when the L2
data cache is deleted.

Finally, cache misses affect conventional in-order multiple issue processors more than
their single-issue counterparts due to the insertion of multiple NOPs per cache miss cycle.
This implies that a multiple-issue runahead processor may extract more benefit from pre-

processing than a single-issue processor.

9.2 Runahead Co-processors

One of the problems with the runahead technique is that it relies upon demand cache
misses during normal operation to initiate runahead. Thisis acceptable for low cost imple-
mentations, as the pipeline is productively employed during cache miss cycles. However, it
may be possible to obtain superior performance by using co-processors to continually pre-
process the instruction stream in parallel with a conventional processor.

It might be practical to place very simple runahead processors physically closeto the L2
caches or main memory, perhaps even implementing them on the same die. Asthese proces-
sors would only be used for pre-processing, much of the logic associated with a conven-
tional processor, even arather smple one, could be discarded. For example, alarge fraction
of the instruction set could be omitted, with any occurrence of the missing instructions

treated as NOPs. Similarly, interrupt and exception support can be del eted.
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9.3 Compiler Interaction

Allowing the compiler to influence the behavior of the processor during runahead epi-
sodes appears to be very promising. An approach similar to that used with the 1A-64 archi-
tecture [40] could be used to transmit agreat deal of runahead-specific information from the
compiler to the processor hardware. Some of the ideas that we have in this area are
described in the following sub-sections.

Selectively enable prefetching or runahead for individual load and store instructions

We have seen that some types of prefetching may be inappropriate depending upon the
type of runahead that the processor is engaged in. For example, data stream prefetching with
loads or stores may be inappropriate during instruction cache miss initiated runahead epi-
sodes. We have also shown that prefetching for some load and store instructions may be sig-
nificantly more effective than for others.

Thisimplies that providing the processor with the ability to selectively enable or disable
prefetching on a per-instruction basis may improve performance. This could be done by
profiling an application and recording per-instruction runahead statistics. Instruction word
bits can then be used to selectively enable or disable prefetching for each load or store
instruction based upon the profiling statistics. The initiation of runahead could also be dis-
abled on a per-instruction basis.

Provide prefetch hints to individual load and store instructions

Similarly, it may be possible to use profiling information to append prefetch hints to
individual instructionsin a benchmark. These hints could be used to specify the number and
stride of additional prefetches that can be generated in addition to the line addressed by a
specific load or store instruction, allowing the processor to generate multiple runahead

prefetches per load or store miss.
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Disable the pre-processing of certain instructions

A detailed profile of application behavior may indicate that certain instructions may not
be useful during runahead episodes. In particular, long-latency instructions such as multi-
plies and divides may be of little use during runahead episodes. Also, treating some O/S
calls as NOPs during runahead instead of stalling the processor may improve performance.
The efficiency of runahead may be improved by disabling the pre-processing of these
instructions on a per-instruction basis. This could be done by appending a pre-processing-
enable bit to each instruction word.

Skip over uninteresting code

Oneway of improving the performance of runahead would be to have the processor skip
over entire sections of code during runahead that are uninteresting. Suppose, for example,
that an inner-loop contains both a load instruction and a function call. The load instruction
generates useful prefetches on aregular basis, while the function call is merely a distraction
that generates few, if any, prefetches. Performance could be increased by disabling the func-
tion call itself. This could be done by treating the branch instruction that performs the func-
tion call as a NOP during runahead. As with the previous section, this can be accomplished
by appending a pre-processing-enable bit to each instruction.

Another possibility would be to append a skip-count to each instruction word. These
could be used to specify asmall branch offset for each instruction, allowing the processor to
rapidly jump over small sections of code during runahead episodes.

Finally, a runahead-branch instruction could be added to the instruction set. This
instruction could be used to direct the processor to an interesting section of code during
runahead episodes. The compiler could even generate special runahead-only code for

prefetching. Two versions of each function in a program could be generated: one to com-
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pute results, and another dedicated to the efficient prefetching of data. The processor would
treat runahead-branch instructions as NOPs during normal operation, and the compiler

would have to insert them sparingly in order to keep code bloat to a minimum.
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