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CHAPTER 1

Introduction

Cache performance analysis is an increasingly important area of computer
architecture research. Cache misses cause significant performance degradation in today’s
microprocessors and, because of increasing instruction issue rates and higher disparities
between CPU clock speed and memory access times, misses will have an even greater
effect on the performance in future designs. Thus, both the means of simulating cache
behavior as well as methods for improving cache performance are imperative in the
development of new architectures. This dissertation is a collection of several related
studies which examine the cache behavior in next-generation microprocessors. While each
study focuses on different aspects of cache simulation and design, the results of one study
provided the questions, inspiration, or experimental method for the next study.

The major contribution of the work is the creation of a new instruction cache
prefetching algorithm which was found to decrease the cycle time of current-generation
processor/memory architectures by as much as 16%. An instruction cache prefetching
algorithm fetches memory lines into the cache before they are needed by the CPU’s fetch
unit. If the algorithm can both correctly predict which lines will be needed, and bring them
into the cache before they are needed, many instruction miss cycles can be reduced or
avoided entirely. Compared to other prefetching schemes, the proposed algorithm, called
wrong-path prefetching, offers better performance in terms of cycle time reduction at a
reduced or equivalent hardware cost. The result is surprising because the speedup is
achieved by prefetching lines down the not-taken direction of conditional branches. More

importantly, my results show that wrong-path prefetching, as well as instruction



prefetching in general, will become even more effective in future architectures. The details
of the method and experimental results are described in Chapter 4.

The possible benefits of memory references encountered in the not-taken paths of
conditional branches was discovered while studying the effects of speculative execution
on cache performance. This study is discussed in Chapter 3. Future superscalar processors
will speculatively execute instructions past unresolved conditional branches in order to
achieve a high instruction issue rate. Unfortunately, infrequent but unavoidable branch
misprediction will cause incorrect instructions to be executed. Even when cache writes are
held until branch resolution, incorrect path execution will alter the cache state since
memory reads will allocate and possibly displace cache lines. Recovery mechanisms can
return the processor to a correct state but the changes in the cache cannot be undone. It
was thought that these wrong-path cache changes increase the cache miss rate since the
execution of wrong paths generates additional, unnecessary memory references.
Consequently, these references would displace needed data, thereby increasing cache
pollution, cache misses, and bus traffic. However, the results of the study were not as
expected. The dominant effect of wrong path memory references was to prefetch
instructions and data for later correct path execution. Additional misses due to cache
pollution were minimal even with deep speculation.

Since cache behavior has a large impact on processor performance, it is important
that methods are available to study the effects of different cache configurations or prefetch
algorithms. This is usually done by simulation using runtime memory reference traces as
input. Chapter 2 is a overview of the methods available for reference trace collection. It
focuses on the principles of developing instrumentation tools which modify a program in
order to obtain a reference trace during program execution. In particular, it describes the
operation and design of two instrumentation tools, IDtrace and spex, which were written

to obtain memory reference traces on the Inte]l Architecture platform. These and other



similar tools are utilized to provide input to trace-driven cache simulators and to provide
empirical data describing program execution patterns for use in cache model equations.

Chapter 5 discusses efforts made to model the behavior of a prefetched cache. A
previously developed cache model called the gap model was chosen to extend to include
prefetching effects. The gap model miss prediction is based upon computing the
probability that cache lines are displaced between basic block executions. The lengths of
the gaps between block executions are determined from the program’s execution trace.
The longer the gap, the greater the probability that the block’s cache lines will have been
displaced. The fact that the model is based upon block behavior makes it conducive to
extend to prefetched caches.

Derivation of next-line and wrong-path prefetched cache models as well as a non-
prefetched cache model are given along with predicted verses measured miss comparison
results using SPEC benchmark programs. Unfortunately, the number of misses only
partially determines the performance of a prefetched cache since prefetching significantly
alters miss latencies. The chapter outlines basic equations which describe the cycle time
performance of both non-prefetched and prefetched caches. The equations contain
variables which describe the interaction between instruction fetch, cache miss, and cache
line refill. When possible formulas were derived for these variables based upon cache
configuration parameters. Trends and dependencies were noted when a formula was not
evident.

To reduced the chance of confusion with the terms used throughout this paper,
several terms will be defined. A program can be partitioned into basic blocks. A basic
block is a sequence of instructions which have one execution entry point and one exit
point. Thus, if one instruction in the basic block is executed, they all are executed. Basic
blocks are delimited by control instructions such as conditional and unconditional

branches, subroutine calls, and returns.



Branch prediction is used to guess the control flow direction of a conditional
branch before the outcome of the branch condition is known. Branch prediction is
implemented in speculative processors to direct instruction fetch beyond conditional
branches. The correct path of the conditional branch is the proper execution direction of
the branch based upon the outcome of the condition. The wrong path is opposite path of
the correct one. The taken path is always the correct path in a non-speculative processor
and is the predicted path in a speculative processor. If the branch prediction scheme
predicts incorrectly, execution will proceed down the wrong path. A correct-path reference
is a memory reference occurring during correct-path execution. Similarly, a wrong-path

references occurs during wrong-path execution.



CHAPTER 2

Instrumentation Tools

2.1 Introduction

This chapter outlines the methods available for reference trace collection. It
contains general, user-manual, information concerning the applicability and use of many
trace gathering tools implemented on various platforms. In addition, it describes the tools
used to gather the memory reference traces upon which the cache performance studies of
Chapters 3 and 4 are based. This chapter does not directly pertain to the main emphasis of
the thesis and skipping it will not effect the readability of the cache performance analysis
chapters.

The instrumentation of applications to generate run-time information and statistics
is an important enabling technology for the development of tools that support the fast and
accurate simulation of computer architectures. In addition, instrumentation tools play an
equally important role in the optimization of applications, in the evaluation of new
compilation algorithms, and in the analysis of operating system overhead. An
instrumentation tool is capable of modifying a program under study so that essential
dynamic information of interest is recorded while the program executes. The
instrumentation process does not affect the original logical operation of the test program.
In a typical situation, a computer architect uses an instrumentation tool to produce an
instruction or data trace of an application. The architect then feeds that trace to a trace-
driven simulation program. The usefulness of instrumentation tools is obvious from a

quick glance at current research publications in the area, where a significant number of



authors use traces generated by two of the most popular instrumentation tools: pixie [58]
and spixtools [13]. These tools are popular because of their applicability to many
architectures and programs, their relatively low overhead, and their simplicity of use. If
the use of such tools is unfamiliar, several examples are given in Section 2.7.

This chapter’s focus is the design of instrumentation tools. Particular emphasis
will be given to two tools I wrote to gather memory references on Intel architecture
platforms. Both tools, IDtrace and spex, take a binary file as input and create a new,
instrumented executable which performs as the original while also outputting a memory
reference or full execution trace. In addition, spex incorporates branch prediction,
speculative execution, and misprediction recovery in order to produce a memory reference
traces approximating a trace obtained when running the application on a speculatively
executing miCroprocessor.

Section 2.2 describes how instrumentation tools fit into the broad range of
techniques available for the collection of run-time information. Section 2.3 lists the points
in the compilation process at which one can instrument an application. It goes on to
discuss the advantages and disadvantages of performing instrumentation at these points,
noting that the basic structure of an instrumentation tool and the problems faced are
common to all of the approaches. Section 2.4 then discusses the specifics of
instrumentation tool design, and Section 2.5 presents the important characteristics of some
existing instrumentation tools including IDtrace and spex. Finally, the chapter concludes

with an appendix which demonstrates the use of two common instrumentation tools.
2.2 Run-Time Information Collection Methods

Before discussing the design of instrumentation tools in detail, other approaches
will be described that provide a functionality (i.e., the ability to collect run-time

information) similar to that provided by instrumentation tools. In general, a run-time data



collection method can be classified as either a hardware-assisted or a software-only
collection scheme. Each type of approach has advantages and disadvantages to consider.

A hardware-assisted collection scheme involves the use of hardware devices that
are added to a system solely for the purpose of data collection. These monitoring devices
are not necessary for the proper functioning of the computer system under test. Many
different hardware methods exist for unobtrusively monitoring system-wide events. They
include off-computer logic analyzers such as the University of Michigan’s Monster system
[46] that monitor the activity of the system bus, specially designed hardware boards such
as the BACH system [17] which observe and record bus activity, and special on-chip logic
such as the performance monitoring counters on the DEC ALPHA 21064 microprocessor
chip which summarize specific run-time events [14].

The two main advantages of a hardware-assisted collection scheme are that one
can build hardware to capture almost any type of event and that a hardware monitor can
theoretically collect dynamic information without slowing down the application under
test. Unfortunately, there are a number of disadvantages to these schemes too. First, since
a huge amount of data can be gathered in a short time, the monitoring hardware is built
either to summarize events (e.g., a counter that only counts the number of cache misses
and not their addresses) or to record disjoint segments of program operation (e.g., a
hardware monitor with a large memory that accepts the run-time information at the full
execution rate and then later dumps this data to a backing store). In either case, less than
the full amount of information is gathered which could lead to distortions in the data. To
minimize the amount of unwanted data collected, researchers have combined hardware-
assisted approaches with software instrumentation of applications to signal when the
hardware should start and stop monitoring [46] — another compelling reason to
understand software instrumentation methods. Finally, hardware-assisted collection
schemes are costly and highly dependent upon the characteristics of the monitored

machine; thus, they are not applicable to the general computer user.



Software-only collection schemes, on the other hand, are relatively inexpensive
and more portable than hardware-assisted collection schemes because the software
schemes use only the existing hardware to gather the desired run-time information. In
general, software-only schemes can be divided into two approaches: 1) those which
simulate, emulate, or translate the application code and 2) those which instrument the
application code. Briefly, a code emulation tool is a program that simulates the hardware
execution of the test program by fetching, decoding, and emulating the operation of each
instruction in the test program. SPIM [22] and Shade [12] are examples of tools in this
category. One of the major advantages of emulation tools is that they support cross-
simulation and the ability to execute code on hardware that may not yet exist. Compared
to instrumentation tools though, an emulated binary, even with sophisticated techniques
such as dynamic cross-compilation [12], is noticeably slower than an instrumented binary
when capturing the same run-time information.

An instrumentation tool works by rewriting the program that is the target of the
study so that the desired run-time information is collected during its execution. The logical
behavior of the target program is the same as it was without instrumentation, and the
native hardware of the original application still executes the program, but data collection
routines are invoked at the appropriate points in the target program’s execution to record
run-time information. It is possible for a instrumentation tool to provide traces for an
architectural model different than the machine on which the new binary is run, see Section
2.5.2. Overall, researchers have proposed the following three distinct mechanisms to
invoke the run-time data collection routines: microcode instrumentation, operating system
(OS) trapping, and code instrumentation.

Agarwal, Sites, and Horowitz [4] describe a microcode-instrumentation technique
called ATUM (Address Tracing Using Microcode) that supports the capture of application,
operating system, interrupt routine, and multiprogramming address activity. Instead of

instrumenting the individual applications, their technique instruments the microcode of



the underlying machine so that the microcode routines record, in a reserved portion of
main memory, each memory address touched by the processor. This approach is effective
because, typically, only a small number of the microcode routines are responsible for the
generation of all memory references. This approach is general because it is independent of
the compiler, object code format, and operating system—as Agarwal states, ATUM is
“tracing below the operating system [3].” In fact, any information visible to the microcode
can be instrumented. Agarwal, Sites, and Horowitz report that the overhead of this
approach causes applications to run about ten times slower than normal when used to
collect address traces [4]. Of course, microcode instrumentation is only applicable to
hardware platforms using microcode and even then, the user must have the ability to
modify the code. Furthermore, since most processors today have hardwired control, this
approach has limited applicability.

A more widely applicable approach is to collect run-time information using OS
traps. For instance, data address traces can be collected by replacing each memory
operation in the target program with a breakpoint instruction which traps to a routine that
records the effective address. A disadvantage of using OS traps is that, if many events
must be recorded, the cumulative OS overhead of handling all the traps is significant.
However, there are a number of exception mechanisms in operating systems that can be
utilized to improve the efficiency of this method. Tapeworm II [70] is an example of an
efficient software-based tool that drives cache and TLB simulations using information
from kernel traps. It utilizes low-overhead exceptions and traps of relatively few events.
The applicability and efficiency of the OS-trap approach dependents upon the accessibility
of certain OS primitives. With proprietary operating systems, this can be a problem.

The most generally applicable approach is the direct modification of the program’s
code. This approach, called instrumentation, inserts extra instructions into the target
program to collect the desired run-time information. Data collection occurs with minimal

overhead because the application runs in native mode with, at most, the overhead of a



procedure call to invoke a data collection routine. Most instrumentation tools can create
instrumented binaries that run at less than a ten-times slowdown in execution time when
collecting an address trace. Some instrumentation tools such as QPT [37] rely on
sophisticated analysis routines and post-processing tools to reduce this overhead even
more. This approach is generally applicable because it is independent of the operating
system and underlying hardware, it has been implemented on systems ranging from Intel
architectures [48][49] to the DEC ALPHA architecture [37]{62]. Furthermore, most code
instrumentation tools require only the executables, not the sources files, so a user can
instrument a wide range of programs.

However, there are a number of shortcomings to code instrumentation. It is most
suited to the instrumentation of application programs. Furthermore, most code
instrumentation tools only instrument single-process programs; kernel code references and
multiple process interactions are not typically included. Therefore, address traces
generated by these tools are often incomplete and of limited utility for TLB or cache
simulations that require the monitoring of system-wide events. Recently however, there
have been tools written that do instrument kernel code and multitasking applications
[8][15](38].

Overall, software-only collection schemes are less expensive to implement and
easier to port from system to system than hardware-assisted schemes. Software-only
schemes, however, do impose some overhead on the system under test and often are
restricted in the type of run-time information that they can gather. Even so, the robustness
and simplicity of code instrumentation tools makes them a popular choice of today’s
computer architects. The remainder of this chapter focuses on the design of code

instrumentation tools.
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23 When to Instrument Code

Code instrumentation can be performed at any one of three points in the
compilation process: after the executable is generated, during object linking, or during
some stage of the source compilation process. Although different problems arise
depending upon when the code is instrumented, the general procedure of instrumentation
is the same at all levels. In general, code instrumentation involves four steps:

 preparing the code for instrumentation - code extraction, disassembly, and/or
structure analysis,

* adding 1nstrumentation code - selecting instrumentation points and inserting code to
perform the run-time data collection,

 updating original code to reflect new code addition - reassembly, relocation
information update, or control instruction target translation,

« constructing the new executable.

I will discuss the issues involved in instrumenting code at each of the different

stages of application generation.
2.3.1 Executable Instrumentation

Instrumenting the executable or late code modification is of the greatest utility to
the user. However, it is also the most difficult for the instrumentation tool since a great
deal of code structure information is no longer available. The tool is responsible for
recognizing and disassembling the code sections, instrumenting the code, and then
relocating the code while rebuilding the executable. This missing information affects the
tool’s ability to perform all three actions. Without the structure information, the tool must
invoke compiler knowledge or code structure heuristics to accomplish the tasks which can
result in both performance and reliability problems. When the tool cannot accurately

predict code behavior statically, runtime overhead is incurred to adapt to the behavior

11



during execution. In addition, instrumentation can fail or worse, produce incorrect code,
due to invalid code structure assumptions. These issues will be discussed more fully in the
next section.

Sophisticated tools which can overcome these obstacles present many advantages
to the user such as the following:

» Source code independence - This makes to a wide range of programs available for
tracing.

» Program generation independence - Most tools can instrument binaries produced by
different compilers of various languages.

* Automatic library module instrumentation - Full tracing of user-level execution is
easy since the library code is included in the executable (if statically linked.)

» Fast and efficient - No source code recompilation or assembly is required. The user
1s not required to maintain instrumented library modules.

» Code creation details hidden - The user need not be familiar with the compile-
assembly-link process needed to create the application. In particular, details such as
the necessary library modules or flags, non-standard linking directives, or
intermediate assembly code generation are of no concern.

Late code modification tools have various requirements for the information
necessary in the binary file. The most general tools can instrument a stripped binary, a
binary without a symbol table. At the other extreme are tools which require the compiler
to include additional symbol table information. These tools usually require the source to
have been compiled with the ~g option which includes profile and debugging
information in the symbol table. Late code modification tools exist for most

microprocessors and many of them are discussed in Section 2.5.
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2.3.2 Link-Time Instrumentation

If one is willing to give up source code independence, a convenient time to
instrument a program is after the objects have been compiled but before the single
executable has been created and the relocation and module information has been removed.
Instrumentation can be done by a sophisticated linker which includes an object rewriter.
During the linking process each object is passed to the rewriter which performs the
necessary code modifications. It handles code and data relocation by just noting location
changes in the object’s relocation dictionary and symbol table. The modified objects are
then passed back to the linker proper and are combined into one executable in the normal
manner. Recompilation of the source code is unnecessary. The presence of the relocation
information and symbol table make relocation straightforward. Postponing modification
until the executable stage when this information is missing makes relocation much more
difficult and sometimes impojs‘siﬂb‘le.

There are several tools which perform link-time modification. Mahler is a back-
end code generator and linker for Titan, a DECWRL experimental workstation [72]. The
module rewrite linker can perform intermodule register allocation, basic block counting
and address trace generation, and instruction pipeline scheduling. Code and data
relocation is done as described above. Another tool, epoxie, relies on incremental linking
which produces an executable containing a combined relocation dictionary and symbol
table [73]. Its advantages over Mahler are that the standard linker can be used and data
sections remain fixed so data relocation is not necessary. Epoxie produces address traces
and block statistics. An extension of epoxie has been created by Chen which can
instrument kernel-level code [8]. It is described in Section 2.5.8.

Link-time instrumentation is not automatic like late code modification and requires
input from the user. The user must have the application object files and know the

application’s linking requirements. In addition, the source files are probably necessary to
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generate the object files. While it is not actually necessary to have the source files, it

would be unusual to have access to the object but not the source files.
2.3.3  Source Code Modification

The earliest time to instrument the code is while it is being compiled. This is also
perhaps the most straightforward time since the tool has maximal knowledge about the
code. Unfortunately, it has several drawbacks from the user perspective:

* Source files are required.

» Compiler limited - Most tools are either incorporated into one compiler or based
upon a particular language or intermediate level generated by one compiler. This
further restricts the traceable applications.

 Instrumentation speed - Each time the application is instrumented the source must be
recompiled. This also implies that the user must be familiar with the application’s
compilation procedure.

» Limited code instrumentation - Library modules are not instrumented automatically
because they are not included in the source files. It is possible to create separate
instrumented copies of all library modules and link them to the instrumented source
objects bul this requires obtaining the module source code and maintaining multiple
versions of modules. Kernel code is difficult if not impossible to instrument with this
method.

A major advantage of source-level instrumentation is that the binary creation
phase of the instrumentation is greatly simplified. Often the unmodified system assembler
and linker can be used to create the binary. Furthermore, the large amount of information
available at this stage permits types of instrumentation to be done which are not feasible at
later times. For instance, most source-level tools take advantage of compiler control-flow
knowledge to reduce the amount of instrumentation code!. This reduces both the

execution time and resulting trace size.



AE (Abstract Execution) is a tracing system developed by Larus and Ball which is
incorporated as part of the Gnu C compiler [6]. Its goal is to generate very small traces
which can be saved and then reused for multiple simulation runs. The modified compiler
actually produces two executable programs. The first is the modified application. In
addition to normal compilation, the compiler uses the notion of abstract execution to insert
tracing code in the application code. Abstract execution is based upon control-flow tracing
to reduce the amount of trace code necessary. The resulting trace produced by the
modified application is only a tiny part of the full trace. This allows traces representing
long execution runs to be saved on disk. The compiler also produces an application
specific trace regeneration program. The regeneration program is a post-processing tool
which accepts the compacted trace and outputs the full execution trace. The tracing
overhead, including the cost of saving the compacted trace to disk, is 1-12 times the
unmodified program’s execution time [36].

MPtrace is a source-level instrumentation tool developed by Eggers et al. to
gaeneram shared-memory multiprocessor traces [15]. Their goals were to develop a tool
which was highly portable, caused minimal trace dilation, and generated accurate traces,
i.e. complete traces which closely resemble those gathered using non-intrusive techniques.
Minimizing program dilation is critical in multiprocessor tracing since a change in
execution time effects the coordination of multiple processes and thus the overall
execution behavior of the program. Source-level instrumentation allows MPtrace to
achieve those goals. MPtrace is more closely tied to a parallel C compiler than to an
architecture. Thus, its portability dependents upon the compiler’s portability. MPirace was
initially created for Sequent ix86-based. shared-memory systems and only twenty five
percent of the tracing system was machine dependent most of that being a description of

the instruction set.

1. QPT also does this but it is much more difficult at the executable stage.
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MPtrace attempts to limit execution time dilation by employing compiler flow
analysis techniques to reduce the amount of added instrumentation code. It instruments the
code by adding assembly instructions to the assembly-level output of the compiler which
will produce a skeletal trace. At the same time, program details are encoded in a roadmap
file used for later trace expansion. The modified assembly-level sources are assembled and
linked using the respective unmodified system tools. A compacted trace is produced upon
the execution of the instrumented application. Using a post-processing program and the
roadmap file, the full multiprocessor trace can later be generated. MPtrace can achieve a
time dilation of less than a factor of 3 but the usual execution time increase is around a
factor of 10 [15]. Library module code is not traced.

In summary, there are three times at which code instrumentation can take place.
Late code modification does not require source files, library code is automatically
instrumented, and the binary creation details are hidden from the user. However, due to the
lack of information available in the binary file, late code modification tools are the most
complex and the resulting binaries can suffer performance and reliability problems. Link-
time modification takes advantage of remaining code information to simplify binary
creation. It retains use of the system linker, can instrument module code, but the
application source is likely to be required. Finally, source-level instrumentation utilizes
substantial code information to simplify the code instrumentation process and to produce
complex traces. It requires application sources and usually more information from the
user. Library module code is not easily instrumented. The remainder of this chapter will

focus on late code modification tools.
2.4 How Late Code Modification Tools are Built

An instrumentation tool must insert tracing instructions into the executable
without altering the logical behavior of the program. At no point can the added

instructions change the program state. For trace generation, the events which need to be
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recorded are the execution of basic blocks and all data memory references. With this
information, an execution profile, memory reference, or full execution trace can efficiently
be produced. The usual way these events are recorded is by adding code segments prior to
each event. The code stores the information in a trace buffer which is periodically checked
during program execution and flushed to backing store when full. The four tasks of the
instrumentation tool are to:

* Find the section(s) of the executable file which contain code and disassemble them

to obtain program structure information,

* Insert instructions to record events thereby expanding the original code section,

* Translate all addresses which were changed because of the code expansion,

» Put parts back together to make new executable.

The next four subsections describe the problems faced and the specific actions
required of the tool during each of the above stages. The final subsection discusses some
architectural properties which facilitate or frustrate late code instrumentation. To assist in
describing problems and the methods used to overcome them, we use several existing
instrumentation tools as examples: IDtrace for the Intel architecture, pixie for the MIPS
architecture, and QPT for both MIPS and SPARC architectures. These tools will be
discussed in detail in Section 2.5. IDtrace is used most often as an example due to the
authors’ familiarity with the tool. However, it should be noted that all late code
instrumentation tools encounter similar instrumentation problems and implement similar

solutions.
2.4.1 Code Extraction and Disassembly

The first steps of the instrumentation tool are to locate and then disassemble the
code sections of the executable. Unix executables come in a variety of flavors: ELF,
COFF, ECOFF and the BSD a.out format [19]{28], but their structure is basically the

same. They all begin with tables containing information such as the number, type and
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location of sections in the file, if and where the sections are to be loaded into memory, and
where to begin program execution. Most executables contain one text section, one data
section, and one BSS section. The text section contains code. The BSS section allocates
space for uninitiated data and is actually empty in the file. Once the text section is located,
it must be disassembled. During disassembly the code is split into basic blocks and a
relocation table is created which stores the locations of basic blocks. This table will be
needed later to instrument the code and update the target addresses of control instructions.
Since instructions will be inserted into the code, almost all instructions will have their
location shifted in memory and the branch and jump instruction targets must be translated
to reflect this. For most instructions this is straightforward since the targets are known at
instrumentation time. For data objects, however, address translation is difficult, and
without the symbol table, impossible. It is important that all data locations remain
unchanged during instrumentation. Therefore, data sections are not modified and are
loaded into memory in their original positions.

In some cases, data can be found within the code segment and this can present
several problems for disassembly. There are two reasons a compiler might put non-
instruction bytes in the text section. One is to insure constant data cannot be written and to
allow the data to be shared by multiple processes. The other source of non-instruction
bytes are in-lined indirect jump tables which are created by the compiler for switch or case
statements. The obvious problem associated with data in the text section is that, without
additional information, the disassembler treats the data words as instructions and tries to
disassemble them. These “non-instructions” could mistakenly define basic blocks, be
instrumented, or even be modified. Even if the data were not mistakenly modified by
instrumentation, earlier code expansion would cause it to be moved within the section. As
stated before, data addresses cannot be relocated so this cannot be allowed to happen. The
solution is to create a new text section which contains the instrumented code and to treat

the entire original text section as a data section. It might be thought that modifying or
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adding erroneous instructions would lead to incorrect execution. This will not happen
because these “bogus” instructions will never be executed. Since control was never passed
to data in the text section in the original program, control will not pass to the instrumented
data in the new program.

Another, more subtle, problem is more serious and affects ISAs with variable-
length instruction. It is highly likely that after a disassembler blindly disassembles through
non-instruction bytes, it will be out of alignment with the following real instruction bytes.
For instance, suppose a disassembler creates meaningless instructions from a block of
constant data and it needs one byte past the end of the data block to complete the last
instruction. Again, these bogus instructions are of no concern because they will never get
executed. However, because of the one byte used earlier, disassembly will be out of
alignment with the beginning of the true instruction bytes after the constant data and will
continue to generate meaningless instructions. To combat this problem, the disassembler
must know where non-instruction bytes are located in the text section and skip over them.
Constant data locations can be found in the symbol table but locations and sizes of jump
tables can only be deduced by knowing compiler code generation behavior. Thus,
instrumentation tools like IDtrace which run on ISAs with variable-length instruction
must be compiler dependent and could require the executable to contain the symbol table
to assist in disassembly. Fortunately for IDtrace, most compilers for the Intel architecture
put constant data in the data section and the symbol table is not necessary. However,
IDtrace’s disassembler is compiler dependent and will not properly instrument programs

with unrecognizable jump table code.
2.4.2 Code Insertion

Once the code is disassembled, the instrumentation code is added in binary form
since there is no later assembly phase. Actual code insertion is not difficult. The only

requirement is that the added code cannot alter the current state of the program. Most
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instrumentation tools add short code sequences at the beginning of each basic block. If a
memory reference trace is required, instruction sequences are also added prior to each
memory referencing instruction.

For instance, during profile instrumentation, IDtrace labels each basic block with a
unique number. Instrumentation produces two new files: the new executable and a .blk
file. The latter holds information about each block such as its size, beginning address, and
label number. During runtime, an array exists in memory which holds the execution count
of each block. A code sequence is inserted before each basic block which will increment
the proper array position for that block. When the program exits, this array is dumped to
the . cnt file. Figure 2.1 is an example of IDtrace basic block instrumentation code. The
block count array variable incremented and the trace buffer is checked and emptied if
close to full. Even thought each count array entry is a 32-bit unsigned integer value, it
could still overflow if the program were sufficiently long. Using a command line option,
IDtrace will add code to check for overflow and do sequential saves to the . cnt file. This

adds extra instructions to each basic block sequence and will slow execution.

push status_flag_reg ; save status flag register
push temp_reg ; save temp register
temp_reg <- block_number ; put block label in register
M[ctab+ (4*temp_reg) ] ; update basic block execution

<- M[ctab+(4*temp_reg)] + 1; count table
temp_reg <- tbuf_ptr

(temp_reg > tbuf_near_full) ; check if trace buffer is full

if not goto END

call flush_buffer ; if full, flush trace buffer
END: pop temp_reg ; restore temp register

pop status_flag_reg ; restore status flag register

Figure 2.1 Basic Block Instrumentation Code - Code inserted before each basic
block by IDtrace in profile mode.

Memory reference code is similar. It calculates the effective address of the data
reference and sends it to a trace buffer. Figure 2.2 shows the code added by IDtrace to

record a data reference.
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2.4.3 Address Translation

As the new code is added to the instrumented text section, the control instruction
targets must be translated. This is easy for conditional branches and most jump and call
instructions because they contain either the absolute target address or its relative offset.
Most tools create a relocation table to perform address translations during instrumentation.
The table holds the original and corresponding new addresses of all control instructions
and their targets. IDtrace accomplishes address translation using two code passes. During
the first pass through the code, the original locations of all control instructions and their
targets are added to the table. During the second pass, instrumentation instructions are
inserted in the code and the new addresses of the targets are added in the table. When a
control instruction is encountered and the new location of target is already in the table (this
would occur for a backward branch), the new relative distance can be calculated and
entered in the instrumented code immediately. When a forward branch is encountered the

new location of the target will not be in the table and the new location of the branch must
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be noted in the table. Later, when the target instruction is instrumented and its new

location is known, the relative offset in the earlier branch instruction is adjusted.

Original Instruction
regl <- regl + M[reg2+100]

Instrumented Instruction
push status_flag_reg ; save status flag register
push temp_regl ; save temp registers
push temp_reg?2
temp_regl <- reg2+100 ; compute effective address
temp_reg2 <- trc_buf ptr ; load trace buffer pointer
M[temp_reg2] <- load_tag : record reference type tag
M[temp_reg2+l] <- temp_ regl ; record reference address
trc_buf ptr <- trc_buf ptr + 5; step trace buffer pointer
pop temp_reg?2 ; restore registers
pop temp_regl
pop status_flag_reg ; restore status flag register
regl <- regl + MlregZ2+100] ; original instruction

Figure 2.2 Data Reference Instrumentation Code - Code inserted before a data
reference instruction by IDtrace in memory reference mode.

Unfortunately, there are some control instructions for which the target cannot be
calculated at instrumentation time. The most difficult ones to handle are indirect call
instructions where the target address is found in a register or memory location. Since the
data values are unknown during instrumentation, the target cannot be calculated.
Furthermore, instrumentation does not affect data values so execution of the unaltered
instruction will produce the original targel address rather than the new address. To
maintain correct program behavior the address translation must be performed at runtime.
As the code is being instrumented, a translation table is created which is a list of original
and new address pairs corresponding to the beginning of each procedure. This table is
included in the instrumented file and is loaded into memory at runtime. Each indirect call
instruction is replaced by a group of instructions which computes the original target
address and then passes this address to a call-handling routine. This routine performs a

table lookup using the original target address to find the associated new address. If a target
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translation is found, control is passed to the translated address and the indirect call works
as intended. If, however, the target is not found, an error message is reported and
execution halts. Without the use of the symbol table, some heuristic is necessary to detect
procedure beginnings. For example, [Dtrace marks all instructions following a return or
nop instruction as potential procedure beginnings. If the code contains procedures with
other instructions endings or if the target of an indirect call is the middle of a procedure,
the table lookup scheme will fail. Even if execution progresses correctly, this method
incurs substantial runtime overhead for each indirect call executed and significant memory
space is required to hold the table.

Indirect jump instructions also pose a translation problem but can be handled in a
similar manner to indirect calls. The jump instruction is replaced by code which computes
the original target address and passes the address to the runtime lookup routine. This
scheme has two drawbacks however. One disadvantage is the increase in overhead due to
more runtime translations. The other is that the translation table requires more entries. Not
only procedure beginning addresses but all basic block beginning addresses must be
included 1n the table. This increased table size requires more space and increases address
lookup time.

If instrumentation can be based upon compiler code generation knowledge,
indirect jumps can be handled in a more efficient manner. In compiled code, indirect
jumps are used in two situations. One is in conjunction with a jump table produced for
switch or case statements. A jump table is a list of absolute addresses and the target of the
indirect jump is found by using a register value as an index into the table. If the jump table
can be identified, the absolute addresses can be translated at instrumentation time and the
unaltered indirect jump instruction will work correctly at runtime. IDtrace translates the
jump table addresses during instrumentation since it has already found the location and
size of the jump tables during disassembly. The other use of indirect jumps is for

procedure returns in many RISC processors, such as the MIPS and ALPHA architectures.
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These too can be translated during instrumentation if assumptions about the compiler are
utilized. The discussion of nixie in Section 2.5.3 describes the method.

QPT cleverly stores the translation table in the location of the original text section
[36]. Instead of being an opcode, the word at the original instruction address is the
translated address. This allows QPT to load a complete transiation table, one which holds
the translation for every original instruction address, without using any additional memory
or file space. This succeeds only because 1) there is not constant data in the text section,
and 2) instructions are a fixed 4-byte length.

A final issue in branch translation is branch target distances. Some ISAs such as
the Inte] architecture, include both short and long target length branch instructions.
Usually, code expansion moves the targets out of range of the original short branch
instructions. The simplest solution is to convert all short branches to long branches. In
MIPS code, all branches targets are 24 bit long but it is still possible for code expansion to
push target distances beyond this distance. Pixie can adjust for this if -branchcounts

is given as a command-line option.
2.4.4 Rebuilding the Executable

After the code has been instrumented and target translation is completed, the file
sections must be combined to make a new executable. There are now the original text,
data, and BSS sections, a new text section, and some tables and buffer space. The original
sections must be loaded into memory in their original locations since they contain data.
The optimal solution would be to either extend the text section to include the new text and
translation table or to create a new text section. Space would be added to the BSS section
to include the trace and block count buffers. The executable file format tables would be
updated to reflect these changes and to point to the new text section as the location to
begin execution. For various reasons, the optimal solution is not possible on many

platforms.



The main problem encountered is that many OS loaders do not make full use of the
information found in the load format tables. Most formats allow the user to specify of
number of text and data sections, the location of where they are to be loaded into memory,
and at what address execution is to begin. Unfortunately, to facilitate faster loading, most
OS loaders load an application’s sections into memory in the same positions in which they
reside in the file, ignoring the position information in the format tables. Furthermore,
SysV loaders only accept one file structure. It must contain one text section, one data
section, and one BSS section in that order. Execution must begin at a fixed address in the
text section. The data section must immediately follow the text section. Obviously, special
tricks are required to create the new, instrumented binary.

IDtrace does the folloﬁing as show in Figure 2.3. It combines the original data and
the zero-filled BSS sections along with the new text section, trace buffer, and other tables
into one big data section. Execution must begin in the original text section so the first few
instructions there are modified to transfer control to the beginning of the new code found
in the middle of the expanded data section. Another dummy BSS section is added to the
end to satisfy the loader’s requirement of one BSS section. Note that if the first
instructions of the text section were not changed the program would run exactly as before

since the original text and data sections are unmodified.
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Figure 2.3 Original and New Binary File Configuration. The new data section
contains the original data section, the original BSS section, and the new text
section.

New Data

QPT has similar problems on SPARC processors because the text and data sections
abut one another leaving no room to expand the text section. In this case, the QPT
designers had two choices: add a new text section after the BSS section which would
require explicitly represent zero-filled data in the binary file or add a new text section
between the data and BSS sections which would create relocation problems with BSS data
since the addresses of BSS data would then point to new text code. They compromised.
The new text section is added between the data and BSS sections. Then, immediately upon
execution, the new text copies itself to a location above the BSS data and zero fills the
uninitialized memory space.

Rebuilding methods which expand the data space must allow for correct dynamic
memory allocation. For example, on Intel platforms, the last address of the data space is

stored in the _curbrk variable found in the application program. It is accessed by sbrk,
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a routine called by C’s malloc function to position dynamically allocated memory. The
_curbrk value must be updated with the last address of the expanded data space so that
memory will not be allocated over top of the new code. IDtrace must know the location of
_curbrk to make this change. Since IDtrace does not depend upon the symbol table, it
finds the location of _curbrk by pattern matching disassembled instructions with the
known sbrk instruction sequence. From those instructions, it extracts the location and
updates _curbrk to reflect the data section’s expanded size. If IDtrace cannot find
_curbrk a warning message is produced. This is not always an error, however, since
_curbrk is not included in all programs.

There are several other small issues which must be handled before the new binary
will run correctly. First, the exit call must be modified so that the trace and basic block
count buffers can be dumped to a file before control is returned to the OS. Most
instrumentation tools modify the exit routine to call a new routine which performs these
cleanup functions and then exits. The address of the exit procedure can be found in several
ways:

* Loock up the address in the symbol table. This method, of course, requires the binary
to contain the symbol table.

* Pattern matching the disassembled code for the known sequence of exit procedure
instructions. This method relies upon code knowledge.

* Knowing the location of a call to the exit procedure in the program and extracting
the address from the instruction bytes. This is not too difficult because the
initialization library code, crt0.0, contains an exit call and this code is always
positioned at the beginning of the text section. This method also relies upon code
knowledge.

The start code must also be modified to initialize instrumentation buffers and
perhaps open trace files. If the OS loader cannot be told to begin execution at a non-default

location, the original start code must also jump to the beginning of the new code section.
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As the above sections have described, many problems are encountered when trying
to modify an application at the executable stage. Actually inserting the trace code is not
nearly as difficult as translating control instruction targets and rebuilding the binary. Some
tools rely on compiler-based assumptions to overcome these problems. Others require
significant information in the symbol table. Still other tools, such as pixie, sacrifice

execution efficiency in order to be almost compiler independent.
2.4.5 ISA Properties

Some inherent architectural features simplify instrumentation. Others pose
difficulties or add complexity to the resulting code. Some of these properties are discussed
below. In general, RISC! processor code is more easily instrumented and the resulting
code is shorter and faster. However, some instrumentation problems are unique to RISC

code.

2.4.5.1 Load-Store vs. Memory-to-Memory Architectures

The major factor in the size and consequently the execution time of a program
instrumented to trace memory references is the number of instructions requiring tracing
code. Thus a memory-to-memory instruction set such as the Intel architecture which
frequently performs operations using memory operands will have many more instructions
to instrument than does a load-store architecture which usuvally retrieves operands from
the register file. Memory-to-memory architectures often have a smaller register set which
forces local variables to be stored in memory locations. Furthermore, memory operands
can often be used as a source and destination in the same instruction thereby generating
two trace entries from one instruction. All of these properties of memory-to-memory

architectures contribute to the large size and runtime dilation of instrumented code. The

1. By this I mean ISA’s with properties such as fixed-length instructions, a large register
file, and few memory referencing instructions.
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i486 has approximately 180 instructions which can address memory. In addition, many of
these instructions can perform both a load and a store and some non-string instructions
reference two different addresses [28]. In contrast, the MIPS R3000 has only 14
instructions which can reference memory. Each can only perform a read or a write and no

instruction can access more than one memory address [31].
2452 Multi-reference Instructions

Some processor instruction sets such as the i486 and the RS/6000 include string
operations which can perform an indeterminate number of references per instruction. One
example, in the i486 ISA, is the rep instruction prefix which can cause one string
instruction to repeatedly access sequential memory addresses until a condition is satisfied.
It is impossible to ascertain the number of iterations at instrumentation time. To record an
accurate reference trace, the single instruction must be replaced by a sequence of
instructions which output the reference, perform the string operation, check the condition,
and loop back if the condition is not satisfied. This emulation code adds to the size and

execution time of the instrumented binary.
2453 Register Allocation

As seen in the sample code in Figure 2.1 and Figure 2.2, registers used in the trace
code segments must be first saved and then restored so that the inserted trace code will not
alter the current state of the application. If the processor has a large register set, tricks can
be performed to eliminate these time consuming operations. For instance, pixie scans the
original code prior to instrumentation and utilizes the three least referenced registers as
dedicated instrumentation registers. The original code instructions which referenced these
registers are replaced with memory referencing instructions. Pixie then uses the registers
exclusively as instrumentation registers holding buffer pointers and effective address

calculations. They are used in instrumentation segments throughout the program without
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having to continually save and restore their values [73]. QPT relies on the caller-save
procedure register convention to scavenge instrumentation registers. QPT finds registers
which were saved by the calling procedure but unused in the current procedure. This
assumes that the program obeys the calling convention, and QPT tries to use symbol table
information and optional command-line arguments to verify obeyance. If it cannot be
assured, the register values are saved and restored as described earlier. Because their target

processors have 32 registers, pixie and QPT are able to contain code expansion.
2.4.54  Condition Codes

Condition code values are part of the state of the computer and so cannot be altered
by actions in the tracing code. The Intel architecture has special instructions which push
and pop the status flag register and these instructions are used by IDtrace hide any affect
the tracing code might have on the flags. The SPARC processor has four condition code
registers. While the processor does not have user mode instructions which save and restore
the registers, two types of arithmetic instructions are implemented: one which affects
condition codes and one which does not. QPT’s tracing code uses the non-affecting
arithmetic instructions in all places except for the trace buffer overflow check. In this case,
it either inserts the check instructions where the condition codes are not live or performs

the check with a more expensive code sequence which does not affect the codes.

2.4.5.5  Variable Instruction Lengths

Variable length instructions in combination with data located within the text
section can wreak havoc with code disassembly. The disassembler must use information in
the symbol table to skip constant data and use compiler specific knowledge to recognize
and pass over jump tables. This was an unexpected and serious problem with IDtrace.
Instruction length also affects the length of the output trace. When instructions are of

uniform length, the trace need not contain the address of each instruction in order to
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quickly derive an execution trace. It is sufficient only to output each executed basic block
beginning and data reference addresses. The position of data references relative to
instruction references can be denoted using only a small integer offset. The offset
represents the number of instructions executed since the last basic block beginning or data

reference.
2.4.5.6 Delayed Branches

Delayed branches in some RISC processors necessitate careful instrumentation.
An instruction in a delayed branch slot succeeds a branch instruction in assembly code
order but will get executed regardless of the branch direction. It is important that no
instrumentation code get inserted between the branch and the delay slot instruction. The
easiest way to handle this situation is to move any delay slot instruction which requires
instrumentation to a location prior to the branch. It must be verified that this movement

does not affect the outcome of the branch.
2.4.5.7 Indirect Addressing

Finally, ISAs with heavy dependance upon indirect addressing will suffer from the
overhead caused by the runtime address translation. In the MIPS architecture for instance,
procedure returns are done with the jump register instruction (jr). The call instruction
stores the return address in a general purpose register (usually r31) and jr indirectly finds
the return address in that register. Thus, every return causes an address table lookup
thereby adding to the execution time of the instrumented program. A method to avoid this

overhead which is based upon compiler knowledge is described in Section 2.5.3.
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2.5 Current Instrumentation Tools

Late code instrumentation tools can be found for most of the popular current
microprocessors. The following is a description of a selection of tools for use on various

platforms.
2.5.1 IDtrace

IDtrace is an instrumentation tool for the Intel Architecture Unix platforms [48]. It
instruments SysV R4 ELF binaries compiled vsing the Inte/AT&T C, USL CCS C, and
gce compilers. Currently, it cannot automatically process code compiled by Intel’s Proton
compiler developed for the Pentium. IDtrace can produce a variety of trace types
including profile, memory reference, and full execution traces. Primitive post-processing
tools which read output files, view traces, and compute basic profile data are included in
the IDtrace package. IDtrace can instrument stripped binaries, i.e., the symbol table is not
needed. However, the executable must be statically linked and kernel code references are
not included in the trace. Using full execution trace instrumentation, IDtrace will produce
a executable which is about 5 times larger and runs 10-12 times slower than the original.

Primarily due to the need to recognize jump table code for disassembly purposes,
IDtrace is compiler-dependent. To help alleviate problems due to non-compiler generated
code, IDtrace can accept hints from the user on how to instrument a binary. The location
or size of a jump table or the location of the beginning of a procedure are examples of such
hints. IDtrace reads the hint information from an input file and uses it to assist in
disassembling the code and translating addresses. As an example, execution of an
instrumented program might abort with a message stating that a particular indirect call
target address could not be translated at runtime. This could occur if IDtrace not recognize
the address as a procedure beginning and add it to the runtime transition table. The user

could add this address to the hint file and reinstrument the program, IDtrace will then
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include the address and its translation in the translation table so that runtime lookup can
occur during re-execution. While this process is tedious, it does allow the execution of

handwritten or other non-compiled assembly code.
2.5.2 spex

Spex is a binary instrumentation tool which allows the user to gather speculative
traces on a non-speculative processor. Like IDtrace, it was built for ix86-based computers
running Unix SysV R4 and currently will instrument only statically-linked code. Regular
trace generation instrumentation tools add additional instructions to a program to record
application code runtime information and memory references while preserving the
original logical operation of the program. Spex not only instruments the benchmark code
to output memory references but it also incorporates branch prediction and wrong path
recovery code to allow the execution of mispredicted paths. Spex is similar to IDtrace in
use, except that spex requires two additional inputs: a wrong path execution depth number
and a choice of branch prediction algorithm. A depth argument of zero corresponds to no
speculation while a positive argument represents the number of instructions to be executed
down the mispredicted path before recovery. During execution of the instrumented binary,
a conditional branch which is mispredicted by the prediction algorithm will cause
execution to proceed down the wrong path to the specified depth. When that depth is
reached, a recovery procedure restores the state to that prior to the conditional branch and
execution resumes in the proper direction. Conditional branches encountered during
wrong path execution are predicted using the same algorithm. Since all mispredictions
take the same number of instructions to resolve, the case of a later conditional branch
being resolved before an earlier one cannot occur.

Currently six prediction algorithms have been implemented. Three are static
algorithms: always taken, prediction based on branch opcode, and prediction based on

opcode and direction. Two are dynamic predictors using a variable sized history table. The
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table is indexed by the address of the conditional branch. One algorithm keeps a bit in
each table entry corresponding to the previous direction of the branch. The other has two
or three bit saturating counters as table entries which maintain a weighted history for each
branch [56]. The last algorithm uses a profile file. The predicted direction of the branch is
based upon the entry for that branch in the file. If no entry exists, one of the above
algorithms is used to predict the branch.

As an example of use, spex can instrument a program called bench by typing:

spex -d 10 -b 5 bench

where bench is a statically linked executable. The new executable, bench. spex, will
execute 10 instructions down a wrong path and use branch prediction algorithm number 5
(dynamic counter with a default counter size of 2 bits). Figure 2.4 shows that when the
new executable is run two more files are created, a . spst statistics file containing
runtime information and a . sptr trace file. The trace file can then be piped into a cache

or memory simulator. The trace format is a list of 5-byte entries (one byte tag, four byte

bench.sptr )———m| simulators

bench —P‘:pex 1 bench.spex

bench.spst spexstats

Figure 2.4 sSpex Programs and Files - Rectangles are executables, ovals are data
files produced by spex, boldface names are spex tools.

address); one for every instruction and memory reference. Different tags are used to
differentiate between correct path and wrong path references.
Spex adds code prior to each conditional branch to call the prediction algorithm

and possibly begin wrong path execution. Code must also be added before each instruction
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to possibly exit from wrong path execution. Finally, guard instructions must be added
prior to any instruction that can cause an exception. This prevents an exception from
occurring during the execution of a mispredicted path. For instance, suppose during
execution of an instrumented program a pointer has yet to be initialized and it has the
value zero. The original code might be of the form

if (pointer initialized)
then reference pointer
else initialize pointer

and the conditional branch corresponding to the if statement could be mispredicted. Then
an attempt would be made to reference memory location zero and a segmentation fault
would halt execution. Boundary checking code is added before all reads and writes to
prevent this error. Unfortunately, there are many more exceptions such as divide by zero
and floating point errors which could be triggered during wrong path execution due to
incorrect data. Adding code to check for all possible exceptions would greatly reduce
execution speed and since segmentation faults were the only errors occurring in any of the
tested code, they were the only ones handled.’

The instrumented code action is straightforward. Assume a correct path is being
executed. At each branch, the prediction algorithm is called and the result is compared
with the known actual direction of the branch. If they are the same execution continues
down the correct path. If the branch is mispredicted, the register state and correct next
instruction location are saved, a counter is set to the wrong path depth argument, and
execution begins down the wrong path. The following actions are taken for each wrong
path instruction:

* The counter is decremented and when it is zero wrong path execution is terminated.

1. The C signal library functions could have been used to handle all exceptions
efficiently but its use would have interfered with breakpoint exceptions and made debugging the
binary code extremely difficult.
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« If the instruction performs a read or write the address is first checked against
segment boundaries to prevent segment violations caused by incorrect data.

* Memory reference entries are output with special wrong path tags.

» If the instruction performs a write the address and original value are stored in a write
restore buffer.

When wrong path execution terminates the writes are undone using the data stored
in the write restore buffer, the register state is restored, the prediction algorithm is updated,
and execution resumes down the saved correct branch path. Sometimes wrong path
execution can terminate without going down the full wrong path depth. This can happen in
the following cases:

* Exit call - Cannot exit during wrong path execution.

» System call - This is a call to the OS and cannot be traced.

= Data segment fault - An invalid read or write outside the data segment would cause a
fault if allowed to proceed.

*» Indirect jump - An attempt to index a jump table with an invalid index will usually
cause execution to continue outside the text section so wrong path execution is
always halted.

* Indirect call - Like in IDtrace, indirect calls in instrumented code are handled by a
runtime lookup matching the original target address with the new target address in
the instrumented code. If the original address is computed from incorrect data the
lookup will fail and wrong path execution halted.

* Execution fault - This could be caused by a floating point or divide by zero
exception. As stated earlier, code cannot be added before every instruction to test for
all possible exceptions so in this case execution terminates.

While this appears to only roughly approximate actual execution behavior, only
the system call termination differs from the actual behavior of a speculative processor.

Moreover, the above termination conditions occur very infrequently. In the test running
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several benchmarks for a combined total of about 175 million mispredicted paths, 90% of

the mispredicted paths executed to a depth of at least 25 instructions, see Table 2.1.

Termination Type Occurrences Percentage
System Call 347K < 1%
Data Segment Fault 14.IM 8%
Indirect Jump 947 ; 0%

| Indirect Call 13K L 0%

Table 2.1 Termination Statistics - This shows the number and percentage of
mispredicted paths which were terminated before executing down 25 instructions.
The total number of mispredicted paths was 174.8 million.

The speculative instrumentation adds significantly to the size and runtime of the
new binary. Code expansion is roughly 25 times. Runtime is increased by factors of 25-45

for zero depth (no speculation) and 35-65 for wrong path depth of 10.
2.5.3 pixie and nixie

Pixie was the first binary instrumentation tool which received widespread use.
Pixie is a full execution trace generation tool which runs on MIPS R2000, R3000 and
R40x0 based systems [58]. The tool is included in the performance/debugging software
package of most systems based upon the MIPS architecture. Versions are available which
instrument ECOFF and ELF file formats. With newer versions of pixie, if pixified
dynamic libraries exist, they can be linked into the instrumented application to generate
traces of dynamically-linked as well as statically linked code. Pixie does not, however,
record kernel activity.

The default instrumentation option is to record only basic block execution counts.
An informative post-processing tool, pixstats, can interpret the output to present a wide-
array of runtime statistics. Using command line arguments, pixie will also instrument the
application to produce an instruction and/or data trace. The reference trace output is

written to a file descriptor. Using another tool called makepipe, the trace can be piped
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directory to a trace consumer program such as a memory simulator. Program expansion
and time dilation depend upon the type of instrumentation used. When tracing both
instruction and data references, the new executable is roughly 3 times larger and 4 to §
times slower. The time dilation does not count the time required to save or pipe the trace.

Pixie is virtually compiler-independent. Constant data in the text section does not
cause disassembly problems because the MIPS architecture has fixed-length instructions.
It avoids having to recognize and decipher jump tables by performing all indirect jump
address translations at runtime. Thus, switch generated indirect jumps, procedure returns
effected by jump-to-register-value instructions, and indirect calls, all incur the overhead of
a runtime table lookup to perform the target address translation. While pixie is not as
restrictive as IDtrace, it does have some limitations. Like, IDtrace, it must use some
heuristic to decide upon basic block separation. These heuristics are based upon MIPS
compiler generated code. Hand assembled code could cause errors in separation and lead
to inaccurate results. In addition, pixie cannot trace past fork calls and will fail on some
special library routines.

In an attempt to lower the runtime overhead of pixie, another tool called nixie was
created [73]. At the cost of becoming compiler-dependent and operating on a smaller set
of application binaries, it makes assumptions about the binary code structure in order
reduce runtime address translations. One of the main sources of these translations is the
use of indirect jump instruction, jr, to perform procedure returns in MIPS code. The
compiler convention for a procedure call is to use jal or jalr and put the return address
in r31. The return code convention is to use jr r31. Nixie avoids the runtime
translation for the return by translating during instrumentation the return address found in
the jal instruction. Then, nixie assumes that jr via r31 is a return and the value in r31
has already been translated. jalr instructions are treated as indirect calls and are
translated using the runtime lookup table as before. When the new address is found, the

new return address is put in r3 1. The remaining j r instructions (the ones not using r31)



are assumed to be indirect jumps produced by case or switch statements. Nixie recognizes
the code patterns the compiler uses to begin a jump table and deciphers the size and
memory location of the jump table. The entries in the table are translated at
instrumentation time so they do not require runtime translation. The developers found
about two dozen places in standard library code where the above assumptions were
incorrect. Fixes for these exceptions were built into nixie so that most code can be
instrumented without error.

Because nixie makes compiler-based assumptions about code structure, it can only
instrument a subset of the pixie-instrumentable applications. However, results from
benchmark tests showed that the runtime of nixie instrumented binaries were up to 30%

faster than pixie-instrumented ones [73].
2.54 Goblin

Goblin is a trace generation tool which instruments IBM RS/6000 applications
[64]. It annotates code on the basic block level, i.e., code is added prior to each basic block
to report block execution. Goblin has characteristics of both a late code and link-time
modification tool. It accepts as input an executable with a detailed symbol table yet
performs instrumentation separately on each object. The instrumented objects are
reassembled and linked into a new executable by the system’s assembler and linker
programs. Goblin’s first step is to use the descriptive symbol table to separate and
disassemble the executable into assembly code objects. It then annotates the assembly
code, records static data about the blocks in the objects, and updates the symbol table to
reflect the instrumentation changes in each object. The regular system assembler and
linker are then used to create an instrumented executable from the instrumented objects.
The profile routines are introduced at the link stage as a profile library to be included in the
image. The user can select different kinds output traces by linking in different trace

libraries. Several libraries exist. One generates a complete basic block trace. Another
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allows the generation of a full memory reference trace. Finally, since storage of large
traces is difficult, there is library which performs on-the-fly basic block statistic

calculations so that the whole trace need not be saved.
2.5.5 SpixTools

SpixTools comprises several programs that implement late-code modification of
SPARC application binaries to produce instruction-level statistics [13]. The two main
tools in the SpixTools distribution are spix and spixstats. Spix accepts an executable
program and generates an instrumented executable. When run, this instrumented
executable produces, in addition to its normal output, information indicating the number
of times that each basic block in the original program was executed. By default, this
information is directed to file descriptor 3, but the user can change this default through the
use of the - £d option in spix. Unlike pixie, spix does not generate instruction or data
traces; it only generates basic block counts.!

Spixstats uses the basic block counts to summarize the behavior of the
instrumented program. This tool creates tables of (static and dynamic) opcode usage,
branch and delay slot statistics, register and addressing mode usage, distribution of
constants in immediate and displacement fields, and function execution information. The
ranking of functions is based on the total number of instructions executed in that function
and not on the total number of cycles spent in that function. Exact cycle counts would
require specific pipeline and memory system information which not available to spixstats.

Spix handles the problems with executable instrumentation in similar fashion to
the tools already discussed. For instance, when spix cannot correctly identify the targets of

a register-indirect jump instruction, it simply has the instrumented executable print a

1. Older versions of spix were capable of generating instruction and data traces. These
capabilities were removed since other SPARC tools such as shade have made these capabilities
unnecessary.
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diagnostic message indicating the address of the undiscovered target instruction and then
terminate abnormally. Through the use of the ~jaddr option in spix, the user then re-
instruments the executable with this extra piece of information. This method is not unlike
the hint information in the [Dtrace approach. Furthermore, like the previous tools, spix
works only with static code (no support for self-modifying code or dynamic libraries), and
it is not capable of instrumenting the kernel.

For the SPEC89 benchmarks, spix roughly quadruples the size of the executables.
For the integer benchmarks where the average basic block size is small, the spix-
instrumented executables run approximately 2.5-times slower. On the floating-point
intensive benchmarks where instrumentation code execution can be overlapped with long
latency floating-point operations and the basic block size is larger, the spix-instrumented

executables run anywhere from 5% to 50% slower [13].
2.5.6 QPT

Like its predecessor AE, the design goal of QPT is to produce compact traces
which can be stored for later simulations [37]. The difference between the two tools is that
QPT instruments the executable while AE is part of a C compiler. This allows QPT to be
applicable to many applications created by various compilers. As noted in the last section,
QPT must overcome the disassembly and relocation obstacles common to all late code
modification tools. In addition, QPT performs control flow analysis to reduce the amount
of inserted tracing code. Therefore, it must rely heavily on symbol table information and
code structure knowledge in order to reconstruct the exact code structure. QPT processes
the code on a procedure basis. The address of each procedure is found in the symbol table
and a control flow graph (CFG) is constructed with a basic block at each node. Using
heuristics to decide the likeliest execution path, optimal code insertion points are located
on CFG edges rather than nodes (blocks) and trace instructions are added to the original

code.
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The trace regeneration process is another unique feature of QPT. The trace output
by the instrumented program is a compact trace Which needs expansion before it can be
used by a trace consumer program. Most tools supply statically created information files
which can be read by a post-processor program to expand the trace. The AE system
creates an application-dependent trace regeneration tool for each instrumented
application. In both these cases the expanded trace would then be piped to the consumer
program. QPT instead creates a regeneration program object file which can be linked into
the compiled consumer program. Thus, the consumer program can read the compacted
trace directly from disk [36].

The performance of the abstract execution instrumentation depends upon the
regularity of the program’s control flow and memory reference patterns. Numeric
programs with sequential access patterns and few conditional branches require less
instrumentation and therefore produce a more compact trace than do non-numeric
programs with more irregular behavior. Statistics reported by Larus in [36] show that the
runtime of traced programs ranges from 1.4 to 12.3 times that of the non-traced program.
These numbers include the time to store the trace to disk. The compact traces are between
13 and 250 times smaller than the expanded full execution trace. Larus states that
regeneration costs are insignificant since the regeneration routine can produce the full
trace at a rate of 200,000 to 500,000 addresses per second while most memory simulators
consume addresses at the rate of tens of thousands per second. QPT does not currently

instrument dynamically-linked shared libraries but could be modified to do so.
2.5.7 ATOM

Unlike the other instrumentation tools discussed previously, ATOM [62] is a tool
that allows the user to build his/her own customized instrumentation and analysis tools.
For example, using ATOM, a few small C routines can be written to emulate the

functionality of pixie and pixstats on a DEC ALPHA machine. On the other hand, if the
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trace information generated by pixie is not adequate, ATOM can be directed to gather and
analyze a customized set of trace information.

Within ATOM, the authors have defined a set of instrumentation primitives
common to all instrumentation programs. These primitives separate the tool-specific part
of an instrumentation program from the common infrastructure required by all
instrumentation tools. As a user, you write C routines using ATOM’s instrumentation
library that indicate the parts of the application program that interest you. For instance,
ATOM provides library routines that allow you to have access to each procedure in an
application, each basic block in that procedure, and each instruction in that basic block. By
appropriately indicating where instrumentation code should go (e.g., before or after a
particular set of program structures) and by indicating the particular information to be
gathered at this instrumentation point, you can use ATOM to access to all of the dynamic
information in an application.

In addition to instrumentation routines, an ATOM user can also write analysis
routines (e.g., cache simulation routines that use the instrumentation data) that become
part of instrumented program. In this way, both the instrumented code and the analysis
code run in the same address space, and thus experience the lower communication
overhead of a simple procedure call rather than that of context switching, file piping, or
inter-process communication. The ATOM system guarantees correct operation by
ensuring that the instrumented routines and the analysis routines do not share library
procedures or data. Still, the incorporation of the analysis routines into a single executable
with the instrumented application program can cause perturb the output trace. For
instance, if an analysis routine dynamically allocates memory, the trace of the heap
addresses in an instrumented application will be different from the addresses used in the
uninstrumented version of that application. ATOM employs several technigues and urges
the user to avoid certain programming constructs to make certain that the behavior of the

application is unchanged by the instrumentation and analysis routines.
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ATOM is implemented on top of a link-time modification system called OM [63].
ATOM works by translating an ALPHA executable! into OM’s RISC-like symbolic
intermediate representation. Through some extensions to OM, ATOM inserts
instrumentation procedure calls at the appropriate points in the application code, optimizes
the instrumentation interface, and translates the symbolic intermediate representation back
into an ALPHA executable.

Since ATOM starts with an executable file, it can be considered to be a late-code
modification tool. It, however, is not as robust an approach as a system like pixie since
ATOM requires relocation information in the executable image in order to work. This
relocation information does simplify the work required to adjust branch targets due to the
insertion of instrumentation code.

Another advantage of the ATOM approach is that the underlying OM system can
efficiently support an approach that does not steal registers from the application program.
ATOM, like QPT and unlike pixie, uses the typical register save and restore mechanisms
of a procedure call at each instrumentation site. This approach is desirable because it
means that ATOM works on programs that use signals and setjmp - program features
which are difficult to correctly handle under an approach that steals registers. The
downside of a procedure call approach is that it incurs a greater overhead for each
instrumentation action, especially if one does not have exact information on the register
requirements of the instrumentation routines. Since the instrumentation routines can be
quite complex in the ATOM system (remember that ATOM allows the user to use the
instrumentation information immediately in an analysis routine), ATOM relies on
sophisticated heuristics and techniques to reduce the procedure call overhead.

The performance of ATOM is related to the granularity of instrumentation and the

complexity of the analysis routines. Srivastava and Eustace [62] report performance

1. ATOM is currently available for the DEC ALPHA architecture though it is designed
to be easily ported to other machine architectures.




numbers for several different analysis tools built with ATOM. To summarize, for an
analysis tool that instruments each memory reference and simulates a direct-mapped 8
kilobyte cache, Srivastava and Eustace found that it took an average of approximately 120
seconds! to instrument each program in the SPEC92 benchmark suite and that each
instrumented program ran an average of nearly 12-times slower than the uninstrumented
version. On the other hand, for an analysis tool that simply instrumented each system call
site and summarized this information, they found that it still took only 120 seconds on
average to instrument the SPEC92 suite but each instrumented program now ran only
1.01-times slower. Overall, ATOM is a powerful tool for building customized analysis

programs.
2.5.8  Multitasking and Kernel Tracing Tools

Most code instrumentation tools simply record user-level events within a single
thread of control. Recently though, researchers have implemented tracing systems that
extend existing code instrumentation tools so that they are able to capture multitasking
traces and kernel actions. We briefly describe two such systems that illustrate the key
issues related to the gathering of an accurate interleaving of application and operating
system reference traces within a multitasking environment. Obviously, one could further
extend these tools so that they could record other types of dynamic information.

The basic action of any multitasking tool is the sequenced collection of trace data
from each instrumented application into a single global trace buffer. Recall that the act of
instrumenting an individual application involves the placement of instrumentation code
around the points of interest in the program and the inclusion of extra support routines
which provide initialization, trace buffer management, and other support functions. In

general, the instrumentation of each program in a multitasking workload is identical to the

1. Srivastava and Eustace [62] report that all measurements were performed on a DEC
ALPHA AXP 300 Model 400 with 128 megabytes of main memory.
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instrumentation of a single program except that the support routines change to refiect the
management of the shared trace buffer. On the other hand, the trace of a multitasking
workload is slightly different than the trace produced by a single application because the
multitasking trace must include extra process information to disambiguate the trace items
of one process from the trace items of another process. For efficiency and practicality
reasons, the existing multitasking tracing tools add extra support code into the operating
system kernel to help gather this process information and ensure the consistent writing of
the global trace buffer.

For the most part, the operating system is just another instrumented application.
However, the portions of the operating system that are required to support the tracing
system must be runnable with tracing turned off. The dumping of the global trace buffer to
disk, for instance, is not part of the normal operation of the system and thus should not be
traced. Furthermore, several portions of the operating system are too delicate to
instrument automatically. For example, standard basic block instrumentation techniques
will fail to instrument properly an operating system routine which flushes the CPU write
buffer.

Chen [8] describes one such multitasking tracing tool based on the epoxie
mstrumentation tool [73] that modifies executabiles prior to linking. Chen’s modified
epoxie tool instruments code written for the MIPS instruction set architecture and thus,
like pixie [58], uses register scavenging to select registers for use by the instrumentation
code. Ideally, one would like to share the pointer into the global trace buffer indicating
where the last trace item was written among all of the instrumented applications.
Unfortunately, register scavenging precludes the direct mapping of a single global buffer
into each application since we cannot guarantee that one single register is available in all
instrumented applications at all times. As a result, Chen’s system maintains a trace buffer
for each traced process, and at every entry into the kernel, the kernel copies the contents of

the current process’s trace buffer into the global trace buffer.
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The tracing of system activity is more sensitive to software trace distortion than
the user-level tracing of a single application. Chen’s tool illustrates how one can minimize
the problems of memory and time dilation. Even though epoxie creates instrumented
executables with very little code expansion due to its link-time optimizations, these
instrumented executables are approximately 2-times larger and run approximately 15-
times slower than the uninstrumented versions of the executables [8]. Chen compensates
for the memory dilation in two ways. First, the traces are gathered on a system with a large
amount of physical memory so that page misses due to limited memory capacity do not
occur, and second, he uses the trace to simulate the TLB behavior of an uninstrumented
system. Chen only partially compensates for the time dilation since the focus of his
experiments is not influenced by some of the effects of time dilation. In particular, he
reduces the rate of the system clock interrupt by 1/15, and he scales the idle activity - the
time spent in the operating system idle loop - by a factor of 15. These rough
compensations are adequate since his research focuses on memory system behavior, and
Chen claims that memory system behavior is largely unaffected by errors in these areas.
The other operating system entity affected by time dilation is the process scheduler.
Finally, Chen ignores the effects of time dilation on scheduler policy by focusing on
single-process and client-server workloads where context switches are driven by the
applications and not by the scheduler policy.

Mazieres and Smith [38] describe another multitasking tracing tool based on the
QPT instrumentation tool [37] that performs late code modification. Unlike Chen [8], their
research is interested in the analysis and evaluation of I/O-bound applications such as
network applications. Therefore, they organized their multitasking tool to reduce the
effects of time dilation. Essentially. Mazieres and Smith attack the problem of time
dilation in two ways. First, they chose QPT as their base instrumentation tools since it uses
abstract execution [6] to minimize the amount of instrumentation overhead that occurs the

execution of an instrumented application. Secondly, they implemented their tool on a
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SPARC architecture where they could take advantage of several unused registers that are
reserved by the SPARC ABI [67]. They use one of these reserved registers as the single,
global, register-based, trace-buffer pointer that is shared by all instrumented executables.
This decision removes the need for the copying of the per-process trace buffers into the
global trace buffer as seen in Chen’s system. They also describe a few other optimizations
that have the potential to further reduce instrumentation overhead. Overall, the systems by
Chen and by Mazieres and Smith prove that it is possible to gather useful multitasking
traces using code instrumentation techniques. However, there are several problems that
make the gathering of accurate multitasking traces significantly more difficult that the

gathering of a single application trace.
2.6 Summary

Instrumentation programs are powerful tools used by architects and system
designers to obtain runtime information for use in performance simulation. While there
are many ways that this information can be collected, instramentation tools allow the
general user to obtain accurate traces in a quick and efficient manner. IDtrace was the first
such tool written for the commonplace 1x86 architecture. Both it and its successor, spex,
were used to gather memory reference traces for performance studies detailed in the

following chapters.
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2.7 Appendix

This appendix gives two examples of how late code modification tools can be
used to gather dynamic information. We assume that the user is familiar with Unix and can

create a statically-linked executable on a Unix system.
2.7.1 Runtime Statistics

Suppose one wanted to compare to frequency of usage of certain instructions
between several architectures. In particular, suppose one wanted to compare the most
frequently used instructions in a typical RISC processor (R3000) with that of a CISC-like
processor (i486). This could easily be done using two instrumentation tools: pixie on a
MIPS R3000-based DECstation running Ultrix and IDtrace on a i486-based SysV Unix
system. Suppose ccl, the major part of the C compiler gcc, is used as a benchmark
program. The program cc1 must be statically linked but neither the symbol table in the
binary nor the sources are necessary. The steps required to use IDtrace are show in
Figure 2.5. The use of pixie is similar. First, we instrument the 486 version of cc1 by
typing

idt ccl

The will produce the instrumented binary ccl. idt and the basic block

information file ccl .blk. Then typing
ccl.idt stmt.i

will execute the instrumented version of ccl and also produce the basic block execution

count file ccl. cnt. The post-processing tool vcount can then be run,
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veount ccl

to produce some basic runtime statistics. Part of the statistics is shown in Figure 2.6. Pixie

bench.trc vtrace / simulators
bench.idt
bench - idt bench.cnt
veount
bench.blk !

Figure 2.5 IDtrace Programs and Files - Rectangles are executables, ovals are data
files produced by IDtrace, boldface names are IDtrace tools.

Other Information

Instruction Usage Percentage
Dynamic instruction count: 65081680

mov 19306218 29.7%

cm 9642978 14.8% Dynamic block count: 17257218

push 4211418 6.5% Average instructions per block: 3.8

e 4166772 6.4% Static block count: 41807 |
Jjne 3309404 51% Largest block (# of instructions): 95

Figure 2.6 i486 Profile Information - Obtained using IDtrace and veount.

works in a similar manner. First the executable is instrumented by typing
pixie ccl

which creates the files ccl.pixie and ccl.Addrs. Then the new program is run,
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ccl.pixie stmt.i
to produce the ccl.Counts file. Finally, pixstats reads the output files to calculate

an extensive list of runtime information part of which is shown in Figure 2.7.

Instruction Usage Percentage Other Information
spec 27615307 33.19% 84450624 (1.015) cycles (3.38s @ 25.0MHz)
lw 13027613 15.66% 83199619 (1.000) instructions
addu 7676940 9.23% 17272839 (0.208) basic blocks
addin 7363426 8.85% 13217812 (0.159) branches
3% 7357767  8.84% 4.8 instructions per basic block
6.3 instructions per branch

Figure 2.7 MIPS R3000 Profile Information - Obtained using pixie and pixstats.

2.7.2  Memory Simulation Trace

Now suppose one needs memory reference traces for some type of memory system
simulation. The method to generate the trace is similar to that explained above. To create a
reference trace using pixie, type

pixie -idtrace ccl
which modifies the binary to record both instruction and data references. Using ~itrace
or ~dtrace will give just instructions or just data respectively. Typing

1dt -c ccl

will instrument an Intel architecture binary to record a cache line trace. In this trace, all
data references will be output, but only one instruction reference will be output per cache
line. This reduces the number of instruction reference entries which must be recorded. The
cache line size can be adjusted using the -1 option. When ccl.pixie is executed, the
trace is sent to a file descriptor. Using a program called makepipe, the trace can be piped
directly to the simulator. IDtrace will send the output trace to a file, in this case ccl. trc.

The trace can be send directly to the simulator by using standard csh pipe commands.

51



Technical reports for both tools give trace format descriptions as well as complete

descriptions of command-line options and trace piping methods [48][58].
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CHAPTER 3

Speculative Execution and
Cache Performance

3.1 Speculative Execution

Parallel computation is an increasingly important research area in the quest for
faster general-purpose microprocessors. Superscalar processor architectures exploit
instruction-level parallelism to concurrently run multiple instructions per cycle. Current
implementations can issue from two instructions to six instructions per cycle under certain
conditions [5][25][39]{74]. More aggressive designs have been announced and will be
available soon [25][44][44](44][74]. Although the amount is hotly debated, research has
shown that more instruction-level parallelism exists in frequently executed, non-numeric
code [many papers]. However, architecture designers face many problems in harnessing
this potential concurrency. One problem is that the length of an unbroken stream of
instructions, a basic block, only averages between 3.0 - 6.5 instructions in applications
such as those found in the SPEC benchmark suite [60]. Thus, to achieve high issue rates,
instructions must be fetched beyond the basic block ending conditional branches. This can
be accomplished by speculative execution which involves guessing the direction of the
branch before the branch condition is computed and continuing execution in the predicted
direction until the branch is resolved. If the prediction is incorrect, the processor state
must be restored to the state prior to the predicted branch and execution resumed down the

correct path.

53



3.2 Problem to Address

Due to their deep pipeline and high issue rates, future processors will speculatively
execute many instructions prior to branch resolution. While this speculation enables
instruction issue to continue during branch computation, it produces some unavoidable
side effects. One effect is an increase in the number of instruction and data references.
These extra, wrong references will increase memory bus traffic and could cause cache
pollution. Cache pollution occurs when unnecessary lines are brought into the cache
which displace needed data, i.e., the cache becomes polluted with non-referenced data. On
the other hand, they could act as prefetching references, bringing data or instruction lines
into the cache for later, correctly predicted path execution. Speculative execution requires
that data writes be handled carefully. Usually cache writes are held until the branch is
resolved and the write can be committed. Although the added recover complexity would
prohibit allowing a speculative write to modify an existing cache line, it might be
advantageous to allocate a cache line for a speculative write miss regardless of whether
the write is committed. The changes in the execution model due to speculation warrant a
re-examination of memory system behavior. In this chapter, the effect of deep speculation

on cache performance will be examined.
3.3 Experimental Procedure

To study these effects, an instrumentation tool called spex was developed to
generate speculative execution traces. The traces were fed into a trace-driven memory
simulator to observe the speculation effects. This section describes the trace generation
and simulation procedure and defines the processor and memory model for which the next

section’s results are valid.
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3.3.1 Trace Generation

A new instrumentation tool, spex, was created to generate speculative reference
traces and was described in detail in Section 2.5.2. To reiterate, spex takes as input an
application binary, a speculation depth, and a choice of branch prediction algorithm. It
produces a modified executable which, when run, will output a memory reference trace
resembling the trace produced by a speculative processor. Inputs to spex along with the
binary are a branch prediction scheme choice and a fixed value, n, which is the number of
cycles required to resolve each conditional branch. In reality, branch resolution times in
pipelined and superscalar machines will vary depending upon the type of conditional
branch, the data dependencies between instructions currently in the pipeline, the number,
type, and data dependencies of instructions waiting to be issued, and processor exceptions.
Thus, the results should be interpreted as bounds for machines that speculate no more than
n instructions past a conditional branch.

Since the spex model and a true speculative processor have different viewpoints of
speculative paths, it is important to clarify some terms used in this chapter. A speculative
path is the execution path taken after a conditional branch prediction. Spex can
immediately classify the speculative path as a correct path (correctly predicted direction)
or a wrong path (mispredicted direction) by comparing the predicted direction with the
actual result of the branch. Thus, it can tag references generated on these paths as correct
path references or wrong path references. It must be remembered, however, that a real
speculative processor cannot foresee the accuracy of the prediction until the branch is
resolved some distance down the speculative path. Therefore, an immediate cache action

such as line allocation cannot be based upon the correctness of the reference.
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3.3.2 Platform and Benchmarks

The applications used in this study are the SPEC92 C benchmarks, see Table 3.1
[60]. The applications were compiled using gcc with the highest level of optimization. The
platform for the simulations is an Intel 486 S0MHz computer running USL Unix SYSV
R4.

It is not my intent to specify an optimal cache configuration for the modeled
architecture based only upon application generated references. Several studies have shown
traces generated only by single process application code, specifically SPEC benchmark
applications, underestimate the cache load of the actual system and will thus lead to
incorrect predictions of optimal cache configurations [9][18]. Instead, the differences in
cache performance between the speculative and non-speculative execution models for
various cache configurations were examined. While the magnitude may vary, these
differences will occur both in application and system code. It is suspected that the
problems detected using application-only traces will be amplified when full system

activity is considered.

i486
Program Description Instructions
compress Unix compression utility | 60 million
eqntott - Boolean equation to truth table translator 1666 million
espresso Logic minimization tool 531 million
sc ~ spreadsheet program 848 million
xlisp - XLISP interpreter solving 8 queens problem 991 million

Table 3.1 The SPEC92 C benchmarks used in the following studies.

3.3.3 Processor and Memory Model

Two trace-driven cache simulators were used to gather results: a modified version

of Tynero and a multicache simulator designed to monitor prefetching and pollution
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effects [50]. Both simulators distinguish between correct path references and misses, and

wrong path references and misses.
The processor/memory model is a multi-issue, pipelined processor with out-of-

order execution requiring deep speculation to maintain a high instruction issue rate. All

mispredicted paths are assumed to execute down a constant, predefined depth before

branch resolution. The processor has a first level set-associative, non-blocking cache with

an LRU replacement policy. Cache line size is fixed at 32 bytes for all experiments. The

cache completes all outstanding memory requests. This means that if a wrong path

reference causes a read miss, the cache line is updated even if the branch is resolved

before the request to memory is completed. Speculative path writes are held until the

branch is resolved so that the cache always contains valid data. Finally, the cache write

policy is copy-back with write allocation for correct writes.
Two branch prediction algorithms are used in this study. Algorithm [ is a two-level F{

adaptive scheme with a 512 entry, 4-way associative register table and a 4096 entry |

pattern table containing 2-bit saturating counters [75]. This algorithm is expensive in

terms of hardware but 1t achieves excellent accuracy for the benchmarks in our study, see

Table 3.2. It is the algorithm used unless otherwise specified. Algorithm 2 uses a simpler

history table of 1024, 2-bit saturating counters [56]. No tags are recorded s0 muitiple

addresses which map to the same table entry will share the counter.

Program | Alg. 1 Alg. 2 | Program | Alg.1 Alg. 2 4
ccl 88 85 | espresso 93 86 @"‘
compress | 89 87 5 96 92 “\"/\
ear | 96 94 xlisp 95 85 -
eqntolt | ﬂ 82 ) ;

Table 3.2 Branch Prediction Accuracies, E
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34 Results
34.1 Total Data Traffic

The main result of the study is that, in most benchmarks, the total data memory
traffic is not significantly increased by deep speculation. Figure 3.1 shows the percent
increase in total (correct and wrong path) misses of speculative execution over that of non-

speculative execution.
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Figure 3.1 Data Miss Increase vs. Speculation Depth - Speculative data miss
percentage increase over that of non-speculative execution. The legend show the
speculation depth. The cache size is 32 Kbytes with 4-way set associativity.

Figure 3.2 shows that there is a substantial increase in the number of data
references due to speculation (up to 75% for 50 deep speculation) yet, from Figure 3.1, for
most benchmarks deep speculation increases the total number of data cache misses by
only around 15% over that of non-speculation.

The traffic ratio, defined as

cache misses + -backs) * (cache line si
affic it e ( 1 copy-backs) * (cache line size)

(memory references without a cache ) * (word size)

58



1000 -
. 9003
2 b
S 800 9
E 7003 §
v 3 B
% 600 xe 17 §
3 E M 7 §
5 500 : f% 3 §
& 4004 § j%
£ 200 ¢ M B2 Y
© 3004 5 5& 2 &
° ] § 2 M 2
$ 2004 2 N ’ %
100 x 2 N3 7
o InTE g 3 112

compress
eqgntott

Figure 3.2 Total Data References. The zero depth speculation represents no
speculation.

is a measure of the efficiency of the cache. Figure 3.3 shows that the cache usually

becomes more efficient, traffic ratio decreases, as speculation increases. The exception to
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Figure 3.3 Traffic Ratio - The cache size is 32K and is 4-way set associative.
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this is compress. A 0.71 traffic ratio without speculation from Figure 3.3 reveals that the
cache is not well suited for this application. Repeating the experiment using a smaller line
size resulted in a lower miss ratio. Furthermore, 8% of the non-speculative references
missed the cache when speculating 25 instructions deep. Compress has poor locality down
several mispredicted paths which repeatedly get executed. The large line size magnifies
the traffic problem.

The next two figures display how the bandwidth increase changes with increasing
cache size and increasing associativity. As would be expected, configuration changes
which reduce pollution generally reduce the additional bandwidth required for speculative
execution. The inconsistent data for large associativities is probably due to the small

number of misses.
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Figure 3.4 Data Traffic for Different Cache Sizes - Increase over non-speculative
execution for different cache sizes. Caches are direct mapped and the speculation

3.4.2 Wrong Path Miss Effects

There are several ways that the additional wrong path references can affect the

cache. First, they can prefetch data which will later be used during correct path execution.
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Figure 3.5 Data Traffic for Different Associativities - Increase over non-speculative
execution for different cache associativities. Caches are 32K and the speculation

A miss during correct path execution can then be avoided if this data is accessed before
being displaced in the cache. These wrong path misses are called prefetch misses and they
reduce the number of correct path misses. On the other hand, pollution misses increase the
number of correct path misses. They are caused by w”mng path read misses allocating lines
which displace lines needed for later correct path execution. To discuss these effects it is

helpful to define a ratio P, where

# of correct path misses for a given cache with speculation depth

n

# of nen-speculative misses for a given cache

Figure 3.7 gives P,, for speculation down 25 instructions using the higher accuracy
prediction algorithm. It shows that speculation reduces the number of correct path misses
so prefetching must dominate the pollution caused by wrong path reads. Deeper
speculation increases the number of wrong path references, thereby increasing the
prefetch misses and further reducing P,. Another way to increase the number of wrong

path references is to use a less accurate prediction algorithm to execute more wrong paths.
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Figure 3.7 shows a more dramatic reduction in P, due to using the less accurate Algorithm

2. Notice in compress, P, increases with depth signaling that pollution, rather than

prefetch, is the dominant effect.

ccl

ear
eqniott
espresso

Figure 3.6 P, Using Branch Prediction Algorithm 1 - The cache is 16K with 4-way

sC

set associaftivity.

xlisp

1 i R
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Figure 3.7 P, Using Branch Prediction Algorithm 2 - The cache is 16K with 4-way

sC

set associativity.
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Figure 3.8 Breakdown of Prefetch and Pollution Effects - The cache size is 16K with
4-way set associativity.

The cache simulator was modified to directly count the number of prefetch and
pollution misses caused by wrong path references and it was found that they alone did not
completely account for the change in P,,. It was observed that wrong path cache hits can
also reduce (or increase) correct path misses. They do so by reordering the lines in a LRU
set associative cache. For example, suppose that a wrong path reference hits a least
recently used line and thus promotes it to most recently used. Then suppose a cache read
miss occurs in the same set. A different line will be displaced than if execution were non-
speculative. If the line is needed during correct path execution this action will have
avoided a miss. If the displaced line rather than the promoted one is needed an additional
miss is incurred. Reordering has only a secondary effect on cache misses compared to that
of prefetch and pollution. Figure 3.8 shows the percentage of wrong path misses which
were prefetch or pollution misses. Notice that, with the exception of compress, over 50%

of misses performed a prefetch.
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343 Wrong Path Writes

During speculative execution our processor model must delay all write references
occurring down a speculative path until the branch is resolved. This requires write buffers
between the processor and cache to hold the address and value of these writes unti] branch
resolution. If the branch was predicted correctly the writes are released to the memory
system. Otherwise, the suspended writes are squashed.

Figure 3.9 shows the number of instructions issued for a particular number of
unresolved conditional branches. It is surprising to notice that often many conditional
branches are outstanding and that seldom are instructions issued non-speculatively. Even
with a speculation depth of 10, 85% of instructions are issued speculatively. When the
depth increases to 30, the percentage increases to over 95%. Since most instructions are
issued speculatively, most writes will be temporarily suspended. This leads to several
questions. How many buffers are necessary to hold most wrong path writes and what write

allocation policy for the cache is appropriate?
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Figure 3.9 Outstanding Conditional Jumps - Percentage of instructions issued per
number of outstanding conditional jumps.
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344 Speculative Write Buffers

The instrumented benchmarks were run and the number of writes in speculative
paths were counted to estimate the number of needed buffers. Figure 3.10 shows the
results. To fully execute 90% of the speculative paths, 4, 6, and 10 write buffers are
required for depths of 10, 20, and 30 respectively. It must be remembered that paths with
more write references than available buffers can still partially complete before instruction

issue must be halted.
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Figure 3.10 Number of Speculative Write Buffers - Percentage of speculative paths
fully executed for various numbers of speculative write buffers.

3.4.5 Wrong Path Write Allocate

Most caches which use a copy-back write policy also implement write allocate,
L.e., a write miss causes the line to be allocated in the cache. Write allocation on a
speculative processor can be handled in several ways. One way is to wait until the branch
is resolved and allocate lines for the correct writes in the cache write buffers. Another way
would be to allocate cache lines for writes as they are being suspended during speculative

execution. This would have the desirable effect of prefetching the lines so that some lines
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could be in the cache at resolution time. But writes produced by mispredicted path will
also cause write allocations and this has an unclear overall effect on cache performance.
Allocations produced by mispredicted paths which are never taken during correct
execution will increase memory traffic and cache pollution. However, wrong path write
allocation might also prefetch lines for later correct path execution. Figure 3.11 compares
the effects of allocating cache lines for all speculative writes or just for committed writes
after branch resolution. The data shows allocating all writes increases the total memory
traffic by a negligible amount. Furthermore, allocating wrong path writes performs a small
amount of prefetching for later correct path memory references. Therefore, it is beneficial

to allocate cache lines on all speculative write references prior to branch resolution.
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Figure 3.11 Wrong Path Write Allocation - Effect on memory traffic when wrong
path writes are allocated in the cache.

3.4.6 Instruction Prefetching

This study has focused on data cache behavior because the SPEC benchmarks do a
poor job of exercising even small instruction caches as described in [18] and as further

shown in Section 4.4.3. Pollution and prefetch effects cannot be adequately observed
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when the full working set fits into the cache. However, it is likely that instruction
references produced during mispredicted paths could perform prefetches for later
instruction references. Table 3.3 shows that over 50% of the lines which were allocated in
the instruction cache during mispredicted paths were then accessed during correct paths
executed later in the program. Thus, half of all wrong path instruction misses could
prefetch useful instruction cache lines. Unfortunately, because misprediction is infrequent,
few additional lines are referenced. Thus, the prefetch effect is small and will get smaller
as prediction accuracy increases. An area of further study is the potential benefit of
aggressively prefetching lines down wrong paths. Since accurate prediction limits the
number of wrong path executions, this would entail allocating instruction cache lines from

both the taken and not taken execution paths.

Program | Reuse %
ccl ‘ 60
compress | 52
ear 66
eqntott 60
esSpresso 68
sC 56
xlisp 70

Table 3.3 Wrong Path Instruction Reuse - The percentage of instruction cache lines
allocated during wrong path execution which were later referenced during correct
path execution.

3.5 Summary

The major result of this study is that deep speculation does not significantly alter
cache performance in most of the tested applications. Therefore, future processors which
rely on deep speculation to maintain high issue rates are unlikely to suffer severe

performance problems due to increased cache miss cycles or bus traffic caused by
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mispredicted path execution. However, the study did give insight into the behavior and
effects of speculative cache accesses:

« In all except one of the benchmarks, data misses increased by less than 15% for
speculation depths of up to 50 instructions.

 Data traffic ratio increases as speculation depth increases. This means that data
caching is more effective as speculation increases.

* Correct path data misses actually decrease as speculation increases. This suggests
that wrong path references act as data prefetches.

» The prefetch effect usually far outweighs the pollution effect of wrong path misses.
In the benchmarks studied, between 50% and 80% of the mispredicted path
references acted as prefetches for later correct path references.

» Mispredicted path instruction references are also later referenced in the program
between 50% and almost 70% of the time.

» Because of prefetching, a slight gain is achieved by allocating cache lines for all
speculative write misses rather than only allocating lines for confirmed write misses.

» Better branch prediction reduces the prefetch effect because it reduces the number of
wrong paths that are executed.

» With speculation depth of as little as 10 instructions, 85% of the instructions are
1ssued speculatively, and the median number of outstanding branches during any
instraction issue is two.

The idea that executing mispredicted paths has positive benefits is both surprising ;\
and intriguing. It suggests that cache misses can be reduced by prefetching data down
mispredicted péths. More specifically, it might show that a prefetching algorithm need not
be concerned with trying to prefetch data only from the taken execution path. The next l

chapter describes a new prefetching algorithm which was inspired by these results.
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CHAPTER 4

Instruction Cache
Prefetching

4.1 Cache Miss Reduction

Instruction cache misses are detrimental to the performance of high-speed
microprocessors. As the differential between processor cycle time and memory access
time grows and the degree of instruction-level parallelism in superscalar architectures
increases, the performance degradation caused by cache misses will become even more
apparent. Designers have proposed several strategies to increase the performance of the
cache memory systems which will be implemented in next-generation microprocessors.
The option most often used in the past has been to increase the cache size and/or its
associativity. However, this strategy consumes additional chip area and, since compulsory
misses are unaffected, becomes less effective as the number of cache sets or associativity
increases. In addition, increasing the cache associativity lengthens the cache access time
and could adversely affect the chip’s overall cycle time [23].

To improve performance while retaining the small size and speed of a direct-
mapped cache, Jouppi proposed adding a small buffer called a victim cache to a
conventional direct-mapped cache design to improve performance {30]. Victim caching
reduces the number of conflict cache misses by holding onto recently displaced lines.
When a conflict miss occurs, the displaced line is stored in the small (1 to 5 entry) fully-
associative victim cache. A cache lookup then involves a parallel check in the main cache
and the victim cache. If the access hits the victim cache, the lines in the main and victim

caches are swapped and a conflict miss is avoided.
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Farrens and Pleszkun propose adding two instruction queues between the fetch
unit and a small on-chip instruction cache [16]. In addition, a prepare-to-branch (PBR)
instruction is added to the architecture’s instruction set. Instructions are fetched from one
queue, the instruction queue (IQ), while the other queue, the instruction queue buffer
(IQB), is being filled with sequentially located instructions or instructions beginning at a
target address if a PBR instruction is decoded. The IQB supplies the IQ with instructions
and can initiate a cache miss in advance of instruction fetch. Studied instruction cache
sizes were 640 bytes or less and the system’s effectiveness relies on the PBR instruction.

Cache prefetching is another method to increase cache performance and has been
widely studied [16]{20][24][26]. Prefetching is an attempt to fetch lines from memory into
the cache before their instructions are referenced by the processor’s fetch unit. To be
effective, the prefetch strategy must accomplish two things. It must be able to guess which
cache lines will soon be referenced and it must initiate the prefetch requests far enough in
advance of instruction fetch so that the miss latencies are significantly reduced or
eliminated entirely. Theoretically, an optimal prefetch algorithm could remove all cache
misses by prefetching all instructions immediately before they are needed. Unfortunately,
non-sequential program flow makes it impossible for the prefetcher to always predict the
correct execution direction. Much work has been done to develop methods which
anticipate the direction of program flow and to prefetch instructions in this direction. In
this chapter, a new prefetching algorithm is proposed which makes no attempt to predict
the correct direction. In fact, it relies heavily on prefetching the wrong direction. Not only
does this method outperform previously proposed prefetching schemes, but it does so at a
lower hardware cost.

The word prefetch can be found in several different contexts in current computer
literature and it is important that I clarify exactly what I mean by cache prefetching and
what problem this work intends to address. Cache prefetch algorithms are studied which

reduce instruction cache misses by prefetching instruction lines from memory into the
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cache. A source of confusion is that the term prefetch is also used to denote the act of
fetching multiple words from the cache into the fetch unit of the execution pipeline. The
goal of cache prefetching is to reduce cache misses. The goal of what we will call
instruction prefetching is to assist in instruction decode or to increase the instruction issue
rate. The Intel Architecture processors (1486 and Pentium} utilize cache-to-buffer
prefetching to alleviate the decode problems associated with variable instruction size and
complex encodings [28]. Superscalar processors like the Alpha or Power2 architectures
prefetch multiple lines from the cache so that multiple instructions can be issued per cycle
even during branch execution [14}[74]. The PowerPC also prefetches multiple instructions
from the cache into prefetch buffers {74]. It does this primarily because the instruction
fetch must share a single port to the unified cache with data memory requests and thus it
cannot fetch an instruction from the cache every cycle. What is important to note here is
that these four processors (and others like them) perform instruction prefetching and not
cache prefetching. In all of the above examples, instruction prefetching never initiates
requests to memory. Instruction prefetching stops if the correct lines are not found in the
cache. Finally, another use of the term prefetching applies to data prefetching. Data
prefetching attempts to reduce data cache misses by exploiting a program’s data access
patterns in order to prefetch data from memory [10][32]. This chapter does not address

data prefetching issues.

4.2 Prefetching Methods

O

Instruction prefetching can be done passively by modifying the cache organization
to promote prefetching or by including additional hardware mechanisms to execute an

explicit prefetching algorithm.
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4.2.1 Long Cache Lines

The simplest form of prefetching is the use of long cache lines [55]. When a line is
replaced, new instructions are brought into the cache in advance of their use by the CPU,
thereby reducing or eliminating miss delays. Longer cache lines also reduce the amount of
space required for tag storage. The disadvantages are that longer lines take longer to fill,
they increase memory traffic, and they contribute to cache pollution due to the larger
replacement granularity. A long instruction line which is only partially accessed will
displace many existing instruction words which may be needed in the future. As can be

seen in Figure 4.1, there is a point after which longer line sizes are ineffective.
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Figure 4.1 Effect of Increasing Line Size - The cache is 8K bytes with a constant 8
byte refill. The application is gec.
4.2.2 Next-Line Prefetching

Another approach to instruction prefetching is next-line prefetching, It tries to
prefetch sequential cache lines before they are needed by the CPU’s fetch unit. In this

scheme, the current cache line is defined as the line containing the instruction currently
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being fetched by the CPU. The next line is the cache line located sequentially after the
current line. If the next line is not resident in the cache, it will be prefetched when an
instruction located some distance into the current line is accessed. This specified distance
is measured from the end of the cache line and is called the fetchahead distance, see
Figure 4.2. Nexi-line prefetching predicts that execution will fall-through any conditional
branches in the current line and continue along the sequential path. The scheme requires
little additional hardware since the next line address is easily computed. Unfortunately,
next-line prefetching is unlikely to reduce misses when execution proceeds down non-
sequential execution paths caused by conditional branches, jumps, and subroutine calls. In
these cases, the next line guess will be incorrect and the correct execution path will not be
prefetched. Performance of the scheme is dependent upon the choice of fetchahead
distance. If the fetchahead distance is large, the prefetch is initiated early and the pext line
is likely to have been received from memory in time for CPU fetch. However, increasing
the fetchahead distance increases the probability that a branch will be encountered in the
current line and execution will continue in a non-sequential direction rendering the next-
line prefetch ineffectual. This useless prefetch increases both memory traffic and cache
pollution. In spite of these shortcomings, next-line prefetching has been shown to be an

effective strategy, sometimes reducing cache misses by 20-50% [25].
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Figure 4.2 Fetchahead Distance - In next-line prefetching, once instruction fetch
occurs within the fetchahead distance, the next consecutive cache line will be
prefetched.
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4.2.3 Target-Line Prefetching

Target-line prefetching addresses next-line prefetching’s inability to correctly
prefetch non-sequential cache lines. When instructions in the current line are being
executed, the next cache line accessed might be the next sequential cache line or it might
be a line containing the target of a control instruction found in the current line. Since
unconditional jump and subroutine call instructions have a fixed target and conditional
branch instructions are often resolved in the same direction as they were when last
executed, a good heuristic is to base the prefetch on the previous behavior of the current
line, i.e., prefetch the line which was referenced next the last time the current line was
executed. Target-line prefetching uses a target prefetch table maintained in hardware to
supply the address of the next line to prefetch when the current line 1s accessed. The table
contains current line and successor line pairs. When instruction execution transfers from
one cache line to another line, two things happen in the prefetch table. The successor entry
of the previous line is updated to be the address of the new current line. Also, a lookup is
done in the table to find the successor line of the new line. If a successor line entry exists
in the table and that line does not currently reside in the cache, the line is prefetched from
memory. By using this scheme, instruction cache misses will be avoided or at least their
miss penalty will be reduced if the execution flow follows the path of the previous

execution.
4.2.4 Hybrid Schemes

A hybrid scheme which combines both next-line and target prefetching was
proposed in Hsu and Smith [26]. In this scheme, both a target line and next line can be
prefetched, offering double protection against a cache line miss. Next-line prefetching
works as previously described. Target-line prefetching is similar to that above except that

if the successor line is the next sequential line, it is not added to the target table. This saves
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table space thus enabling the table to hold more non-sequential successor lines. They
compared the performance of this scheme with next-line and target-line algorithms using
supercomputer reference traces and their resuits were impressive - miss rates are reduced
by 50-60%. In addition, they showed that the performance gain of the hybrid method was
roughly the sum of the gains achieved by implementing next-line and target prefetching
separately.

Performing target prefetching with the help of a prefetch target table is not without
drawbacks, howewver. First, significant hardware is required for the table and the associated
logic which performs the table lookups and updates. This requires additional chip area and
could increase CPU cycle time. Secondly, the extra hardware has only limited
effectiveness in that it cannot be used to remove certain types of misses. First time
accessed code does not profit from table-based target prefetching since the table must first
be set up with the proper links or current-successor pairs. Thus, compulsory misses are
unaffected by target prefetching. Furthermore, unlike a branch prediction table, even when
the correct information does exist in the table it cannot always be utilized. Upon re-
execution of the code when the links are properly set, prefetching will only occur if the
target line has been previously displaced from the cache. In the likely event that the line is
still in the cache, the table entry space and lookup are wasted because prefetching is not
needed. This suggests that target prefetching using a table is best suited for small caches
with low associativity where lines are often displaced and then rereferenced. This was the
proposed application environment in [26].

It is interesting to note several points common to the above schemes. One is that
prefetch decisions are made at the cache line level. No instruction-specific information is
used. This makes sense because a prefetch decision must be made early and many cycles
may pass before instruction recognition can take place in the decode stage of the pipeline.
Another point is that the above schemes try to predict the correct execution path and then

prefetch only down the predicted path. For instance, using a small fetchahead distance will
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bias the next-line prefetching scheme toward the correct path by lowering the probability
of a control instruction being within the fetchahead distance. Target prefetching predicts
that the correct direction in which to prefetch is the direction of the previous execution.
Even though the hybrid algorithm may prefetch lines down the wrong path, since it
sometimes prefetches both a next line and a target line for the current line, such actions are
unintentional and rarely occur. Prefetching the correct path satisfies intuition because only
lines soon to be executed should be prefetched. The alternative, fetching wrong path lines

into the cache, will likely increase memory traffic and cause cache pollution.
4.2.5 Wrong-Path Prefetching

The work in the last chapter shows that the intuition expressed above is partially
false. Executing instructions down mispredicted paths actually reduced the number of
cache misses occurring during correct path execution. This suggests that prefetching
instruction cache lines down mispredicted paths might have a positive result.

1 propose a new algorithm called wrong-path prefetching which is similar to the
hybrid scheme in the sense that it combines both target and next-line prefetching. The next
line is prefetched whenever instructions are accessed inside the fetchahead distance as
described earlier. The major difference is in the target prefetching component. No target
line addresses are saved and no attempt is made to prefetch only the correct execution
path. Instead, the line containing the target of a conditional branch is prefetched
immediately after the branch instruction is recognized in the decode stage. Thus, both
paths of conditional branches are always prefetched: the fall-through direction with next-
line prefetching, and the target path with target prefetching. Unfortunately, because the
target 1s computed at such a late stage, prefetching the target line when the branch is taken
1s unproductive. In this case, if the target address is not in the cache, a fetch miss and a
prefetch request of the same line will be generated simultaneously. Similarly, prefetching

unconditional jump or subroutine call targets is useless since the targets are always taken
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and the prefetch address would be produced too late. To reiterate, the target prefetching
part of the algorithm can only perform a potentially useful prefetch for a branch which is
not taken. This is why the algorithm is called wrong-path prefetching. If execution returns
to the branch in the near future, and the branch is then taken, the target line will probably
reside in the cache because of the prefetch.

The hardware requirements for wrong-path prefetching are roughly equivalent to
what is required for next-line prefetching since the target prefetch addresses are generated
by the existing decoder and no target addresses are saved. The obvious advantage of
wrong-path prefetching over the hybrid algorithm is that there is a lower hardware cost.
The performance of wrong path prefetching might also compare favorably with other
schemes. Wrong-path prefetching can prefetch target paths which have yet to be executed
unlike the table-based schemes which require a first execution pass to create the cache line
links. In addition, wrong-path prefetching should perform better than correct-path only
schemes when there exists a large disparity between the CPU cycle time and the memory
speed. This is because other algorithms try to prefetch down target paths which will be
executed almost immediately, and if memory has a long latency, the prefetch may not be
initiated soon enough. Conversely, wrong-path prefetching prefetches lines down a path
which is not immediately taken thus it potentially has more time to prefetch the line from
a slow memory before the path is executed. However, the performance of wrong-path
prefetching does not come without cost. Unavoidably, prefetching down not-taken paths
will put lines into the cache that are never accessed. This will increase both memory traffic
and cache pollution. For the algorithm to be successful, the benefits of prefetching must
overcome the added pollution misses. The extra traffic cannot be reduced, but memory
bandwidth can be viewed as a hardware resource to be utilized to reduce the performance
degradation caused by instruction cache misses.

Again, it should be emphasized that wrong-path prefetching is fundamentally

different from the both-path instruction prefetching done in some current superscalar




processor designs. In these architectures, words from both paths are copied from the cache
to the prefetch buffer. After one of the paths is executed, the wrong path words are
removed from the buffer. Instruction prefetching never causes a memory-to-cache transfer,
so0 the number of cache misses will not be affected. In the proposed wrong-path
prefetching scheme, lines containing instructions from not-taken paths are routinely

fetched from memory and stay resident in the cache.
4.3 Preliminary Feasibility Study

Since the wrong-path prefetching algorithm relies on prefetching target lines that
are not taken, initial experiments were performed to isolate the effects of prefetching lines
only down not-taken paths. The experiments were run on an i486 SysVR4 Unix platform
using the SPEC benchmark gcc as the workload [60]. Traces were generated using
IDtrace and then fed into a prefetch/multi-cache simulator [48]. The prefetch simulator
was programmed to prefetch lines from only not-taken paths of conditional branches.
Therefore, a taken branch caused the cache line containing the fall-through address 1o be
prefetched. A not-taken branch caused the target line to be prefetched. No other lines were
prefetched. The left graph in Figure 4.3 compares the number of cache misses when no
prefetching was performed with the miss performance of 4 variations of the described
wrong-path-only prefetching algorithm. The WPO-1, 2, and 3 algorithms represent
prefetching 1, 2, and 3 consecutive wrong path lines respectiﬁe]ﬁy. For instance, the WPO-
2 algorithm would prefetch two cache lines down the not-taken direction of every
conditional branch. The profile algorithm, PROF-1, will be explained shortly. It can be
seen that prefetching only the lines from paths not immediately executed exhibits
surprisingly good results. The prefetching effect far outweighs the extra pollution
generated by sometimes prefetching unused cache lines.

One problem with this prefetching approach is the large amount of extra traffic

generated, as shown by the right graph in Figure 4.3. One possible way to reduce this
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traffic would be to eliminate the prefetches of paths which are never taken. Prefetching
these paths cause extra traffic and contribute to cache pollution. Thus, prefetching should
not occur for conditional branches which are always taken or always not-taken. To
examine the effects of removing these wasted prefetches, gcc was profiled to create a list
of the conditional branches which both the target and the fall-through paths are taken
sometime during execution. Prof-1 uses this profile data to decide when to prefetch. It
prefetches a cache line from the not-taken path of a conditional branch only if the branch
is in the profile list, i.e., if both directions of the branch are taken sometime during
program execution. Since some branch paths are never taken, the number of prefetches
will be reduced. However, this should not degrade the overall performance because only
prefetches applied to non-executed paths are removed. In fact, it could be supposed that
Prof-1 would have slightly better performance than WPO-1 because of the reduction in

cache pollution.
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Figure 4.3 Wrong-Path Prefetching Feasibility - Results from prefetching only f
down the not-taken direction of conditional branches. The cache is direct-mapped i
with 32 byte line size. The benchmark was gec run on an i486 Unix platform.

Surprisingly, comparing the WPO-1 and Prof-1 results in Figure 4.3 shows that the
expected traffic reduction was accompanied by an unexpected decrease in performance.
The unanticipated poor performance of Prof-1 has two explanations. One is that the

prefetched cache line contains more than just the not-taken path instructions. The 32-byte
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line size is large when compared to the average basic block size and probably contains 4 to
8 basic blocks. Therefore, it contains other paths which, in fact, are executed. Another
explanation is that multiple branches can point to the same target and one branch can
prefetch for another. Suppose that Branch A and Branch B share the same target address,
Branch A is never taken, i.e., control is never passed from Branch A to the target address,
and Branch B is taken sometime during the program’s execution. Prefetching the not-
taken direction of Branch A would bring the target line into the cache and eliminate a
cache miss caused by a later execution of Branch B.

These preliminary experiments show that prefetching down not-taken paths can
significantly reduce cache misses at the cost of higher memory traffic. Methods which
attempt to select which branches to prefetch reduce the memory traffic but can also impair

the algorithm’s ability to reduce cache misses.
4.4 Experimental Method

This section details the experimental procedure used to study the performance

characteristics of the previously mentioned prefetching algorithms.
4.4.1 Memory System Simulator

A detailed, trace-driven memory system simulator was written to model the
performance of the instruction cache, memory bus, prefetch unit, and processor fetch unit
in a typical current or next-generation microprocessor. The simulator can model the
behavior of a wide range of system configurations by allowing the user to vary cache
parameters (set size, associativity, line size, line refill rate, flush interval), prefetch
algorithm parameters (algorithm type, fetchahead, target table size and associativity, target
threshold), and rough processor and system characteristics (instruction issue rate, prefetch
unit structure, memory ports, number of cache tag ports, and memory wait cycles).

Furthermore, the simulator displays detailed event statistics such as prefetch success or
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failure, prefetch initiation time, and resource utilization times which enables the user to

gain insight into the interaction between prefetching and cache behavior.
4.4.2 Memory System Model
44.2.1 Microprocessor/Memory Model

The modeled base microprocessor is a single issue, pipelined architecture with
RISC-like properties. Each instruction takes one cycle to execute and all instructions are
of uniform 4 byte length. The CPU clock speed is assumed to be high so the disparity
between clock speed and memory access time is large. Conventional split L1 instruction
and data caches are implemented which connect directly to memory or to a second-level,
L2, cache. Instruction cache accesses are not pipelined and cache hits complete in one
cycle.

Instruction cache configurations vary widely in current generation processors, see
Table 4.4. The values for the base model cache parameters are given in Table 4.5. Each of
these parameters will be varied in different comparison experiments discussed in Section
4.5. If the value of a cache parameter is nol mentioned in a figure title, it is the default
value listed in the table.

The base memory architecture was chosen to be readily constructed with present-
day technology. This is important in the performance comparison of prefetch algorithms
for several reasons. First, the following simulation results demonstrate performance which
is guaranteed achievable and does not depend upon possible future technological
advances. Secondly, keeping the hardware simple is less likely to negatively influence

clock speed which would negate perceived performance gains. At the end of the chapter, I



will speculate how the studied algorithms and prefetching in general might be affected by

future technology.

Processor %;}::e ? (Ksblj,f:;s) Assoc. L€§§t§§§e (gﬁﬁimi)
{ Intel i486 [28] | Unified 8 4-way 16 4 |
| Intel Pentium [5] Split 8 2-way | 32 8
| AMD K5 [44] Split 8 2-way 16 8
DEC 21164 [44] Split 8 Direct 32 16
Hitachi HARP-1[44] | Split 8 | Direct 32 8
PowerPC 601 [74]} Unified | 32 8-way 642 8
PowerPC 603 Split 8 - 2-way 32 8
PowerPC 620 [44] Split 32 | S-way 64 | 8
IBM Power [74] Split ! 8 2-way 64 8
IBM Power2 [74] Split | 32 2-way | 128 32
| MIPS R4000MC Split 8 Direct 16/32° 16
SGI TFP [25] Split 16 Direct 32 4

Table 4.4 Cache Configurations for Some Current Microprocessors.

a. 2 sectors/line - tagged per line but transferred on sector boundaries.
b. Configurable

Parameter | Base Model Value
{ Cache Size 16K bytes
Associativity  Direct
| Line Size - 32 bytes
Refill R.a:u;: | 16 bytes/evcle
Wait Cycles 4

Ta:hie 4.5 Base Model Cache Parameter Values




4422 The OMRB Structure

Prefetches can occur independently of instruction fetch so there must be some
mechanism to implement multiple cache and/or memory requests. The model uses a non-
blocking cache structure to facilitate multiple instruction requests [10][33]. A non-
blocking cache allows execution to continue during the handling of a cache miss. This is
most useful in the data cache of a processor employing out-of-order execution. When a
data reference misses the cache, other independent instructions can be executed while the
miss 1s being handled. A non-blocking instruction cache is not normally necessary. Since
missed instruction dependency information is unknown, instructions cannot be issued
while an instruction cache miss is being handled. However, when using an instruction
prefetching algorithm, instruction fetch must continue while a prefetch miss is being
handled. Non-blocking cache structures are also useful as storage areas for multiple
memory requests which can occur in the same cycle.

In the architectural model, a structure similar to Kroft’'s MHSR buffer is situated
between the instruction cache and memory, see Figure 4.4. It is called the outstanding
memory request buffer or OMRB and contains information about all outstanding fetch and
prefetch requests. An entry for a memory request is queued in the OMRB until the request
1s initiated and the full cache line is received from memory. An instruction fetch or
prefetch memory request is serviced by the following steps:

* The memory request is sent to the OMRB. The requested address is compared with
the addresses in the other entries in the OMRB. If a previous request does not
already cover the new request, a new entry is added in the OMRB. This requires a
fully associative search of all entries. However, the number of OMRB entries is
limited to four so the parallel search is not too expensive.

» When the bus is available, the request of highest priority is selected from the set of

non-issued requests in the OMRB. Instruction fetch has the highest priority, then
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next-line prefetching, and finally target prefetching. A read request signal along with
the address of the selected request is sent to memory on the bus.

» No more requests are transmitted on the bus from the OMRB during the next w wait
cycles. Memory requests cannot overlap since the memory can set up only one
address at a time. During this time, however, more requests can be added into the
OMRB.

* When the setup time is complete, the first segment of the requested cache line is
received on the bus. Line wraparound is implemented so that the first segment
always contains the requested word. The line is sent to memory and forwarded
directly to the fetch unit.

* The remainder of the cache line segments are sent in subsequent cycles. The entry is

then marked invalid, the bus is free, and other requests can be serviced.

Memory
Instruction OMRB
Cache 1 i
Cache Tags Cache Tags
Fetch J Prefetch
- . — .
Unit Unit
Inst. Decoder

Figure 4.4 Hardware Model - This figure shows the connection and datapaths
between the cache, fetch and prefetch units, the outstanding memory request buffer
structure (OMRB), and memory.




Figure 4.6 shows a cycle time diagram of a memory request in a memory system
requiring 2 bus transfers to fill a cache line and 4 wait cycles for memory address setup. If
the request gains immediate access to the bus, the requested word will arrive in 6 cycles

and the request will be completed in 7 cycles.

' Request Wait Wait Wait Wait Receive  Receive

| Send | Cycle | Cycle Cycle | Cycle | Part A, PartB |

| i | ] %I | | I
=0 r=1 t=2 t=3 t=4 t=35 t=6 =7

Figure 4.5 Time Diagram of Memory Request Example - The memory system
requires two cycles to fill a cache line and 4 wait cycles for memory address setup.

4423 Prefetch Unit

The prefetch unit suggests when a line should be prefetched, computes the line’s
address, and performs a cache tag lookup to see if the line is resident in the cache. If the
line is not resident, the prefetch is initiated and a memory request is sent to the OMRB.
The cache tag structure can be accessed simultaneously by both the fetch and prefetch
units. This requires that the tag structure be either dual-ported or replicated. Only one
prefetch cache tag lookup can occur per cycle. If both a next-line and target-line prefetch
is suggested in one cycle, the target-line address takes precedence. The next-line prefetch
will be suggested during the next cycle if necessary.

For the next-line prefetching component of all algorithms, the default fetchahead
distance is 3/4 of the line size. For table-based target prefetching, the default target table is
direct-mapped and has 128 2-word entries. For wrong-path prefetching, a target prefetch is
suggested during the cycle in which a conditional branch is decoded. The instruction
decoder forwards the target address 1o the prefetch unit where the cache tag lookup occurs.

To summarize the changes necessary for prefetching, the following hardware
additions are required:

« OMRB structure for a non-blocking instruction cache.




* Cache tag replication (or two tag ports) and tag comparison logic.

* Next-line prefetching requires logic for fetchahead distance calculation and next
address calculation,

» Target-line prefetching requires next-line hardware, target table, logic to compare
and update table entries, and data paths between table and cache tags.

* Wrong-path prefetching requires next-line hardware and a data path between

instruction decoder and prefetch unit.
4.4.3 Benchmarks, Traces, and Tools

The simulator described in Section 4.4.1 can accept three different types of traces.
The first two types are application traces from the SPEC benchmark suite generated on
two different hardware platforms[60]. The traces are gathered using IDtrace on an Intel
i486 SysVR4 Unix system and pixie on a DECstation 5000 with a MIPS R3000 processor.
The benchmarks are listed in Table 4.6. Unfortunately, most of the SPEC benchmarks do

Benchmark | Description
c‘clr - Main comp@nem of gce
COMPress Unix compression atility
| espresso Boolean function minimization
eqntott Boolean equation to truth table translation
sc - Spreadsheel program
xlisp Lisp interpreter running 8-queens problem

Table 4.6 SPEC Benchmark Description

not sufficiently exercise the instruction cache so that meaningful conclusions can be
obtained from the simulation results. Table 4.7 shows the few number of misses and
negligible traffic generated by the C SPEC benchmarks for even a rather small instruction

cache. It is highly likely that the floating point benchmarks fare no better. Only ccl causes




significant activity. If the benchmarks were to be used in cache studies, it is unclear how
the results of each benchmark should be combined into one overall number. If the results
are summed, the value from ccl would dominate rendering the other results meaningless.
If they were averaged or normalized with respect to cycle counts, then the findings
observed in the cc1 results would be diluted by the other weaker results. My solution is to
use cc1 alone as a representative application benchmark and show that the cache behavior

observed using ccl traces is indicative of the actual behavior of the instruction cache.

Benchmark | i486 Misses | 486 Traffic I%Sgﬁ 3 ;l;fffgg
| ccl 46 12 72 15
sc 10 2 13 3
xlisp 15 2 | 1 3
espresso 4 | 5 1
| eqntott 0 0 0 0
compress | 0 0 0 0

Table 4.7 Instruction Cache Activity Caused by SPEC Benchmarks - The miss
columns give the number of misses per thousand instructions. The traffic columns
give the percentage of time the bus is active with instruction information. The cache
is 8Kbytes, direct-mapped, with line size of 16 bytes and line refill rate of 8 bytes/

cycle.

To arrive at the actual behavior, the simulator also accepts a third type of trace,
system-level traces. These traces were obtained by Nagle and Uhlig using a hardware
monitoring setup called Monster [45]. The platformis a MIPS R3000-based DECstation
5000/200 running a Mach 3.0 operating system kernel. The traces contain physical
instruction and data addresses gathered directly from the system bus while executing
between 40 and 130 million kernel and user mode instructions. The benchmark programs
are listed in Table 4.8 and sample cache activity is shown in Table 4.9. Note the increased

level of activity produced by the system traces compared with the SPEC benchmark




numbers in Table 4.7. The ccl application is the only one which comes close to simulating
real cache activity.

Since the addresses are physical addresses, the cache modeled using the system
traces is a physically-mapped cache!. For the experiments based on the application traces,

the cache is virtually-mapped.

System Trace Description
gcc Gnu C compiler
£s | Postscript file viewer
mpeg-play Compressed video displayer
sdet A multiprocess, system performance benchmark.
From the SPEC SDM benchmark suite.
verilog - HDL hardware development tool

Table 4.8 System Trace Benchmark Description
4.4.4 Performance Measurement

Most cache studies use the number of cache misses or miss ratio as the
performance measure. However, miss reduction is not a sufficient measure of the
performance of prefetched caches because it does not account for changes in miss
latencies produced by prefetching. For instance, suppose the full miss latency for a
processor is five cycles and one algorithm initiates a prefetch three cycles before the fetch
while the other initiates a prefetch only one cycle before the fetch. An instruction miss will
oceur in both cases but the net result is not the same. The first prefetch algorithm will have

reduced the miss penalty by two more cycles, thus giving better performance. Two

|. The traces will also allow modeling a physically-tagged, virtually-mapped cache if
the cache size divided by the associativity is less than Mach's 4K page size. In such a cache, the set
index part of the virtual address remains unchanged after virtual-to-physical address translation.
The translation can be performed in parallel with cache set lookup and physical address can then be
used for tag comparison.
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statistics are used to compare the algorithms: total CPU cycles and miss cycles. The latter
is the number of cycles wasted due to instruction misses, i.e.,
Total CPU cycles = Instructions executed + Miss cycles.

The measures of memory bus traffic are the total bus cycles and the bus utilization. The
former is the number of cycles during which the bus is busy sending or receiving memory
requests. The bus is deemed not busy during wait cycles. The bus utilization is the
percentage of total CPU cycles during which the bus is busy.

In the simulations using the system traces, the results are based upon the sum of
the cycle counts for all five system trace benchmarks. For the application-based

simulations, the results are based upon the cycle counts from the ccl benchmark run to

completion.
System Trace | Instructions Misses | Traffic
gec | T126M 11 16
g5 86M 110 16
| mpeg-play M 94 15
sdet 43M 139 16
verilog L 52M 115 17

Table 4.9 Instruction Cache Activity Generated by System Traces - The miss column
is the number of misses per thousand instructions. The traffic column is the
percentage of time the bus is active with instruction information. The cache is
8Kbytes, direct-mapped, with line size of 16 bytes and line refill rate of 8 bytes/cycle.

4.5 Comparison Experiments

This section discusses the major results of a comprehensive empirical study of
prefetching algorithms using the trace driven simulator. The first subsections compare
algorithm performance for different cache sizes, line sizes, refill rates, and cache

associativity. Both the CPU cycle time and the bus activity are observed. The subsections



also show that the application trace, ccl, and the combined system traces gives similar
results.

The next two subsections show the effects of varying prefetch algorithm
parameters. The algorithm comparison studies reveal that the performance gain of table-
based target prefetching is not worth its additional hardware cost. Section 4.5.5 discusses
attemnpts to extract higher performance by varying the target table parameters. Section
4.5.4 and Section 4.5.5 describe the reasons behind the hybrid algorithm’s ineffectiveness
and explain why these results differ from those found in Hsu [26]. The following
subsection examines the effect of the fetchahead distance on the next-line and wrong-path
algorithm performance.

The final two subsections attempt to forecast the effect of prefetching on future
microprocessors. One certain feature of next-generation processors will be higher clock
speeds. Even with an L2 cache, the shorter CPU cycle time will probably translate into a
greater number of memory wait cycles. How will prefetching algorithms respond to this
increased latency? The direction processor evolution also tends toward an increasing
instruction issue rate and it is likely that multiple memory ports will be necessary to
achieve them. The final subsections show how the prefetching algorithms help the

memory system cope with the increased demands caused by these architectural changes.
4.5.1 Cache Size

The left graph in Figure 4.6 shows the number of CPU cycles needed to execute
the system traces with no prefetching and with different prefetch algorithms. The right
graph shows the percentage reduction in the execution cycles due to the prefetching
algorithm. Wrong-path prefetching performed the best in terms of CPU cycles for all
cache sizes, producing up to a 16% speedup over that of no prefetching. It performs up to

4% better than the other algorithms.The hybrid algorithm performed only slightly better
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than next-line prefetching. It seems to extract little performance gain from its additional

hardware.
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Figure 4.6 Cycle Time for Different Cache Sizes - The left graph shows total CPU
cycles and the right graph shows the cycle improvement gained by prefetching.
System traces are used for simulation input.

It is interesting to note in the left graph that a wrong-path prefetched 8K cache
gives better performance than a non-prefetched 32K cache and a next-line or hybrid
prefetched 16K cache.

Since prefetching can only reduce the miss latency cycles, which in the above
caches comprise 20-40% of the total execution cycles, the prefetching algorithms must be
removing a higher percentage of miss cycles than total CPU cycles. Figure 4.7 shows that
the miss cycle reduction is large. Wrong-path prefetching reduces miss cycles by almost
40% in an 8K cache.

The major disadvantage of prefetching is the additional memory traffic it generates
as can be seen in Figure 4.8. Two factors combine to cause this increased bus utilization.

The first is that prefetching generates unnecessary references which increases the bus
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traffic. The second is that prefetching reduces the total CPU cycle count. More traffic in a

shorter time period translates into higher bus utilization.
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Figure 4.7 Miss Cycle Reduction for Different Cache Sizes - System traces are used
for simulation input.

Bus bandwidth must be viewed as a resource just as a functional unit or memory
port. For instance, if the bus bandwidth is allowed to grow by doubling the refill rate,
implementing a prefetching scheme can significantly reduce the required cache size
without greatly increasing the bus traffic. Figure 4.9 shows the effect of this resource
allocation. Cache A,B, and C are non-prefetched 32K caches with a 32 byte line size and
8, 16, and 32 byte/cycle refill rates respectively. Cache D is a wrong-path prefetched 8K
cache with a 32 byte line and 32 byte/cycle refill. Cache D has the best CPU cycle

performance and its bus traffic is only slightly higher than that of Cache A. Caches B and
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C are included in the graph to verify that the performance improvement is a result of

prefetching and not of the increased refill rate.
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Figure 4.8 Bus Traffic For Different Cache Sizes - The left graph is the total bus
cycles and the right graph is the bus utilization. System traces are used for
simulation input.
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Figure 4.9 Prefetching Allows Better Performance with Smaller Cache - Caches
A,B, and C are non-prefetched 32K caches with 8, 16, and 32 byte/cycle refill rates.
Cache D is a next-line prefetched 16K cache with 32 byte/cycle refill rate. Cache E is
a wrong-path prefetched 8K cache with 32 byte/cycle refill rate.
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The resuits from the ccl application study are similar and also show that the
wrong-path prefetching algorithm is superior, see Figure 4.10. It reduces CPU cycles by
up to 14% while increasing traffic by 18% for an 8K cache and around 5% for a 32K
cache. These results are comparable with those found using the system traces which
indicates that ccl is a reasonably good benchmark for application-based cache simulation.
It 1s important to note, however, that prefetching removes many more instruction miss
cycles in ccl than in the system traces (62% vs. 32% for 32K cache), yet the CPU cycle
reduction is not as impressive in the ccl experiments (3% vs. 11% for 32K cache). This is
because a smaller portion of the total execution cycles using ccl trace are miss cycles. The
smaller reduction of a larger number of miss cycles in the system trace had a larger overall

effect than a larger reduction of a smaller number of miss cycles in the ccl trace.
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Figure 4.10 Cycle Times For Different Cache Sizes - The left graph shows total
CPU cycles and the right graph shows the cycle improvement gained by
prefetching. The ccl application trace was used for simulation input.
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Figure 4.11 Bus Traffic For Different Cache Sizes - The left graph is the total bus
cycles and the right graph is the bus utilization.The ccl application trace was used
for simulation input.
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Figure 4.12 Miss Cycle Reduction For Different Cache Sizes - The ccl application
trace was used for simulation input.

4.5.2 Refill Size

The cache line refill rate plays an important role in the effectiveness of prefetching.

A small refill rate means that many bus cycles are required to transfer a line from memory
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to the cache. This exacerbates two detrimental effects. First, prefetching inevitably causes
unnecessary lines to be transferred to the cache. A small refill rate puts a high cost, in
terms of bus cycles, on these wasted transfers. Secondly, longer miss handling increases
the fetch memory request delay. When a fetch miss occurs during the service of a prefetch
request, the memory request cannot be sent until the prefetch is completed. Increased line
segment transfer cycles, caused by the smaller refill rate, increase the fetch delay and thus
the execution time. Figure 4.13 and Figure 4.14 show the effect of refill rate on prefetch

performance. As expected, the higher the refill rate, the better the performance.
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Figure 4.13 Cycle Times For Different Line Refill Rates - The left graph shows total
CPU cycles and the right graph shows the cycle improvement gained by prefetching.
System traces were used for simulation input.
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Figure 4.14 Bus Traffic For Different Line Refill Rates - The left graph is the tota)
bus cycles and the right graph is the bus utilization. System traces were used for
simulation input.

4.5.3 Cache Associativity

Figure 4.15 shows the effect of cache associativity on prefetch performance. An
anticipated problem of prefetching, especially wrong-path prefetching, is its potential to
pollute the cache with non-accessed lines. Cache configurations which can absorb this
pollution will enhance prefetching effectiveness. This is verified in the associativity
figures. Caches with higher associativity will have fewer conflict misses and so fewer
needed lines will be displaced by prefetched lines. However, there is an opposing effect as
associativity increases.

Figure 4.16 shows that the miss cycle reduction actually declines as associativity
increases. Prefetching algorithms excel at bringing lines back into the cache which were
previously displaced. Much of their performance benefit is derived from this behavior.
High associativity takes a chunk out of the prefetch gain by reducing the number of line
displacements in the cache. One might then suggest that higher associativity be used in
place of prefetching. The results show, however, that prefetching works in conjunction

with increased associativity. Furthermore, prefetching is unlikely to affect the cache hit
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acoess times, whereas highly associative caches are likely 1o increas

the CPU cycle e

or require pipelined cache accesses which would negate its perceived advantages {23}
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Figure 4.16 Miss Cycle Reduction for Different Associativities - The system traces

4.5.4

Prefetch Gains and Accuracy

were used for simulation input.

To summarize the results thus far, prefetching is effective in reducing CPU cycle

time in all cache configurations. The cost is an increase in bus traffic. Wrong-path
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prefetching performed slightly better than next-line prefetching in all cases, sometimes by
as much as 4%. The hardware cost difference between the two algorithms is small. On the
other hand, the hybrid scheme shows little improvement over next-line prefetching. The
negligible gain over next-line prefetching is certainly not worth the additional hardware
expense. This was not the result found by Hsu and Smith in their comparison study. The
performance gain from the hybrid algorithm approximated the sum of the gains
individually achieved by next-line and table-based target prefetching.

Besides the fact that their study was based upon a different architecture platform
and that they used different benchmarks, the major difference is the difference in the
modeled cache sizes. They studied supercomputer cache behavior with cache sizes
ranging from 128 to 2K bytes in size. To be effective, table-based target prefetching
requires a high line turnover rate in the cache. Large caches and high associativity limit
the turnover rate and subsequently limit the effectiveness of table-based prefetching.

To determine the usefulness of the different components in the prefetching
algorithms, special memory reference tags were added to the simulator to distinguish the
types and results of prefetch initiations. Figure 4.17 gives a breakdown of where the
prefetches are coming from in the different algorithms. A prefetch gain is defined to be a
prefetch which removed an instruction cache miss, i.e, had the prefetch not occurred, a
subsequent instruction fetch would have missed the cache. The next-line component
dominates the target-line component in both the hybrid and wrong-path schemes but the
difference is especially severe in the hybrid scheme, Table-based prefetching generates
few prefetch gains and has a negligible effect on miss reduction. This i1s due to a
combination of two factors:

* Compulsory misses are not eliminated since a previous execution is required to add

the necessary link in the target table.
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« After the first miss and the table is updated, the line will be cache resident. In order
for the line to be prefetched, the line will first have to be displaced by the cache. This

is less likely to occur in a larger cache.
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Figure 4.17 Prefetch Gains for Different Fetchahead Values - The algorithms in
graph on the left uses a fetchahead distance of 24 bytes. In the right graph, the
fetchahead distance is 8. The system traces were used for simulation input.

Examining the hybrid scheme’s behavior in a highly associative cache will verify
its reliance on conflict misses for performance. The left graph of Figure 4.18 compares the
number of prefetches generated in a direct and 8-way associative cache using the hybrid
algorithm. In the associative cache where conflict misses are minimal, few prefetches are
even generated by the algorithm. This highlights the hybrid scheme’s inability to reduce

the number of compulsory misses. On the other hand, the right graph shows the more
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balanced target prefetch generation of wrong-path prediction. Prefetching not-taken paths

does eliminate compulsory misses.

Hybrid Target Prefetching Wrong-Path Target Pratetching

[l Prefeiches
Prefetch Gains
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Figure 4.18 Target Prefetch Compare - The left graph shows the target prefetches
made by the hybrid algorithm. The right graph shows those made by the wrong-
path algorithm. The cache is 16K bytes with line size of 32 byte lines and refill rate
of 16 bytes/cycle. The ccl application trace was used for simulation input.

D

It is interesting to note in the right graph in Figure 4.18 that a majority of the
prefetches initiated by the wrong path algorithm are, in fact, prefetch gains. Figure 4.19
shows this more clearly by displaying the prefetch accuracy of the different wrong-path
components. Target line prefetching is surprisingly over 75% accurate. This means that
over 75% of the time, the line containing the target of a not-taken branch is referenced
before it is displaced. Next-line prefetch accuracy declines as the fetchahead distance

increases. As the fetchahead distance increases, there is a higher probability that a branch
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will be taken before execution reaches the end of the current cache line and the

consecutive cache line will not be referenced.

- Nextline
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Figure 4.19 Wrong-Path Prefetch Accuracy - The system traces were used for
simulation input.

4.5.5 Target Table Size

Changing the configuration of the target table slightly affects the number of target
prefetch gains in the hybrid algorithm but has a negligible effect on the CPU counts.
Figure 4.20 shows effects of changing both the number of target table entries and the
associativity. In this and other cache configurations, no appreciable improvement occurred
if the table size was bigger that 128 or 256 entries. It is interesting to note that in this
example a fully associative table reduces its effectiveness. This might indicate that many
different entries are added to the table causing high turmover in the fully associative table.
Direct or low associativity protects some worthwhile entries from being overwritten by
the many useless ones.

As stated earlier, the hybrid algorithm uses a 128 entry, direct-mapped table in all

algorithm comparisons. While an associative table might have generated more prefetch
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gains, Table 4.10 shows that it would have little effect on total CPU cycles. This is
primarily due to the fact that the number of target-line prefetches is dwarfed by the
number of next-line prefetches. The number of target-line prefetch gains is around 200-
300 thousand. The number of next-line prefetch gains is around 11-12 million. Using a
cache bigger that 1K bytes would increase the difference even further since target-line

prefetching effectiveness relies on a cache with a high rate of replacement.
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Figure 4.20 Effect of Target Table Parameters - The left graph shows the effect of
changing the number of entries in a direct-mapped table. The right graph shows the
effect of changing the associativity in a 32 entry table. The caches are 1K, direct-

mapped, line size 16, and refill rate 16 bytes/cycle.

Table Associativity CPU cycles (in thousands)
1 132393
4 132382
8 132392
32 132456

Table 4.10 Target Table Associativity and CPU Cycles

4.5.6 Effect of Fetchahead Distance

The prefetch distance parameter can be used to moderate the increase in bus traffic

at the expense of miss cycle reduction. Figure 4.21 and Figure 4.22 show that by reducing
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the fetchahead distance, bus utilization is reduced. However, at the same time the prefetch
algorithm’s performance drops substantially. The optimal fetchahead distance is either 1/2

or 3/4 of the line size.
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Figure 4.21 CPU Cycles for Different Fetchahead Distances - The system traces
were used for simulation input.
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Figure 4.22 Bus Utilization for Different Fetchahead Distances - The system traces
were used for simulation input.
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4.5.7 Prefetch Distance

How do the prefetch algorithms scale to increased memory latency? As the
memory latency increases, prefetching algorithms must prefetch farther in advance of the
current execution point in order to cover the latency period. Therefore, the performance
advantage of prefetching should diminish as the latency increases. However, of the three
algorithms studied, the wrong-path algorithm might suffer the least from increased latency
since its target prefetching component does not prefetch immediately used instructions.
Figure 4.23 shows the results of varying the number of memory wait cycles. As expected,
the CPU cycle time increases as the number of wait cycles is increased. Unexpectedly, the
CPU cycle reduction caused by prefetching also increases as w is increased. In other

words, as memory latency increases, prefetching becomes more effective.
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Figure 4.23 CPU Cycles for Different Memory Latencies - The system traces were
used for simulation input.

The reason for this is that the reduction in the number of instruction miss cycles
becomes more visible as the portion of total CPU cycles due to instruction misses
increases. Higher latency causes more instruction miss cycles which, in turn, allows the
prefetching algorithm to have a greater overall effect as shown in Figure 4.23. The initial
thinking was not entirely incorrect though. Figure 4.24 does show that the effectiveness of

prefetching diminishes as the memory latency increases.
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Figure 4.24 Miss Cycles for Different Memory Latencies - The system traces used
for simulation input

The above figures perhaps show that wrong-path prefetching is more able to cope
with a high memory latency than next-line prefetching but the difference is small. Since
the majority of wrong-path prefetch gains come from the next-line component, the target
prefetch effects are hard to see in the CPU cycle graphs. To investigate the effect of
memory latency on each prefetching component, I define the prefetch distance to be the
number of cycles between a prefetch initiation and the first instruction fetch request to the
prefetched line. By having the simulator record these values for every next-line and target-
line prefetch gain in the wrong-path algorithm, I can verify that target-line prefetches do
indeed prefetch farther ahead of the current execution point. Figure 4.25 shows the results.
For both a high and a low fetchahead value, the target-line prefetch gains have statistically

higher prefetch distances.
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Figure 4.25 Prefetch Distance Distribution - The graphs show the distribution of
prefetch distances for all next-line and target-line prefetch gains within the wrong-
path algorithm. The caches are 16K, direct-mapped, line size 32, and refill rate 16

bytes/cycle. In the left graph, the next-line fetchahead distance is 24 while on the

right it is 8.

4.6 Effect on Higher Performance Machines

Until now this study has been restricted to microprocessor architectures which
issue only one instruction per cycle. The latest generation processors, however, can issue
multiple instructions per cycle although the overall instructions per cycle (IPC) is still less
than two. It is predicted that future microprocessors will be able to maintain an instruction
per cycle (IPC) rate greater than two. It has been shown that prefetching allows increased
performance on single issue architectures. To what extent does it also demonstrate
performance gains in superscalar or VLIW machines with higher IPC? There are two
opposing factors which are similar to those concerning the variation in the number of
memory wait cycles. In multi-issue machines, since the execution rate is higher, the
prefetch algorithm must prefetch farther in advance of the current execution point. This
will degrade prefetch performance since a larger portion of the prefetches will not arrive in
time. Conversely, increasing the issue rate reduces the time spent executing instructions

and makes the effects of misses more pronounced. In multi-issue machines, a larger
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fraction of the total execution time is due to miss latency cycles. Since prefetching
remaoves a portion of the miss cycles, the effects of preferching could be greater than in
single-iSsue MiCTOPrOCESSOLS.

Another element of design complexity which goes hand in hand with issue rate is
the number of memeory ports, i.e, the number of memory reguests which can be processed
concurrently. Without entering the heated debate concerning the maximum instruction-
level parallelism that exists in general-purpose code [7H35]47H571[71], it is preuty
obvious that multiple memory ports will be required to achieve an IPC of greater than two
[59}{71]. How will multiple memory ports effect the performance of prefetching? Right
off the top, adding memory ports will expand the memory-to-cache bandwidth so the
seripusness of prefetch-induced traffic should be lessened. In addition, multiple ports will
reduce the backlog of waiting memory requests which will have two positive effects. The
first is a reduction in fetch miss reguest delays caused by in progress prefetches. With only
a single port, if a previous prefetch is receiving a cache line on the bus, a fetch miss
memory request will be stalled until the line is transferred. Multiple ports will often allow
the fetch request to be initiated immediately. Secondly, prefetches will be initiated earlier
which will increase the prefetch distance.

The effects of increasing the instruction issue rate and adding additional memory
ports to the cache are examined in this section. Multiple instruction issue is simulated by
maintaining a fetch window which, at the beginning of each cycle, contains the maximum
number of instructions which can be issued per cycle. Each instruction which does not
cause a fetch miss is removed from the window. At the beginning of the next cycle, the
fetch window is refilled from the trace. This is only an approximation to that of an actual
processor since number of instructions retired per cycle also depends upon data
dependencies, exceptions, and branch mispredictions. The model for multiple memory
ports is an interleaved memory with the same number of banks as ports. As long as two

memory requests do not address the same bank, they can be handled in parallel. Each port
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has its own memory bus so request operations are truly independent if no bank conflicts
occur. If a conflict does occur, one request waits in the OMRB until the port is available.
The memory is partitioned into banks at the cache line level, i.e., one memory bank
contains every word in the cache line. Consecutive cache lines are stored in consecutive
banks.

The following graphs show the results of varying the issue rate and the number of
ports when using the system traces as input to the simulator. Notice that in Figure 4.26
when the issue rate is doubled the CPU cycles does not decrease by a factor of two. This is
because the miss latency cycles are not reduced. Figure 4.27 and Figure 4.28 show that the
effectiveness of prefetching increases as the issue rate increases. Next-line prefetching
improves performance by up to 16% and wrong-path prefetching by 21% in a machine
with an issue rate of 4.

The graphs seem to show that the number of memory ports is rather unimportant
but this is misleading. First, as mentioned previously, multiple memory ports are probably
necessary to achieve an average IPC of 2 or 4. In addition, multiple ports are also required
to handle the memory traffic. With superscalar execution, the same amount of memory
traffic will occur in a shorter amount of time. Figure 4.29 shows the port utilization which
is defined as the percentage of CPU cycles during which the port is busy sending or
receiving information. For multiple port configurations, the highest utilization percentage
is given but, since the requests are relatively randomly distributed over all the banks, there
is little variation in the utilizations between the ports. It can be observed that even when no
prefetching is used, additional ports are necessary to keep the traffic down to a reasonable

level. If prefetching is implemented, multiple ports are a must.
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Figure 4.26 Effect of Issue Rate and Memory Ports with No Prefetching - The graph

shows the cycles required to execute the system traces for different issue rates and
different numbers of memory ports.
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Figure 4.27 Effect of Issue Rate and Memory Ports with Next-Line Prefetching - The
left graph shows the CPU cycles required to execute the system traces. The right
graph shows the percent reduction in CPU cycles over prefetching used.
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Figure 4.28 Effect of Issue Rate and Memory Ports with Wrong-Path Prefetching -
The left graph shows the CPU cycles required to execute the system traces. The right
graph shows the percent reduction in CPU cycles from when no prefetching used.
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Figure 4.29 Port Utilization - These graphs show the percentage of cycles the busiest
memory port spends transferring information during the execution of the system
traces. The left graph is with no prefetching, the right graph with wrong-path

prefetching.

4.7 Algorithm Extensions

This section outlines several attempts to improve the performance of wrong-path

prefetching. The first modification was to prefetch multiple target lines. If requests are not
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waiting for the bus when a target-line prefetch transfer is completed, the next consecutive
line is also transferred. Since the address is already set up in memory, no additional wait

cycles are required and the cost of the wait cycles needed in the initial prefetch request is
amortized over two line transfers. The modification is rather unproductive as can be seen

in Figure 4.30. The CPU cycle time remains essentially unchanged and the bus traffic is
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Figure 4.30 Multiple Target Line Prefetch - The left graph shows the minimal
reduction in CPU cycles when two target lines are prefetched. The right graph
shows the increase in bus traffic. The ccl trace was used as simulator input.
increased.

Another attempt at performance improvement was to change the procedure for
generating the target-line prefetch address. If the target of a branch is located at the end of
a cache line, it might not be a good idea to prefetch that line since only the end will get
executed. If instead, the next consecutive line were prefetched, traffic might be reduced.
The target threshold is defined to be the point in the target line at which the next
consecutive line is prefetched rather than the target line itself. Figure 4.31 shows the
results for different target threshold values, 1, using a line size of 32 bytes. If the difference
between the target address lies within 1 bytes of the beginning of the target line, the target
line is prefetched. Otherwise, the next consecutive line following the target line is

prefetched. The value t=32 represents regular wrong-path prefetching. Again, the results
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were unimpressive. The difference in the CPU and bus cycles are in the noise margin of

the experiments.
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Figure 4.31 Effect of Target Threshold Variation - The graphs show the CPU and

bus cycles if the target line is not always prefetched. The line size is 32 bytes. The t

values represent the target thresholds. If target addr - line beginning addr > t then

the next consecutive line is prefetched rather than the target line. The ccl trace is
used as simulator input.

A major hindrance to the performance of wrong-path prefetching is that it initiates
target prefetches very late since the control instruction must be decoded before the
prefetch request can be issued. Because of this, the wrong-path scheme can never prefetch
down a taken conditional branch path or an unconditional jump path. If the target of a
pending control instruction were known earlier, misses could be avoided by also
prefetching these paths. In addition, the prefetch distance would be increased for all target
prefetches. One way to initiate prefetches earlier is to add a prefetch instruction to the
architecture. Using an instruction cycle to prefetch data in scientific code has met with
some success and it could be useful in prefetching instruction cache lines. A drawback is
that the performance gain achieved by miss reduction may be overshadowed by the
increased time necessary to execute all of the added prefetch instructions. To investigate
the effectiveness of the method, prefetch instructions were inserted into the instruction
trace at the beginning of each basic block. The prefetch address was just the target address

of the block ending control instruction. One might be tempted at this point to suggest that
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the program be profiled to determine the probability of the branch being taken. As shown
by the many experiments in this work, that would be a bad idea. Section 4.3 showed that
the target path should be prefetched even if it appears that the target direction is never
taken.

The prefetch algorithm is still wrong-path prefetch, the target is prefetched
regardless of the taken direction of the branch. The difference is that the target prefetches
are initiated by an special instruction rather than branch instruction decode. The next-line
component of the algorithm remains unchanged. Figure 4.32 shows the results for
memory latencies of 4 and 12 cycles. Notice that the performance of prefetch instruction
scheme is better or worse than regular wrong-path prefetching depending upon if the time
required to execute the prefetch instruction is included in the total CPU cycle time. There
are several ways the prefetch execution time can be reduced or eliminated:

» Be more clever in inserting the prefetches - An intelligent compiler could reduce the
number of prefetch instructions by inserting the prefetches outside of loops. It could
also increase their effectiveness by moving them farther away from the control
instruction, thereby increasing the prefetch distance.

* Hide the execution time in superscalar execution - A prefetch instruction has no
dependencies and could be scheduled along with any group of instructions.

* Add a prefetch field to a VLIW instruction - The execution time would be hidden at
the cost of increased instruction length devoted solely to prefetching.

The instruction would slightly reduce the hardware in the prefetch unit by
eliminating the data path from the decoder. On the other hand, inserting prefetch
instructions, even if their execution time is hidden, would increase the code size and the
required fetch bandwidth. This result shows that a special prefetch instruction could
possibly enhance a prefetching scheme but the cost is unclear and would require further

architecture analysis.
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Figure 4.32 Wrong-Path Prefetching using a Prefetch Instruction - The graphs
compares the CPU cycles for no prefetching (no pref), regular wrong-path
prefetching (wp), and wrong-path using a prefetch instruction. The results for 4 and
12 cycle memory latencies are shown. The ccl trace was used as simulator input.

4.8 Summary and Conclusions

This chapter sheds light on the applicability of instruction cache prefetching
schemes in current and next-generation microprocessor designs. It also describes a new
prefetching algorithm inspired by previous mispredicted path studies. The highlights of
the extensive experimental results are:

» Prefetching achieves significant performance gains in terms of CPU cycle reduction
- up to 14% reduction with standard cache configurations.

* Wrong-path prefetching achieves higher performance than other algorithms in all
studied cache configurations. At the same time, its hardware cost is equivalent to
next-line prefetching. Somewhat surprisingly, 75% of all not-taken path prefetches
result in miss reductions.

* The cost of prefetching is the increased bus traffic. Bus utilization rises from 12% for
no prefetching to up to 25% for prefetching with standard cache configurations. Bus

bandwidth must be viewed as a resource which can be employed to reduce miss
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cycles. By implementing prefetching and adding hardware to increase refill rate,
equivalent memory performance can be achieved with a much smaller cache.

* Table-based target prefetching performs poorly with current generation instruction
cache sizes rendering the hybrid algorithm performance equivalent to that of next-
line prefetching. The negligible performance gain is not worth the cost of the
additional hardware required to implement the target table.

* Prefetching is more effective as memory latencies increase. Wrong-path prefetching
reduced CPU cycles by 18% when the wait cycles rose to 16.

* Prefetching is likely to be more effective in next-generation superscalar processors
with IPCs greater than 2. Wrong-path prefetching reduced CPU cycles by over 20%
in a processor with a 4 instruction issue rate.

The major result of this study is that instruction cache prefetching will become
more attractive as a method to reduce cache miss cycles. The trends in next-generation
microprocessors point both to larger disparities between CPU cycle times and main
memory access time and to higher IPC rates. Even if an L2 cache is implemented to
reduce the cycle time disparity, these trends will result in there being a higher proportion
of miss cycles in the total execution time. Furthermore, unlike data misses, instruction
miss cycles cannot be hidden by performing other work during the miss delay. In the past,
miss Jatency has increased but the number of misses has been reduced by increasing the
cache size. However, this is less effective as caches get larger and larger caches have
longer access times. Increasing cache associativity also reduces misses but the same
disadvantages apply.

Prefetching will effectively reduce instruction miss cycles without increasing the
CPU cycle time. Future microprocessors are likely to have more complex memory
systems and might include an OMRB structure and multiple memory ports for other
architectural features. Therefore, the cost of prefetching in terms of hardware and bus

traffic might be less significant.
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A prefetch algorithm’s ability to shrink required cache size is not a minor
advantage in new processor design. Currently proposed architectures such as the MIPS
TFP processor and the PowerPC 620 rely upon dual-ported data caches to handle multiple
data requests per cycle [25][44]. A multi-ported cache must be kept small for space and
speed reasons. If someday there is a need for a dual-ported instruction cache, a scheme
which could wring 32K performance out of an 8K cache would be highly valued. Even if
not dual-ported, a small instruction cache will leave more space available for a big data
cache.

Once the decision has been made to use instruction cache prefetching, there seems
to be no reason not to use wrong-path prefetching. It outperforms the other methods -
recall Figure 4.9 where the wrong-path prefetched 8K cache outperformed the 16K next-
line cache. Also important, its hardware cost is equivalent to next-line prefetching and far
less than the hybrid scheme. The bus traffic is only slightly higher than next-line
prefetching.

Results from this study are applicable even to processor designs which don’t
employ prefetching. One piece of conventional wisdom which this study disproves is that
not-taken paths should be avoided if at all possible. A current trend in hardware algorithm
design is to profile code behavior to lesson wrong path effects, Section 4.3 described a
situation where profiling removed beneficial effects. Table-based prefetching is another
example of the lengths taken to avoid wrong path actions. A significant amount of
hardware is added to predict the correct direction to prefetch. While this seems reasonable,
better performance is obtained if the hardware is removed and wrong path effects are
allowed to occur. In the next-line prefetching algorithm, the prefetched consecutive cache
line is not always immediately referenced because a taken branch was executed near the
end of the current line. Common wisdom would call this an unavoidable cost of next-line
prefetching. This might not be so. The line has a good chance of being referenced in the

near future thereby removing a cache miss.
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This idea has implications toward instruction fetch mechanisms. For instance, the
fetch strategy in the IBM Power?2 architecture is to fetch both directions of a conditional
branch. This is necessary so that the required issue rate can be maintained through the
branch. However, if the fetch in either direction misses the cache, the fetch is suspended
until the correct branch direction is determined. Results in this chapter indicate that

following through with the cache miss would reduce the overall number of miss cycles.
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CHAPTER 5

Instruction Cache
Prefetching Model

5.1 Introduction

This chapter discusses an analytical model developed to describe the behavior of a
prefetched, direct-mapped cache. An accurate cache model is useful for studying both the
performance and behavior of cache designs. Although cache performance analysis is
predominantly done with eitheftrace-drivcn simulation or direct hardware monitoring,
both are costly and time consuming. A model can produce results with rough accuracy
guickly thereby reducing the test space and the required simulation time. In addition,
trace-driven simulation is impossible for new architectures since applications do not yet
exists. In this case a model is indispensable to fit a cache to the new design.

Cache analysis can also provide an understanding of the behavior of a cache
algorithm or of the structure of the cache itself. Model lead to the identifation of different
types of misses and the understanding of the interaction of memory references in
multiprocess systems. This information can assist in design decisions so that the cache can
be structured to handle the types of misses found in the applications for which the
architecture is targeted.

Many cache models have been proposed although a literature search did not
uncover a model accounting for the effect of prefetching algorithms. A simple axiomatic
formula was proposed by Chow and is based upon empirically derived constants [11]. The
misses is given by A ®where C is the size of the cache. An intuitive basis for the equation

was not given and neither was experimental validation. A more complex formula was
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proposed by Singh et al. for fully-associative cache memories [54]. It defines the footprint
function u(z,L) to be number of lines referenced up to time ¢. Then
u(t, L) = WLatbdlongogl

where W is a measure of the working set size, a is a measure of the spatial locality, b is a
measure of the temporal locality, and d is measure of the interaction between spatial and
temporal locality. It is left as an exercise to find the correct values for W, a, b, and d.

Strecker first analyzed the transient behavior of cache memories during context
switched execution of multiple processes [66]. He noticed a periodicity in cache behavior.
Initially, there is a transient period where the process loads the cache with its own data
lines. Execution then settles down into a steady-state period with fewer misses. The miss
function is of the form (a+bn)/(a+n) where n is the number of cache locations filled and a
and b are constants derived by measuring the cache misses for two different cache sizes.
While the model is accurate when compared to measured miss rates, Stone points out that
a great amount of simulation is required just to fill in the equation’s constants [65].

Thiebaut and Stone propose a model which mimics the behavior of two processes
executing in round robin fashion competing for cache lines [68]. They develop a statistical
model requiring little empirical input. It is based upon the idea that at the beginning of
each processes time slice there is a period called a reload transient where lines displaced
by the previously running process are reloaded into the cache. The average miss-ratio
depends on the length of the miss-laden transient period. The miss equation is based upon
a binomial distribution and the line conflict probability is derived from the assumption that
all lines are equally likely to be mapped to a set. Thus, the probability that two lines are
mapped to the same set is 1/N where N is the number of sets in a direct-mapped cache.
Laha, Pael, and Iyer describe a way to estimate the reload transient by accumulating
sampled segments of a larger trace [34].

Agarwal et al., extended the multiple period idea to develop the AHH model [2].

Misses are classified based upon one of four causes:
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* Start-up effects - similar to the reload period when the processes” working set is
loaded into the cache,
* Non-stationary behavior - misses caused by a gradual change in the working set over
time,
* Intrinsic interference - interference between the program’s references due to cache
set conflicts,
 Extrinsic interference - conficts between multiple processes - context switching and
multi-process line invalidations.
The full traces is discretized into time granules and the miss equation is based upon the
effects of each of the four factors mentioned above for each granule. The model’s line
conflict component uses a binomial probability distribution assuming a random mapping
of lines into cache sets.

Thiebaut relates the cache miss ratio to fractal geometry [69]. He shows that the
miss ratio can be computed from the plot of the inter-miss gap distribution and that the
miss ratio is a function of the fractal dimension of the inter-miss gaps. The model is based
upon a one-dimensional hyperbolic random walk where the probability of the gap size
being greater than u is

u.® .
Pril/>ul = (%} U2 kg
where uy is a constant and theta is the fractal dimension.

Finally, Quong proposed an intuitive probabilistic model based on time gaps
between successive block references [51}{52]. In essence, it states that the greater the
number of line references between block executions, the greater the probability that the
lines in the block will have been displaced from the cache. This model naturally accounts
for reload effects as well as non-stationary and intrinsic interference behavior. However, it

is based upon on a single processes’ block execution pattern and thus cannot account for
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the effects of extrinsic interference. This “gap model” is a variant of the LRU stack model
of an address trace by Spirn [61] and Rollins [53].

The gap model seems to be the most natural one to extend to encompass
prefetching effects. Prefetching alters the order of block executions and thus the gaps
between block references. If the gap model can be modified to reflect this reordering, the
model is exhibit accurate behavior as well as illuminate the behavior of the prefetch
algorithm itself. The next section gives a derivation of the gap mode! equation for a
regular cache and one with different prefetching algorithms. Section 5.2.3 compares the
results predicted by the model to measured results using the simulator discussed in

Chapter 4. Section 5.4 summarizes the applicability of the derived model.
5.2 The Gap Model
5.21 Derivation of Non-Prefetched Cache Model

The gap model estimates instruction cache misses by calculating the expected
value of the number of misses over all possible program mappings. In short, the statistical
number of misses is based upon the probability that cache lines in a basic block will be
displaced by the execution of other basic blocks before the block is reexecuted. The goal
of the derivation is to create an equation which translates the gaps between basic block
executions into a cache miss estimate. If this can be done, a program’s gap information
can be obtained from its execution trace which contains no cache information such as set
size, line size, or associativity. The gap information can then be used as input to the
analytical model which can approximate cache misses for many cache configurations.

The following model is derived for a direct-mapped instruction cache with L sets
(lines). The program’s execution trace is divided into basic blocks. A basic block is a
sequence of instructions which are always executed together. There is one entry point at

the beginning of the block and one exit point at the end. Control instructions within the
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instruction trace delimit the basic blocks. Gap, G, of block, b, is the sequence of blocks

which are executed between two executions of b. For example,

b b; by b; by b
4— Gap G—»

Block b will have a different gap each time it is executed. Let 5; be the size of block b, in
cache lines. Then [ is the length of gap G in cache lines and so, continuing with the above
example, ] = s, + S+ 545, In addition, u is defined to be the size of gap G. The size, u,
is the unique number of cache lines in the gap, u = s, + 5;+ 5;. At this point few

assumptions should be specified:

* For 1<i<n,s;«L -Each block b; is much smaller than the cache size. This
implies that lines within the same block do not conflict with each other.

* Block b; is equally likely to begin at any line of the cache. For all mapping of the
program to memory, there are n! orderings of blocks. If n is large, the assumptions
follow.

¢ 5,2 LS - Most blocks are larger than the line size, LS. This assumption holds true if
LS €32,

If x be the probability that two lines collide in the cache, then x = 1/L. This is
reasonable when the program size is much larger than the cache size since, over all
possible mappings of the program to the address space, each line has equal probability of
mapping into any one line in the cache. As the cache size approaches the program’s size
this estimate becomes increasingly inaccurate. In general, if [P] = (i+ /)L whereiand

represent integral and fractional terms, respectively, i.e., i€ Zand 0<f< 1, then
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L LG+ A-piGi-1)]

IPI?
(P 2fi-i) 1
= aant ST (Eq. 5.1)

=~ % when 1P} >> ILI.
The simplification x = 1/L will be used in the equations below. However, Equation 5.1 in
the actual miss computations.

Now define the random variable X to be the number of cache lines in b replaced
during execution of gap G. The variable X can be thought of as the number of misses
blamed on &. Let X” be the random variable describing the first line of b, i.e.,

1 First line replaced

X = )
{O‘ First line survived

The probability that a line will survive through one basic block is (1 —sx) so the
probability that the first line of block b will survive gap G is

PriX" =0] = (1-s5%) (1-5.x) (1-5,x). (Eq. 5.2)
Notice that even though the block b; was executed twice within G, it is only used once in
the above survival probability equation since a repeated execution of a block will not
further effect line displacement in the gap. If s is the number of lines in b, it is assumed
that each line if & has a equal probability of surviving, and the probability that the first line
of bisreplacedis Pr [X'= 1] = I - Pr[X’= 0] , then the expected value of the number

of misses due to b is
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E[X] =s[1- (1 —~5;x) (1 =5x) (1-s5x)]. (Eq. 5.3)
Now, it can be fairly assumed that the size of each basic block is much smaller than the
. ‘ 5, -5,
size of the cache. Thus, xs; = I’ « 1 and the approximation]l — § X =€ s can be used.

Then

E[X]=s[1- (e 7y (e ") (e %]

1

=s[l-e
=s(l-e™
~s(1-e*h)

Finally, the equation which estimates the expected number of instruction cache misses for

program T is

WL) (Eq. 5.4)

E[X] = 2 s(l—e
beT

There are two major sources of ervor in this approximation. The first is the
inaccuracy when calculating the block size in serms of cache lines. Cache parameter
independent trace mnformation gives block and gap sizes in tooms of bytes. These values
st be converted into lines 10 find 5 and «. If 2 cache line has loppth  byies and Block &,
is & bytes long, then

5, = {k+1-1})714 {Eg. 5.3
on average, over all possible starting positions. Deperding upon the program mapping,

the computed 5; could be oo big or oo smell. A constant coefficient, r, called the

FE

Eq.56)

S,

5, = rig+i-1370L |

The coefficient is dependent upon the modeled line size but is Gixed oy gll cache sizes




The other problem with the model is that it assumes that blocks equally likely to
conflict with another one. This is untrue since blocks mapped sequentially in memory will
not conflict with each other. As the model now stands, all blocks in u are equally likely to
displace lines from b causing the model to overestimate the number of misses. As the
cache sizes increases the prediction will get worse because fewer blocks can potentially
conflict. Quong attempts to minimize these intrablock conflict errors by stipulating that
blocks within the same procedure cannot conflict with one another. The variable u is then
redefined to be the total size of the unique blocks in G which are not in the same procedure
as b. The raggedness coefficient is adjusted to further hide this error. I found that, when
using this method, the model underpredicted small cache sizes and overpredicted large
caches meaning that the average procedure length was somewhere in the middle. Since
there is a large disparity in a program’s procedure lengths, and the average procedure
length is unknown to the cache designer, I chose to divide the program into segments the
size of some base cache size. Each block is assigned a tag equal to the block’s beginning
address modulo the base cache size. Two blocks with the same tag cannot collide with one
another since they would be mapped to different cache lines in the base cache. Only
blocks with tags different from b can be included in b’s gap size calculation. Of course,
this only holds for a cache with the base cache size, but it serves as an approximation for
other cache sizes. Again, the raggedness coefficient is manipulated to help account for the

inaccuracy.
5.2.2 Parameter Acquisition

The values of s and u for each basic block b are derived from the program’s execution
trace.Equation 5.4 specifies that for each basic block, the size of the block and the length
of the gap since the block’s last execution must be calculated. This data must be stored in
a gap information file for use in multiple miss prediction calculations. Unfortunately, a

benchmark of 100 million instructions executes roughly 20 million basic blocks and
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recording data for each executed block would be too costly. However, it is not necessary to
record exact gap sizes. The variable u appears in Equation 5.4as a negative exponential
and the calculation is not sensitive to small errors in the gap sizes. The gap sizes can be
dividing into bins with sizes of increasing powers of 2. For instance, the first bin would
hold gaps of size 0-1, the next bin would hold sizes 2-3, then 4-7, 8-15, etc. Quong
suggests that 20 bins are sufficient to give reasonable accuracy. He found that double the
number of bins had little effect on the calculations [51].
Equation 5.2 can be used to estimate the probability that a line will survive a gap of a
certain size. For small gaps, say u = L/20, the chance of survival is
Il —ux = 1-1/20 = 0.95 or 95% likely to survive. Gaps of the largest bin size or
greater can be combined in the largest bin since the probability of a line surviving through
a gap of 220 or greater 1s equal to

AV S LI

even for a 64K cache. Cold misses (a block execution with no gap) can be modeled by
assigning the block a gap of infinite size thus assuring a miss will be predicted.

The gap information file used in the following miss predictions contains the following
information for each basic block: the size (in bytes) of the basic block and the gap
structure of 20 bins. Each non-empty bin contains the number of gaps of that bin size and
the total number of blocks included in all gaps in the bin. The bin sizes are in bytes and
must be converted into lines. The bin sizes cannot be terms of cache lines in the gap
information file since the file needs to be cache parameter independent. Suppose bin; holds
gaps of size 2! < u (in bytes) < 2'*! | the number of gaps in bin, is 2, and the total number of
blocks making of the n gaps is B. Then the average blocks per gap is B/n and the average
block size in bytes, BSy,, is 2'/(B/n). Equation 5.6 can be then be used to convert BS}, to
BS,, the block size in terms of cache lines. Finally, « = BS (n/B) for all gaps in bin;.

After s is calculated using Equation 5.6, the number of misses produced by bin, is sne ",
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The results for each bin in each block entry are summed to arrive at the total predicted

misses for the program.
5.2.3 Non-Prefetched Model Verification

Four SPEC benchmarks listed in the previous chapter are used to verify the
accuracy of the gap model. A gap processor program produced gap information files from
the execution trace of each benchmark. The execution trace of each benchmark was input
to a gap processor program which gathered the model information. The base cache size
used to reduce intrablock conflict was 512 bytes. Using the gap information Equation 5.4
predicted number of misses for different cache set and line sizes. The memory simulator
discussed in Chapter 4 provided a measure of the actual number of cache misses. Most of
the graphs below show a measured curve and two predicted curves. The individual
predicted curve uses a raggedness coefficient, r, adjusted specially for that benchmark.
The uniform predicted curve is based upon a r value constant over all four benchmarks.
Obviously the individual predicted curve will more closely match the measured curve than
will the uniform curve. Unlike in Quong’s work, the r values are different for each line
size. For each line size, r was chosen to be the value which enabled the predicted value to
best match the measured value for a 512 byte cache. The following graphs show the
accuracy of the gap mode! for the tested benchmarks.

The model successfully predicts the number of misses in the ccl benchmark.
Howeuver, it slightly overpredicts for large cache sizes and large line sizes because the
model assumptions begin to break down in these areas. For large caches, the line collision
probability becomes less than 1/L since addresses are not mapped to all lines will equal
probability. In addition, the model overestimates the amount of intrablock conflict for
larger sizes which also increases the predicted number of misses. This problem is evident
in the miss predictions for all benchmarks. When the line size is large, multiple blocks can

fit into one cache line which increases the number of predicted misses. Furthermore, as the

128




Predicted and Measured Misses for cct

100000 T T v r .
=8 Predicted —— 1
=8 Measured ----

I=16 Predicted -

=16 Maasured -

=32 Pradicted ---
=32 Maasured -----

10000

Misses (in thousands)

L L il 1

8192 168384

1000 L
258 512 1024 2048
Cache Size (in bytes)

Figure 5.1 Gap Model Accuracy for ccl - The graph shows the measured and
predicted curves for lines sizes of 8, 16, and 32 bytes.

line size increases the block size conversion from bytes to cache lines becomes more

inaccurate. This can be seen in Equation 5.6.
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Figure 5.2 Gap Model Accuracy for xlisp (1=8) - Line size is 8 bytes. The individual
predicted curve represents the miss prediction using a constant based only on xlisp.
The uniform predicted curve uses a constant which is the same for all four
benchmarks.
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The other three benchmarks aren’t as accurately predicted. In all them, the model
overpredicts the number of misses in large caches. The xlisp benchmark appears to have a
work set size of around 4Kbytes. When the cache is larger than 4K, the only misses
observed are the initial compulsory misses and relatively few conflict misses. The model
is able to predict the sharp decline in misses once the cache size is larger that the working

set. The espresso working set seems to fit into a 2Kbyte cache.

Predicted and Measured dMisses for xlisp - i=18 bytes
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Figure 5.3 Gap Model Accuracy for xlisp (1=16) - Line size is 16 bytes.
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Figure 5.4 Gap Model Accuracy for xlisp (1=32) - Line size is 32 bytes.

Pradicted and Measured Misses tor sc - =8 bytes
10000 ¢ T T L T T

Measured —
Pradicted with indiv. Coelf. ---— ;
Fredicted with initorm Coetf. -

10000

Misses (in thousands)

1000 L { I 1 L
256 512 1024 4086 8182 16384

2048
Cache Size (in bytes)

Figure 5.5 Gap Model Accuracy for sc (1=8) - Line size is 8 bytes.

5.24 Next-Line Prefetch Model Derivation

Since the gap model is based upon basic block behavior, it is an appealing
candidate to extend to include the effects of prefetching schemes. That was the primary
reason for choosing the gap model as an analysis tool. By saving a little more information

in the gap information file and modifying Equation 5.6, the gap model can be used to
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Figure 5.6 Gap Model Accuracy for sc (}=16) - Line size is 16 bytes.
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Figure 5.7 Gap Model Accuracy for sc (1=32) - Line size is 32 bytes.

predict the number of misses in a next-line prefetched cache. Unfortunately, the number of
cache misses has little correlation to actual cache performance since prefetching
significantly alters miss latencies as well as the number of misses. However, developing

the model is still a worthy exercise since it can give insight into the behavior of a
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Figure 5.9 Gap Model Accuracy for espresso (I=16} - Line size is 16 hytes.
prefetched cache, To analyze the true performance of prefetched and non-prefetched
caches, cycle time equations will be derived in Section 5.3.

tly and that the

It will be assumed that the prefetches are performed instan
fetchahead distance is the full line length. These assumptions imply that if cache line i 15

being executed, then line i+1 will reside in the cache. Thus, only the first line of block can
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Figure 5.10 Gap Model Accuracy for espresso (1=32) - Line size is 32 bytes.
potentially cause a cache miss. In addition, the line succeeding an executed block will
always be prefetched into the cache.

Let X’ be the same random variable as before, namely
X = 1 First line of b replaced
0  First line of b survives

Let Y be another random variable such that

y = 1 Prefetch of first line of b replaced
0 Prefetch of first line of b survives
A prefetch will occur for block b, if block b;_|, the preceding block in the program
mapping, is executed within the gap of b. For most prefetches, it is supposed that block
b, _, will be executed immediately before b, in which case the prefetched line is
guaranteed to be resident. However, sometimes b, _, is executed somewhere in the middle
of the gap and, in this case, the probability of the line existing in the case is less than one
and is proportional to the number of lines accessed between the executions of b;_; and b;.
To compute the probabilities for X and Y two gap sizes will be used: u for the distance

between the two executions of b, and v for the distance between b;_ and b; if b;_; is
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executed within the gap of b. So, the probability that the first line of b which was

prefetched by b; ; will be resident when b; is executed is

Pr¥'=0b,_,e G =e""

Now define a third random variable Z’, such that

z ; 1  First line of b causes miss
"~ 'O First line of b does not cause miss

Then,
¢ 'L v

Pr [E: G] = ;EE_W"L bi—i € 56)

(Eq.5.7)
If Z is defined to be the number of lines of block b replaced during G, the expected number
of misses blamed on b is

E[Z] = 1-Pr[Z'= 0].
Notice that the block size, s, is not included in the expected value equation as it was in
Equation 5.4. This is because only the first line reference in a block can potentially miss
the cache. Finally, the expected number of misses for the entire program is

E[Z] = 2 (1-Pr{Z'=0]). (Eq. 5.8)
be T

The ¥’ random variable incorporates the prefetch effect into the model. What
about the pollution cause by next-line prefetching? Pollution can be generated whenever
the fall-through line after a block is prefetched but the block-ending branch is taken.
During the execution of gap G, additional lines are accessed which increase u and v

beyond the sum the of block sizes. In fact, one additional line is accessed for every unique
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block in G which ends in a taken branch. However, it is unclear how many of these extra
accesses actually bring an additional line into the cache during the execution of the gap.
They could assess lines already present or they could access lines which will referenced
later in the gap. The latter would be a prefetch for another block within G. It is possible to
record the action of each prefetch when creating the gap information file but the file would
be much larger as would the time required to create it. In the previous chapter, it was
noticed that next-line prefetches are about 75% accurate, i.e., only 25% of the time is a
prefetched line not accessed. So, as an approximation, I state that 1 out of every 4 blocks
in u and v which end in a taken branch cause one additional line reference. The probability

that the target is taken in each block is recorded in the gap file.
5.2.5 Next-Line Prefetch Model Verification

The predicted graphs shown in this section use the same raggedness coefficients as
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Figure 5.11 Next-Line Prefetching Model for ccl - The line sizes are 8 and 16 bytes.

used in Section 5.2.3. The next-line model predicts prefetched misses at least as

well as the original gap mode! predicted regular gap misses.
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Figure 5.12 Next-Line Prefetching Model for xlisp - The line size is 8 bytes.
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Figure 5.13 Next-Line Prefetching Model for sc - The line size is 8 bytes.
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Figure 5.14 Next-Line Prefetching Model for espresso - The line size is 8 bytes.

5.2.6 Wrong-Path Prefetch Model

To derive the wrong-path model, the gap model will be extended in much the same

way as it was in the next-line model. Define {7j;} to be the set of blocks which 1) end with
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conditional branches and 2) the target of the conditional branch is b;. Then, in the Wwrong-
path algorithm, a prefetch could be initiated if block b; ; is executed within G or if any T
is within G. The probability that the prefetch will survive until the next execution of b;is
proportional to the number of cache lines accessed between the last prefetch and the
execution of b;. Let u and v be the same as in the next-line model, i.e., the size of G and the
number of cache lines referenced between b;_; and b;. Now define Ij to be the number of
lines referenced between T;; and b;. The set {#;} would be empty if no target blocks T

were executed within G. Then, using the same random variables Z and Z’,

—min {u, v, tj} x

PriZ’'=0] = e (Eq. 5.9)

and

E—mmn {u, v} x

E[Z] = 2 (1~ ). (Eq. 5.10)

be T

It is easier to account for the pollution in the wrong-path algorithm. In the next-line
algorithm, this was done by slightly increasing « and v depending upon the exiting
behavior of the executed blocks. In this case, one additional line will be referenced for
each block in the gap regardiess of the exiting behavior. If the block ends in a conditional
branch, both paths are be prefetched and so one prefetch is wrong and causes an additional
access. If the block ends with an unconditional jump, call, or return, the next-line
component produces an additional access. The approximation is used to decide how many
prefetches actually bring in new lines. In this case, 1 out of every 4 unique blocks in G add

1 line to the size of u. The values v and 1; are increased in a similar fashion.
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5.2.7 Wrong-Path Prefetch Model Verification

In the prediction graphs shown below, the raggedness coefficients are the same
values as used in the non-prefetched and next-line prefetched cache results. Like the next-

line prefetched model, this model is at least as accurate as the original gap model.
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2048
Cache Size (in bytes)

Figure 5.15 Wrong-Path Model for ccl - The line size is 8 bytes.

5.3 CPU Cycle Model

As stated in Section 4.4.4, the number of misses or miss ratio is an insufficient
performance parameter. While the above models do give reasonably accurate figures for
the number of misses in prefetched caches, they give no insight into the fofal number of
CPU cycles required to execute the benchmark. This section describes equations which
approximate the total CPU cycles for an architecture with non-prefetched and prefeiched
direct-mapped caches. The miss numbers obtained from the gap models are inputs into the

model,
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Figure 5.16 Wrong-Path Model for xlisp - The line size is 8 bytes.

It is unrealistic to assume that a model can be produced which will accurately
predict the performance of a non-prefetched cache, let alone a more complex prefetched
one. Runtime depends not only on miss rates but also upon instruction execution time,
refill rate, and memory latency. The interactions between these parameters is complex and
programs react in different ways to parameter variations. Compiler studies that shown that
even slight modifications in instruction execution order can significantly change the
overall cache performance.

This section gives equations which describe a cache’s cycle performance in terms
of delay factors. The cause of the delay is analyzed and, when possible, a formula based
upon empirical results is given. If a formula cannot be derived, cache parameter
dependencies will be discussed. It will be assumed that every instruction will take one
cycle to execute. The refill rate and memory latency will vary and, along with cache size

and line size, be parameters of the model.
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5.3.1 Non-Prefetched Cache

The non-prefetched cache model is relatively straightforward. The equation is

Cycles = i+fm_(w+d,) + pmd,. (Eg. 5.11)
The variable definitions are given in Table 5.1. The constant d; represents the average
number of cycles required for an instruction miss to gain control of the bus in order to
send a fetch request. No data effects are considered in this model so only outstanding
instruction misses can contend for bus cycles. With no prefetching, partial misses can
occur only when the line refill rate is less than the cache line size. An instruction fetch can
request part of a line which is in transit from memory. The average resulting delay, d5, will
be greater than zero but less than w.

The memory simulator was modified to display the values of the parameters found
in Equation 5.11 and benchmark simulation were run in order to derive formulas
approximating the behavior of dy, d,, and pmy. It was observed that d is a function of ¢, [,
and r but is independent of the memory latency. It is strongly dependent upon the ratio [/r

as can be seen in the formula

log (I/r) =3, 4

0 otherwise

4

di(c.lr)={ (Eg. 5.12)

When U/r is held fixed, d| decreases slightly as ¢, [, and r are increased. This is
because increasing any of those 3 parameters will decrease the number of miss requests

thereby reducing the contention for the bus. This will lower the probability that a fetch
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memory request will be delayed. A delay is not observed if the bus can refill the line in 1

or 2 cycles.
Parameter Definition
i Number of instructions executed
fmg Full misses - misses requiring full latency period (no prefetch)
w Memory latency
pmy Partial misses - Fetch misses not requiring full latency
dy Average fetch initiation delay
dy Average partial miss delay
c Cache size (in bytes)
l Line size (in bytes)
r Refill rate (bytes/cycle)

Table 5.1 Equation Parameter Definitions

The same holds true for d. It also is a function of ¢, I, and r but is independent of
w. As c, [, and r are increased, dy is slightly reduced again because the number of misses is

reduced. The formula for dy is

{log (1/r) —3) l/rz4

" (Eq. 5.13)
0 otherwise 4

dy (e, lr) = {
Finally, pm, = K fm where K is a function of ¢, 1, and r. For fixed I/r, K decreases
as [ and r increase. It is slightly dependent upon ¢ but the correlation is unclear. The partial
misses can be approximated by
log ({/7r) =3

(3
pmf('cm I: r) =

fim I/r=z4 . (Eg. 5.14)

20
0 otherwise




Equation 5.11 and the derived parameter formulas can now be used in conjunction
with the gap model miss prediction to calculate meaningful memory system performance

estimates when using a non-prefetched cache.
5.3.2 Prefetched Cache Performance

The prefetched cache model is an extension of the non-prefetched model. The equation is
Cycles = i+1fm (w+d,;) +pmd,+pm d, (Eg. 5.15)

for a next-line prefetched instruction cache and

Cycles = i+fm  (w+d,) + pmd, +pm d;+pmd, (Eq. 5.16)
for a wrong-path prefetched cache. Definitions of the additional parameter are given in
Table 5.1. The pm,, and pm, terms describe the number of misses whose latency is
shortened because of a recently executed next-line prefetch or target-line prefetch
respectively. The average latency over all next-line partial misses is d3. The average
latency for partial target misses is d4. The miss predictions is Section 5.2 showed that
fm < fm_ < fm but it is unciear that this will translate into higher performance because
dy, pmy, and d, might all increase because of increased cache activity. In addition, the pm,,
and pm, terms will be non-zero and further contribute to the cycle time,
Formulas were much more difficult derive for the parameters in prefetch equation for two
reasons. One was that the parameter values strongly depended upon many cache
parameters. The other, probably related to the first, is that different benchmarks react quite
differently to variations in parameter values making it impossible to define a formula
applicable to even the four observed benchmark. The following are some observations

which help to describe the behavior of the prefetch algorithms.

Parameter Definition
fm, Full misses using next-line prefetching
| pmy, Partial misses due to next-line prefetching

Table 5.2 Prefetch Equation Parameter Definitions
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Parameter Definition

fm,, Full misses using wrong-path prefetching

pm, Partial misses due to target-line prefetching

Table 5.2 Prefetch Equation Parameter Definitions

First, fm;; and fm,, can be estimated using the previously discussed gap model. The
values of pmy and d5 are almost identical to those found in the non-prefetching model.
This makes sense because pmgd, represent the fetch latency due to multiple cycle
transfers. The factor will be non-zero when instructions are fetched from a line which is
only partially cache resident. Thus, d; represents the time between receiving the first line
segment and the referenced line segment. This time will be unaffected by the additional
bus contention caused by prefetching and there is no reason to believe that the number of
partial fetch misses would change significantly with prefetching. Furthermore, the factor
pmd, =0 unless I/r is large, say [/r > 32.

The parameters pm,, and pm, vary substantial for different programs. However, for
I/r > 4, the sum of the full and partial misses in next-line prefetching is roughly equivalent
to the sum of full and partial misses in wrong-path prefetching. In addition, pm,, is roughly
the same in both next-line and wrong-path prefetching. Therefore, fm = fm, +pm,,ie.,
wrong-path prefetching doesn’t remove many misses but instead it converts them into less
costly partial misses. When the line can be transferred in one or two cycles, l/r < 4, the
miss sum and pm,, is less in wrong-path prefetching than in next-line prefetching. More of
the misses are completely removed by wrong-path prefetching. This observation that
wrong-path prefetching is more closely tied to refill rate suggests that the first segment of
the line received by the cache is often not the first segment needed. The segment
containing the target address is the first segment received. It seems that often instructions
at locations other than the target are accessed first. This is in agreement with the profile
experiment in Section 4.3 which showed that even prefetched lines down not-taken paths

contribute to miss reduction.




In a prefetched cache, the delay parameters strongly depend upon the line size and
delay cycles as well as //r. The increased bus activity in a prefetched cache probably
makes these dependencies visible. The values d; and d are slightly higher in wrong-path

prefetching than in next-line, again probably due to the higher bus activity.
54 Summary

The gap model does a reasonable job approximating the number of misses in a
non-prefetched instruction cache. Benchmarks with a large amount of cache activity seem
to be predicted the best. The model begins to fail as the cache size grows to contain the
benchmark’s working set. The model’s extension to encompass the effects of prefetching
was surprisingly effective. The prefetch models accurately predicted the reduced number
of misses for both next-line and wrong-path prefetching. Unfortunately, the model
extension exercise is mostly academic, since the observed miss reduction does not directly
translate into improved performance. Further equations were given which describe the
performance of a cache memory system based upon cache misses, cache configuration
parameters, refill rate, and memory delay cycles. It was found that deriving formulas for
the equations’ parameters which are representative over many benchmarks was
impossible. However, dependency trends are observed which further describe the

interaction of prefetching algorithms and various cache configurations.
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CHAPTER 6

Summary

I have proposed a new instruction cache prefetching algorithm which derives
substantial performance gains from prefetching down not-taken target paths. This idea
counters the conventional design of prefetching algorithms where a strong and sometimes
costly effort is made to prefetch down only immediately taken execution paths. However,
compared with other conventional schemes, wrong-path prefetching achieves higher
performance at a lower or at Jeast equivalent hardware cost. Cycle time was reduced by up
to 16% and the number of cycles wasted due to instruction misses was reduced by up to
62%. Even more encouraging, instruction cache prefetching was shown to be more
effective in future architecture designs incorporating multi-instruction issue and increased
memory wait cycles. Wrong-path prefetching reduced CPU cycle time by over 20% in a 4
instruction per cycle simulation. These are significant cycle reductions which can be
obtained at low hardware cost and without negatively affecting CPU cycle time.
Regardless of the magnitude cycle time reduction, the effectiveness of wrong-path
prefetching allows one to conclude that some hardware intensive methods such as table-
based prefetching are not worth their implementation costs.

The disadvantage of all prefetching algorithms is that they increase bus traffic.
However, bus bandwidth must be viewed as any other hardware resource which can be
utilized to decrease cycle time. If the bus is allowed to expand to handle the extra traffic
generated by prefetching, sizable hardware area can be freed from the cache structure. For
instance, simulations show that if wrong-path prefetching is implemented and the bus

width is increased from 4 to 32, an 8 Kbyte cache will outperform a non-prefetched 32
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Kbyte cache. Because of improvements in die mounting technology, chip bin count is
becoming less of an issue and thus, wide cache to memory buses are feasible. Since
software working sets are becoming larger and the growth in cache size is not limitless,
the bus/cache size trade-off is appropriate.

If one phrase were used to summarize my thesis it would be that wrong-path
effects can positively affect cache behavior. The references generated by the execution of
these not-taken paths have an overall prefetching effect. The impression that
mispredicted-path references would increase cache pollution is not entirely false but it was
found to have only a secondary effect and is outweighed by prefetching. The effectiveness
of wrong-path prefetching typifies the benefits wrong-path references can have toward

cache performance.
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