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CHAPTER 1

INTRODUCTION

1.1. Problem Statement

In many practical applications of automated vision the basic vision task is that of recogniz-
ing a known industrial object in a digitized image. When the object is known, recognition is gen-
erally more successful if it uses a model of the object as a guide, an approach called model-based
recognition. While it is true that all vision algorithms incorporate some type of model of the
world, we use the term ‘‘model-based” in its strictest sense, where the model describes an exact

object in as much detail as necessary for recognition.

Model-based recognition is not a well defined problem. Analytically, it is an attempt to find
the inverse mapping from a 2-dimensional projection of an object as it appears in an image to the
3-dimensional object itself. In general, this is an underdetermined problem [Pal81]. Under certain
constraints the problem can be reduced to one that will yield a simple solution. For example, if it
assumed that objects are only presented in one of a finite number of states and if the objects are
unoccluded then it is possible to extract a set of features of the object, e.g., area, length of perim-
eter, and moments of the profile of the object, that can be used together with standard statistical
pattern recognition methods to recognize the objects with a high degree of success (see

[Kan74, GIA79]). Without these constraints, however, the problem is much more difficult.

Partially Occluded Parts. When overlapping objects are present in the image the prob-
lem becomes more complex. It is difficult to untangle correspondences between projections and

the objects that cause them because complete 2-dimensional projections no longer occur. In



addition, features such as area, length of perimeter and moments of the profile of the part can no
longer be used in recognition. This problem of overlapping parts is sometimes named for a para-
digm, the bin of parts problem, which involves recognizing parts piled in a bin, a common way in
which parts are presented for batch assembly. The bin of parts problem has been described as
‘“the most difficult problem in automatic assembly.”” A solution is said to be worth ‘‘tens of mil-
lions of dollars a year in the U.S.””[Mat76]. The bin of parts problem is common to tasks such as
part sorting, part retrieval, and part assembly, and, as yet, there is no satisfactory solution to this

problem.

Partial occlusion is also found in images where objects are obscured by dirt, where objects
ara defective, or where objects are partially outside an image. Images of this type can be handled
in the same way as parts occluded from overlap, although they are less difficult to deal with
because there is no problem of segmentation, i.e., deciding which area of the image corresponds to

which part.

In this discussion objects will be restricted to industrial parts, and the general recognition
problem will be called the partially occluded parts problem or the POP problem for short. Over-
lapping, obscured, defective, and incomplete views of parts are instances of the generic POP prob-

lem.

This thesis presents a model-based method for solving a subproblem of the general POP
problem in which the set of parts that are allowed to appear in an imageb are 2-dimensional. For
our purposes, a part is 2-dimensional if two of the dimensions of the part are much larger than
the third (Fig. 1.1 shows an example). A solution to the 2-dimensional POP problem is nearly as
valuable to industry as a solution to the general POP problem; applications involving stamped,

cast, and forged flat metal parts are found everywhere in industry.

Most industrial systems do not allow parts to overlap or be occluded. In fact, most systems
are based on incomplete models of the parts that they are to recognized. In addition to present-
ing a method for solving the 2-dimensional POP problem, this thesis will present extensions to

deal with the following two problems.



Fig. 1.1. Overlapping parts.

Reflective Parts. One example, common to industry, where a model of a part is often
incomplete is when the part is reflective—most smooth metallic parts are reflective. Reflective
parts have surface irradiance that varies with position, causing the surfaces of the part to appear
differently at different positions. This is not modeled. The shape of the boundary contours of
the part does not change, but areas of the part undergo contrast reversals, i.e., some sections of
the part appear lighter than the background (positive contrast) while other sections appear darker
than the background (negative contrast). Contrast reversals confuse many vision systems, and,
therefore, many systems eliminate the problem by back-lighting the part to give a uniform con-
trast. This thesis proposes a system which works with parts that are of either contrast with

respect to the background.

Scale Changes. Another common way in which a model may be incomplete is by not

representing the part at different scales. It is possible that the image of the part has a different



scale than the model upon which recognition is based. With the capability to compensate for scal-

ing, a system is not restricted to a fixed viewing distance.

1.2. Model-based Recognition

Most model-based vision systems consist of two stages: an off-line precomputation, or train-
ing stage that extracts information about the parts necessary for their recognition; and a run-
time, or recognition stage that recognizes parts in an image. The information obtained in training
makes up the models of the parts. It is desirable to maintain as rich a model of each part as pos-
sible. The more information extracted during training, the more powerful the run-time recognition
is likely to be. On the other hand, cost and performance considerations require that vision sys-
tehs use incomplete models of parts. Unfortunately, this constraint, coupled with an injudicious
selection of the type of model information, has in the past resulted in many models which consist
of small ad hoc sets of features that do not even preserve shape information—one cannot recon-
struct the shape of parts from these features. For example, the SRI Module uses part area, perim-
eter, number of holes and other features that characterize shape but that even taken together do
not contain sufficient information for the part’s reconstruction |GIA79]. These features, in addi-
tion, are not preserved under partial occlusion. More powerful recognition algorithms require

richer models.

This thesis proposes a model-based system that assumes that the objects to be recognized
are a set of rigid parts. More information is extracted a priori from the parts than is usually done.
In particular, the relative importance of certain aspects of their shape is extracted by an off-line
training step and embodied in the models of the parts. Not only does a part’s model preserve a
description of the shape of the part, but it also contains a measure of the importance of each com-

ponent of the model in fixing the identity of the part.



1.3. Research Overview

This thesis will examine a vision system that provides solutions to many problems in indus-
trial vision that current systems cannot handle. The system can recognize 2-dimensional parts

under the following conditions:
e Parts located at any spatially position, or under any rotation about the viewing axis.
o Parts that touch, overlap, lie partially outside the image.
o Reflective parts and parts viewed under poor lighting conditions.
o Parts with any scale within a wide range.

To realize these capabilities the vision system incorporates two concepts: a segmented boundary
representation in which the boundary of the part is set of overlapping segments; and a saliency-
based recognition strategy, where the saliency measures the importance of segments in fixing the

identity of the part.

1.3.1. Segmented Boundary Representation

In the segmented boundary representation, boundaries of parts are partitioned into equal
length overlapping segments with a segment centered on each point of the the boundary. The
overlap of the boundary segments makes the recognition system more dependable because there is
enough redundancy in the representation so that, except in extreme cases, a few complete seg-
ments are visible even when a large percentage of a part is occluded. Two representations are
used for the segments of the model. The first is a function, 8(s ), where s is the arclength of each
point along the boundary from some origin point on the boundary, and 4 is the corresponding
tangent angle of the point. We term this function the #-2 representation, and it is used for
matching segments. The second is a cartesian space representation that is used to combine results
of segment matches. Figure 1.2 shows an example of the cartesian and 8-s representation of the
boundary of a part taken from a car’s door lock. We refer the part as door lock part no. 1 in the

text. The cartesian space representation has the advantage that it maintains the spatial relation-



Fig. 1.2. Cartesian and §-s representation of door lock part no. 1.

ships between boundary segments. The 6-2 space simplifies comparisons between model and

image segments for variations in orientation, for scale changes and for contrast reversals.

1.3.2. Saliency-based Recognition

During training the proposed vision system extracts more information than has been typical
in past model-based recognition. In particular, it automatically identifies segments of a part that
have the highest probability of fixing the pose of the part and of distinguishing the part from
other parts that may be present in the image; these segments will be called salient features.

Salient feature can locate a part with great certainty even when little of the part is visible.



1.4. Thesis Organization

o Chapter II surveys the literature relevant to the problem of recognizing partially occluded
parts from single views. The chapter includes descriptions of both 2- and 3-dimensional part
recognition algorithms based on a single view. The chapter does not include algorithms based on

range maps or multiple views of an part.

o Chapter III examines in detail several alternative algorithms proposed by other authors, and

describes results obtained from these algorithms.

o Chapter IV describes the proposed method. The presentation is divided into two sections:
one section describes the segmented boundary representation, and the second section describes

saliency-based recognition.

o Chapter V describes of some of our past work that led to the development of the proposed

method.

e Chapter VI examines experimental results obtained from saliency-based recognition and

compares these results with those obtained from the methods examined in Chapter III

o Chapter VII presents the concluding remarks.



CHAPTER 11

LITERATURE SURVEY

2.1. Introduction

In this chapter we will present a survey of POP recognition approaches. We classify these

approaches into one of three basic categories, correlational, structural, or relational.

More explicitly, we define a correlational approach as one in which features of a part are
correlated to features of an image. Features can be things or attributes of a part such as color,
regions, surfaces, or contours. In a correlational approach a part is typically moved around in an
image and features of the part are compared with the local features that they overlay. Each
matching pair of features is assigned a value that measures the degree of local correspondence
between features. These values are summed to obtain a global correspondence of the part to the
image at each location. After all comparisons are done, the location with the greatest global

correspondence is assumed to be the location of the part.

We define a structural approach as one in which the structure of the part is iteratively built
in the image. A part is represented as a set of substructures called primitives. A set of similar
substructures are located in the image and are fit together to build an instance of the part in the
image using a set of production rules as a blueprint. If the fraction of the part that can be built

exceeds a predefined threshold, the part is assumed to be located.

Finally, we define a relational approach as one in which features and relations between
features are abstracted from a part and compared to similar features and relations abstracted

from an image. The location in the image with the greatest consistent set of features and



e Correlational
o Hough Transform
o Axial
o Region

o  Slope Angle/Curvature

e Structural
o  Syntactic

o  Synthesis

e Relational
o  Relational Structures
o Invariants
o Relaxation

Table 2.1 Recognition strategies.

relations, i.e, consistent with those of the part, is selected as the location of the part.

We further divide these three approaches into classes (see Table 2.1). For completeness a

list of common terms is given below.

Common terms. The 3-dimensional location and orientation of a part will be referred to
as its pose. This gives us a terse way of expressing a frequently used concept. A 2-dimensional
pose of a part will often be represented by the triple (4, u, v) where ¢ is the relative orientation

of the part about its centroid and u and v are the cartesian location of the centroid of the part.

A digitized view of a set of parts in their various poses in a scene is called an image. An
image is a sampled array of picture elements called pizels. Pixels represent the light intensity of

the image and typically take on values that are quantized into one of 256 grey level values.
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For an image to be of interest, pixel values in the image must change in grey level value
from location to location; these changes in pixel values correspond to intensity changes in the ori-
ginal scene. An edge point is characterized by having rapid changes in the pixel values in its

neighborhood.

Edge points are often linked into pixel-wide edge contours to allow the edge points to be
ordered and thus more easily compared to other sets of edge points. A connected fragment of an
edge contour is called a segment (a fixed length segment is the basic primitive in our algorithm).
By convention the edge points in a contour are ordered in such a way that when a contour is
traced the higher intensity side (in the original image) of the contour is kept on the left. Further-
more, edge points are often located by an arclength along the contour measured from an arbitrary

point of origin on the contour.

In addition to arclength, an edge point on a contour may also be assigned a value of slope
angle and a value of curvature. The slope angle is the angle of a tangent to the contour at each
edge point, and the curvature is the derivative of the slope angle with respect to the arclength at
an edge point. Only one value of slope angle and curvature are associated with each arclength,
therefore both slope angle and curvature can be viewed as 1-dimensional functions of arclength.

We will represent the slope angle function by 6(s ) and the curvature function by a(s ).

Strong local changes in curvature are called ‘“critical’’ points. They have been shown by
Attneave to be important to humans in recognizing objects, and, therefore, perhaps are equally
important to machines [Att54]. Critical points play a role similar to the “‘dots” in a children’s
‘“connect-the-dots’’ picture: they act as markers on the contour that define its essential structure.
In addition to this role, their location on a contour tends to be insensitive to noise and insensitive

to tilt and scaling. Therefore, they are useful in locating parts that are tilted and scaled.

Finally, the contours of a part collectively form the part’s boundary. A boundary includes

both internal and external contours.

In the following, the approaches in each of the classes in Table 2.1 are presented in the

order in which the relevant publications occurred (with the exception that closely related work by
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the same author(s) appears together). Furthermore, the review of each class is preceded by a
tutorial that summarizes the basic approach of the class. We begin with a discussion of correlation

approaches.

2.2. Correlational

Correlational approaches belong to four distinct classes: Hough transforms, axial correlation,
region correlation, and slope angle/curvature correlation. To begin with, we start with a tutorial

on Hough transforms.

2.2.1. Hough Transform

The Hough transform is a very general histogram approach for extracting information; how-
ever, we will only describe its use in part recognition. For this purpose consider a boundary of a
part, B(p). The parameter p of the function is a vector corresponding to the pose (and possibly
the scale) of the part in the image. Assume that a set of features, fZ® are found in the boun-
dary. Appropriate choices for features are edge points, straight line segments, circular arc seg-
ments, critical points, or corners of the boundary. Furthermore, assume that a similar set of
features, f J' , are found in the image. In the Hough transform the features of the boundary are
compared to features of the image. The set of parameter vectors, p, that would permit the f2®
to match the f J’ are determined. This set of p can be considered as a set of local hypotheses for
the part’s pose because they are obtained by matching local part and image features. These local
hypotheses are combined to form a global hypothesis for the part’s pose. More precisely, the glo-
bal hypothesis is selected as the most frequently occurring local hypothesis. To determine the
most frequent hypothesis the set of parameter vectors, p, are tabulated in a histogram. After all
features of the part and image are matched, the most frequently occurring parameter vector,

which we will denote as p*, is selected as the pose of an instance of the part in the image. In the
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more general case where the histogram has m large modes at locations p," i =1:-- m, the p,’

are assumed to correspond to m different instances of the part.

As a concrete example, consider a boundary of a triangle (see Fig. 2.1) that is parameterized
by the location of its centroid, p = (u, v). Let the edge points of the boundary be the features
of the triangle. If the image consists of the five edge points shown in Fig. 2.1b, then the set of p
that would be determined by the Hough transform are the lines shown in Fig. 2.2a. In other
words, if the centroid of the triangle’s boundary were placed at any of these (u, v) points, at
least one edge point of the boundary would match an edge point of the image. The most fre-
quently occurring parameter vector, p°, is the one at the center of the circle shown in Fig. 2.2a.

With this choice for p° the triangle’s boundary would be placed as shown in 2.2b.

N
+er :
|

(a) (b)

Fig. 2.1. Parameterization of a triangle boundary and image of edge points.
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In the more general 2-dimensional part recognition problem, a boundary is usually
parameterized by its orientation, §, its scale, S, and its centroid location, (u, v). In this case,
the parameter vector p is the quadruple (S, 8, u, v). As before, features of the part are matched
to those in the image but now the sets of parameter vectors p are tabulated in a 4-dimensional

S —6-u —v histogram, rather than the 2-dimensional u -v histogram.

The strength of the Hough transform is that incomplete information, i.e., local hypotheses
generated from local feature matching, can be combined to form a global hypothesis for the pose
of a part in an image. The shortcoming of vthe Hough transform is the method by which the local
hypotheses are combined. Selecting the most frequent local hypothesis, as is done in the Hough

transform, is not an effective method for the following reasons.

(a) (b)

Fig. 2.2. Parameter histogram and result.
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There is often a relationship between local hypotheses which is totally ignored in the Hough
approach. For example, consider the POP image shown in Fig. 2.3 in which an industrial part
(see Fig. 2.3a) appears in a POP image (see Fig. 2.3b). In this example, we will assume that fixed
length segments of the boundary are its the features. Two segments on the part’s boundary,
labeled A and B, are shown in the image. Two corresponding segments, labeled A’ and B’ are
shown in the image boundary. The spatial relationship of the two segments A’ and B’ is ade-
quate to eliminate all but one hypothesis for the pose of the part—the remaining hypothesis asso-
ciates A with A’ and B with B' . (This spatial relationship is explicitly used in the approach

proposed by this thesis.)

In the Hough transform, however, the two local hypothesis generated by matching A to

A' and B to B! are simply tabulated in a histogram. For the approach to select the correct

(a) (b)

Fig. 2.3. Part and occluded parts.
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global hypothesis, this tabulation must be larger than that generated by any other local
hypotheses. No use is made of the relationship between the two local hypothesis. This is 2 much
weaker method of combining local hypotheses than the method described above. It is not incon-
ceivable that a few incorrect local hypotheses could easily cause the approach to select a incorrect

global hypothesis.

In fact, the generation of incorrect local hypotheses often arises when features are not care-
fully chosen. In these cases a large number of false matches between features of the boundary and

the image may occur with the result that many incorrect local hypotheses are tabulated.

Now that we have examined the Hough transform, we will review several algorithms based

on the strategy. We begin with the generalized Hough transform of Merlin and Farber.

P. M. Merlin and D. J. Farber, “A Parallel Mechanism for Detecting Curves in
Pictures.” Merlin and Farber propose a part recognition strategy similar to the example given
above [MeF75]. They assume that the boundary of a part is parameterized by its orientation and
centroid location and that the features of the boundary are its edge points. They call the strategy
the ‘‘generalized Hough transform” since it can be used to recognize arbitrarily shaped boun-
daries. Unfortunately, edge points are indistinguishable from one another and many false matches
occur between edge points. This often results, as discussed above, in an incorrect global

hypothesis for the pose of the parts in an image.

D. H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary Shapes.”
Ballard modifies the generalized Hough transform to improve the performance [Bal8l]. Edge
points of the boundaries of the part and of the image are assumed to correspond only when they
have the same slope angle. With this modification fewer incorrect local hypothesis are tabulated,

but false global hypotheses are still often generated.

G. Stockman, S. Kopstein, and S. Benett, ‘‘Matching Images to Models for Regis-
tration and Object Detection via Clustering.’” Stockman et al. use a Hough transform with
vectors as features [SKB82|. Vectors are formed by connecting subfeatures, e.g., corners and holes

in the part. More precisely, the tail of the vector is placed at one subfeature and the head of the
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vector at a second subfeature. Vectors are assumed to match if they have the same length and
the same subfeatures at their heads and tails. The parameters vectors, p = (4, u, v), (S is
assumed to be 1) of the boundary that allow a match between vectors of the part and vectors of

the image are tabulated in a —u —v histogram.

D. H. Ballard and D. Sabbah, “Viewer Independent Shape Recognition.” Ballard
and Sabbah also use vectors as features. The vectors are derived from the straight line segments
taken from a polygon approximation of the boundary of a part. The normal S —6-u —v histogram,
however, is divided into two disjoint histograms, an S - histogram and a u ~v histogram [BaS83].
Parameters are determined in two stages. The values of S and @ are tabulated first, and the most
frequent S and 4 are selected as the scale and orientation of the part respectively. The values of

u and v are determined, again through tabulation.

This strategy reduces the dimensionality of the problem from 4 dimensions to 2 dimensions
with the obvious advantage that less effort is needed to search the two 2-dimensional histograms
for modes than one 4-dimensional histogram. Unfortunately, reliability suffers. Separating the 4-
dimensional S-6-u -v space histogram into two 2-dimensional histograms increases the likelihood
that modes in either of the two histograms will overlap. This overlap can cause a mode itself

which in turn may be incorrectly interpreted as a global hypothesis for the pose of the part.

J. Segen, ‘“Locating Randomly Orlented Objects from Partial View.’” Segen
separates the S:0—u -v histogram into four disjoint histograms, one for each parameter [Seg83).
He computes the parameters in the sequence, S, 6, u, and v. Parts are approximated by polygons
and corners of the polygon are chosen as features. Unfortunately, overlapping modes in each of

these histograms is again likely, again making the determination of the most frequent parameter

vector, p’, unreliable.

M. W. Koch and R. L. Kashyap, “A Vision System to Identify Occluded Indus-
trial Parts.” Koch and Kashyap [KoK85] use an approach similar to that of Segen in that
corners are used as features. However, unlike Segen the parameter vectors, p, are tabulated in one

0-u -v histogram (S is assumed to be 1). Local hypotheses for parameter vectors are determined
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by fitting corners of the part to similar corners in the image. Because the strategy appeared to be
one of the better correlational strategies, we investigated it in the more detail than the others.

Problems with the approach soon became apparent (see results presented in Chapter III).

2.2.2. Axial

An axial representation is a shape descriptor of a part. We begin with the SAT shape

descriptor due to Blum and Nagel.

H. Blum and R. N. Nagel, *“Shape Description Using Welghted Symmetric Axis
Features.” Blum and Nagel propose an axial shape descriptor called the symmetric axis
transform (SAT) [BIN78]. An SAT can be constructed using a circular primitive. More precisely,
a closed boundary of an part is described as by the collection of its maximal discs. Maximal discs
are discs that are tangent to the boundary at least at two points and have the property that they
are not contained in any other disc inside the boundary (see Fig. 2.4a). In general, the shape of
any object is the union of its maximal discs. The SAT consists of two parts: the locus of the
centers of the maximal discs, called the symmetric axis, and the radius of the disc at each point,
called the radius function. Figure 2.4b shows the symmetric axis for a rectangle. In practice the

radius information is discarded leaving only the symmetric axis as a descriptor.

Unfortunately, SAT's are extremely sensitive to boundary noise, that is, small noises can
introduce considerable distortion in an SAT, making the descriptors impractical for use in most

occluded part recognition problems.

R. B. Kelly, H. A. S. Martins, J. R. Birk, and J. D. Dessimoz, “Three Vision Algo-
rithms for Acquiring Workpleces from Bins.’” Kelly et al. explore three algorithms for the
location of grasp points of a part in a pile. These are a “‘shrinking” algorithm, a ‘‘collision fronts’’
algorithm, and a “parallel-jaw filter” algorithm [KMB83]. (The latter will be discussed in the sec-

tion on region correlation.)
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(a) (b)

Fig. 2.4. Maximal discs representation of SAT.

The primary use of the shrinking algorithm is to locate planar surface patches where a
vacuum cup gripper can be applied. The strategy is to locate exposed areas by eroding a binary
image created from the original gray level image to an axis. With this method, areas can be found

that are sufficiently broad so as not to be totally eroded. These are candidates grip points.

The collision front algorithm, on the other hand, propagates the edges of the image towards
the middle of the parts. When a propagating edge encounters an edge being propagated from an
opposite direction a collision point is formed. A set of collision points form a collision front which

gives an axis of the part.

These algorithms are intended to circumvent part recognition in the POP problem by locat-

ing grasp points of occluded parts from which parts can be picked up and then recognized.
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(a)
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Fig. 2.5. SLS of normal and partially occluded part.

M. Brady and H. Asada, ‘‘Smoothed Local Symmetries and Thelr Implementa-
tion.” Brady and Asada describe a represgntation of two-dimensional shapes called ‘‘smoothed
local symmetries” (SLS) [BrA84]. SLS's are descriptors proposed for inspection ‘and part recogni-
tion and are closely related to SAT’s. The SLS descriptor is an axis constructed as the midpoint
of the local symmetries of a part. It is, therefore, not affected by defective or occluded portions
of the boundary that are not part of the symmetry. The SLS tends to be a more robust axial

description of a part than the SAT.

However, an SLS descriptor throws away much of the structural information of a part, often
leaving an ambiguous representation. For example, consider the boundary of a pen shown in Fig.
2.5a. The SLS of the pen is shown along the axis of the pen. When the pen is occluded the SLS
of both the pen nib and pen top are identical straight lines (see Fig. 2.5b). It is impossible to tell

from the SLS descriptor which part of the pen is visible in the image, even though there is



sufficient structural information in the original boundary to locate the pen.

The SLS descriptor is useful for locating grasp points for parallel grippers, but because it
can often be interpreted ambiguously, it is not the best representation for partially occluded

parts.

2.2.3. Region

Region correlation is basically a brute force approach to part recognition. Grey level regions

"taken from an image of the part are directly correlated with regions in the image.

Region correlation, although fairly direct to apply, is not always a workable approach. For
example, correlation of a large region of a part to an image is not practical—in most POP images
large regions of a part are not visible. On the other hand, correlation of a small region of the part
to an image yields poor results because ﬁmny regions in the image often correlate to the region

with values greater than or equal to that of the correct region in the image.

In the following we will review an algorithm based on the matched filter approach.

(Matched filter is just region correlation compensated for noise.)

R. B. Kelly, H. A. S. Martins, J. R. Birk, and J. D. Dessimoz, “Three Vision Algo-
rithms for Acquiring Workpleces from Bins.” Kelley et al. apply a matched filter in their
“parallel jaw algorithm” to locate heuristically chosen hold-sites for parts [KMB83]. A region of
the part that corresponds to a good hold-site is correlated to the image. Kelly et al. sample each
of the three independent viewing angles at m views. They correlate the m® views of an m Xm
region of a part to an n X n region of the image. This requires O (n?m®) computations. It is an
impractical number unless the regions are very small. However, as discussed above, good results

are not obtained unless the regions are large.
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(a) (c)

Fig. 2.6 Cartesian, a-#, and 0-s representations of a part.

2.2.4. Slope Angle/Curvature Representations

The slope angle-arclength (§-2 ) and curvature-arclength (a-2 ) representations of boundaries
are often used in part recognition. These representations have been discussed in the Introduction.
Figure 2.6a-c shows equivalent cartesian and a-# and 6-2 representations of a boundary. The dot
on the contour represents the point of origin from which the arclength is measured. Positive

arclengths are measured counterclockwise around the contour.

Some of the properties of these two representations follow. The §-s and a-s representa-
tions are intrinsic coordinate representations and are thus invariant to translation. The a-s
representation is also invariant to rotations in the plane of the boundary. Furthermore, the 8-s
representation itself is invariant, within an offset, to rotations, i.e., rotations by a positive angle
cause the slope angle, 6, to be incremented by the rotational angle. Because of these invariant

properties the 6—s and a-s representations are efficient representations in which to compare
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Fig. 2.7. Comparing boundaries in the -2 representation.

boundaries of a part to those in an image with unknown orientation. To compare two boundaries,
their 4(s) functions 8,(s ) and 8,(s ) (see Fig. 2.7) are shifted along the § axis so that their means
'671 and -0-2 have the same value. Values of 4 for the two functions are then compared at uniformly
spaced values of . Because the arclength may not be measured from the same point of origin,
the comparison, in general, must be performed for all possible choices of origin for one of the
boundaries, i.e., over all different & offsets between the two boundaries. In comparing two boun-
daries represented by their afs ) functions no shift in 6 is required but the boundaries must still be
compared at all values of 3. One of the shortcomings of both of these approaches is that the §-s
and a-s representations of partially occluded boundaries do not closely resemble the original 8--3
and a-s representations of the unoccluded boundaries. Occlusions often introduce wide arclength
separations between features of the 6—s and a-s representations of the original contour. As a

consequence the representations can only be guaranteed to to be locally the same for the visible
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segments of the boundary.

Another use for the a-s representation is in locating critical points. These points are invari-
ant to rotations, translations, scale changes and are insenmsitive to arbitrary tilt changes (see
[Mar84]). The change in curvature at a critical point is generally substantially greater than the
noise in the curvature function, a(s ). Therefore, even when the a(s) function of a boundary is

noisy, critical points on the boundary can still be accurately located.

Now that we have examined the slope angle and curvature representations, we will review
several algorithms based on these representations. We begin with a paper on critical points by

Freeman.

H. Freeman, ‘Shape Description Via the Use of Critical Polnts.” Freeman uses an
augmented set of critical points. To the normal set he adds end points, intersections, and points
at which boundaries are tangent to each another [Fre77|. The critical points are connected with
chords and a set of features of the chords and of their corresponding boundary sections are com-
puted. The features are those shown in Fig. 2.8: the length of the boundary section between criti-
cal points, the total ‘‘bay” area lying between the boundary section and the left of the chord, the
total “peninsula’ area lying between the boundary and the right of the chord, the maximum

“bay” depth, and the maximum ‘‘peninsula” depth.

To make the features scale invariant, Freeman determines the chord length between critical
points and divides linear features by the chord length and area features by the chord length
squared. He determines the pose of the part in an image by finding corresponding invariant
features of the part and image. Shortcomings of the approach are that features calculated from
closely grouped critical points are unlikely to have accurately calculated values, and features cal-

culated from widely separated critical points in the image are likely to be distorted by occlusions.

J. W. McKee and J. K. Aggarwal, “Computer Recognition of Partial Views of
Curved Objects.” McKee and Aggarwal build a library of complete contours coded in the 6-3

representation [McA77]. They allow only one part to be present in the image. However, the
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bay

Fig. 2.8. Freeman's features.

part’s boundary may be composed of several contours. During recognition, they compare contours
in the image to all the contours in the library. The part whose contour in the library best
matches an image contour is assumed to be the part. One shotthmi_ng of the approach, beside
the limitation of one part in the image, is that complete contours of a partially occluded part may
be distorted so severely that not even the best match of an image to the library will be a correct

match.

K. R. Yam, W. N. Martin, and J. K. Aggarwal, '"Analysis of Scenes Containing
Several Occluding Curvilinear Objects.”” Yam, Martin, and Aggarwal [YMAS80| use the same
library approach as McKee and Aggarwal in [McA77| for a slightly more general problem. They
allow only one type of part to be present in the image, although there may be multiple instances
of the part. In addition, they assume that every contour in the image is a closed contour and

that at least one contour is completely visible. By comparing every image contour to every part



contour in the library, they attempt to find a match for one of the completely visible image con-
tours. Finding a match identifies the type of part in the image. Once the type of part is identi-
fied the poses of the other contours in the image are determined by correlating their §-s represen-
tations to the §—s representation of the identified contour. Shortcomings of the approach are
that every contour of the image must be compared to every contour in the library, and, as before,

the contours may be so severely distorted that the best match to the library may be incorrect.

W. A. Perkins, A Model-based Vision System for Industrial Parts.” Perkins
[Per78] models a contour by concurves, a concatenation of straight line and circular arc segments
that approximate a contour. To recognize a part, Perkins compares concurve features such as the
total concurve length, radius of arcs in the concurve, magnitude of total angular change, number
of straight lines in the concurve, and number of arcs in the concurve of the part to those of the
image. If there is sufficient agreement between the part and image concurve features, the algo-
rithm correlates the original contour of the part to the image contour in 6-s space to find the
location of the part in the image. This last step is similar to that used by McKee and Aggarwal
in [McAT77].

Shoricomings of the approach are that it relies on the assumption that a large fraction of

the contours are visible in order to make the concurve approximation, and it inherently assumes

that parts are well approximated by circular arc and straight line segments.

W. A. Perkins, “Simplified Model-based Part Locator.” Perkins simplifies his previ-
ous approach by correlating the 6(s ) representations of a part contour and the image contours to
find points at which the contours have a strong correlation [Per80]. After aligning the contours in
cartesian space at one of these points, his algorithm constructs a circle centered about the point of
alignment. He then follows the circle around until it crosses at least one point on the image
boundary and a point on the part boundary. These points are aligned by rotating the contour of

the part about the center of the circle. From this final alignment the pose of the part is found.

B. Neuman, ‘“Interpretation of Imperfect Object Contours For Identification and

Tracking.” Neuman approximates part and image boundaries by polygons and compares corners



formed by adjacent sides of the polygons [Neu78]. Neuman assigns to corners attributes
corresponding to the interior angles of the corners and the lengths of the sides of the corners. If
the attributes of a corner of the part matches those of a corner in the image, a hypothesis for the
pose of the part is generated based on the match. The corners are aligned and the complete boun-
dary of the part is fit to the image. This step is used to verify the hypothesis. If the part fits
sufficiently well, the section of the polygon in the image which correspond to the part is removed,
and the algorithm then attempts to locate other parts in the image. If several part corners fit the

image corner, the part that best fits the image polygon is selected as the correct part.

J. D. Dessimoz, M. Kunt, and J. M. Zurcher, “Recognition and Handling of
Overlapping Industrial Parts.’’ Dessimoz, Kunt, and Zurcher correlate the curvature represen-
tations of contours of the image to that of the part [DKZ79|. They assume that a few parts are
completely visible at the top of a pile with little overlap so that significant correlation can be

obtained.

A. H. Bond, R. S. Brown, and C. R. Rowbury, ‘“The Effect of the Environmental
Variation Upon the Performance of a Second Generation Industrial Vision System.”
Bond et al. [BRB83b| segment part boundaries into straight lines and circular arcs using an
approach similar to that of Perkins in [Per78]. Image boundaries, on the other hand, are not seg-
mented but left as chains of edge points. They correlate adjacent pairs of segments of the part at
every location on the image boundary in the §-3 representation. Finally, the part is fit to the

image in cartesian space to confirm the match.

D. H. Marimont, ‘A Representation for Image Curves.’” Marimont determines a set
of critical points that he proposes to use to locate tilted parts over a wide range of scales [Mar84].
Scaling of a part is simulated by smoothing the boundary of the part with Gaussian filters with
different standard deviations. He argues that the reduction in resolution of a boundary obtained
from smoothing the boundary with a Gaussian filter can simulate the natural reduction in the
resolution of the boundary that occurs when the boundary is scaled down. The Gaussian with

small standard deviation simulate small reductions in scale while those with large standard devia-



tion simulate large reductions in scale. A set of critical points are extracted from contours filtered
by Gaussians of different standard deviations. From this set of critical points a fixed number of
critical ‘points that best characterize the contour at each scale, i.e, that are well separated and
repmeit diﬂetent.v critical points on the contour, are obtained using a dynamic programming
algorithm. These points are used to recognize the part over a range of scales in the preseace of

occlusion.

Marimont also discusses resuits that he has obtained oa the insensitivity of critical points
and zero crossing in the curvature function, a(s ), to arbitrary changes in orientation; a property
useful for locating tilted parts.

This concludes our review of correlation approaches. In the following we begin our review of

structural approaches.

2.3. Structural

Structural strategies fall into two classes: syntactic and synthesis. We begin with a descrip-

tion of the class of syntactic approaches.

2.3.1. Syntactic

Syntactic approaches are an attempt to apply formal language theory to pattern recognition
problems [Fu74, Pav77|. To accomplish this goal, boundaries are regarded as semtences in a
language defined by a formal grammar. More precisely, each boundary of a part has an associated
linguage and grammar. In addition, an image boundary is assumed to be a sentence—an image
sentence—in the language of one of the parts. In recognizing a part, the grammar associated with
the part is used to parse the image sentence to check if it is a valid sentence. Parsing an image

sentence is similar to parsing an English sentence. hnage sentences are parsed into grammatical



primitives and combinations of primitives to determine if they are valid sentences for the part.

A grammar, G = (N, L, P., S), for a part, consists of a finite set of nonterminals, N, a
finite set of primitives, L, a finite set of production rules, P, and a starting symbol, S. For
example, for a part such as the hammer shown in Fig. 2.9, the primitives would be ¢, b, ¢, d.
The nonterminals are substructures of the hammer that are not primitives such as hammer,
head, and Aandle. The production rules are rules that tell how the nonterminals are related to

the primitives and other nonterminals:

hammer — handle + head,

handle - 6 +b +¢c +d + e

where “‘+'’ represents the operation of concatenation. Finally, the starting symbol is Aammer.

Fig. 2.9. Syntactic hammer.




A parser is used to find a sequence of production rules that can derive an image sentence
from a starting symbol. One method of parsing is “bottom up;' parsing. The primitives found in
the image are examined and the grammar is used to build a representation of the part from the
primitives. The production rules are used backwards—in the reverse direction of the arrow—to
combine primitives and nonterminals in an attempt to derive the starting symbol. To locate the
hammer, a bottom up parser would combine the ¢, b, ¢, d, and ¢ primitives to construct a han-

dle, and then combine the kandle with the Aecad to form the hsmmer.

Sometimes attributed grammars are used in a syntactic strategy to add more decision mak-
ing capability. An attributed grammar coasists of two sets of rules: first a set of syntactic pro-
duction rules as described above to define the structure of a part, and second a set of semantic
attribute rules for computing attribufu of the part. An image sentence is insufficient to recognize
the part unless the attributes of the image sentence are also the same as the attributes of the
part. For example, attributes of length could be associated with each primitive of the hammer in
the previous example. An attribute rule would be one that summed the lengﬂns of each primitive
to compute a total length of the perimeter. In the previous example, with an attributed grammar
the bammer would be recogaized oaly if the leagths of the primitives summed to an acceptable

value.

With partial occlusion, error correcting grammars are needed. Given two sentences of prim-
itives that match, there are three types ot‘a'nglc primitive errors that can cause a mismatch:
inserting an extra primitive, deleting a primitive, and substituting an incorrect primitive for a
correct primitive. To account for single primitive errors, all possible sentences with these errors
must be allowed by the parser. As a consequence the language of the part must be expanded to
include all possible sentences with single primitive errors. For example, for the hammer the
correct image sentence for the Aandle is sdcde. To accommodate a single primitive substitution
error the sentences dbcde, cbede, dbcde, e‘cde, aacde, accde, adcde, aecde, abade, abbde, abdde,
abede, abcae, abcbe, abece, abeee, abeda, abedd, abede, and adcdd must be added to the language

defining the part. If more than a one primitive error is allowed, the language must be further



expanded. Clearly, incorporating even simple error detection resuits in a combinatorial explosion
in the size of the language. Handling more complex errors would make the approach even more

intractable.

Now that we have examined the syntactic strategies, we will review several algorithms
based on these strategies. We begin with algorithm using attributed grammars due to You and
Fu.

K. C. You qd K. S. Fu, “Distorted Shape Recognition Using Attributed Gram-
mars and Error-Correcting Techniques.” You and Fu [YoF80] extend the work of attributed
grammars of Tsai and Fu [TsF80| to include error correction so that parts with distortion or par-
tial occlusion can be recognized. A modified error correcting parsing algorithm for single errors is

used.

T. Paviidis and F. All, “A Hlerarchical Syntactic Shape Analyser.” Pavlidis and Ali
[P2A79| do not parse a complete boundary from image primitives as You and Fu [YoF80| but
rather a set of high-level attributed nonterminals. These nonterminals are called “arcs” and have
attributes of type, size, and orientation. Types were sharp protrusion, sharp intrusion, convex
corner, concave corner, convex arc, and concave arc. Sizes were small, medium, large, and huge.

Orientations corresponded to the points of the compass.

A part is recognized by comparing arcs of the boundary of the part to those of the boundary
of the image. Weighi:s are assigned to pairs that match based on the number of attributes shared
by the pair. The weights from all the pairs of matching arcs are summed to give a measure of
correspondence between the part and the image. If the measure exceeds a predefined threshold,

the part is assumed to correspond to the image.
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2.3.2. Synthesis

Conceptually, synthesis strategies are descendents of the syntactic strategies discussed in the
previous section. Synthesis strategies preserve the structural descriptive power of the syntactic
approach, while attacking problems of noise and partial occlusion. As a consequence, synthesis
strategies give more robust solutions to the two-dimensional POP probiem than synbtactic stra-
tegies.

As with syntactic strategies, synthesis strategies rely on a set of primitives extracted from a
part’s boundary. For example, they may include primitives such as corners, line segments, circular
arcs and holes. A set of production rules are applied to the primitiyes found in the image, and a

part is ‘‘synthesized.”

More precisely, a synthesis strategy can be viewed as a tree search where the goal of the
search is to find a part in the image. For example, we will assume there exists a set of corner
primitives common to the part and the image. A synthesis strategy has a set of production rules
that determine the order in which primitives are selected. Suppose primitive 1 (see Fig. 2.10) is
selected as the first primitive. Primitive 1 is compared to all similar primitives in the image and a
tree is constructed in which the children of the root node represent the sites in the image that
match primitive 1. In order to determine which node in the search tree will be expanded a meas-

ure of the similarity between part primitives and image primitives is estimated.

One measure of similarity often used is the maximum attainable similarity (MAS). The MAS
is the maximum similarity that would be attained if the remaining unmatched primitives of the
part perfectly matched primitives in the image. Figure 2.10 shows an example where primitive 1
is matched to three different image sites. Estimates of 98%, 99%, and 95% are assigned at the
first level indicating the similarity that the notched rectangle would have to the image if all the
remaining primitives, 2, 3, 4, and 5, perfectly matched the image. Production rules select the
next primitive, in this example primitive 2, to be matched. The location of the part-boundary
(shown lighter in Fig. 2.10) established by the match of primitive 1 serves as a guide to the search

for 2 match to primitive 2 and subsequent match attempts.






Different search strategies are possible depending on the order in which nodes of the search
tree are expanded. A purely syntactic recognition strategy results if only the nodes with complete
similarity, i.e., 100% similarity, are expanded, while a hill climbing or best ﬁt. strategy results if
the node with the highest similarity is expanded. Finally, an A* heuristic search [Nil80] strategy
results if the expansion of the nodes is directed by the estimate of the maximum attainable simi-
larity. Whichever strategy is selected, the desired result is to reach a goal node where a complete

boundary of a part is located from primitives at some image site.

The major weakness of the synthesis strategies is in obtaining a good starting feature, or
seed feature, for the tree search and in the methods used in verifying the best image site. To
obtain a good seed feature, the strategy must choose some special feature such a corner or longest
line segment of the part. If a more common feature were chosen too many image sites would have
corresponding features and the tree would have too many children for an efficient search. How-
ever, by limiting the choice of seed feature, there is a danger that many of the chosenb seed
features will be occluded or distorted. A second weakness is that in the synthesis approach the
amount of perimeter matched is generally used to measure the quality of a fit. This measure has
the shortcoming that sometimes common features of many parts such as straight line segments or
circular arcs have more weight in deciding the quality of a fit than features that are unique to the

part that is to be located.

Now that we have examined the synthesis strategies, we will review several algorithms based
on these strategies. We begin with 2 strategy proposed by Tropf which incorporates a heuristic

search.

H. Tropf, “Analysis-by-Synthesis Search for Semantic Segmentation — Applied
to Workpiece Recognition’ Tropf's strategy, ‘“‘analysis-by-synthesis,” is essentially the heuris-
tic search strategy based on maximum attainable similarity outlined above |Tro80|. The

shortcoming of this approach is its reliance on special set of features, i.e., corners.

W. Haettich, “Recognition of Overlapping Workpleces by Model-Directed Con-

struction of Object Contours.” Haettich uses the same synthesis strategy as Tropf with line



segments as primitives [Hae83|. His search strategy, however, is a “best first”” strategy. With this
strategy fewer nodes are expanded, and only those in which the primitives at the image site bear

a strong resemblance to the ideal part are enlirged.

P. Rummel and W. Beutel, “Workplece Recognition and Inspection by a Model-
Based Scene Analysis System.” Rummel and Beutel base their work on Tropf's with a few
differences [RuB84]. The major difference is that a larger set of features than Tropf’s are
employed: corners, circular arcs and straight lines serve as primitives. The algorithm orders the
primitives by the degree of their importance, and compares them in this order to similar primi-

tives in the image. The importance of a primitive is assigned manually.

A. Riad and M. Briot, “Identification and Loecalization of Partially Observed

Parts.”

Riad and Briot use a heuristic ‘search strategy, but in addition to syntactic information, they
incorporate relational structures in the description of an object and perform both synthesis recog-

nition and subgraph matching [RiBS81|.

N. Ayache and O. D. Faugeras, “A New Method for Bﬁeognltlon and Position of
2-D Objects.” Ayache and Faugeras [AyF84] propose conceptually the same approach as that of
Ruhmmel and Beutel [RuB84|. Contours are approximated by polygons and line segments that
form the sides of the polygons are used as primitives. Differences are that Ayache and Faugeras’s
strategy uses ‘‘preferred’” segments as seed features and Kalman filtering to update estimates of
pose. Preferred segments are the longer line segments of the polygon approximations of the boun-
daries. These segments do not occur often in the image, and hence fewer image sites are chosen,
making the approach more efficient. The approach is one of the better structural approaches, and

will be examined in more detail in Chapter III.



2.4. Relational

Relational strategies tend to use more of the information available in an image than the
correlational approaches (see Sec. 2.2.1). Relational approaches, however, are sometimes
overwhelmed by the combinatoric growth in the number of relations between features. In the fol-
lowing review, relational strategies are brokem into three distinct classes: relational structures,
invariants, and relaxation. In the first class we will see how the incorporation of relational infor-
mation has led to a relational approach that is intractable. We begin with a discussion of rela-

tional structures.

2.4.1. Relational Structures

A relational structure is commonly defined as a set of features together with properties of
and relations between features. Figure 2.11a shows an industrial part with its relational structure
represented by a graph. The features of the part are corners, holes, and line segments, These
features, in turn, have properties of type and size and have relations of relative distance and rela-
tive orientation. The nodes of the Mh in Fig. 2.11b represent the features, and the arcs of the

graph represent relations between features.

A relational graph is convenient method of mapping a recognition problem into a computer.
‘For instance a part can be matched to an image by graph-matching. More precisely, a subgraph

derived from the part is matched to a subgraph derived from the image.

The problem of subgraph matching is often formulated in terms of a compatibdility graph. A
compatibility graph is a graph with nodes that represent assignments. In our application an
assignment would be an assignment of a part feature to an image feature that had the same pro-
perties. Figure 2.12a shows an image containing features of the industrial part of Fig. 2.11a. In
Fig. 2.11a corner C, has the same properties of type and size as corners C, and Cjp in the image
and, therefore, possible assignments are C\-C4 and C-Cp. Figure 2.12b shows the compatibil-

ity graph of the image and the part features where the arcs in the graph correspond to compati-



(a) (b)

Fig. 2.11. A part with its relational structure.

bilities between assignments. A compatibility is defined as a pair of assignments that preserves
relations between features. For example, the assignment of corner C, to corner C, is compatible
with the assignment of hole H, to hole H; because these assignments preserve the distance and
orientation relations between C, and H,. The assignment of corner C, to corner Cg, however, is

not compatible with the assignment of hole H, to hole H, .

With a relational strategy a part is assumed to be at the location of the part in the image
where the most feature assignments are compatible. In the compatibility graph this location is
represented by the largest totally connected subgraph, i.e., the subgraph in which every node is
connected to every other node. This type of subgraph is called a cligue. A clique that is not
properly contained in another clique is called 3 maximal clique. In general, there may be more
than one clique in a compatibility graph so that in locating a part we are interested in finding the

largest maximal clique. Unfortunately, this problem is NP complete [GaJ79]. Johnson [Joh74]



(a) (b)

Fig. 2.12. Image and part-image compatibility graph.

has surveyed several fast heuristic methods for finding the largest cliques and has noted that their
worst case perfoimance is extremely bad. Heuristic techniques have been developed but in all

cases only a few features can be used if the approach is to remain tractable.

Now that we have examined the basic concepts behind relational structures, we will review
several algorithms based on their use. We begm with a algorithm due to Ambler et al. that uses

a largest maximal clique approach

A. P. Ambler, H.G. Barrow, C. M. Brown, R. M. Burstall, and R. J. Popplestone,
“A Versatile Computer-Controlled A_nembly System.’” Ambler et al. are among the first
to treat the POP problem as a subgraph matching problem [ABB73]. To identify a part, they
locate the largest maximal clique in a compatibility graph between the part and the image. They

use this approach to locate industrial parts with imperfections, but in practice do not attempt to



locate overlapping parts.

R. C. Bolles and R. A. Cain, “Recognising and Loeating Partially Visible Objects:
The Local-Feature-Focus Method.” Bolles and Cain base their algorithm on a simplified
maximal cliques strategy called “local feature focus” During training, their algorithm isolates
“focus” features that are unique to one pose of the part. A focus feature is a configuration of a
central feature, such as a prominent hole or comner, surrounded by nearby features, holes and
corners. To recognize the part, they build a compatibility graph between the set of focus features
and features extracted from the image and finds the largest maximal clique. Then, using the loca-
tion of the clique in the subgraph, they hypothesizes a pose of the part in the image. They test
this hypothesis by fitting a template for the part to the image. The shortcoming of this approach
is that, because it relies on a maximal clique algorithm, only a small set of features can be used in
order to obtain reasonable performance. However, as a general rule, the fewer features incor-
porated into the algorithm the less robust the algorithm. This approach is one of the more

interesting relational approaches, and will be examined in more detail in Chapter III.

W. E. L. Grimson and T. Losano-Peres. ‘“Model-based Recognition and Localiza-
tion from Sparse Range or Tactile Data.” Grimson and Lozano-Perez propose a strategy in
which a few segments of the boundary of a part can be used to locate the part [GrL84]. Parts are
modeled as polygons. Pairs of polygon segments of the part are compared to pairs of polygon seg-
ments of the image. Using geometric relations between segments, e.g., distances between centers
of segments, angles between normals to segments, and angles relative to the segment normals of
vectors between corresponding segments, they attempt to find configurations of segments pairs in
the image that are unique to one pose of the part and thus located the part. This approach is

similar in many ways to the one proposed by this thesis.



2.4.2. Invariants

One strategy for general object recognition is to find a set of invariant features of an object
and to compare these invariant features to those taken from an image. While many features have
been discovered that are invariant to rotation and translation, few features (color is one) are
invariant to partial occlusion. One solution is to work with invariant features of subobjects of an

object.

R. Brooks, “Model-Based Three-Dimensional Interpretations of Two-Dimensional
Images.” Brooks in his algorithm ACRONYM decompoees objects into structures of subobjects
modeled by ‘‘generalized cylinders” [Bro83]. Generalized cylinders have properties that make
them invariant over a wide range of views. Therefore, subobjects, modeled by generalize

cylinders, should be recognizable over a wide range of views.

Generalized cylinders, introduced by Binford in [Bin71], describe three-dimensional volumes.
Each cylinder is specified by a space curve, called a spine, a two-dimensional cross section, and a
sweeping rule. The cross section is kept at a constant angle to the spine, and is deformed accord-
ing to the sweeping rule (see Fig. 2.13). Brooks choses generalized cylinders with straight spines,
either circular, square, or rectangular cross-sections and sweeping rules that requires the cross-
section be deformed linearly. Generalized cylinders with this choice of spine, cross-section, and
sweeping rule always project into images of ellipses and trapezoids. Therefore, to recognize the
generalized cylinders, Brooks need only look for features of ellipses and trapezoids in the image.

In other words, the shapes ellipses and trapezoids are his invariants.

Given a set of object models, Brook’s ACRONYM contains geometric reasoning rules that
are used to predict shapes and relationships that might be observed in an image. For example, if a
subobject can be described by a right cylinder, ACRONYM can predict that parallel lines from
the sides of the cylinder and an ellipse from the end of the cylinder should appear in the image.
ACRONYM also predicts ‘‘quasi-invariants’’ that change slowly with changes in viewpoint, e.g.,

the length of the cylinder would be quasi-invariant.



cross section
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Fig. 2.13. Generalized cylinders.

To recognize an object ACRONYM looks for shapes that it predicts should be in the image.
It builds an relational graph for the objects based on its predictions and an relational graph for
the image, consisting of shape and their poses found in the image. ACRONYM interprets images

by subgraph matching between the predicted graph of the object and the graph of the image.

C. K. Cowan, D. M. Chelberg, and H. S. Lim, “ACRONYM Model Based Vision
in the Intelligent Task Automation Project.” Cowan et al. point out that the success of the
original implementation of ACRONYM is due to its concentration on objects that had structure
that could be well approximated by skeletal descriptions, that is, objects that could be cleanly
decomposed into subobjects and that exhibited clear relationships between subobjects [CCL84].
Unfortunately, industrial objects do not generally exhibit this structure. Cowan et al., therefore,
extended ACRONYM by adding several new capabilities to help solve industrial problems. They

increase the set of permissible generalized cylinders to a slightly larger set. They add helixes to
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model springs and cylinders with holes to model tubular shapes. In addition, they add new rea-
soning rules to ACRONYM to account for the new subobjects. However, even with the new

extensions ACRONYM is limited in its ability to recognize objects.

R. B. Fisher, “Using Surfaces and Object Models to Recognise Partlally Obscured
Objects.” Fisher uses regions as quasi-invariant features [Fis83]. Objects are described as struc-
tures of connected surfaces. Each surface contains its own coordinate system. Conmnections
between surfaces are specified by a relative translation, rotation, slant and tilt between pairs of
coordinate systems. A set of heuristics are used to estimate a transform that would map the sur-
faces of the object into image regions. From this transform the pose of the part can be estimated.

Unfortunately, most of the heuristics break down when the surfaces are partially occluded.

B. Bamieh and R. J. P. De Figueiredo, “Efficient New Technique for Identifica-
tion and 3D Attitude Determination of Space Objects from a Single Image.” Bamieh
and Figueiredo approximate objects by polyhedrs and compare invariants of the faces of the
polyhedra to invariants calculated from the image [BaF85|. The transformation from a face of a
polyhedron to the orthogonal projection of the face onto the image plane is an affine transforma-
tion. Therefore, Bamieh and Figueiredo combines moments of the faces to obtain invariants to
affine transformations [Hu62]. The part and the image are represented by attributed graphs: the
nodes represent faces of polyhedron with properties of moment invariants and angle between
faces. Arcs between nodes represent adjacencies. Recognition is accomplished by matching a
subgraph of the part to subgraphs of the image. The main shortcoming of this strategy is the
assumption that the image can be represented as a projections of polyhedral faces and that the
interior boundaries between faces exist. With non-polygonal parts, this assumption is invalid. The
boundaries do not exist in the image since they are imaginary boundaries resulting from the

polyhedral approximation.



2.4.3. Relaxation

Relaxation is an iterative parallel strategy in which a globally consistent solution to the
problem of matching a part to an image can be obtained by guaranteeing local consistencies, e.g.,

guaranteeing that local primitives of the part match primitives of the image.

W. S. Rutkowski, “Recognition of Occluded Shapes Using Relaxation.” Rutkowski
introduces a probabilistic relaxation labeling approach as a solution to the POP problem [Rut82].
Rutkowski assigns a probabilistic labeling vector to each boundary point in the image. The ele-
ments of a vector represent the probability that the edge point can be labeled or interpreted as
either one of the edge points of the boundary or as a ‘‘noise’ point. The noise point is a catch-all
for edge points of the image with no correspondence in the boundary. Recognition of a part,
therefore, is formulated as a problem of finding the most probable interpretation of each edge

point of the image.

Each edge point in the image is considered to be a node in a graph. The arcs in the graph
represented relations between pairs of edge points. Relations between nodes included distance,
symmetry, orientation of each edge point relative to a line joining their centers, and relative
orientation. Relations either positively or negatively reenforced label assignments at the pair of
edge points that they connect. If the label assignments are consistent with the relations, the reen-

forcement is positive, otherwise it is negative.

The probabilities of assigning node n a label [ is denoted P(n,/). The total probability of
assigning a label to a node is normalized to one. Probabilities for nodes n, and n, are updated
by a ‘“reenforcement” functions, R (ny,/y,n4,!,), where R takes on high value when the relations
between node n, and node n, supports the conclusion that n; and n, should be labeled with I,

and [, respectively and a low value otherwise.

The updating strategy is to replace the probability of a label assignment, P(n,/,), by a
value that reflects the consistency of the label assignment with label assignments at other nodes,

that is
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P(nyl) = Y P(nyly) P(ngla) R(nylynalg)

spls
and then to renormalize the updated probabilities,

P(n,l

P(n,l)«~ Plal)’
1

The approach is essentially heuristic although it has a strong probabilistic flavor. After several

iterations the relaxation algorithm arrives at a probable labeling for each image point.

B. Bhanu and O. D. Faugeras, “Shape Matching of Two-Dimensional Objects."”
Bhanu and Faugeras use a variation of probabilistic relaxation labeling in which a global fit cri-
terion is optimized to guarantee the most consistent labeling [Bha84] Boundaries of parts and
the image are approximated by polygons. Their algorithm assigns two probability vectors to each
line segment of the polygon approximation of the part. The elements of the first vector, p, esti-
mate the probabilities of assigning image segments as labels to the part segments. The part seg-
ments are nodes in a relaxation graph as in Rutkowski. The elements of the second probability
vector, q,, represent the compatibilities of each label ﬁsignment with the two neighboring seg-

ments of a part segment. Vectors, p; and q, are again more heuristic than probabilistic.

Bhanu and Faugeras argue that the inner product of p, with either q, represents a good
local measure of ambiguity or inconsistency between how segment i ‘“‘thinks’ it should be labeled
and how its neighbors “think” segment { should be labeled.” Based on this argument Bhanu and
Faugeras derived two global criteria based on the two q,'s with which they can maximize the
consistency of label assignments. The algorithm optimizes these criteria with a gradient projec-

tion algorithm to obtain a labeling for each line segment in the image.

J. K. Cheng and T. S. Huang, “Recognition of Curvillnear Objects by Matching
Relational Structures.” Cheng and Huang [ChH82| use chords between critical points on the
boundary as features. If a chord connects two points A and B on the boundary, they choose the
following properties of the chord: the length of the boundary from A to B, the area enclosed

between the boundary and the chord, and the coordinates of the center of mass of the enclosed



area. They also select a set of relations between chords such as antiparallelness, adjacency, col-
linearity and symmetry. Relations also contain the attribute of the distance between chord

centers. This set of features and relations are used to form a relational structure.

Cheng and Huang match ‘‘stars’’ of the relational structure of the part to those of the
image. A star is a node along with its relational arcs and the neighboring nodes to which it is
linked by an arc. A assignment between a star of a part and a star of an image is a “starpair.”

Their algorithm uses relaxation to compute the probability of matches between starpairs.

2.5. Conclusion

This concludes our review of existing approaches. In the next chapter we will examine three
of the approaches in more detail and describe the results of applying these algorithms to a test

image. These results will be compared to those we obtain with our approach in Chapter VI



CHAPTER III

ALTERNATIVE ALGORITHMS

3.1. Introduction

In Chapter 2 we selected three algorithms for detailed analysis. One was a correlational
algorithm due to Koch and Kashyap [KoK85|, another was a structural algorithm due to Ayache
and Faugeras [AyF84], and finally the .third was a relational strategy due to Bolles and Cain
[BoC84]. These algorithms are characteristic of each of the three categories of POP recognition
approaches. In this chapter we will describe the algorithms in more detail and report results
obtained from applying the algorithms to a set of test images. The test images that we have
chosen are images of a bin of identical parts. The parts are those used in a car’s door lock assem-
bly (see Fig. 3.1 and Fig. 3.2). We used this test set in order to gain some insight into exactly
how the algorithms worked. In addition, the results we obtained gave us an idea of how the algo-
rithms perform on typical industrial images. We compare the perform?mce of our algorithm on

the same set of images in Chapter V1.

3.2, Correlational Strategy

Koch and Kashyap locate parts by correlating corners of the part to those in the image. To
accomplish this goal, the boundary of the part is approximated by a polygon and the vertices of
the polygon with large curvature are selected as corners. Curvature at a vertex is calculated as
the ratio of the exterior angle (3 in Fig. 3.3) of the vertex to the average length of the polygon

line segments that form the vertex.

45
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Fig. 3.1. Two sides of a door lock part no. 1.

Once the corners of the part and image have been determined, the algorithm generates
hypotheses as to the location of a part in the image by matching corners of the part to corners in
the image with similar attributes. Corners have associated attributes of curvature, sign of con-
vexity, and the values of the first two moments about the vertex. The moments are calculated in
the standard way from the location of points uniformly sampled on the polygon line segments, S,

and S, 4, that form the vertex.

Let (z7,47) and (z,-’,y.-’) represent respectively the corresponding points of the corners of the
part and image polygon boundary. Koch and Kashyap determine a transformation, i.e., a rota-
tion ¢ and translation (u,v), which, when applied to the points (z,3"), minimizes the distance
between the transformed points and the corresponding image points, (z.’,y.-’). The values of ¢ and

(u ,v ) that satisfy the above criterion are given by
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where i is summed over the number of points sampled in the corners.

In order to combine the different hypotheses Koch and Kashyap use a Hough transform.
More precisely, the (4, u, v) obtained from matching corners are tabulated in a 3-dimensional

¢-u -v histogram. The triplets ( 4, z, y ) that correspond to clusters (modes) in the histogram

Fig. 3.2. Bin of door lock parts.




are interpreted as the best hypotheses for the part in the image.
The following are some of the insights we have gained from implementing this algorithm.

e The corner detector used by Koch and Kashyap is a poor corner detector. It does not give
intuitive corners for parts in the image. In fact, the corers it typically selects do not correspond
to those in the part. For example, for the images on which we executed this algorithm, many ver-
tices in the image had approximately the same curvature (see Fig. 3.4). The failure of their
corner detector can be traced to a basic flaw in the method in which the corners are determined.
In the example shown in Fig. 3.5 the segments that form the corner are long. Therefore dividing
the exterior angle by the average of the lengths of these segments, as in [KoK85], results in a low
value of curvature even though the curvature at the corner is obviously high. On the other hand,

if the segments are short the curvature will appear to large even if the exterior angle 3 is small.

Fig. 3.3. Determining the curvature.
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e A second insight is that the Hough does not perform properly when applied to a small set
of features. The Hough approach relies on clustering a sufficient number of points to support a
hypothesis. Accidental clusters of a few points are typical, therefore unless a cluster has a large
number of points, it cannot be interpreted as supporting a correct hypothesis. Typically there are
few visible corners in a part, and thus clusters in the (¢-u-v) histogram, even for a correct -
hypotheses, will contain few points. Clearly, the Hough approach is inappropriate when a few

corners are used as features.

o Finally, the Hough transform as discussed in Sec. 2.2.1, because it chooses the most fre-
quent hypothesis as the correct hypothesis, fails to fully use the information available in an
image. A Hough strategy does not make use of much of the information available in an image and

is therefore a much weaker approach than a relational strategy.

Fig. 3.4. Corners found in the part and image.




Fig. 3.5. Comer with high curvature.

Figures 3.6-7 shows the results of applying Koch and Kashyap’s algorithm to the standard
POP image. Boundaries taken from both sides of the part were correlated to the image. The
results for the obverse side of the part are shown cross hatched in Fig. 3.6 and those for the
reverse side of the part are shown cross hatched in Fig. 3.7. The cross hatched parts have been
given poses that correspond to the (9,1 ,v) at which the largest clusters in the §-u -v histogram
occurred, containing 7 or 8 points each. As evident in the image, the algorithm of Koch and

Kashyap fails completely for this particular image.

Further experiments were run a test set of fourteen 256 X256 pixel wide images of a bin of
seven door lock parts. The algorithm was successful in locating the obverse side of the part 2%

of the time and successful in locating the reverse side of the part 4% of the time.
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3.3. Structural Strategy

The algorithm of Faugeras and Ayache is known as “HYPER.” HYPER is typical of the
structural strategies and yields good results for many POP images (see results presented in

[AyF84]).

HYPER locates parts in the following way. The boundary of the part to be located is
approximated by a polygon which we will refer to as a ‘‘template.”’ A template consists of a list of
line segments of the polygon. From this list HYPER chooses the ten longest segments as “‘pre-
ferred” segments. Starting with the longest preferred segment, HYPER searches the image boun-
dary, also approximated by a polygon, for a corresponding segment that has approximately the
same length as the preferred segment and the same relative angle to a adjacent image segment as
the preferred segment has to it adjacent segment in the template. We will call the location of

corresponding image segments image siles.

HYPER transforms the template so that the preferred segment, T, is aligned with an
image segment, [, at an image site (see Fig. 3.8). The rotation in this transformation is taken as
the angular difference, 6, between the two segments, T, and [, In addition,l the translation
(8 vo) that aligns T and /, is determined by rotating T'o by 9, and taken the difference in posi-

tion of the centers of segments. Let (’Td”"o) and (z; o,y,o) represent the centers of segment T

and /, respectively. The translation (u4,v,) is computed from
uo = 2 - 25,0 (6p) + yr 2in ()
and

Vo == Y1, = Zr, 0 (60) - Yr,c09 (60)

After finding an initial transformation of the template into the image, HYPER attempts to
iteratively fit the remaining segments of the transformed template with corresponding image seg-
ments. Segments are fit in the order indicated by the subscript of T, shown in Fig. 3.8. During
every iteration i, HYPER tries to locate a segment of the image boundary that has approximately

the same length and orientation as a segment of the transformed template. If it succeeds,



HYPER fits the coordinates of the the midpoint of the template segment to the coordinates of the
corresponding image segment to update its estimate of the template transformation. This update
is performed with a Kalman filter. The equations for the Kalman filter are the following. Let
V) represent the 4-dimensional vector
cos (6))
gin (64))
a()
o
where (6),u(),0(')) represents the estimated orientation and centroid location of the part after
the i™ iteration. Let C) represent the 2X4 matrix
28 -y 1 0
v ) 01
which contains the .centroids (z4!),yf!)) of template segment T;. Let Y) represent. the 2-
dimensional vector, (zz(} ).r:(; )), of the centroid of the image segment that is found to correspond
to the T, during the & * jteration. Then the matrix equations for the Kalman filter are defined

recursively by

V) e VO 4 Oy (Y0 - 06) ¢ VO,
K® = 50D x (CO)T x (W6 4+ €1 x SC-V x (Ct)T)?

§S®) = (1 - KW x €0) x s,

where I is an identity matrix. In addition, SU') is a covariance matrix, the initial value of which is
essentially guessed. W(') is a noise variance, again a quantity that is guessed. K ) is an inter-

mediate matrix.
The results obtained from the Kalman filter, at least in this application, are almost exactly

the same as those obtained from an iterative weighted least squares fit (see Nahi [Nah69]). There

is really no benefit in using the Kalman filter over a more conventional fitting algorithm.

After each iterative update by the Kalman filter, a measure of the quality of the fit, is com-

puted. The quality is simply the sum of the lengths of the image boundary segments that



Fig. 3.6. Results of Koch and Kashyap’s algorithm for POP test image.




Fig. 3.7. Further results of Koch and Ka_shyap's algorithm for POP test image.

correspond to template segments in the fit. This sum is called the “ Q" of the fit.



The process of fitting the template to the boundary is repeated at every location in the
image boundary at which a segment is found that corresponds to one of the preferred segments.
The fit with the highest quality measure, Q ., is assumed to be the correct location of an

instance of the part in the image.

However, because there are typically several hundred image sites in the image boundary, fit-
ting the complete template at each site would be extremely inefficient. Instead, HYPER saves a
running value of the highest quality measure and uses it to bound latter fits. At each new image
site segments of the image are fit to the template. After each segment is fit a quantity called the
maximum achievable Q@ is determined. The maximum achievable Q represents the largest Q
that can be expected from a fit, given the segments that have already been matched to the tem-
plate. It is estimated by summing the current Q of the fit plus the length of the template seg-
ments that have yet to be fit, on the assumption that these latter segments could possibly fit per-
fectly. If the estimate of the maximum achievable @ of the fit falls below Q ., the fit is aban-

doned.

This strategy is very much like that of Rummel and Beutel [RuB84] except that they also

include corners and circles as matching primatives.
The following are some of the insights we have gained from studying HYPER.

e Many of the unique features of the boundary, i.e., features that allow easy recognition of
the. part, are distorted in HYPER. For example, features around high curvature portions of the

boundary are not well approximated by polygons.

o The use of Kalman filtering is essentially the same as a recursive least squares fit of the

template segments to the image segments. There are considerably simpler ways to perform this

fit.

o HYPER chooses the long line segments of the part boundary because these segments are
generally the least common segments in a template. Unfortunately, they are also the most likely

to be occluded in a POP image.



Fig. 3.8. Iteratively fitting the template.




§7

Fig. 3.9. Results of HYPER for POP test image.




e One shortcoming of the approach is the strategy that it uses to determine the measure of
the quality of the fit, Q. This tends to give more weight to unimportant features of parts.
HYPER rates a fit by the length of the image boundary that corresponds to the template. This
does not discriminate between a fit to unique features of a template and to commonly occurring
features of the template. For example, HYPER would report a better fit if a long line segment of
the template matched the wrong part in the image, than it would if a shorter but unique set of

segments matched the correct part.

Figures 3.9-10 shows the results of applying HYPER to a standard POP image. Both sides
of the part were matched to the image using HYPER. HYPER finds one instance of the part in
Fig. 3.9 but fails to find any inhFig. 3.10. The three templates shown cross-hatched in the image

are the template fits with the three highest Q 's. These poses are all incorrect.

In further test on the fourteen images mentioned above, HYPER found the obverse side of
the part correctly 14% of the time, and found the reverse side of the part 18% of the time. It was

in error in the remaining attempts.

3.4. Relational Strategy

As a example of a relational strategy, we chose the algorithm of Bolles and Cain [BoC84|
known as “Local Feature Focus” or LFF for short. Of the relational strategies, this strategy

appears to be the most effective.

LFF. The LFF algorithm recognizes a part in an image from features and relations between
features of the part. In the approach suggested by Bolles and Cain features are regions and
corners. More precisely, regions are connected areas of the part that share some common pro-
perty such as a single grey level value. Corners, on the other haad, are locations on the boundary
that can be fit by a pair of line segments. As an example of these two types of features, Fig. 3.11

shows a region (cross-hatched) and two neighboring corners (highlighted) for door lock part no. 1.
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Fig. 3.10. Further resuits of HYPER for POP test image.




Fig. 3.11. Features of door lock part no. 1 used by LFF algorithm.

From the set of features, the LFF algorithm selects a subset of preferred features called
“focus” features. A focus feature has the property that, together with a list of nearby features
called “‘co-features,” it identifies a unique pose of the part. In other words, if a focus feature of a
part is found and enough of its meighboring ‘“‘co-features” are found, the pose part can be

uniquely identified in the image.

Each co-feature has a set of characteristics. These characteristics include type, distance from
the focus feature and orientation with respect to the focus feature. If any instance of a focus
feature is located in an image, the LFF algorithm searches for occurrences of co-features. If co-
features are found, the algorithm builds a list of possible assignments of features of the part to
those of the image. From this list a compatibility graph is constructed. The largest maximal

clique of this graph is assumed to represent a correct set of feature assignments.
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Focus features are selected during a training stage. Given a set of object models, the LFF
algorithm selects a random feature as a potential focus feature. It then selects a set of nearby
features for each focus feature and then ranks the focus features according to the predicted costs

of using them to identify an object.
The following are some of the insights we have gained from studying the LFF algorithm.

e In the LFF algorithm, features are chosen to be easily identified primitives such as
regions and corners. These sets of special features will not, with great likelihood, be found undis-
torted in sufficient numbers to be useful in locating a part in a POP image. For example, regions
are prone to occlusion. In addition, corners built from pairs of straight line segments are not well
defined unless they include a considerable amount of the perimeter. The approach can be made
more robust by selecting fragments of these features, i.e, segments of the perimeters of regions or

segments around corner. This approach adds some redundancy to the feature set.

o Recognition is accomplished by locating the largest maximal clique in a compatibility
graph. This problem is NP complete. For this approach to be reasohably efficient, only a few

features may be selected as focus features, but this reduces recognition capability.

Figure 3.12 shows the results of applying Bolles and Cain’s algorithm to the test POP image
of Fig. 3.2. The hole in the part served as the focus features and the co-features were the corners.
As is apparent from the image, only one hole was undistorted and therefore only one part was
found. From the test set of 96 images mentioned above, 14 parts (14.5%) of the parts were recog-
nized using Bolles and Cain’s algorithm with the focus feature shown in Fig. 3.11. All parts had

the hole exposed.

An improvement on this algorithm would be to use critical points as the features. In this
case, the features are again easily found. Unfortunately, most images contain a large number of
critical points. This along with the fact the recognition algorithm is NP-complete makes the

approach impractical for even a modest number of features.



Fig. 3.12. Results of LFF for POP test image.




CHAPTER IV

RECOGNIZING PARTIALLY OCCLUDED PARTS

4.1. Introduction

In this chapter we will present our method for solving the POP recognition problem. We
start by presenting arguments for constructing part-models from pairs of fixed length overlapping
boundary segments. These pairs of segments, which we term configurations, form the primitive
features of our part-modéh. An efficient method is presented for determining matches between
configuration-segments from the part-models and configuration-segments in the 'image. It makes
use of a dual representation for segments: 3 cartesian representation and a f-s representation
similar to that discussed in Chapter 2. To further improve the recognition procedure we associate
a number in the half-open interval (0, 1] with each configuration that indicates the degree to
which it distinguishes the part containing the configuration from other parts in the set of parts.
This number is the saliency of a configuration. The concept of saliency is formalized. Next, a
training method for the automatic generation of salient configurations is presented. The confi-
gurations above a certain saliency threshold are used in the part-models. Finally, a strategy is

presented for solving the POP problem that uses the part-models.

4.2. Part-models

A model-based POP recognition algorithm consists of two components. First, a set of models
containing geometrical information about features of the parts to be recognized. These models are

embodied in the data structures of the algorithm. Second, a strategy that uses the models to



recognize the parts. This strategy is embodied in the code of the algorithm. The degree to which
a model-based algorithm solves the POP problem depends largely on how much information the
models represent about the parts and their features. No matter how ingenious the algorithm is, it
cannot create information and, therefére, the performance of any algorithm is bounded by the
amount of information in the models. Thus, we can set some limits on the potential performance
of algorithms for the POP problem by simply examining the information that the algorithms use
in their part-models. With this in mind, the types of features we have chosen to embody in our
models can better be appreciated if we first briefly review some characteristic models used in the

algorithms siuveyed in Chapter 2.

Part-models based on edge points are proposed by Merlin and Farber [MeF75] and Ballard
[Bal81]. Edge points are 3 good representation in the presence of occlusion, because, short of total
occlusion, some edge points of a part-model will always appear in the image. Unfortunately, as a
representation, edge points have the disadvantage that they are relatively indistinguishable from
one another: edge points can belong to any boundary of any part in the image. (Ballard uses the
slope angle of an edge point to distinguish it, but this is very little added information). For this
reason, as we saw in Chapter 2 (see Sec. 2.2.1), the generalized Hough transforms of Merlin and
Farber, and Ballard often find incorrect locations for parts. The edge points of the part may
correlate better with edge points that belong to other parts, or to the wrong edge points on the

same part, than to the correét set of edge polnts

Part-models based on edge points with associated probabilistic labeling vectors and relations
between edge points, are used by Rutkowski [Rut82]. Rutkowski associates a probabilistic labeling
vector p' with each edge point § of the image. Element p ; represents the probability that image
point i can be labeled as edge point j of the part. Rutkowski uses the labeling vectors and spa-
tial relations between edge points as input to a relaxation algorithm. Each edge point in the
image boundary is assigned a vector of labels, one label corresponding to edge point of the part
boundary. For n edge points in the part boundary and m edge points in the image boundary

there are n X m labels. Each of these labels updated in an iterative fashion, using a set of of



heuristic relations, until a final label is assigned to each edge point (see Sec. 2.4.3). The part-

models are unnecessarily complex and result in undesirably long recognition times.

Part-models based on grey level regions are used by Kelly et al. [KMB83]. A grey level
region is no more than a coutiguous set of gray valued pixels. By correlating certain regions with
an image, one can estimate the location and identity of parts in the image (see Sec. 2.2.3). If we
adopt the approach in [KMB83|, region correlation requires O (n*m?) operations,l when images
have n Xn pixels, regions have m X m pixels, and m? different views of each region are used.
Region correlation is sensitive to occlusions because it is unreliable when based on small regions.
In a POP image the visible regions of a part will generally be small, and, therefore, regions are

inadequate features for the POP problem.

Part-models based on azial representations, such as the symmetric axis transform (SAT) of
Blum and Nagel [BIN78| and the smoothed local symmetries (SLS) of Brady and Asada [BrAs4],
are simple models to compare. However, they contain much less of the structural information
present in a part’s boundary than the original boundary. SAT's derived from occluded parts are
often completely distorted, because SAT are sensitive to occlusion of the the boundaries. SLS's
are much less sensative to occlusion. However, SLS’s derived from occluded parts, because they
contain much less structural information than the original boundary from which they are derived

often have ambiguous interpretations (see Sec. 2.2.2).

Part-models based on limited sets of special features, such as corners and holes, are used by
Bolles and Cain [BoC84], Tropf [Tro80|, Koch and Kashyap [KoK85], and Stockman [SKB82|. In
contrast, our algorithm selects a set of features that are special in the sense that they distinguish
the part. The type of special features in the above references have the advantage that they are
easy to locate and are thus useful for quick recognition. However, these features occur infre-
quently on the contours of typical parts, making them vulnerable to occlusion. In general, algo-
rithms that rely on a limited set of features, such as holes and corners, will often not find enough
of the features in the image for reliable recognition. In addition, they tend to be problem specific.

Without an automatic way to select special interesting features from a set of parts, it is necessary



to redesign an algorithm for each problem domain.

Part-models based on line segments that form the sides of a polygon approximation of the
boundary of a part are used by Ayache and Faugeras [AyF84] (see Sec. 2.3.2). Line segments are
more frequent in typical images than special features, but are distinguishable from each other
only by their length. When recognizing a part, Ayache and Faugeras compare only the longer
segments from the part-model to the segments in the image. This dramatically reduces the
number of comparisons from the number required if they had compared line segments of arbitrary
length. Unfortunately, in POP images the longer line segments are more likely to be occluded,

and, thus, are generally not a good choice of features.

Our brief survey of part-models suggests that probabilistic labeling vectors, regions, axial

representations, special features, and line segments, are not particularly suitable features for use

Fig. 4.1. Door lock part no. 1.
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in solving the POP problem. By comparison, edge points appear better suited to the problem.
Their main shortcoming is that they have no local structure to differentiate one edge point from
another. This can be overcome by using sequences of linked edge points, or segments. Moreover,
to maximize the number of visible segments in the presence of occlusion, segments may be over-
lapped. Therefore, we have chosen fixed length overlapping segments of the boﬁndary as com-
ponents in the features for our part-models. The fixed length is a design parameter and depends
on the set of known parts. If the length is too short, the segments will be indistinguishable. On
the other hand, if the length is too long, the segments are less likely to be visible, although longer
segments are implicitly compared when shorter fixed length segments that cover the longer seg-
ments are compared. The fixed segment length should be related to the curvature of the parts: if

there is frequent occurrences of high curvature, segments should be short.
©\‘%\\§

Fig. 4.2. POP image and visible segments of door lock part.




The set of overlapping segments are obtained from all the boundaries from all of the part’s
stable positions. Since the part is 2-dimensional, we make the assumption that it will always
appear in quasi-stable position, that is to say, tilted little from one of its true stable positions,
even when it is in a pile with other parts. Figure 4.1 shows a part, and Fig. 4.2 shows a POP
image with the visible segments of one instance of the part hi;hlighiéd. Finally, to minimize the
possibility that a segment, resulting from the random alignment of two or more contours from dif-
ferent parts in an image, can match one from a part-model, we have chosen to use configurations
of segments as features. Figure 4.3 shows a configuration. It is simply two fixed length segments
in a fixed relative position. The relative position of two segments can be defined by the angle
between the vectors from the mid-points of the segments to the centroid of the part’s boundary
from which the segments are taken. The notion of a configuration could be extended to allow an

arbitrary number of components or segments. This extension is similar to Bolles and Cain’s local

Fig. 4.3. A configuration of segments.




feature focus, which is a configuration of special features [BoC84|. In the following we will not
consider configurations with other than two components.

Configurations form the primitive features of our part-models. However, using them
indiscriminately for recognition would result in an inefficient algorithm, since each part has a
‘large number of comfigurations which are nearly indistingnishable; To counter this we have
adopted a measure for the distinctiveness of a configuration which we term the saliency of the
configuration. Informally, the saliency of a configuration is the inverse of the frequency of
occurrence of the configuration in the set of known parts. The idea behind this notion is that the
more often a configuration is found in the set of parts, the less important the configuration is in
distinguishing a part and its pose. An efficient recognition strategy begins by trying to identify

the most salient configurations first. The concept of saliency must be modified slightly when

Qe

Fig. 4.4. Segmented boundary representation of a part.
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noise is taken into account, as we shall see. However, before exploring saliency more fully, we first
present an efficient method for determining matches between configuration-segments from the

part-models and configuration-segments in the image.

4.3. Segment Matching

A part-model may be viewed as a boundary partitioned into overlapping fixed length seg-
ments together with saliency information for configurations (Fig. 4.4 shows overlapped segments
AA' , BB’ , and CC' ). An implementation need not store all the segments; it can simply store

the boundary as a linked list of edge points from which segments may be taken during run-time.

4.3.1. Dual Representation

In our part-models we keep a dual representation for the configuration-segments. The first is
a straightforward cartesian representation and the second is the 8-s representation discussed in
Chapter 2 (s‘ee Fig. 4.5). The 6-s representation is a parameterization of the slope angle, 4, of
the part's boundary by its arclength, #, where arclength is measured from an arbitrary starting
point on the boundary. The slope angle can be represented as a function of arclength, (s ). The
0-s representation allows us to compare segments of the part-model with segments in the image
that are.flipped, segments in the image with contrast reversals, and segments in the image that
are scaled, in each case more efficiently than in a cartesian representation. The 6-s representa-
tion does not, however, preserve 2-dimensional distances between segments. Therefore, to com-
pare configurations of segments of the part-model to t.he‘ those in the image, it is first necessary to
compare segments of the configuration individually in 6~¢ space and then to check the relative
poses between segments in cartesian space. We will assume that two configurations matched if
their segments have the same relative pose in cartesian space and if the corresponding segments of

the configurations match in #-¢ space.
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(a) (b)

Fig. 4.5. A part and its 6—¢ representation.

4.3.2. The 0-s Representation

The principal reason for using the -2 representation is that segments can be compared

more efficiently in this representation than in a cartesian representation.

Comparing Configurations. In a cartesian representation, segments are compared by fit-
ting a segment of the part to a segment of the image. Fitting involves three parameters: z and y
components of translation, and a relative rotation angle, ¢. In the 0-2 representation the seg-

ments can be fit with one parameter, the relative orientation, ©.

To compare a part-model segment with an image segment, we select the sum of the squares
of the differences between corresponding slope angles as a measure of the closeness of the fit. The
centers of the segments are aligned and the § values of the part-model segment, 6 (s, ) for

i = [-n, - ,n], are least squares fit to the corresponding 4 values of the image segment, 0, (s, )



(a) (b) iﬁi\

Fig. 4.6. Critical points of part and POP image.

for i = [-n, - - ,n]. We assume that both segments have been sampled at equal arclengths at n

points on either side of their centers. The fit parameter, ©, is chosen to minimize the following

1
2n +1

> (0uln)-6(s,) - OF.

§ am-N
The minimum occurs when

1
2n +1

Y (0u(8,)-01(s,) ) = O - 5y,

) -0

O =

in other words, when © is simply the difference between the mean tangent angles of the two seg-

ments. The minimum residue

\ 1
R=-[ ! i(9u(0-)-b-u-(91(8s)-31))2]2» (41)

2n + 1,2,
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can be used as a measure of the similarity of the segments, and is used by us to decide whether
the segments match. Equation (4.1) is all that must calculated to compare segments once 4 and 2
are determined. In practice we assume that two segments match if R is less than a fixed thres-
hold, D. The value of D is chosen to reflect the noise anticipated in the images under considera-

tion. We assume that two configurations match when
1) the relative poses of the segments of the configurations in cartesian space are equal and,

2) the segments of ome configuration individually match corresponding segments of the

second configurations in 8- space, i.e., are within a tolerance D of each other.

Critical polnts. Critical points in a boundary, if they exist, can be used to further
improve the efficiency of comparison. We define critical points as the maxima and minima of the
curvature of the boundary that have curvatures above a fixed threshold. These are the larger

valued maxima and minima. The curvature of a contour is the first derivative of (s ) with
respect to ¢, or ;‘_ﬁ(‘ﬂ (see [Lip69]). If a segment of the part-model contains critical points, as is

often the case, it need only be compared to segments in the image that contain similar critical
points. By comparing a part-model segment to only those image segments with similar critical
points, we substantially reduce the number of comparisons needed to locate matches. The loca-
tion of critical points in the contour is readily obtained by applying a 1-dimensional edge detector

to the function 4(s ).

Figure 4.6a shows the critical points of a part; curvature maxima are shown as circles and
curvature minima are shown as squares. Figure 4.6b shows the critical points of the boundary in

a POP image. Note the correspondence of critical points.

In addition to a providing a simple method for comparing contour segments, the §-3
representation can also be used to compares segments of flipped parts. This provides a savings
when the flip-side of a part is a mirror image of the obverse side. This often happens with 2-

dimensional parts.
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Flipped parts. Figure 4.7a shows the flip-side of the part shown earlier in Fig. 4.5. The
tangent angle 6 at each edge point on the boundary of the flipped part in Fig. 4.7 is the negative
of the tangent angle at a corresponding point on the boundary of the original part, and the con-
tour of the flipped part is traced in the opposite direction to the contour of the original part.

Thus, the - representations of the two views are related by,

Oriipped (8) ™ = 0,rigimai (= (2 = 29)) + 8o, (4.2)

where s, represents a possible offset if the two contours have different starting points, and, 4,
represents a possible rotational offset if the two contours have different orientations after the flip.
Thus, to search for the segment of a flipped part, the corresponding segment of the part-model is
reverse in direction and its 4 values are negated before the segment is compared to the image

boundary. Compare the §-s representation of the part in Fig. 4.5b to that of its flip-side in Fig.

(a) (b)

Fig. 4.7. Flipped part and §-# representation.
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(a) (b)

Fig. 4.8. Contrast reversal of a part and 6-# representation.

4.7b.

The 6-2 representation can also be used to compare segments of opposite contrast. This is

important when parts are reflective, as we noted in Chapter 1.

Contrast reversals. Reflective parts can have contrast reversals. By convention the
direction of the boundary is traced by keeping the higher contrast pixels on the left. Therefore,
contrast reversals can cause direction reversals in segments of the boundary. This information
cannot be easily stored in 3 model of the part because it depends on the lighting. However, it can
still be accommodated by our part-models if segment matching is performed in both directions.
The segments are compared in the direction consistent with the part-model’s contrast and then in
the reverse direction to search for areas of the part that are reversed in contrast from the model.

This allows segments with contrast reversals to be found, and, as a consequence, reflective parts
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can be recognized in an image. Figure 4.8a shows the contrast reversal of a part. The ¢-¢
representation of the part in Fig. 4.5 is related to the —s representation of the part in Fig. 4.8

by,

egntfm reversed (') - ammd( = (' = '0)) + 6o, (4'*3)

where s, represents a possible offset if the two contours have different starting points, and 4,
represents a possible rotational offset if the two contours have different orientations. Combining
(4.2) and (4.3), we see that the ¢—s representation of the contrast reversal of a flipped segment is

related to the 6—¢ representation of the original segment by,

O tipped, contrast reversed (8) ™= = 0, piginas (8 — 80) + G5 .

Thus, contrast reversals of segments in both flipped and unflipped views can be compared to the
segments in the part-model by appropriately changing the direction of trace and/or negating the

values of 4 obtained.

Finally, the 6-¢ representation of a part can also be used to locate scaled partially occluded

parts.

Scaled parts. We consider only parts that appear scaled down, or shrunk, from the
model’s scale. Magnification can be handled in an analogous fashion. Shrinking a part decreases
the arclength between points on the contour of its boundary but does not change the slope angle
of the points. Its §-s curves are compressed uniformly along the s axis, but the slope dnglé
structure remains the same. Figure 4.9a shows an example of a boundary that was extracted from
an image of a half-scale version of the part in Fig. 4.5. Notice that the boundary is scaled down
in the & direction by a factor of two, but maintains much of the same structure as the original

G-s representation. The 6-# representation of the two parts are related by

[ BN
Oscaied (') == amgnd [ K ? ] +6o,

where K is the scaling factor. Again, &, represents a possible offset if the two contours have dif-

ferent starting points, and , represents a possible rotational offset if the two contours have



(a) (b)

Fig. 4.9. Scaled boundary and 8-s representation.

different orientations.

To compare a part-model contour to the image contour, initially one critical point, C, (see
Fig. 4.10), in the part-model segment is aligned along the s axis with a critical point, C,' , on
the image contour. A second critical point on the part-model contour, C, is aligned with a
second critical point on the image boundary, C,' . This is done by contracting the -s represen-
tation of the part-model—until the two sets of critical points are aligned. In practice this is accom-
plished by uniformly resampling the d-s representation of the part-model so that it has the same
number of samples between the first and second of its critical points as the image boundary has
between the first and second of its critical points. The - representation of the image boundary
and of the contracted part-model boundary are compared using the sum of the squares of the

differences as a measure of fit. If the two representation match, a scaled version of the part is

assumed to have been found (see Sec. 6.2.3 for results).
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Fig. 4.10. Comparing segment to scaled segment.

In general, a critical point may have no corresponding critical point in the other boundary.
This may be caused by occlusion or by curvature changes due to scaling. Therefore, it is neces-
sary to try to match several consecutive pairs of critical points of the part-model to consecutive

pairs of critical points of the image boundary.

4.4. Saliency

A configuration of a part can be assigned a saliency that measures the importance of the
configuration in identifying the part. The saliency of 3 configuration is learned during off-line
training from the boundaries of the complete set of parts that may appear in the image. The con-
cept of saliency is central to our recognition algorithm. To simplify the presentation of the con-

cept we begin by considering the the case where there is no noise in the image. We then show this



is a special case of saliency in the presence of noise.

Without nolse. If parts are viewed without noise and all parts appear with equal likeli-
bood in an image, we define the saliency of a configuration qf segments to be the inverse of the
frequency with which identical configurations appear in the set of parts. For example, assume
that the notched rectangle and the square shown in Fig. 4.11 are the set of parts that may appear

in an image, and that both have equal probability of appearing. The configuration of corner A

2—1—4 or —;, since identical configurations appear twice in the

and corner B has a saliency of
rectangle and four times in the square. Figure 4.12 shows how saliency is computed for the confi-
guration of corners A and B. The dashed outlines indicate the six alignments of the set of parts
that yield matches. The notation X-Y means that segment X from one of the parts is matched
with segment Y of the rectangle. Note that, in effect, both parts are moved around to find
matches with the configuration A and B. We could just as easily have imagined the matching

process as moving the configuration while the parts were held fixed. Continuing our example, we
see that the configuration of corner A and corner C has a saliency of -% since identical confi-

gurations appear twice in the rectangle. Finally, the configuration of corner A and the notch E
has a salizncy of 1 since this configuration appears only once in all the parts: it uniquely charac-
terizes the rectangle and its pose in the image. If this configuration appears in the ilhage, the
pose of the rectangle is known with probability one, barring accidental alignments (see below).
The calculation of saliency depends on knowing the set of all parts that may appear in an image,
consequently part-models that make use of saliency implicitly incorporate comparative informa-

tion about the particular part set.

Clearly, saliency is highly dependent on the set of parts. To illustrate this consider a set
that contains only the notched rectangle of Fig. 4.11 and a similarly notched triangle (see Fig.

4.13). Reexamining the saliency of the configurations in the rectangle reveals that the configura-

tion of A and B now has a saliency of -é; the configuration of A and C still has a saliency of

-;; but the configuration of A and the notch £ now has a saliency of 1 and thus no longer

2



Fig. 4.11. Parts without noise.

uniquely identifies the pose of the rectangle. However, the pose of the rectangle is still uniquely -
identified by C and E.

The saliency of a configuration is in some sense indivisible; it cannot, in general, be deter-

mined from the frequency of occurrence of its component segments. For example, in Fig. 4.11 the

saliency of the configuration formed by corners A and B is -é, and the saliency of A and C is
-; , while the inverse of the frequency of the individual segments A, B, aad C are all —; .

We now turn to consider noisy images. If noise is present in an image the saliency of a con-
figuration may be defined by generalizing the probabilistic viewpoint introduced informally above.

With noise. In the following, we will adapt the simple Bayesian argument of [TMV85b] to
formalize the concept of saliency for parts when noise is present in the image. First some nota-

tion. Let B,(z, y, 6) describe the boundary of part p from the set of known parts. The
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parameters 2 and y are the coordinates of the ceatroid of the boundary and ¢ is the orientation
of the boundary about the centroid—differeat values of 2z, y aad ¢ comd to different poses.
In practice 2, y, and ¢ are restricted to a finite set of values as a result of digitization. Thus, it is
more accurate to represent B, (2, y, ¢) 2 B, (3,,y,,0,) where ¢, j, and k are indices for the fin-
ite set of values to which z, y, and # are restricted. Assume that B, (3,5, ,4; ) is partitioned into
a set of overlapping segments. If B, (2,,y,,0;) consists of u segments there will be LL;;‘) con-
figurations (pairs of segments). Let C;(z, y,,0;) be the r* configuration of boundary

B, (2,,y,,0:), where r ranges from 1 to L(-'-{—l)

Fig. 4.12. Computing saliency.




Assume configuration C, is preseat in an image at pose z,, y,, and 4,. In general,
C,y(2, ,y,,0:) will be distorted by noise so that it will appear as some coafiguration C. Let the
probability that C, is distorted into C be represeated by Pr(C | C)(3,,y,,0; )] Without know-
ing in advance which configuration caused C, the configuratios C may be interpreted in several
ways. Let the probability that C will be correctly interpreted as C,(z,,y,,9: ) be represented by
Pr(C,(3,,5,,0:) | C|. Then, the product

Pr(Cy(3,,5,.0:)| €] X Pr[C | C;(3.5,,0: )],

is the probability that C,(a,,y,,0;) is present in the image, appears as a configuration C, and is

correctly interpreted as configuration C,(3,,y,.0; ).

It is impossible to know & priors the form in which C,(3,,y,,0;) will appear in 2 image due
to noise distortion. It is, however, still desirable to determine the probability with which the
presence of C,(z,,y,,0;) will be correctly interpreted. We therefore define the saliency of confi-
guration C,(2,.y,,0;) as the probability that C,(z,,y,,0; ) will be present in an image and will be
correctly interpreted, givea that C,(z,,y,,0:) could be distorted into any poesible configuration

C. This definition can be written as
SAC) (2,9, 8:)) = %‘;pr[ Cl(z.9,0) | €] X Pr|C | Cll2.9,.0:)].

Saliency is 2 measure of how unambiguously a configuration will be recognized, given all the pos-
sible distortions it can undergo due to noise. If the noise is independent of z, y, and 4, the
saliency is also independent of 2, y, and 4, in which case, the above definition can be rewritten

as,
v A ? ?
SA(C)) = %IPfl Cylz .0, .0:) | €] X Pr[C | Cjl5.9,,8:)] (4.4)

The probabilities still depend on the pose z,, y,, and 0, . However, it is not important which
pose, only that a particular one be chosen. Varying z,, y,, and §; changes the terms that coatri-
bute in (4.4), but the summation remains constant because the it is taken over all possible coafi-

gurations €. We will further explore this definition by individually examining the terms on the
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right-hand side.

The term Pr[C | C;(z,,y,,8;)] is a noise distribution for the image. It is the probability
that configuration C;(z,,y,,0;), when present in the image, will be distorted by noise and appear
as configuration €. The noise distribution is intrinsic to the image and not to the configuration
Cy(z,,y,.8:)

The term Pr| Cj(z,,y,,0;) | C ] is the probability that the appearance of C in the image
will be interpreted as C,(z,,y,,0;). If there are many configurations that can appear as C the
probability will be low. If, however, only a few configurations, including C,(z, ,y, ,6;), can appear

as C the probability will be high. The expression for Pr| C,;(z,,y,,6;) | C | can be rewritten as

PriC | CJ(z,,y,.0:)] X Pr[ CJ(z,,y,.0:)]
Pr|C| '

Pl‘[ Cp'(zl 'Y, 10k) ' c ] = (45)

where Pr| C,(z,,y,,0¢)] is the a priori probability that configuration C,(z,,y,,0;) is prescnt in
the image, and Pr| C | is the total probability that configuration C appears in the image. Apply-

ing Bayes’ rule to Pr| C | yields

PriCl= Y, Pr|C | Cj(z/,ym ,0,)] X Pr|CJ(z,ym 0,)] (4.6)

q.8,0,m,n

where Cj(2/,ym ,8,) is the ¢™ configuration of boundary B,(z,ym ,8,). Part ¢ is any of the set
of known parts, including p, that can appear in the image. The term Pr|[C | C(z,yn 0,)] is
the probability that configuration Cj(z;,yn ,8,) is present in the image, it appears as C. The
term Pr| C(2/,ym 95 )] is the a priori probability that Cj(z,ym 0, ) is present in the image. We
have assumed in this expansion that the segments in a configuration come from the same part,
and not from the accidental alignment of segments of two or more parts. More precisely, an
accidental alignment occurs when a configuration of segments from two or more parts happens to
fall in a relative position that resembles a configuration of segments from a single part. Strictly

speaking (4.6) should also include terms of the form Pr(C | S; S/ | X Pr([S; S/ | and higher

th

order joint probabilities, where Sq'l and Sq’2 are the i and j# segments of different parts ¢,

and ¢,. Accidental alignment would cause some of these terms to be non-zero. We assume that
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Fig. 4.13. Notched rectangle and triangle without noise.

accidental alignments have negligible probability. With this assumption (4.5) becomes

Pr[C I Cp'(zny;yok)] X Pr[ Cp'(z, Y, ,6,‘)]
Z Prlc ' Cqs(zlvym ’011)] X Pr[ Cqs(z,,ym ,9,‘)] (4")

4,5, ,m,n

Pr[Cp'(ztvyjrgk) I C ] =

If we assume that a part is equally likely to be at any pose in the image then

Pr| C/(2;,yn ,0,)] is a constant independent of z, y, and §. This constant is proportional to,

the frequency of parts of type q in images
number of digitized poses

To simplify the discussion we will assume that the parts occur equiprobably; therefore, the con-

stant terms are all equal and, thus, cancel one another. This results in the following,
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Pr(cC | Cy(z .y, 0:) ]
2 Pr[ C I Cqs(zl 'Ym ron )l ’ (4'8)

g,sd,m,n

Pr| CJ(z,,y,,0;) | €] =

Substituting (4.8) into (4.4), the saliency of C,(z,,y,,0;) becomes

Pr[(D ' Cp'(znyj!ak)]z
Y PrlC | Cizyn ba)] (4.9)

q.5.,m,n

S4() =%

If we assume, for the moment, that no noise is associated with the boundaries of the image,
equation (4.9) can be greatly simplied. Let I(e € A ) represent an indicator function whose value
is 1 when e is an element of the set A and whose value is 0 otherwise. In the noiseless case, if
configuration C.(z;,y,,0,) is present in an image it will appear as C/(z,,y,,0,), thus,
Pr[C | C}(#,ym,0,)] becomes an indicator function I(C € {C;j(z ,yn,0,)}) defined for the
singleton set {C(2i,ym .04} Substituting  for  Pr[C | C/(z,,y,,6:)] and

Pr|C | CJ(z;,ym,0,)] in (4.9) we obtain,

. I(C €{Cyla.y, 0}  _ !
4G =2, Y HCE{Cilaum b)) X (G55, 0) € (Cilaum 02)))

By summing over all z;, y,, and 6, we are, in effect, moving part ¢ so that each of its confi-
gurations, s, is compared with the fixed configuration C,(z,,y, ,0; ). The resulting saliency is the
inverse of the frequency with which configurations C;(z,,yn ,0,), that are identical to configura-
vtio.n C,(z, .y, .9 ), occur in the set of parts. This agrees with our earlier informal discussion of

saliency.

Now, returning to the noisy situation, we observe that if the noise distribution
Pr(C | C)zi ,Ym .00 )] is known, the saliency for configuration C,(z,,y,,0;) can be calculated
from (4.9). On the other hand, if the noise distribution is not known but is characterized by a fit

tolerance, D , the expression on the right in (4.9) can be approximated as follows.

Denote by {C }p the set of configurations with segments which are in the same relative pose
as the segments of a configuration € and which are individually within a tolerance D in -3

space of corresponding segments of €. This set is simply the configurations that match € in the
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sense defined after (4.1). The set can also be viewed as a radius D sphere in configuration space
centered on C. Configuration space contains the set of all possible configurations. Points in this
space include all the configurations C; at all poses. The metric is the fit given by (4.1). We
assume a constant density of configurations in configuration space, and let the number of confi-
gurations in a radius D sphere in configuration space be N, a constant. Then, we can approxi-
mate Pr[C | C/(2/,ym ,0,)] by the term %,XI(C € {CJ(z/,ym 92 )}p)- In other words, we
have assumed that the probability that a configuration, C, can be distorted enough to fall outside
of the radius D sphere about C;(z;,ym,8,) is 0. Similarly, we approximate
Pr|C | C)(z,,y,,0¢)] by TIV XI(C € {Cy(2,,y,,0¢)}p). Substituting the above two terms into

(4.9) we obtain,

I(C € {C;(Zuyj ,0; )}D) ?
N
1(C € {C(21,¥m 8 )}p)
N

SA (Cp) = ;

D

g5.dym,n

(4.10)

1 1
~ = X ) ‘
N ¢e {C;(Z‘ 'yl "k )}D q S;m n I(C e {Cqs(zl Ym 'Bn )}D)
In the denominator of (4.10) configuration € is held fixed while the sum over ¢ ,s,/,m, and

n selects sets {CJ(z,ym ,0,)}p that contain C. Thus, the summation counts the number of

spheres that contain a particular value of C. This sum is equal to the sum

Y, 1(CJ(zi,um 0,) €{C}p). (4.11)

gy5,0,m,n

The equality follows from the observation that the number of radius D spheres centered on the
possible values of C;(z;,ym,0, ) that contain a particular C is the same as the number of centers
C/(2,Ym ,0,) within a sphere of radius D centered on the particular value of C. Substituting

(4.11) into (4.10) yields,
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1 1
v X S TGz A E€10) (412

¢ C'(z .y, .4
€{ ,( Y, e )p dosm.n

Diagrammatically, the C; terms counted in the denominator of (4.12) are shown in Fig. 4.14.
The solid circles represent the radius D spheres. Therefore, configurations within the circle cen-

tered on C are those within a D tolerance of C.

If we assume that the density of C;(z,ym,0,) configurations is locally constant within a
2D sphere centered on C, (the dashed circle in Fig. 4.14), then we can obtain an estimate of the
number of C;’s within D of C by the number of C; within D of C;. Substituting this number in

(4.12) yields,

1 1
- X Z r ’
N T €{C)(z,9,4))p 2 1(Cf(z1,um 84 ) € {Cy(2,,0,,8¢ )}p)

7.5,0,m,n

Fig. 4.14. Spheres in configuration space.




88

Since, the sum in the denominator is now approximated by a sum independent of C and the
cardinality of {C;(z,,y,,0¢)}p is simply N, we can eliminate the summation over C to yield the

following modified definition of saliency:

1
E I(Cqs(zl yYm ,0” ) € {CP’(II Y, ;gk )}D ) (4'13)

q’s vlvmv”

SA(C;) =

This is the working definition that we use to calculate saliency during training. In other words, we
approximate the saliency of configuration C,(z,,y,,0;) as the inverse of the frequency of all confi-
gurations of the set of parts that have segments in the same relative pose as those of C,(z, 'Yy .0k)

and which are within a D tolerance of C,(z,,y,,0;).

There are two points to discuss before concluding this section on saliency. First, in the spe-
cial case of symmetric parts we are generally uninterested in which of the equivalent symmetric
poses the part is found. For example, if a part has n rotational symmetries, n of its poses are
equivalent to us. In this case the saliency of any configuration of the part should be modified by
multiplying its normal saliency by the symmetry of the part. In other words, the saliency of a
configuration C, would become n X SA( C,,'). Clearly, this saliency is defined with respect to the
part—the same configuration in the other parts in the part set, i.e. parts without n rotational
syinmetries, would not have the same value of saliency. Second, if there is a priori knowledge
about the frequency of occurrence of each part in typical application images, the saliency of part-
configurations can be weighted by a normalized frequency of occurrence factor. This factor can be
accounted for by rederiving (4.13) from (4.7), but with the term Pr| CJ(z,,yn,0, )] now a func-

tion of the part ¢.

4.5. The Automatic Generation of Salient Configurations

Training is the process of determining the saliencies of the configurations of a set of parts.
Assume that we wish to determine the saliencies of the configurations of boundary, B,. An obvi-

ous approach is to start by comparing all of the configurations of B, to those of another boun-
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dary, B,, as was done in Fig. 4.12. This is inefficient. If there were u, segments in boundary B,

u, (u, -1 u, (u,-1
,{ ) configurations in B, with —q(o—q-) confi-

el

and u, segments in B, we would compare

u, (u,-1) « u,(u,-1)

gurations in B, for a total of 2 2

comparisons. Since all parts must be com-

pared there would be a grand total of,

« u, (u,-1) x ¥ u, (u,-1)

p‘?P 2 2

(4.14)
geP
where P is the set of known parts. Even though this is a one-time off-line computation, it is

unacceptably inefficient.

Instead the following approach is taken. The segments of B, are compared to the segments
of B,. If a segment of B, at pose (z;,yn,0,) matches a segment S)(z,,y,,0;) of B,, the pose
(z;,,ym 0, ) and the identity of S;, i.e., the index r, are stored in a match table. The match
should satisfy the D tolerance. As before, we consider the configuration to be fixed at
(z,, y,, 8;) while the segments of B, are moved. The match table is implemented as a hash table
with the ordered triple (z;,y, 6;) as the primary key. A key may have multiple indices stored at
its associated table location. After all segments of B, have been matched to those of B,, the
match table is searched for pairs of segments of B, which matched B, at the same pose. These
are simply pairs of indices at the same key. If two segment of B, match two segments of B, at
the same pose (z;,yn ,0; ) then the configuration of the two segments of B, must match a conli-
guration of segments of B,(z;, ym, 9,). Thus, searching the match table for pairs of indices at

the same key is equivalent to searching for matching configurations.

A 2-dimensional array, indexed by the identities of pairs of segments in B,, is used to
record the frequency with which configuration-pairs match the boundary B;. The array elements
are initially zero. Each time a configuration of B, is found which matches a configuration of

B, (2 ,Ym ,bx ), the element of the array corresponding to the pair is incremented.

After the match table has been completely searched, it is cleared and the segments of

another boundary, B,, are matched to the segments of B, . This is repeated for all ¢, including p
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itself. Each time, the array of frequencies is updated to reflect the number of matching configura-
tions. When the segments of all parts have been matched to the segments of B,, the reciprocals
of the elements of the array yields the saliencies of the configurations of B,. The configurations,
C,, with associated saliencies, SA(C,), form the part-model of p. In most applications only
those values C, with SA(C,) = 1 are retained for the the part-model. The whole procedure is
repeated for each part. It is straightforward to show that the number of comparisons required by

the training procedure is given by,

Z Z Up Uy .
pEPqeEQ

This compares favorably with (4.12).

4.8. A Strategy for the POP Recognition Problem

If a particular part is sought, an efficient strategy searches for configurations from the asso-
ciated part-model in order of decreasing saliency. As an example, consider searching for the rec-
tangle of Fig. 4.11 in a scene with the rectangle partly obscured by the square from the same fig-
ure (the scene is depicted in Fig. 4.15). Configurations which include the notch as a segment have
the larz:st values of saliency and should be compared first to the POP image. If no such pair can
be found, a configuration with less saliency, e.g., corner A and corner B, would then be com-
pared to the image. This process is continued until the part is found or no untried configurations
are left in the part-model. If the latter situation occurs we assume the part is not present or
totally hidden. If more than one part, for example a subset of the set of parts, is sought, a effi-
cient strategy is to search for all the configurations from the subset in order of decreasing

saliency.

Searching for configurations of a particular saliency can best be done by first searching for
the segment that occurs most often in the configurations. The search for individual segments can

be done in the manner outlined in the previous section, and illustrated by the following.

If the segment has a curvature extremum, we align the curvature extremum of the segment

with an extremum in the image boundary before comparing the segments. On the other hand, if
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(a)

(b)

(c)

(d)

Fig. 4.15. Locating a part.

the segment has no extremum, it is necessary compared to all segments of the image boundary.
In both cases, comparison is performed in the 6-s representation. If a good match is found
between the part-model segment and a segment of the image boundary (see notch in Fig. 4.15a),
the rotation and translation necessary to align the two segments is computed by performing a
least squares fit of the two segments in cartesian space. The rotation and translation are applied
to the entire boundary of the part (see dotted outline in Fig. 4.15b) and the transformed boun-
dary is used as a guide in searching for the second segment of a configuration with high saliency
(see the lower corner in Fig. 4.15c). The saliency provides an estimate of the probability that the

correct part at the correct pose has been located. In our example, if the notch in the rectangle
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were not visible in the POP image (see Fig. 4.15d), the algorithm locates the rectangle using a less

salient pair (corner A and corner B in Fig. 4.15d) and reports that the probability of it having

found the correct pose is —; , i.e., the saliency of A and B.

A variation on the above search strategy, would be to store pointers back to all the parts
that contained each configuration. The search starts with configurations (the configurations used
in consist of single segments ) that have non-maximal saliencies. When such configurations are
located in the image their possible interpretations are determined by fitting all the boundaries
from which the configurations may have be taken to the image, and then selecting the boundary
and pose with the best fit as the correct interpretation. This only works if there are a large
number of parts in the set and only a few are expected to appear in any image; and if fitting the

entire boundary can be done efficiently.



CHAPTER V

PREVIOUS POP WORK

6.1, Introduction

In this chapter we will describe the approaches that we have developed in the past for the
POP recognition problem. This material, perhaps, more properly belongs to the review of
Chapter II. However, we have chosen to isolate it here in order to justify some of the design

features of our current approach and to show how our approach evolved.

In the following we will summarize the papers in which our work appeared, and, in addition,

we will discuss some of our unpublished results.

5.2. Earlier Algorithms

J. L. Turney, T. N. Mudge, R. A. Volz, and M. D. Diamond, ‘“Experiments in
Occluded Parts Recognition Using the Generalized Hough Transform.” In this paper

[TMV83a] we presented an improved version of the generalized Hough transform (GHT) discussed

in Sec. 2.2.1 (see also [MeF75, Bal8l1].)

The GHT normally determines the pose of a part in a POP image by matching the edge
points of the boundary of the part to the edge points of the boundaries in the image. The major
shortcoming of the GHT is that it often incorrectly matches a large fraction of the edge points

and as a consequence determines an incorrect pose for the part.
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To improve the performance of the GHT we designed an algorithm in which edge points of
the part and image were allowed to match only if their neighborhoods matched. We chose as a
neighborhood a fixed length segment of the part or image boundary, centered on the edge point of
interest. For example, a neighborhood of edge point a in Fig. 5.1a would be segment A. Under
our constraint an edge point, g, would only be allowed to match an image edge point, a’ , (see
Fig. 5.1b) if the segment, A, centered on a4 matched the segment, A’ , centered on, a’ . In
essence we altered the problem from matching edge points to one of matching segments. In any

case, it is clear that our constraint eliminated a large number of incorrect matches.

However, even with this constraint incorrect matches can still accidentally occur when the
segments being matched are common to several locations on a part or common to many parts.

For example, segments with little structure such as the straight line segment S and the circular

. QJO\//
A .

. O\ _

(a) (b)

Fig. 5.1. Part-model and image boundary segments.
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Fig. 5.2. Occluded keys.

arc segment C will often incorrectly match many straight line and circular arc segments in the
image boundary (see Fig. 5.1b). To deemphasize the contribution of this type of segment in
determining the pose of a part, we assigned weights to segments based on their uniqueness, i.e.,
the more unique the segment the more the weight it was assigned. We calied this weight the
““saliency’’ of the segment. The algorithm for determining the segment weights will be discussed

in the summary of the next paper.

The segments and their associated weight form the part-model. We determined the pose of
the part by comparing segments of the part-model to segments of the image boundary and by
accumulating the weight for each matching pair of segments in a table indexed by the pose at
which the segments matched. The pose was represented by a triple (6, u, v), where u and v
were the cartesian coordinates of the centroid of the part and # was the orientation of the part

about the centroid. This triple was used as a key into the table. The pose was determined by



rotating and translating the centroid of the part boundary by the rotation and translation neces-
sary to bring the matching segments into alignment. After all segments of the part were matched
to those of the image, the pose with the largest accumulated weight was taken as the pose of the
part. By this technique, all matches between segments contributed to determining the pose of the
part, but the unique segments, the segments more likely to indicate a correct match, contributed

more weight.

In order to match segments, we represented them in a #-s representation similar to that
used in our current approach (see Sec. 4.3.1). In several experiments we found that the 6-s
representation of contours were less distorted by noise than the cartesian representations of the
same contours. In addition, the 4 values demonstrated good invariance, within a linear shift in 4,
to rotations. This invariance is necessary if rotated parts are to be located from the 6-s represen-

tation of a non-rotated part boundary.

To compare a part-model segment with an image boundary segment, we selected the sum of
the squares of the differences between corresponding slope angles in the 8(s ) functions of the two
segments as a measure of the closeness of the fit. We assume the functions were both sampled at
uniform arclength spacings. Again, this is similar to our current approach (see Sec 4.3.1). Besides
its simplicity, this measure has the advantage that it allows some latitude in matching segments.
This latitude is required because it is not always possible to obtain precise estimates of the
arclength, ¢, along the boundary. With the sum of squares of the differences as a measurement
of similarity, small deviations in the ¢ values do not significantly affect the outcome in compar-

ing two segments.

We tried other measures for comparing segments, in particular the maximum of the
minimum difference between ¢ values of the segments. This measure proved to be more costly in
the amount of time it took to compute and showed less tolerance to deviations in the arclength,

than the sum of squares measure.

During recognition all segments of the part boundary are compared to the segments of the

image boundary. For a part boundary containing n points and an image boundary containing m
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Fig. 5.4. Set of nine parts and occluded image.

points, O (n X m ) segment comparisons are required for the recognition of one part.
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Using our algorithm we

Figure 5.2 shows a scene containing a set of occluded office keys.

Fig. 5.5. Parts located using weighted segment approach.
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were able to locate the keys that we attempted to find (the keys are shown cross hatched in Fig.
5.3a2-b). In the experiment, segments of the boundary around the notches on the keys received

the greatest weight and were largely responsible for determining the pose of the keys.

J. L. Turney, T. N. Mudge, and R. A. Volz “Experiments In Occluded Parts
Recognition.” In this paper [TMV83b] we presented further improvements to the approach dis-
cussed above. A quadratic optimization scheme was developed for determining the weights
assigned to part-model segments and additional experiments were performed using the improved

approach.

The weights assigned to part-model segments were automatically determined off-line as fol-
lows. For simplicity, assume that two parts are to appear in an image. Let their part-models be
denoted by P, and P,. Although P, and P, are both part-models, it is convenient for this expla-
nation to consider P, to be a part-model and P, to be an image boundary. The segments of P,
were compared to the segments of P, as in the normal matching scheme. If a segment i of P,
matched a segment j of P,, a record of the match ¢,, X w, was stored in a table indexed by the
pose at which the segments match. The matching coefficient, c,,, was the taken to be
(1 + 7, ), where 7,, is the sum of the squares of the differences in the 6(s) values of the seg-
ments. Thus ¢,, was in the half open interval (0,1]. The closer two segments matched, the closer
the matching coefficient, ¢,, was to 1. The term w, symbolically represented the weight assigned
to the segment ¢ of P,. The product ¢,, X w, itself was symbolically added to the previous con-
tents of the table. After all segments were matched the table contained symbolic sums of the

weights accumulated at every pose at which a segment of P, matched a segment of P.,.

The part-model P, was matched in a similar way to the other part-models (including itself)
with the results stored in separate tables. After the matching was completed, the weights, w,
were adjusted to minimize the symbolic sums found in the tables for all pose except the correct
one. This was accomplished by minimizing the sum of the squares of the symbolic sums stored in
the tables subject to the constraint that the weights be positive and sum to 1. (The last constraint

was added to keep the weights from taking on values of zero.) With the set of weights determined
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by this method, matching the segments of part P, to an image containing other parts, e.g., P,,
would result in very little accumulated weight for any pose of P;. Thus the other parts would not
be interpreted as P,. However, if P, was matched to itself the accumulated weight at the correct
pose would sum to 1, and P, could be clearly located. The segments that were unique to a part

occurred in few of the symbolic sums and were, as a result of optimization, given larger weights.

Figure 5.4a shows a set of nine parts. Most of the parts are office keys with the exception of
one part, which we call door lock part no. 2, which appears once on its obverse side and once on
its reverse side. Figure 5.4b shows an image in which the parts occlude one another. Figure 5.5
shows the results of applying our algorithm to the image for several parts. The results were quite

reasonable. The only shortcoming to the approach was its complexity.

Some of work that we performed at this time, but did not report, was concerned with scaled
parts. Figures 5.6 and 5.7 shows the §-2 representation of several scaled views of two different
parts. The representations have been normalized along the s axis so that they have the same
total arclength. From these results it is clear that most of the structure of the §-s representation,
even for the notches of the key, is preserved under scaling. In the case of the key, less structure
about the notches appears to be preserved in the cartesian representation than in the 6-s
representation. In addition, critical points in curvature, corresponding to the locations on the §-s
of large slopes, were, generally, preserved. These observations led to our proposed scheme for

locating scaled parts (see Sec. 4.3).

J. L. Turney, T. N. Mudge, and R. A. Volz, “Recognizing Partially Occluded
Parts.” In this paper [TMV85a] we summarized the work that had been accomplished using the
weighted segment approach discussed above. In addition, we presented a more formal develop-
ment of the optimization technique used to determine the segment weights, and we reported

experiments comparing the performance of our algorithm to the GHT of Ballard [Bal81).

Figure 5.8c shows the results of using the GHT in a simple experiment in which a key is to
be located in an image. Three office keys A, B, and C (see Fig. 5.8a) appear in an image (see Fig.

5.8b). Keys A and C are identical except for their notches. Key B is placed on top of key A,
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Fig. 5.8. Experiment with overlapping keys.

occluding it. The normal GHT, because it places equal emphasis on every edge point, incorrectly
recognizes key C as key B, while our algorithm, because it weights segments of the key that dis-
tinguish it from other keys, correctly recognizes key B (see Fig. 5.8d). Additional experiments in
applying the GHT to the image of Fig. 5.4b for set of nine parts yielded a false pose for several of

the parts.

J. L. Turney, T. N. Mudge, and R. A. Volz, “Recognizing Partially Hidden
Objects.” From our work with weighted segments, it became clear that for many images only a
few visible segments of a part are needed to correctly locate a part [TMV85b]. With this in mind,
we developed an algorithm that automatically selected pairs of part-model segments that could

uniquely identified the part. This idea was expanded into our present approach.

The method of determining the unique configurations of a part-model was similar to the

approach presented in Sec. 4.5. The recognition strategy, however, was somewhat different.
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Instead of matching segments of the part-model to the image as we currently do, the reverse was
done. Segments of the image were taken from sequential locations in the image boundary and
compared to the segments of the part-models for parts that were to be located. In this sense the

approach was data driven.

If an image segment matched a part-model segment, the pose of the part (determined in the
same way as discussed above) at which the segments matched was stored in a table. The coordi-
nates of the pose, (6, u, v), were used as a key into the table. As more segments of the image
were matched to the part-model the table was checked to determine if two segments stored in the
table from the same part had the same pose. If they did and if the two segments formed a unique
configuration of the part-model for the part, the part was assumed to be located. The pose of the

two segments was taken to be the correct pose of a part in the image.

Figure 5.9 shows the results of using this algorithm to locate a key and an industrial part in
the image of Fig. 5.4. As the parts were located, the boundary of the part-model was overlaid on
the image. The repeated location of the parts through the use of different unique configurations of
segments is indicated by the thickness of the lines shown in the overlays. More importantly, no

false poses were determined for the parts.

One additional note: in this paper we defined saliency of a segment as the number of unique
configurations of the part-model to which a segment belonged. This differs from our current
definition where saliency is a precomputed estimate of the probability of occurrence of a part-

model configuration (see Sec. 4.4).

T. N. Mudge, J. L. Turney, R. A. Volz, ‘“Automatic Generation of Salient
Features for the Recognition of Partially Occluded Parts.” In this paper we presented a
more formal definition of saliency and derived the results for saliency that appear in Sec. 4.4
[MTVS85]. In addition, we altered the strategy of locating parts to its present form (see Sec. 4.6).
We also introduced the use of critical points to speed up the algorithm (see Sec. 4.3.1). We per-
formed experiments to determine the usefulness of the various properties of the —s representa-

tion discussed in Sec. 4.3.1. This led to experiments in locating flipped parts. In this paper we
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Fig. 5.9. Locating parts from unique pairs of segments.

presented some initial results in locating the part (which we refer to as door lock part 1) of Fig.

5.10 in a bin of identical parts. These results along with others are reported in the next chapter.
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Fig. 5.10. Five no. 1 door lock parts located.




CHAPTER VI

RESULTS AND DETAILS OF IMPLEMENTATION

8.1. Introduction

In this chapter we will present the results obtained from of our model-based POP recogni-
tion algorithm. In addition, we will present some of the details of the implementation that we

have postponed discussing until now.

8.2. Results

8.2.1. Identical Parts

In order to illustrate our approach, we first applied our algorithm to a set of images of a bin
of identical parts, a common mode of presentation for parts in industry. There were seven identi-
cal parts in each bin. The part was of stamped metal and was reasonably flat (the smallest dimen-
sion of the part was 15% of the largest dimension). This part is door lock part 1 used elsewhere

in the thesis (see Fig. 4.1).

Figure 6.1 shows an example of a typical set of image edge boundaries obtained for a bin of
no. 1 parts. Edge boundaries were obtained using a Canny |[Can83| edge detector (see implemen-
tation details later in this chapter). Parts were painted with a non-reflective coating to allow us
to test our algorithm without the additional complication of obtaining good edge boundaries.

(Unpainted reflective parts are treated later in this chapter.)

108
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Fig. 6.1. Edge boundaries extracted from a bin of no. 1 parts.

There were fourteen 256X 256 images of the bin of parts in the test set. There were, there-
fore, 96 instances of parts in the set of images. Figures 6.2-3 show the results obtained for locat-
ing the door lock part in one of the images. (For the test image shown in Fig. 3.2, we were able
to find 5 of the 7 parts; see Fig. 5.10). We had an overall success rate of approximately 5.8 parts
found per image (83%). Only one part in one image (1%) was falsely reported. Both the obverse
and reverse sides of the parts were located from the part-model of the obverse side. Thus, in
essence, this experiment tested the usefulness of our algorithm in recognizing both normal and
flipped parts from one side of the part. (Slightly better results would be expected if both sides of
the part were used in locating the parts—the parts were not completely flat and the obverse and

reverse sides are not true mirror images of one another.)

The plot of Fig. 6.4 conveys more information than simply the percent of parts recognized.

It shows the percentage recognition versus the percentage of a part’s boundary that is exposed in
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Fig. 6.2. Parts located.
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Fig. 6.3. More parts located.
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Fig. 6.4. Percentage of parts located v. percentage of part boundary exposed.

the image. We have loosely sketched a curve suggesting a possible relation between the number
of paris found versus the amount of exposed boundary of a part. One would expect that as less of
the part was exposed, the probability of recognizing the part would decrease. This behaviour is
evident in the curve of Fig. 6.4. One can see that we obtained reasonable results even when as
little as one third of a part’s boundary was exposed. Of course, these results are strongly corre-
lated to the choice of part but, in any case, reflect the robustness of the approach for a typical

industrial part.

The numbers in the graph adjacent to each point show the number of instances of parts in
the images supporting the data. For example, there were 12 parts with between 35% and 40% of

their boundary exposed, and 83% of these parts (10) were located by our algorithm.

The percentage of boundaries exposed were obtained by manually fitting a template of the

part with tick marks evenly spaced along the template. The template was fit to the image boun-
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daries and the tick marks corresponded to the image boundary were counted. The fraction of tick
marks that corresponded to exposed segments of the image boundary gave the percentage of the
image boundary exposed. This technique also allowed us to determine the percentage of the

boundary exposed for parts that were not found as well as for those that were found.

Parts were tilted up to approximately 30 degrees. Although the algorithm was not explicitly
designed to locate tilted parts, we were able to locate many of these part by adjusting the thres-
hold on segment matching to accommodate the distortion in the §-s representation of the image

boundary segments resulting from tilt.

For part-models of n segments and image boundaries of m segments, the worst case com-
plexity for locating a part would be O(n Xm). In practice the worst case is seldom realized.
With the use of critical points to speed up recognition (see Sec. 4.3.1) very little of the image
boundary is actually matched before a part is found. In addition, once a part is found in the
image, the boundary corresponding to the part is eliminated from further matching. If p parts

were separately sought, the complexity would be O (p Xn Xm).

Recognition times were on the order of 4 to 5 seconds per part on an Apollo 660 node. This

value, however, does not include preprocessing such as edge detection and edge linking.

68.2.2. Non-identical Parts

We next tested the algorithm on images of overlapping puzzle parts. These parts, shown in
Figs. 6.5, were ten typical jigsaw puzzle parts. Some of the parts that we selected were very simi-
lar in appearance and had many common features. They were chosen in order to tax our algo-
rithm. Because of the similarity of the parts, fewer configurations were unique to any one part,
and, as a consequence, our algorithm needed, on average, a higher percentage of the boundary of
a part exposed in order to locate the part. In addition, it was necessary to use a smaller threshold
on segment matching during training and recognition so that our algorithm would be able to

better distinguish between similar configurations. However, this gave the algorithm less latitude
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Fig. 6.5. Jigsaw puzzle parts.

in recognizing tilted parts, and for this reason the algorithm failed to locate several tilted parts
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that had a large fraction of their boundary exposed.

Figure 6.6 shows the edge boundaries taken from a typical image. Parallel edges were due
to shadows. Shadow edges had the opposite direction as normal edges and thus were not often
incorrectly interpreted as edges of the parts. There were eight images of this type tested, or 80
instances of parts involved in the tests. Figures 6.7-8 show some of the results obtained for the
image of Fig. 6.6. Overall, we had a success rate of approximately 6 parts found per image
(75%).

The plot in Fig. 6.9 summarizes the results. It shows the percent of the puzzle parts recog-
nized in the images versus the percent of a part’s boundary that is exposed. The percentages of
boundaries exposed were obtained in the same way as in the first experiment by manually fitting

part-model templates to the image boundaries. The numbers in the graph adjacent to each point

Fig. 6.6. Occluded puzzle parts.
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show the number of instances of parts in the images supporting the data.

Fig. 6... Puzzle . arts located.
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We have again sketched a curve suggesting a relation between the number of parts found

Fig. 6.8. More puzzle parts located.
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and the percentage of their boundary that was exposed. One can see that considerable more

exposure of the boundary on the average was necessary than in the previous experiment with the

industrial part.

Recognition times were on the order of 7 to 8 seconds per part on an Apollo 660 node. This

value does not include preprocessing such as edge detection and edge linking.

8.2.3. Scaled Parts

To test our approach for recognizing scaled parts, we selected the part whose boundary is
shown in Fig. 6.10a. This part is also taken from the mechanism for a car’s door lock, and is door
lock part no. 2 from Fig. 5.4a. We obtained three images of fragments of the part at scales of

roughly 60%, 40%, and 20% of the initial scale of the part.

=
.H

3 3
100 — o o o L ] [ ]

$recognized

$exposed

Fig. 6.9. Percentage of puzzle parts located v. percentage of part boundary exposed.
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(b) (d)

Fig. 6.10. Cartesian and §-# representation of door lock part no. 2.

Figure 6.10c shows a fragment of the boundary of the part at roughly a 609 reduction. Fig-
ure 6.10b shows the -3 representation of the full-scaled part and Fig. 6.10d shows the 6-s
representation of the 60% scaled part fragment. Clearly, the two 6-s representations are identi-

cal except for a scale factor along the s axis.
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The critical points of door lock part no. 2 are shown in Fig. 6.11a and those of the 60%
fragment are shown in Fig. 6.11b. Correspondence between locations of critical points in the con-
tours is evident. However, not all of the critical points are the same at the two scales. As the
part is scaled down, the curvature at some boundary locations increases and new critical points
are created. On the other hand, as the part is scaled down, the resolution of the boundary is

decreased. and some critical points are lost.

The scale for the fragments of door lock part 2 was found (see Sec. 4.3) by matching pair-
wise combinations of critical points of the part to pairwise combinations of critical points of the
fragments. For each match a scale was hypothesized, and the -3 representation of the part was
down-scaled by this factor and fit to the 6—s representation of the fragment. Figure 6.12 shows

the results of applying our scaling algorithm to the §-s representation of part 2, overlaid on top
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Fig. 6.11. Critical points of door lock part 2 and fragment.
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of the §—s representation of the 60% scaled part fragment. The two -3 representations fit suffi-

ciently well that it is difficult to distinguish between the two curves.

The figures on the left in Figs. 6.13a-c show the cartesian contours of the 60%, 409, and
20% scaled part fragments while Figs. 6.11d-f show the results of applying our algorithm to locat-
ing the part 2 in the scaled images. The scales determined by the algorithm of Sec. 4.3.1 were

within 5% of their correct values.

8.2.4. Reflective Parts

For this experiment, the non-reflective coating previous placed on the several of the door
lock parts was removed. These parts are highly reflective and as a consequence the boundaries of

the parts have different contrasts to the backgrounds depending on lighting and viewing

Fig. 6.12. Overlaying scaled 6-s representations.
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Fig. 6.13. Scaled parts found.

conditions. Figure 6.14a shows the edge boundary of the parts obtained when most of the surface
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(a) (b)

Fig. 6.14. Image boundary of reflective part.

area of the parts was darker than the background. Figure 6.14b shows the 6-s representation in
the neighborhood of the highlighted segment of the image boundary. The part-model boundary of
the door lock part was taken from a image in which the part was lighter than the background.
Figure 4.5 shows the §-s representation of the part-model, a segment of which corresponds to the
segment of Fig. 6.14a. One can see by comparing the two 6-s representations that they are

locally mirror images of one another. This agrees with our discussion in Sec. 4.3.1.

The critical points for the image boundary of the reflective parts are of opposite curvature
(see Fig. 6.15a—squares represent minima and circles represent maxima in curvature) to those of
the part-model (see Fig. 4.6). This reversal occurs because the curvature of the critical points is
calculated under the convention that the brighter surface is on the left when tracing the boundary
of a part in increasing arclength. We have previously assumed that the brighter surface belonged

to the part. This assumption treats the background of Fig. 6.12a as if it were the part and
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determines the critical points accordingly. Therefore, in images in which contrast reversal can
occur, in order to use critical points to speed up segment matching, segments containing critical
points must be compared to segments containing critical points of both positive and negative cur-

vature.

Figure 6.16 shows the results of applying our modified algorithm to locate contrast reversed
segments resulting from reflective parts. The three parts (shown cross hatched in Fig. 6.16) were
all successfully located from a part-model of opposite contrast. Recognition times were again

between 4 to 5 seconds.
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Fig. 6.15. Critical points of the reflective part.
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8.3. Details of Implementation

Our algorithm consists of three components: preprocessing, training, and recognition.

6.3.1. Preprocessing

Preprocessing is used for building part-models and for converting images into boundary
representations. Preprocessing consists of edge detection, edge linking, contour normalization,

and critical point extraction.

Edge detection and linking. To detect edges we use a Canny edge operator [Can83]. We
compared edge images obtained using the Canny operator to those the obtained from difference of
Gaussians, Frei and Chen, and Sobel operators [Bal82] and we have found the Canny edge opera-

tor to be superior for our application.

Starting with an arbitrary edge point, we iteratively link edge points into contours. At each
iteration edge points which are located within a pixel of the head or tail of an existing contour
and which have roughly the same slope angle as the head or tail are added to the contour. Con-
tours are started by selecting edge points which have not yet been linked. If more than one edge
point is a candidate for linking, the one closest in slope angle to the head (tail) is added. The
output of linking are doubly linked lists of edge point records with fields containing the cartesian

coordinate and the slope angles of the edge points in the contour.

Contour normalization. It is necessary to perform additional processing on the contours
which we call normalization. A contour can be represented as a 2-dimensional cartesian space
curve (z(s), y(s)) or as a 1-dimensional slope angle function §(s ), in both cases parameterized by
the arclength along the contour. However, contours are not in a suitable form after edge linking.
For instance, contours contain noise which tends to distort the values of z, y, and 4, and
indirectly the values of the arclength, 8. A more significant distortion arises from the necessity of
sampling edge images on a grid. The distance between edge points is non-uniform: diagonally

connected edge points are further apart than horizontally or vertically connected edge points. As
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Fig. 6.16. Locating reflective parts.

a result, edge points in a contour are sampled at unequal arclengths.



127

To overcome the problem of noise and non-uniform sampling, we normalize the contours by
smoothing them and resampled them at unit arclengths. In order to smooth a contour, we select
a point on the contour as an initial anchor point. The contour is traced in the direction of
increasing arclength until the average slope angle (averaged over 5 points) exceeds a fixed angle
(10 degrees). The point at which this occurs is chosen as a second anchor point. A blending func-
tion, a Hermite cubic interpolating polynomial (see [FoV82]), which has the same slopes at its end
points as the anchor points is fit to the two points. Let p, and p, represent position vectors of
the first and second anchor points and let r; and r, represent the tangent vectors at these points.

The curve is approximated by the vector p(¢) = (z (¢ ), y(¢)), where
p(t) = piX (262 - 32+ 1) + poX (-2t + 3tH + r X (t3- 202 + ) + v X (£° - 1),

and ¢ is a parameter that ranges from 0 to 1. This polynomial is then sampled at small incre-
ments of ¢ and the total arclength between the first and second anchor points is accumulated.
The polynomial is resampled at approximately unit arclengths to obtain new z and y coordinate
values for the edge points. The values of 8 are found by interpolating the slope angle from the
edge detection phase. Smoothing is continued by starting with the second anchor point as the ini-
tial anchor point and a new anchor point as the second anchor point. This continues until the

entire contour has been smoothed.

We found our arclength resampling approach to be superior to that proposed by Dessimoz
[Des78|. Dessimoz replaces the z and y coordinates for a edge point by the average z and y
values of its neighbors on the contour. This approach distorts the sharp boundary features of a

part by rounding them and making them less useful for recognition.

The final step in normalizing contours is to eliminate the artificial discontinuities from
wrap-around that often occur in the slope angle function, 6(s). More precisely, the slope angle of
an edge point is computed from the arctangent of the ratio of the edge strength in the yr-direction
to the the edge strength in the z-direction obtained from the edge detector. Unfortunately, the
arctangent function returns values limited to the half open interval (-7, 7]. Therefore, when the

slope angle is outside of this interval the arctangent wraps the angle around so that the angle is
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kept within this interval, resulting in an artificial discontinuity in the slope angle.

To overcome the problem of artificial discontinuities we trace the contour in increasing
arclength and search for local discontinuities greater than 7 or less than —n. These discontinuities
can only be artificial since they would require the contour to fold back on itself. As the contour
is traced, an offset (n_- n_)X2n is added to the slope angle at each point to correct for wrap-
around. Initially n_ and n 4 are zero. Each time a negative discontinuity is found n_ is incre-
mented by 1, and each time a positive discontinuity is found n . is incremented by 1. The result
of adding the offset is that the slope angle function (2 ) is made continuous for the entire contour
with the exception of the initial and final points of the contour. In a closed contour these two
points will always have an artificial discontinuity of 27, corresponding to tracing once around the

contour. This discontinuity is handled as a special case in our code.

After normalization, the mean slope angle is calculated about each edge point by averaging
the slope angle of edge points within a fixed arclength distance on each side of the point. This
distance is taken to be half the length of a segment. The segment length is a design parameter.
In our current implementation this length is selected as 32 pixels. The mean slope angle is stored

in each edge point record and is used during training and recognition when comparing segments.

Extracting critical points. As was previously discussed critical points of a contour can
be used to speed up segment matching by limiting the comparison of segments of the part-models
that contain critical points to those of the image boundary with similar critical points. We have
defined critical points as the local maxima and minima in the curvature of the contour with cur-
vatures above a fixed threshold. Since curvature is the derivative of 6(s ) with respect to s, the
problem of locating critical points in 6(s ) is identical to the problem of locating edge points in a
1-dimensional image. Critical points in the slope angle correspond to the strong edges in an

image.

To locate critical points we use a 1-dimensional version of the Canny edge operator that we
used in edge detection. We convolve the slope angle function of the contour, d(s), with the

derivative of a Gaussian to obtain the curvature, a(s ). To determine a maxima or minima we
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use a form of non-maximal suppression similar to that discussed in [Can83]. More precisely, the
curvature at each edge point is compared to curvature values of its nearest neighbors on each
side. If the curvature is greater than both neighbors or less than both neighbors we label it as a
maxima or minima respectively. We threshold the values of the maxima and the minima to

locate the strongest maxima and minima. These are selected as critical points.

6.3.2. Training

Training is used to determine the saliency of each configuration in a part-boundary. Section
4.5 discusses the details of training. In our current implementation only the configurations that
are unique to a part-model, i.e., have saliency close to 1, are retained. Every segment, S,, of the
edge boundary is assign a Boolean vector. An element of the Boolean vector at index j is set
true if the segments S, and S, of the part-model form a unique configuration for the part. Oth-
erwise, the element is set false. The segments with the large number of true elements are the seg-
ments used first by the recognition algorithm to locate a part. However, in order to spread out the
selection of these segments to different sectors of the boundary, segments are selected in round

robin fashion from locations near the critical points on the boundary.

68.3.3. Recognition

Recognition has been discussed in Sec. 4.6. In the following we include some additional

details of our implementation.

After a segment of the part-model has been located in an image, we transform the part-
model boundary to the pose at which the segment matched the image boundary. We then attempt
to find a second segment centered on one of the critical points of the transformed boundary that
matches a segment centered on a corresponding critical point of the image boundary. If this fails,
we trace the transformed part-model bocundary and check for a second part-model segment that

has roughly the same slope as a closely located image boundary segment. If this condition is met,
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and if the second part-model segment forms a unique configuration with the first segment, then
an attempt is made to match the second part-model segment to the image boundary segment. If it

matches, the part is assumed to be found.

After a part is found, we mark the image boundary at uniform intervals (using the
transformed part-model boundary as a template). This is done so that the boundary will not be
interpreted as belonging to a different part. We also mark the critical points overlaid by the
transformed part-model boundary so that they are not used again in locating a different part. As

a consequence, as more parts are found, less of the image boundary is consider in matching.

Because some the parts in the standard POP problem have considerable tilt (up to 30
degrees) we perform a final fit on the parts to provide a more accurated estimate of their pose.
The transformed part-model boundary is searched at uniformly spaced arclengths. The search is
conducted perpendicular to the boundary on both sides for image boundary points with roughly
the same slope. In our implementation, the image boundary is stored in a hash table and the
search is performed in the table. If an image boundary point has the same slope as a point of the
transformed part boundary they are assumed to correspond. Corresponding points are least
squares fit in cartesian space to provide a refined fit of the part to the image. A transformation
matrix containing six elements, four for the rotation and two for the translation, is computed

from the least squares fit.



CHAPTER VII

CONCLUSIONS

The partially occluded parts (POP) problem is an important problem for industrial applica-
tions. A solution to the problem will provide a flexible vision component for many assembly and
sorting tasks—tasks that are found everywhere in small parts and batch assembly. However, the
general problem is, as mentioned before, very difficult to solve. Therefore, we have limited our
study to a subproblem, the 2-dimensional POP problem. In this special case the contours of the
parts can be approximated by planar contours. In addition, we have assumed that parts are not
tilted much from their normal stable viewing position primarily in order to limit the amount of

distortion permitted in the parts’ contours due to the viewing angle.

Even with these limitations the problem is still difficult. When barts overlap and partially
occlude one another, identifying which segment of a contour belongs to which part is a compli-
cated puzzle. Contours are fragmented and segments of contours of different parts can merge to
form segments that exist in no single part’s contour. Ia order to solve the problem, we have
chosen a boundary representation specifically for use in the 2-dimensional POP problem. This is
the segmented boundary representation in which all possible segments of the boundary of the part

are members of the part-model.

In a POP image, special features of the contour will not necessarily be visible, long line seg-
ments will not necessarily be visible, but some segments of the part’s contour must visible if the
part is to recognized. Our choice of a segmented boundary representation reflects this simple
fact. In addition, segments are allowed to overlap to provide redundancy to the representation. In

other words, if a segment of a part’s contour is partially occluded it is likely that one of its neigh-
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boring segment will be totally visible. By choosing overlapping segments we increase the chances
for a segment to be found. We select a configuration of two segments as an identifying feature of
part. We felt that one segment, unless it was very long, would not sufficiently characteristize the
boundary of a part to locate the part, but that two segments in their relative pose would be

enough.

Unlike the part’s boundary, a configuration is not necessarily a unique entity that belongs to
one part. By choosing configurations of segments as a basis for our part-model, we run the risk of
incorrectly identifying a part from a configuration that may occur in more than one part. For

this reason we needed to attach a saliency, a measure of uniqueness, to a configuration.

Through the use of a training stage, we obtained all the information necessary to compute
the saliency of a part’s configuration. Informally the saliency is just the inverse of the frequency
with which a configuration occurs‘in the set of parts that are to appear in the image. A more for-
mal definition can be couched in terms of noise distributions of the segments in the image. Unfor-
tunately, reasonable models for these distributions are difficult to determine. We have adopted a

simple model in order to get a rough estimate of saliency.

With the additional information provided by saliency, we can determine, prior to recogni-
tion, the configurations of a part that are good features, and the configurations that, when found,

uniquely locate the part.

These two simple concepts of segmenting the boundary representation into overlapping fixed
length segments and determining the saliency of configurations of boundary segments form the

basis of this thesis.

In the future, we hope to extend our recognition approach to solve 3-dimensional POP prob-
lems. In this more complicated problem we will attempt to identify parts from their profiles. Since
the number of profiles that may be generated by a 3-dimension part is large it may be necessary
to restrict our part-model to segments centered around critical points on the profiles of the
objects. However, we could again use highly salient configurations of these segments to uniquely

identify the part.
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