
A BASEBAND PROCESSOR FOR

SOFTWARE DEFINED RADIO

TERMINALS

by

Hyunseok Lee

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering and Computer Science)

in The University of Michigan
2007

Doctoral Committee:

Professor Trevor N. Mudge, Chair
Professor Chaitali Chakrabarti, Arizona State University
Associate Professor Scott Mahlke
Professor Marios C. Papaefthymiou
Professor Wayne E. Stark

ABSTRACT

A BASEBAND PROCESSOR FOR SOFTWARE DEFINED RADIO
TERMINALS

by
Hyunseok Lee

Chair: Trevor N. Mudge

Software defined radio (SDR) is a technical effort to use programmable hardware

in wireless communication systems so that various protocols can be easily supported

by software. However, using programmable hardware for SDR terminals has been

unachievable because of their tight power budget and high demand on computation

capability. The main theme of this thesis is to design a power efficient programmable

baseband processor for the SDR.

This thesis analyzed most contemporary wireless communication protocols both

in system and algorithm levels. System level analysis is to see the interactions be-

tween algorithms and the algorithm level analysis is to investigate the computation

patterns of the algorithms comprising baseband operations.

Based on the characterization results, this thesis proposes chip multiprocessor

architecture, whose PEs have both parallel and scalar datapaths. Multiprocessor

architecture is proposed to exploit the algorithm level parallelism. Both the par-

allel and scalar datapaths are used because baseband processing is a combination

of parallelizable and scalar computations. For additional enhancements, three novel

schemes are applied to the SIMD style parallel datapath: macro instructions, macro

pipelining, and the staggered execution of computation units.

Macro instruction is to combine several primitive instructions into one. It reduces

system power by eliminating unnecessary register accesses. The macro pipelining is

to form a pipeline by cascading hardware blocks for common macro operations. It

enhances system throughput by concurrently executing the macro operations. The

staggered execution is to shift the operation timing of computation units of the

parallel datapath. It improves system throughput and power efficiency by replacing

complex N×N crossbar switches with simple N×1 switches.

The power efficiency of the proposed architecture is evaluated through a Verilog

model and commercial tools. The proposed architecture consumes only 150 mW

while providing W-CDMA 2Mbps packet data service.

The contributions of this thesis are to analyze the characteristics of baseband

operations from the perspective of architecture and to adapt the three novel schemes

for system enhancement.

1

c©
Hyunseok Lee 2007

All Rights Reserved

To min, claire, and chloe

ii

TABLE OF CONTENTS

DEDICATION . ii

LIST OF FIGURES . vi

LIST OF TABLES . x

CHAPTER

I. INTRODUCTION . 1

II. PRELIMINARY . 6

2.1 Types of Wireless Communication Networks 6
2.2 Evolution of Wireless Communication Networks 9
2.3 Wireless Protocol Stack . 11
2.4 Skeleton of a Wireless Terminal 12
2.5 Software Defined Radio . 14

III. ALGORITHM LEVEL WORKLOAD CHARACTERIZATION 16

3.1 Introduction . 16
3.2 Digital Baseband Operations 16
3.3 Major Computation Kernels of Baseband Workload 19
3.4 Characteristics of Parallelizable Computation Kernels 19
3.5 Types of Macro Operations 22

3.5.1 Data Load . 22
3.5.2 Data Alignment . 23
3.5.3 Vector Computation 27
3.5.4 Vector Reduction 27
3.5.5 Data Store . 28

IV. SYSTEM LEVEL WORKLOAD CHARACTERIZATION:
W-CDMA . 29

4.1 Introduction . 29

iii

4.2 Operation Modes of Wireless Terminal 29
4.2.1 Characteristics of Active and Control Hold Modes

Operations . 30
4.2.2 Characteristics of Idle Mode Operations 31

4.3 A Case Study: W-CDMA Terminal 32
4.3.1 Terminal Operation Condition 33
4.3.2 System Block Diagram 34
4.3.3 Processing Time . 37
4.3.4 Peak Workload Profile 38
4.3.5 Parallelism . 39
4.3.6 Memory Requirement 40

V. HIGH LEVEL ARCHITECTURE OF THE BASEBAND
PROCESSOR FOR SDR . 43

5.1 Chip Multiprocessor . 43
5.2 Coarse Grain PE . 45
5.3 Homogeneous PE . 46
5.4 Low Speed BUS . 46
5.5 Memory Hierarchy . 47

5.5.1 Scratch Pad Memory 47
5.5.2 Hierarchical Memory 48

5.6 SIMD+Scalar . 49
5.7 Support Wide Workload Variation 51

VI. THE ARCHITECTURE OF PROCESSING ELEMENT . . 53

6.1 Previous Works . 53
6.2 SODA Architecture . 57
6.3 Motivations . 58
6.4 Novel Schemes for Power Reduction and Higher Throughput . 60

6.4.1 Macro Instruction 60
6.4.2 Macro Pipelining 64
6.4.3 Staggered Execution of Computation Units 68

6.5 Processing Element Design 72
6.5.1 High Level Architecture of Processing Element . . . 72
6.5.2 Execution Examples in Two Operation Modes . . . 79
6.5.3 Computation Units 83
6.5.4 Vector Reduction Unit 84
6.5.5 Address Generators 86
6.5.6 Interconnection Networks 86

6.6 Programming Model . 89

VII. POWER AND THROUGHPUT ANALYSIS 92

iv

7.1 Experiment Environment and Methodology 92
7.1.1 Component Level Evaluation Environment 92
7.1.2 Kernel Level Evaluation Environment 93
7.1.3 System Level Evaluation Environment 93

7.2 Kernel Level Analysis . 94
7.2.1 FIR filter . 94
7.2.2 Pattern Matching 95
7.2.3 Minimum/Maximum Finding 96
7.2.4 Viterbi-BMC/ACS 97
7.2.5 FFT . 98

7.3 System Level Analysis: W-CDMA 2Mbps Workload 98
7.3.1 Optimal Active Mode Operation Frequency 98
7.3.2 Idle Mode Support 100
7.3.3 Component Level Breakdown 102
7.3.4 Comparison with SODA 103

7.4 Future SDR Solution . 105

VIII. CONCLUSION . 108

APPENDICES . 114

BIBLIOGRAPHY . 149

v

LIST OF FIGURES

Figure

2.1 Types of wireless communication networks: WPAN, WLAN, WMAN,
and WWAN . 7

2.2 Evolution history of WWAN systems 9

2.3 A simplified protocol stack of a wireless terminal 11

2.4 Skeleton of a wireless terminal (3G cellular phone) 13

2.5 Comparison of dynamic power consumption of ASICs, SDR plat-
form, and DSP . 15

3.1 Generalized block diagram of wireless terminal’s digital baseband . 17

3.2 A conceptual macro pipeline model which can describe the operation
of all parallelizable kernels . 21

3.3 Interpretation of the FIR filter kernel into the macro pipeline 22

3.4 Interpretation of the pattern matching kernel into the macro pipeline 23

3.5 Interpretation of the min/max finding kernel into the macro pipeline 24

3.6 Interpretation of the Viterbi-ACS kernel into the macro pipeline . . 25

3.7 Interpretation of the FFT kernel into the macro pipeline 26

4.1 The active, control hold, and idle modes of wireless terminals 30

4.2 Detailed block diagram of the W-CDMA physical layer when it pro-
vides the packet data service described in Table 4.1 35

5.1 The high level architecture of the proposed baseband processor for
the SDR . 44

vi

5.2 The skeleton of a PE, which has both scalar datapath and SIMD
datapath . 49

5.3 The controlling of the number of active PEs according to terminal’s
operation state change . 51

6.1 Architecture of the SODA PE . 56

6.2 Operation of major parallelizable kernels which can be represented
by macro instructions through concatenating arithmetic units 62

6.3 Conceptual macro pipeline and its mapping on real hardware, which
consists of macro hardware blocks 65

6.4 The control scheme of the macro pipeline, which uses both control
registers and CISC instructions . 66

6.5 The difference on the execution timing of CUs in (a) the synchronous
operation mode and (b) the staggered operation mode 69

6.6 Comparison of the effect on the staggering of workload having (a)
short computations (b) long computations 70

6.7 High level architecture of PE . 72

6.8 An example which shows the relation between the amount workload
and the amount of input/output data 74

6.9 The relation between the number of required switches for parallel
data load/store and the number of computations done in a CU . . . 75

6.10 Four possible workload mapping schemes 76

6.11 The relation between the number of switches for parallel data load/store
and the energy cost of switches . 77

6.12 The operation of PE in the staggered operation mode when it per-
forms the first stage of the radix-2 FFT operation 79

6.13 An example of the synchronous execution of PE when it performs
32-tap FIR filter operation . 82

6.14 The detailed architecture of the CU 83

vii

6.15 Detailed architecture of the interconnection network for data load . 87

6.16 Relation between the data memory, switches, and CUs 88

6.17 An example of an application program for FIR filtering 90

6.18 An example of a library routine for the FIR filtering 91

7.1 The relation between the operation frequency and the system energy
per cycle, when the system provides the W-CDMA 2Mbps packet
data service . 99

7.2 The relation between the operation frequency and the system energy
per cycle, when the system is in the W-CDMA idle mode 101

7.3 Power comparison between the SODA and the proposed new archi-
tecture when they support W-CDMA 2Mbps packet data service . . 104

A.1 An example of the (a) a convolutional encoder with K = 3 and (b)
corresponding trellis diagram . 116

A.2 A representation of BMC operation as a combination of elementary
arithmetic operations . 118

A.3 ACS operation in a trellis diagram 120

A.4 An implementation of the ACS operation with primitive arithmetic
operations . 120

A.5 The data movement pattern of ACS operation when K=4 and sub-
grouping of ACS operation into smaller groups 121

A.6 A compare-selector tree for the minimum value searching function
of the ACS normalization procedure 123

A.7 The data movement pattern appearing in the minimum value search-
ing function of the ACS normalization procedure, after parallelizing
with the compare-selector tree . 124

A.8 The structure of Turbo decoder . 125

A.9 The data movement pattern of backward ACS operation when K=4
and sub-grouping of ACS operation into smaller groups 128

viii

A.10 The operation of the block interleaver 129

A.11 The structure of modulator and demodulator of CDMA based system130

A.12 The correlation computation procedure of the multipath searcher . . 134

A.13 An example of the correlation results which shows four peaks 135

A.14 The structure of the rake receiver 137

A.15 The structure of the MLSE equalizer for TDMA systems 139

A.16 The outline of modulator and demodulator of an OFDMA based
system . 140

A.17 The data movement pattern of 8 points FFT operation and sub-
grouping of FFT operations into smaller groups 141

A.18 Computation pattern of radix-2 FFT operation 142

A.19 Two implementation ways of the FIR filter 145

A.20 Data movement pattern of the FIR filter. x[0], . . . , x[n] are the stored
input data and x[n + 1] is a new input data 146

ix

LIST OF TABLES

Table

3.1 Major computation kernels comprising the baseband processing work-
load . 20

3.2 Characteristics of the parallelizable vector kernels in the baseband
processing workload . 20

4.1 Operation conditions of a W-CDMA terminal which are assumed for
system level workload analysis . 33

4.2 Processing time requirements of the W-CDMA physical layer 36

4.3 Peak workload profile of the W-CDMA physical layer and its varia-
tion according to the operation mode change 38

4.4 Parallelism available in the algorithms of the W-CDMA physical layer 39

4.5 Memory requirements of the algorithms of the W-CDMA physical
layer . 41

6.1 Power consumption of 16 bit datapath components which are imple-
mented by 130 nm technology and run at 700 MHz 58

6.2 Operation power profile of the SODA PE when it performs Viterbi
decoder with K=7 and R=1/3, and 64-wide FFT operation 58

6.3 Operation cycle profile of SIMD based architecture when it performs
Viterbi decoder with K=7 and 64-wide FFT operation 59

6.4 Operation cycle count comparison between the datapath with macro
instructions and without macro instructions 63

6.5 Macro and primitive instructions of the CU 85

x

7.1 Comparison of the throughput and energy consumption of the pro-
posed architecture with the SODA, when they perform the FIR filter
kernel . 95

7.2 Comparison of the throughput and energy consumption of the pro-
posed architecture with the SODA, when they perform the pattern
matching kernel . 96

7.3 Comparison of the throughput and energy consumption of the pro-
posed architecture with the SODA, when they perform the mini-
mum/maximum finding kernel . 96

7.4 Comparison of the throughput and energy consumption of the pro-
posed architecture with the SODA, when they perform the Viterbi-
BMC/ACS kernel . 97

7.5 Comparison of the throughput and energy consumption of the pro-
posed architecture with the SODA, when they perform the FFT kernel 98

7.6 Dynamic power consumption of the proposed architecture when it
provides W-CDMA 2Mbps packet data service 102

xi

CHAPTER I

INTRODUCTION

In the near future, we will use intelligent devices that include the functionalities of

most hand held devices such as tablet computers, cellular phones, MP3 players, game

consoles, etc [1][2]. In order to maximize the efficacy of this future device, it is crucial

to provide a seamless wireless connection without any spatial or time limitation.

However, in reality, it is not easy to provide such seamless wireless connection because

there have been no wireless networks that cover the entire world.

A key technology that enables seamless wireless inter-connectivity is software

defined radio (SDR). SDR is a wireless communication system whose function blocks

are implemented by flexible software routines instead of fixed hardware, so various

wireless protocols can be easily supported on the same platform [3]. An SDR terminal

adaptively changes its operation mode according to the type of available wireless

network. The concept of the SDR originated in the military, but now it is emerging

as important commercial technology. For instance, 4G, the next generation of cellular

phone networks, requires that multiple wireless protocols be supported within a single

terminal [4].

Although the concept of the SDR is very attractive, there exist many obstacles on

the way to its commercialization. High computation capability, tight power budget,

1

2

and high degree of programmability are quite difficult goals to achieve simultaneously.

The amount of computation required for a wireless terminal to perform baseband

signal processing is above several tens giga operations per second (GOPS) level. The

power allowed for baseband signal processing must be lower than several hundred mW

in order to be used for commercial purposes [5]. Furthermore, the programmability

needed for the execution of various wireless protocols tends to undermine the power

efficiency of a hardware system.

There have been many architectures for SDR. The SandBluster [6] of SandBridge

is a chip multiprocessor system which supports multi-threading in the hardware

level and its core has a narrow single instruction multiple data (SIMD) datapath.

The PicoArray [7] of PicoChip is a multiple instruction multiple data (MIMD) style

processor array. It is only suitable for base stations with loose power constraints

because of its high power consumption caused by having individual control logics in

each core. There are two architectures based on wide-SIMD datapath, SODA from

Michigan [8] and the EVP from Phillips [9]. However, the throughput and power

performance of these architectures are not sufficient to meet the requirements of

emerging high speed wireless networks, such as WiMax and W-CDMA high speed

downlink packet access (HSDPA).

The main topic of this thesis is to design a programmable digital hardware sys-

tem that can support all the major wireless protocols while satisfying the three

requirements of the SDR: high computation capability, low power consumption, and

programmability. For this purpose, this thesis fulfils the design of an SDR platform

with two underlying guidelines. One is to fully exploit all available parallelism exist-

ing in the baseband signal processing in order for both high computation capability

and low power consumption. Another is to limit the programmability of the hard-

3

ware system, such that it minimally satisfies the flexibility requirement, in order to

minimize power burden induced by allowing programmability. However, these design

guidelines are reasonable only when the workload characteristics of the applications

are properly analyzed. Thus, as a first step, this thesis analyzes the characteristics of

major signal processing algorithms which comprise the baseband operation of most

contemporary wireless communication networks [10][11][12][13][14][15].

Workload characterization was done at two levels, the system and individual

algorithms. System level characterization helps high level design decisions such as

the granularity of processing elements (PE), number of PEs, memory hierarchy,

and interprocess communication mechanism. As a representative system, this thesis

models the physical layer of the W-CDMA and derives many design data, such as

dominant computation kernels, peak workload, the range of workload variation, and

communication pattern between computation kernels. The results from the algorithm

level characterization is used to determine the design of the PE. This thesis analyzed

the operation of major algorithms that dominate the baseband processing workload,

such as Viterbi decoder, Turbo decoder, and modulation/demodulation schemes, of

time division multiple access (TDMA), code division multiple access (CDMA), and

orthogonal frequency division multiple access (OFDMA) systems.

On top of these workload characterization results, this thesis proposes a coarse

gain chip multiprocessor architecture whose one PE contains both a parallel and

scalar datapath. All PEs are interconnected by a low speed bus. A chip multi-

processor architecture allows the utilization of the algorithm level parallelism of the

baseband operation. Coarse grain PEs minimize power expensive global communica-

tion. Thus, low speed buses are sufficient to cover the communication traffic between

PEs. Having both parallel and scalar datapaths within each PE allows a power ef-

4

ficient operation by minimizing the number of data copies for the communication

between the parallel and scalar datapath.

For the parallel datapath of a PE, this thesis applies three novel schemes to im-

prove its throughput and power efficiency: macro instructions, macro pipelin-

ing, and staggered execution of computation units (CU). Macro instructions

combine several instructions into one. The use of macro instructions is power effi-

cient due to the minimizing of the number of power consuming register file accesses.

Macro pipelining cascades macro hardware blocks of data load/store, data alignment,

and computations. As we will show in the chapter for the algorithm level workload

characterization, major parallelizable computation kernels can be modeled as the

combination of data load/store, data alignment, and computations. Thus, macro

pipelining allows us to exploit the macro operation level parallelism which was not

utilized by previous SDR solutions based on the thread, instruction, and data level

parallelism (DLP). Staggered execution shifts the operation timing of computation

units in the parallel datapath. Because only one CU needs input data at a time, it

is possible to use an N × 1 network for feeding input data to an N wide parallel dat-

apath instead of complex and power consuming N ×N network. These three novel

schemes result in good power and throughput performance compared to previous

architectures. Experimental results show that the proposed architecture consumes

about 150 mW while supporting W-CDMA 2Mbps packet data service.

For component level power information, this thesis builds a hardware model with

Verilog and synthesizes the hardware model with Synopsys’ Physical Compiler using

the TSMC-13 standard cell library which is based on 0.13 micron technology. Ad-

ditionally, this thesis uses Artisan’s memory compiler for the generation of storage

components, such as register files and data memory. Synopsys’ PrimePower tool is

5

also used for the power evaluation in the gate level. This thesis also builds a sys-

tem level power evaluation tool that uses component level power information and

executable code as input for system level power evaluation.

The organization of this thesis is as follows. In Chapter II, this thesis discusses

preliminary topics, which are required to explain the detail operation of wireless

terminals. In Chapter III, the physical layer operations of wireless communication

systems are broken down into the algorithmic level. In Chapter IV, this thesis an-

alyzes the characteristics of physical layer operations in the system level. Based on

workload analysis results, this thesis proposes an architecture for a baseband proces-

sor in Chapter V and VI. In Chapter VII, this thesis shows power and throughput

evaluation results. Finally, Chapter VIII concludes this thesis. In Appendix, it is

possible to see detail discussion on the characteristics of baseband processing algo-

rithms.

CHAPTER II

PRELIMINARY

Prior to detailed discussion, several preliminary issues are explained in this chap-

ter. The explanation will include the evolution history, types, and protocol stack

hierarchies of wireless networks. In addition, a generalized model of physical layer

operations is also explained. Understanding of these issues is important to validate

the design decisions made on the proposed architecture for SDR application.

2.1 Types of Wireless Communication Networks

According to the required range of network coverage, it is possible to classify

wireless communication networks into four types as shown in Figure 2.1 [16]: wire-

less personal area networks (WPAN), wireless local area networks (WLAN), wireless

metro area network (WMAN), and wireless wide area networks (WWAN). The op-

eration procedure of these networks differ greatly because of application specific

optimization.

The WPAN enables users to connect to various personal devices over short dis-

tances without wires. An application might be synchronizing data between a personal

data assistant and a desktop computer. Bluetooth is the most popular system at

the moment [17]. Ultra wide band is one emerging technology which is applicable

6

7

WPAN :

Personal Area

Connectivity

10 meters

WLAN :

Local Area

Connectivity

100 meters

WMAN :

Metro Area

Connectivity

(City or suburb)

WWAN :

Wide Area Connectivity

(Broad geographic

coverage)

Beyond 100 meters

Bluetooth, UWB WiFi, HiperLan WiMax
AMPS, GSM, IS-95

cdma2000, W-CDMA

Figure 2.1: Types of wireless communication networks: WPAN, WLAN, WMAN,
and WWAN

for the WPAN [18]. One unique characteristic of the WPAN is its simple operation

scenario compared to other wireless networks. This characteristic is a result of an

effort to minimize production cost. Because the WPAN needs to be built on any

kind of consumer electronic device, low production cost is crucial. Because of such a

low implementation cost, even single mode wireless terminals have WPAN interfaces

as a default feature.

WLAN originated from wired local area network (LAN). It aims to replace ex-

isting wired LAN by high speed wireless channels. A typical terminal of this type of

wireless networks is a laptop computer having wireless access. IEEE 802.11/a/b/g,

usually called as WiFi, are the most popular WLAN systems [19]. HiperLan is the

European standard for the WLAN. However, it become a minor standard supported

by very limited companies. The characteristics of the WLAN are its high data rate

and limited terminal mobility support. The narrow network coverage of the WLAN

results in higher data rate (up to 100 Mbps) compared to other types of wireless

8

networks having wider coverage. Because there are no organizations who manage

inter-operability of WLAN access points, the control procedure for mobility support

defined in WLAN specification has no significant meaning in practice. Thus, one

fundamental shortcoming of WLAN is limited coverage.

In metro areas, WMAN could be optimal. Originally this network was designed

to replace roughly one mile range optical cables between end users and network

router, last mile problem [20]. Installing optical link to all subscribers is economically

inefficient because of the low utilization of optical links. WMAN can provide a similar

level of network throughput with lower cost by replacing expensive optical cables with

wireless link. IEEE 802.16 is the most common WMAN system. It has been evolved

to support even mobile terminals in addition to fixed terminals [15].

WWAN evolved from telephone networks. The early generations of WWAN such

as AMPS, GSM, and IS-95 provide voice service. The 3rd generation systems, called

3G, provide multimedia services such as video telephony on wireless channels. The

CDMA-2000 [21] and W-CDMA [12] systems are typical examples. One character-

istic of the WWAN is the support of relatively lower data rate but better terminal

mobility. Usually the WWAN covers an entire country or continent. For complete

mobility support with low equipment cost, a cell of this network covers wider area and

consequently the allowed maximum data rate is usually lower than other networks.

Because network coverage and available maximum data rate are different, the

optimal network varies according to operation environment. In building environ-

ments such as an office, the WLAN may be optimal for data service. In rural area,

the WWAN may be optimal because of its wide coverage. At the street of metro

area, the WMAN can be optimal. As we mentioned before, in the near future, end

users will need terminals that can support above protocols to seamless span WPANs,

9

AMPS

FDMA

IS-95

GSM

IS-136/

PDC

IS-95B

CDMA CDMA

cdma2000

CDMA

GPRS

EDGE

W-CDMA

TDMA

CDMA

TDMA

W-CDMA/

HSDPA

cdma2000

EV,DO,DV

TDMA TDMA

?

CDMA

CDMA

OFDM

1G 2G 2.5G 3G 3.5G 4G

Analog Digital

FDMA

CDMA

TDMA
OFDM

Voice 64~384K Packet ~2M Multimedia ~10M Multimedia

~100M

Multimedia

NMT

TACT

FDMA

Figure 2.2: Evolution history of WWAN systems

WLANs, WMANs, WWANs, plus their future derivatives. Such a variety of network

types lead us to develop a flexible hardware system that can run many wireless

protocols.

2.2 Evolution of Wireless Communication Networks

In the previous subsection, we saw that there exist many different types of wireless

networks. However, even for the same type of wireless network, there exist different

generations because wireless networks continuously evolve in order to provide better

service by adapting new technologies. As an example, Figure 2.2 depicts the evolution

history of the WWAN.

The first generation of the WWAN provides voice service. The system of this

generation relied on analog communication technology and consequently its network

10

capacity is much lower than that of successors. The second generation WWAN

increases its network capacity by adapting more advanced digital communication

technologies such as TDMA and CDMA. The goal of the 2.5th generation WWAN

was to provide packet data service in addition to voice service. Furthermore, the

3rd generation WWAN targets 2 Mbps multimedia service including voice service,

video telephony, and high speed internet access over wireless channel. From this

generation, the CDMA technology is adapted for all kinds of WWANs. The 3.5

generation WWANs additionally define 10 Mbps level high speed packet channels on

the existing 3G systems. The high speed channels are designed to compete with the

WMAN and WLAN that can provide high speed link in building environment. Until

now, there is no specification for the 4th generation WWAN. However, it is commonly

predicted that OFDMA and multiple input multiple output (MIMO) technologies

will be key ingredient of the 4th generation WWAN.

From the evolution history of the WWAN, we can see that, even for a same ser-

vice such as voice, there exist many different network generations, and within the

same network generation, there exist many specifications based on different com-

munication technologies. Such diversity limits the coverage of the WWAN and a

similar situation also exists at other type of networks. For example, most European

countries use the GSM system but in USA both GSM and IS-95 systems are used

for voice service. Thus, the subscriber of IS-95 system in USA can not be served in

Europe with the same phone. Therefore, the evolution of wireless network also leads

us to develop a flexible wireless terminal that can support all network generations

and communication technologies.

11

PHY

MAC

Link Protocol

Header

Compression

IP

UDP/TCP
R
a
d
io
 R
e
s
o
u
rc
e

C
o
n
tro
l

M
o
b
ility

M
a
n
a
g
e
m
e
n
t

...

C
a
ll C
o
n
tro
l

Voice/Video

CODEC

Circuit

Applications

Packet

Applications

Physical

Layer

Upper

Layers

CODEC

Figure 2.3: A simplified protocol stack of a wireless terminal

2.3 Wireless Protocol Stack

As shown in Figure 2.3, we can divide the protocol stack of a wireless terminal

into two categories according to workload characteristics: the physical layer and the

upper layers. The operation of the physical layer is related to overcoming unreliable

wireless channel characteristics and maximizing the efficiency of expensive wireless

spectrum. The physical layer consists of computationally intensive signal processing

algorithms.

In contrast, the upper layer protocols consist of control intensive operations.

Medium access control (MAC) resolves contention between terminals who share

wireless channels. The link protocol performs control actions required to retrans-

mit corrupted frames. In addition to data transmission and reception, many control

12

actions are performed in the upper layers. Radio resource control dynamically assigns

and releases radio resource for terminals according to their operation state. Mobil-

ity management performs control actions for terminal handover procedure between

basestations. Call control covers call generation and termination procedures.

According to application types, different protocol paths are used. For packet data

applications such as web browsing, TCP/IP protocols are used for end to end data

transmission over an IP network. In circuit applications, after the link layer, frames

are directly forwarded to coder/decoder (CODEC) because no retransmission is al-

lowed in the circuit application due to tight time budget. Between user applications

and link protocol, video or voice CODEC can be placed. The function of CODEC is

to minimize the amount of transmitted information by removing redundancy and to

recover original information. MPEG coding/decoding is an example of the CODEC

operation.

2.4 Skeleton of a Wireless Terminal

As shown in Figure 2.4, a wireless terminal can be implemented with four ma-

jor blocks: analog frontend, digital baseband, protocol processor, and application

processor. The physical layer of wireless protocol is mapped on both the analog

frontend and digital baseband. The upper layers of wireless protocol are mapped on

the protocol processor. Application processor covers the CODECs.

The operation of the analog frontend is to place a baseband signal on the carrier

frequency band and vice versa. Because state-of-art digital circuit can not process

a GHz level signal with reasonable power consumption, it is common to implement

this block with analog ASICs. The digital baseband block performs the remaining

physical layer operations. Due to the tight power budget and high computation

13

Bluetooth

GPS

Protocol

Processor

Analog

Frontend

Application

Processor

Camera

Keyboard

Display

Speaker

Digital

Baseband

Physical Layer Upper Layers CODEC

Target of this thesis

45% 25% 30%

Figure 2.4: Skeleton of a wireless terminal (3G cellular phone)

requirements, it is common to implement the digital baseband in digital ASICs.

Meanwhile, the operation of upper layer protocols can be represented as a finite

state machine whose state transitions are initiated by external control messages or

internal events. Thus, the protocol processor block is implemented in a form of

general purpose processor (GPP) except for some hard realtime operations such as

MAC response generation and encryption/decryption. The application processor also

requires many computations. In order to achieve flexibility and high performance at

the same time, a GPP with accelerators is a common implement method.

As shown in Figure 2.4, the analog frontend circuits is a primary power dissipator

in wireless terminal. The analog frontend, application processor with other user

interface units, and baseband processor correspondingly consume about 45, 30, and

25% of 3G cellular phone power [22].

Among the four major blocks in Figure 2.4, the ASIC based analog frontend and

14

digital baseband are within the scope of the SDR. However, this thesis only focuses

on the architecture of digital baseband processor.

2.5 Software Defined Radio

The SDR is to implement all functional blocks of wireless communication systems

with software routines and programmable hardware instead of inflexible ASICs. It

enables the support of many wireless protocols without specialized hardware because

a simple software routine change is enough for switching to other wireless protocols.

Because wireless communication systems consist of basestations and wireless ter-

minals, the physical layer of both sides can be implemented in the form of the SDR.

Battery powered terminals have more strict power constraint compared to AC pow-

ered basestations. So, the realization of SDR concept on wireless terminals is more

difficult.

The SDR is advantageous to all bodies related to wireless communication systems.

At first, it reduces the development time and cost of manufacturers. By reusing

identical hardware platform for many terminals with different protocols, it is possible

to reduce the time to market and development cost. Second, the SDR allows service

providers to upgrade infrastructure without substantial cost. Most wireless protocols

continuously upgrade to provide better services. So, if a system was not designed

with SDR concept, service providers need to change the hardware of infrastructure

to cope with such protocol evolution. A typical example is the addition of HSDPA

channel on W-CDMA protocol. By adding this channel, the maximum data rate of

W-CDMA protocol is increased from 2 Mbps to 14 Mbps. Third, the SDR provides

seamless wireless connections to end users with one wireless terminal. This service

is one of key features of 4G wireless communication systems.

15

 10

 100

 1000

 10000

ASICs SDR platform DSP

D
ya

nm
ic

 p
ow

er
 [m

W
]

Implementation methods

Figure 2.5: Comparison of dynamic power consumption of ASICs, SDR platform,
and DSP

A fundamental challenge in a hardware system for the SDR is to overcome the

inefficiencies in power and throughput caused by increasing the flexibility required

for supporting multiple protocols. Thus, special purpose circuits for single protocol

exhibit the best power and throughput performance, whereas fully programmable

hardware such as DSP shows the worst performance. The performance of SDR plat-

forms is placed between these two extremes. This relation is depicted in Figure 2.5.

In this graph, we compare the dynamic power consumption of ASICs, SDR platforms,

and DSP under identical workload1

1We assume 2Mbps turbo decoder workload where code rate R=3. the power data of ASICs is
from [23], that of SDR platform is from the experiment results shown in Chapter VII, and that of
DSP is from [24][25].

CHAPTER III

ALGORITHM LEVEL WORKLOAD

CHARACTERIZATION

3.1 Introduction

In this chapter, this thesis analyzes the characteristics of signal processing algo-

rithms comprising baseband processing workload. From the view point of computer

architecture, this thesis identifies the computation and data movement patterns of

major signal processing algorithms because these patterns have directly impacts pro-

cessor architecture. Although detailed characterization was done, this chapter only

contains analysis results to avoid distracting from the main topic of this thesis, the

design of baseband processor architecture. Detailed analysis results can be found in

Appendix.

3.2 Digital Baseband Operations

The detail operation of the digital baseband is quite different according to the

type of communication technologies. However, according to their role, it is pos-

sible to model the operation of the digital baseband into the combination of five

function blocks as shown in Figure 3.1: channel coding/decoding, block interleav-

ing/deinterleaving, modulation/demodulation, channel estimation, and pulse shap-

16

17

Pulse shaping Modulation Interleaving
Channel

Encoding

Pulse shaping Demodulation Deinterleaving
Channel

Decoding

Channel

Estimation

transmitter

receiver

A
n
a
lo
g
 F
r
o
n
te
n
d

U
p
p
e
r L
a
y
e
r
s

Figure 3.1: Generalized block diagram of wireless terminal’s digital baseband

ing.

The function of a channel coding/decoding block is forward error correction. Be-

cause wireless channels are very unreliable, some of a received signal is corrupted

while propagating through wireless channel. The channel coding/decoding makes it

possible to correct the corrupted signal at the receiver without retransmission. The

channel coder in the transmitter adds systematic redundancy on the transmitting

information and the channel decoder in receiver exploits this redundant informa-

tion to correct the corrupted signal. Among many existing channel coding schemes,

Convolutional code and Turbo code are widely used at most wireless communica-

tion networks [26]. For the decoding of these codes, Viterbi algorithm is most widely

used [27]. Recently low density parity check (LDPC) codes have begun to be adapted

in wireless communication networks [28].

Interleaving/deinterleaving is used to overcome burst errors occurring within

short time interval. In wireless channel, abrupt changes of channel quality are fre-

quently observed and the channel decoder shows bad performance at such burst error

patterns. Block interleaving/deinterleaving minimizes the effect of burst errors by

18

scattering error signal over longer time interval.

Modulation1 is a procedure to map input information bit sequence on specially de-

signed signal waveforms. Demodulation is a procedure to estimate transmitted infor-

mation bit sequence from received signal waveform. Because the transmitted signal

is distorted by a wireless channel, it is required to estimate wireless channel char-

acteristic for better demodulation performance. Popular modulation/demodulation

schemes are TDMA, CDMA, and OFDMA.

The channel estimator in receiver measures the characteristics of wireless channel

and provides the estimation result to the demodulator. Because a wireless channel is

a time varying random function, channel estimators need to measure channel char-

acteristics periodically. In CDMA systems, multipath searcher is used for channel

estimation [29]. In TDMA systems, although various estimation algorithms are used

for this purpose, maximum likely sequence estimation (MLSE) algorithm is most

popular among them [30]. However, in OFDMA systems, a simple channel estima-

tor is enough in receiver because OFDM symbol is inherently robust to the signal

distortion caused by the wireless channel.

Pulse shaping is required to convert binary digital information into a frequency

limited signal [31]. A binary impulse train, which is used in the digital baseband, is

a signal with infinite frequency bandwidth. However, the frequency band, which is

allowed for practical communication networks, is limited. In transmitters, the pulse

shaping suppresses signal terms out of the allowed frequency band such that the

interference to other channels is minimized. However, at receiver, the pulse shaping

filter suppresses nose signal power through matched filtering2.

1Modulation and demodulation discussed in this section are not the operations performed in
analog frontend, that place signal from baseband to carrier band and vice versa.

2It is to compute a convolution between the received signal and the complex conjugate of the
signal waveform used for the pulse shaping at the transmitter.

19

3.3 Major Computation Kernels of Baseband Workload

As a first work, this thesis identifies major computation kernels of baseband work-

load, and the results are summarized in Table 3.1. From this table, it is possible

to observe two important characteristics of the baseband workload. First, the base-

band operation is the mixture of parallelizable and sequential workloads. Second,

the number computation kernels is limited. Table 3.1 shows there exist only 6 par-

allelizable vector kernels and 8 scalar kernels. Detailed explanations on all kernels

can be found Appendix.

At the case of parallelizable vector kernels, their computation pattern and data

movement patterns are almost deterministic. However, some scalar kernels can be

implemented with many different ways. In other word, the scalar kernels demand

higher level of flexibility than the parallelizable vector kernels.

Thus, it is possible to conclude that either pure parallel architecture or pure scalar

architecture is not appropriate for the baseband processing. Defining two datapaths,

one for parallelizable vector kernels and the other for scalar kernels, will be useful

for improving the power efficiency and throughput of system.

3.4 Characteristics of Parallelizable Computation Kernels

In this subsection, we further discuss the characteristics of parallelizable kernels

in order to derive hardware design information. As we will see in next chapter, the

parallelizable kernels dominate the baseband workload. So, more intensive analysis

is required for efficient system design.

We found that the operation of all parallelizable kernels can be described as a

combination of the following macro operations: data load, data alignment, vector

computation, vector reduction to scalar, and data store.

20

K
ey

K
er

n
el

s
V

ec
to

r/
S
ca

la
r

V
ec

to
r

W
id

th
S
y
st

em
T

y
p
e

F
u
n
ct

io
n

B
lo

ck

F
IR

fil
te

r
ve

ct
or

6-
32

0
T

D
M

A
,C

D
M

A
,O

F
D

M
A

pu
ls

e
sh

ap
er

,
ch

an
ne

l
es

ti
m

at
or

P
at

te
rn

m
at

ch
in

g
ve

ct
or

16
C

D
M

A
sy

nc
hr

on
iz

at
io

n
m

in
/m

ax
fin

di
ng

ve
ct

or
32

-1
02

48
T

D
M

A
,C

D
M

A
,O

F
D

M
A

ch
an

ne
l
de

co
de

r
V

it
er

bi
-A

C
S

ve
ct

or
64

-2
56

T
D

M
A

,C
D

M
A

,O
F
D

M
A

ch
an

ne
l
de

co
de

r,
ch

an
ne

l
es

ti
m

at
or

V
it

er
bi

-B
M

C
ve

ct
or

64
-2

56
T

D
M

A
,C

D
M

A
,O

F
D

M
A

ch
an

ne
l
de

co
de

r,
ch

an
ne

l
es

ti
m

at
or

F
F
T

ve
ct

or
64

-2
04

8
O

F
D

M
A

de
m

od
ul

at
io

n
V

it
er

bi
-T

B
sc

al
ar

-
T

D
M

A
,C

D
M

A
,O

F
D

M
A

ch
an

ne
l
de

co
de

r,
ch

an
ne

l
es

ti
m

at
or

In
te

rl
ea

vi
ng

sc
al

ar
-

T
D

M
A

,C
D

M
A

,O
F
D

M
A

in
te

rl
ea

ve
r,

de
in

te
rl

ea
ve

r,
ch

an
ne

l
de

co
de

r
Sy

m
bo

l
m

ap
pi

ng
sc

al
ar

-
T

D
M

A
,C

D
M

A
,O

F
D

M
A

m
od

ul
at

or
,
de

m
od

ul
at

or
C

ha
nn

el
en

co
di

ng
sc

al
ar

-
T

D
M

A
,C

D
M

A
,O

F
D

M
A

ch
an

ne
l
en

co
de

r
Sl

id
in

g
w

in
do

w
sc

al
ar

-
T

D
M

A
,C

D
M

A
,O

F
D

M
A

fr
am

e
de

te
ct

io
n

C
od

e
ge

ne
ra

ti
on

sc
al

ar
-

C
D

M
A

m
od

ul
at

or
/d

em
od

ul
at

or
In

te
rp

ol
at

io
n

sc
al

ar
-

O
F
D

M
A

de
m

od
ul

at
or

Fr
eq

ue
nc

y
tr

ac
ki

ng
sc

al
ar

-
O

F
D

M
A

de
m

od
ul

at
or

T
ab

le
3.

1:
M

a
jo

r
co

m
p
u
ta

ti
on

ke
rn

el
s

co
m

p
ri

si
n
g

th
e

b
as

eb
an

d
p
ro

ce
ss

in
g

w
or

k
lo

ad

V
ec

to
r

K
er

n
el

s
L
oa

d
A

li
gn

m
en

t
C

om
p
u
ta

ti
on

R
ed

u
ct

io
n

S
to

re

F
IR

F
il
te

r
sc

al
ar

ve
ct

or
sh

ift
co

nd
it

io
na

l
co

m
pl

em
en

t,
re

al
m

ul
ti

pl
ic

at
io

n
ag

gr
eg

at
io

n
sc

al
ar

P
at

te
rn

M
at

ch
in

g
si

ng
le

ve
ct

or
no

al
ig

nm
en

t
co

nd
it

io
na

l
co

m
pl

em
en

t
ag

gr
eg

at
io

n
sc

al
ar

m
in

/m
ax

F
in

d
in

g
m

ul
ti

pl
e

ve
ct

or
no

al
ig

nm
en

t
co

m
pa

re
-a

nd
-s

el
ec

t
m

in
/m

ax
se

ar
ch

sc
al

ar
V

it
er

b
i-
B

M
C

m
ul

ti
pl

e
ve

ct
or

V
it

er
bi

tr
el

lis
su

bt
ra

ct
io

n,
co

m
pa

ri
so

n,
co

nd
it

io
na

l
co

m
pl

em
en

t
-

ve
ct

or
V

it
er

b
i-
A

C
S

m
ul

ti
pl

e
ve

ct
or

V
it

er
bi

tr
el

lis
ad

di
ti

on
,
co

m
pa

re
-a

nd
-s

el
ec

t
-

ve
ct

or
F
F
T

m
ul

ti
pl

e
ve

ct
or

F
F
T

bu
tt

er
fly

co
m

pl
ex

m
ul

ti
pl

ic
at

io
n,

ad
di

ti
on

,
co

m
pl

em
en

t
-

ve
ct

or

T
ab

le
3.

2:
C

h
ar

ac
te

ri
st

ic
s

of
th

e
p
ar

al
le

li
za

b
le

ve
ct

or
ke

rn
el

s
in

th
e

b
as

eb
an

d
p
ro

ce
ss

in
g

w
or

k
lo

ad

21

Data

load

1st

alignment

Vector

computation

Vector

reduction

2nd

alignment

Data

store

Figure 3.2: A conceptual macro pipeline model which can describe the operation of
all parallelizable kernels

Data load macro operation is to read input operands from a memory. All par-

allelizable kernels needs to load data from a memory for their operations. Data

alignment macro operation is to arrange the sequence of the loaded data. Vector

computation macro operation is to currently perform arithmetic or logical opera-

tions. Vector reduction macro operation is to convert the output of vector compu-

tation into a scalar data. Data store macro operation is to save the results of the

vector computation or vector reduction to a memory.

As shown in Figure 3.2, these five macro operations form a conceptual macro

pipeline. This conceptual macro pipeline shows two interesting characteristics. One

is there exists an unidirectional data dependency chain between macro operations.

Another is that an identical operation is continued for a long period because all

parallelizable kernels have sufficient input data. Thus, there is no need to reconfigure

the macro operations at every cycle. From the above two characteristics, it is possible

to derive a conclusion that all parallelizable computation kernels can be mapped on

a hardware pipeline, which consists of macro operation blocks and has a streaming

style control scheme.

Figures from 3.3 to 3.7 represent how all parallelizable vector kernels can be

22

Z-1

...

x[n]

c0 c1 (1)
F

Lc −

y[n]

Z-1 Z-1

(2)
F

Lc −

Data load: scalar load Data alignment: vector shift

Vector computation: real multiplication

Vector reduction: aggregation

Data store: scalar store

Figure 3.3: Interpretation of the FIR filter kernel into the macro pipeline

interpreted into the conceptual macro pipeline.

3.5 Types of Macro Operations

3.5.1 Data Load

In the parallelizable kernels, there exist three types of data load patterns: scalar

load, single vector load, and multiple vector load. In the scalar load, in every cycle,

only one data word is loaded from the data memory. The data load pattern of the

finite impulse response (FIR) filter is the scalar load. In single vector load, only one

vector operand is loaded from the data memory in every cycle. The data load pattern

of the pattern matching kernel is the single vector load. In the multiple vector load,

multiple input vector operands are loaded from the data memory in every cycle. The

Viterbi branch metric computation (BMC) / add compare select (ACS) and fast

fourier transform (FFT) kernels need to load multiple vectors at every cycle.

Conventionally, a datapath with vector ALU needs two input vector operands for

its operation. Thus, while the datapath executes the parallelizable kernels with the

23

...

x[0]

p0 p1

y[n]

x[1] x[N-2]

pN-2 pN-1

x[N-1]

Vector computation : conditional complement Data load : single vector load

Data alignment: no alignment

Vector reduction : aggregation Data store : scalar store

Figure 3.4: Interpretation of the pattern matching kernel into the macro pipeline

single scalar load or single vector load pattern, the previously loaded information

has to be reused to build two input vector operands to the vector datapath. For this

purpose, storage devices are additionally required.

3.5.2 Data Alignment

The data alignment patterns of the parallelizable kernels can be classified into five

types: no alignment, vector shift, Viterbi forward trellis, Viterbi backward trellis, and

FFT butterfly. No alignment means that the sequence of input data in data memory

is enough for an actual vector computation. min/max finding and pattern matching

kernels correspond to this case. The operations of these kernels are independent of

data sequence. Vector shift is the element level data shift shown in Figure A.20. The

vector shift pattern appears at the FIR filter operation. The data movement pattern

of the Viterbi forward trellis is shown at Figure A.5(a). The Viterbi forward trellis

pattern appears at the Viterbi decoder and max-log maximum a posterior (MAP)

Turbo decoder. The data movement pattern of the Viterbi backward trellis operation

24

...

x[0]

y[n]

x[1] x[N-2] x[N-1]

comp&sel comp&sel comp&sel comp&sel

x[N] x[N+1] x[2N-2] x[2N-1]

comp&sel comp&sel

comp&sel

...comp&sel comp&sel

Data load: multiple vector load Vector alignment: no alignment

Vector computation: compare-and-select

Vector reduction: min/max search

Data store : scalar store

Figure 3.5: Interpretation of the min/max finding kernel into the macro pipeline

25

add add

Comp/sel

add add

Comp/sel

add add

Comp/sel

add add

Comp/sel

... ...

P0 P1 P2 P3 PN-1

B0 B1 B2 B3 BN-1

P0 P1 PN/2-1 PN-1

Data load : multiple vector load Data alignment : Viterbi trellis

Vector computation : addition, compare-and-select Data store : vectore store

Figure 3.6: Interpretation of the Viterbi-ACS kernel into the macro pipeline

26

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[N-2]

x[N-1]

w[0] w[1] w[N/2-1]w[2] w[3]

x

+ -

x

+ -

x

+ -

x

+ -

x

+ -

y[0] y[2] y[4] y[6] y[N-2]y[1] y[3] y[5] y[7] y[N-1]

...

Data load : multiple vector load Data alignment : FFT butterfly

Vector computation : complex multiplication, addition, subtraction Data store : vector store

...

Figure 3.7: Interpretation of the FFT kernel into the macro pipeline

27

is shown at Figure A.9(a). It appears at the max-log MAP Turbo decoder. The FFT

butterfly pattern is shown in Figure A.17(a). One common characteristic of all data

movement patterns is that the relation between source node and destination node

can be represented by simple linear equations.

3.5.3 Vector Computation

The computations required by the parallelizable kernels are real number multi-

plication, complex number multiplication, addition, subtraction, conditional comple-

ment, conditional selection, and compare-and-select. The conditional complements

is to compute one’s or two’s complement of the input operand according to the value

of a condition flag. The conditional selection is to select one data from two input

operands according to the value of the condition flag. First interesting factor is that

the number of computation patterns is small. Second point is that all computations

are well matched with an SIMD style datapath because the number of parallelizable

computations is, in most cases, greater than 32 and all parallelizable computations

can be controlled by identical control signals. Third, all input operands of these

computations are 8bit or 16bit fixed point numbers.

3.5.4 Vector Reduction

There exist two kinds of reduction methods: aggregation and minimum/maximum

value search. Aggregation is to produce a scalar output by adding all elements of the

input vector. The minimum/maximum value search is to find the minimum or maxi-

mum value from the input vector. The FIR filter, pattern matching, min/nax finding

kernels need the vector reduction. No reduction is required at the Viterbi-BMC/ACS

and FFT kernels.

28

3.5.5 Data Store

There are only two kinds of data store patterns in the parallelizable kernels: scalar

store and vector store. Scalar store is to save one data element into memory, whereas

vector store is to store multiple data elements into memory. With some parallelizable

kernels, the vector reduction converts a vector input data into a scalar. Then, the

required data store pattern is the scalar store. However, the data store pattern of

the Viterbi-BMC/ACS and FFT is the vector store because these kernels produce a

vector output and no reduction is performed on their vector output.

CHAPTER IV

SYSTEM LEVEL WORKLOAD

CHARACTERIZATION: W-CDMA

4.1 Introduction

In this chapter, this thesis discuss the system level behavior of the physical layer

of wireless terminals. This system level analysis answers many design questions

that are raised at high level system design procedure. For instance, the proper

number of processor cores, the proper granularity of processor core, the homogeneity

of processor core, the interconnection mechanism between processor cores can be

answered by this analysis.

4.2 Operation Modes of Wireless Terminal

Wireless terminals change their operation mode according to user activity [32][33][34].

When there are active user applications, wireless terminals employ all of their func-

tionality to support high data rate communications (active mode). At short idle

periods between traffic bursts, wireless terminals maintain a narrow control chan-

nel with the basestation for fast transition to the active mode (control hold mode).

However, even when there exist no active user applications, wireless terminals can

not turn off completely, because requests from other terminals may be received at

29

30

t

Idle Mode
Active mode

Web browsing

Idle Mode

Active mode Control hold mode

Voice

call

off

on

... ...

off

Reading

time

Idle

Mode

Figure 4.1: The active, control hold, and idle modes of wireless terminals

unpredictable times. So, wireless terminals activate a subset of their communication

components that are sufficient to receive the requests (idle mode). In the idle mode,

the operation is intermittent. Instead of continuously monitoring for signals, termi-

nals completely power off their receiver and activate it only for short pre-scheduled

periods. Wireless terminals spend most of their operation time in the idle mode.

For instance, if a laptop user starts a internet connection and opens a new web

page, then the corresponding operation mode is the active mode. If the user spends

time reading the opened web page, then a terminal enters the control hold mode.

Finally, if the user terminates web browser and starts other laptop task, then a

terminal enters the idle mode. This relation is depicted in Figure 4.1.

4.2.1 Characteristics of Active and Control Hold Modes Operations

In the active mode, all major blocks discussed in the previous chapter are acti-

vated. In transmission path, the channel encoder, block interleaver, modulator, and

pulse shaping filters are used and, in reception path, the pulse shaping filter, demod-

ulator, channel estimator, block deinterleaver, and channel decoder are used. Thus,

31

all computation kernels shown in Table 3.1 are related to active mode operation.

Among all computation kernels, as we will show in the following section for W-

CDMA terminal operation, the channel decoder dominates the active mode workload.

Thus, in order to minimize system power, it is important to process the Viterbi

BMC/ACS kernels with minimum power cost because these two kernels dominate

the channel decoder operation, and consequently the active mode workload. Because

it is required to process high rate traffic, to meet peak performance with minimum

power consumption is important design issue.

The operations done in the control hold mode are almost identical to that of

active mode except for low data rate. Channel encoder and decoders are only used

for control message decoding. So, pulse shaping filters and channel estimator are

dominant workloads of the control hold mode. According to modulation schemes,

dominant parallelizable kernels are different. In CDMA based systems, the FIR filter

dominates the workload of the control hold mode. In TDMA based systems, the FIR

filter and Viterbi BMC/ACS kernels are dominant. In OFDMA systems, the FFT

is a major kernel.

In order to finish the operation on the current frame before the arrival of next

frame, all computation kernels used in both active and control hold modes have tight

processing time requirement.

4.2.2 Characteristics of Idle Mode Operations

Even in the idle mode, almost all signal processing algorithms, comprising the re-

ceiving path of a wireless terminal, participate in the operation of a wireless terminal.

However, if we additionally consider the amount of workload, the idle mode operation

is dominated by two computation kernels: the FIR filter and sliding window. The

32

FIR filter style computations appear in the pulse shaping, the synchronization, and

the channel estimation procedures. The sliding window style computation appears

in the frame detection operation in the ad hoc network. It translates as follows:

the power efficiency of the idle mode processor is dominated by the power efficiency

of these kernel computations. Detailed discussion on these kernels can be found in

Appendix.

In addition to the limited computation patterns, the idle mode operation also has

another characteristic, more relaxed processing time requirements. In active mode,

a baseband processor must finish the operations on the current frame before the

next frame arrives, in order to avoid buffer overflow. However, in the idle mode, the

inter-frame arrival time is much longer than that of the active mode, by at least an

order of magnitude. Thus, for power reduction, it is important for the idle mode

processor to fully exploit the allowed processing time.

4.3 A Case Study: W-CDMA Terminal

As a case study, this section analyzes the operation of WWAN terminal among

the terminals of many wireless networks. Compared to other networks’ terminals, the

WWAN terminal has most complex operation scenario in order to support terminal

mobility. It also uses the most complex signal processing algorithms to maximize

network capacity. Thus, it is possible to state that the workload of the WWAN

terminal is a superset of the workload of terminals for other types of networks.

Among the terminals of many WWANs, this thesis selects a W-CDMA terminal.

The W-CDMA is one of the most advanced networks among WWANs. Because all

WWAN terminals exhibit similar behavior, the W-CDMA terminal can be a good

reference model for the system level workload analysis.

33

Application Type

Service type Packet service
Data link 2 Mbps downlink / 128 Kbps uplink
Signaling link 3.4 Kbps bidirectional

Channel Condition

Number of basestations 3
Number of rake fingers 12
Number of average Turbo iterations 5

Table 4.1: Operation conditions of a W-CDMA terminal which are assumed for sys-
tem level workload analysis

4.3.1 Terminal Operation Condition

Before the detailed workload analysis, this thesis clarifies the operation conditions

of the W-CDMA terminal because the workload of the W-CDMA physical layer is

affected by many reasons: 1) operation state; 2) application type; and 3) radio

channel status. Among these reasons, the operation state change most significantly

affects workload of physical layer. So, this thesis analyze the workload variation

according to operation state changes in detail, but assume worst case conditions at

the case of application type and channel condition.

Generally, it is possible to classify application services into two types: circuit

service and packet service. Circuit service is a constant data rate service such as voice

call. Packet service is a variable data rate service such as internet access. Because the

burst packet arrival pattern of the packet service demands a more complex resource

management scheme, we select the packet service as a representative service. In

addition, this thesis further assumes an asymmetric packet service that consists of

a 2 Mbps link on the direction from basestation to terminal, downlink, and a 128

Kbps link on the reverse direction, uplink. The asymmetric channel assumption

matches the behavior of most packet services, for instance web browsing. For control

34

signalling, the packet service additionally has a bidirectional signaling link with a

3.4 Kbps data rate.

In detail, the workload of a W-CDMA terminal is also varied by three radio chan-

nel conditions: 1) the number of basestations that communicate with a terminal at

the same time; 2) the number of strong multipath components; and 3) the quality

of received signal. This thesis assumes 3 basestations, and 4 strong multipath com-

ponents from the signal of a basestation with a rule of thumb. Thus, the W-CDMA

terminal activates a total of 12(=3×4) rake fingers1. The quality of the received

signal has a direct impact on the number of iterations of the Turbo decoder. Thus,

this thesis assumes the average number of Turbo decoder iterations as 5 times per

frame.

4.3.2 System Block Diagram

Figure 4.2 shows a detailed block diagram of the W-CDMA physical layer. It

shows the variation of active algorithm blocks according to the terminal operation

modes which was discussed in the previous chapter. In the idle mode, the low pass fil-

ter (LPF)-Rx, demodulator (descramble, despreader, and combiner), and multipath

searcher, which are a subset of reception path, are active. It is worth noting that

an complex and power consuming Viterbi decoder or Turbo decoder does not par-

ticipate in the operation of the idle mode. In the control hold mode, a bidirectional

3.4 Kbps signaling link is established with basestations. Thus, a terminal activates

both transmission and reception paths including the convolutional encoder/Viterbi

decoder, LPF-Rx/Tx, modulator/demoulator, multipath searcher, and power con-

trol. Power control is important in the CDMA based system. It is to adaptively

1In CDMA based system, each multipath component is independently demodulated at the re-
ceiver. The rake finger represents the demodulator assigned to a multipath component.

35

Searcher

descrambler despreader
3.84M

(8bit)

combiner

LPF-Rx
3.84Mx2

(8bit)

3.84Mx2

(8bit)

A/D

Scrambling

Code Gen.

(1bit)

3.84M/8

15K

(8bit)

15K

(8bit)

(1bit)

3.84M

Deinterleaver
15K

(8bit)

Viterbi

Decoder

3.4K

(1bit)

Viterbi

Encoder
Interleaver

15K

(1bit)

3.4K

(1bit)
spreader

15K

(1bit)

scrambler

Scrambling

Code Gen.

(1bit)

3.84M

3.84M

(1bit)

spreader
3.84M

(1bit)

LPF-Tx

LPF-Tx

LPF-Tx

LPF-Tx
3.84M

(1bit)

3.84M

(1bit)

3.84M

(1bit)

3.84M

(1bit)

LPF-Rx
3.84Mx2

(8bit)

3.84Mx2

(8bit)

Power

Control

15K

(1bit)

15K

(1bit)

1.5K

(16bit)

Gain control

D/A

3.84Mx4

(16bit)

3.84Mx4

(16bit)

1.5K

(8bit)

1.5K

(8bit)
1.5K

(128bit)

descrambler despreader
3.84M

(8bit)
15K

(8bit)

....

despreader
3.84M

(8bit)

combiner

960K

(8bit)

Deinterleaver
5.6M

(8bit)

Turbo

Decoder

2.3M

(1bit)

despreader
3.84M

(8bit)
960K

(8bit)

....

Idle state

Control hold state

Active state

Turbo

Encoder
Interleaver

240K

(1bit)

128K

(1bit)
spreader

240K

(1bit)

3.84M

(1bit)

960Kx6

(8bit)

scrambler

scrambler

LPF-Tx

LPF-Tx
3.84M

(1bit)

3.84M

(1bit)

3.84Mx4

(16bit)

3.84Mx4

(16bit)

3.84Mx4

(16bit)

3.84Mx4

(16bit)

3.84Mx4

(16bit)

3.84Mx4

(16bit)

Figure 4.2: Detailed block diagram of the W-CDMA physical layer when it provides
the packet data service described in Table 4.1

control signal transmission power according to the signal quality at receiver. Thus,

the receiver needs to report the measured quality of the received signal to the trans-

mitter within several hundred micro seconds. It results in a tight timing constraint in

the baseband processing of the CDMA based system. In the active mode, a terminal

additionally establishes a bidirectional high speed data link which is encoded by the

Turbo encoder as shown in Table 4.1. Thus, the Turbo encoder/decoder participate

in the active mode operation of a terminal. The activation of the Turbo decoder

36

Active/Control hold modes Idle mode
Processing Execution Processing
Time(ms) Freq.(Hz) Time(ms)

Searcher Fixed(5∗) 50∗ Fixed(40∗)
Interleaver/Deinterleaver Fixed(10) 100 -
Convolutional encoder

Variable -
Viterbi decoder Fixed(10/20/40)
Turbo encoder
Turbo decoder Variable(10∼50∗)
Scrambler/Descrambler
Spreader/Despreader Fixed(0.67)
LPF-Rx Fixed(0.67) 1500
LPF-Tx

-
Power control

Table 4.2: Processing time requirements of the W-CDMA physical layer

increases terminal’s workload abruptly.

Figure 4.2 also describes interface between the algorithms of W-CDMA. The num-

ber at the top of each arrow represents the number of samples per second, and that

at the bottom represents the size of a sample. From the given numbers, we can derive

the amount of traffic between the algorithms. The size of most input/output data in

the transmission path is 1 bit, but, in the reception path, the size of input/output

data is 8 or 16 bit because the channel decoders use soft number which represents

binary information with higher precision for better decoding performance. From this

diagram, we can see that the data rate is abruptly changed by the spreader and

despreader. In the transmission path, data rate is upconverted from kilo sample per

second into mega samples per seconds after the spreading operation. The reception

path exhibits an opposite conversion.

37

4.3.3 Processing Time

Table 4.2 shows that the W-CDMA physical layer is a mixture of algorithms with

various processing time requirements. The ∗ notation in the table represents that the

corresponding parameter is determined by design choice not by specification. Other

parameters in the table are explicitly specified by the W-CDMA standard. The

processing times shown in the second and fourth columns are the allowed completion

time of each algorithm whenever it is called. The task frequency shown in the third

column is the number of executions of each algorithm within a second.

We assume that the searcher is executed every 20 msec because a radio channel

can be considered as invariant during this interval. The scrambler, spreader, and LPF

have periodic and very strict processing time requirements because they participate in

the power control action. The convolutional code is mainly used for the circuit service

with a constant data rate, so the Viterbi decoder needs to complete its operation

before the arrival of the next frame to avoid buffer overflow. The processing time

of the Viterbi decoder can be configured with 10, 20, or 40 msec according to the

service configuration on the frame arrival interval. Whereas the Turbo code aims the

packet service with a burst packet arrival pattern. By buffering of packet burst, it is

possible to relax processing time constraint substantially. This thesis assumes that

the processing time of the Turbo decoder varies between 10∼50 msec according to

the amount of buffered traffic. In the idle mode, tasks have loose timing constraints,

so the searcher operation can be performed in sequential with minimal hardware and

the task execution frequency is not of concern.

38

Active Control Hold Idle
(MOPS) % (MOPS) % (MOPS) %

Searcher 26538.0 42.1 26358.0 58.4 3317.3 37.7
Interleaver 2.2 0.0 2.2 0.0 - -
Deinterleaver 0.2 0.0 0.2 0.0 - -
Conv. encoder 0.0 0.0 0.0 0.0 - -
Viterbi Decoder 200.0 0.3 200.0 0.4 - -
Turbo encoder 0.0 0.0 0.0 0.0 - -
Turbo decoder 17500.0 27.8 0.0 0.0 - -
Scrambler 245.3 0.4 245.3 0.5 - -
Descrambler 2621.4 4.2 2621.4 5.8 889.2 10.1

Spreader 297.5 0.5 297.5 0.7 - 0.0
Despreader 3642.5 5.8 3642.5 8.0 607.1 6.9
LPF-Rx 3993.6 6.3 3993.6 8.8 3993.6 45.3
LPF-Tx 7897.2 12.6 7897.2 17.4 - -
Power control 0.0 0.0 0.0 0.0 - -
Total 62937.0 - 45272.9 - 8807.2 -

Table 4.3: Peak workload profile of the W-CDMA physical layer and its variation
according to the operation mode change

4.3.4 Peak Workload Profile

The detailed peak workload profile of the W-CDMA physical layer is shown in Ta-

ble 4.3. For this analysis, we compiled our W-CDMA benchmark [35] with an Alpha

gcc compiler, and executed it on M5 architectural simulator [36]. The W-CDMA

benchmark describes the algorithms of W-CDMA physical layer with C language.

We measured the instruction count that is required to finish each algorithm. Peak

workload of each algorithm is achieved by dividing the instruction count by the most

tight processing time requirement of each algorithm that is shown in Table 4.2.

The first thing to note in Table 4.3 is that the total workload varies according

to the operation mode change. The total workloads in the control hold and idle

modes are about 72% and 14% of that in the active mode. Second, the types of

active algorithms and the workload distribution between them also vary according

39

Scalar Vector Vector Element Max
Workload Workload Width Width Concurrent

(%) (%) (bit) Thread

Searcher 3 97 320 1,8 5120
Interleaver 100 0 - - -
Deinterleaver 100 0 - - -
Viterbi encoder 60 40 8 1,1 1
Viterbi BMC 1 99 256 8,8 45
Decoder ACS 1 99 256 8,8 45

TB 100 0 - - -
Turbo encoder 60 40 4 1,1 2
Turbo BMC 1 99 16 8,8 20
Decoder ACS 1 99 16 8,8 20

TB 100 0 - - -
Scrambler 1 99 2560 1,1 1
Descrambler 1 99 2560 1,8 1
Spreader 100 0 - - -
Despreader 100 0 - - -
Combiner 100 0 - - -
LPF-Tx 1 99 32 1,16 6
LPF-Tx 1 99 32 8,8 2
Power Control 100 0 - - -

Table 4.4: Parallelism available in the algorithms of the W-CDMA physical layer

to the operation mode change. In the active and control hold modes, the multipath

searcher and Turbo decoder are dominant. In the idle mode, the multipath searcher

and LPF-Rx are dominant. The workload of transmission path is not substantial

compared to that of receive path.

4.3.5 Parallelism

Table 4.4 shows a breakdown of the available parallelism in the W-CDMA phys-

ical layer. We define DLP as the maximum SIMD vector width and thread level

parallelism (TLP) as the maximum number of SIMD threads that can be executed

in parallel. The second and third columns in the table are the ratio between the run

time of the scalar code and the vector code. The fourth column represents maximum

40

possible DLP. Because a vector operation needs two input operands, we separately

represent the bit width of two vector operands in the fifth column. The last column

shows the TLP information.

From Table 4.4, we can see that the searcher, LPF, scrambler, descrambler, and

the BMC/ACS of the Viterbi decoder contain large amount of the DLP and TLP.

For the case of the scrambler and descrambler, it is possible to convert the DLP into

TLP by subdividing large vectors into smaller ones. Although it is one of dominant

workloads, the Turbo decoder contains limited DLP because the allowed maximum

vector length of the ACS operation of the Turbo decoder is 8. It is possible to covert

this narrow DLP task into wide one by decoding multiple frames simultaneously.

There are also many unparallelizable algorithms in the W-CDMA physical layer.

The interleaver, deinterleaver, spreader, despreader, and combiner operations have

little DLP and TLP. Fortunately, the workload of these algorithms is not signifi-

cant as show in Table 4.3. Therefore we can easily increase system throughput and

power efficiency by exploiting the inherent DLP and TLP shown in Table 4.4. One

factor worth to note is that there is no workloads with substantial instruction level

parallelism.

4.3.6 Memory Requirement

Because memory is one of the dominant power consuming elements in most low

power systems, the analysis on the characteristics of memory access pattern is impor-

tant. In general, there are two types of memory in a hardware system: data memory

and instruction memory. Table 4.5 presents the data and instruction memory for all

algorithms in the W-CDMA.

Columns 2∼7 in Table 4.5 show the size of the required data memory. The data

41

Data memory (Kbyte) Inst.
I-buffer O-buffer Scratch pad Mem.

Kbyte Mbyte/s Kbyte Mbyte/s Kbyte Mbyte/s (Kbyte)
Searcher 20 1 0 0 60 340 3.0
Interleaver 10 5 10 5 0 0 0.1
Deinterleaver 45 10 45 10 - - 0.1
Viterbi Encoder - - - - - - 0.5
Viterbi Decoder 1 - 1 0 50 20 1.5
Turbo Encoder 1 1 5 5 - - 1.5
Turbo Decoder 45 10 25 5 1 3770 3.5
Scrambler 1 10 1 10 - - 0.5
Descrambler 10 100 10 100 - - 0.5
Spreader 1 5 1 15 1 15 0.5
Despreader 5 60 1 5 1 15 0.5
Combiner 1 25 50 5 - - 0.1
LPF-Tx 1 25 5 50 1 1480 0.1
LPF-Rx 1 15 1 10 1 500 0.1
Power control - - - - - - 0.1
Total 143 267 155 220 115 6120 13.6

Table 4.5: Memory requirements of the algorithms of the W-CDMA physical layer

memory is further divided into two categories: I/O buffer and scratch pad. The

I/O buffer memory is used for data buffering between algorithms. The scratch pad

memory is temporary space needed for algorithm execution. This thesis analyzes

both size and access bandwidth of the data memory.

From the table, we can see that the W-CDMA algorithms require small amount

data memory, generally less than 64 Kbyte. In addition, the scratch pad memory is

the most frequently accessed, especially in the searcher, Turbo decoder, and LPFs.

The access of I/O memory does not occupy significant portion at the total memory

access. Thus, for power reduction, it is crucial to reduce the energy cost of the

scratch pad memory while designing memory hierarchy.

The last column of Table 4.5 shows the instruction memory size for each algo-

rithm. The average code size is less than 1 Kbyte and most kernels are even below

42

0.5 Kbyte. This result is typical in most digital signal processing algorithms due to

their computation intensive characteristics. Because our W-CDMA benchmark does

not include full function of the W-CDMA physical layer, we need to consider the

increase of the instruction memory in a real situation.

CHAPTER V

HIGH LEVEL ARCHITECTURE OF THE

BASEBAND PROCESSOR FOR SDR

In this chapter, this thesis discusses the high level architecture of the baseband

processor for the SDR. As shown in Figure 5.1, the proposed baseband processor

is a chip multiprocessor system which consists of many coarse grain PE. For the

interconnection of PEs, a low speed bus is utilized. Each PE has both parallel

datapath and scalar datapath in order to efficiently support both parallel and scalar

workloads. A global memory is placed on the interconnect bus between PEs to buffer

large non-realtime traffic. A GPP is appended to cover system level control actions

and maintenance tasks.

5.1 Chip Multiprocessor

The physical layer algorithms demand a high performance computer system with

several tens GOPS. There exist two approaches to implement a computer system that

satisfies such a high performance requirement: to use a high speed single processor or

many low speed processors. Although a single processor architecture is much easier

to program, we need to run the single processor at high operation frequency to meet

the throughput requirement. Then, the single processor will be power inefficient

43

44

PE-1PE-2PE-n
Global

mem.

GPP

(control &

mainternance)

SIMD+Scalar SIMD+Scalar SIMD+Scalar

Local

mem.

Local

mem.

Local

mem.

System BUS

Figure 5.1: The high level architecture of the proposed baseband processor for the
SDR

because of the super linear relationship between the operation frequency of circuits

and their power consumption. Usually a high performance single processor system

dissipates more than one hundred Watt even with state-of-art circuit technology.

However, the maximum operation power allowed for the baseband processor is several

hundred mW. Thus, using a multiprocessor architecture is inevitable to meet both

performance and power requirements of the baseband processor. In a multiprocessor

architecture, each PE can run in a lower operation frequency because the workload

is shared by multiple PEs. The lower operation frequency allows us to use slower but

more power efficient circuits in a PE and it eventually reduces total system power.

Fortunately, the physical layer algorithms inherently show plenty of algorithm

level parallelism. As shown in Table 4.5, the channel encoder/decoder, block in-

terleaver/deinterleaver, modulator/demodulator, pulse shaping filter, and channel

estimator can be executed in parallel without intensive interactions. Thus, it is pos-

sible to map these algorithms on multiple PEs without significant communication

overhead.

45

5.2 Coarse Grain PE

In the implementation of a multiprocessor architecture, the granularity of the

PE is one of important design issues because system dynamic power is significantly

affected by the size of the PE. The memory access pattern analysis results shown in

Table 4.5 provide useful design information. This table shows that, in most compu-

tation intensive algorithms, the amount of memory access for internal computation

is about 10∼200 times greater than that for the communication with other algorithm

blocks. It means that if a PE is strong enough to cover one entire signal processing

algorithm, the amount of interprocess communication can be minimized.

Minimizing the amount of interprocess communication is important in a low

power system because the energy cost of inter process communication is at least two

times higher than that of internal memory access. In detail, let us compared the

power consumption of a coarse grain PE and a fine gain PE. With a coarse grain PE,

which can covers one signal processing algorithm such as a Viterbi decoder without

task partitioning, the operations required to pass the result of one step to the next

step are to write on a local memory or register file and to read from it. However,

with a fine grain PE, which covers only a part of a signal processing algorithm, the

same data are passed through three blocks: the output buffer of the source PE, the

interconnection network between two PEs, and the input buffer of the destination

PE. In CMOS circuits, accessing storage elements such as register file or memory

is the most expensive regarding power. Thus, the fine grain PE will dissipate more

energy for the identical operations.

From the view point of system throughput, the coarse grain PE is also a bet-

ter choice because the communication delay between fine grain PEs degrades system

46

throughput. Usually, the operation speed of the interprocess communication network

is slower than the internal memory access. Furthermore, the interprocess commu-

nication time is not deterministic. So, the fine grain PEs must be scheduled under

the assumption of worst case delay. These factors degrade achievable maximum

system throughput. Even with the coarse grain PEs, we can satisfy both the high

throughput and low power consumption by exploiting the DLP, which is abundant in

baseband signal processing algorithms. As we discussed in Chapter IV, the dominant

workloads of the physical layer exhibit wide DLP.

5.3 Homogeneous PE

In multiprocessor system, all PEs can have identical architecture (homogeneous)

or different architectures, which are further optimized to their workloads (hetero-

geneous). Generally, the system with a homogeneous PE is more flexible but less

efficient in power and throughput, whereas the system with a heterogeneous PE is

less flexible but more efficient in power and throughput.

From the viewpoint of design cost, the system with heterogeneous PEs demands

more design efforts. However, from the viewpoint of flexibility, the system with ho-

mogeneous PEs is preferred because the SDR system needs to support various work-

loads with different workload distributions and computation patterns. The proposed

architecture of a PE is well optimized for all major kernels. So, the homogeneous

PE is selected.

5.4 Low Speed BUS

Because a coarse grain PE is used in the proposed system, the communication

traffic between PEs can be supported by a low speed bus. For example, in Table 4.5

47

the total amount of traffic between all algorithms is about one Gbps. For this level

of traffic, a low speed bus with 32bit data width and 200 MHz operation frequency

is sufficient. This bus can support the physical layer operation for W-CDMA 2Mbps

data service with about 15% bus utilization. At the 130 nm silicon processing tech-

nology, which is used for the power evaluation of the proposed architecture, the

200 MHz operation frequency can be realized with small and power efficient circuit

components.

5.5 Memory Hierarchy

5.5.1 Scratch Pad Memory

Like conventional processor architecture, there exist two kinds of memories in the

proposed system for baseband processing: data memory and instruction memory.

One common characteristic of these memories used in the proposed architecture is

the absence of a cache. As well known, a cache is useful for the applications which

need to access large memory space. A cache hides the long access delay of large

memory. Another advantage of using a cache is to eliminate the memory management

overhead. Despite such advantages, a cache is improper for our applications. At

first, a cache is power expensive because it is a kind of content access memory which

performs power consuming tag matching operations. The second disadvantage is

the variation on memory access time. In all signal processing applications, the most

important performance metric is to guarantee their completion time. The variation

on memory access time, which can be caused by cache miss, requires a loose task

scheduling, which concerns a cache miss case, and it directly results in lower system

throughput. This delay variation also makes the system debugging more difficult.

The processing time violation error related to the cache miss is quite difficult to

48

revive.

Instead of cache, this thesis proposes to use scratch pad memory for operation

data and executable codes. The CELL of IBM uses a similar scheme. Although

the programmer needs to be concerned with the memory management issue of the

scratch pad memory, it is not a critical problem because of the following reasons.

At first, the size of memories for application kernels is not huge. As shown in

Table 4.5, the 32K memory is enough for data and the 5K memory is sufficient for

instructions. If the scratch pad memories are bigger than the required size, there

will be no frequent memory replacement operations. Second, the algorithms mapped

on the proposed architecture show deterministic memory access patterns. Thus, the

memory management is not a difficult task in our applications.

5.5.2 Hierarchical Memory

The size of the memory is important for power efficiency. Because smaller memory

consumes less power, the size of memory needs to be minimized. As discussed be-

fore, the required size of memory is not huge in most workloads. However, there exist

several exceptional cases that require huge memory, the Turbo decoder and hybrid

automatic repeat request (HARQ) [37]. The Turbo code is used for the transmission

of high speed packet data, which a has bursty arrival pattern. However, it takes a

long time to decode Turbo coded data. Thus, a traffic buffer is required to resolve

such discrepancy between the data arrival pattern and the data processing pattern.

HARQ is an advanced ARQ scheme that stores error frames to reuse in the de-

coding of retransmitted frames. Because it takes several ten milliseconds to receive

retransmitted frames, the corrupted error frames need to be stored until restarting

decoding.

49

Parallel Datapath

Instruction

memory

Control

ID + PC + Interrrupt

Data

Memory

Scalar Datapath
Bus

I/F

Parallel datapath control

Figure 5.2: The skeleton of a PE, which has both scalar datapath and SIMD datap-
ath

In order to satisfy these two requirements, the power efficiency and the need for

large buffer space, this thesis proposes hierarchical memory structure, which consists

of local memory and global memory. As shown in Figure 5.1, each PE has a local

memory with minimal size to store operation data and all PEs share a large global

memory to buffer Turbo decoder input data and HARQ data.

Another important factor is that the local memory is used as buffer space for the

communication between PEs. The use of global memory for interprocess communi-

cation needs to be minimized because of memory copy overhead, which additionally

occurs when using the global memory for the communication. In most cases, the

data produced by one PE has only one consumer. Thus, the direct data transfer

between PEs is more power efficient than a scheme using the shared memory.

5.6 SIMD+Scalar

One key aspect for executing algorithms mapped on a PE is to use an SIMD ar-

chitecture. There are two main reasons why an SIMD architecture is beneficial. The

first reason for using SIMD is that the baseband operations contain a large amount

of DLP as shown in Table 4.4. For example, the multipath searcher shows 320 wide

50

data parallelism and the Viterbi decoder shows 256 wide data parallelism. Secondly,

the computations of the tasks with high levels of DLP are mainly add/subtract or

16bit multiplications. The absence of complicated operations allows us to duplicate

the SIMD functional units with minimal area and power overhead. Furthermore, we

can expect significant power gain because a SIMD architecture can execute multiple

data elements with one instruction memory accessing and decoding.

In addition to the SIMD support, the physical layer also requires scalar support

because there are many small sequential operations in the physical layer as shown in

Table 4.4. The sequential operations are the block interleaver/deinterleaver operation

and the trace back (TB) operation of the Turbo and Viterbi decoders. In the case of

the W-CDMA workload, the correlation peak searching operation in the multipath

searcher, the scrambling and spreading code generators in the modulator, and the

combiner in the rake receiver are sequential.

Therefore, a PE needs to have both an SIMD datapath and a sequential datapath.

For higher throughput, it is preferred to run the SIMD datapath and scalar data-

path in parallel. For this, two datapaths have independent control paths including

instruction memory, instruction decoder, and control logics. However, two datapaths

need to share the local memory for power reduction. It is because the scalar work-

load and the parallel workload are tightly coupled. The Viterbi decoder is a typical

example. The parallelizable BMC and ACS operations are assigned on the SIMD

datapath and the sequential TB operation is assigned on the scalar datapath. Such

a configuration requires a lot of communication between two datapaths because the

result of the BMC/ACS operations must be passed to the scalar datapath for the

TB operation. Sharing data memory eliminates the communication cost between

two datapaths. The skeleton of the proposed PE is depicted in Figure 5.2.

51

PE-1PE-n1PE-n2 ...

Global

mem.

GPP

(control &

mainternance)

...

Figure 5.3: The controlling of the number of active PEs according to terminal’s op-
eration state change

5.7 Support Wide Workload Variation

As shown in Table 4.3, the workload of the baseband processor has a wide range

of variance according to the terminal’s operation state. A chip multiprocessor archi-

tecture is proposed in this thesis in order to efficiently cope with such wide workload

variation through controlling the number of PEs, which are involved in the base-

band signal processing. Figure 5.3 depicts the proposed scheme that is to control

the number of active PEs according to workload variation.

In the idle mode, one PE is activated. Because the amount of computation

required for the idle mode operation roughly corresponds to the 1% of that of active

mode operation (refer to Table 4.3), one PE is sufficient. The GPP for control and

maintenance purposes can also be turned off for idle mode power reduction. In the

control hold mode, several PEs and the GPP are activated. The activated PEs cover

the workload, which is required for maintaining a low speed control channel between

a wireless terminal and a basestation. At the active mode, all components comprising

the baseband processor are activated. The global memory is only activated at the

52

active mode because the Turbo decoder and HARQ, which require the global memory

for the buffering of burst traffic, is only activated at this mode.

CHAPTER VI

THE ARCHITECTURE OF PROCESSING

ELEMENT

In this chapter, we discuss the architecture of the PE, which comprises the pro-

posed multiprocessor architecture for SDR. As outlined in the previous chapter (Fig-

ure 5.2), the PE consists of the parallel datapath, scalar datapath, control logics,

instruction memory, and data memory. On the top of this skeleton, this chapter

describes the detailed architecture of the PE and validates architectural decisions

made on the PE. This thesis proposes three novel schemes on the parallel datapath

for power reduction, throughput enhancement, and flexibility. Three new schemes

are macro instructions, macro pipelining, and staggered execution.

6.1 Previous Works

Pipelining, super-scalar, and multi-threading are popular techniques for high per-

formance GPPs [38]. However, they have significant power overhead and are not suit-

able for the baseband processing of the wireless terminal, which has a tight power

budget. For example, Pentium-M consumes 10∼20W although it is a low power

design [39]. Such low power efficiency is the result of the insufficient exploiting of

the DLP, which is a plethora in the baseband processing. Briefly, for throughput en-

53

54

hancement, the pipelining and super-scalar rely on the instruction level parallelism

but the multi-threading relies on the TLP. Because there exist many applications

with tiny DLP, a GPP can not be optimized to exploit only the DLP.

There are numerous parallel architectures for embedded workload: CELL from

IBM [40], Imagine from Stanford [41], and SCALE from MIT [42]. The CELL aims

game and multimedia applications on desktop computers. The target application of

Imagine is graphics. These architectures are not intended for portable applications

and have much higher power budgets than we are aiming for (sub-300mW).

There have been many digital signal processing architectures for wireless commu-

nications, which employ a wide range of parallel processing styles: SIMD, MIMD,

very log instruction word (VLIW), pipelining, and multi-threading.

The PicoArray of PicoChip [7] is based on the MIMD style processor array. It

is the most flexible among the existing parallelization schemes because each PE has

an independent control. However, its high power consumption limits its application

to basestations having a relaxed power constraint. High power consumption is the

result of using fine grain PEs with individual control paths. The small PE results in

more power expensive communication between PEs than other architectures based on

coarse grain PEs. Multiple control paths dissipate additional power when accessing

instruction memory and decoding instructions. In the case of the baseband processing

workload, which exhibits wide DLP, using a fine grain PE with individual control is

an over specification.

The SandBluster of Sandbridge [6] is a multi-core digital signal processor whose

computation engine has a narrow SIMD datapath. It supports multi-threading at the

hardware level to exploit the TLP [6]. It has a strong compiler tool set that allows

use of conventional ‘C’ primitives for the description of signal processing algorithms.

55

The ICERA solution [43] also has a narrow SIMD datapath. The power consumption

is reduced by the direct cascading of CUs, which minimize the activity of a power

hungry register file. However, the limitation of these architectures exists at the low

utilization of the DLP. Furthermore, these systems are not scalable. Except for

increasing the number of PEs, one possible way to enhance system throughput is to

increase operation frequency and pipeline depth. However, it was revealed that this

approach is not power efficient with nanometer technology [44].

The SODA from Michigan [8] and the EVP from Philips [9] use a wide SIMD dat-

apath, 32 wide at the SODA and 16 wide at the EVP. For supporting the workloads

with wide DLP, wide SIMD is the most power efficient among possible architectural

schemes. These architectures have several SIMD units for the vector computation,

data alignment, and vector reduction. In order to minimize the idle period of the

SIMD datapath, which is caused by control actions such as memory address genera-

tion and loop control, the SODA and EVP have a hardware address generator and

loop controller.

The EVP has a VLIW style instruction set on a wide SIMD datapath. Thus, mul-

tiple SIMD units can be executed in parallel. However, like other VLIW architecture,

it requires more complex control logics as a result of using long instruction words

and multiport register files for communication between SIMD units. Among the

baseband workloads, the EVP only aims to cover the modulation and demodulation

parts. The other algorithms for the pulse shaping and channel encoding/decoding

are mapped on ASIC style special hardware. From this factor, we can infer that its

power efficiency is not sufficient to cover all algorithm blocks comprising baseband

operations.

Although there exist many SDR solutions as discussed in the previous section, the

56

16x32x16bit

SIMD
Register

File

E

X

3
2
 w
id
e

1
6
b
it

S
IM
D
 A
L
U

3
2
 w
id
e

S
IM
D

S
h
u
ffle
N
e
tw
o
r
k

W

B

Scalar

ALU

W

B

E

X

Scalar

RF

Local
SIMD

Memory

Local
Scalar

Memory

S

T

V

AGU

RF
E

X

W

B

AGU

ALU

1. SIMD pipeline

2. Scalar pipeline

4. AGU pipeline

V

T

S

W

B

S
IM
D

R
e
d
u
c
tio
n

ALU

RF

DMA

SODA

PE

5. DMA

3. Local
memory

To

System

Bus

Figure 6.1: Architecture of the SODA PE

performance of these architectures is not enough to satisfy the power and through-

put requirements of emerging high speed wireless networks such as WiMax and W-

CDMA HSDPA. For example, Sandbridge reported that their solution implemented

with 130nm technology can support 384Kbps W-CDMA packet data service with

180mW power consumption. However, the maximum data rate required by HSPDA

and WiMax is several tens Mbps. As a solution, this thesis proposes a novel archi-

tecture which enables the use of programmable hardware even in the baseband signal

processing of the high speed wireless terminals.

57

6.2 SODA Architecture

The operation of the proposed architecture is based on the three novel scheme

which are motivated from the limitations of the SODA. Thus, prior to discussing

the details of the proposed new schemes, this thesis explains the architecture of

the SODA. It might help the understanding of the proposed novel schemes. The

architecture of the SODA PE is depicted in Figure 6.1 [8].

Because the design of new architecture is based on the SODA, the SODA and

new architecture have many common factors. At first, the SODA is also a chip mul-

tiprocessor architecture. It has multiple PEs and these elements are interconnected

by a low speed bus. It has global memory to buffer traffic burst. Each PE has both

parallel and scalar datapath. Thus, the SODA and the proposed architecture are

identical in high level architecture with the reasons which we already explained in

Chapter V. The SODA and the proposed new architecture differ in the detailed

architecture of the parallel datapath and its control mechanism.

The parallel datapath of the SODA consists of SIMD ALU, SIMD register file,

SIMD shuffle network, and SIMD reduction. The SIMD ALU performs actual com-

putations. The SIMD register file provides input vector operands of the SIMD ALU

and stores temporary computation result of the SIMD ALU as conventional register

file. SIMD shuffle network performs the data alignment which is required to support

data movement operation between computations. The SIMD reduction logic converts

SIMD vector into scalar value. The SIMD reduction is used for the computations

which require vector data as input operand and produce scalar data as output.

For the control of parallel datapath, the SODA defines reduced instruction set

computer (RISC) style instruction set. As conventional RISC architecture, one in-

58

ADDER MULT Reg-RD Reg-WR

1.44 mW 5.83 mW 0.91 mW 0.94 mW

Table 6.1: Power consumption of 16 bit datapath components which are implemented
by 130 nm technology and run at 700 MHz

d-mem. V-reg. V-shuffle V-ALU control

Viterbi 7.45% 70.66% 1.19% 9.77% 10.91%
FFT 17.68% 57.62% 4.24% 9.6% 6.3%

Table 6.2: Operation power profile of the SODA PE when it performs Viterbi decoder
with K=7 and R=1/3, and 64-wide FFT operation

struction of the SODA describes primitive operations: data load/store from memory

and simple arithmetic operations. Most arithmetic operations of the SODA requires

two input vectors as input operands and produces one vector as output. It allows to

use power efficient two read ports and one write port register file as the vector reg-

ister file. In order to reduce the length of instructions, one instruction can describe

the operation of one unit among the SIMD ALU, SIMD shuffle network, and SIMD

reduction. As a result, only one SIMD unit can run within one cycle.

Even in the parallelizable workload, there exist some sequential actions which

are related to memory address generation and loop control. To avoid idle period

of the parallel datapath caused by these control actions, the SODA has hardware

address generator and loop controller. Because these operations are not complex, the

hardware generators and loop controller can be implemented in simple hardware.

6.3 Motivations

Based on the details of the SODA, this thesis discusses the three limitations of

the SODA which lead us to propose three novel schemes. First, the SODA has high

59

load/Store alignment computation control

Viterbi 37.2% 4.8% 48.0% 9.9%
FFT 24.3% 25.2% 43.7% 6.8%

Table 6.3: Operation cycle profile of SIMD based architecture when it performs
Viterbi decoder with K=7 and 64-wide FFT operation

power consumption in its SIMD register file. Although the power cost of the register

file is smaller than other datapath components as shown in Table 6.1, its high access

frequency results in high power consumption. Note that, at most operation cycles,

two input vector operands are read from the SIMD register file and one output

vector is written back to the SIMD register file. It is a side effect of having a RISC

style instruction set in the SODA. Table 6.2 shows that, in the SODA, the power

consumption of the SIMD register file occupies about 60∼70% of total datapath

power. Thus, minimizing the SIMD register file access frequency is crucial for power

reduction.

Second, the non computational operations, such as data load/store and vector

alignment, occupy a significant portion of the total operation cycle count. Table 6.3

shows that about 50% of total operation cycles are assigned for non-computational

operations in the SODA. For higher system throughput, we need to minimize the op-

eration cycles for these non-computational operations. Furthermore, because of the

super-linear relation between the power consumption of a circuit and its processing

time, reserving more processing time for the computations, such as multiplications

instead of the data load/store operations, will substantially reduce the system power.

Third, we observe that, in the baseband signal processing, the previously dis-

cussed macro operations, such as the data load/store, vector alignment, vector com-

putation, and vector reduction, can be executed in parallel and the data dependency

60

between these macro operations is unidirectional. Therefore, it is possible to build

a macro pipeline by cascading these macro operations without power consuming

data forwarding logics. However, this type of parallelism was not exploited by the

SODA. As we mentioned before, the SDR processor needs further improvement on

its throughput and power. To meet such requirements, it is important to fully exploit

all available parallelism.

Fourth, for higher throughput with low power consumption, the most straight

forward approach is to extend the width of the SIMD datapath. However, at the

SODA, the extension of the SIMD width is limited by two factors: the existence of

workloads with low DLP and the complexity of the shuffle network. For example, the

Turbo decoder of the W-CDMA system shows only 8 wide DLP. There exists a way

to stack multiple operations having low DLP on a wide SIMD datapath. However, it

breaks the regularity of the data movement pattern, so the shuffle network becomes

more complex. The hardware complexity of the shuffle network is proportional to

the number of input ports. Thus, for the extension of SIMD width without power

overhead, it is important to find a way to minimize the complexity of the shuffle

network with many input ports.

6.4 Novel Schemes for Power Reduction and Higher Through-
put

In order to overcome the limitations of the SODA, this thesis proposes three novel

schemes: macro instructions, macro pipelining, and staggered execution.

6.4.1 Macro Instruction

Macro instruction is to concatenate several primitive RISC instructions into one.

Obviously it reduces the number of instructions, so the macro instructions minimize

61

the power overhead caused by instruction memory access, decoding, and controlling.

However, it is not the major reason this thesis insists to use macro instructions. This

thesis assumes a wide SIMD architecture and so the power reduction in its control

path has no significant impact on the reduction of total system power. The major

advantage of using macro instructions comes from reducing the number of power

hungry register file accesses. One macro instruction describes a sequence of primitive

operations which have mutual data dependency. By concatenating arithmetic units,

it is possible to directly forward the operation results of an arithmetic unit to the

next arithmetic unit without writing back and reading from the register file.

Before discussing the details of macro instructions, let us validate why the register

file dominates the power consumption of a datapath. In a low power system, the

difference between the power consumption of CUs and a register file is not large.

Usually, low power systems operate at a low operation frequency, where the energy

efficiency of a system is maximized. It allows sufficient operation time on arithmetic

units, and finally it minimizes the power consumption of arithmetic units. However,

the power consumption of a register file is not well scaled down by reducing operation

frequency because the power consumption of a register file is dominated by the

large capacitance of read/write and clock tree networks, not by operation speed.

To validate this factor, this thesis performed a simple power experiment on major

datapath components such as an adder, multiplier, and register file as shown in

Table 6.1. From this result, we can infer how a register file dominates the power

consumption of a datapath. As an example, let’s analyze the power dissipation

pattern of the ‘add’ instruction. In total, the register file consumes 2.76 mW (=

1.91 × 2 + 0.94) and the adder consumes 1.44 mW for the ‘add’ instruction. The

power consumption of the register file is almost double of the adder.

62

mult

mult

add/sub

conditional

2's comp

conditional

2's comp

add

(a) multplication and add/sub

– FIR filter, FFT

(b) conditioanl 2's complement and add

– FIR filter, pattern matching

select

select

select

(c) selection tree – min/max finding

add

add

select

(d) add and select – Viterbi ACS

sub-abs

sub-abs

add

(e) sub-abs and add – Viterbi BMC

Figure 6.2: Operation of major parallelizable kernels which can be represented by
macro instructions through concatenating arithmetic units

In the major kernels of the baseband workload, which were identified in Chap-

ter III, there exist many operations which can be represented by the macro in-

structions. In the FIR filter, which consists of multiplications and additions (Fig-

ure 6.2(a)), the outputs of multiplications are immediately consumed by the next

adder. From all major kernels, this thesis finds out the computation patterns which

can be represented by macro instruction and they are depicted in Figure 6.2. Com-

monly, all identified operations have four input operands and one output operand.

This characteristic is exploited at the design of CUs.

Arithmetic units such as adders and multipliers are concatenated through mul-

tiplexers placed between the first and second stages. For pipelining, the multiplexer

63

without with Throughput
macro-inst. macro-inst. Enhancement (%)

FIR filter 4 1 400%
min/max finding 6 1 600%
pattern matching 3 1 300%
Viterbi BMC/ACS 40 11 360%
FFT 10 7 140%

Table 6.4: Operation cycle count comparison between the datapath with macro in-
structions and without macro instructions

can latch its selected output data. However, as we will discuss in the experiment

chapter, the power overhead of the multiplexer with latch is not substantial.

By concatenating arithmetic units, we can eliminate about 40 ∼ 50% of register

file accesses. For example, at the multiplications and add/sub of the FIR filter

(Figure 6.2(a)), 9 register file accesses (=6 reads + 3 writes) are reduced into 5

(=4 reads + 1 write). Because the power consumption of the multiplexer for the

concatenation is about half of the register file access power, we can expect about

a 30 ∼ 40% register file power reduction in the FIR filter kernel case. For other

kernels, this amount of power reduction also can be expected.

In addition, the concatenation of arithmetic units results in less cycle count, in

other words higher throughput. Such cycle count reduction is achieved through two

factors, the simultaneous execution of two computations at the first stage and the

pipelining between the first and second stages. For instance, at the ‘add and select’

of the Viterbi-ACS kernel (Figure 6.2(d)), two additions are performed in parallel at

the first stage. At the same time, the additions in the first stage and the selection

in the second stage also performed in parallel. Thus, we can expect a number about

three times higher throughput, if the pipeline is fully utilized. However, the exact

amount of cycle count reduction varies according to workload types because each

64

workload shows different pipeline utilization factors.

Table 6.4 shows the amount of cycle count reduction when the macro instructions

are used. This table shows that the macro instructions result in about 140 ∼ 600%

throughput enhancement. With cycle count evaluation, these factors are assumed:

no idle periods occur by insufficient input data, and the datapath without macro

instruction only has conventional RISC style instructions.

6.4.2 Macro Pipelining

The purpose of macro pipelining is to execute macro operations in parallel.

Through the macro pipelining, we can expect further throughput enhancement in

addition to the throughput enhancement achieved by the macro instructions. In

Chapter III, this thesis identified that there exist five macro operations and they can

form a conceptual macro pipeline. In this subsection, we discuss how we realize the

conceptual macro pipeline in the form of actual hardware.

A straight forward way to build such a macro pipeline is to directly concatenate

hardware blocks for the data load/store, vector alignment, vector computation, and

vector reduction, as shown in Figure 6.3. Data memory and its read/write ports

correspond to the data load/store macro operations. Vector alignment blocks are

used to realize the first and second vector alignments operations. Vector computation

is covered by the vector computation block.

In some low power systems, pipelining is not desirable if there exists a complex

data dependency between pipeline stages, due to high data forwarding overhead.

Fortunately, the major computation kernels of the baseband workload have unidi-

rectional data dependency between macro operations with the sequence from data

load, vector 1st alignment, vector computation, vector 2nd alignment (or vector

65

Data Memory

Data

load

1st vector

alignment

Vector

computation

Vector

reduction

2nd vetor

alignment

Data

store

Conceptual macro pipeline

Vector RD port

V
e
c
to
r

A
lig
n
m
e
n
t B
lo
c
k

V
e
c
to
r C
o
m
p
u
ta
tio
n
 B
lo
c
k

(V
-R
E
G
 +
 V
-A
L
U
)

V
e
c
to
r

A
lig
h
n
m
e
n
t

B
lo
c
k

V
e
c
to
r

R
e
d
u
c
tio
n
 B
lo
c
k

Vector WR portScalar RD port Scalar WR port

Data Load/Store Block

Figure 6.3: Conceptual macro pipeline and its mapping on real hardware, which
consists of macro hardware blocks

reduction), and data store.

Like other pipeline schemes, the macro pipeline also needs sufficient workload

to fully utilize its pipeline. According to our workload analysis results, all major

parallelizable kernels can make the macro pipeline busy for long durations by con-

tinuing identical operations. For example, while performing the FIR filter kernel for

the multipath searcher, the macro pipeline continues its operation for more than a

thousand cycles without any idle cycles and configuration changes.

66

V
e
c
to
r A
lig
n
m
e
n
t B
lo
c
k

V
e
c
to
r c
o
m
p
u
ta
tio
n
 B
lo
c
k

V
e
c
o
tr

A
lig
n
m
e
n
t

B
lo
c
k

V
e
c
to
r

re
d
u
c
tio
n

D
a
ta
 L
o
a
d
 B
lo
c
k

D
a
ta
 S
to
re
 B
lo
c
k

Control

Regs

Control

Regs

Instruction

Reg

Control

Regs

Control

Regs

Micro instruction memory

address/data buses for data memory

Control

Regs

Control

Figure 6.4: The control scheme of the macro pipeline, which uses both control reg-
isters and CISC instructions

The amount of throughput enhancement, which can be achieved by the macro

pipelining, varies according to the types of algorithms because each algorithm has dif-

ferent workload distribution. For instance, one algorithm can require more cycles for

the vector computations and another algorithm can have more complex data move-

ment patterns. Thus, the maximum throughput of the macro pipeline is determined

by the most heavily loaded block. In most cases, the vector computation block is

the bottleneck of the macro pipeline. Therefore, the macro instructions, which were

discussed in the previous subsection, directly improve the system throughput. It

is because the macro instructions reduce the operation cycle count of the vector

computation block, which is the most heavily loaded.

67

Another issue for the realization of the macro pipeline is the generation of its

control signals. The most flexible approach is to use a VLIW style control scheme.

An instruction decoder loads a long instruction word from the instruction memory,

and generates control signals according to the control information, which describe the

operation of all macro blocks. The EVP system from Phillips adapted this approach.

However, the VLIW style control scheme induces a lot of power overhead. We sim-

plify the control logics of the macro pipeline by exploiting a fact that the macro

pipeline can be controlled like a stream line. In other words, after control informa-

tion is configured, all macro blocks can continue the same operation for a sufficiently

long time without reconfiguring. Thus, there is no need to load instructions at every

cycle for each macro block, like the VLIW scheme.

Based on this observation, this thesis has decided to use control registers for the

control of some macro blocks with a simple operation scenario. The data load/store,

vector alignment, and vector reduction blocks have a simple operation scenario. For

instance, the possible configurable parameters of the vector reduction block are only

a computation type, input data width, and vector width. The computation type

represents whether the vector reduction operation is performed through compare-

and-selects or additions. As shown in Figure 6.4, the blocks for the data load/store,

vector alignment, and vector reduction have control registers, which are mapped on

the data memory space. By writing control information on these control registers, it

is possible to configure the operation of these macro blocks.

However, the operation of the vector computation block is not simple like other

blocks in the macro pipeline. Thus, this thesis applies a complex instruction set

computer (CISC) style control scheme for the control of this block as shown in Fig-

ure 6.4. The reason to use CISC style instructions instead of RISC style instructions

68

is to minimize configuration overhead at run time. There is a control register which

stores a CISC instruction. It contains the start address of micro instructions, which

describe the operation of CUs. The memory for the micro instructions is also mapped

on the data memory space. This mapping allows end users to define the CISC in-

structions. This approach simplifies the configuration procedure at run time and

allows flexibility at initialization time.

The operation of each kernel corresponds to a CISC instruction. Thus, this

thesis defines five CISC instructions for describing the operation of kernels: FIR,

PATTERN, MIN MAX, VITERBI, and FFT. These instructions can be redefined

by end users by rewriting the micro instruction memory.

6.4.3 Staggered Execution of Computation Units

The staggered execution of CUs is to shift the operation timing of the CUs of

the vector computation block as shown in Figure 6.5(b). In a conventional SIMD

architecture, all CUs need their input data at the same time. However, if we stagger

the execution timing of CUs, only one CU requires input data at a time. It reduces the

complexity of the vector alignment block. Instead of an N ×N switch, it is possible

to use an N × 1 switch sequentially with a time division multiplexing scheme.

It is note worthy that there is no performance degradation even after we stagger

the execution timing of the CUs. It is because the number of CUs, which run in

parallel, is not changed by the staggering. In the examples shown in Figure 6.5,

four CUs run in parallel in both cases, the synchronous execution and staggered

execution.

The staggered execution of CUs is a key scheme that allows us to exploit both the

macro operation level parallelism and the DLP at the same time. As we discussed

69

Computation Unit-1RD

RD

RD

RD

...

Time

WR

WR

WR

WR

Computation Unit-2

Computation Unit-3

Computation Unit-4

read/write 4 elements in parallel

(a) Synchronous execution of CUs

Computation Unit-1RD

RD

RD

RD

...

Time

WR

Computation Unit-2

Computation Unit-3

Computation Unit-4

WR

WR

WR

read 1 element at a time write 1 element at a time

(b) Staggered execution of CUs

Figure 6.5: The difference on the execution timing of CUs in (a) the synchronous
operation mode and (b) the staggered operation mode

before, these two parallelisms are a plethora in the baseband processing. The macro

pipelining, which is proposed in this thesis as one of three novel schemes, is a way to

exploit the macro operation level parallelism. On top of this, one straight forward way

of exploiting the DLP is to implement a wide SIMD datapath on the macro pipeline.

However, the vector alignment block will be a system bottleneck if a wide SIMD

datapath is implemented on the macro pipeline without special considerations. This

is because the hardware complexity of an N×N switch is super-linearly proportional

to the number of input/output ports N . After a certain level, the throughput and

power consumption of the switch will dominate these of the entire parallel datapath.

Due to this reason, the previous architecture only exploits a part of the available

70

cu-1

cu-2

cu-3

cu-4

cu-5

cu-6

R W

R W

R W

R W

R W

R W

cu-1

cu-2

cu-3

cu-4

cu-5

cu-6

R W

R W

R W

R W

R W

R W

cu-7R W

cu-8R W

cu-7R W

cu-8R W

Idle

period

A B
T

(a) Staggering of short computations (2 cycles workload).

cu-1

cu-2

cu-3

cu-4

cu-5

cu-6

R

R

R

R

R

R

cu-1

cu-2

cu-3

cu-4

cu-5

cu-6

cu-7R

cu-8R

cu-7

cu-8

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

W

R

W
T

(b) Staggering of long computations (7 cycles workload).

Figure 6.6: Comparison of the effect on the staggering of workload having (a) short
computations (b) long computations

parallelism. For example, the DXP from ICERA and the EVP from Philips imple-

mented a narrower SIMD datapath on top of the pipelined datapath. The SIMD

width of the EVP is 16 and that of the DXP is only 4. The SODA, our previous

system, has a 32 wide datapath, but it did not exploit the macro operation level par-

allelism. However, the proposed new system uniquely implements a 32 wide SIMD

datapath on top of the macro pipeline through the staggered execution of CUs.

However, the staggered execution is not always useful. For the workloads with

short computation time, the staggering degrades system throughput. The FIR filter,

min/max finding, and pattern matchings are major kernels with short computation

71

time. Figure 6.6(a) shows what happen if we stagger the operation timing of the

workload with a short computation time. Although the same number of CUs are

used, an idle period occurs between the active periods of a CU. With regard to the

example shown in Figure 6.6(a), although the CU 1 finishes its operation at time A,

it needs to be in idle state until input data is available at time B. Such idle state is

the result of the resource conflict on the switches for data read and write. At the idle

period (the interval between time A and B), the switches for data read and write are

busy for providing input data to CUs 5∼8 and storing their computation results.

For the workload with a short computation time, the synchronous execution of

CUs is better for throughput, which is shown in Figure 6.5(a). In the synchronous ex-

ecution mode, we need to provide the input operands of all CUs in parallel. However,

it conflicts with the design concept of the staggered execution, which is to simplify

the complexity of the switches through sequential data memory access. Fortunately,

all parallelizable kernels with short computation time have simple data movement

patterns. The data movement pattern of the FIR filter is the vector shift and that

of the pattern matching and min/max finding kernels are the vector load without

alignment.

The two data movement patterns of the computation kernels with short compu-

tation time can be implemented with simple hardware by using a vector register file

and banked memory in addition to the N × 1 switch. At first, The vector shift data

movement pattern (Figure A.20) can be efficiently implemented by a vector register.

The vector register is a collection of 16bit registers. The number of 16bit registers is

equivalent to the SIMD width. It supports element level shift. If the vector register

is used, only an N × 1 crossbar switch is sufficient for providing input operands of

all CUs, which run in parallel. It is done by combining one new data element, which

72

CU1

CU2

CU16

V
R
E
G
-1
,2

V
R
E
G
 -1
/2

V
e
c
to
r

R
e
d
u
c
tio
n
 lo
g
ic

Network-Write

Vector controller

Data Memory

Parallel Datapath

AGUs

...

...

Instruction

Memory

MULT

REG

file

Scalar datapath

System BUS

Interface unit

ALU

Instruction

decoder

PC

Control unit

AGUs Network-Read

interrupt

BANK

1

BANK

2

BANK

16

BANK

3 ...

.

.

.

Figure 6.7: High level architecture of PE

is from the data memory, with the N − 1 data elements, which are stored in the

vector register after shift operation. Second, the vector load (Figure A.7) can be

implemented by the one to one mapping between the banks of data memory and

CUs.

6.5 Processing Element Design

6.5.1 High Level Architecture of Processing Element

As shown in Figure 6.7, a PE consists of six units: parallel datapath, scalar

datapath, data memory, instruction memory, control unit, and system bus interface

unit. The parallel datapath executes the parallelizable part of the baseband algo-

73

rithms whereas the scalar unit performs the sequential algorithms. The control unit

consists of an instruction decoder, interrupt handler, and program counter. It di-

rectly controls the scalar datapath and indirectly controls the parallel datapath. The

system bus interface unit is used for the communication between PEs through the

system bus.

The scalar datapath is equivalent to the datapath of a conventional low power

GPP. It consists of a 32bit ALU, multiplier, and 32 entry register file. It is controlled

by the control unit. The scalar datapath, control unit, and instruction memory form

a four stage pipeline, which consists of instruction read, instruction decoding, register

read, and execution stages. At multiplications, the execution stage is further divided

into three stages. A RISC instruction set is used for the control of the scalar datapath.

Thus, the data memory, scalar datapath, control unit, and instruction memory can

be seen as a RISC GPP.

The parallel datapath is a kind of vector accelerator attached to the RISC GPP,

which is formed by other units. In the control unit, no special instructions are

defined for the control of the parallel datapath. All control actions on the parallel

datapath are fulfilled through writing control information on the memory mapped

control registers and instruction register. The task completion signal of the parallel

datapath is passed to the control unit through the interrupt handling logic.

The parallel datapath consists of six types of components: CUs, address gener-

ators, switches, vector registers, vector reduction logic, and vector controller. All

components of the parallel datapath are the realization of the macro pipeline shown

in Figure 6.3. The read ports for the data memory, 6 address generators, 6 switches

for read, and 2 vector registers are used for the realization of the data load and

the vector alignment macro blocks. The write ports of the data memory, 4 address

74

0

1

2

3

4

5

6

7

0

4

1

5

2

6

3

7

CU-1

CU-2

CU-3

CU-4

(a) Assigning 2×2 ACS operation

CU-2

0

1

2

3

4

5

6

7

0

1

4

5

2

3

6

7

CU-1

(b) Assigning 4×4 ACS operation

Figure 6.8: An example which shows the relation between the amount workload and
the amount of input/output data

generators, and 4 switches for write are the realization of the second vector align-

ment and data write macro blocks. All components comprising the parallel datapath

are controlled by the vector controller. As discussed before, the parallel datapath

of a PE has two operation modes, the staggered mode and the synchronous mode.

Detailed operation procedures of these operation modes are shown in the following

subsection.

In the proposed architecture, the parallel datapath consists of 16 CUs, 10 address

generators and 10 switches (6 for read and 4 for write). These numbers are the results

of the following design procedure. The first step of the system design is to find the

optimal workload of the CU. It is because other system parameters are the function

of the amount of workload assigned on a CU. For instance, if we double the workload

of a CU, then the increased workload demands more input data and produces more

output data. Figure 6.8 is an example of such a relation. By assigning 4×4 ACS

75

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 c

om
pu

ta
tio

ns

Number of switches

2X2

2X2
4X4

4X4

8X8

"FIR_filter"
"min_max"

"pattern"
"Viterbi"

"FFT"

Figure 6.9: The relation between the number of required switches for parallel data
load/store and the number of computations done in a CU

operation, instead of 2×2, on a CU, the number of input/output nodes is changed

from 2 to 4.

Because all data load/store operations with respect to one CU are performed

within one cycle in the staggered execution mode, assigning more workload on a

CU results in the use of more switches and address generators for the parallel data

load/store. Figure 6.9 shows the relation between the number of computations,

which are done in a CU, and the number of switches, which are required to process

input/output data of the assigned workload. The X-axis of this graph represents

the total number of switches. The Y-axis shows the total number of computations

which are induced by the assigned workload. For counting computations, primitive

computations such as addition, subtraction, and multiplications are assumed. One

point of this graph represents one workload mapping among the all possible workload

76

MA
MB

MC

MD

Figure 6.10: Four possible workload mapping schemes

mapping scenarios.

From this graph, we can observe several interesting factors. First, with a given

number of switches, the maximum number of computations is dominated by the

Viterbi-BMC/ACS and FFT kernels. So, the FIR filter, min/max finding, and pat-

tern matching kernels have no impact on determining the computation capability of

the CU.

Second, the Viterbi-BMC/ACS kernel and the FFT kernels demand different level

of data load/store and computation capability. For instance, let us assume that 4×4

Viterbi-BMC/ACS and 4×4 FFT operations are assigned on a CU (mapping MC in

Figure 6.10). Then, both kernels require similar number of switches (11 in the Viterbi

and 10 in the FFT). However, the required computations differ about 200% (about

120 in the Viterbi and 40 in the FFT). There exist other workload mapping scenarios

which show opposite characteristics. If we assume that 4×4 Viterbi-BMC/ACS and

77

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

E
ne

rg
y

co
st

 [p
Jo

ul
]

Number of Switches

"energy"

Figure 6.11: The relation between the number of switches for parallel data load/store
and the energy cost of switches

8×8 FFT operations are mapped on a CU (mapping MD in Figure 6.10), then the

required computations only show about 30% difference (about 110 in the Viterbi and

145 in the FFT) but the required number of switches show about 80% difference (11

in the Viterbi and 20 in the FFT).

Based on above observation, this thesis denotes four possible workload mapping

schemes into MA, MB, MC , and MD as shown in Figure 6.10. The mapping schemes

MA and MC utilize the switches more efficiently whereas the mappings MB and MD

maximize the utilization of the CU. From these mapping schemes, we find that it

is impossible to simultaneously maximize the utilization of both switches and CUs.

Thus, one remaining design issue is whether to maximize the utilization of switches

or CUs.

Before making a decision, it is required to analyze the energy cost of switches

and CUs. If energy cost exponentially increases, it is impossible to use the workload

78

mappings that require power expensive components.

We can predict that the energy cost of a CU increases substantially by assigning

more workload on it. For instance, as shown in Figure 6.10, the number of required

computations of the 4×4 Viterbi operation is 3 times higher than that of the 2×2

Viterbi. Thus, the CU needs to process 3 times more input traffic. For such through-

put enhancement, the CU needs to use more complex and power consuming hardware

components.

However, the energy cost of switch is not sensitive to its total number as shown in

Figure 6.11. The X-axis of this graph shows the number of switches which can access

the data memory banks in parallel. The Y-axis shows the energy cost while reading

32bit data from the data memory through an switch. According to this graph, the

energy cost of adding one more switch is about 3%. Such insensitivity is due to the

memory banking. Although multiple switches access data memory at the same time,

they are pre-scheduled such that only one switch accesses only one memory bank.

Thus, power consumption of memory bank is independent of the total number of

switch which access the data memory. However, the maximum number of switches

is limited by wiring. According to our analysis, about 15 networks are maximum at

the silicon technology we use now1.

Based on above discussions, we can conclude that maximizing the utilization of

the CU is more power efficient. Thus, mappings MA and MC can be excluded from

the candidate set because they inefficiently utilize CUs. From the remaining map-

pings MB and MD, we can also exclude MD because it requires too many switches,

20. Therefore, the MB is the most power efficient workload mapping. For the real-

ization of the workload mapping MB, we need to implement 10 switches and address

10.13 micron.

79

CU-1 CU-2 CU-3 CU-4 CU-5 CU-6

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

R-AG1 R-AG2

W-AG1

...

W-AG2

(a) t=0

CU-1 CU-2 CU-3 CU-4 CU-5 CU-6

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

W-AG1

...

W-AG2

(b) t=1

CU-1 CU-2 CU-3 CU-4 CU-5 CU-6

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

W-AG1

...

...

W-AG2

(c) t=2

CU-1 CU-2 CU-3 CU-4 CU-5 CU-6

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

W-AG1 W-AG2

(d) t=3

R-AG1 R-AG2

R-AG1 R-AG2 R-AG1 R-AG2

x10 x11 ...x10 x11

...x10 x11 ...x10 x11

... ...

......

y0 y1 ...

Input buffer

computation unit

output buffer

Input buffer

computation unit

output buffer

Input buffer

computation unit

output buffer

Input buffer

computation unit

output buffer

x0 x1 x2 x3

y0 y1 y2 y3

x4 x5 x6 x7

Figure 6.12: The operation of PE in the staggered operation mode when it performs
the first stage of the radix-2 FFT operation

generator. More switches and address generators are assigned for the data read be-

cause most computations need multiple input data to generate one output result.

Furthermore, we find that a CU can finish the MB workload within 16 cycles by

applying the macro instructions. Thus, the optimal number of CUs is determined as

16.

6.5.2 Execution Examples in Two Operation Modes

6.5.2.1 At Staggered Operation Mode

To illustrate the staggered operation mode, we step through the operation of PE

when it performs the first stage of a radix 2 FFT operation. In this example, we

80

assume the following factors:

• A 2× 2 FFT operation is mapped on a CU.

• Each CU has proper phase factor WN values in its register.

• All input data are previously stored in the data memory and the address gener-

ators are initialized such that they point to the starting addresses of the input

and output buffers.

• In order to simplify the explanation, we assume that the processing time of a

CU is 2 cycles (in the actual system, it is 16 cycles).

At t = 0 (Figure 6.12(a)), two address generators for data read, R-AG1 and

R-AG2, generate memory addresses to load two input data, x0 and x1, from the

input buffer. At the end of this cycle, CU-1 (CU-1) latches these two input data and

R-AG1 and R-AG2 increase their value to indicate the next input data, x2 and x3.

At t = 1 (Figure 6.12(b)), while R-AG1 and R-AG2 read input data x2 and x3

for the CU-2, the CU-1 performs its operation with the previous input data x0 and

x1. However, there is no change on the value of address generators for data write,

W-AG1 and W-AG2, until the CU-1 produces output. At the end of this cycle, CU-2

latches input data and R-AG1 and R-AG2 increase their value.

At t = 2 (Figure 6.12(c)), both CU-1 and CU-2 are active and the R-AG1 and

R-AG2 are also busy for loading input data x4 and x5. At the end of this cycle, the

CU-1 produces output data y0 and y1 and these output are stored at the memory

locations where the W-AG1 and W-AG2 indicate. At the same time, the CU-3

latches input data and all address generators R-AG1,2 and W-AG1,2 increase their

value.

81

At the steady state (after t > 2 in this example), the data load, data alignment,

computation, and data store macro operations are performed in parallel at every

cycle. If we assume N CUs, then all CUs will be active after N initial transient

cycles.

6.5.2.2 At Synchronous Operation Mode

As a second example, we show the operation procedure of PE in the synchronous

operation mode when it performs the 32-tap FIR filter operation. Different from the

previous example, the operation timing of all CUs are synchronized. In this example,

we assume the following factors:

• Filter coefficients (c0, · · · , c31) and input data (x0, · · · , x31) were previously

loaded into vector register 1 (VREG-1) and vector register 2 (VREG-2) before

t = τ .

• The address generators R-AG and W-AG were initialized before t = τ such

that they indicate the start addresses of input and output buffers.

• The computation times of both vector reduction block and vector computation

block are assumed as 1 cycle for simplicity (in real system, the operation time

of the reduction block is 3 cycles and that of the vector computation block is

2 cycles.).

At t = τ (Figure 6.13(a)), R-AG reads input data x32 from the input buffer and

W-AG is ready to write the computation result y[τ], which is generated by the vector

reduction block. At the same time, the vector computation block produces partial

output p1[τ], · · · , p16[τ]. At the end of this cycle the vector register 2 (VREG-2)

82

x31 x32 x33 ...

R-AG

x34

Input buffer

x0 x1 x30 x31

...

...

CU-1 CU-16...

c0 c1 c30 c31

computation units

vector reduction unit

...

W-AG
output buffer

(a) t = τ

CU-2

x2 x3

c2 c3 VREG-1

VREG-2

...

...

x32

x31 x32 x33 ...

R-AG

x34

Input buffer

x1 x2 x31 x32

...

...

CU-1 CU-16...

c0 c1 c30 c31

computation units

vector reduction unit

y[τ] ...

W-AG
output buffer

(b) t = τ + 1

CU-2

x3 x4

c2 c3 VREG-1

VREG-2

...

...

x33

y[τ+1] = c0x0+c1x1+ … +c31x31

p1 = c0x0+c1x1 p2 = c2x2+c3x3 p16 = c30x30+c31x31

p1 = c0x1+c1x2 p2 = c2x3+c3x4 p16 = c30x31+c31x32

y[τ]

Figure 6.13: An example of the synchronous execution of PE when it performs 32-tap
FIR filter operation

83

L
a
tc
h

ALU/MULT

ALU/MULT

M
U
X

In
p
u
t

B
u
ffe
r

1
6
b
it X
 1
6

R
e
g

O
u
tp
u
t

B
u
ffe
r

M
U
X

Control signal latch

From

VREG-A/B

From

Data Mem.

Prev.

CU

Next

CU

To

Data Mem

L
a
tc
h

ALU

forwarding

write back

Figure 6.14: The detailed architecture of the CU

latches x32 after shifting its elements to the left direction and the output buffer also

latches y[τ]. R-AG and W-AG are increased to indicate the next address.

At t = τ + 1 (Figure 6.13(b)), R-AG addresses the x33 and W-AG addresses

the y[τ + 1]. The y[τ + 1] is the aggregation result of p1[τ], · · · , p16[τ], which were

computed in the previous cycle at the vector computation block. At the end of this

cycle, the output buffer latches y[τ + 1] and the VREG-2 latches x33. The values of

two address generators are increased.

6.5.3 Computation Units

The detailed architecture of the CU is shown in Figure 6.14. It consists of in-

put buffer, output buffer, register file, mux, latch, and three arithmetic units. The

topology of the arithmetic units is based on the computation patterns of the major

kernels, which were identified in the previous chapter. As shown in Figure 6.2, all

84

computation patterns of major kernels show the interconnection of arithmetic units

with identical topology. For additional pipelining effect, the result of the first stage is

latched. In order to avoid unnecessary register write back, the output of both stages

can be forwarded via the data forwarding path. These outputs also can be written on

the register file. The multiplexer reads input operands from three different sources,

input buffer, vector registers, and register file. At the synchronous operation mode,

the input operands come from the vector registers. At the staggered mode, they are

from the input buffer.

To minimize the overhead of generating control signals at the staggered operation

mode, the CU latches control signal and forwards the control signals of the current

cycle to the next CU. The energy cost of the control signal latching is cheaper than

that of generating control signals at each CU.

The operation of the CU is described by the instructions shown in Table 6.5.

The CU instructions have both primitive instructions and macro instructions. Al-

though only 11 instructions are listed in the table, it is possible to define additional

instructions on the CU by updating the micro instruction memory.

6.5.4 Vector Reduction Unit

The operation of the vector reduction unit is to produce a scalar output data

from the input vector. As discussed before, there exist two kinds of reduction op-

erations, summation and minimum/maximum value searching. The summation can

be represented by y =
∑N−1

i=0 xi where the input vector X = (x0, · · · , x(N−1)) and

scalar output is y. The minimum value search operation can be represented by the

following equation, where the input vector is X = (x0, · · · , x(N−1)) and the output

85

Macro Instructions

Instruction Description

DCCAD RD,R1,R2,R3,R4
Double conditional complements and addition
T1 = R1 ? R2:-R2; T2 = R3 ? R4:-R4; RD = T1+T2

DMLAD RD,R1,R2,R3,R4
Double multiplications and addition
T1 = R1×R2; T2 = R3×R4; RD = T1+T2

DMLSB RD,R1,R2,R3,R4
Double multiplications and subtraction
T1 = R1×R2; T2 = R3×R4; RD = T1-T2

TMIN RD,R1,R2,R3,R4
Triple minimum value search
T1 = (R2>R1) ? R1:R2; T2 = (R4>R3) ? R3:R4;
RD = (T2>T1) ? T1:T2

TMAN RD,R1,R2,R3,R4
Triple maximum value search
T1 = (R1>R2) ? R1:R2; T2 = (R3>R4) ? R3:R4;
RD = (T1>T2) ? T1:T2

DBMCA RD,R1,R2,R3,R4
Double branch metric computation and addition
T1 = abs(R1-R2); T2 = abs(R3-R4); RD = T1+T2

BMCA RD,R1,R2,R3
Branch metric computation and addition
T1 = abs(R1-R2); RD = T1+R3

BMC RD,R1,R2 Branch metric computation, RD = abs(R1-R2)

ACS RD,R1,R2,R3,R4
Add, compare, and select
T1=R1+R2; T2=R3+R4; RD=(T1>T2) ? T1:T2

Primitive Instructions

Instruction Description
ADD RD,R1,R2 Addition, RD = R1+R2
SUB RD,R1,R2 Subtraction, RD = R1-R2

Table 6.5: Macro and primitive instructions of the CU

is y.

y =
N−1

min
i=0

xi (6.1)

Both min(·) and max(·) functions are based on subtraction and selection. Thus,

the summation and min/max value searching operations can easily be mapped onto

the same hardware. In order to increase reduction speed, it is possible to build a

reduction tree, which consists of log2 N operation steps for an input vector width N .

86

6.5.5 Address Generators

Address generators are used to automatically generate the next address of the

data memory. Because of the deterministic address generation patterns of the signal

processing kernels, automatic address generation of the data memory is not a complex

task. There are two address generation modes: linear mode and page mode. In the

linear mode, the next data memory address is given by the following equation:

y[n] = α + β · n (6.2)

where α is an initial address and β is the difference between two adjacent data points.

The linear operation mode is used for FIR filter and Viterbi-BMC/ACS. In the FIR

filter operation, all address generators operate in the linear mode. However, at the

Viterbi-BMC/ACS kernels, the address generators for data read only operate in the

linear mode.

The address generation pattern in the page mode can be represented by the

following equation:

y[n] =

 y[n− 1] + α, if (n mod M) 6= M − 1

y[n− 1] + β, otherwise

(6.3)

where M is the number of data elements in a page, α is the displacement within a

page, and β is the displacement when entering a new page. The page mode is used

for data write in the Viterbi-BMC/ACS and FFT kernels.

In the proposed system, 6 data are read and 4 data are written at the same time.

This is implemented by 10 address generators (6 for read address and 4 for write).

6.5.6 Interconnection Networks

The role of the switch is to route a data from the data memory to the CUs and

vice versa. In the parallel datapath, ten switches are used, six for data read and

87

Blocking

logic

CU-1

latch

16x1 mux

Blocking

logic

CU-2

Blocking

logic

CU-3

Blocking

logic

CU-16

...

Dest Selection[4:0]

Blocking

logic

VREG

Src Selection[3:0]

CLK

bank1 bank2 bank3 bank15 bank16

Figure 6.15: Detailed architecture of the interconnection network for data load

four for data write. One switch for data read has 16 input ports and 17 output

ports. The 16 input ports are connected to the banks of the data memory with a

one to one relation. The 17 output ports are connected to the CUs (16 ports) and

vector registers (1 port). The switch for data write shows inverse relationship, 17

input ports from the CUs and vector reduction, and 16 output ports to data memory

banks.

As shown in Figure 6.15, the switch for data read consists of a 16×1 multiplexer,

latch, and blocking logics. It has two types of control inputs, source selection, and

destination selection. The 16×1 multiplex is used to select the data of one bank from

the outputs of 16 banks. The selected signal is latched by the latch placed between the

multiplexer and blocking logics. The latch forms a pipeline on the switch. Because

the switch drives long metal wires, it is inevitable to use a pipelining scheme on

the switch in order to meet the timing requirement with low power. From the view

88

READ Switch 2

READ Switch 1

READ Switch 6

...

WRITE Switch 1

WRITE Switch 4

...

CU-1 CU-16VREG

...

bank1 bank2

MUX MUX

bank16

MUX

...

...

...

Data memory

Vector

Reduction

...

Figure 6.16: Relation between the data memory, switches, and CUs

point of system throughput, the impact of applying pipeline scheme at the switch is

negligible because the parallel datapath operates in a stream fashion. The blocking

logics are used for blocking glitch signal propagation. Because of the long distance,

the metal wire must run between the input port of a CU and the latch of the switch.

Thus, the amount of energy dissipated by the glitch signal is quite substantial. Logic

AND gates are used as blocking logics instead of latches in order to avoid clocking

power overhead. The structure of the switch for data store is identical to this except

for the number of input/output ports.

Figure 6.16 shows how ten switches operate together. With the data read path,

89

the output of one memory bank forms a bus. One input port of all read networks

are connected to this bus. Although there exists a loading effect, the amount of

capacitive loading induced by input ports are not substantial compared to that of

the long metal wire. At the data write path, there is a multiplex for the data memory,

which selects corresponding input data among the output data of all write networks.

6.6 Programming Model

The programming model of the proposed architecture is based on using library

routines. All detailed control actions, which are required for configuring a PE to

perform major kernels, are described in library routines. The function arguments,

which are passed from an application program to a library routine, determine the

detailed configuration of the kernel. Thus, it is possible to hide complex hardware

information from an application programmer.

The number of library routines dominates the efficiency of this programming

model. If there exist too many library routines, the proper use of the library routine

is not an easy task. In the case of baseband processing, there exist a limited number of

parallelizable kernels. So, the number of library routines that describe the operation

of major kernels is also limited.

Figure 6.17 shows an example of an application program. This program is exe-

cuted in the scalar processor. The routine vector reg A load() is a function call,

which loads filter coefficients from the data memory into the VREG-A. The param-

eters passed to the library routine are the start address of filter coefficient, the data

width of filter coefficient (8bit or 16bit), and the number of filter coefficients. The

routine FIR filter() actually performs the filter operation. The parameters passed

to this library routine are the start address of input data buffer, the start address of

90

#define VECTOR WIDTH 32
#define BYTE2 2
#define FIR DOWN SAMPLE RATE 2
#define INPUT SIZE 320

short firCoef[VECTOR WIDTH]; // filter coefficient
short inBuf[INPUT SIZE]; // buffer for input data
int outBuf[INPUT SIZE]; // buffer for filtered output data

int main() {

// load filter coefficient
vector reg A load((int)firCoef, BYTE2, VECTOR WIDTH);

// perform filtering for input signal
FIR filter((int)inBuf, (int)outBuf, FIR DOWN SAMPLE RATE, INPUT SIZE);

}

Figure 6.17: An example of an application program for FIR filtering

output data buffer, the down sampling rate of filter, and the number of input data.

Figure 6.18 shows an example of the library routine. It contains detailed operation

of the library routine for the FIR filter operation. The operation of this routine is to

configure the control registers of the address generators, loop controller, and vector

CUs. At last it triggers the operation of the parallel datapath. When the parallel

datapath ends its operation, it asserts an interrupt signal to the scalar processor

to inform the completion. Because the control registers of the parallel datapath are

mapped on the memory space of the scalar processor, the write operation on a control

register is performed by writing data on the data memory space. Thus, no special

instructions are defined in the scalar processor for configuring the parallel datapath.

91

void FIR filter(int idata addr, int odata addr, int step, int length) {

volatile int *ptr;

// configure address generator 1 for input data read
ptr = (int *)AGU1 ADDR REG 1;
*ptr = idata addr;
ptr = (int *)AGU1 CTRL REG 1;
*ptr = AGU 4BYTE | AGU READ | AGU LINEAR MODE | AGU INC 4B;

// configure address generator 2 for output data write
ptr = (int *)AGU2 ADDR REG 1;
*ptr = odata addr;
ptr = (int *)AGU2 CTRL REG 1;
*ptr = AGU 4BYTE | AGU WRITE | AGU LINEAR MODE | AGU INC 4B;

// configure loop controller for iteration number control
ptr = (int *)LCU COUNTER REG;
*ptr = length;

// configure kernel type
ptr = (int *)SIMD FUNC REG;
*ptr = SIMD FIR;

// ignite parallel datapath operation
asm volatile ("wait");

}

Figure 6.18: An example of a library routine for the FIR filtering

CHAPTER VII

POWER AND THROUGHPUT ANALYSIS

7.1 Experiment Environment and Methodology

This thesis adapts a three step approach on the evaluation of the dynamic power

and throughput of the proposed architecture. The evaluation is performed at com-

ponent level, kernel level, and system level. This approach reduces the amount of

required computations with a minor accuracy penalty.

7.1.1 Component Level Evaluation Environment

For the component level power data, a hardware model is built by Verilog and

converted into logic gates by commercial synthesis tools: Synopsys’ Design compiler

and Physical compiler. This thesis uses the TSMC-13 standard cell library, which

relies on 0.13 micron technology. In order for the further dynamic power reduction, a

low voltage and low dielectric constant (lvlk) library is used. With this library, cells

run at 1 V, whereas other conventional libraries operate at 1.2 V. Low dielectric con-

stant (low-K) material and copper are used at interconnection wires instead of SiO2

and aluminum. Lower operation voltage reduces dynamic power about 30% by the

following relation between the dynamic power and operation voltage: P ∝ α · CV 2.

Low-K material and copper reduce the resistance and capacitance of interconnection

92

93

wires and also reduce system dynamic power (note the C term in the above equa-

tion). Wire capacitance is also considered at the evaluation by generating a layout

with Cadence’s Silicon ensemble. Additionally, this thesis uses Artisan’s memory

compilers for the generation of storage components such as the register file and data

memory. The gate level dynamic power is evaluated by Synopsys’ PrimePower.

7.1.2 Kernel Level Evaluation Environment

For the kernel level evaluation, this thesis develops a power evaluation program.

The power evaluation program uses the assembly routine and component level power

information as input data. The assembly routine was coded by hand. Because the

number of the parallelizable kernels is limited, hand coding is not difficult work. The

component level power data was computed in the previous step.

The evaluation program decodes an instruction and identifies the system com-

ponents, which participate in the execution of this instruction. The evaluation tool

computes the power consumption of the decoded instruction by aggregating the

power consumptions of all related system components. Because there are no dynamic

components such as cache, the instruction level decoding is sufficient to identify the

system components related to an instruction. Same decoding procedures are itera-

tively performed on all instructions describing the operation of a kernel. Whole steps

are performed against all major kernels. As a result, this thesis obtains the power

consumption data and cycle counts of major kernels such as the FIR filter, min/max

finding, pattern matching, Viterbi BMC/ACS, and FFT.

7.1.3 System Level Evaluation Environment

Finally, this thesis analyzes the operations of wireless protocols and splits them

into a collection of major kernels. Because the power consumption and the cycle

94

counts of the major kernels were already identified in the previous step, it is possible

to compute the system level throughput and power data by aggregating the results

of the kernels.

7.2 Kernel Level Analysis

In this section, this thesis compares the throughput and power consumption of

the proposed architecture with the our previous architecture SODA [8]. For evalua-

tion, this thesis also builds the kernel level evaluation program for the SODA. Two

evaluation programs for the SODA and the proposed architecture share the same

circuit level components. This thesis assumes the following factors:

• A1: One PE is concerned while analyzing the throughput and power consump-

tion.

• A2: The PE operates at 1V and 700MHz1.

• A3: While measuring the power, the PE is assumed as fully loaded. It means

that the PE does not enter an idle period due to insufficient workloads.

• A4: While measuring the throughput, 10% idle period2 is assumed in order to

consider the configuration time and transient period.

7.2.1 FIR filter

This thesis assumes FIR filter with 32 taps, down sampling rate of 2, 16bit

filter coefficient, and 16bit input data. This is the configuration of the W-CDMA

pulse shaping filter. The throughput is measured by counting the number of output

data per second. The energy is measure by accumulating the energy dissipated

for generating one output data. While measuring the energy, the SODA and the

1This operation frequency will be validated at the subsection on the system level analysis.
2This assumption has no effect on the power evaluation.

95

FIR filter

Energy (pJoul/output) Throughput (Output/Sec)
Proposed SODA Ratio Proposed SODA Ratio

660 930 71% 6.3E+8 1.6E+8 400%

Table 7.1: Comparison of the throughput and energy consumption of the proposed
architecture with the SODA, when they perform the FIR filter kernel

proposed architecture perform the identical task. However, the completion times of

two architectures are not same because of their throughput difference.

Table 7.1 shows that the proposed architecture consumes about 30% less energy

than the SODA. At the same time, the proposed architecture produces 4 times more

output than the SODA. Most of the energy savings come from two factors. The first is

the use of macro instructions, which minimizes the number of the power consuming

register file accesses. The second is the low control overhead because there is no

decoding overhead in the proposed architecture after one time configuration. About

400% throughput enhancement is the result of adapting the three novel schemes:

the macro instructions, macro pipeline, and staggered execution. The proposed

architecture can produce the filtered output data at every cycle. However, the SODA

requires four cycles for the generation of one output because it sequentially performs

the vector load, vector multiplication, and vector reduction operations.

7.2.2 Pattern Matching

This thesis assumes 256 binary patterns with the length of each pattern being

16. One element of the pattern is 8bit data. This configuration is used for the

initial synchronization of the W-CDMA system. The throughput is measured by the

number of correlation results per second. The correlation is computed between one

unknown pattern and the 256 reference patterns. The searching procedure, which is

96

Pattern Matching
Energy (pJoul/output) Throughput (Output/Sec)

Proposed SODA Ratio Proposed SODA Ratio
250 535 47% 6.3E+8 1.6E+8 395%

Table 7.2: Comparison of the throughput and energy consumption of the proposed
architecture with the SODA, when they perform the pattern matching
kernel

to find a pattern with the highest correlation value, is not evaluated because it can

be covered by the min/max finding kernel.

The proposed architecture consumes about 50% less energy and processes 4 times

more input data than the SODA. The major reason of such energy savings and

throughput enhancement are identical to the FIR filter case. One difference is short

pattern length. In order to process multiple patterns simultaneously, the SODA uses

shuffle networks for the data alignment and it results in an additional throughput

and power degradation.

7.2.3 Minimum/Maximum Finding

min/max finding
Energy (pJoul/output) Throughput (Output/Sec)

Proposed SODA Ratio Proposed SODA Ratio
747 1121 67% 1.6E8 12.5E8 125%

Table 7.3: Comparison of the throughput and energy consumption of the proposed
architecture with the SODA, when they perform the minimum/maximum
finding kernel

This thesis assumes an input data as 64 elements 8bit data. This computation

pattern appears when the multipath searcher finds a correlation peak among the

correlation results or the Viterbi decoder finds a minimum path matric among the

path matrices of all survival paths. The configuration used for the evaluation is

97

from the Viterbi decoder of the convolutional codes with K=7, which is used for

the IEEE802.11a traffic channel. The throughput is measured by the number of

min/max finding results per second.

In this kernel, the proposed architecture dissipates 35% less energy and processes

25% more data. The throughput enhancement is low compared to two previous

kernels because the macro pipeline is not fully utilized at this kernel. The parallel

datapath has 16 CUs and one CU can process 4 input data in every cycle. For full

utilization of the parallel datapath, it is required to load 64 data (=16×4) elements in

every cycle. However, in the proposed architecture, the maximum width of the vector

load is only 16. Thus, the proposed architecture produces one min/max comparison

result for every 4 cycles.

7.2.4 Viterbi-BMC/ACS

Viterbi-BMC/ACS
Energy (pJoul/ouput) Throughput (Output/Sec)

Proposed SODA Ratio Proposed SODA Ratio
48160 65970 73% 4.92E6 2.5E6 195%

Table 7.4: Comparison of the throughput and energy consumption of the proposed
architecture with the SODA, when they perform the Viterbi-BMC/ACS
kernel

As a workload, this thesis assumes the Viterbi decoder of the convolution code

with constraint length K=9 and code rate R=1/3. This is the configuration of W-

CDMA system voice channel. The throughput is measured by the number of decoded

bits per second.

The proposed architecture consumes about 25% less energy and shows about 2

times higher throughput than the SODA. Most of the energy savings come from less

register file access as with the other kernels. Because the Viterbi-BMC/ACS kernel

98

is the most dominant kernel, its power savings have significant impact on the system

power.

7.2.5 FFT

FFT
Energy (pJoul/output) Throughput (Output/Sec)

Proposed SODA Ratio Proposed SODA Ratio
1363 1722 79% 2.52E8 9.83E7 255%

Table 7.5: Comparison of the throughput and energy consumption of the proposed
architecture with the SODA, when they perform the FFT kernel

As a workload, this thesis assumes 1024 points complex FFT with a 32bit complex

number (two 16bits for real and imaginary parts) as input data. This is one of the

configurations of the mobile WiMax system. Throughput is measured by the number

of transformed complex number output data per second.

The proposed architecture consumes about 20% less energy and processes about

250% more input data compared to the SODA. In the FFT kernel, the power saving

is achieved by reducing data memory access, not register file. By mapping radix-4

FFT operation on a CU, we reduce the number of the data memory access and it

results in low power.

7.3 System Level Analysis: W-CDMA 2Mbps Workload

7.3.1 Optimal Active Mode Operation Frequency

In this subsection, this thesis explains why the system runs at 700 MHz. Fig-

ure 7.1 shows the relation between the operation frequency of the proposed system

and the system energy per cycle. The system energy per cycle is computed by divid-

ing the total energy for a given workload with total cycle count. The workload used

99

 1.6e-10

 1.7e-10

 1.8e-10

 1.9e-10

 2e-10

 2.1e-10

 2.2e-10

 2.3e-10

 2.4e-10

 2.5e-10

 100 200 300 400 500 600 700 800

E
ne

rg
y

[J
ou

l/C
yc

le
]

Frequency [MHz]

"active_mode_energy"

Figure 7.1: The relation between the operation frequency and the system energy
per cycle, when the system provides the W-CDMA 2Mbps packet data
service

for the energy measurement is the W-CDMA 2Mbps packet data.

Naturally, the system energy per cycle value increases according to the speed

up of the system operation frequency. With the frequency range below 300 MHz,

the system energy cost is insensitive to the operation frequency change because

same library cells, which have identical energy cost, are used within this range.

When synthesizing gate logics with hardware description language input, a logic

synthesis tool adaptively selects library cells with difference size according to the

timing requirements for the power saving. Small cells are used for slow operations

because they consume less power than large cells due to their low capacitive load.

The reason of such constant system energy cost is that, from 300 MHz, the synthesis

tool begins to use library cells with minimum size. Although more processing time

100

is allowed by decreasing operation frequency below 300 MHz, the synthesis tool has

no other option to exploit additional processing time.

From 400 MHz, the system energy cost increases because the synthesis tool starts

to use larger library cells from this point to satisfy the timing requirements. From

700 MHz, the system energy cost starts to increase rapidly.

In this graph, although 300 MHz is the most energy efficient, this thesis selects

700 MHz as the optimal operation frequency because it is possible to increase system

throughput about 230% (=700/300) with about 25% (= (2.13−1.7)
1.7

) additional energy

overhead. While processing W-CDMA workload, simple components, such as adders

and subtractors, are frequently used. Because the energy cost of these components

increases gradually, the system energy cost only increases 25% within 300 MHz and

700 MHz range. If such throughput enhancement is not required, then the 300 MHz

can be a possible operation frequency.

7.3.2 Idle Mode Support

In this subsection, this thesis discusses whether designing additional special hard-

ware is required for only the idle mode operation. As this thesis previously discussed,

the power consumption in the idle mode is important for the extension of terminal

standby time. Because of this reason, we proposed the architecture of an idle mode

processor [45]. However, this thesis finds that the proposed PE can also be used for

the idle mode with about 27% (= (2.26−1.78)
1.78

)energy overhead. If we further consider

that other components, such as the RF frontend circuits, A/D converter, and LCD

display, also participate in the idle mode operation, the impact of 27% energy cost

on the terminal standby time will not be substantial.

As we previously discussed in Chapter III, the workload of the idle mode operation

101

 1.7e-10

 1.8e-10

 1.9e-10

 2e-10

 2.1e-10

 2.2e-10

 2.3e-10

 2.4e-10

 2.5e-10

 2.6e-10

 2.7e-10

 100 200 300 400 500 600 700 800

E
ne

rg
y

[J
ou

l/C
yc

le
]

Frequency [MHz]

"idle_mode_energy"

Figure 7.2: The relation between the operation frequency and the system energy per
cycle, when the system is in the W-CDMA idle mode

is dominated by the FIR filter kernel. The proposed architecture was designed to

optimally support the five major kernels, which include the FIR filter as one of

them. Thus, from the architectural view point, the proposed architecture is already

optimized to the idle mode workload.

One remaining problem is to validate the energy cost of running at the non

optimal operation frequency, 700 MHz. The PE will be synthesized at 700 MHz in

order to support the active mode operation with maximum throughput. However,

according to our previous workload analysis result, about 50MHz operation frequency

is sufficient to meet the timing requirement of the idle mode workload [45].

Figure 7.2 shows the relation between the system operation frequency and the

system energy per cycle in the idle mode of the W-CDMA terminal. Because there

is no energy cost change between 100∼300 MHz, it is possible to increase operation

102

Peak Average Leakage Area
Power(mW) Power(mW) Power(mW) (mm2)

Memory
Data memory 60.8 17.2 1.41 3.7
R/W Network 85.92 24.3 0.18 0.1
Address gen. 27 9.3 0.10 0.1

Vector CU

REGs 88.6 8.7 0.25 0.4
MULTs 185.6 6.9 0.42 0.5
ALUs 44.8 10.8 0.43 0.4
MUX 28.8 2.7 0.10 0.0

Vector Registers 10 0.5 0.05 0.0
Vector Reduction 14 0.5 0.04 0.2
Vector Control 12.8 8.3 0.01 0.2
BUS I/F 4.5 0.5 0.10 0.1

SCALAR

REG 4.8 3.0 0.06 0.1
MULT 21.8 3.0 0.04 0.1
ALU 4.5 2.2 0.00 0.1
Control 2.0 1.4 0.01 0.1
I-MEM 21.3 15.0 0.70 1.8

Miscellaneous - 34.3 - 2.4
Total(rounded) - 150 4 11

Table 7.6: Dynamic power consumption of the proposed architecture when it provides
W-CDMA 2Mbps packet data service

frequency up to 300 MHz without additional overhead. Based on this result, let us

compute the energy cost of running at 700 MHz. In the graph, the energy cost of

running at 700MHz is about 27% higher than the energy cost at 300 MHz. As we

discussed, this amount of energy overhead has no significant impact on total system

energy.

7.3.3 Component Level Breakdown

Table 7.6 shows the component level power breakdown result of the proposed ar-

chitecture when it performs W-CDMA 2Mbps packet data service. The peak power

shown in the second column is the power dissipated when the corresponding blocks

are activated at every cycle with maximum throughput. It is also assumed that the

103

half of input signals toggles at every cycle. The average power shown in the third

column is the result of considering the activity ratio of the components. Thus, if

the average power is half of the peak power, then it means that the corresponding

component is activated at every two cycles on average. In order to consider the

effect of the global clocking and interconnection overheads, this thesis assumes 30%

power [46] and area overheads and it appears in the table with the name ‘Miscella-

neous’. It is because the hardware model was built at the component level, which

does not include the overhead of clock and global interconnection networks. After

considering all factors, we compute that the proposed architecture consumes only

150 mW while supporting W-CDMA 2Mbps packet data service

In this table, we can find two interesting results. At first, in the vector CUs, the

power consumption of the register file is successfully reduced by the use of macro

instructions. Its power consumption is only 80% of the ALU. Although we replace

the register file with the multiplexer and latches, their power overhead is negligible

(less than 2%). Second, the power overhead of the multiplier is not substantial. The

algorithm, which intensively uses the multiplier, is the FIR filter. However, with

the W-CDMA workload, the FIR filter only occupies less than 5% of total operation

time. However, if we consider the OFDMA workload, the power consumption of the

multiplier can be substantial.

7.3.4 Comparison with SODA

We compare the power consumption of the proposed architecture with the SODA

when they process W-CDMA 2Mbps packet data workload. For fair comparison, we

apply the evaluation methodology used on the proposed architecture on the SODA.

Thus, the power consumption and throughput of the SODA were evaluated through

104

0

10

20

30

40

50

60

70

80

90

memory vector

computation

BUS I/F scalar vector control

d
y
n
a
m
ic
 p
o
w
e
r
[
m
W
]

Proposed

SODA

Figure 7.3: Power comparison between the SODA and the proposed new architecture
when they support W-CDMA 2Mbps packet data service

the three level approach and the TSMC-13 lvlk library cells were used at the logic

synthesis.

As a result, we find that the SODA dissipates 200 mW at the W-CDMA 2Mbps

packet service workload whereas the proposed architecture consumes 150 mW. At

the same time, the proposed architecture shows about 2 times higher throughput

compared to the SODA. About 25% of system level power saving and two times higher

throughput are mostly from the efficient processing of the Viterbi-BMC/ACS kernel

which mainly comprises the turbo decoder workload. As discussed in Chapter IV,

the turbo decoder dominates the baseband processing workload.

Figure 7.3 shows the power consumption profile of the proposed architecture and

SODA. In X-axis, the “memory” represents the power dissipated for data load/store

from/to memory. The “vector computation” is the power for actual vector compu-

tations. This term includes the power consumption of arithmetic units and register

files. The “scalar” represents the power consumption for the scalar workload. The

105

“vector control” represents the power dissipated for vector control signal generation.

Two architectures show identical power consumption for system bus interface

and scalar workloads. It is because two architectures have the same amount of

input/output data and scalar workload. The proposed architecture dissipates less

power for the vector computations and the vector control signal generation. The less

vector computation power is the result of applying the macro instructions. Because,

in the proposed architecture, the parallel datapath runs in stream fashion, control

instructions are not decoded at every cycle. So, the generation of vector control sig-

nals results in less power overhead. However, while accessing memory, the proposed

architecture dissipates than the SODA. It is because data load/store operations are

performed through switches, which cover data alignment operations, in the proposed

architecture. However, the power gains of the vector computation and vector control

generation operations surpass this overhead.

7.4 Future SDR Solution

In this section, this thesis predicts the future of SDR solution. Wireless com-

munication systems will continue their evolution to support higher data rate. The

amount of computation demanded by future wireless protocols keeps super linear re-

lation with maximum data rate. It is because wireless channels are quite limited and

expensive resources. For higher spectral efficiency, more complex and computation

intensive algorithms will be adapted in future wireless communication protocols. To

cope with such evolution, the throughput and power efficiency of SDR system also

must be enhanced.

Before discussing the future SDR system in detail, let us recall an equation that

106

explains the relation between system dynamic power and circuit parameters.

Pdynamic ∝ CeV
2 (7.1)

This equation explicitly shows that the system dynamic power can be saved by

reducing the effective capacitance of system circuits Ce and system operation voltage

V .

Generally, there exist three schemes that can reduce system dynamic power. First

is to shrink device size. Due to the progress on silicon technologies, the gate length

and operation voltage of CMOS circuits have been reduced. This change directly

causes the reduction of system dynamic power. For instance, the migration from 180

nm silicon technology to 130 nm technology results in about 70% dynamic power re-

duction. Second is to exploit available parallelism. Parallel executions allow longer

processing time to each arithmetic unit. Because slower circuits operate at lower

voltage and induce less capacitive load, the parallel execution can result in dynamic

power saving. The macro pipelining and staggered execution of CUs, which were

proposed by this thesis, reduced system dynamic power by maximally exploiting

DLP. Third is to minimize effective capacitance of system by using less capacitive

components even for identical operation. For instance, the macro instructions pro-

posed by this thesis reduced system power by minimizing register file access, which

induces high capacitive load. The dynamic power of most digital hardware system

has been minimized successfully by applying these three schemes.

However, in near future, the shrinking down device size will not be an effective

way to reduce system dynamic power because the operation voltage of devices will

not be scaled down along with device size reduction in order to avoid high leakage

power. Due to this phenomenon, reducing the effective system capacitance Ce in

107

Equation (7.1) becomes more important in the system dynamic power reduction.

One way to reduce system capacitance is to use customized logics which are opti-

mal to applications. The customized logics are also required in order to fully exploit

the DLP for power reduction. Under a constant operation voltage, performing more

complex operations within one cycle is only possible way to exploit the additional op-

eration time achieved by concurrent executions after using minimum size logic gates.

Thus, for dynamic power reduction, customized logics which represents complex op-

erations are required. The extreme case of customized logics is ASICs. However,

the use of customized logic can limit the flexibility of SDR solution. Another way

for reducing power is to use more energy efficient circuits such as dynamic logics

or adiabatic logics. However, for using these energy efficient logics, special design

techniques are required.

In summary, the number of computations rapidly increases by much higher maxi-

mum data rate of future wireless protocols. The future SDR solution might use more

complex customized logics and energy efficient circuits on top of parallel architecture

in order to compensate the limitation on operation voltage scaling down.

CHAPTER VIII

CONCLUSION

This thesis proposes a low power, high performance, and programmable architec-

ture that targets baseband processing workloads of software defined radio terminals.

Due to a tight power budget and high demand on computation capability, using pro-

grammable hardware for the baseband processing of software defined radio terminals

has been quite a challenging goal. The baseband processor of this thesis achieves

these goals by maximally utilizing the characteristics of the baseband workloads. It

is designed to fully exploit all available parallelism for higher throughput and to

support algorithm diversity with the minimally flexible hardware for power savings.

For the proper understanding of workloads, in Chapters II, IV, and III, this thesis

analyzes the characteristics of major computation kernels of most contemporary wire-

less networks, based on time division multiple access (GSM, GPRS, and EDGE), code

division multiple access (IS-95, IS-2000, W-CDMA, and IEEE802.11b), and orthog-

onal frequency division multiple access (IEEE 802.11a/g, and WiMax) technologies.

From this analysis, this thesis identifies the following factors:

• The baseband processing consists of five algorithm blocks: 1) channel encod-

ing/decoding, 2) interleaving/deinterleaving, 3) modulation/demodulation, 4)

channel estimation, and 5) pulse shaping. These algorithm blocks can run in

108

109

parallel without frequent interactions between them.

• Each algorithm block is the combination of two heterogeneous operations, 1)

parallelizable operations and 2) sequential operations. These two operations

are tightly coupled and require frequent communications between them.

• The parallelizable operations 1) dominate the entire baseband processing work-

load, 2) show a high degree of DLP, and 3) consist of a limited number of

computation kernels.

• The major computation kernels comprising the parallelizable operations of the

active mode are 1) the FIR filter, 2) pattern matching, 3) min/max finding, 4)

Viterbi BMC/ACS, and 5) FFT.

• The major computation kernels of the idle mode are only 1) FIR filter and 2)

pattern matching.

• The operations of these computation kernels can be mapped onto a conceptual

pipeline, which consists of the following stages: 1) data load, 2) vector align-

ment, 3) vector computation, 4) a second vector alignment or vector reduction,

and 5) data store.

• The sequential operations 1) occupy a minor portion in the entire baseband

processing workloads, 2) show limited DLP, and 3) consist of numerous com-

putation kernels with many variations.

Based on the above analysis results, in Chapters V and VI, this thesis proposes

a coarse grain chip multiprocessor architecture, which consists of four PEs. The

proposed architecture has the following high level features:

• A chip multiprocessor architecture is used to exploit the algorithm level paral-

lelism.

110

• A coarse grain PE is used to minimize the power consuming interprocess com-

munications.

• A low speed bus is used to support the communication between PEs.

• Hierarchical memory is used to minimize the power and delay cost of memory

accesses.

On top of the high level architecture, this thesis proposes the detail architecture

of the PE in Chapter VI. The PE, which consists of the parallel datapath, scalar

datapath, control unit, instruction memory, and data memory, has the following

features:

• Both the parallel and scalar datapaths were implemented within a single PE

in order to process both parallelizable and sequential operations efficiently.

• Both the parallel and scalar datapaths share the same control logics and data

memory in order to efficiently support the frequent interactions between the

parallelizable and sequential operations with minimum power and delay cost.

• In order to exploit the abundant DLP, the parallel datapath has 16 CUs which

concurrently perform arithmetic operations.

• The scalar datapath, control unit, instruction memory, and data memory form

a 32bit single issue in-order processor to cover sequential operations with low

power.

For further enhancement on system throughput and power efficiency, this thesis

adapted the three novel schemes on the SIMD style parallel datapath: the macro

instructions, macro pipelining, and staggered execution of CUs. These schemes were

motivated from the limitations of the previous architecture, SODA. In the parallel

datapath of the SODA, the substantial amount of system power was dissipated by

111

the vector register file due to unnecessary accesses. Furthermore, the SODA did not

exploit the macro operation level parallelism.

• Macro instructions are adapted on the CU of the parallel datapath. A macro

instruction is equivalent to several primitive instructions. Macro instruction

enhanced the system throughput by executing several primitive instructions

in parallel and system power efficiency by minimizing the power consuming

register file access.

• The parallel datapath has a macro pipeline which consists of the switches,

address generators, vector registers, CUs, and vector reduction logics. These

hardware entities are the realization of the five macro operations identified in

the workload characterization procedure, data load/store/alignment and vector

reduction/computation. The macro pipelining increases system throughput by

the parallel execution of these macro operations.

• In the workloads with long computation time, such as the Viterbi BMC/ACS

and FFT, the operation timing of the CUs is staggered. The staggering allows

to replace complex N×N crossbar switches with simple N×1 crossbar switches

because only one CU accesses the data memory within one cycle. Consequently,

it improve system throughput and power efficiency by minimizing the operation

cost of data load/store/alignment operations.

• In the workloads with short computation time, such as the FIR filter, min/max

finding, and pattern matching, the operation timing of CUs is synchronized. In

order to provide input operands to all CUs with simple N×1 crossbar switches,

the vector registers are used. The synchronous execution of CUs allows to

support the idle mode workload with minimum power overhead.

112

In Chapter VII, the efficiency of the proposed architecture is evaluated through

a Verilog model and commercial design tools such as Synopsys’ Physical Compiler,

Design Compiler, and PrimePower. The power estimation result shows that the

proposed architecture consumed only 150 mW while providing W-CDMA 2Mbps

packet data service.

In summary, this thesis proposed a programmable processor which targets base-

band processing workload. Among all features proposed by this thesis, the followings

are novel contributions:

• This thesis identified the characteristics of baseband processing workload in

both system level and algorithm level from the view point of architecture design.

• This thesis improved the throughput and power efficiency of the proposed base-

band processor by applying three novel schemes: the macro instruction, the

macro pipelining, and the staggered execution of CUs.

• This thesis minimized the power consumption of baseband processor both in

the idle and active modes.

Furthermore, the application area of the proposed architecture can be extended

by the following future works.

• This thesis did not cover emerging wireless communication technologies such

as MIMO and LDPC code. These algorithms show heterogeneous operation

characteristics compared to the algorithms which were analyzed in this the-

sis. Optimizing the proposed architecture to these algorithms is additionally

required to support future wireless protocols.

• The application area of the proposed architecture can be extended to source

coding workloads, for instance video and voice CODECs. Because the compu-

113

tation patterns of CODECs also show high level of DLP, the proposed architec-

ture could cover the source coding workloads without substantial architectural

changes. Most wireless terminals also perform the source coding operations

in addition to the baseband processing operations. Thus, to design a pro-

grammable processor, which supports both workloads, has significant meaning

in practice.

APPENDICES

114

115

APPENDIX A

DETAIL ALGORITHM LEVEL WORKLOAD

CHARACTERIZATION

A.1 Introduction

In this appendix, this thesis analyzes in detail the signal processing algorithms

used in various wireless terminals. The analysis will include the computation pat-

tern, data movement pattern, and inherent parallelism of five major blocks which

are shown in Figure 3.1: channel encoder/decoder, block interleaver/deinterleaver,

modulation/demodulator, pulse shaping filter, and channel estimator. As a repre-

sentation of channel decoder, the Viterbi decoder and Turbo decoder are examined.

Among modulation schemes, this appendix examines the computation pattern of

TDMA, CDMA, and OFDMA. To understand the characteristics of channel estima-

tors, this thesis analyzes the multipath searcher of CDMA based systems and the

equalizer of TDMA based systems.

A.2 Channel Encoding and Decoding

Most of existing wireless communication networks use two kinds of channel coding

schemes: Convolutional codes [27] and Turbo codes [47]. The encoders of Convo-

lutional codes and Turbo codes are simple enough to be implemented with several

116

D DIn Out

(a) Convolutional encoder with K = 3

00

01

10

11

00

01

10

11

00

01

10

11

...

00

01

10

11

(b) Trellis diagram

Figure A.1: An example of the (a) a convolutional encoder with K = 3 and (b)
corresponding trellis diagram

flip-flops and exclusive OR gates. However, the decoders of these codes are very com-

plex because their operation is to find maximum likely sequences from the received

signals with noise. The amount of computations required for the channel encoding

is negligible compared to that of other blocks, so this thesis only focuses on the

characteristics of the channel decoders.

A.2.1 Viterbi Decoder

Viterbi decoder is a channel decoder whose operation is based on the famous

Viterbi algorithm. In most wireless communication systems, it is a de facto standard

to use Viterbi decoder for the decoding of the convolutional code.

Figure 1.1(a) shows an example of the convolutional encoder. Because the output

of the convolutional code is determined by both one new input data and previous

input data, which are stored in flip-flops, the constraint length of a convolutional

encoder, K, is defined as the sum of the number of flip-flops and the number of

input ports. Thus, the constraint length of the convolutional encoder shown in

Figure 1.1(a) is 3.

The operation of the Viterbi decoder is based on a trellis diagram, which consists

117

of nodes and arrows as shown in Figure 1.1(b). The nodes in a trellis diagram repre-

sent the state of a convolutional encoder in the transmitter and the arrows represent

possible state transitions of the convolutional encoder while time proceeds. The

number of nodes in a column of a trellis diagram is 2K−1 because the convolutional

encoder can have one of these many states at a given time. In an ideal situation,

the number of columns of a trellis diagram must be equal to the length of the re-

ceived frame. However, such an ideal Viterbi decoder requires huge memory space,

more than several mega bytes, to store intermediate decoding results. Fortunately,

there exists a previous research result showing that about 5K columns in a trellis

diagram is enough for the Viterbi decoding, with tolerable decoding error probabil-

ity [48]. The decoding method using partial trellis diagram is the sliding window

method [26].

The operation of the Viterbi decoder can be divided into three steps: BMC,

ACS, and TB. The BMC is a procedure that computes the cost of a state transition

between two nodes in a trellis diagram. The ACS is to compute the cost of a path

by accumulating the branch metrics of the path and then to select the minimum

path among input transitions with different path costs. The TB is a procedure to

recursively trace back the minimum cost path in order to find the input sequence

which caused the selected minimum cost path.

A.2.1.1 BMC of Viterbi Decoder

From a perspective of computation, the BMC operation is equivalent to comput-

ing euclidian distance between two vectors as shown in the following equation:

ν(i,j)
n = |rn − xn

(i,j)|2 =
l−1∑
k=0

|rn,k − x
(i,j)
n,k |

2 (A.1)

118

subtraction
conditional

2's complement

rn,0

xn,0

subtraction
rn,1

xn,1

subtraction
rn,l-1

xn,l-1

.

.

.

addition BMC

conditional

2's complement

conditional

2's complement

Figure A.2: A representation of BMC operation as a combination of elementary
arithmetic operations

where ν
(i,j)
n is the branch metric of the edge between the source node i of the n-th

column and the destination node j of the (n + 1)-th column of a trellis diagram; rn

is the received signal vector with length l, which corresponds to the n-th column of

a trellis diagram; and xn
(i,j) is the error free reference output vector of a channel

encoder with length l, which corresponds to the state transition from the node i of

the n-th column to the node j of the (n + 1)-th column. By assuming average white

gaussian noise channel and binary phase shift keying (BPSK) or quadrature phase

shift keying (QPSK) modulation scheme, Equation (A.1) can be further simplified

in the following equation by eliminating square term1:

ν(i,j)
n '

l−1∑
k=0

|rn,k − x
(i,j)
n,k | (A.2)

where | · | is an absolute value function.

Based on Equation(A.2), it is possible to represent the BMC operation into the

combination of primitive arithmetic operations as shown in Figure A.2. The con-

ditional complement operations shown in Figure A.2 is the real implementation of

1Detail explanation on this simplification procedure can be found in [48]

119

absolute value function based on the following relation:

abs(x) =

 x, x ≥ 0

−x, x < 0

(A.3)

According to [48], a 3bit number can be used for representing rn,k and x
(i,j)
n,k in an

ideal situation. In practical systems, a 4∼5bit number is used for representing these

values.

The BMC operation on all nodes in a trellis diagram can be done in parallel

because the input data of a BMC operation is not produced by other BMC operations.

The error free reference encoder output vector, xn
(i,j), can be pre-computed by using

channel encoder specifications. The received signal vector, rn, must be prepared

prior to the BMC operation.

The BMC operation exhibits a lot of DLP. The maximum number of BMC opera-

tion, which can be done in parallel with identical control, is equivalent to the number

of nodes in a trellis diagram. For instance, the maximum number of parallelizable

BMC operations is 10240 if we assume the Viterbi decoder of W-CDMA receiver,

(K=9 and 5K columns in the trellis diagram).

A.2.1.2 ACS of Viterbi Decoder

Let us assume that there exist two input transitions at the node k of column

(n + 1) from nodes i and j of column n as shown in Figure A.3. Then the output of

the ACS operation on a node k of column (n + 1), µk
n+1, can be represented by the

following equation:

µk
n+1 = min(µi

n + ν(i,k)
n , µj

n + ν(j,k)
n) (A.4)

where min(·) is the minimum value searching function and ν
(i,k)
n is the branch metric

from node i to node k, which is computed in the BMC operation.

120

i

j

k

column: n column: n+1

n
(i,k)n

i

n
(j,k)

n
j

n+1
k

Figure A.3: ACS operation in a trellis diagram

addition

addition

comparison

2x1

mux
μ
k
n+1

μ
i
n

μ
j
n

ν
i,k

n

ν
j,k

n

Figure A.4: An implementation of the ACS operation with primitive arithmetic op-
erations

From the above equation, we can see that the required computations for an ACS

operation is two additions and one minimum value searching function. The minimum

value searching function can be converted into one comparison and one conditional

selection according to the comparison result. Figure A.4 depicts an implementation

example of the ACS operation with primitive arithmetic operations.

From Equation (A.4), we can see the data dependency between the ACS opera-

tions. µk
n+1 depends on µi

n and µj
n which are the outputs of the ACS operations of

the previous column. Thus, the maximum number of parallelizable ACS operations

is 2K−1 where K is the constraints length of a convolutional code. The maximum

121

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(a) The data movement pattern

0

1

2

3

4

5

6

7

0

4

1

5

2

6

3

7

(b) 2×2 sub-grouping

0

1

2

3

4

5

6

7

0

1

4

5

2

3

6

7

(c) 4×4 sub-grouping

Figure A.5: The data movement pattern of ACS operation when K=4 and sub-
grouping of ACS operation into smaller groups

number of parallelizable ACS operations is 64 at the Viterbi decoder of the IEEE

802.11a system and 256 at that of the W-CDMA system.

The ACS operation exhibits a complex data movement pattern. It is because the

results of the ACS and BMC operations of a column become the input operands of

the ACS operations of the next column. A node i of a column is mapped onto two

nodes of the next column.

i −→ bi/2c (A.5)

i −→ bi/2c+ 2K−1 (A.6)

Based on the above relation, the operation results of column n are forwarded to the

nodes of column n+1. The data movement pattern of the ACS operation is depicted

in Figure A.5(a).

Another interesting factor in the data movement pattern of the ACS operation is

the possibility of splitting the ACS operation on a column into smaller independent

122

ACS operation sub-groups. Figure 1.5(b) and 1.5(c) show an example that the ACS

operation with K=4 is divided into four 2×2 sub-groups or two 2×2 sub-groups.

It means that the ACS operation can be efficiently mapped on several independent

PEs.

The operation results of the ACS need to be normalized in order to minimize

hardware complexity. As shown in Equation (A.4), the ACS operation is a cumulative

operation. In the trace back step, which will be discussed in the next subsection, the

selection of a minimum cost path is based on relative difference between the path

costs, not by their absolute value. Thus, the path cost normalization has no effect

on the minimum path selection results. It allows less storage use, and consequently

saves power. The normalization procedure consists of two steps. The first is to find

a minimum value among all path costs of a column, and the second is to subtract the

minimum value from all path costs of a column as shown in the following equations:

µmin = min(µ0, µ1, · · · , µ2K−1−1) (A.7)

µi
norm = µi − µmin, where 0 ≤ i < 2K−1 (A.8)

where µi
norm represents the normalized path cost of node i.

Parallelization of the minimum value searching function shown in Equation (A.7)

can be done by using the compare-selector tree which is depicted in Figure A.6. The

number of stages of a compare-selector tree is log2 N−1, where N is number of nodes

in a column. The data movement pattern appears in the minimum value searching

function after parallelization is illustrated in Figure A.7. In order to maximize system

throughput, it is required to load in parallel an input vector with width N from the

memory which stores the ACS results. Due to the linearity of the minimum value

searching function, no additional data alignment is required.

123

compare

2x1 mux

compare

2x1 mux

compare

2x1 mux

.

.

.

compare

2x1 mux

compare

2x1 mux

.

.

.

compare

2x1 mux...

µ
0

µ
1

µ
2

µ
3

µ
N-2

µ
N-1

µmin

Figure A.6: A compare-selector tree for the minimum value searching function of the
ACS normalization procedure

The subtraction operations shown in Equation (A.8) can also easily be parallelized

because of its DLP nature. After parallelization, this operations also require to load

N elements in parallel for maximum throughput.

A.2.1.3 TB of Viterbi Decoder

The first step of the TB is to find a node with minimum path cost ηNc at the last

column of a trellis diagram, as shown in the following equation:

ηNc = node{min(µ0
Nc

, µ1
Nc

, · · · , µ2K−1
Nc

)} (A.9)

where Nc is the number of columns in a trellis diagram and node{·} is a function

that finds a node identifier from path cost information.

The next step is to trace back the selected minimum cost path by exploiting the

124

µ
0

µ
1

µ
2

µ
3

µ
N-2

µ
N-1

...

compare-selector tree

memory

Figure A.7: The data movement pattern appearing in the minimum value searching
function of the ACS normalization procedure, after parallelizing with
the compare-selector tree

following relation:

ηn−1 = source node{ηn} (A.10)

Such trace back on a trellis diagram is recursively continued until reaching the first

column.

Finally, the input data vector, I = (i1, i2, . . . , iNc), which triggered the state

transitions between nodes η1, η2, . . . , ηNc , is the result of TB operation, as shown in

the following equation, where input{·} is a function that finds an input data from

state transition.

in = input(ν(ηn,ηn+1)) (A.11)

From the above equations, it is possible to see that the TB operation is inherently

sequential, except for the minimum value searching operation in Equation (A.9).

Thus, the operation time of TB can limit the maximum throughput of the Viterbi

decoder.

There exists a method to avoid the TB procedure, called the register exchange

method [49]. This method requires special hardware that accumulates the input

data of survival paths. The accumulation of input data can be performed after

the ACS operation on a node. Therefore, after finding a node with minimum cost

125

SISO SISO

in
t
e
r
le
a
v
e
r

d
e
in
t
e
r
le
a
v
e
r

Input output

Figure A.8: The structure of Turbo decoder

path of the last column, as shown in Equation (A.9), it is possible to find input

data vector I without the TB procedure, which are shown in Equation (A.10) and

(A.11). However, the downside of the register transfer method is an additional power

consumption required to accumulate input data at all nodes in a trellis diagram.

A.2.2 Turbo Decoder

The Turbo decoder decodes data encoded by Turbo codes. The Turbo decoder

is identical to the Viterbi decoder due the fact that both operations are based on

a trellis diagram. However, the Turbo decoder differs from the Viterbi decoder

in three factors: producing soft output, iterative operation, and data interleaving

between iterations.

The “soft output” means that output data is provided with reliability information,

for example binary ‘1’ with probability 0.7. In order to produce such soft output,

the Turbo decoder performs more complex operations on a trellis diagram than the

Viterbi decoder. Generally, the decoder, which produces soft output from soft input,

is called soft input soft output (SISO) decoder.

As shown in Figure A.8, the Turbo decoder consists of two SISO decoders, inter-

leaver, and deinterleaver. The output of the first SISO decoder is fed into the second

SISO decoder and the output of the second SISO is also fed into the first one. The

126

Turbo decoder performs decoding operations iteratively. The number of iterations is

related to the signal to noise ratio (SNR) of input data. The decoding of input data

with low SNR requires more iterations. Due to mutual data dependency, iterations

can not be performed in parallel.

The output of a SISO is interleaved before provided to the next SISO. This

interleaving allows time diversity on Turbo codes. The time diversity is the main

reason the Turbo codes show superior performance compared to the Convolutional

codes. Although a full random interleaving guarantees the best performance, it

requires excessively complex hardware. An interleaving scheme with some level of

regularity, called block interleaving [26], is adapted in most wireless communication

systems. It is because the computation pattern used in the interleaver of the Turbo

decoder is identical to that of the frame level interleaver. The detailed computation

pattern of the block interleaver will be discussed in the following section regarding

the frame level interleaver.

There exist two popular methods on the implementation of the SISO decoder,

which are based on two algorithms: soft output Viterbi algorithm (SOVA) [50] and

max-log MAP algorithm [51][52]. The max-log MAP algorithm shows better per-

formance than the SOVA, whereas the SOVA requires less computations. Thus, if

decoding performance is the primary concern, then max-log MAP is a proper choice

or if low power consumption is more important, then the SOVA can be used. Because

there are no unique parallelizable computation patterns in the SOVA based Turbo

decoder, compared to the Viterbi decoder, this thesis only discusses the operation of

the max-log MAP based Turbo decoder.

127

A.2.2.1 Max-Log MAP based Turbo Decoder

The operation of max-log MAP (from this point referred to as MAP for simplicity)

decoder is a superset of the Viterbi decoder. Thus, MAP decoder also performs the

BMC, ACS, and TB operations on a trellis diagram. However, additional operations

are required to generate soft numbers, output data with reliability. In addition to

the ACS operation done in the Viterbi decoder, the MAP decoder performs the ACS

operation in a backward direction, from the last column to the first column of a trellis

diagram. The computation pattern of the backward ACS operation is identical to

that of the forward ACS except for the data movement pattern between columns.

In the backward ACS operation, the data of the nodes i of a column need to be

forwarded to the nodes of the next with the following relations:

i −→ (i× 2) mod 2K−1 (A.12)

i −→ ((i× 2) mod 2K−1) + 1 (A.13)

where mod denotes modular function, which can easily be implemented by bit mask-

ing. The data movement pattern for the backward ACS is depicted in Figure 1.9(a).

Similar to the forward ACS case, this operation also can be divided into smaller

groups as shown in Figure 1.9(b) and 1.9(c).

Using both the forward and backward ACS results, the reliability of the decoded

data is computed. The computation of reliability information is usually performed

at the TB procedure because the max-log MAP algorithm converts power expen-

sive multiplications and divisions into additions and subtractions; the arithmetic

operations required for reliability computation are only addition, subtraction, and

min/max finding.

128

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(a) The data movement pattern

0

1

2

3

4

5

6

7

0

4

1

5

2

6

3

7

(b) 2x2 sub-grouping

0

1

2

3

4

5

6

7

0

1

4

5

2

3

6

7

(c) 4x4 sub-grouping

Figure A.9: The data movement pattern of backward ACS operation when K=4 and
sub-grouping of ACS operation into smaller groups

A.3 Interleaver and Deinterleaver

The interleaver in a transmitter randomizes the sequence of source information,

and then the deinterleaver in a receiver recovers the original sequence by reordering.

These operations scatter errors within a short time interval over a longer time interval

to reduce signal strength variation, and thus bit error rate under the same channel

conditions.

Among the many existing interleaving schemes, block interleaving is most popular

in practical wireless communication protocols. The detailed operation procedure of

block interleaver is depicted in Figure A.10. The interleaving procedure consists

of the following steps. Data for interleaving are written row by row on a memory

space with m rows and n columns. Then, the stored data are read out column by

column. The order of column reading is not sequential. The shuffling of the column

reading order results in a pseudo randomness on the output data. Deinterleaving

129

1 2 n

n+1 n+2 2n

nm(n-1)m+1

write

read

Figure A.10: The operation of the block interleaver

can be done by inverse operation. As shown in the previous figure, the operation

of the interleaver and deinterleaver is difficult to parallelize without the assistance

of special hardware. The interleaver and deinterleaver are ones of major sequential

algorithms at the baseband processing workload.

A.4 Modulator, Demodulator, and Channel Estimator

Modulator maps source information onto signal waveforms so as to be transmit-

ted over wireless links most efficiently. The demodulator extracts the transmitted

information from the received signal waveforms, which are distorted while propagat-

ing in the wireless link. The channel estimator predicts the status of the wireless

link in order to assist demodulator operation. The operations done in modulator,

demodulator, and channel estimator are quite different, according to the types of

communication technologies such as TDMA, CDMA, and OFDMA.

A.4.1 CDMA Based System

In the CDMA based systems such as IS-95, IS-2000, and W-CDMA, the mod-

ulation and demodulation operations are based on the multiplications of code se-

130

despreaderdescrambler

demodulator

spreader scrambler

modulator

radio

channel

Multipath searcher

channel esitmator

Figure A.11: The structure of modulator and demodulator of CDMA based system

quence to data. In the modulator, one of the code multiplication procedures is called

“spreading” because it spreads out the energy of the source information over a wider

frequency spectrum. Another code multiplication procedure is “scrambling” because

a pseudo random sequence is multiplied on the input data so as to scramble the

output. In the demodulator, the corresponding counter operations are “despread-

ing” and “descrambling”. The multipath searcher estimates the channel status and

provides the estimation results to the demodulator. Figure A.11 shows the structure

of the modulator, demodulator, and channel estimator of the CDMA based systems.

A.4.1.1 Modulator (Spreader and Scrambler)

Let us assume a spreading code vector Csp = (csp
0 , csp

1 , · · · , csp
Lsp−1) where csp

i ∈

{1,−1}, and a binary input bit sequence DT = (d0, d1, · · · , dN−1) where di ∈ {1,−1}.

Then, the output of the spreading operation, Dsp = (dsp
0 , · · · · · · , dsp

NLsp−1), is repre-

sented by the Kronecker product between code sequence Csp and input bit sequence

131

D as shown in the following equations:

Dsp = Csp ⊗D (A.14)

= (d0Csp, d1Csp, · · · · · · , dN−1Csp) (A.15)

= d0(c
sp
0 , · · · , csp

Lsp−1), · · · · · · , dN−1(c
sp
0 , · · · , csp

Lsp−1) (A.16)

= d0c
sp
0 , d0c

sp
1 , · · · · · · , dN−1c

sp
Lsp−1 (A.17)

= dsp
0 , dsp

1 , · · · · · · , dsp
NLsp−1 (A.18)

From the view point of hardware, the spreading operation can be implemented by a

conditional one’s complement, con comp(·, ·), which is represented by the following

equation:

con comp(C, d) =

 ∼ c0,∼ c1, . . . ,∼ cn−1 if d = 1

c0, c1, . . . , cn−1 if d = 0

(A.19)

where C = (c0, c1, . . . , cn−1) and ∼ is the bitwise complement. Because of the absence

of data dependency, it is possible to parallelize all con comp() operations in the

spreading procedure.

After the spreading procedure, the modulator also performs the scrambling oper-

ations. Before the scrambling procedure, the outputs of the spreaders are converted

into complex numbers by mapping the output of one spreader to the real axis and the

output of another spreader to the imaginary axis2. Therefore, the input of scrambler

Din−sc = (din−sc
0 , din−sc

1 , · · · , din−sc
Nsc−1) has the following relation with the outputs of

two spreaders, Dsp,0 = (dsp,0
0 , · · · , dsp,0

Nsp−1) and Dsp,1 = (dsp,1
0 , · · · , dsp,1

Nsp−1):

din−sc
i = dsp,0

i + j · dsp,1
i (A.20)

2There exist other ways to convert real numbers into complex numbers which map odd terms of
input data on the real axis, and even terms of input data on the imaginary axis.

132

Then, the scrambling operation can be described by the following equation:

Dsc = (dsc
0 , dsc

1 , · · · , dsc
Nsc−1) (A.21)

dsc
i = din−sc

i · csc
i (A.22)

where Dsc is the output of the scrambler; and Csc = (csc
0 , csc

1 , · · · , csc
LSC−1), csc

i ∈

{a+ jb|a, b ∈ {1,−1}, is the scrambling code sequence. Because both input data are

complex numbers, one multiplication in the above equation can be converted into

four real multiplications3. Additionally, because both real and imaginary terms of

the operands of the multiplication are binary numbers, the four real multiplications

can be simplified into bitwise exclusive ORs. However, the addition and subtraction

required for representing complex multiplication need to be a 2bit adder which is not

adequate for conventional 8bit or 16bit datapaths. Due to mutual independence of

computations, all exclusive OR operations for scrambling can be parallelized.

A.4.1.2 Demodulator (Descrambler and Despreader)

In demodulator, a received signal is descrambled first. This descrambling proce-

dure can be represented by the following equation:

Rdsc = (rdsc
0 , rdsc

1 , · · · , rdsc
Ndsc−1) (A.23)

rdsc
i = ri · c∗sci (A.24)

where Rdsc is the output of the descrambler; R = (r0, r1, · · · , rNdsc−1) is the re-

ceived signal; and C∗sc = (c∗sc0 , c∗sc1 , · · · , c∗scLsc−1) is the complex conjugate of the

scrambling code. The real multiplications of the descrambler are converted into

four conditional 2’s complements, one addition, and one subtraction because ri ∈
3It is possible to implement the complex multiplications with three real multiplications [53].

However, due to the high register file access energy, it is difficult to expect an energy savings from
this scheme.

133

{a + jb|a, b are n-bit integer} and c∗sci ∈ {a + jb|a, b ∈ {1,−1}}. Note that, in the

transmitter scrambler, the multiplications were converted into bitwise exclusive OR

because input data was a binary complex number. All conditional 2’s complement,

addition, and subtractions, which consist of the descrambler operation, can be exe-

cuted in parallel because of the absence of data dependency between computations.

The despreading operation performed in the demodulator can be represented by

the following equation whereRdsp is the output of the despreader; Rdsc is the input of

the despreader, which is generated by the descrambler; and Csp = (csp
0 , . . . , csp

Lsp−1)
T

is the spreading code used for the despreading operation.

Rdsp = Rdsc · Csp (A.25)

= ((rdsc
0 , · · · , rdsc

Lsp−1), · · · , (rdsc
(Ndsp−1)Lsp

, · · · , rdsc
NdspLsp−1)) · Csp (A.26)

= (rdsc
0 , · · · , rdsc

Lsp−1) · Csp, · · · , (rdsc
(Ndsp−1)Lsp

, · · · , rdsc
NdspLsp−1) · Csp (A.27)

= (rdsp
0 , · · · · · · , rdsp

Ndsp−1) (A.28)

The despreading operation includes the inner product of two vectors with length Lsp

as exemplified in the following equation:

rdsp
i =

Lsp−1∑
n=0

rdesc
(i·Lsp+n) · cn (A.29)

The multiplications shown in the above inner product can be converted into con-

ditional 2’s complement because ri ∈ {n-bit integer} and ci ∈ {1,−1}. All inner

products can be done in parallel.

A.4.1.3 Code Generation

There exists a predefined rule on the generation of the spreading code. The

number of the spreading code used during a communication session, such as voice

call, is limited. So, it is possible to compute the spreading codes at the starting

134

stored signal, R

Correlation window

 Lcor

 Lsig

τ

Correlation window

Correlation window

.

.

.

Figure A.12: The correlation computation procedure of the multipath searcher

time of communication session and reuse the pre-computed spreading code for the

modulation and demodulation of data. Therefore, the amount of workload related

to the generation of the spreading code is negligible.

However, because the scrambling code length is quite long, the pre-computation

technique used for the generation of the spreading code is not available. In run

time, the scrambling code sequence needs to be generated. The generator of the

scrambling code is based on the linear feedback shift register. So, it can not be

parallelized without ASIC style special hardware.

A.4.1.4 Channel Estimator (Multipath Searcher)

The channel estimator of the CDMA based system is called “multipath searcher” [29][54].

Under a multipath fading environment, an impulse signal from a transmitter will ar-

rive at a receiver multiple times with random delay and attenuation. The operation

of the multipath searcher is to detect the propagation delay and signal strength of

the received multipath components. Its operation consists of four steps: correlation

computing, average filtering, correlation peak detection, and selecting significant

correlation peak points.

135

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000 1200 1400

C
or

re
la

tio
n

Delay

"Rrc"

Figure A.13: An example of the correlation results which shows four peaks

At first, the multipath searcher stores received signals. The length of stored

signal, Lsig, must be enough to cover the delay spread of the wireless link. Then,

the multipath searcher scans the received signal, R, by computing cross correlation

with the complex conjugate of the scrambling code, C∗sc, as shown in Figure A.12.

The result of such correlation computation, Rrc[τ], is represented by the following

equation:

Rrc[τ] =
Lcor−1∑

i=0

C∗sc[i] · R[i + τ], where 0 ≤ τ < (Lsig − Lcor) (A.30)

where Lcor is the correlation length. Rrc[τ] shows peaks at the points where multipath

components exist as shown in Figure A.13. The multiplications in Equation (A.30)

can be simplified into the conditional complement like the multiplications of the

descrambler with an identical reason. The computation of correlation on all delay

points from Rrc[0] to Rrc[Lsig − Lcor − 1] can be done in parallel because there is no

data dependency between them.

136

Second, the computed correlation results are processed by an averaging filter

in order to remove high frequency noise terms. Let us denote the Rrc[τ] which is

computed at time t as Rrc[t, τ]. Then, the output of the averaging filter at time

t, Rrc[t, τ], is represented by the following equation where Lavg is the length of the

average filter and δ is the interval between searcher operations:

Rrc[t, τ] =

Lavg−1∑
n=0

αn ·Rrc[t− nδ, τ] (A.31)

Although both input operands of the multiplication in Equation (A.31) are real

numbers, it is possible to convert the multiplications into cheaper shift operations

by assuming αn = 2−n. Based on such filter coefficients, the operation of the average

filter can be simplified into the following equation:

Rrc[t, τ] =
1

2
Rrc[t− δ, τ] + Rrc[t, τ] (A.32)

Third, the multipath searcher scans correlation results in order to find correlation

peaks by computing ∆Rrc[t, τ] = Rrc[t, τ − 1] − Rrc[t, τ]. If ∆Rrc[t, τ0] < 0 and

∆Rrc[t, τ0 +1] > 0, then the τ0 is interpreted as a peak correlation point. Due to the

absence of data dependency, the correlation peak searching operations on all delay

points can be done in parallel.

Fourth, the multipath searcher selects several delay points where its correlation

value is greater than a threshold value among the detected correlation peaks. In

Figure A.13, two delay points are selected by the multipath searcher if the threshold

value is assumed as 4000, and four delay points are detected if the threshold value

is assumed as 2000. Basically this procedure is based on a sorting algorithm. In a

practical multipath searcher, this threshold value adaptively varies according to oper-

ation conditions and channel status changes. In order to cope with wide algorithmic

137

Multipath searcher

descrambler despreader

descrambler despreader

descrambler despreader

c
o
m
b
in
e
r

τ0 τ1 τNfinger--1 α0,α1,…,ααNfinger-1

R[n]
.

.

.

D[n]

rp0[n]

rp1[n]

rpfinger-1[n]Rake finger

Figure A.14: The structure of the rake receiver

variations, this step of peeking dominant correlation points has been implemented

on a programmable hardware even at ASIC based baseband processors.

Among the four steps, the correlation computing step shows a high degree of

DLP. Although the other three steps show some level of DLP, it is possible to classify

them as scalar workload because the amount of workload induced by these steps is

not substantial.

A.4.1.5 Rake Receiver

In the receiver of the CDMA based system, the descrambler, despreader, mul-

tipath searcher, and combiner form a subsystem called “rake receiver”, which is

depicted in Figure A.14 [55][56]. Independent demodulators, which consist of the

descrambler and despreader, are assigned to the delay points detected by the mul-

tipath searcher, τ0, τ1, . . . , τNfinger−1. A descrambler and despreader pair is assigned

to τi and it produces a partial demodulation result, which is extracted from the

multipath component existing at τi. The role of combiner is to aggregate the partial

138

demodulation results with proper compensation4 as shown in the following equation:

D[n] =

Nfinger−1∑
i=0

αi · rp
i [n], where αi =

Rrc[n, τi]
2∑Nfinger−1

k=0 Rrc[n, τk]
2 (A.33)

where D[n] is the output of the combiner and rp
i [n] is the partial demodulation output

of i-th demodulator at time n. The maximum number of parallel computations in the

combiner operation is determined by the maximum number of rake fingers. Because

both input operands of the multiplications of Equation (A.33) are arbitrary real

numbers, there is no room for further simplification of multiplications to cheaper

operations.

A.4.2 TDMA Based System

In a TDMA based system such as GSM, GPRS, and EDGE, the modulation and

demodulation procedures are based on gaussian minimum shift keying (GMSK) and

8 phase shift keying (8-PSK). From the view point of computation, these modulation

and demodulation procedures are table lookup operations which convert input bit se-

quence into complex numbers and vice versa. Because its workload is not substantial,

we classify these workloads as sequential.

The major components of the TDMA receiver are the channel estimator and

channel compensation filter, so called “equalizer” [29]. The goal of rhe equalizer is

to minimize the signal distortion caused by the wireless channel. Although there

exist many ways to implement an equalizer, most TDMA based systems use MLSE

equalizer [30].

A.4.2.1 MLSE Equalizer

As depicted in Figure A.15, the MLSE equalizer consists of five blocks, mid-amble

extractor, channel estimator, reference sequence buffer, reference sequence filter, and

4This operation is usually called maximal ratio combining [29].

139

Mid-amble

extraction

Cross corraltion

Rmid, C*mid

Rmid

Reference

Sequences

FIR filter
Channel

response

Viterbi Decoderinput output

channel estimator reference sequence filter

Viterbi decoder

Figure A.15: The structure of the MLSE equalizer for TDMA systems

Viterbi decoder. Briefly, the channel estimator derives the characteristics of the

wireless channel, and the Viterbi decoder exploits the channel information while

estimating the maximum likely sequence from the input signal.

For channel estimation, the mid-amble sequence is utilized, which is transmit-

ted at the middle of every frame. The impulse response of the wireless channel is

extracted by matched filtering with the known mid-amble sequence. Because the

mid-amble sequence is specially designed so that its autocorrelation is an impulse

function, the matched filtering on the received mid-amble sequence results in the im-

pulse response of the wireless channel in an ideal situation. The computation used

at the matched filtering is identical to that of the multipath searcher. Thus, this

thesis omits the detailed discussion on the matched filtering to avoid redundancy.

For estimating the maximum likely information sequence, the Viterbi decoder

is used. The operation of the Viterbi decoder for equalization is a variation of

the Viterbi decoder for the channel decoding. The Viterbi decoder for the MLSE

equalization needs to consider the effect of channel distortion and it is done by

filtering reference sequences with the channel impulse response function, which was

140

FFT

modulator

IFFT

Time and Frequency

synchronization

demodulator

FEQ
Wireless

Channel
Input Output

Figure A.16: The outline of modulator and demodulator of an OFDMA based system

computed by the channel estimator [57].

With the filtered reference sequences, the Viterbi decoder searches a maximum

likely sequence from all filtered reference sequences by selecting a sequence with

minimum path cost. The computation pattern required for the filtering of reference

sequences is finite impulse response (FIR) filter. This computation pattern will

be discussed in the following section regarding the pulse shaping filter. The Viterbi

decoder for the MLSE equalization also performs the BMC, ACS, and TB operations

and these operations were already discussed in the previous section. Thus, this thesis

also skips detailed discussion on the computation pattern of the FIR filter and the

Viterbi decoder for conciseness.

Although the MLSE equalizer is also one of the major kernels in TDMA based

system, the computation patterns appearing in its operation are overlapped with

other kernels. Thus, from the view point of computation, the MLSE equalizer does

not increase the number of major computation kernels.

141

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(a) The data movement pattern

0

4

2

5

3

6

4

7

0

4

2

5

3

6

4

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(b) sub-grouping

Figure A.17: The data movement pattern of 8 points FFT operation and sub-
grouping of FFT operations into smaller groups

A.4.3 OFDMA Based System

In the OFDMA based system, FFT is used in modulation and demodulation

procedures [58]. Because the OFDMA system is inherently robust to the multipath

fading, the channel estimator is not additionally required in a receiver different from

TDMA and CDMA based systems. However, the OFDMA based system is vulnerable

to a synchronization error. The receiver of the OFDMA system uses many additional

schemes, which compensate frequency, timing, and sampling errors. Figure A.16

shows the structure of the modulator and demodulator of the OFDMA based system.

A.4.3.1 FFT

The FFT is a way to compute discrete fourier transform (DFT) with minimum

computation cost. Mathematically the FFT and inverse FFT (IFFT) are identical

except for a scaling factor multiplied on the output of operation. Thus, this thesis

142

complex

mult
x[1]

e
iw

complex

add

complex

sub

x[0]

X[1]

X[0]

Figure A.18: Computation pattern of radix-2 FFT operation

treats the FFT and IFFT as identical operations.

If we assume an N points FFT, the FFT operation consists of log2 N stages.

Although it is possible to find regularity, the data movement pattern of each stage is

different. Figure 1.17(a) shows the data movement pattern of 8 points FFT. As we

discussed, this example shows 3(= log2 8) FFT stages. Similar to the ACS operation

of the Viterbi decoder, the FFT operation can be divided into smaller subgroups.

Figure 1.17(b) shows the subgrouping of the third stage operations.

The computation done in the radix-2 FFT operation is depicted in Figure A.18.

It consists of one complex multiplication, one complex addition, and one complex

subtraction. One complex number multiplication is equivalent to four real number

multiplications, one real number addition, and one real number subtraction. Thus,

total operations of the radix-2 FFT operation are four real number multiplications,

two real number additions, and two real number subtractions. Additional charac-

teristics of the multiplication of the FFT is that one of its two input operands is a

number with unit magnitude.

In the OFDMA system, a subset of sub-carriers is assigned to one terminal. Thus,

a terminal has no need to demodulate the signals of all sub-carriers. If the number of

143

sub-carriers assigned to a terminal, Nsc, is smaller than 1
2
log2 N , then the FFT is not

an efficient modulation/demodulation scheme. The total number of complex number

multiplications of the N points FFT is 1
2
N log2 N . If a direct multiplication is applied

instead of the FFT, the number of complex number multiplications required for the

demodulation of Nsc sub-carriers is N · Nsc. Thus, if Nsc < 1
2
N log2 N , then the

demodulation using direct multiplications performs the identical operation with less

complex number multiplications compared to the FFT. Such situations frequently

happen in a real system, especially when a low rate channel is used for voice service.

The demodulation using direct multiplications can be represented by the following

equation.

x[n] =
N−1∑
k=0

X[k] ·W−nk
N (A.34)

where X[k] is a sample of the OFDM symbol and x[n] is the signal demodulated

from the n-th sub-carrier. This computation pattern is identical to that of the pulse

shaping filter.

A.4.3.2 Synchronization

Various synchronization operations are performed in the terminal of the OFDMA

system [59]. At first, the receiver needs to find the starting point of the OFDM sym-

bol. In OFDMA systems, symbol timing is detected by computing cross correlation

between the received sequence and the predefined preamble sequence whose auto

correlation property is like the impulse function [60]. The computation done for the

symbol timing detection is identical to that of the multi-path searcher. As this thesis

already discussed, it is highly parallelizable.

Second is to compensate a sampling frequency error. This error is caused by the

frequency difference between the oscillators for digital to analog (D/A) converter

144

of a transmitter and that for the analog to digital (A/D) converter of a receiver.

The sampling frequency error is estimated by computing correlation between pilot

sub-carriers as shown in the following equation:

Rl,k = Pl,k · P ∗
l−1,k (A.35)

where Pl,k is the k-th pilot signal of the l-th OFDM symbol. The sampling frequency

error results in phase shift on the pilot signal and the result of the above correla-

tion includes the information on the sampling frequency error [61]. It is possible

to parallelize the correlation computations which are performed on different pilot

sub-carriers. However, because the number of pilots is limited and the amount of

computation required for this operation is not dominant, this thesis classifies this

operation as the scalar workload.

Third, an OFDMA receiver must compensate the error on an oscillator for carrier

frequency generation, which is used for placing a baseband signal on a transmission

band and vice versa. Although there exist several available schemes, this thesis

selects a scheme that exploits the nature of the preamble, which repeats the same

information. The computation pattern used for the frequency error detection is

identical to that of the symbol timing detection procedure.

A.5 Pulse Shaping Filter

In most wireless communication systems, the pulse shaping filter is implemented

in the form of the FIR filter [62]. There are two ways to implement the operation of

the FIR filter: direct form and transpose form. Figure A.19 depicts the structure of

the FIR filters based on these two implementation methods.

The operation of the direct form FIR filter is represented by the following equa-

145

Z-1x[n]

c
0

c
1 (1)

F
Lc −

y[n]

Z-1 Z-1

(2)
F

Lc −

(a) Direct form FIR filter

Z-1

x[n]

c
0

c
1(1)

F
Lc −

y[n]

c
2

Z-1 Z-1

p
0

p
1(2)

F
Lp −

(b) Transpose form FIR filter

Figure A.19: Two implementation ways of the FIR filter

tion:

y[n] =

LF−1∑
i=0

ci · x[n− i] (A.36)

where x[n] is the input sequence to be filtered; the ci ∈ {n bit integer} are the filter

coefficients; and LF is the number of filter taps. The operation of the transpose form

FIR filter is represented by the following equations:

y[n] = p0[n] + c0 · x[n] (A.37)

pi[n] =

 pi+1[n− 1] + ci+1 · x[n− 1], 0 ≤ i < LF − 2

ci+1 · x[n− 1], i = LF − 2

(A.38)

where pi[n] is the partial result stored in i-th flip flop.

Although the functionality of these two implementation methods is identical,

they have different impacts on hardware implementation. The first difference is the

type of information stored in flip flops. The direct form FIR filter stores input data,

x[n], whereas the transpose form FIR filter stores partial results, pi[n]. Because

the partial results are the result of the multiplication between an input data and

146

x[0]

x[1]

x[2]

x[n]

x[1]

x[2]

x[n]

x[n+1]

x[n-1]

x[n-1]

.

.

.

Figure A.20: Data movement pattern of the FIR filter. x[0], . . . , x[n] are the stored
input data and x[n + 1] is a new input data

a filter coefficient, the partial result requires more storage elements than that of

the direct form FIR filter. However, the direct form FIR filter needs to perform

LF multiplications and LF − 1 additions to generate one output. However, the

transpose form FIR filter only needs one multiplication and one addition for one

output generation. Thus, the computation time allowed for the direct form FIR

filter is much tighter than that of the transpose FIR filter. Therefore, the transpose

form FIR filter is suitable for the time critical applications and the direct form FIR

filter is appropriate for the applications with sufficient operation time.

The pulse shaping filter is used in both transmitter and receiver. In the trans-

mitter, the data precision required to represent input data is lower than that of the

FIR filter in the receiver. It is because the the receiver uses a higher precision num-

ber in order to reflect noise terms. In some modulation schemes such as BPSK or

QPSK, the multiplications of the FIR filter can be simplified into cheaper conditional

complement operations because x[n] ∈ {a + jb|a, b ∈ {1,−1}}. In the receiver, the

multiplications of the FIR filter can not be simplified into cheaper operations because

x[n] ∈ {a + jb|a, b are n-bit integer}.

147

The maximum number of parallel computations available in the FIR filter is

LF due to the absence of data dependency between all computations. The data

movement pattern appearing in the FIR filter operation is a simple data shift, as

shown in Figure A.20. The FIR filter can be seen as a single input single output

system because it requires only one new input data, x[n], to generate one output,

y[n]. Thus, the data memory with one read port and one write port is sufficient for

the FIR filter operation.

A.6 Miscellaneous

In addition to five major blocks, there exist many miscellaneous operations in

wireless terminals. In some special cases, the miscellaneous operations can be dom-

inant workload. One example is frame detection operation that is to continuously

monitor wireless channels to detect the start of new frame. This operation is used

by wireless terminals running in ad hoc networks.

The computation pattern of frame detection operation is sliding window that can

be represented by the following equation:

y[n] =
L−1∑
i=0

Pi,n (A.39)

where Pi,n = x[i + n] · x[i + n − D], x[n] is the input signal at time n, L is the

correlation length, and D is the delay between input signals. It is equivalent to the

auto-correlation of x[n] with delay D and can be implemented with L multiplications

and L−1 additions per output. However, the computation shown in Equation (A.39)

can be further simplified due to the following relation between outputs:

y[n] = y[n− 1]− P0,n−1 + PL−1,n (A.40)

Because we can reuse the previously computed P0,n−1, the operation shown in Equa-

148

tion (A.40) additionally requires only one multiplication, addition, and subtraction

for the generation of the next output. Therefore, the sliding window operation can

be classified as a scalar workload.

BIBLIOGRAPHY

149

150

BIBLIOGRAPHY

[1] Peter Savage. The perfect handheld: Dream on. IEEE Spectrum, 40(1):44–46,
January 2003.

[2] Diederik Verkest. Machine chameleon. IEEE Spectrum, 40(12):41–46, 2003.

[3] Walter H. W. Tuttlebee, editor. Software Defined Radio: Baseband Technologies
for 3G Handsets and Basestations. John Wiley and Sons, 2004.

[4] Upkar Varshney and Radihika Jain. Issues in emerging 4g wireless networks.
IEEE Computer, June 2001.

[5] Hyunseok Lee, Yuan Lin, Yoav Harel, Mark Woh, Scott Malhke, Trevor Mudge,
and Krisztian Flautner. Software Defined Radio - A High Performance Embed-
ded Challenge. In Intl. Conference on High Performance Embedded Architecture
and Compiler, Nov. 2005.

[6] John Glossner, Daniel Lancu, Jin Lu, Erdem Hokenek, and Mayan Moudgill.
A software-defined communications baseband design. IEEE Communication
Magazine, 41(1):120–128, January 2003.

[7] Andrew Duller, Gajinder Panesar, and Daniel Towner. Parallel processing – the
picochip way! In Communicating Process Architectures, September 2003.

[8] Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor Mudge,
Chaitali Chakrabarti, and Krisztian Flautner. SODA: A low-power architecture
for software radio. In International Symposium on Computer Architecture, pages
89–101, June 2006.

[9] Kees van Berkel, Frank Heinle, Patrick P. E. Meuwissen, Kees Moerman,
and Matthias Weiss. Vector processing as an enabler for software-defined ra-
dio in handheld devices. EURASIP Journal on Applied Signal Processing,
2005(16):2613–2625, 2005.

[10] T. Halonen. GSM, GPRS and EDGE performance: Evolution towards
3G/UMTS. John Wiley and Sons, 2nd edition, 2003.

[11] Vieri Vanghi et al. The cdma2000 system for mobile communications: 3G wire-
less evoluation. Prentice Hall PTR, 2004.

151

[12] Harris Holma and Antti Toskala, editors. WCDMA for UMTS: Radio Access
for Third Generation Mobile Communications. John Wiley and Sons, 2000.

[13] R. V. Nee and R. Prasad. OFDM for wireless multimedia communications.
Artech House Publishers, 2000.

[14] J. Heiskala and J. Terry. OFDM wireless LANs: A theoredical and practical
guide. Sams Publishing, 2002.

[15] WiMAX Forum. Mobile WiMAX-Part I: A Technical Overview and Perfor-
mance Evaluation. Technical report, WiMax Forum, 2006.

[16] Liam Quinn, Pratik Mehta, and Alan Sicher. Wireless communictions technol-
ogy landscape. White paper, Dell, February 2005.

[17] Jennifer Bray and Charles F. Sturman. Bluetooth: Connet Without Cables.
Prentice Hall PTR, 2000.

[18] Ian Oppermann, Matti Hämäläinen, and Jari Iinatti, editors. UWB: Theory
and Applications. John Wiley and Sons, 2004.

[19] Bob O’hara and Al Petrick. The IEEE 802.11 Handbook: A Designer’s Com-
panion. IEEE, 2005.

[20] Roger B. Marks. The IEEE 802.16 working group on broadband wireless. IEEE
Network, 13(2):4–5, March-April 1999.

[21] Samuel C. Yang. 3G CDMA2000 Wireless System Engineering. Artech House,
2004.

[22] Y. Neuvo. Cellular phones as embedded systems. In IEEE International Solid-
State Circuits Conference, volume 1, pages 32–37, 2004.

[23] Seok-Jun Lee, Naresh R. Shanbhag, and Andrew C. Singer. A low-power VLSI
architecture for turbo decoding. In International Symposium on Low Power
Electronics and Design, pages 366–371, August 2003.

[24] Texas Instrument. Dsp selection guide. www.ti.com, 2007.

[25] Yuansheng Song, Gongyuan Liu, and Huiyang. The implementation of turbo
decoder on DSP in W-CDMA system. In International Conference on Wireless
Communications, Networking and Mobile Computing, pages 1281–1283, Septem-
ber 2005.

[26] Branka Vucetic and Jinhong Yuan. Turbo Codes: Principles and Applications.
Kluwer Academic Publishers, 2004.

[27] G. David Forney. The Viterbi Algorithm. Proc. IEEE, 61(3):268–278, March
1973.

152

[28] Stephen B. Wicker and Saejoon Kim. Fundamentals of Codes, Graph, and
Iterative Decoding. Springer, 2002.

[29] Theodore S. Rappaport. Wireless Communications: Principles and Practice.
Prentice Hall Ptr, 2001.

[30] John G. Proakis. Adaptive equalization for tdma digital mobile radio. IEEE
Transactions on Vehicular Technology, 40(2):333–341, May 1991.

[31] Ken Gentile. The care and feeding of digital pulse-shaping filters. RF Design
Magazine, April 2002.

[32] 3GPP TS 25.331. Radio resource cotnrol(rrc) protocol specification, Release
1999.

[33] TIA/EIA/IS-2000.3. Medium access control (mac) standard for cdma2000
spreade spectrum systems, March 1999.

[34] Hagen Woesner, Jean-Pierre Ebert, Morten Schlager, and Adam Wolisz. Power
saving mechanisms in emerging standards for wireless lans: The mac level per-
specitve. IEEE Personal Communications, 5(3):40–48, June 1998.

[35] Hyunseok Lee. W-CDMA benchmark. www.eecs.umich.edu/∼sdrg, December
2005.

[36] Nathan L. Binkert et al. The m5 simulator: Modeling networked systems. IEEE
Micro, 26(4):52–60, 2006.

[37] Samir Kallel and Cyril Leung. Efficient arq schemes with multiple copy decod-
ing. IEEE Transactions on Communications, 40(3):642–650, March 1992.

[38] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
tatative Approach. Morgan Kaufmann, 2002.

[39] Ed Grochowski and Mural Annavaram. Energy per instruction trends in intel
microprocessors. Technology@Intel Magazine, March 2006.

[40] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns,
Theodore R. Maeurer, and David Shippy. Introduction to the Cell multipro-
cessor. IBM Journal of Research and Development, 49(4/5), 2005.

[41] Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval J. Kapasi, and Abhishek
Das. Evaluating the Imagine Stream Architecture. In Proceedings of the 31th
Annual International Symposium on Computer Architecture, 2004.

[42] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steven Gerding, Brian
Pharris, Jared Casper, and Krste Asanović. The Vector-Thread Architecture.
IEEE Micro Special Issue: Top Picks from Computer Architecture Conferences,
November/December 2004.

153

[43] Simon Knowles. The soc future is soft. In IEE Cambridge Branch Seminar,
Dec. 2005.

[44] Nam Sung Kim, Taeho Kgil, K. Bowman, V. De, and Trevor Mudge. Total
power-optimal pipelining and parallel processing under process variations in
nanometer technology. In International Conference of Computer Aided Design,
November 2005.

[45] Hyunseok Lee, Trevor Mudge, and Chaitali Chakrabarti. Reducing idle mode
power in software defined radio terminal. In International Sympoium on Low
Power Electronics and Design, 2006.

[46] Nir Magen, Avinoam Kolodny, Uri Weiser, and Nachum Shamir. Interconnect-
power dissipation in a microprocessor. In International workshop on System
level interconnect prediction, pages 7–13, 2004.

[47] Claude Berrou and Alain Glavieux. Near Optimum Error Correcting Coding
and Decoding: Turbo-Codes. IEEE. Trans. on Communications, 44(10):1261–
1271, Oct. 1996.

[48] Kershab K. Parhi and Takao Nishitani, editors. Digital Signal Processing for
Multimedia Systems. Marcel Dekker, Inc., New York, 1999.

[49] Charles M. Rader. Memory management in a viterbi decoder. IEEE Transac-
tions on Communications, COM-29(9):1399–1401, SEPTEMBER 1981.

[50] J. Hagenauer and P. Hoeher. A Viterbi algorithm with soft-decision outputs
and its applications. In IEEE Global Telecommunications Conference and Ex-
hibition, November 1989.

[51] L. Bahl, L. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes
for minimizing symbol error rate. IEEE Transactions on Information Theory,
IT-20(2):284–287, March 1974.

[52] Javan Erfanian and Subbarayan Pasupathy. Reduced complexity symbol detec-
tors with parallel structures for isi channels. IEEE Transactions on Communi-
cations, 42(2/3/4):1671, February/March/April 1994.

[53] Adly T. Fam. Efficient complex matrix multiplication. IEEE Transactions on
Computers, 37(7):877–879, July 1988.

[54] E. Grayver, J. F. Frigon, A. M. Eltawil, A. Tarighat, K. Shoarinejad, A. Abbas-
far, D. Cabric, and B. Daneshrad. Design and vlsi implementation for a wcdma
multipath searcher. IEEE Transactions on Vehicular Technology, 54(3):889–
902, May 2005.

[55] R. Price and Jr. P. E. Green. A communication technique for multipath chan-
nels. Proceeding of the IRE, pages 555–570, March 1958.

154

[56] Ahsan Aziz. Channel estimation for a wcdma rake receiver. Application Note
AN2253, Freescale Semiconduntor, November 2004.

[57] Bernard Sklar. How i learned to love the trellis. IEEE Signal Processing Mag-
azine, 20(3):87–102, May 2003.

[58] S. B. Weinstein and Paul M. Ebert. Data transmission by frequency-division
multiplexing using the discrete fourier transform. IEEE Transactions on Com-
munication Technology, COM-19(5):628–634, October 1971.

[59] Hyoungsoo Lim and Dong Seung Kwon. Initial synchronization for wibro. In
Asia-Pacific Conference on Communications, October 2005.

[60] T. M. Schmidl and D. C. Cox. Robust frequency and timing synchronization
for ofdm. IEEE Transactions on Communications, 45(12):1613–1621, December
1997.

[61] M. Speth, S. Fechtel, G. Fock, and H. Meyr. Optimum receiver design for ofdm-
based broadband transmission-part ii: A case study. IEEE Transactions on
Communications, 49(4):571–578, April 2001.

[62] John G. Proakis and Dimitris S. Manolakis. Digital Signal Processing: Princi-
ples, Algorithms, and Applications. Prentice Hall, 1996.

