FUNCTIONAL DESIGN VERIFICATION FOR
MICROPROCESSORS BY ERROR MODELING

by

David Van Campenhout

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering)
in The University of Michigan
1999

Doctoral Committee:

Professor Trevor Mudge, Chair
Professor Richard B. Brown
Professor John P. Hayes
Professor Karem A. Sakallah

© David Van Campenhout
All Rights Reserved

1999

To my parents.

ACKNOWLEDGEMENTS

| would like to express my sincere appreciation to my advisor Trevor Mudge for his
mentoring and guidance. Trevor has also given me broad freedom in my research and has
been much more than just a research advisor. My appreciation and thanks also goes to
John Hayes. Working with John has been a great learning experience. | would like to thank

Karem Sakallah and Richard Brown for serving on my committee.

| would like to thank those who volunteered their time and effort to participate in our
error collection effort: Hussain Al-Asaad, Todd Basso, Mary Brown, Juan Antonio
Carballo, Subhachandra Chandra, Robert Chappell, Jim Dundas, David Greene, Jonathan

Hauke, Rohini Krishna Kaza, Michael Kelley, Matt Postiff, and Steve Raasch.

| thank my friends and colleagues in ACAL: Hussain Al-Alsaad, Jeff Bell, I-Cheng
Chen, Brian Davis, Jim Dundas, Jonathan Hauke, Tom Huff, Jim Huggins, Hyungwon
Kim, Keith Kraver, Victor Kravets, Chih-Chieh Lee, Charles Lefurgy, Jodo Paulo Marques
da Silva, Phiroze Parakh, Steeve Raasch, Mike Riepe, Mike Upton, and Hakan Yalcin.
These individuals together with the faculty provided an intellectually stimulating
environment where it was also fun to work. | will never forget Tim Stanley who left us
much too early. | am grateful for several close friends | met during my years in Michigan

and hope that they will continue to be part of my life.

My deepest appreciation goes to my parents for their unconditional love and

encouragement. | am grateful to my brothers for their understanding.

| would like to acknowledge the Belgian American Educational Foundation for having

given me the opportunity to study in the US and supporting my first year of study.

TABLE OF CONTENTS

DEDICATION . .o e i
ACKNOWLEDGEMENTS e e iii
LISTOF FIGURESo e Vi
LIST OF TABLES e e e e e viii
LIST OF APPENDICES e e IX
CHAPTER
1. INtroducCtion 1
1.1 MicroproCessor designo vttt 2
1.2 Functional verification 5
1.3 Testgenerationfor FDV 8
1.4 Checking the outcome of asimulation 11
1.5 Measuring and predicting functional quality 13
1.6 Related area: physical faulttesting 18
1.7 Related area: software testing 20
1.8 Thesisoutline e 23
2. Designerrordatao i 26
2.1 Publishederrordata 26
2.2 Collectionmethod 28
2.3 Collected errordataoiiiiiiiiii e 30
2.4 Guidelines for implementing an error collection system 37
2.5 DISCUSSION ...ttt 39
3. Designerrormodels e 41
3.1 Errormodelrequirements 41
3.2 Designerrormodels 42
3.3 Number of error instances defined by errormodel 45
3.4 Testgeneration 47
3.5 Errorsimulation 48
3.6 Analytical coverage evaluation of CSSL1 60
3.7 Coverage evaluation using error simulation 64
3.8 Coverage evaluation by analysis of actualerrors 68
3.9 CONCIUSIONS . .. 74

4. High-level test generation for design verification of

pipelined MICrOProCESSOIS . . . oottt 77

4.1 Related Work 78

4.2 Pipelined processormodel e 83

4.3 Pipeframe model 86

4.4 Testgenerationalgorithm 89

45 DPTRACE: path selectionindatapath 90

4.6 DPRELAX: value selectionindatapath 105

4.7 CTRLJUST: CTRL line value justification 106

4.8 EXPEerMeNtSt 112

4.9 CONCIUSIONS i 116

5. CoNCIUSIONS 118
5.1 Contributions e 118

5.2 Futurework 119
APPENDICES 121
BIBLIOGRAPHY .. 129

LIST OF FIGURES

Figure

1.1 Relationship between physical design verification and physical

fault testing 23
1.2 Deployment of the proposed verification system 24
2.1 Example of instruction sequence that exposesanerror. 27
2.2 Bugreportexample e 29
2.3 Errorcollection system 31
2.4 Difference between two SUCCESSIVE TeVISIONS 33
2.5 Project evolution: code size [lines] and lines touched overtime 34
2.6 Revisions motivated by bug correction and other revisions over time 35
2.7 Design errors: time to discovery [days] vs. error size [lines] 36
2.8 Frequency of design errors in function of their size and multiplicity 37
3.1 CSSL1error (x=1,y/0): a) error-free design; b) erroneous design

with X £ 1; ¢) erroneous designwith x=1 45
3.2 PROOFS’ error simulation algorithm 51
3.3 CESIM error simulation algorithm for conditional errors 53
3.4 Example execution of CESIM for a 3-vector test sequence:

a) PS- and PSBE-patrtitions of errors, b) corresponding state transitions 55
3.5 Run-time analysis of CESIM on the ISCAS’89 benchmarks 57
3.6 Coverage of CSSLO and CSSL1 errors on s1238 by a CSSLO test set

generated by HITEC e 58
3.7 Error simulation on s1238 with CSSLO and CSSL1: number of

distinCt States e 59
3.8 Number of error sets during error simulation on s1238 with CSSLO

aNd CSSLL BITOIS . .ottt e 60
3.9 Some basic errortypes [AA9S] 61
3.10 Simplified schematic of DLX implementation showing modules

decode andiopo 66
3.11 Coverage of restricted CSSLO, restricted CSSL1, and actual errors

by 14 biased random test sets TO-T13fortop 68
3.12 Experiment to evaluate the proposed design verification methodology 70
3.13 Example of an actual design error in our DLX implementation 71
4.1 Instruction interaction mechanisms: a) bypassing, b) squashing,

c)stallingo 84
4.2 Pipelined microprocessormodel 85
4.3 Pipelined controller 87

4.4 lterative array of pipelined controller: a) conventional organization;

b) alternative organization 88
4.5 Composite circuit dealt with in pipeframe organization 89
4.6 The three parts of the test generation algorithm and their interactions 91
4.7 Flowchart of overall test generation algorithm 92
4.8 Overall iterative organization of path selection 94
4.9 C-andO-propagationtables i 99
4.10 Path selectionusing C-values 100
4.11 Directed search PODEM e 101
4.12 Backtrace rules for path selection: add, and 102
4.13 Backtrace rules for path selection: fan, mux 103
4.14 Pipelined controller: a) circuit b) pipeframe-based transition system 110
4.15 Overall test generation algorithm 111
4.16 Simplified schematic of DLX implementation 113
A.1 BF (x,y): a) Fault-free circuit, b) faulty circuit 122
B.1 Runtime analysis of CESIM on ISCAS’89 benchmarks 128

Vil

LIST OF TABLES

3.2

3.3

3.4

3.5
4.1
4.2

4.3
4.4
4.5
4.6

Al
B.1

B.2

Phases in the design of a microprocessorcoiiii... 3
Design projects for which error datawas collected 32
Design files written for the X86 project 33
Error distribution in X86 34
Design error distributions [%)] 39
Characteristics of two modules of the DLX microprocessor

implementation 65
Coverage of synthetic and actual errors by biased random tests

TO-T A .t 67
Actual design errors and the corresponding dominated modeled errors

fOr DX . 72
Actual design errors and the corresponding dominated modeled errors

fOr LG oo 74
Comparison of practical design errormodels 76
Initial C-and O-values i e 98
Computation of controllability and observability measures for a node

with incoming edgeg;...X,, and outgoing edgeg...Yn - - - -« v v v v i vt 105
Model parameters of DLX design 115
High-level test generation for bus-SSL errors in DLX implementation 115
Gate-level test generation for standard SSL errors using HITEC 115
Comparison of high-level and gate-level test generation for DLX 115
Bridging functions Z(X, ¥)« o i 123
Test generation and fault simulation of ISCAS’89 circuits using

HITEC .. e e 126
Error simulation of ISCAS’89 circuits usingCESIM 127

viii

LIST OF APPENDICES

Appendix

A. Relationship between CSSL1 errors and bridging faults

B. Conditional error simulation on ISCAS 89 benchmarks

CHAPTER 1
Introduction

Information technology is drastically changing our world. Economies are shifting from the
industrial age of steel and cars to the information age of computer networks and ideas
[Ec096]. In 1998, the gross domestic product (GDP) in the US due to computers,
semiconductors, and electronics reached that of the automobile industry: 3.5% [Baum98].
The microprocessor, which saw its birth in 1971 with the Intel 4004, plays a central role in
this information revolution. Indeed, Intel now dominates the hardware side of the
computer industry. It is the largest (by dollar volume) chipmaker in the world.
Microprocessors have become commodity products and are essential parts, not just of
computers, but also of cars, cellular phones, personal digital assistants, and video games,
to name just a few. Continuous technological improvements have led to integrated circuits
becoming smaller, faster and cheaper. Simultaneously, people have continued to find new
uses of microchips and computers. The Internet, with its explosive growth, is just the latest

example.

The markets for microprocessors demand low cost and high performance, and are
changing rapidly. To meet these demands, microprocessor design houses have to
overcome great technological challenges: Circuits need to be designed that operate at very
high speed. New design methodologies to deal with signal integrity and timing issues are
becoming necessary now that the minimum feature size has dropped well into the deep
sub-micron regime. The number of transistors integrated on a single chip is doubling every
18 months. This has led to an enormous growth in functional complexity. Furthermore, the

pressure put on the design cycle by time-to-market is enormous.

Functional verification, which is concerned with ensuring that the design implements

the intended functional behavior, is considered one of microprocessor design’s major

bottlenecks. A verification team today is the size of what an entire microprocessor design
team was 10 years ago [Wolf98b]. The technology and knowledge required to do
verification ‘right’ is expected to become a differentiator among companies [Wolf98b].

Successful companies will have to put together a complete set of complementing
technologies to ensure their designs’ functional quality. Also, microprocessors are
increasingly being used in (safety-) critical applications, which directly influence the need

for better design verification.

The cost of doing verification ‘wrong’ can be very high. Manufacturing an extra silicon
revision of a chip is becoming increasingly expensive [Wils99]. Far more severe can be the
loss in expected sales and margin due to the delay in planned shipping date when an
unplanned silicon revision is required. Finally, production volumes are ramping up so
rapidly, that letting the first customers do the debugging is no longer an option. To cover
the replacement of faulty chips containing the infamous FDIV bug, Intel announced a

charge against earnings of $475 million [Beiz95].

The subject of this thesis is a new methodology for functional design verification of
microprocessors. To put functional design verification into perspective, we first examine
the design process. We then define functional design verification in Section 1.2. The next
three sections discuss some important issues in functional design verification: test
generation (Section 1.3), correctness checking (Section 1.4), and quality measurement
(Section 1.5). We examine related work in the areas of physical fault testing and software
testing in Sections 1.6 and 1.7, respectively. We conclude this introduction with an outline

of the thesis.

1.1 Microprocessor design

To put functional design verification into perspective, we first examine the design process
of microprocessors. Our discussion is based on an article by Bose and Conte [Bose98].
Referring to Table 1.1, four major phases can be identified: 1) architectural exploration, 2)

microarchitecture definition, 3) design implementation, and 4) post tape-out.

Table 1.1: Phases in the design of a microprocessor

Synthesis Analysis (verification) Design
Phase - e .
activities activities representations
Architectural Application selection Validation of traces Performance,
exploration Workload selection cost, and power
Trace generation goals
Microarchitecture ~ Development of Performance ISA
definition trace-driven simulator verification Trace-driven
Microarchitecture simulation
definition model (uarch.)
Design Logic design Func. design verif. Behavioral RTL
implementation Circuit design Func. impl. verif. Structural RTL
Physical design Timing verification Transistor-level
Electrical verification schematics
Layout verification Layout
Post tape-out Machine-specific Functional testing First silicon
compiler tuning Electrical charact.

Performance charact.

Architectural exploration

Both economical and technological forces set the design targets for a new microprocessor.
The specifications include performance goals for certain applications, cost and power

consumption constraints.

One of the first tasks of the architects is to select representative applications, generate
corresponding workloads, and reduce thesd@éachmarkshat are small enough for
microarchitectural simulation. Other activities include the analysis of the dataflow of key
applications and the development of a crude model to evaluate the performance of the

architecture. Architects bound the design space based on technological considerations.

Microarchitecture definition

The second phase is concerned with the definition of the microarchitecture. Architects
work on microarchitectural innovations, determine which microarchitectural features need
to be considered, and build simulation models for them. These models are the building

blocks of a simulation model for the complete microarchitecture. The purpose of the

microarchitectural simulator, also referred to a@er or aperformance simulatois to
compute an accurate estimate of the execution time, in number of clock cycles, of a given
benchmark on a given concrete microarchitecture [Burg97, John91]. As the number of
design points is very large and the size of the benchmarks is very large as well, simulation
speed is important. A popular simulation technique is trace-driven simulation [John91]. A
concrete microarchitecture is defined by a set of parameters that further specify the
features used, such as the number and latency of integer execution units, or the size of a
cache. Also associated with each microarchitectural feature is its cost in terms of
hardware, but also in terms of design and verification effort. To accurately estimate the

cost some floorplanning and circuit design studies may be required.

The design problem is that of finding the microarchitecture that meets all the constraints
and provides the best trade-off between performance and cost. Verification at this stage of
the design is mainly concerned with the correctness of the microarchitectural simulator;
the systematic study of this problem, also referred to as performance verification, has only

recently gained interest [Bose98].

Design implementation

In the third phase the microarchitecture is implemented. The microarchitectural
specification is typically not formal, and consists of textual descriptions, block diagrams,
and parameter values. The first step in this phase is to design the first register-transfer
level (RTL) description. Standardized hardware description languages (HDL’s), such as
Verilog [IEEE96] and VHDL [IEEES88], or C/C++ are commonly used to describe the
RTL model. This activity is sometimes referred to @mtrol design Logic designers

refine this behavioral RTL description to a structural RTL description. Circuit designers
generate transistor-level netlists that implement the structural RTL. Layout designers
generate layouts for the transistor-level schematics. The refinement from behavioral RTL

to layout differs significantly among industrial design methodologies.

There are numerous verification problems at this stage. They include functional (logic)
verification, timing verification, electrical verification, physical design rule verification. In

functional verification we distinguish between design verification, which is concerned

with the functional correctness of the initial RTL description, and implementation
verification, which is concerned with checking the functional equivalence between two
versions of the implementation. The latter includes comparing the RTL view against the
structural view, the structural RTL view vs. transistor level schematics, and the schematics

vs. the layout.

Post tape-out

Functional design verification continues after the design has been taped out. Once first
silicon is available, extensive functional testing can begin. The main difference with pre-
silicon design verification is the vast increase in test throughput. Diagnosing the root cause
of a discrepancy can be difficult. Functional test suites are complemented with test suites
aimed at measuring performance. Other activities in this phase include electrical

characterization, and physical fault testing and diagnosis.

Software activities that critically depend on the hardware, such as machine-specific
compiler tuning, and post-hardware measurements, can start as soon as the silicon has
been found sufficiently functional. This may involve engineering workarounds for

remaining functional bugs, or fabrication of corrected versions of the chip.

1.2 Functional verification

Functional verification has gained a lot of interest in recent years as evidenced by the
surge in publications detailing industrial experience with the topic:

* AMD’s K5: [Gana96]

» DEC's Alpha: [Kant96, Tayl98]

* HP’s PA RISC: [Alex96, Bass95, Mang97, Weir97]

e IBM’s S/390: [Shep97, Wile97]

» Metaflow’s Sparc: [Pope96]

» Motorola/IBM’s PowerPC: [Mall95, Mona96]

* SGS Thomson’s Chameleon: [Casa96]

Although concrete methodologies differ from company to company, some common

themes can be identified as we shall see.

Functional implementation verification. Functional implementation verification
refers to checking the functional equivalence between two versions of the design. The two
versions may be representations of the design at a different level of abstraction (below the
microarchitectural level), such as behavioral and structural RTL. Alternatively they may
be different versions of the design at the same level of abstraction; for example, one may

be a retimed version of the other.

Efficient methods have been developed to formally check the boolean equivalence of
large combinational circuits [Kuel97], and have recently become available commercially
[Goer95]. For library-based logic design methodologies these tools are readily applicable.
In custom methodologies a significant effort may be involved in automatically extracting
an accurate gate-level view from the transistor level netlist. Nevertheless, these methods
are becoming a favorable alternative for regression verification using a (switch-level)

simulator.

Combinational equivalence checkers can be used to check the equivalence of two
sequential circuits if there is a one-to-one mapping between the state registers. If such a
mapping does not exist, the complexity of the problem greatly increases. For the special
case of circuits whose state registers differ because of retiming, more specialized methods

have been developed [Bisc97, Hosk95].

Functional design verification. Functional design verification (FDV) is concerned
with verifying the functional correctness of the first RTL model of the design. For
microprocessor design correctness, this means conformance to the instruction set

architecture (ISA) and to some (incomplete) microarchitectural specification.

Functional design verification undergoes several phases as the project progresses. The
complete effort can be divided into a pre-silicon and a post-silicon phase. The former

phase is further divided into unit verification and system verification.

During unit verification a portion of the design is verified in isolation. For larger units,

another (lower) level of integration (designer macros) may be appropriate. Basically the

same verification techniques as those at the system level are applicable. The advantages of
this bottom-up approach are as follows. Functional bugs that are confined to a single unit
are usually easier to detect and diagnose when that unit is exercised in isolation than in the
system. Furthermore, verification does not have to wait until every unit is completed. A
disadvantage is the overhead required to set-up testbenches for all of the units. This may
require abstract models to mimic other units interfacing with the one being verified. Once

functional quality criteria for the units have been megstenverification can be started.

The aim ofpre-siliconfunctional verification is not to eliminate every functional design
error, but to raise the functional quality of the design to a level that facilitates swift
hardware bring-up and test. Consequently the system has to be able to perform most
functions perfectly, but a small number of remaining errors can be tolerated. Wile et al.
[Wile97] report three key elements in achieving this goal: 1) The strengths and
weaknesses of verification methods used need to be understood. 2) The priorities of
hardware bring-up need to be understood and verified. 3) Work-around mechanisms,
which allow for avoidance of failing aspects of the system behavior, need to be understood
and fully functional. If these conditions are met, a much higher confidence in the
functional quality of the design can be obtained in a given amount of time by fabricating
the chip and performing extensive functional testing than by any of the pre-silicon
verification techniques. This is essential for meeting time-to-market. The throughput of
test cases duringost-siliconverification is typically 3 to Sorders of magnitudegreater
than that during pre-silicon verification. On the other hand, diagnosing an error may take
significantly more time. The first step is usually to try to reconstruct the conditions that led
to the discrepancy in the RTL simulation model. The observability offered by the RTL

model can then be used to diagnose the error to its root cause.

Approaches to functional design verification

There are two broad approaches to functional hardware design verification: formal and
simulation-based. Formal methods try to verify the correctness of a system by using
mathematical proofs [Clar96, Kurs97, McFa93, McMi94, Yoel90]. Such methods

implicitly consider all possible behaviors of the models representing the system and its

specification, whereas simulation-based methods can only consider a limited range of
behaviors. The accuracy and completeness of the system and specification models is a
fundamental limitation for any formal method. The spectrum of formal methods for FDV

is broad. At one end there are methods that are highly automated, but address only a very
restricted problem space [Beer96, EET94, Goer97, Hard96, Kuel97, McMi93]. Methods
at the opposite end, such as theorem proving, use formalisms to address a richer class of
problems, and have mechanisms to use hierarchy and abstraction, but require a great

amount of expertise to apply them [Cohn87, Cohn89, Owre96, Wind95].

Simulation-based design verification tries to uncover design errors by detecting a
circuit’s faulty behavior when deterministic or pseudo-random tests (simulation vectors)
are applied. All of the microprocessor manufacturers mentioned in the beginning of
Section 1.2 report that they still rely heavily on simulation-based methods to verify their
products. Simulation-based methods are readily applicable as typical design flows use
HDL descriptions that can be simulated using standard logic simulation tools, or C/C++
descriptions in conjunction with a proprietary (cycle-based) simulator. Also, logic

simulation is an area hardware designers are very familiar with.

In the following sections we examine some important issues in simulation-based
functional design verification: test generation, checking correctness, and measuring

functional quality.

1.3 Test generation for FDV

Manual test generation. Hand-written tests have been used with great success in the
early days of computer design. With an intimate understanding of the design, a designer
can write a very powerful and yet small set of verification tests that are very effective in
exercising the design. Hand-written tests also have the advantage of being easier to debug.
However, as the size and complexity of designs have dramatically increased, it becomes
harder for one person to comprehend the complete design at a detailed level. Moreover,
modern simulation technology, such as cycle-based simulation [McGe95], is able to

simulate millions of clock cycles per day on a single workstation, even for the biggest

designs. To take advantage of this simulation capability, automated test generation

methods are needed.

Pseudo-random test generationin the area of physical fault testing, it has long ago
been recognized that test patterns can easily be generated randomly. The method requires
very little effort, but its efficiency and effectiveness, are rather low compared to
algorithmic approaches. Furthermore, the effectiveness and efficiency decrease with
increasing design size [Abra90]. Nevertheless, random test pattern generation can be very
useful to complement manual test generation in the absence of better methods.
Sophisticated pseudo-random exercisers have been used very successfully to validate
complex microprocessor designs [Ahar91, Kant96]. Taylor et al. [Tayl98] report that 79%
of the functional bugs in the DEC Alpha 21264 microprocessor were found by pseudo-
random tests. To achieve this high effectiveness such pseudo-random test generators
incorporate knowledge about the instruction set architecture and the concrete micro-
architecture. They typically have many parameters that allow the verification engineer to
bias test generation towards “interesting behaviors,” such as corner cases. A strength of
random test generators is that they can generate test cases that verification engineers might
have never thought of. On the other hand, most random test generators have so-called
holes these are areas in the space of valid test sequences that are covered only with an
extremely low probability, or even are not covered at all. Random tests are more difficult

to debug than hand-written tests.

Template-based test generationCertain aspects of designs are difficult to cover with
biased random tests. This may be the case if the space of valid input sequences is highly
constrained. Specialized tools have been developed to help automate the generation of
such focused tests. One example is a code generator described in [Chan94, Chan95]. The
user provides so-called symbolic instruction graphs that compactly describe a set of
instruction sequences that exhibit certain properties. The tool generates actual instruction
sequences that satisfy all the properties by using constraint solving techniques. One
property might be that the third instruction is a load-class instruction, which causes a
cache miss, and that the fourth instruction is an arithmetic instruction using the result

produced by the load instruction. Free variables, such as the register that serves as the load

10

target, are chosen in a biased random manner. The tool incorporates knowledge about the
micro-architecture, in the form of implicit constraints and biasing functions. A similar tool

is described in [Hoss96].

Operating system (OS) and application codeOther sources of verification tests are
operating system code and application code. However, booting an OS requires on the
order of ten billion cycles [Kuma97], therefore the use of this type of verification has only
recently become feasible through hardware emulation [Gana96, Bass95, Kuma97].
Demonstrating that the design correctly boots several OS’s is a great confidence builder.
Furthermore, for architectures that are not very well documented, such as the Intel x86
architecture [Wolf98a], successfully running application software with the OS in place is a
common practice [Gana96]. In spite of the fact that the x86 architecture dominates the
industry, there are some subtle features [X86] which are not officially documented and can
cause compatibility problems. Ultimately application and OS software are the yardsticks
for compatibility. In-circuit emulation is one step closer towards real system operation.
The emulator is hooked up to a (modified) system board and hence receives real external

events from other devices on the system bus.

Coverage-directed test generation.Pseudo-random test generators are typically
deployed in conjunction with extensive coverage measurements. Coverage is a measure of
the completeness of a test suite for a design. A discussion of prevalent coverage metrics is
given in Section 1.5. Coverage data is analyzed to identify regions of the behavior that are
not (well) covered. Usually, verification engineers manually tune the pseudo-random test

generators, or write a focussed test to cover the verification hole.

Error-oriented test generation. A different approach is to use synthetic design error
models to guide test generation. This exploits the similarity between hardware design
verification and physical fault testing. For example, Al-Asaad and Hayes [AA95] define a
class of design error models for gate-level combinational circuits. They describe how each
of these errors can be mapped onto single-stuck line (SSL) faults that can be targeted with
standard automated test pattern generation (ATPG) tools. This provides a method to

generate tests with a provably high coverage for certain classes of modeled errors.

11

A second method in this class stems from mutation testing, which is an error-oriented
structural approach to software testing. Mutation testing will be discussed in greater detalil
in Section 1.7. Recently, Al Hayek and Robach [AH96] have successfully applied

mutation testing to hardware design verification in the case of small VHDL modules.

1.4 Checking the outcome of a simulation

A nontrivial task in simulation-based FDV is to determine the outcome of simulating a

verification test, i.e., did the verification test detect an error?

Manual inspection. Manual inspection of the simulation output is still a commonly
used method, especially in the early stages of the verification effort. The engineer,
typically the designer, inspects the simulation output through an interface similar to that of
a logic analyzer. This method is very flexible way for tracking down an error to its source.
The interface allows the designer to explore the entire design. Every signal in the circuit
can be examined. Once the outcome of a simulation run has been validated, it can be
stored together with the test for later use (regression testing). Although manual inspection
is error-prone and impractical for large test sets, it is still necessary to diagnose the root

cause of discrepancies detected by the methods discussed below.

Self-checking testsA first approach to automated correctness checking is to make the
tests self-checking. The tests start by setting up the system’s initial state. This is followed
by the bulk of the verification test. At the end, part of the system’s final state is compared
to a precomputed final state included with the test. If the test was generated manually, it is
not uncommon that the test writer computes the expected final state himself. For larger
tests, and for tests that were generated with tool assistance or even completely
automatically, the final state is usually computed by running the test through a suitable
high-level simulation model of the system, such as an interpreter for the ISA. The outcome
of a self-checking test is basically pass or fail. In case of failure, the test needs to be
simulated again, this time with full visibility. Tracking down the error (error diagnosis)
can be very tedious and time consuming. Another complication of the approach is the

problem oferror masking At some point in the simulation, a verification test may uncover

12

a design error (make it observable in the visible part of the machine state), but the error
effect might get annihilated in the remaining part of the simulation. To overcome this

difficulty, tests are usually restricted in length. An advantage of self-checking tests is that
only the implementation needs to be simulated. The absence of a suitable simulatable
reference model (specification) makes it the only choice for correctness checking. The use
of self-checking tests has been reported in [Chan94, Ho96a]. Kantrowitz and Noack
[Kant96] worked on the functional verification of a commercial superscalar

microprocessor. They reported some of these difficulties associated with self-checking

tests, and mainly used the-simulationapproach to correctness checking.

Co-simulation. The second approach for automated checking is to simulate the
implementation and the specification together and to compare the states of both machine
constantly. This approach has been referred to as co-simulation [Ho96a]. A discrepancy
between implementation and specification states indicates either an error in the
implementation (a design error), or an error in the reference model. Provided that the
reference model and the implementation are developed independently, it is very unlikely
that both models exhibit exactly the same error and hence that an error would pass
unnoticed. The main difficulty with this approach is that the reference model and the
implementation are usually at different levels of abstraction. Synchronizing the simulation
of both models, and providing an appropriate mapping (both in time and in space) between
the state of the reference model and the implementation may require a significant amount
of effort. A superscalar processor with out-of-order execution might be working on several
tens of instructions at any given time, whereas the sequential reference model processes
only a single instruction at a time. The benefits of this approach are as follows. Co-
simulation allows large verification tests to be run without supervision. Changes in the
implementation only require changing the state mapping. No individual verification tests
need modification, as might be the case for self-checking tests. Co-simulation is typically
used in verification methodologies that use pseudo-random test generation [Kant96,
Tayl98].

Assertion checkers Assertion checkers, also referred tovgatchdogsor snoopersare

agents that check certain properties about the design during the simulation. Checkers

13

increase observability, help diagnosis, and prevent wasted simulation cycles by aborting
the simulation as soon as a violation occurs. They can be used in conjunction with self-

checking tests or co-simulation. A module that monitors the signals on a bus and checks
these signals against the bus protocol is an example of a checker. Another example is a
unit that monitors a finite-state machine and halts the execution as soon as the machine

enters an illegal state.

1.5 Measuring and predicting functional quality

Perhaps the most challenging problem in simulation-based FDV is to estimate the
confidence in the functional quality of a design after a certain amount of verification. Bass
et al. report the following acceptance criteria that were used in the verification effort of the
HP PA 7100LC microprocessor [Bass95]:

« all failures are diagnosed to their root cause

* no chip failures exist

« all handwritten tests pass

» random code generators have run for a “long time” without finding any failures

» application software has run without any indication of hardware bugs

The problem can be stated informally as two questions: “How thoroughly has the design
been verified?” and “When am | (going to be) done simulating?” The first question is
concerned witltoveragethe completeness of a verification test set. Given that exhaustive
simulation is not practical, and that therefore any simulation-based verification method is
incomplete, the second question is concerned with predicting the effort required to achieve
a certain level of functional quality. Determining coverage and predicting the verification
effort are closely related aspects. Both analysis of bug detection data, and analysis of
coverage have been used to gauge the (expected) confidence in the functional quality of a

design.

14

Analysis of bug detection data

Upton collected design error data from the Aurora GaAs microprocessor designs at the
University of Michigan [Upto94, Upto97]. He observed error rates of one design error per
every 100 to 200 lines of Verilog code. This figure has been confirmed by industrial
sources [Bent97]. Upton also analyzed the cumulative number of detected bugs over time
and suggested that the bug detection process can be modeled as a function exponentially

tapering off in time.

Malka and Ziv apply techniques from software reliability engineering for statistical
analysis of bug detection data from two industrial microprocessor design projects
[Malk98]. They use trend analysis to gauge the effect of the introduction of a new test
generation techniques on reliability growth. Modeling of the bug discovery process is used
to make short term predictions, such as the mean time to the next failure, and long term
predictions, such as when a certain level of reliability can be expected. They conclude that
statistical analysis of bug detection data can provide very relevant information for

determining tapeout dates.

The use of quality criteria based on analysis of bug detection data is widespread.
However very little data of this type has been published [Mona96]. One reason might be
that this data is highly dependent on the design and verification methodology, the nature of
the design, and the designers themselves. Also, bug detection data is only meaningful to
the extent that a detailed verification plan has been carefully designed and implemented,
and that continuous efforts have been made to improve and extend techniques to exercise
the design. Biased-random test generators can generate new tests indefinitely, but these
tests tend to loose their effectiveness over time. Analysis of coverage provides another

means to assess the functional quality of a design.

Analysis of coverage

Coverage is a measure of the completeness of a test suite for a design. Moundanos,
Abraham and Hoskote [Moun98] give an idealized definition of coverage as the ratio of

the exercised behaviors over the total number of specified behaviors. A behavior can be

15

modeled as an execution trace of the design. Unfortunately, attempting to exercise all

possible execution paths is an intractable problem. Practical coverage metrics are needed
to expose shortcomings of test suites and to spur further directed test generation. They are
also needed to complement the methods discussed above for evaluating the state of

completion of the verification effort.

Code coverage metrics from software testing

Software design also poses the problem of measuring the effectiveness of testing [Beiz90].
Classical structural metrics such st@tementbranch and path coveragealso apply to
hardware design, as designs are usually represented in hardware description languages
today. It is well known that many design errors may still go undetected even though
complete statement and branch coverage has been achieved. Full path coverage is an
impractical goal as the number of paths can be exponential. An advantage of these metrics
is that their computation imposes only a small overhead on logic simulation. A typical
flow for code coverage measurement is as follows. First the original HDL description is
instrumented. The instrumented code is then simulated for the given test suite using an
standard logic simulator that is augmented with library functions provided by the coverage
tool vendor. Part of the simulation outcome is coverage data that can be examined using a

coverage analysis tool.

OCCOM

Although code coverage metrics such as statement coverage can be computed efficiently,
they suffer from not taking into account observability. A verification test that activates a
particular statement, but fails to propagate the effect of executing that statement to a part
of the machine state that is truly observable (those signals that are also part of the
specification), cannot be considered to have “covered” that statement. To address this
shortcoming Devadas et al. [Deva96] propose a code coverage metric basad on
propagation which was later refined in [Fall98a] and is called OCCOM, which stands for
observability-based code coverage metric. Errors are associated with assignment

statements in the code. The effect of an error is represented by a “tag” that can propagate

16

through the circuit according to a set of rules similar to the D-calculus [Abra90]. The
metric measures the fraction of tags that have been propagated to the observable state over
the number of tags injected. The major extension of [Fall98a] to the earlier work in
[Deva96] is an efficient method for computing OCCOM coverage using a standard logic
simulator. The efficiency of computation is closely related to the definition of the tag
propagation rules. The propagation rules are defined so that, in essence, the erroneous
machine stays on the same execution path as the error-free machine. Experimental results
on small examples show a modest overhead factor of 1.5-4 over logic simulation, which is

a much smaller overhead than that incurred by fault simulation.

FSM based metrics

Microprocessor designs typically have a natural partition: datapaths and controllers.
Controllers have been found to be particularly prone to design errors [Ho96a]. An
appropriate model for small controllers is that of a finite-state machine (FSM). Coverage
can then be measured as the fraction of states or state transitions visited by a test sequence.
FSM transition coverage is not a meaningful metric for microprocessors, which can easily
contain thousands of state registers. Even if it were possible to compute the set of
reachable states, any coverage measurement with respect to complete state graph would be
negligibly small. However, most of the state registers are part of the datapath. Ho [H095]
worked on the verification of the protocol processor in the FLASH project [Kusk94]. Even
after abstracting the datapath, he was still faced with the state explosion problem. Control
is usually distributed and consists of a number of interacting smaller FSM’s. Ho proposed
an incremental strategy in which coverage with respect to the individual state machines is
attempted first. This type of coverage measurement is referred to as FSM coverage in
industry [Hoss96, Kant96, Nels97, Paln94, SP92], and is also supported by EDA vendors
[Clar98]. Next, larger composite state machines can be considered. To reduce the size of
that state graph further, Ho defined an equivalence relation on states. All states that apply
the same control signals to the datapath are considered equivalent. Provided that the
machine has been partitioned in such a way that the datapath does not store any control

state, this is a very reasonable assumption. Ho applied his methodology in combination

17

with hand-generated self-checking tests. He found that designers presented with state
transitions that were not covered had great difficulty generating tests to exercise these
transitions. An automated method for test generation would have helped a lot. This
direction of research set in [Ho95] has gained considerable following: [Ho96b, Ho96a,
Geis96, Gupt97, Lewi96, Moun98]. Of particular interest is a study of the relationship
between reduced-FSM coverage and design error coverage by Gupta et al. [Gupt97].
However, theoretical results in this area tend to be weak and extensive experimental

studies have not appeared in the literature.

Design-specific coverage analysis

The functional complexity of commercial microprocessors has been increasing
continuously. Functional verification of these designs poses formidable challenges that
verification teams tackle with very pragmatic approaches that are specific to the concrete
design to be verified, and build on past experience. We list some of the coverage analysis
techniques from the functional verification effort of the DEC Alpha processors [Dohm98,
Kant96, Tayl98]:

» State transition analysisState transitions coverage is measured on individual
FSM's in the design. Some aspects of the design may not be directly implemented
as alocalized FSM, but may have a natural abstract FSM view that can then be used
to measure transition coverage. The analysis may include checking for transitions
that are not supposed to occur.

» Sequence analysi8.sequence of microarchitectural events in a particular window
of time is measured. This type of analysis can be used, for example, to ensure that
a behavioral model for an external device on the system bus is fully randomizing
events.

* Occurrence analysigOccurrence analysis refers to counting events without any
time relationship. An example is checking that a carry-out has been generated for

every stage of an adder.

Similar work appears in [Mona96, Pope96].

18

Design error coverage

A class of simulation-based verification approaches [Abad88, AA95, Kang94, VC98] use
synthetic error models to guide test generation. Coverage is then defined as the ratio of
detected synthetic errors to the total number synthetic errors. This is similar to a fault
grade in physical fault testing [Abra90]. An advantage of design error coverage is that it

addresses observability. A limitation is its high computational cost, as in fault simulation.

1.6 Related area: physical fault testing

Physical fault testing addresses the problem of detecting physical errors in digital systems.
Physical faults may be introduced during the manufacturing process or may appear over
time “in the field” due to wear, etc. Direct analysis of physical faults is a physical problem.
Furthermore, a wide variety of technology-dependent physical faults exist. Logical fault
models and delay fault models have been developed to model in a technology-independent
way the physical faults that affect a system’s function and operating speed, respectively
[Abra90]. In the following we restrict the discussion to testing for logical faults. Logical
fault models greatly simplify the testing problem by moving the problem from the

physical domain to the Boolean domain.

A logical fault model together with the circuit under test, defines a set of faulty circuits.
The test generation problem is to find tests that distinguish each of the faulty circuits from
the fault-free circuit. Likewise, in error-directed FDV, tests need to be generated that
distinguish the given design from a number of erroneous circuits defined by a design error
model. Despite this close relationship, the problems have major differences concerning 1)
the reference model, 2) the nature of the circuit: combinational vs. sequential, 3) fault/

error models, and 4) hierarchy.

Reference modelln physical fault testing the fault-free circuit is given and completely
specified. In design verification, a design (implementation) that needs to be verified is
given; the correct design is unknown. Instead, and at best, a complete model of the correct
design at a higher abstraction level is given also. Often only a partial specification of the

system’s behavior is available.

19

Combinational vs. sequential circuits. Test generation for sequential circuits is a
much harder problem than test generation for combinational circuits [Micz86, Chen96,
Marc96]. Although several test generators are commercially available that are able to
generate very high quality tests for very large combinational circuits, test generation for
sequential circuits the size of modern microprocessor is well beyond the reach of any
current automatic test pattern generation (ATPG) system. However, design for testability
techniques (DFT) [Abra90] can greatly reduce the complexity. In full scan design, every
register is replaced by a scan register and the registers are linked in a chain, thereby
making every register observable and controllable. This effectively reduces the test
generation problem to one for combinational circuits. Unfortunately these DFT techniques
do not apply to design verification, since typically there is no one-to-one correspondence
between the state elements of the design implementation and the reference model

(specification).

Fault/error models. A third difference between the two areas is that physical fault
testing has a proven and widely accepted logical fault model, the single-stuck line (SSL)
model. The SSL combines simplicity with the property that it forces each line in the
circuit to be exercised. A large body of research has been based on this model. Design
verification, as yet, does not have such a fault model. The success of the SSL model
provides a motivation to develop error models for design verification, which can

potentially benefit from the work on SSL faults.

Hierarchy. Physical fault testing and FDV also differ in the role hierarchy plays. In
physical fault testing the goal is always complete (SSL) fault coverage at the gate-level.
Hierarchical test generation approaches have been proposed that carry the promise of
being able to handle larger designs than purely gate-level methods. Typically, test sets are
precomputed for gate-level descriptions of individual modules. System tests are then
derived at the high-level representation that apply the test stimuli to the module under test,
and propagate the error effects to the system’s primary outputs [Murr90, Murr92]. FDV
can be done in a bottom-up fashion. First, the units constituting the design are verified.
Verification tests are applied to the unit in isolation during this phase. Next, the complete

design is verified, shifting the focus towards the interaction of the units.

20

1.7 Related area: software testing

Since the introduction of HDL's to mainstream design methodologies in the 80's,
hardware design has started to resemble software design. HDL's, such as Verilog and
VHDL, take after general-purpose programming languages, such as C/C++ and Ada.
Complex mechanisms, such as dynamic memory allocation, recursion, arbitrary user
defined data type and pointers, are readily supported by general-purpose programming
languages and are commonly used in software design. In hardware designs, however, these
mechanisms need to be implemented explicitly by the designers so that they readily map
onto hardware. Functional verification of software is therefore substantially more complex

than hardware verification.

The task of software testing is to ensure the reliability of software. A large number of
methodologies and techniques have been proposed; an overview can be found in [Beiz90].
However, most of these techniques are not supported by tools that automate the testing
process. This is in contrast to most areas of hardware testing and verification. One
explanation is that software tends to be more complex and more diverse. Testing methods
that are both practical and effective tend to rely on expert knowledge about the software
under test that is very difficult to automate. Another explanation is that most testing
methods crucially depend onspecification Written specifications are now considered a
cornerstone of any software development project [Post96b], but there has been a time
when the software community stubbornly tried to avoid taking time to record a description

of how software was supposed to behave.

Programmers obviously need specifications to write code, but these specifications
should also be written down to facilitate making changes and repairs later. Testers need
written specifications to determine whether an observed behavior conforms to the intended

behavior.

Informal specifications, plain English descriptions of the requirements, have the benefit
of being easy to read. Unfortunately they are a major obstacle to automation of software
testing. Recently, formal languages that are still readable, such as Semantic Transfer
Language (STL) that appears in [IEEE94], have been proposed to capture specifications.

Such formal specifications can automatically be checked not only for syntax problems, but

21

also for semantic inconsistencies. Formal specifications are essential to systematic test

case generation and functional coverage measurement.

Beizer [Beiz90] distinguishes two major approaches to software testing: functional and
structural. Functional methods are specification-directed and view the implementation as a
black box. Structural methods are driven by the implementation. In the remainder of this
section we discuss some of the few techniques that 1) are general, i.e., not specific to a

particular application domain, and 2) have substantial support for automation.

Control flowgraph path testing. Path testing methods are based on the use of the
control flowgraph of the program. In this graph nodes represent branching points or
junction points in the programs. Arcs represent branch-free code with a single entry and
exit. Path testing is the oldest of all structural test techniques. Beizer references work at
IBM from 1964. Tests are targeted at bugs that make the program take a different path than
intended. Completeness of test sets is measured in terms of their statement, branch, and
path coverage. Statement coverage requires that all statements in the program be executed
at least once. Branch coverage require that each alternative at each branch in the program
is exercised at least once. Branch coverage implies statement coverage. Path coverage
requires that all control flow paths through the program are exercised. This is in general
not practical to achieve as the number of paths can be exponential. Full statement and
branch coverage are common targets during unit testing. Additional paths are selected by
other test methods, such as dataflow testing, or logic-based testing. Coverage

measurement is widely supported by software development tool vendors [Paxs98, SR].

Mutation testing. Mutation testing is an error-oriented structural approach to software
testing introduced by DeMillo et al. in [DeMi78]. Mutation testing considers programs,
termed mutants, that differ from the given program by only simple errors, such as
replacing ‘< by <’ in one conditional expression. The task of the tester is to construct
tests that distinguish the mutants from the given program. Mutation testing provides a
metric, mutation coverage, to grade test sets. King and Offutt described in [King91] a

system to automatically generate tests using constraint solving techniques.

Mutation testing is predicated on two hypotheses. The competent programmer

hypothesis assumes that programmers write code that is very close to correct code. The

22

coupling effect hypothesis states that a test that distinguishes all programs differing from a
correct one by only simple errors (mutants), will also be sensitive for more complex

errors.

Mutation testing has several high costs associated with it: 1) the large number of
mutants that need to be considered, 2) the requirement to execute tests on all of the
mutants still alive, and 3) the complexity of test generation. The first problem is addressed
by selective mutation [Offu96]. Selective mutation considers only mutation operators,
which generate a number of mutants which is linear in the size of the program. A careful
experimental study indicates that tests having good coverage with respect to selective
mutation provides a good coverage for (non-selective) mutation as well. The second
source of the cost is addressed by weak mutation [Woo0d93]. In weak mutation only the
activation of the error is considered, not the propagation. This makes weak mutation a
much easier criterion to satisfy. In firm mutation [Wood93], the error is introduced in the
program, during the execution, and it only persists for a limited duration of the execution,
not till completion of the execution. The correlation between coverage with respect to

weak or firm mutation and that with respect to (strong) mutation has not been studied.

Run-time debugging.Errors involving dynamically allocated memory are notoriously
difficult to debug because they are hard to analyze statically. Examples of such errors are
leaking memory, using uninitialized variables, using freed memory, and reading or writing
beyond array boundaries. The widely used Purify tool [Rat97] is designed for this type of
errors. Purify instruments the object code of a program so that during program execution

all code is checked for these run-time errors and memory leaks.

A common type of late-cycle error in hardware designs involves complex control
interactions. A register leak occurs when a shared register latches corrupted data, or when
it is overwritten before its data has been used. To combat this type of error, 0-In Design
Automation [0In] proposes to automatically synthesize assertions that check for these
errors. The instrumented design containing the assertions is then simulated with a standard

HDL simulator.

23

I Error model I IFauIt model I

|
I
I
I
i | .
Verification | Physical
tests | fault tests
A | A
System I Manufactured
model | system
‘ |
Residual

design errors

Design errors Physical faults

Design Manufacturing

Figure 1.1: Relationship between physical design verification and physical fault testing

1.8 Thesis outline

This thesis explores functional design verification by modeling design errors and
generating functional vectors for modeled errors using methods adapted from physical
fault testing techniques. The close relationship between physical fault testing and design
verification is illustrated in Figure 1.1. The task of physical fault testing is to identify parts
that are functionally defective due to imperfections in the manufacturing process. For this
purpose, tests are generated that are targeted instances of logical fault models, such as SSL
faults. Likewise, the task of FDV is to detect functional design errors. We develop design

error models based on empirical error data.

The deployment of our methodology is illustrated in Figure 1.2. An implementation to
be verified and its specification are given. For microprocessors, the specification is
typically the ISA, and the implementation is a description of the new design in an HDL,
such as VHDL or Verilog. In this approach, synthetic error models are used to guide test

generation. The tests are applied to simulated models of both the implementation and the

24

&)
Unverified xX

design
T \-—-- - — — — — — — — — T
-7] ersnlgg:l;ror (Specification) | |
, - |
Assisted |
verification \ ‘
\ l S | Test |
- | generator \
~
| \
‘ Y Y ‘
) N \ Implementation Specification |
Error \ | simulator simulator \
database \
\ | |
\ | _. |
\ | \
v |
Assisted A ‘ Diagnose \
verification \ & debug
\ |
v - — — == _—_ J
Verified
design * Unknown actual error

Figure 1.2: Deployment of the proposed verification system

specification. A discrepancy between the two simulation outcomes indicates an error,
either in the implementation or in the specification. The figure also shows that throughout
the verification process, actual errors are recorded. This information can be used to tune

error models.

Chapter 2 examines design error data. Published design error data lack the detail needed
to derive structural error models. We therefore devised a systematic method to collect
error data. We present and analyze error data we collected from design projects at the

University of Michigan.

25

Chapter 3 develops synthetic error models based on the empirical data. We identify
requirements that error models must satisfy to be useful for design verification. We show

how well each of the proposed error models meets these requirements.

Chapter 4 considers the problem of generating verification tests for synthetic errors in
microprocessors. As we will see, this problem is not unlike test generation for SSL faults
in a very large sequential circuit. To cope with this complexity, we consider a limited, but
important, class of pipelined microprocessors, and develop a test generation method
specific to these designs. To this end, we introduce a model that captures high-level
information about the structure of pipelined microprocessors. We then develop a high-
level test generation method that exploits the high-level knowledge. We describe

experiments to evaluate the effectiveness of this algorithm.

Chapter 5 summarizes our research contributions and presents some directions for

future research.

CHAPTER 2
Design error data

Our design verification approach uses design error models to direct test generation. Good
design error models should result in test sets that detect many actual design errors. To
construct such design error models a good understanding of the nature, frequency, and
severity of actual design errors is required. Despite the abundance of design errors in
large-scale projects, very little data has been published on these errors. It is common
practice in industry to record design errors, but this information is considered proprietary
and, perhaps, embarrassing, so it rarely appears in public. These considerations led us to
collect error data from design projects at the university. Section 2.1 presents published
error data from industry. Section 2.2 describes our method to systematically collect design
errors. Section 2.3 presents the error data we collected. Section 2.4 offers some lessons

learned. A summary and a discussion of our results is given in Section 2.5.

2.1 Published error data

Although design errors that make their way into final products are common,
manufacturers have not always been forthcoming about them. This has changed since
MIPS began to publish their bug list beginning with [MIP94]; the Pentium bug [Beiz95]
also influenced this change. To give a feel for these errors, we present a few examples of

design errors that appeared in major commercial microprocessors.

The errata list for the MIPS R4000PC and R4000SC microprocessors (revisions prior to
revision 3.0) [MIP94] documents 55 bugs. Many of these require a rare combination of
events before they become visible. The following is a representative bug: If an instruction
sequence which contains a load causing a data cache miss is followed by a jump, and the

jump instruction is the last instruction on the page and, further, the delay slot of the jump

26

27

Iw // data cache miss

noop /l one or two noops

jr /l'last instruction in the page

—————— /I page boundary

noop Il first instruction (delay slot of jump)

/I on the next page

Figure 2.1: Example of instruction sequence that exposes an error

is not mapped at the time, then the (VM) exception vector is incorrectly overwritten by the
jump address. The R4000 will use the jump address as the exception vector. The
workaround suggested in [MIP94] is that jump and branch instructions should never be the

last location in a page.

Early versions of the Intel 8086 were shipped with the following bug [Ham94]: The
architecture specifies that fdOVand POPinstructions to a segment register, interrupts
are not to be sampled until completion of tfelowing instruction [Int89]. This feature
allows a 32-bit pointer to be loaded to the stack pointer regiS&rand SP without the
danger of an interrupt occurring between the two loads. However, early versions of the
8086 do not disable interrupts followinghdOMo a segment register. This causes them to
crash when an interrupt uses the stack betwd@V SS, reg andMOV SP, op A
workaround is to insert instructions to temporarily disable the interrupts when reloading
SS. An uncorrectable problem occurs when an unmaskable interrupt takes place while

executing the instruction pair.

These published bug lists are inadequate for error model construction for two reasons:
1) Errata lists typically provide only a programmer’s view on the errors. Our error models
depend on the design implementation. Therefore, more detailed information about the
errors is required, namely the concrete modification to the design implementation that
fixes the error. 2) Errata lists only concern errors in the final product. Microprocessor
companies go to great efforts to functionally validate their designs. Those design errors
that remain undetected before the product is shipped to customers tend to be very subtle
and difficult to detect. The majority of all design errors are detected before reaching the

customer, and hence are not documented in errata lists. Consequently, errata lists are not

28

representative for the overall population of design errors. These considerations led us to

systematically collect design errors from design projects at the university.

2.2 Collection method

The most suitable point to collect design error data is immediately after the design error is
discovered and corrected. At that point, all relevant information about the design error
should be recorded. This record-keeping requirement conflicts with the interests of the
designer. Overhead has to be reduced to a minimum in order to overcome designers’

natural reluctance to cooperate.

Our error collection method uses the revision management tool CVS [Cede93]. The
revision management tool archives successive revisions of the design. Designers were
asked to submit a new revision of their design whenever a design error was corrected and
whenever they interrupted work on the design. Some designers resist the system because
they see it as a way their work can be monitored. We defused this potential problem by
providing designers with a handout [VC97] explaining the use of the revision management

system, and by explaining our objectives to obtain the designers’ cooperation.

Our first design error collection effort took place during the summer of 1996. Only the
bare revision management system was in place. Experience with that project motivated the
system described above. It was clear that a standardized form was needed to accompany
each revision so that interesting revisions, i.e., those involving a design error correction,
can be separated from other revisions. We therefore augmented the revision management
system so that each time a new revision is submitted, the user is prompted to fill out a
guestionnaire. The questionnaire, in the form of a multiple choice form shown in
Figure 2.2, gathers four pieces of information: 1) the motivation for revising the design; in
the case of a bug, the following apply as well: 2) the method by which the bug was
detected, 3) the class to which the bug belongs, 4) a short description of the bug. Design
errors can be detected by reading the HDL code (inspection), by syntax checking

performed by the HDL simulator (compilation) or a synthesis tool (synthesis), or by logic

29

(replace the _ with X where appropriate)
MOTIVATION:

X bug correction

_ design modification

_ design continuation

_ performance optimization
_ synthesis simplification

_ documentation

BUG DETECTED BY:

_ inspection
compilation

X simulation

_ synthesis

BUG CLASSIFICATION:

Please try to identify the primary source of the error. If in doubt, check
all categories that apply.

X combinational logic:

_ wrong signal source

X missing input(s)
unconnected (floating) input(s
unconnected (floating) output(s)
conflicting outputs

wrong gate/module type
missing instance of gate/module

_sequential logic:

_ extra latch/flipflop

_ missing latch/flipflop

_ extra state

_ missing state

_ wrong next state)

_ other finite state machine error

_ statement:

_ if statement

_ case statement

_ always statement

_ declaration .

_ port list of module declaration
__expression (RHS of assignment):
missing term/factor
extra term/factor
missing inversion
extra inversion
wrong operator

_ wrongi constant
_ completely wrong
_buses:

_ wrong bus width
— wrong bit order

_ verilog syntax error

_ conceptual error

__new category (describe below)
BUG DESCRIPTION:

Forgot to select NOP in case of stall

Figure 2.2: Bug report example

30

simulation. The operation of our error collection method within the design cycle is

illustrated in Figure 2.3.

From the raw revision management data, we identified the design modifications to fix
each error by computing the differences between successive revisions. The analysis of the
design error data lead to a preliminary classification of design errors. This classification
was used in our first major design error collection effort, which took place in the fall term
of 1996. Analysis of this design error data lead us to revise our classification. The result is
shown in Figure 2.2. The categories are not completely disjoint, so designers were asked

to check all applicable categories.

2.3 Collected error data

Design projects. Design error data was collected from both class design projects and
research projects at the University of Michigan. All of the designs were described in
Verilog [IEEE96]. Table 2.1 lists these projects. LC2 concerns the design of the Little
Computer 2 (LC-2) [Post96a], which is a small microprocessor used for teaching purposes
at the University of Michigan. The design of both a behavioral and a synthesizable register
transfer level model was carried out by Hussain Al-Asaad [AA98] in the summer of 1997.
DLX1, DLX2, and DLX3 concern design projects that were undertaken as part of the
senior/first-year-graduate level computer architecture course (EECS470) in the fall of
1996. Students designed a pipelined implementation of the DLX [Henn90]
microprocessor at the structural level. X86 concerns an EECS470 design project carried
out in the Fall of 1997. Students designed a pipelined implementation of a subset of the
Intel x86 architecture [Int89]. FPU concerns the design of a floating-point unit for the
PUMA processor [Brow96], which is a PowerPC microprocessor implemented in
complementary GaAs process technology, and was undertaken as part of the graduate
level VLSI design class (EECS627). Both a purely behavioral and a mixed synthesizable
behavioral/structural model were designed. FXU concerns the design of the fixed-point
unit of the PUMA processor. James Dundas and Todd Basso wrote the synthesizable

behavioral description in the Fall of 1996. For each of the projects the table lists the

31

Design input

E1 FPRiL 51 MBI EP Y IF S I5h I

Wifders Fllos riis

Tools Goarch Helo

Simulate design

THHGESC M 1.1 aRERETT s |

a bphderll =
.:Iwnl:ll::"l-.\:l. H'IIIII-I

&/ BEDhGh FL bleeidat | Cleddsk 3 cosmEsk
A A B B S

Fill out questionnaire

STTeL || il
Biffars Fllon Tools Edit Sasron Haln
Ireplary Gba _ with § whers appregprisfal

Detect bug

Correct bug

CVS
revision -
database

Figure 2.3: Error collection system

32

Table 2.1: Design projects for which error data was collected

. Duration No.of Codesize No. of
Project Class Date . :

[days] designers [lines] errors
LC2 N/A Summer ‘97 11 1 1,179 22
DLX1 EECS 470 Fall ‘96 16 1 3,010 39
DLX2 EECS 470 Fall ‘96 21 1 3,015 35
DLX3 EECS 470 Fall ‘96 29 1 5,210 13
X86 EECS 470 Fall ‘97 42 3 6,071 59
FPU EECS 627 / PUMA Fall ‘96 96 2 5,607 17
FXU PUMA Fall ‘96 - Winter ‘97 135 2 27,587 113

number of designers, the duration of the design entry and logic debug part, the size of the
design description, and the number of errors that were logged. Design verification for the
class projects relied on simulating the design for a few handwritten assembly programs.
Simulation outcome was checked by comparing the final state of the processor, and by
examining internal signals over the duration of the simulation. For the FXU project,

designers also wrote a random program generator, and used that to augment the
handwritten test cases.

Data of one project in detail. In this section we examine the data obtained from design

project X86. This was chronologically the latest project we collected data from, and hence
it benefited the most from past experience.

Table 2.2 lists the design files created in this project. For each file, we list its size, the
total number of revisions it underwent, and the number of design errors recorded, broken
down by detection method. Note that in this project no synthesis tools were used; hence no
errors were detected this way. Errors of interest are those detected by inspection or
simulation. The designers were aware that syntax errors are of very little value to our
work. We can therefore assume that many syntax errors were corrected without recording

a new design revision, and hence do not appear in the table the column “compilation.”

Figure 2.4 shows the difference between a design revision motivated by an error
correction and the previous revision. In revision 1.KOR gateControls_NOPsel _nor2
misses inpuStallin. Revision 1.50 corrects this error.

33

Table 2.2: Design files written for the X86 project

Code No.of Errors-detection method
Design file size rev- |nspec- Comp- Simu- Syn-

lines] isions tion ilation lation thesis
decode.v 984 63 1 2 18 0
datapath.v 530 54 0 9 12 0
stagesl.v 294 19 0 1 9 0
modulesl.v 1750 27 1 3 8 0
smallmodules.v 1010 21 0 4 2 0
fetch.v 140 23 1 2 2 0
datacaches.v 674 13 0 0 1 0
exel.v 135 8 0 1 1 0
modules.v 554 27 3 1 0 0
Total 6071 255 6 23 53 0

Index: project/decode.v

RCS file: /x/users/davidvc/repositories/repositories_470_f97/jhauke/470_reposit
ory_98/project/decode.v,v

retrieving revision 1.50

retrieving revision 1.49

diff -r1.50 -r1.49

3c3

< $Revision: 1.50 $

E %Revision: 149%
c
< $Date: 1997/12/13 22:45:54 $

> $Date: 1997/12/13 20:43:41 $

878c878

< nor4$ Controls_ NOPsel_nor2(Controls_NOPsel_nor2_out,
Counterlnput,HLT "NOP,ScoreNOP, Stallin);

> nor3$ Controls_ NOPsel_nor2(Controls_NOPsel_nor2_out,
Counterlnput,HLT "NOP,ScoreNOP);

Figure 2.4: Difference between two successive revisions

Table 2.3 gives the distribution of design errors by error category. The dominant type of
design error is wrong signal source. Errors involving missing logic are also notable and

amount to 31%.

Figure 2.5 shows the evolution of the project over time. HDL coding and debugging
spanned 42 days in this project. The chart shows the total size of the design at the end of

each day. Also shown is the number of lines of code that were touched over the duration of

34

Table 2.3: Error distribution in X86

Error category Frequency
Wrong signal source 32.8%
Missing instance of gate/module 14.8%
Missing input(s) 11.5%
Wrong gate/module type 9.8%
Unconnected (floating) input(s) 8.2%
Missing latch/flipflop 6.6%
Conceptual error 4.9%
Wrong next state 3.3%
Other finite state machine error 1.6%
Extra term/factor 1.6%
Extra inversion 1.6%
Wrong bit order 1.6%
Other 1.6%
7000 . . . : : : . .
B C0es fened
6000 - .
5000]
@ 4000 | 4
g
5
& 3000 L]

2000 L 4

1000 | i

0 5 10 15 20 25 30 35 40 45
Days

Figure 2.5: Project evolution: code size [lines] and lines touched over time

each day. Most of the design description is in place by day 21, and integration testing can

start.

Figure 2.6 shows the number of revisions over the duration of the project. The number

of revisions logged on any day is broken up into revisions that are due to bug corrections

35

35

T
: Revisions due to bug correction
Other revisions

20 + 4

15 + -

No. of revisions

10 +

OHHHH. ﬂﬂ

0 5 10 15 20 25 30 35 40 45
Days

Figure 2.6: Revisions motivated by bug correction and other revisions over time

and those due to other reasons. Ideally, there is a one-to-one correspondence between
uncovered design errors and revisions motivated by error correction. Hence the bar for
number of revisions logged due to error corrections also gives the total number of bugs
corrected during the corresponding day. It can be seen that most of the bugs were

discovered and corrected in the second half of the project.

Figure 2.7 plots the time at which each error was corrected versus the number of lines
of code that were touched to correct the error. The vertical coordinate is an indication of
the structural complexity of the error. Although easy to compute, this metric is far from
ideal. It does not distinguish between lines of code that have merely been reformatted and
lines that have truly been changed. More accurate measures, such as the minimum number
of ‘atomic’ modifications needed to remove the error from the control dataflow graph of
erroneous circuit, would be more appropriate but are also much harder to compute. For
about half of the errors fewer than ten lines of code were involved, and only four errors

resulted in modification to the design involving more than 100 lines of code.

36

1000 o T T T T T T T T
o
o
@ °)
2100 | -
;‘ o o
% o o ©
S o
‘g oo © ©° Ogo
S 10 | o ¥ o]
i E o ©° 5 80 %
[+ Xe) o
o O
0o
® o
o o 00 ©
1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Days

Figure 2.7: Design errors: time to discovery [days] vs. error size [lines]

We further characterize these design errors based on purely structural properties. We
define thesizeof an error as the order of the polynomial that computes the number of
similar errors as a function of the size of the circuit. For example, single inversion errors
and single-stuck errors both are of size 1, because the@(ard such errors in a circuit
with N lines. Signal source errors are of size 2 as thereQﬁl*@) such errors. We noted
that some actual errors consist of multiple instances of the same type of error. An example
IS an inversion error on a port connection of a module instance that is repeated for all
instances of the module. We define tmailtiplicity of an actual error as the number of
identical and repeated instances of a simpler error that constitute the actual error.
Figure 2.8 plots the frequency of design errors when binned according to size and
multiplicity. We observe that design errors of higher multiplicity are rare. Design errors
with multiplicity 1 and sizes 1 or 2 account for more than half of all design errors. Only

about 12% of the errors are very complex, as indicated by a size of 10 or greater.

37

0.35—-"
03"

0.25-"

o
[N
/

Frequency
o
H
(63}
/

o
[EEN
/

0.05-]"

Size Multiplicity

Figure 2.8: Frequency of design errors in function of their size and multiplicity

2.4 Guidelines for implementing an error collection system

Revision managementA revision management system has proven priceless. Not only
does it allow detailed analysis of concrete design errors, but it also came to be valued by
the designers. One reservation some designers have with these systems is that they see it as
a way to monitor their work. This can usually be overcome by explaining the intent and

the benefits.

The stigma of bugs.A key factor to success is to remove the stigma usually associated

with design errors. We made an effort to make designers feel engaged with our research

38

project, and explained to them the need for collecting error data. The participation of class

projects in error collection was on a voluntary basis.

Overhead to the designerThe need to minimize the overhead of error logging for the
designer cannot be underestimated. Although the designer is, in principle, in the best
position to classify each newly discovered error, this small effort, from which the designer
may not see any immediate benefit, may be felt as burden or threat. Consequently, the
designation of errors often becomes imprecise. We observed that for periods some
designers marked all of there errorscasiceptual erroreven if the actual error involved a
single inversion error. This led us to reassess the raw revision data, and explains the
discrepancies between the data reported here and that in our earlier work [VC98]. The
reassessment also corrected the counts assigned to errors that spanned multiple design
files. Previously, these errors had been overrepresented. This adjustment primarily affects

the bigger designs where such errors occurred more often.

A key element in an error collection effort is to encourage designers to adopt the habit
of systematicallyrecording everysingle design error that is not a syntax error. Simple
errors such as single inversion errors don'’t require much explanation. For more elaborate
errors a brief textual description of the error, already in the present error template, is very
helpful to analyze the error afterwards. Additional pieces of information could include a
measure of the difficulty of detecting the error, and the root source of the error. Typical
root sources include: oversight, failure to consider certain behavior, wrongly implemented

behavior, misunderstanding of specification, or miscommunication between designers.

Designers should not be burdened with classifying the errors with respect to their
structural aspects (item 3 of our questionnaire). This task can be performed by those
analyzing the error data provided that a new design revision has systematically been

recorded for each detected error.

Practical considerations.Finally some practical considerations need to be pointed out.
Fixing a single design error may require multiple modify / simulate cycles, and hence
multiple revisions. The designer should record information to distinguish such revisions.

Fixing a single design error may require modifications to multiple files. Designers should

39

Table 2.4: Design error distributions [%0]

Category LC2 DLX1 DLX2 DLX3 X86 FPU FXU Average
Wrong signal source 27.3 31.4 25.7 46.2 328 235 257 30.4
Missing instance 28.6 20.0 231 148 59 159 15.5
Missing inversion 8.6 471 16.8 10.3
New category 9.1 8.6 7.7 66 118 44 6.9
Unconnected input(s) 8.6 14.3 77 82 59 09 6.5
Missing input(s) 9.1 8.6 5.7 7.7 115 6.1
Wrong gate/module type 13.6 114 9.8 5.0
Missing term/factor 9.1 2.9 5.7 4.4 3.2
Always statement 9.1 2.9 2.7 2.1
Wrong constant 9.1 5.3 21
Missing latch/flipflop 49 59 09 1.7
Wrong bus width 4.5 7.1 1.7
Missing state 9.1 1.3
Conflicting outputs 7.7 1.1
Wrong constant 2.9 4.4 1.0
Conceptual error 2.9 3.3 0.9 1.0
Signal declaration 5.7 0.8
Extra term/factor 2.9 1.6 0.9 0.8
Wrong operator 4.4 0.6
Gate or module input 29 0.4
Case statement 2.7 0.4
Other FSM error 1.6 0.2
Extra inversion 1.6 0.2
Wrong bit order 1.6 0.2
Wrong next state 1.6 0.2
Latch 0.9 0.1

If statement 0.9 0.1
Expres. completely wrong 0.9 0.1

submit new revisions for all of these files together. Otherwise, these revisions data can

wrongly be interpreted as concerning multiple errors.

2.5 Discussion

Table 2.4 shows the error distributions for all projects. Also listed is the average error
frequency over all projects. We observe that signal source errors are the most common
type of error at 30%. Errors involving missing logic (missing instance, missing input,
missing term, missing state) are the second most common group at 26%. Also notable is

that apparently very simple errors, such as extra/missing inversions and unconnected

40

inputs, account for 17% of all errors. More detailed analysis of these simple errors shows
that some of these were detected late in the project. This indicates that the behavior of
some parts of the design is not properly exercised, since these simple errors do not require
any activation conditions. Among the errors marked@s categonrare timing errors, and

errors that required very elaborate corrections.

The limitations of our error collection effort are as follows. Student designers have
limited experience. Class projects are short in duration and the verification effort in these
projects is modest. Consequently our data may contain a disproportionately small number
of hard-to-detect errors, compared to data from industrial design projects. This concern

also applies to the data from the projects related to PUMA, but to a lesser extent.

CHAPTER 3
Design error models

Manufacturing testing uses logical fault models to guide test generation. Logical fault
models represent the effect of physical faults on the behavior of the system, and free us
from having to deal with the plethora of physical fault types directly. Similarly, we use
design error models to drive verification test generation. This chapter presents and studies

design error models that are based on the error data described in the previous chapter.

Section 3.1 presents four requirements that error models should satisfy to be useful for
design verification. Section 3.2 proposes three classes of error mbdsls: extendeg
andconditionalerror models. The following sections analyze how well these error models
meet the requirements: Section 3.3 analyzes the number of error instances defined by each
model (requirement 4). Section 3.4 analyzes test generation with the error models
(requirement 2). Section 3.5 analyzes error simulation and presents an efficient error
simulation technique for conditional error models called CESIM (requirement 3).
Section 3.6 presents an analytical coverage evaluation of one conditional error model
(requirement 1). Section 3.7 presents an experimental coverage evaluation using error
simulation (requirement 1). Another experimental study with the same goal but a different
approach is detailed in Section 3.8 (requirement 1). Our findings are summarized in

Section 3.9.

3.1 Error model requirements

A design error modedlefines a class ohodeled errorsalso referred to asynthetic errors
for a given design. In design verification, design error models play the role of fault models

in physical fault testing. The different terminologgtror vs. fault, is to underscore the

41

42

different contexts. To be useful for design verification, error models should satisfy the
following four requirements:
1. Tests (simulation vectors) that are complete for the modeled errors should also
provide very high coverage of actual design errors.
2. The modeled errors should be amenable to automated test generation.
3. The modeled errors should be amenable to automated error simulation.

4. The number of modeled errors should be relatively small.

Since exhaustive simulation is prohibitive for practical verification problems, any
simulation-based method can only aspire to produce test sets that, at the end of the debug
process, give very high confidence in the functional correctness of the design. For our
approach, this goal crystallizes in requirement 1 on design error models and in the
necessity for an efficient method to generate complete tests for the synthetic errors. A
naive attempt to satisfy requirement 1 would be direct modeling of concrete design errors
based on error statistics (see Chapter 2). Unfortunately this would lead to a vast array of
models, thus greatly complicating automation of test generation (requirement 2), and an
extremely large number of synthetic errors to be targeted. However, error models are only
a means to generate high quality tests. This is similar to physical fault testing. Studies have
shown that despite the fact that very few physical defects behave precisely like SSL faults,
complete test sets for SSL faults detect most manufacturing defects. This motivates us to
attempt to develop design error models that balance requirement 1 with the three other

requirements.

3.2 Design error models

Standard logic simulation and synthesis tools have the side effect of detecting some
classes of design errors (Table 2.4); hence there is no need to develop models for those
particular errors. For example a logic simulator such as Verilog-XL [Cad94] flags all
Verilog syntax errors, and incomplete port lists of modules. Also, logic synthesis tools,
such as those of Synopsys [Syn97], usually flag wrong bus-width errors and sensitivity-list

errors in thealwaysstatement.

43

Basic error models. A set of error models that satisfy the requirements for the

restricted case of gate-level logic circuits was developed in [AA95]. Motivated by our

empirical design error data, similar error models for higher-level (RTL) designs appear to

be useful. We propose the following five basic error models:

Bus SSL error (SSLA bus of one or more lines is (totally) stuck-at-0 or stuck-at-

1 if all lines in the bus are stuck at logic level 0 or 1. This generalization of the
standard SSL model was introduced in [Bhat85] in the context of physical fault
testing.

Module substitution error (MSE)his refers to mistakenly replacing a module by
another module with the same number of inputs and outputs. This class includes
word gate substitution errors and extra/missing inversion errors.

Bus order error (BOE) This refers to incorrectly ordering the bits in a bus;
mistakenly reversing the order appears to be the most common form of BOE.
Bus source error (BSE)rhis error corresponds to connecting a module input to a
wrong source.

Bus driver error (BDE) This refers to mistakenly driving a tristate bus from two

sources at the same time.

Extended error models.Prior work on SSL error detection [Abad88, Bhat85], shows

that basic error models can be used to generate test sets that provide high, but not

complete, error coverage. These results are further reinforced by our experiments on

microprocessor verification (Section 3.8), which indicate that a large fraction of actual

design errors (67% in one case and 75% in the other) is detected by complete test sets for

the basic errors. To increase coverage of actual errors to the very high levels needed for

design verification, additional error models are required to guide test generation. Many

more complex error models can be derived directly from the actual data of Table 2.4 to

supplement the basic error types, the following set being representative:

Bus count error (BCE)This corresponds to defining a module with more or fewer
input buses than required.
Module count error (MCE)This corresponds to incorrectly adding or removing a

module, which includes extra/missing word gate errors and extra/missing registers.

44

» Label count error (LCE)This error corresponds to incorrectly adding or removing
the labels of a case statement.

» Expression structure error (ESEJhis includes various deviations from the correct
expression, such as extra/missing terms, extra/missing inversions, wrong operator,
and wrong constant.

» Next state error (NSE)his error corresponds to incorrect next state function in a

finite-state machine (FSM).

Although targeting these extended error models can increase coverage of actual errors,
we have found them too complex for practical use in manual or automated test generation.
Analysis of the more difficult actual errors revealed that these errors are often composed
of multiple basic errors, and that the component basic errors interact in such a way that a
test to detect the actual error must be much more specific than a test to detect any of the
component basic errors. An effective error model should necessitate the generation of
these more specific tests without resorting to direct modeling of the composite errors. The
complexity of the new error models should be comparable to that of the basic error models
and the (unavoidable) increase in the number of error instances should be controlled to
allow trade-offs between test generation effort and verification confidence. These

requirements can be combined by augmenting the basic error models with a condition.

Conditional error models. A conditional error C, E) consists of a conditio€ and a
basic erroiE; its interpretation is thak is only active wherC is satisfied. In generag is
a predicate over the signals in the circuit during some time period. To limit the number of
error instances, we restri€tto a conjunction of termsy(= w;), wherey; is a signal in the
circuit that is not in the transitive combinational fanout of the basic &ramdw; is a
constant of the same signal-width gysand whose value is either all-O’'s or all-1's. The
number of terms (condition variables) appearingCins said to be the order ofC(E).
Specifically, we consider the following conditional errGE] types:

» conditional single-stuck line error of orde{CSSLn)

1. The requirement that condition signals are not to be part of the transitive combinational
fanout of the basic error, eliminates problems of combinational feedback, and thus ensure that all
conditional errors are well defined. This requirement also facilitates efficient error simulation, as
we will see in Section 3.5.

45

X#1 Xx=1

a) b) ©)

Figure 3.1: CSSL1 erroxE 1,y / 0): a) error-free design; b) erroneous design with

X # 1; c) erroneous design wikrF 1

conditional bus order error of ordeCBOE)

conditional bus source error of orde(CBSH)

Figure 3.1 gives an example of a CSSL1 errar=(, y/0). If the condition does not

hold, x # 1, the erroneous circuit operates as the error-free. If the condition hotdg,

liney is stuck at 0.

3.3 Number of error instances defined by error model

The fourth requirement on error models states that the number of modeled errors should

be sufficiently small. Consider a desigjhsignals; we denote by #M the number of error

instances defined by error model M on the design.

Basic error models

#SSL =O(N)

#MSE =O(N)

#BOE =O(N)

#BSE =O(N?)

#BDE :O(B.DZ), whereB is the number of tristate buses, abds the rms number

of drivers on a bus.

5 0 B
1.y D7 = BO|(1/B)) DO = BD?
i=1 i=1 O

46

Extended error models

« #BCE =O(N?

« #MCE =O(N?

» LCE. Consider a case statement withrahit signal making the selection; letbe
the number of labels (branches). The simplest type of missing label error would
occur if the statements selected by the missing label are identical to those of another
(not missing) label. Hence, there aré'{2 missing label errors and extra label
errors. For a circuit witlC case statements, we have #LCB¢C.2") LCE’s with
n appropriately averaged.

» ESE. Consider an expression withiterals andE subexpressions. If we restrict
missing and extra term errors to a single literal, and further require that the missing
literal appears elsewhere in the expression, then thef@(&jextra term errors and
O(E.L) missing term errors.

* NSE. Consider an FSM witB states, andt distinct state transitions. A simplest
next state error would occur if for one of the state transitions, the next state was

wrong. There ar®(SE) of this type.

Conditional error models

The number of instances defined by a conditional error mo@gf)(is given by the
product of the number of basic errors and the number of conditions:

« #CSSln = O(2™IN™)

« #CBOE = O(2"N™1)

« #CBSH = O(2"N™?)

Forn =0, a conditional error@,E) reduces to the basic errBrfrom which it is derived.
Higher-order conditional errors enable the generation of more specific tests, but lead to a
greater test generation cost due to the larger number of error instances. For example, the
CSSL1 model defines a number of instances quadratic in the size of the circuit. Although
the total set of all signals we consider for each term in the condition can possibly be

reduced, CSSherrors wheren > 1 are probably not practical.

a7

3.4 Test generation

The second requirement on design error models states that error models should be
amenable to automated test generation. In this section we investigate how well our error

models meet this requirement.

The basic and conditional error models have the property that each error instance
together with the given design completely specifies an erroneous design, and that both
designs structurally differ in a very localized part. Consequently, the test generation
problem is well defined and very similar to that of test generation for SSL faults. For
combinational circuits the D-calculus suffices, and for sequential circuits a 9-valued logic
is sufficient. Targeted test generation for SSL fault can be decomposed into three
subproblems: fault excitation, fault propagation, and line justification. Test generation for

basic and conditional errors differs only in the excitation subproblem.

Some of the extended error models, e.g., ESE, need to be specified further so that they
completely define a set of erroneous designs. Although test generation for these errors is
in principle similar to test generation for SSL faults, automation is greatly complicated by
the variety and complexity of the excitation conditions associated with these errors. We
therefore conclude that the extended error models are not practical, and drop them from

further discussion.

Error instances of more abstract error models such as the universal fault model
[Abra90] and the tag model used in OCCOM [Fall98b] do not completely specify an
erroneous machine. Instead, an instance together with the given design specifies a class of
erroneous designs. The aim is then to generate a test that will distinguish each element of
that class from the original design. In case of the tag model, the error effect propagation is
approximate. Consequently, an interpretation of tag coverage in terms of what concrete

design errors have been tested for is not possible.

There are two main approaches for generating tests for our synthetic error models. The
first approach is to modify the original design and to apply existing ATPG tools; Al-Asaad
and Hayes follow this approach in their work on verification of gate-level designs [AA95].

Another approach is to adapt existing ATPG algorithms to directly target the synthetic

48

errors. The major advantage of the first approach is that it leverages existing ATPG
technology. When the error model defines a super-linear number of error instances, this
approach may suffer from the significant increase in the size of the modified netlist. The
second approach overcomes this problem. For the @3fhdels the effort required to
modify an SSL test generator is modest: error excitation requires the justification of
extra lines over SSL excitation. For MSE’s, BSE’s, BOE’s, BDE’s a larger effort is

required.

Another consideration about test generation is that most commercial ATPG tools
operate on gate-level netlists. Our design error models are primarily targeted for use with
behavioral and structural RTL descriptions. The structure in these higher-level
descriptions can be used beneficially during test generation, and therefore high-level test
generation carries the promise of being able to handle larger designs than gate-level test
generation. Nevertheless, gate-level test generators can still be used as follows: The higher
level description can be mapped (synthesized) to a gate-level design that preserves all
signals of the high-level version. Such gate-level representations have the property that for
each basic or conditional error instance, we can find a corresponding set of one or more
error instances at the gate-level. More than one error instance is required at the gate level if
the original error instance involves multibit buses. For examydtuck-at-0, maps ontw

SSL errors at the gate-levé\: stuck-at-0 = 0 ...(w — 1), wherew is the width ofA.

3.5 Error simulation

The problem addressed by error simulation is as follows. Given a design, a set of
(synthetic) design errors, and a sequence of test vectors, determine which errors are
detected by the test sequence. Fault simulation addresses a similar problem in physical
fault testing, but differs in the error/fault models. Whereas physical fault testing is
concerned with SSL faults, bridging faults, open faults, our design verification
methodology needs to consider other errors, such as the conditional errors introduced
earlier. In this section we address error simulation with conditional errors. First, we

motivate error simulation.

49

Augmenting targeted test generation with error simulation can reduce overall run times.
Test generators typically target one error at a time. A targeted test may detect errors other
than just the targeted error. These errors can be identified by an error simulator so that they

do not need to be considered by the test generator any more.

A stand-alone use of error simulation is the computation of design error coverage of a
given test suite. This is useful in regression testing, where one might be interested in
selecting a subset of a given set of test sequences that provides coverage of design errors
similar to those of the complete test set. Error simulation can also reveal areas of the
design that are not sufficiently tested by a given test suite, and hence spur further targeted

test generation.

Error simulation needs to be efficient. Not only the length of test suites, which is
extremely large for pseudo-random tests, but also the nature of the error models, and the
number of error instances to be considered affect the size of the task. It is clear that better
methods are required than simple serial error simulation, which simulates the erroneous

designs for the complete test suite one by one.

In the remainder of this section we first discuss related work and we then present our
method for error simulation with conditional errors; we conclude with experimental

results.

Related work

Representative approaches to fault simulation for sequential circuits [Abra90, Nier91a] are
parallel, concurrent, deductive, and differential fault simulatieerallel fault simulation

takes advantage of the word-level parallelism of the computer used. On a 32-bit computer,
32 faulty machines can be simulated in parallel. This method lacks the ability to drop
errors. The other methods are motivated by the observation that as long as a fault is not
detected, the good and faulty circuit differ in only a fraction of the number of signals
present. For this purpose, such methods process the complete set of faulty machines one
vector at a time. Botlesoncurrentanddeductivefault simulation compute the node values

of a faulty machine for the current vector, based on the good circuit’s node values for the

current vector, and the faulty machine’s node values for the previous vector. A drawback

50

of both methods is high memory requiremebitfferential fault simulation, a variant of
concurrent fault simulation, addresses the memory problem, but suffers from the inability

to drop detected faults.

Niermann, Cheng and Patel [Nier90, Nier9la] described a fault simulator, called
PROOFS, that combines ideas of concurrent, differential and parallel fault simulation. As
our error simulation method for conditional errors derives from PROOFS, we briefly

describe its main features, referring to Figure 3.2.

Given is a gate-level sequential circuit, a fault list, and a test vector sequence, PROOFS
maintains two sets of signal values: one for the good, and one for a faulty machine. For
each undetected fault, PROOFS also stores the difference in present state between the

good machine and the corresponding faulty machine.

The outermost loop of PROOFS processes one test vector at a time. First, the good
machine is simulated for the current vector. Next, faults that are active for the current test
vector are identified. A fault is consideredttive if one or both of the following two
conditions holds: 1) the present state of the faulty machine is different from that of the
good machine; 2) the fault is excited by the current vector, and the faulty line is sensitized
through the first two levels of logic. Checking condition 1 is straightforward since we have
saved the faulty circuit’s state while processing the previous vector. If condition 1 does not
hold, that is, if the faulty circuit’s present state is identical to that of the good circuit,
checking condition 2 is inexpensive too, as it is very localized and requires only the good

circuit’s values.

Faults that are not active for the current vector have the property that they are not
detected by the current vectandthe next states of the corresponding faulty machines are
identical to the next state of the good machine. Consequently, there is no need to simulate

these faulty machines for the current vector.

Each active fault is processed as follows: First, the fault is injected into faulty circuit.
The event list is initialized to reflect the fault injection and the present state lines whose
values differ in the good and the faulty machine. The event-driven simulation of the faulty

machine in PROOFS typically has a very low event activity, as in concurrent fault

51

PROOFY(circuit, faultList, testVectorSequence)

1. while (vectors left) {

1.1 read next vector

1.2 simulate good circuit

1.3 determine which faults are active
1.4 for each active fault {

1.4.1 inject fault

1.4.2 add faulty node events
1.4.3 simulate faulty circuit
1.4.4 drop detected faults
1.4.5 store faulty next state
1.4.6 remove fault

15 }

2. }

Figure 3.2: PROOFS’ error simulation algorithm

simulation. If the fault is detected by the current vector, it is dropped. Otherwise, the
difference between the next state of the faulty machine and that of the good machine is

saved.

The basic algorithm, as discussed above, can be augmented to take advantage of the
word-level parallelism available on the computer executing the fault simulator. On a 32-bit
machine, up to 32 iterations the simulation step 1.4.3 of loop 1.4 can be executed in
parallel. This is done by assigning the values of different faulty machines to different bit
positions within a word. The other steps of loop 1.4 still have to be executed serially. A

more detailed description of one implementation is given in [Nier90, Nier91a].

Extension to conditional errors

It is straightforward to modify PROOFS to handle conditional errors, such as CSSL1. For
a given circuit and a given test sequence, the average run time per error for CSSL1 error
simulation is very close to that for SSL error simulation. As the number of CSSL1 errors is
guadratic in the size of the circuit, the cost of error simulation for CSSL1 may be
prohibitively large. To address this, we develop an error simulation algorithm for
conditional errors, called CESIM, that exploits the close relationship among CSSL1 errors

derived from the same CSSLO error. Its key features are processing of sets of conditional

52

errors, and the injection of basic (instead of conditional) errors. We will demonstrate that

this leads to improved performance over the naive extension of PROOFS.

First, we define two equivalence relations on conditional errors. Two conditional errors
are PS-equivalentwith respect to the current vector iff the present states of the
corresponding erroneous machines are identical. Two conditional error® SB&-
equivalentwith respect to the current vector, iff they are derived from the same basic error
and the present states of the corresponding erroneous machines are identical. The two
equivalence relations define a hierarchical partition on the set of conditional errors; PSBE-
equivalence refines the partition defined by PS-equivalence. CESIM maintains the set of

undetected errors in partitioned form.

We redefine the activity criterion of PROOFS as follows: A conditional erracts/e
for the current vector iff 1) its condition holds in the erroneous circuit, and 2) the
corresponding basic error is excited in the erroneous machine for the current vector, and 3)

that basic error is sensitized through the first two levels of logic.

The inner loop 1.4 of PROOFS (Figure 3.2) that iterates over individual active faults is
replaced in CESIM, outlined in Figure 3.3, by one that iterates over sets of PS-equivalent

conditional errors:

Given is a sef; of undetected PS-equivalent conditional errors, we process this set of
errors for the current vector as follows. First, we simulate the erroneous maefitheno
errors injected, starting from the present state associatedSyitar the current vector
(steps 2.3.1 and 2.3.2 of Figure 3.3).

For each conditional error i8;, we check if it is active. Activation is determined by
three conditions (see above). Conditions 2 and 3 only depend on the basic error, and hence
are identical for all PSBE-equivalent errors. We therefore check conditions 2 and 3 first
(one check for each class of PSBE-equivalent errors). Only if both conditions hold do we

have to check condition 1 (one check per individual conditional error). Note that lines

1. Note that CESIM uses a single copy of the circuit structure but associates two values with
each signal, one corresponding to the error-free machine, the other to an erroneous machine. Hence
by simulating theerroneous machingre mean simulating the circuit using the setesfoneous
values

53

CESIM((circuit, errorList, testVectorSequence)

1. U = errorlist /* hierarchically partitioned set of undetected errors */
2. while (vectors left) {

2.1 read next vector

2.2 simulate good circuit

2.3 for each se§; of PS-equivalentontional errors it {

23.1 add the erroneous present-state events

2.3.2 simulate the erroneous machine (no errors injected)
233 partitionS, into an active and an inactive subgetandD, resp.
2.3.4 if error effect is exposed {

234.1 drop all errors iD

235 }

2.3.6 else{

2.36.1 save next state fDr

2.3.6.2 inserD in nextU

2.3.7 }

2.3.8 for each se§, of PSBE-equivalentonditional errors i {
2.38.1 inject the corresponding basic error

2.3.8.2 add the erroneous node events

2.3.8.3 simulate the erroneous circuit

2.3.8.4 if basic error is detected {

2.38.4.1 drop all errors i,

2.3.85 }

2.3.8.6 elsef

2.38.6.1 save the erroneous next stat&jor

2.3.8.6.2 insers, in nextU

2.3.8.7 }

2.3.8.8 remove the error

2.3.9 }

2.4 }

25 U =nextU

3. }

Figure 3.3: CESIM error simulation algorithm for conditional errors

appearing in the condition of a conditional error are not part of the transitive
combinational fanout of the basic error. Therefore, the activation conditions can be
evaluated using the values computed in step 2.3.2. This partBionso a subsef of the

active conditional errors, and a subBedf dormant (not active) errors (step 2.3.3).

If any outputs computed in 2.3.2 differ from those of the good circuit (step 2.2) all
errors inD are detected and can be dropped. Otherwise, we record the erroneous next state

corresponding t®, and inserD into thenexty the set of undetected errors for the next

vector.

54

For each se§, of PSBE-equivalent errors i, we inject thebasicerror corresponding
to S,, apply the erroneous present state correspondiri,tand simulate the erroneous
circuit. If any outputs differ from those in the good circuit, all errorsSnare dropped.

Otherwise, we record the erroneous next stat&faand insers, into nextU

Example. Figure 3.4 illustrates CESIM. Consider sets of conditional errors derived
from three basic errors; ¢, , angy . Initially, the corresponding erroneous machines
are all in the same present state, namely the unknown s%ate . The initial PS-partition has
a single class, which is further partitioned with respect to PSBE-equivalence. First, the
error-free machine is simulated for the first vector; the next sta:t;é is . This allows us to
separate those conditional errors that are active (shaded in the figure) for the first vector
from those that are not. For the dormant errors no further work is required: none of them is
detected, and the next state of the corresponding erroneous mach'sies is . For each
PSBE class that contains active conditional errors, the correspoitdisig error is
injected and the erroneous circuit is simulated for the current vector. In the example, none
of these errors is detected, and the next staﬁes Sénd are distinct. This process is
repeated for the next vector. In the example, the active errors in PSBE(sbs@ are
detected by the second vector; all other errors remain undetected. Note that there is a one-
to-one correspondence between a single transition in the state transition diagram in
Figure 3.4 and a circuit simulation step in the algorithm (steps 2.2, 2.3.2, or 2.3.8.3 in
Figure 3.3).

Analysis. CESIM minimizes the overall computational cost by exploiting PS- and
PSBE-equivalence of conditional errors. We now analyze the algorithm’s complexity. The
two major components of the cost of one iteration of the top-level loop (step 2) are the
simulation cost of steps 2.2, 2.3.2, and 2.3.8.3, and the patrtition cost of step 2.3.3. The
partition cost is proportional to the number of conditional errors for which we have to
check activation condition 1, which is typically a small fraction of the total number of
conditional errors. The event-driven simulator is called as many times as there are PSBE
partition classes on all sefs this is a fraction of the number of PSBE partition classes of
U. In summary, the cost of one iteration has one component with complexity sublinear in

the size of the error list (partition cost), and a second component proportional to the size of

55

(pe) (98) () (e) (8 (&) () (58 (8)

1
0 So
So —
N
S
~. - '\\\>—</"’ %d
S1 ./& n \
1
— (Si’ e]_) >2<*m N
S 2 2
\< — (Sl’ el) (Sl’ 63)
/ \\\m
1 2
S; (S5 €) &)
, ©
BN \ — (s5)
undetected errors undetected errors undetected errors
a) L
s
2
lfrldggegtf:d lfrldggegt\ed lfrldggegt\ed — (S5 €)
\

detected errors

b) detected

Figure 3.4: Example execution of CESIM for a 3-vector test sequence: a) PS- and
PSBE-partitions of errors, b) corresponding state transitions

56

the circuit and the product of the number of basic errors and the number of distinct states
(simulation cost). In our experiments, we observed that 90% of the execution time is due
to partitioning, while only 10% is due to simulation. The algorithm requires maintaining

both partitions (PS and PSBE) on the set of undetected errors. All partitions are

implemented using hash tables, which allow for constant time insertions of error sets.

Initially, all errors are undetected and the corresponding erroneous machines all start
from an unknown present state. Hence all errors are PS-equivalent initially, and all errors
derived from the same basic error are PSBE-equivalent. In the partition step (2.3.3), the
number of error sets (PSBE equivalence classes) may increase. The worst case occurs
when 1) neitheA nor D is empty, 2) neither of them is detected, and 3) the next states
generated in steps 2.3.8.3 and 2.3.2 are all distinct. For this case, the number of error sets
can double in a single iteration of step 2, leading to an exponential growth in the number
of vectors. However, the total number of PSBE-equivalence classes can never exceed the
total number of individual conditional errors we started with. Our experimental results

(see below) show that, in practice, the number of error sets remains fairly constant.

Optimizations. As in PROOFS we take advantage of the word-level parallelism of the
host computer; hence multiple iterations of 2.3.2 and of 2.3.8.3 are executed in parallel. To
further reduce execution time, static dominators [Nier9l1a] could be used to identify

redundant errors during a preprocessing step.

Experiments. We used the ISCAS’89 benchmarks to evaluate the performance of
CESIM. First, we generated test sequences for SSL faults using HITEC [Nier91b,
Nier9la]. We then error-simulated these test sequences using CESIM for CSSLO and
CSSL1 errors. The error list for CSSLO errors is identical to the collapsed SSL fault list.
The CSSLL1 error list was constructed as follows. For each CSSLO error, we considered a
maximum of 500 lines to derive CSSL1 errors. The smaller circuits have fewer than 500
lines, so every line in the circuit is considered as condition line. This leads to a maximum
of 1000 CSSL1 errors per CSSLO error. However, some CSSL1 errors are rejected because
their condition is part of the transitive fanout of the error site. A more detailed description

of the experiments is given in Appendix B.

57

102
10t | .
0
o 0
g 100 F E
(0] F
>
Q
£ 3
-1
z 107¢ E
O F
102} E
o CSSLO
[¢ CSSL1
]_0'3 R | A | T | R | A |
102 103 10% 10° 108 107 108

No. errors simulated

Figure 3.5: Run-time analysis of CESIM on the ISCAS’89 benchmarks

The efficiency of CESIM can best be seen by plotting the CPU time per test vector
versus the total number of errors simulated for each benchmark, as in Figure 3.5. There
are two sets of data: the first concerns CSSLO error simulation, the other CSSL1 error
simulation. The plot also shows a least square fit (linear regression) for each data set. The
execution time of CSSLO error simulation is dominated by event-driven simulation of
faulty circuits. However, when simulating the CSSL1 errors, checking whether the
condition of each CSSL1 error holds dominates the execution time. Least-square analysis
shows that the CPU time per test vector is proportional to the number of CSSLO errors to
the power 1.33. This superlinear behavior reflects the fact that those data with a larger
number of CSSLO errors correspond to larger circuits, and hence the execution time of
each event-driven simulation increases. For the CSSL1 execution time we find that the
CPU time per test vector is proportional to the number of CSSL1 errors to the power 1.13.
This near-linear behavior is because checking if CSSL1 errors are active, which is

independent of the size of the circuit, dominates the execution time.

58

0.9 +

0.8 Coverage of CSSLO errors

0.7 |-

0.6
Coverage of CSSL1 errors

0.5

Coverage

0.4

0.3

0.2

0.1

0 50 100 150 200 250 300 350 400 450 500
Test vector

Figure 3.6: Coverage of CSSLO and CSSL1 errors on s1238 by a CSSLO test set
generated by HITEC

Figure 3.5 also allows us to compare CESIM with the straightforward extension of
PROOFS for CSSL1 error simulation, which we will refer to here as CPROOFS.
CPROOFS treats CSSL1 errors the same way CESIM treats CSSLO errors. The increase in
execution time of CPROOFS for CSSL1 errors compared to the execution time of
PROOFS for CSSLO errors is therefore proportional to the ratio of the number of CSSL1
errors to the number of CSSLO errors. The figure shows the execution time of CPROOFS
for only one benchmark (s1423); the speedup for that circuit is 64. We can see that the
speedup is roughly equal to the vertical distance between the linear regression lines for
CSSLO and CSSL1 datasets. We conclude that CESIM outperforms the CPROOFS by a

wide margin.

We further analyze the behavior of CESIM for a representative circuit, s1238. This
circuit has 14 inputs, 14 outputs, 18 D-type flip-flops, 80 inverters and 428 gates.
Figure 3.6 shows the error coverage as a function of the number of test vectors applied.
The ratio of coverage of CSSL1 errors to coverage of CSSLO errors varies between 0.49
and 0.72.

59

35 T T T T T T T T T

No. of states during CSSL1 simulation
—— No. of states during CSSLO simulation

30

No. of states

15 R

10 | -

0 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Test vector

Figure 3.7: Error simulation on s1238 with CSSLO and CSSL1:
number of distinct states

Figure 3.7 shows the number of distinct states as a function of the number of test
vectors applied. For CSSLO error simulation, the number of states rapidly drops; after
vector 300 there are at most five distinct states among the present states of the remaining
undetected erroneous machines. For CSSL1 error simulation, we observe that the number
of states hovers around 20 but never becomes larger than 35 (about twice the number of

flip-flops in the circuit).

Figure 3.8 details the number of error sets occurring during the execution of CESIM.
We show both the total number of error sets, and the number of error sets in use. Both are
normalized with respect to the total number of errors. The number of error sets in use is
the number of PSBE-equivalence classes of the set of undetected@rroisop 2.3 of
Figure 3.3. The total number of error sets is the number of error sets in use plus the
number of errors sets detected by previous vectors (those error sets are dropped in steps
2.3.4.1 and 2.3.8.4.1 of Figure 3.3). For CSSLO simulation, the total number of error sets
remains constant at the number of errors, whereas the number of error sets in use drops as

coverage increases. For CSSL1 simulation we observe that the total number of error sets

60

T e I I 1
3 Total no. of CSSLO sets / no. of CSSLO errors

2]
S 101} 5
]]
d 4
= No. of CSSLO sets in use / no. of CSSLO errors |
2
(2]
S
3 102
S L i
=]
Total no. of CSSL1 sets / no. of CSSL1 errors |
1073

No. of CSSL1 sets in use / no. of CSSL1 errors

0 50 100 150 200 250 300 350 400 450 500
Test vector

Figure 3.8: Number of error sets during error simulation on s1238
with CSSLO and CSSL1 errors

increases steadily, as coverage increases. However, the number of error sets in use remains
fairly constant and hovers around the total number of basic errors, which is about 1000

times smaller than the total number of errors.

3.6 Analytical coverage evaluation of CSSL1

The first and foremost requirement for design error models is that complete test sets for
the modeled errors should also provide very high coverage of actual design errors. In this
section we analyze the detection of basic design errors by complete test sets for CSSL1
errors in gate-level circuits. LdDy be a gate-level circuit; constru€l; by injecting a

single errore; into Dy, wheree; is an instance of error mod#;. Let T; and T, be test

sets that provide complete coverage of all detectable CSSLO and CSSL1 errors,
respectively, irD,. We analyze the coverage provided by test 3gtand T, with respect

to the error model$/, proposed in [AA95]. In particular, we are interested in those error

classes covered By, but not byT,.

61

Erroneous design Error-free design
Missing gate error _ —c

Wrong input error g G
e 1 16—
G G —
Missing 2-input gate error —— G — &
—L
G G —

Figure 3.9: Some basic error types [AA95]

We use the notation introduced in [AA95], and refer the reader to that paper for further
details of the error models. Lgt= G(xy,...,X,) be a gate in the error-free circuit. A gate
substitution erroG/G’ occurs if a gates is erroneously replaced with a gage that has
the same number of inputs but is of a different type. The set of'aligut vectors of am-
input gate is divided into disjoint subsetg, Vy,...,V,,, whereV, contains all input vectors
with exactlyk 1s in their binary representationsk < n. The disjoint set¥y, i, Vai» Vodd

andV,enare defined as follows:
Vhut = Vor Vain = Vi Vodd = Vi Veven= V.
null 0 Yall n+ Yodd i :odlglmi?tn l even i :evenDDi¢0Di¢n !

The sets/uis Vai Vode andVeyenare called theharacterizing setsr C-setsof G.

Consider the following sets of CSSLO and CSSL1 errors in the erroneous circuit:

62

- E;={(1,y/0)}
.« E;={Ly/1)}

« E3={(1,%/0)]i=1...n}

e E4={(1,%x/1)]i=1...n}

* Es={(x=0,y/0) |i=1...n}
e Eg={(x=1,y/0) |i=1...n}
e E;={(x=0,y/1)|i=1...n}
e Eg={(x=1,y/1)|i=1...n}

LetT;, wherei = 1...8, be a complete test set Eyr

Single-input gate substitution errors. Gate substitution errorsGSES) involving
buffers or inverters are callesingle-input GSE. A necessary and sufficient condition to
detectG/G’ is to sensitizey. Any test inT; or T, must sensitizg and hence detec@/G’.

If both T; andT, are emptyy is not sensitizable and henG&G’ is undetectable.

Multiple-input GSE’s. Consider anultiple-input GSEMIGSE) G,AND, i.e., gateG is
erroneously replaced by an AND gate. To deté&A(ND), we have to identify the AND
gate in the erroneous circuit. Note that:

e any testinly or Tgor Tg excitesG’ for Vy

» any test inl, or T; excitesG’ for V,,yn ' Veven” Vodd

* any test inl, excitesG’ for V, _;

» any test inlg excitesG’ for Veyen! Vodd

e Tg=0
Case 1T,z U, T; # U. T, O T4 uncovers all detectabMIGSE’swith the exception of
XNOR/AND (XOR/AND) for n even (odd). Detection of this last error requires exciting
G’ for Voun B Veven(Vnuil & Vogg)- None of the error sets considered can enforce this
condition.

Case 2T, # U, T; = . T4 uncovers all detectabMIGSE’swith the exception of NOR/
AND and XNOR/AND (XOR/AND) forn even (odd). Detection of these last two errors
requires excitings’ for bothV,,,;; andVeyen(Vodd)- None of the error sets considered can

enforce this condition.

63

Case 3T, =0, Tg#z [, T, # 0. T, O Tg uncovers all detectabMIGSEswith the
exception of XNOR/AND (XOR/AND) fon even (odd)T; U T, might fail to uncover
OR/AND as well.

Case 4T, =0, Tg# 0, T; = 0. Tg might fail to detect NOR/AND and either XNOR/
AND or XOR/AND.

Case 5T, =0, Tg=0. G’ cannot be excited foVu,enl Voge T1 U T excitesG’ for each

remaining C-set.

The analysis foMIGSE’s where G’=NAND,OR,NOR,XOR,XNOR is similar to that

presented above.

We conclude that the coverage iGSEsprovided by complete test sets for CSSL1
errors is only marginally better (see case 3) than that provided by test complete test sets
for CSSLO errors.

Gate count errors. Two types of gate count errors are defined in [AA95]: extra-gate
errors and missing gate errors. Extra-gate errors are shown to be detected by any complete
test set folGSE’s Hence the same conclusions with respect to coverage by complete test

sets apply to CSSL1 errors.

It is shown in [AA95] that detection of missing gate errors requires applying either
or V,,_ ». These sets cannot be enforced using a single CSSL1 error, and hence complete
test sets for CSSL1 errors do not provide more coverage for missing gate errors than test

sets for CSSLO errors.

Input count errors. Extra input errors have been shown to be covered by any complete
test set for CSSLO errors [AA95]. The coverage for missing input errors was shown to be
only partial. A missing input error occurs when amput gate § = 3) is replaced by am(

— 1)-input gate with itsn — 1 inputs connected to an arbitrary subset of the origmal
inputs. The error detection requirements of this type of error map exactly onto those of a
CSSL1 error, except in the case of XOR or XNOR gates.

Wrong input error. A wrong input error occurs when a single gate input is connected
to the wrong signal: in the error-free circuit,= G(X4,...,X,), While in the erroneous

circuit: y = G(z, %,...,X,). A necessary and sufficient condition to detect this error is to

64

sensitizez while zandx; have opposite values. This is equivalent to detecting either of the
CSSL1 errorsx; = 0,z/0) or & = 1,2/ 1).

Missing 2-input gate error. This error occurs if the error-free circuit contains a gate
G(xq, Xo) that is completely missing in the erroneous circuit gl x;. It can be shown
that the error detection requirements for this error are equivalent to those of a CSSL1
error. For example if G=AND, the corresponding CSSL1 errorxis£ 0,y / 0). A

complete test set for CSSLO errors may fail to detect this error.

Conclusion.Complete test sets for CSSL1 errors also detect all wrong input errors, all
missing input errors on gates that are not of type {XOR,XNOR}, and all missing 2-input
gate errors; complete test sets for CSSLO errors can fail to detect these errors. For the other

error types, no increased coverage is guaranteed by complete test sets for CSSL1 errors.

3.7 Coverage evaluation using error simulation

From the analysis presented in the previous section, one could conclude that the class of
design errors that is guaranteed to be detected by a complete test set for CSSL1 errors is
very limited. In fact, most actual design errors do not fall in this class. However, as our
analytical study tries to establish properties that hold for any design, its results are
conservative. For a concrete design, complete test sets for CSSL1 errors may detect many

more design errors than those reported in the previous section.

To compare the effectiveness of two design error models, we could take an unverified
design, and generate test sets that are complete with respect to the two error models. The
test set that uncovers more (and harder) design errors in a fixed amount of time is more
effective. However, for such a comparison to be practical, fast and efficient high-level test
generation tools for our error models appear to be necessary. Although this type of test
generation is feasible, it has yet to be automated. Instead we consider test sets that were
not specifically targeted, and compute their coverage of modeled design errors as well as

of actual design errors.

65

Table 3.1: Characteristics of two modules of the DLX microprocessor implementation
Module 1: Module2:

Parameter top decode

No. of lines of code 302 263
No. of CSSLO errors 574 816
No. of CSSL1 errors 141,756 238,732
No. of restricted CSSLO errors 178 82
No. of restricted CSSL1 errors 21,864 18,788
No. of detectable actual errors 8 16

In this section we present a set of experiments whose goal is to compare different design
error models and investigate the relationship between coverage of modeled design errors

and coverage of more complex actual errors.

The test vehicle for this study is the well-known DLX microprocessor [Henn90]. The
particular DLX version considered is a student-written design that implements 44
instructions, has a five-stage pipeline and branch prediction logic. The design errors made
by the student during the design process were systematically recorded. They were
presented earlier in Chapter 2 (DLX1 in Table 2.1 and Table 2.4). Some characteristics of
two of the modules of the design are shown in Table 3.1. Moduge integrates the
different pipeline stages and contains the forwarding logic. Modat®de describes the
decode stage of the pipeline. These modules are analyzed here because 75% of all actual
errors were made within these two modules. A simplified block diagram of the design,

indicating both modules, is shown in Figure 3.10.

For these experiments, we modified the original design description to allow us to
automatically inject synthetic errors into the design. The modifications do not cause a
significant overhead during simulation and do not require recompilation of the simulator
when a new error is injected. On the other hand, this approach requires a simulation run

for each error considered.

The error models considered in this study are the CSSLO and CSSL1 models. Even for
moderately sized modules under consideration, the number of CSSL1 errors is very large;
for example, there are 141,756 CSSL1 errorstap . Given our error simulation
approach, the number of errors needs to be reduced to make the experiment practical. A

subset of the CSSL1 errors was selected by imposing the following constraints: 1) lines

66

top op op
BTB PC IMEM RF BTB IAR DMEM] IAR RF

[decode

T
Ll_l
C
T T
C
o
E}]

|
=
g
s

-\ - |

GC

_/

Figure 3.10: Simplified schematic of DLX implementation showing moddé&ode
andtop

considered in the condition are restricted to signals of bit-width 1, and 2) lines considered
as error sites are restricted to signals with bit width €Es of this type are referred to as
restricted CE’s This reduces the number of CSSL1 errors by about an order of magnitude.

For example, there are 21,864 restricted CSSL1 error®pn. Error simulation for

67

Table 3.2: Coverage of synthetic and actual errors by biased random tests TO-T13
Module 1: Module2:

Parameter top decode
CSSLO errors 77% 64%
Restricted CSSLO errors 86% 93%
Restricted CSSL1 errors 72% 69%
Actual errors 75% 69%

restricted CSSL1 errors itop and the test set described below took 34 hours on a
HAL300 workstation; an average simulation speed of 140 simulated clock cycles per CPU

second was observed.

We developed a tool for generating random but valid assembly programs for the DLX
instruction set architecture. The tool is biased towards generating ‘interesting’ cases, such
as data dependencies, control dependencies, exceptions, and boundary data values. To
satisfy the requirement that the programs generated be valid, some structure is imposed on
the programs which limits their variety. A number of parameters allow the user to vary the
size and structure of the programs. We constructed a sequence of test programs increasing
in size and complexity. The combined execution length of the programs was 3445 cycles.

We then computed the coverage for synthetic and actual errors of the test set.

The results of error simulation are summarized in Table 3.2. A significant fraction of
CSSLO errors is not covered by the test set. The coverage of restricted CSSL1 errors is, as
expected, lower than that of restricted CSSLO errors. Figure 3.11 shows the coverage of
three error sets as a function of the number of test programs applied. The first (and
shortest) test program uncovers many easy-to-detect errors. Coverage increases slowly as
more test programs are applied. The profiles for both synthetic error models appear
similar. Both error models reveal areas insufficiently exercised by the test programs. For

instance, none of the test programs contains instructions with illegal opcodes.

Our analytical evaluation of the CSSL1 error model shows that complete test sets for
CSSL1 errors also detect a number basic errors for which complete test sets for CSSLO
errors provide only partial coverage. However, as the CSSL1 error model defines a number
of error instances quadratic in the size of the circuit, further evidence is needed to

demonstrate the model's merits for design verification. We therefore have conducted error

68

100 T T T T T T T T T T T T T T

wk [l cssLoerrors
[C] cssLierrors
80 | [] Actual errors

Coverage [%]

3 4 5 6 7 8 9 10 11 12
Test set Ti

Figure 3.11: Coverage of restricted CSSLO, restricted CSSL1, and actual errors by 14
biased random test sets TO-T13 tigp

simulation experiments in which the coverage of CSSLO, CSSL1, and actual errors by
biased random test sets is computed. The correlation between coverage of SSL errors and
coverage of actual errors is very similar to that between coverage of CSSL1 errors and
coverage of actual errors. Hence this study does not provide any grounds to justify the use
of the CSSL1 error model instead of the SSL model.

3.8 Coverage evaluation by analysis of actual errors

To show the effectiveness of a verification methodology, one can apply it and a competing
methodology to an unverified design. The methodology that uncovers more or harder
design errors in a fixed amount of time is more effective. However, for such a comparison
to be practical, fast and efficient high-level test generation tools for the error models are
necessary. We have discussed such test generation tools in Section 3.4 but they have to be
automated. We therefore designed a controlled experiment that approximates the

conditions of the discussed experiment, while avoiding the need to automate test

69

generation. The experiment evaluates the effectiveness of our verification methodology
when applied to two student-designed microprocessors. A block diagram of the

experimental set-up is show in Figure 3.12. As design error models are used to guide test
generation, the effectiveness of our design verification approach is closely related to the

synthetic error models used.

To evaluate our methodology, a circuit was chosen for which design errors were
systematically recorded during its design. Dgtbe the final, presumably correct, design.
From the CVS revision database, the actual errors were extracted and converted so that
they can be injected into the final desigy. In the evaluation phase, the design was
restored to an (artificial) erroneous st&tgby injecting a single actual error into the final
designDg. This set-up approximates a realistic on-the-fly design verification scenario. The
experiment answers the question: gii)) can the proposed methodology produce a test
that determine® to be erroneous? This is achieved by examining the actual eridy in
to determine if a modeled design error exists thatdminatedoy the actual error. LdD,
be the design constructed by injecting the dominated modeled ety Band letM be the
error model that defines the dominated modeled error. Such a dominated modeled error
has the property that any test that detects the modeled erfy atso detects the actual
error in D;. Consequently, if we were to generate a complete test set for every error
defined onD4 by error modeM, Dywould be found erroneous by that test set. Note that
the concept of dominance in the context of design verification is slightly different than in
physical fault testing. Unlike the case with the testing problem, we cannot remove the
actual design error fro, before injecting the dominated modeled error. This distinction
is important because generating a test for an error of omission, which is generally very

hard, becomes easy if givey instead oD;.

The erroneous desidgn, considered in this experiment is somewhat artificial. In reality
the design evolves over time as bugs are introduced and eliminated. Only at the very end
of the design process, is the target circuit in a state where it differs from the final d&gign
in just a single design error. Prior to that time, the design may contain more than one

design error. To the extent that the design errors are independent, it does not matter if we

70

Design and debug Evaluation of verification methodology

Debug byl — — —
designer

Design error
model

Inject Dy ‘ D,

; Inject
single A
actual modeled —4x")

error error

Simulate . Testfor Simulate

collection | modeled
Actual error | l error
database |
* Actual error [Expose Expose
A Modeled error | actual error modeled error

Figure 3.12: Experiment to evaluate the proposed design verification methodology

consider a single error or multiple design errors at a time. Furthermore, our results are

independent of the order in which one applies the generated test sequences.

We implemented the preceding coverage-evaluation experiment for two small but
representative designs: a simple microprocessor and a pipelined microprocessor. We

present our results in the remainder of this section.

A pipelined microprocessor. Our first design case study considers the well-known
DLX microprocessor [Henn90]. The particular DLX version considered is a student-
written design that implements 44 instructions, has a five-stage pipeline and branch
prediction logic, and consists of 1552 lines of structural Verilog code, excluding the
models for library modules such as adders, registerfiles, etc. The design errors committed
by the student during the design process were systematically recorded using our error

collection system.

For each actual design error we painstakingly derived the requirements to detect it.
Error detection was determined with respect to one of two reference models

(specifications). The first reference model is an ISA model that is not cycle-accurate: only

71

Erroneous design D, Correct design D
— Y3 Y3
xo Mo i Y2 xo M1y 0 Y2
X1 > Y1 X2 Y1
X2 X1
SO S1 i
1 0
S1,S0 Y1 Y2Y3 S1,S0 Y1 Y2Y3
00 X0 X0 00 X0 X0
01 X1 X1 01 X1 X0
10 X2 X2 10 X2 X2
11 X2 X2 11 X1 X2

Figure 3.13: Example of an actual design error in our DLX implementation

the changes made to the ISA-visible part of the machine state, that is, to the register file
and memory, can be compared. The second reference model contains information about
the microarchitecture of the implementation and gives a cycle-accurate view of the ISA-
visible part of the machine state (including the program counter). We determined for each
actual error whether it is detectable with respect to each reference model. Errors
undetectable with respect to both reference models may arise for the following two
reasons: (1) Designers sometimes make changes to don't care features, and log them as
errors. This happens when designers have a more detailed specifications (design intent) in
mind than that actually specified. (2) Inaccuracies can occur when fixing an error requires

multiple revisions.

We analyzed the detection requirements of each actual error and constructed a modeled
error dominated by the actual error, wherever possible. One actual error involved multiple
signal source errors, and is shown in Figure 3.13. Also shown are the truth tables for the
immediately affected signals; differing entries are shaded. Error detection via fghout
requires settindsl =1, 0 =1, (X1 # X2), and sensitizingyl. However, the combination

(S1 =1,90 =1) is not achievable and thus error detection¥ias not possible. Detection

72

Table 3.3: Actual design errors and the corresponding dominated modeled errors for DLX

Actual errors Corresponding dominated modeled errors
Category ISA ISAb Tota] INV SSL BSE CSSL1 CBOE CSSL2 Unknown
Missing instance 8 2 14 0 2 0 6 1 0 1
Wrong signal source 9 2 11 1 4 5 1 0 0 0
Complex 3 0 3 0 3 0 0 0 0 0
Inversion 2 3 3 0 0 0 0 0 0
Missing input 1 0 0 0 0 1 0 0 0
Unconnected input 3 0 3 3 0 0 0 0 0 0
Missing minterm 1 0 1 0 0 0 0 0 1 0
Extra input 1 0 1 0 1 0 0 0 0 0
Total 27 6 39 7 10 5 8 1 1 1

via Y2 or Y3 requires settin@l = 0,0 = 1, (X0 # X1), and sensitizing2 or Y3. However,
D =1 blocks error propagation vi&g2 further downstream. Hence, the error detection
requirements areé8l = 0,0 =1, X0 # X1), and sensitiziny3.

Now consider the modeled err&; = SO s-a-0 inD;. Activation of E; in D1 requires
S1 =0, D =1. Propagation requiresX@ # X1), and sensitizingY1l, Y2 or Y3. As
mentioned before0 = 1 blocks error propagation vi€. But asE; can be exposed viél
without sensitizingy3, E, is not dominated by the given actual error. To ensure detection
of the actual error, we can conditi® s-a-0 such that sensitization8 is required. The
design contains a signpimp_to_reg_instthat, when set to 1, blocks sensitizationYdf,
but allows sensitization 0f3. Hence the CSSL1 errgunp_to_reg_inste 1, D s-a-0) is

dominated by the actual error.

The results of this experiment are summarized in Table 3.3. A total of 39 design errors
were recorded by the designer. The actual design errors are grouped by category. ‘Missing
instance’ and ‘wrong signal source’ errors account for more than half of all errors. The
column headed ‘ISA’ indicates how many errors are detectable with respect to the ISA-
model; ‘ISAb’ lists the number of errors only detectable with respect to the micro-
architectural reference model. The sum of ‘ISA and ‘ISAb’ does not always equal ‘Total’;
the difference corresponds to actual errors that are not detectable with respect to either

reference model. The remaining columns give the type of the simplest dominated modeled

73

error corresponding to each actual error. Among the ten detectable missing instance errors,
two dominate an SSL error, six dominate a CSSL1 error, and one dominates a CBOE. For

the remaining one, we were not able to find a sufficiently simple dominated modeled error.

A conservative measure of the overall effectiveness of our verification approach is given
by the coverage of actual design errors by complete test sets for modeled errors. From
Table 3.3 it can be concluded that for this experiment, any complete test set for the inverter
insertion errors (INV) also detects at least 21% of the detectable actual design errors. Any
complete test set for the INV and SSL errors covers at least 52% of the actual design
errors. If a complete test set for all INV, SSL, BSE, CSSL1 and CBOE is used, at least

94% of the actual design errors will be detected.

A simple microprocessor.Al-Asaad [VC98] performed a similar experiment for the
Little Computer 2 (LC-2) [Post96a], a small microprocessor of conventional design used
for teaching purposes at the University of Michigan. It has a representative set of 16
instructions which, are a subset of the instruction sets of most current microprocessors. To
serve as a test case for design verification, behavioral and RTL synthesizable Verilog
descriptions for the LC-2 were designed. The behavioral model of the LC-2 consists of
235 lines of behavioral Verilog code. The RTL design (implementation) consists of a
datapath module described as an interconnection of library modules and a few custom
modules, and a control module described as an FSM with five states. The implementation
comprises 921 lines of Verilog code, excluding the models for library modules such as
adders, register files, etc. A gate-level model of the LC-2 can thus be obtained using logic
synthesis tools. The design errors made during the design of the LC-2 were systematically

recorded using our error collection system (Chapter 2).

The actual design errors in both the behavioral and RTL designs of the LC-2 were
analyzed, and the results are summarized in Table 3.4. A total of 20 design errors were
made during the design, of which four are easily detected by the Verilog simulator and/or
logic synthesis tools, and two are undetectable. The actual design errors are grouped by
category. The columns in the table give the type of the simplest dominated modeled error
corresponding to each actual error. For example, among the four remaining wrong-signal-

source errors, two dominate an SSL error and two dominate a BSE error.

74

Table 3.4: Actual design errors and the corresponding dominated modeled errors for LC2

Corresponding dominated
Actual errors
modeled errors

Category Easily Unde- Un-
Total detected tectable SSL BSE CSSLI known
Wrong signal source 4 0 0 2 2 0 0
Expression error 4 0 0 2 0 1 1
Wrong bus width 3 3 0 0 0 0 0
Missing assignment 3 0 0 0 0 2 1
Wrong constant 2 0 0 2 0 0 0
Unused signal 2 0 2 0 0 0 0
Wrong module 1 0 0 1 0 0 0
Always statement 1 1 0 0 0 0 0
Total 20 4 2 7 2 3 2

We can infer from Table 3.4 that most errors are detected by tests for SSL errors or
BSEs. About 75% of the actual errors in the LC-2 design can be detected after simulation

with tests for SSL errors and BSEs. The coverage increases to 90% if tests for CSSL1 are

added.

3.9 Conclusions

Unlike the case with other simulation-based design validation methodologies, we use
design error models to direct test generation. We have identified four key requirements
that error models should satisfy to be useful for design validation: 1) complete test sets for
the modeled errors should also provide very high coverage of actual errors, 2) the error
models should be amenable to automated test generation 3) the error models should be

amenable to error simulation, and 4) the number of modeled errors should be sufficiently

small.

Based on the error data presented in the previous chapter, we have proposed three
classes of design error models: basic, extended and conditional design error models. We
have analyzed how well each error model satisfies the four requirements. The extended

error models were found too difficult for automated test generation, and have been

75

discarded on that ground. Test generation for the other two classes of models was found
similar to test generation for SSL errors. We have developed an error simulation algorithm
for conditional errors called CESIM. Our experimental results show that CESIM
outperforms a state-of-the-art fault simulation algorithm by a wide margin (a factor 34 on

average).

We conducted three studies to assess how well the error models meet requirement 1. An
analytical study of CSSL1 errors shows that complete test sets for CSSL1 errors do
provide higher coverage for common design errors in gate-level designs over test sets that
are complete for SSL errors. A second study used error simulation, and compared the
coverage of SSL, CSSL1 and actual errors on a microprocessor design. The correlation
between coverage of SSL errors and coverage of actual errors was found to be very similar

to that between coverage of CSSL1 errors and coverage of actual errors.

A final study analyzed actual errors in microprocessor designs, and investigated
whether our methodology can detect such errors. The results indicate that complete test
sets for synthetic errors provide a very high coverage of actual errors (97% for one design
and 90% for another). The results also show the conditional error models are especially
useful for detecting actual errors that involve missing logic, which are often difficult to

detect using basic errors only.

Table 3.5 summarizes our findings. Each error model is graded with respect to the four
requirements relative to the SSL model. The SSL model scores the highest on
requirements 2 and 3, since standard ATPG tools use the SSL model. The scores of the
other models reflect the effort required to either modify the design and to use standard
tools, or to modify the tools to handle the new models. Our methodology supports
incremental design validation: First, generate tests for SSL errors. Then generate tests for

other basic error types such as MSE. Finally, generate tests for conditional errors.

Our studies suggest that the CSSL1 model is a good candidate to improve on the
coverage provided by a complete test sets for SSL errors. The CSSL1 model provides a
natural extension of the SSL model; standard ATPG algorithms can easily be modified for
CSSL1; we have demonstrated efficient error simulation with CSSL1 errors. The number

of CSSL1 errors is quadratic in the size of the circuit. Although, the number of CSSL1

76

Table 3.5: Comparison of practical design error médels

Error model Req. 1: Req. 2: Req. 3: Req. 4:
Coverage Test generation Error simulation No. of instances
SSL + + + O(N)
. MSE + -- - O(N)
Basic BOE - o(N)
BSE ++ O(N%)
BDE + - - O(B.D?
CSSL1 ++ - - O(22N\d)
Conditional CBOE + O(2N?)
CSSL2 it - - O(23N%)

a.N is the number of signals in the circuit;is the average number of drivers on a tristate bus.

errors for a flattened design hierarchy is extremely large, the design hierarchy provides a
natural means to reduce the number of CSSL1 errors. If the stuck line and the condition
line that constitute a CSSL1 error are restricted to signals belonging to the same
hierarchical module the number of CSSL1 errors to be targeted during test generation is

typically small enough for practical use of CSSL1 errors.

CHAPTER 4

High-level test generation for
design verification of
pipelined microprocessors

Our design validation methodology uses design error models to direct the generation of
verification tests. In the previous chapter we presented error models suitable for design
verification and showed that test generation for these errors is similar to test generation for
SSL faults.

The area of automatic test pattern generation (ATPG) for combinational circuits is very
mature and several commercial ATPG tools are available that are able to handle very large
designs. ATPG for sequential circuits is a much harder problem [Chen96, Marc96], but
design for testability (DFT) techniques, such ssan [Abra90], greatly reduce this
complexity. Infull scan design, every register is replaced by a scan register and the
registers are linked in a chain, thereby making every register observable and controllable.

This effectively reduces the test generation problem to one for combinational circuits.

Unfortunately, DFT techniques do not apply to design verification. Unlike in physical
fault testing, the error-free design is unknown. This may seem contradictory since in logic
simulation every signal in the design can be examined. However, a signal can only be
considered observable if we can easily discern incorrect from correct values. This means
that only the signals that are part of the specification are observable. Typically these
include all primary inputs and primary output, as well as a small subset of the state
registers. The same observation applies to controllability. Logic simulators typically allow
us to override the logic driving any signal, and ‘force’ the signal to an arbitrary value. This
might give the illusion that every signal is controllable, but since most of these signals do
not appear in the specification, we cannot easily bring the specification in a state that

corresponds to that of the implementation. Hence we cannot easily verify the simulation

77

78

outcome if signals have been forced to arbitrary values. Therefore test vectors can only
specify the values of the primary inputs, and the initial state of the subset of

implementation registers that is also part of the specification.

We conclude that the test generation problem in design validation has to be solved for a
sequential circuit. Although recently significant advances have been made in the area of
gate-level sequential ATPG, designs of the size of microprocessors are well beyond the
capabilities of present methods. Most previous work in this area attempts to address test
generation for general gate-level sequential circuits. An alternative direction of research is
to restrict the class of circuits targeted. Domain-specific information about these designs
can then be exploited so that larger circuits can be handled than the general methods are
capable of. We chose a class of pipelined microprocessors as our design domain. In this
chapter, we develop a high-level test generation method for pipelined microprocessors. We
first describe a model that captures high-level knowledge about microprocessor structure.
We then develop a high-level test generation algorithm that uses this information. The
main features of the method are 1) the integration of high-level treatment of the datapath
with fully detailed treatment of the controller, 2) its “pipeframe” based iterative

organization, 3) the separation of path and value selection.

We review relevant previous work in Section 4.1. Our high-level model for pipelined
processors is presented in Section 4.2. The iterative organization of the proposed high-
level test generation algorithm is described in Section 4.3. The overall test generation
algorithm is described in Section 4.4. Sections 4.5, 4.6, and 4.7 describe the three main
components of the algorithm. We present experimental results in Section 4.8, and give

some concluding remarks in Section 4.9.

4.1 Related work

Test generation for gate-level sequential circuits

Typical test generators for sequential circuits [Abra90, Chen96] iteratively apply a test

generation algorithm for combinational circuits by using a gate-level iterative logic array

79

(ILA) model of the circuit. Kelsey et al. [Kels93] describe a test generation algorithm for
sequential circuits that does not follow the iterative structure of the ILA. For a given fault,

an estimate of the test sequence length is computed, and the circuit is unrolled over that
many cycles. The PODEM algorithm [Chen96, Goel81] is applied to the resultant circuit,
which is treated as a single combinational circuit. Because this approach only makes
decisions on primary inputs and only propagates information forward, it can result in a
more efficient search. On the other hand, the search process is performed on a much larger
and deeper circuit than in conventional approaches, hence its efficiency depends critically

on the backtracing heuristics used.

Ghosh et al. [Ghos91] decompose the test generation problem into three subproblems:
combinational test generation, fault-free state justification, and fault-free state
differentiation. By performing state justification and differentiation in the fault-free

machine, their algorithm can re-use a significant amount of computation.

High-level test generation

Lee and Patel describe a high-level test generation method for microprocessors in
[Lee92a, Lee94]. They model a processor as an interconnection of high-level modules.
During a preprocessing step they symbolically simulate each instruction of the instruction
set to derive the control behaviors corresponding to each instruction. These control
behaviors can be seen as ‘configurations’ of the processor (datapath) over a number of
clock cycles (as many as the corresponding instruction takes to execute). The proposed
test generation method has two phases: path selection and value selection. During path
selection, a sequence of instructions is assembled so that a set of paths is sensitized to
activate the targeted error and propagate its effect. These paths may span multiple clock
cycles and may require multiple instructions. The task of computing the concrete values
that need to be applied to the primary inputs is delegated to the value selection phase. This
second problem can be formulated as a system of non-linear equations. The variables in
this problem correspond to the signals in the datapath (in multiple timeframes). The
equations correspond to the modules and interconnections of the datapath. They express

the relationship between the input and output signals, as defined by the module’s

80

functionality. Lee and Patel propose a simple discrete relaxation method for value
selection. The reason why such a simple method works well is that path selection tries to
avoid selections that may lead to conflicts during value selection. A limitation of Lee and

Patel's method is that it explicitly enumerates the control behaviors of the processor by
considering every instruction in the ISA. Such an enumeration is no longer possible for

pipelined processors, as instructions do not execute in isolation.

Hansen and Hayes describe a high-level test generation algorithm, called SWIFT, in
[Hans95b]. SWIFT can guarantee low-level fault coverage through the use of a functional
fault model, described in [Hans95a]. SWIFT uses high-level information about the circuit
in the form a set of (multicycle) operations that the circuit can execute. Given a
precomputed test for a module, SWIFT first constructs a partially-ordered set of
operations needed to apply that test to the module and propagate the fault effects to the
system outputs. It then proceeds with detailed low-level processing (scheduling).
Although the results in [Hans95b] are very promising, it is not clear how to derive needed

high-level information automatically.

Iwashita et al. [lwas94] describe a technique for generating instruction sequences to
excite given “test cases”, such as hazards, in pipelined processors. Test cases are mapped
onto states of a reduced FSM model of the processor. The technique performs implicit
enumeration of the reachable states to synthesize the desired test sequences. Some
limitations are that the reduced FSM model is derived manually, and that no details are

given on the effect of the abstraction on the types of test cases that can be handled.

Chandra et al. [Chan95] present a sophisticated code generator for architectural
validation of microprocessors. The user provides symbolic instruction graphs together
with a set of constraints; these compactly describe a set of instruction sequences that have
certain properties. The system expands these templates into test sequences using
constraint solvers, an architectural simulator, and biasing techniques. A similar work is
discussed in [Hoss96]. As these techniques operate on the microarchitectural specification
of the design only, they are not suitable for generating tests for structural errors in the

implementation.

81

Formal verification

Bhagwati and Devadas [Bhag94] describe an automated method to verify pipelined
processors with respect to their ISA specification. The method assumes that a mapping
between input and output sequences of the implementation and the specification is given,
and that the implementation can be approximated kydefinitet FSM. The equivalence

of the two machines is checked by symbolic simulation. The assumptions made about the

implementation and the lack of abstraction limit the applicability of this approach.

Burch and Dill [Burc94] propose a method for microprocessor verification based on
symbolic simulation and the use of a quantifier-free first-order logic with uninterpreted
functions. The method requires manually generated abstract models of both the
implementation and the specification in terms of uninterpreted functions. Symbolic
simulation of the models is used to construct the next-state functions. The verification
problem is turned into checking the equivalence of the next-state functions of

implementation and specification.

Levitt and Olukotun [Levi97] develop a methodology for verifying the control logic of
pipelined microprocessors. The datapath is modeled using uninterpreted functions.
Verification is performed by iteratively merging the two deepest stages of the pipeline.
After each step a check is made to see whether the newly obtained pipeline is still
equivalent to the previous one. The equivalence is proven automatically using induction
on the number of execution cycles. To achieve the high degree of automation, the
approach of [Levi97] uses high-level knowledge about the design, such as the design

intent of a bypass.

Hybrid verification techniques

A class of hybrid verification techniques [Geis96, Gupt97, H095, Ho96b, Lewi96,
Moun98] that combine simulation with formal verification has recently been proposed.
These techniques construct a reduced FSM model of the implementation. Test sequences

are then generated to achieve full coverage on the reduced FSM model. A non-trivial

1. Ak-definite FSM is one that can only remember thekagputs.

82

problem with these methods is transforming the test sequences so that they can be applied
to the implementation. The reduced FSM model may abstract part of the design by
replacing the interface signals by primary inputs. The transformed test sequences can only
specify primary inputs to the specification; these need to justify the abstracted interface
signals specified in the original test sequence. Ho et al. [H095] avoid the transformation
problem by ‘forcing’ the desired interface signals onto the implementation. A serious
drawback of this approach is that the simulation outcome needs to be verified manually.
Moundanos et al. [Moun98] use conventional gate-level ATPG to transform test
sequences. Lewin et al. [ILewi96] first map the test sequences onto sequences of
architectural constraints; these constraints are then used by an architectural test generator
[Ahar95] to produce test sequence for the implementation. The implementation and the

specification are then simulated for the transformed test set.

Discussion

Our method uses high-level knowledge about pipeline structure similar to that used in
Levitt and Olukotun’s work [Levi97]. Among all related work, Lee and Patel’s work
[Lee92a, Lee94] is closest to our work. Our method borrows from Lee and Patel the
following ideas:

» Separation of path and value selection

» Path selection aimed at avoiding value conflicts

* The use of discrete relaxation for value selection

Our method goes beyond Lee and Patel’s in the following:

» Our method handles pipelined microprocessors.

» The iterative organization of our method is based on what we call pipeframes
instead of timeframes, which leads to a reduction of the decision space, as we shall
see.

* Our method uses a new formulation of the path selection problem. This formulation

allows ATPG to be one with a PODEM-like directed search in a flexible manner.

83

4.2 Pipelined processor model

In this section we introduce a new model for pipelined processors. The purpose of the
model is to facilitate a more efficient test generation method by identifying high-level

information about the structure of pipelined microprocessors.

An important element of microprocessor structure is the distinction betdatrand
control. The merits of treating datapaths and controllers differently have been recognized
in many other domains such as high-level synthesis, formal verification, etc. In today’s
design methodologies, controllers are often described by behavioral HDL code (case
statements). These descriptions are then synthesized into a gate-level or transistor-level
netlist either by tools or by hand. Most signals appearing in controller descriptions are
unstructured binary signals. Controllers are essentially sets of interacting finite-state
machines. Datapaths, on the other hand, process structured data words and so can be
represented at a higher level than the gate level, using high-level, multibit modules and
buses. This high-level representation drastically reduces the size of the design

representation.

From a verification point of view, it is also important to distinguish machine state that is
visible to the specification, typically an instruction set architecture (ISA) model, from
machine state which is specific to the implementation. In pipelined microprocessors the
pipeline registers contain the implementation-specific machine state. Much of the
complexity of these processors stems from the interaction between instructions in the
pipeline. If instructions were to interact only through the ISA-visible part of the machine

state, they could be treated independently for verification test generation.

However, instructions also interact through the implementation-specific machine state,
and this is intimately related to pipeline hazards. Hennessy and Patterson [Henn90]
describe three standard techniques for dealing with pipeline hazalléng, squashing
and bypassing they are illustrated in Figure 4.1. The signals that control these

mechanisms are of interest because they reveal the essence of instruction interaction in the

84

stagei stagei [

/ \ 7

! / 0 A
5 ass s uash L
P > o 1/ q 01

4

-

\ / \ / \ |:|:|— /

from stage j

stagei

Figure 4.1: Instruction interaction mechanisms: a) bypassing, b) squashing, c) stalling

pipeline. They provide a means to characterize the control state of the pipeline in a much

more compact way than by considering all the instructions in the pipeline simultaneously.

Based on these considerations and on the analysis of actual designs, we have developed
the model for pipelined processors shown in Figure 4.2, which exposes high-level
knowledge that can be used during test generation. We assume that data-stationary control
[Kogg77] is chosen as implementation style of the controller, in which case control
‘follows’ the data through the pipeline providing the control signals at each stage as
needed. Such controller implementations mimic the pipeline structure of the datapath. The
datapath and controller both exhibit pipeline structure and interacttatasand control
signals. The signals at each stage are classified as:

* primary: interfacing with the environment

» secondaryinterfacing with the stage’s pipeline registers

* tertiary: interfacing with another pipeline stage

The tertiary signals are precisely the signals needed to describe essential instruction
interaction. Typical examples of tertiary signals in the controller are squash and stall;
typical examples of tertiary signals in the datapath are bypasses. Using the model requires
no more than the appropriate labeling of control signals, status signals, and pipe registers,

along with appropriate high-level modeling of the datapath. The block labeled ‘global

85

DPIi DPOiI
. DATAPATH
Stage i
DPR(i-1) 4 _ DPRi
DSili DSOi
|:|7_. (Comb.) ——
. |datapath ;
from other _ﬂ'. logic DTOI to other
stages stages
STSi CTRLI
. CONTROLLER
~ .
Stage i
CPR(i-1) CPRi
D CSili Comb. CSOi
logic to other
. stages
I crsi
Global
| comb.
from other ——= |ogic
stages —»
CPOi CPIi
Dxx: data signal STS: status signal
Cxx: control signal CTRL: control signal

XPI (PO): primary input (output) DPR: data pipe register
xSI (SO): secondary input (output) CPR: control pipe register
XTI (TO): tertiary input (output) CTS: control tertiary signal

Figure 4.2: Pipelined microprocessor model

combinational logic’ generates the CTS’s. By isolating this block, the number of tertiary

signals can be minimized.

Our test generation method attempts to decouple decisions concerning the interaction of
instructions from those concerning only a single instruction. For example, a decision of
the former type might be whether the current instruction needs to be stalled by the
previous instruction. Such a decisions allow us to defer deciding upon the particular

opcode and operand registers of that previous instruction. This is in contrast to an

86

approach where the search is performed in the flat product space of all instructions in the
pipeline. In the next section we will show how the tertiary signals can be used to decouple

decisions on instruction interaction from those that concern instructions in isolation.

4.3 Pipeframe model

Conventional test generation algorithms for sequential circuits use the ILA model and
iteratively apply test generation techniques for combinational circuits in one timeframe. In
this section we describe a different organizational model specific to pipelined processors.
This pipeframe organizational model exploits high-level knowledge about pipeline
structure that is captured with the processor model. The advantages of this approach are a

reduction of the search space and the elimination of many conflicts.

Consider the application of a conventional test generation algorithm to a pipelined
controller circuit without a datapath. Figure 4.3 shows a three-stage pipelined d@guit.
C, and C5 are combinational logic corresponding to the three pipe stages. The global
combinational logidCy sources all CPI's and all CSI's. In order not to clutter the figure,
only the CPI's sourced b§, are shown, and the CPO'’s produceddhave been omitted.
The iterative logic array model for this circuit is shown in Figure 4.4a. If PODEM is used
as the combinational test generation algorithm, the decision variables are the CPI's and the
CSI's in each timeframe. The decision space to be searched during each iteration is that of
the CSI's and CPI's. For the controller of pipelined microprocessors, the number of CSI’s
(state bits) is typically much larger than the number of CPI’s. This is because the primary

function of the controller is to decode the incoming instructions.

Taking into account that the circuit is pipelined and performs several concurrent, and to
a large extent independent, decodes, a different organization of the search, one that is
directly in terms of the CPI's, is desirable. When the global control IQjits absent, it is
easy to see how this can be accomplished. In this case, the iterative array model consists of
unconnected (horizontal) slices spanning a number of timeframes equal to the number of
pipe stages. These horizontal slices will be referred tpipsframesit can be seen that

the size of the circuit to be considered is exactly the same as that in the conventional time-

87

Figure 4.3: Pipelined controller

frame based search, although the depth is greater. However, in the new approach conflicts

due to invalid (unreachable) states cannot arise as decisions are made only on the CPI’s.

In general, there is interaction between pipestages through the global combinational
logic Cy. To organize the search by pipeframe, the tertiary sig@al§, i = 1, ... 3 need
to be included as decision variables. The iterative array is partitioned into pipeframes by
cutting the tertiary signals, as shown in Figure 4.4b. A complication is that a pipeframe
directly interacts with a number of other pipeframes via shared primary inputs and via the
tertiary signals feeding the pipeframe. In the conventional organization, each timeframe
depends directly only on the previous timeframe. To cope with this complication, multiple
pipeframes need to be considered simultaneously during the search. The set of pipeframes
directly relevant to pipeframe is indicated by window in the figure. The linking of
pipeframes via the tertiary signals is shown in Figure 4.5. It can be seen that the tertiary
signal CTS to pipeframei + 2 depends on CPI's and CTS’s to pipeframes+ 1 and

i + 2. (In order not to clutter the figure the indices are omitted.)

Consider g-stage pipelined controller with a total of CPI's,n, CSI's per pipestage,
and ng CTS’s per pipestage. In the usual timeframe organization, therejatep.n,
decision variables per timeframe,n, of which need justification. In our pipeframe
approach, there are; + p.nz decision variables per pipeframp,ng of which need
justification. Our approach is targeted at the circuits wi§lx< n,. For such circuits the
following can be observed:

» The size of the search space in the pipeframe organization is significantly smaller

than that in the usual timeframe organization. For example in the DLX

)
) :

Time- m

@ frame i frame i+1

c2 c3
@
&s
, Lc2 c3
Cg
c2

-

Figure 4.4: Iterative array of pipelined controller: a) conventional organization;
b) alternative organization

89

re—e)
P ;

\Lg)

N
CPipeframe i+1 >

Figure 4.5: Composite circuit dealt with in pipeframe organization

implementation that will be discussed in Section 4.8, there are 95 CSlI's per
timeframe but only 43 CTS'’s per pipeframe. The size of the circuit to be dealt with

in the pipeframe organization is comparable to that in the conventional
organization, although its depth is greater. This can be seen in Figure 4.5.

» For some pipelined controllers the pipeframe approach does not reduce the search

space. This is the case when GRf@pends on C§{); (referring to Figure 1) for

every pipestage. Circuits in which every pipe stage can be stalled exhibit this
property. For such circuits, all CSI's are also CTS’s, the pipeframe approach

reduces to the usual timeframe approach.

4.4 Test generation algorithm

In this section we give an overview of our high-level test generation algorithm for design
verification of pipelined microprocessors. It is targeted at localized errors in the datapath,
such as the SSL and CSSL errors described in Chapter 3. The algorithm follows the
iterative pipeframe organization described in the previous section and decomposes the test
generation problem into three subproblems:

» P;: path selection in the datapath,

» P, value selection in the datapath, and

» Pj3:justification of control signals in the controller.

The procedures that sol\®,, P,, andP3; are DPTRACE DPRELAX andCTRLJUST

respectively. The interaction of the three subproblems is illustrated in Figure 4.6. A

90

flowchart of the overall algorithm is presented in Figure 4.7. The overall algoiiGiis

built on top of the directed searctfCTRLJUST for solving P;. DPTRACE selects
justification and propagation paths in the datapath for activating and exposing the error.
Part of the solution produced IBPTRACHS a set of objectivess(v), wheresis a CTRL

signal andv 0 {0, 1}. These objectives are used to guide the search performebQy

DPRELAXuses discrete relaxation to determine appropriate data values.

DPTRACE computes an initial path selection and the corresponding set of path
objectives. CTRLJUSTmakes decisions on the CPI, CTS and STS signals, guided by the
path objectives. These decisions are implied on three fronts. First, they are implied in the
controller where they affect the CPO, CTS and CTRL signals. SedaR@iRACEchecks
whether the updated CTRL signals are consistent with the current set of justification and
propagation paths in the datapath. If there is consistency, no further action is required.
Otherwise DPTRACEcomputes a new set of justification and propagation paths, taking
into account the current values of the CTRL lines. The objectives on the CTRL lines are
updated accordingly. Only iDPTRACE fails to derive a set of justification and
propagation paths wiDPTRACEcauseT G to backtrack. The third aspect of implication
involves invokingDPRELAXto compute data values. Failure to converge will calGeo
backtrack. If no inconsistencies arise from the implication step, we check whether the
reset state has been reached. If so, and if all objectives are satisfied, we return successfully

with a test. The three subalgorithms are described in the remainder of this section.

4.5 DPTRACE: path selection in datapath

The task of the path selection algoritHbiPTRACEIs to determine a set of justification

and propagation paths in the datapath to activate the error and expose its effect at a
primary output of the datapatPTRACEdoes not consider the values that need to be
justified and propagated. This task is delegate@RRELAX This divide-and-conquer
approach reduces the problem size significantly, but may fail to find a solution, even if the

problem is feasible.

91

Controller

pipeframe (i-1)

CPO
| pipeframe (i)
CPI

pipeframe (i+1)

STS CTRL

CTRLJUST:
justification of CTRL

path
objectives
CTRL
justification

Datapath

c
e
®
Q
pipeframe (i) 3
DPTRACE: path selection 2
@)
1
8'h27
8'hFF
pipeframe (i)

DPRELAX: value selection

Figure 4.6: The three parts of the test generation algorithm and their interactions

We start by discussing the overall iterative organization of DPTRACE. We then present
a controllability / observability graph (COG) for analyzing the path selection problem.

This leads to a formulation that can be solved with a PODEM-like directed search.

92

DPTRACE:INIT , conflict
Create initial path selection: »(FAILURE
Generate set of pathobjectives

ok

4

CTRLJUST:IMPLY

Imply current decision conflict

in controller

ok

4

DPTRACE:IMPLY]
Check if updated CTRL conflict
signals consistent with
path selection

4

ok DPTRACE:BACKTRACK .
Find new path selection, conflict
subject to current state of
CTRL signals

ok

4

DPRELAX
If enough CTRL signals are no convergence
justified, perform discrete
relaxation on datapath

convergence -
A /
REACHED INIT. STATE? yes CTRLJUST:BACKTRACK
Check if initial state can Undo implications of current
satisfy JFrontier decision; backtrack
no conflict

4

CTRLJUST:DECIDE
Backtrace + create decision

4

(SUCCESS) (FAILURE)

Figure 4.7: Flowchart of overall test generation algorithm

93

Overall iterative organization

The overall iterative organization of DPTRACE is based on pipeframes. This organization
is illustrated in Figure 4.8 for a four-stage pipeline. Initially, only a single pipeframe, the

excitation frame, is considered when computing a set of justification paths (Figure 4.8a).
If this fails, another pipeframe is added to the COG. The process is repeated until all lines
are justified, or until a maximum number of frames has been explored. In the figure a valid
path selection is obtained after adding two pipeframes (Figure 4.8b). Next, a set of
propagation paths is computed. Again, we start with considering the excitation frame only.
If no path selection is found, but the error effect can be exposed at a DTO, another

pipeframe is added to the COG. In Figure 4.8c a complete set of paths is obtained.

Controllability/observability graph (COG)

In Lee and Patel’'s work [Lee92a, Lee94], justification and propagation paths are created
by iteratively extending an instruction sequence with one instruction. A new instruction is
chosen to minimize the remaining justification effort. This choice is among the

instructions in the ISA.

In our work, decisions are made at a finer grain during path selection. Justification and
propagation paths are created by setting individual CTRL signals. During the path
selection phase, we wish to determine a partial assignment to the CTRL signals so that the
error can be activated, and its effect can be propagated to a primary data output, by
applying appropriate values to the data primary inputs. As in Lee and Patel’'s work, path

selection is aimed at avoiding conflicts during the subsequent value selection phase.

Conflicts during value selection arise when constraints corresponding to the modules
and interconnection are violated. We can distinguish four classes of basic datapath
modulesADD, AND, MUX, andrFAN. More complex modules such asu’s are modeled as
a composition of simpler high-level modules, such as word-gates, adders, multiplexers,

etc.

94

pipeframe 0
X
a)
DPI \ pipeframe -2
DTO
pipeframe -1
DTI
pipeframe 0
pun
DPI
b)
DPI \ pipeframe -2
DTO
pipeframe -1
DTI
pipeframe 0
DPI /_D)
DTO
DTI
NG pipeframe +1
PN
DPI|__—] ~~_.|DPO
c)

Figure 4.8: Overall iterative organization of path selection

95

We define a controllability / observability graph (COG) for a sequence of pipeframes in
the ILA of the datapath. Its nodes correspond to modules in the datapath, nets in the
datapath with multiple fanout, primary inputs and outputs, tertiary inputs and outputs,
control and status signals; its edges correspond to pairs of connected ports (module
terminals) in the datapth. Note that in the ILA all (pipeline) registers have been eliminated.
The boundaries of the ILA are formed by nodes corresponding to DPI, DPO, CTRL, STS
signals, exterior CTI (driven by a pipeframe not in the sequence considered), and exterior

CTO signals (sourced by pipeframes not part of the sequence considered only).

Modules in theaDD class have one data output, and one or more data inputs. They have
the property that the output can be justified (to an arbitrary value) by controlling only a
single input, i.e., regardless of the values of the other inputs, the controlled input can be
assigned a value that will justify the output. Also, if the output is observable then every
input is observable as well. Modules in this class include the buffer, the inverter, the adder,
the subtractor, and theN)orR word gate. Predicate modules, which take twbit inputs
A andB and produce a single-bit outp¥t= A <op> B, where op> [0 {=, %, <, £, >, 2,
ADDOVF, SUBOVH, are also in theaDD class for the controllability analysis. For the
observability analysis, they are in th@D class.ADDOVF and SUBOVF compute overflow

for signed addition and subtraction, respectively.

Modules in theaND class have one data output, and one or more data inputs. In order to
justify the output (to an arbitrary value) all inputs need to be controlled. To observe an
input, the output needs to be observable and all side inputs need to be controlled. Modules

in this class include word gates suchn@KD, (N)OR, andsHIFT modules.

Modules in themux class have one data output, one or more data inputs, and one or
more control inputs. The control inputs determine which data input is selected. In order to
justify the output, the control inputs need to be assigned and the selected data input needs
to be controlled; the other data inputs are frée order to observe a data input, the output

needs to be observable, and the control inputs need to be assigned such that the requested

1. DPRELAX requires that select signals to multiplexers are set. Hence DPTRACE does not
consider justification of the output of a multiplexer by controlling all data-inputs and leaving the
select input unassigned.

96

data input is selected. This class contains modules such as multiplexers and tristate

buffers.

FAN nodes correspond to nets in the datapath that have multiple fanouts, and are the
only type of node in the graph that have more than one outgoing edeel Aode has one
incoming edge corresponding to the module driving the net, and outgoing edges to each
module that sources the neaN nodes have the property that only one fanout can be
justified by controlling the stem. Conflicts will arise if we attempt to use a stem for
different simultaneous justification problems, unless all problems request the same value
on the stem, but the concrete values are not known during path selection. Therefore, we
associate a so-callegO-selectvariable withFAN nodes to reflect this constraint. This
variable indicates which outgoing edge ‘uses’ the incoming edge for its justification, and
assumes values from {1,..n, u}, wheren is the number of outgoing edges, amdtands

for unassigned.

Note that because this analysis does not take into account the concrete values that need
to be justified, it is an approximation. Consider for example the predicate module
Y =A<B, which we classified as anDD-class module becausé can be justified by
controlling just a single input. However, there is a singular case in whieli cannot be

justified by controlling onlyA, namely forB equal to the largest positive value.

Given a COG, and aompleteassignment to its CTRL and FO-select variables ({no
values), we can easily identify potential conflicts when trying to activate an error site and
propagating the error effect. First, traverse the COG forwards in levelized order, starting
with the primary inputs, and compute the controllability of each edge, using the properties
discussed above. If the error site is controlled, we should be able to activate the error
during value selection, otherwise conflicts are likely. Next, traverse the COG backwards in
levelized order, and compute the observability of each edge. If the error site is determined
to be both controllable and observable, we should be able to activate the error and

propagate its effect to a primary output, otherwise conflicts are likely.

The path selection problem is that of findingartial assignment to the CTRL variables
and the FO-select variables of the COG, such that the error site can be controlled and

observed. A PODEM-like search with the CTRL and FO-select variables as decision

97

variables is a good starting point for an algorithm. To make the search efficient, conflicts
need to be identified as early as possible. In other words, we need to foresee conflicts that
may arise when trying to activate the error and expose its effect for the given partial
assignment to the CTRL variables. For this purpose, we have developed the following

system:

We attribute to an edge in the COG a symbolic value that encodes controllability
information. The attributeC-state assumes values from the s€i{C2, C3, C4}. The
interpretation is as follows:

» C4. TheC-state of edges that aoentrolledis C4. That is, for the current partial
assignment of CTRL and FO-select variables, the signal corresponding to such an
edge can be set to an arbitrary value by applying appropriate values to the primary
inputs. This requires that there is at least one path from a DPI to this edge, for which
the C-states of all path segments (edges) @t It also implies that all CTRL
variables in the transitive fanin of the edge are assigned.

* C3. TheC-state of edges that anet-controlleds C3. Thatis, for the current partial
assignment of CTRL and FO-select variables, the signal corresponding to such an
edge can be set to a value by applying appropriate values to the primary inputs, but
not to an arbitrary value. This also implies that all CTRL variables in the transitive
fanin of the edge are assigned.

» C2. TheC-state of edges that have unassigned decision variables in their transitive
fanin, and that can only become not-controll&8) after completing the current
partial assignment of CTRL and FO-select variableG2is

» C1. TheC-state of edges that have unassigned decision variables in their transitive
fanin, and that have the potential to become control&t) @fter completing the

current partial assignment of CTRL and FO-select variabl€X,.is

Similarly, edges in the COG are assigned symbolic values that encode observability
information. The attributeO-state assumes values from the s&l1{ O2, O3}. The

interpretation is as follows:

98

Table 4.1: InitialC- andO- values

Signal C-state O-state
DPI C4 o1
external DPO Cl O3
external DTI C3 o1
DTO C1 02
CTRL N/A N/A
STS C1 02
Other Cl o1

» 03. TheO-state of edges that are observable for the current partial assignment of
CTRL and FO-select variables@3. There exists at least one sensitized path from
such an edge to a primary output.

» 0O2. TheO-state of edges that are not observabl®zs No sensitized path exists
from such an edge to a primary output.

* Ol1. The O-state of edges that have the potential to become observable after

completing the partial assignment to the decision variabl€¥,.is

Using these value systems, we can formally state the relationship between
controllability and observability information of the incoming edges of a node and that of
the outgoing edges. We present propagation tables for a representative of each class of
modules in Figure 4.9; the bottom two tables are for a net with stanmd two fanoutyl

andy2. TheC- andO-state of terminal nodes are initialized as shown in Table 4.1.

Consider the datapath shown in Figure 4.6; the corresponding COG is shown in
Figure 4.10. The goal is to control edgd2-nl13. So far all CTRL variables are still
unassigned and one FOselect variable, that associatedh@yitias been set (to 3). As a
result of this decision, edge8—nl12 is controlled, whereas8—n9 andn8-nl10 are not-
controlled. Note that th€3 state 0fn8—nl10 propagates ta10-n1l. TheC2 value on
n10-nll will avoid setting CTRL variabl@5 to 1, which may lead to a conflict during
value selection. It can be seen that the current state is consistent with the propagation

tables of Figure 4.9.

y = ADD (X1, x2)

C(y)

C(x2)
Cl C2 C3

c4

C1
Cc2

Cc(x1) C3
Cc4

cicic
Cl C2 C2
Cl C2 C3
Cl1Cl1cC4

C1
C1
c4
c4

Yy = AND (X1, x2)

C(y)

C(x2)
Cl C2 C3

c4

C1
c2
C(x1) C3
ca

Cl C2 C2
C2 C2 C2
C2 C2 C3
Cl C2 C3

C1
Cc2
C3
c4

y=MUX2 (s, x1,x2) (=1 selectx?)

99

C(y)

u [C2if C(x1), C(x2) {C2,C3}
s C1 otherwise

0 |C(x1)

1 |Cx2)

(Y1, y2) = FAN(X)

y = ADD (X1, x2)
O(x1) o(y)
01 02 03
Cl|01 02 01
C2|01 02 01
C(x2) C3|01 02 O3
C4|01 02 O3
y = AND (X1, x2)
O(x1) oY)
01 02 03
Cl|01 02 01
C2|02 02 02
C(x2) C3|02 02 02
C4|01 02 O3
y=MUX2 (s, X1, x2)
O(x1) o(y)
01 02 03
u |0l 02 01
s 0 ({01 02 O3
102 02 02

(Y1, y2) = FAN(X)

CyD)C(y2) FOsel O(x) o(y2)
u 1 2 Ol 02 O3
Cl|CiC1l CiC2 C2C1 01|01 01 O3
C2|C2C2 C2C2 c2¢C2 O(yl) 02|01 02 O3
C(x) (C3|C3C3 C3C3 C3C3 03|03 03 03

C4[C1Cl C4AC3 C3C4

Figure 4.9.C- andO-propagation tables
Formulation

A path selection in COG consists of an assignment ofdfstate andD-state of all edges,

and of the CTRL signals to the pipeframe. A path selection is valid if it is consistent with
the C- andO- propagation tables of all nodes. Given a localized error in the datapath, the
path selection problem is that of finding a valid path selection such that the edge

associated with the error is both controllalild)and observablédgd).

100

CTRL | n4=u CTRL | n5=u
nl
DTI = n7 n9
C1
Cl Cl nl2 nl3
ppI-&4 * - c1
n6é FOsel=u & = DPO

C4

Figure 4.10: Path selection usi@gvalues

Path selections in which th€-state of CTI edges is set t€4 require further
justification. Similarly, path selections in which tii&state of CTO edges is set (03

require further propagation.

In general, consider a set of edges, called IHeontier, whoseC-state needs to be
justified toC3 or C4. Also given is a set of edges, called &drontier, which contains the
error effect. At least one line in tHe-frontier needs to be made observalid3). The path
selection problem is as follows: Given the followingJdrontier = {(e, cg) | i=1...n}
whereg is an data-edge, antg O {C3, C4}; an E-frontier! = {g | i=1...m}; a partial
assignment to the CTRL variables; determine a partial assignment to the decision
variables such that thé-state of every line in the J-frontier is justified to the specified

value, and th@®©-state of at least one line in the E-frontier is justifie®30

Directed search algorithm

The path selection problem can be solved using a directed search similar to PODEM
[Goel81, Abra90]. Pseudocode for PODEM is shown in Figure 4.11. The adaptation of

1. In design verification we use the teemnor to differentiate from the terfiault used in
physical fault testing; hendefrontier instead oD-frontier.

101

PODEM()
1. if (goal satisfied) {
1.1 return SUCCESS
2. }
3. if (goal infeasible) {
3.1 return FAILURE
4, }
5. obj — Select next objective ()
6. decision~ Backtrace(obj)
7. Imply(dec)
8. if (PODEM() = SUCCESS) {
8.1 return SUCCESS
9. Undo implications of decision
10. while (untried alternatives to decision exists) {
10.1 dec « Select untried alternative (decision)
10.2 Imply(dec)
10.3 if (PODEM() = SUCCESS) {
10.3.1 return SUCCESS
10.4 }
11. }

12. return FAILURE

Figure 4.11: Directed search PODEM

PODEM involves appropriate definition of 1) decision variables, 2) implication procedure,

3) backtrace procedure, and 4) consistency checking.

Decision variables.The decision variables in the path selection problem are:

» CTRL variables, which are associated with the CTRL signals, assume values from
{0, 1, u}.

* FO-select variables, which are associated with multiple-fanout nodes, indicate
which outgoing edge uses the incoming edge for its justification. These variables

assume values from {1,..n, u}, wheren is the number of outgoing edges.

Implication procedure. After a decision variable has been assigned, the implications
of that decision have to be computed. This is done by an event-driven forward traversal of
COG to computeC-values, and a similar backward-traversal of the COG to compute
values. The rules are those presented earlier in Figure 4.9. Decisions involving CTRL
variables are also impliefiinctionally For each pipeframe a predicate is kept that is the

conjunction of the assignments made to the CTRL variables so far. The support of the

102

BacktraceAdd(port, obj)

1. nextObj — obj

2. switch(obj) {

2.1 C3: nextPort— Select inPort with cState in {C1,C2}

2.2 C4: nextPort— Select lowest cost inPort with cState=C1
2.3 0O3:if (oState(outPort)=01) {

2.3.01 nextPort— outPort

2.3.1

2.4 else{ /* oState(outPort)=03 */

24.1.1 nextPort— Select side input with cState in {C1,C2}
2.4.1.2 nextObj— C3

2.4.2 }

3. }

4. decision — BacktraceNet(nextPort, nextObj)

5. return decision

BacktraceAnd(port, obj)

1. nextObj — obj

2. switch(obj) {

2.1 C3: nextPort— Select inPort with cState in {C1,C2}

2.2 C4: nextPort— Select highest cost inPort with cState=C1

2.3 0O3:if (oState(outPort)=01) {

2.3.01 nextPort— outPort

2.3.1 }

2.3.2 else{ /* oState(outPort)=03 */

2.3.2.1 nextPort— Select highest cost side input with
cState=C1

2.3.2.2 nextObj— C4

2.3.3 }

3. }

4. decision — BacktraceNet(nextPort, nextObj)

5. return decision

Figure 4.12: Backtrace rules for path selectiwD, AND

predicate is the CPI, CTl and STS signals. Functional implication of a decision involving a
CTRL variable involves updating the predicate to reflect the additional assignment. If the
updated predicate is false, the search will backtrack. These predicates, one for each
pipeframe, constitute the path objectives that DPTRACE returns upon success, and which
are used by CTRLJUST to direct its search.

Backtrace procedure.Backtracing is a heuristic procedure that takes an objective, in

our case a pair consisting of an edge and a degsredr O- value, and produces an

103

BacktraceFan(port, obj)

1. switch (obj) {

1.1 C3:if (cState(fanin) in {C1,C2}) {

1.1.0.1 decision— BacktraceModule (fanin, obj)
1.1.1

1.1.2 else{ /* FOselect unassigned */

1.1.2.1 decision— (FOSel,port)

1.1.3 }

1.2 C4.:if (FOselect unassigned) {

1.23.1 decision— Select port

1.2.4 }

1.25 else{

1251 decision—~ BacktraceModule(fanin, obj)
1.3 03: fanOut — lowest cost fanout with oState = O1
1.3.6 decision~ BacktraceModule (fanout, obj);
2. }

3. return decision

BacktraceMux(port, obj)

1. if (all selects determined) {

1.1 switch (obj) {

1.1.1 C3,C4: decision— BactraceNet(selected inPort, obj)
1.1.2 03: decision— BactraceNet(outPort, obj)

1.2 }

2. }

3. else{

3.1 switch (obj) {

3.1.1 C3: inPort—~ Select selectable input with smallest cost
3.1.2 C4: inPort—~ Select lowest cost slectable input with cState in {C1,C4}
3.1.3 03: inPort~ port

3.2 }

3.3 decision — assign select signal to select inPort

4, }

5. return decision

Figure 4.13: Backtrace rules for path selectmm, Mux

assignment to a decision variable that is likely to help achieve the objective. Figure 4.12
and Figure 4.13 present a set of mutually recursive backtrace procedures. Backtracing is
guided byCcostsand Ocoststhat are discussed below. The procedure for backtracing
through a net, BacktraceFan in Figure 4.13, shows how decisions involving a FO-select
variable are created. The procedure for backtracing through a multiplexer, BacktraceMux

in Figure 4.13, shows how decisions involving a CTRL variables originate.

104

Objective selectionInitially there are two objectives: 1) to control the error site, and 2)
to make the error site observable. As the search progresses, more lines (tertiary signals)

may need justification and the error effect may be observable at multiple sites.

Feasibility checks.After the implication phase we need to check if the current partial
path selection can still be augmented to satisfy the goals. Such an augmentation is no more
feasible if theC-state of a line in tha-frontier is violated or if theE-frontier has become

empty.

Controllability and observability measures. Search algorithms such as PODEM
exhibit freedom as to the order of the decision variables and the order in which alternative
values are tried. The way in which this freedom is used can significantly affect the
execution time of the search. The following principles are commonly used [Abra90,
Goel81]:

* Among a set of unsolved subproblems, first attack the hardest one.

* Among a set of potential solutions to a problem, first try the easiest one.

To implement these principles, metrics to gauge the difficulty of problems and
alternative solutions are required. The subproblems in path selection consist of justifying
(controlling) edges in the COG. Alternative solutions arise not only during justification but
also during error effect propagation. The SCOAP measures [Gold79] are widely used for
analyzing the controllability and observability of a node in gate-level designs. We have

adapted these metrics for the path selection problem.

The Ccostof an edge estimates the difficulty of controlling the edge. Tuestis
computed by traversing the nodes of the COG forwards in level order, starting with the
primary inputs. The expressions for tleostof the outgoing edges in terms of these of
the incoming edges are given in Table 4.2. Similarly, the difficulty of observing an edge is
measured by th®cost These measures are computed by traversing the nodes of the COG
backwards in level order, starting with the primary outputs. Again the expressions are

given in Table 4.2.

105

Table 4.2: Computation of controllability and observability measures for a node with
incoming edgesg; ...X,, and outgoing edges...y,

Type Ccost(y) Ocost(x)

DPI 1 N/A

DPO N/A 0

DTI constanf N/A

DTO N/A constanj

CTRL constant N/A

STS N/A MAXINT

ADD 1+ min{Ccos{x) |i =1...m} 1 + Ocosty,)

AND 1+ X {Ccostx)|i=1..m} 1+ Ocosty,) +Z {Ccostx;) |i Zj, i =1..m}
MUX 1 + min{Ccos{x) |i = 1...m} 1 + Ocosty,)

FAN Ccostxy) min{Ocosty;) | = 1...n}

4.6 DPRELAX: value selection in datapath

The task of the value selection algorithm is to determine DPI values that expose the error
effect and justify any STS signals assigned ®YRLJUST As in path selection, the

problem is solved on a per pipeframe basis.

More precisely, the value selection problem for a single pipeframe is as follows: Given
a partial assignment to the CTRL, DPI, and DTI signals, and a s&t of pairs that need
to be justified, wheresis a STS or DTO signal, andis an integer value, determine a
partial assignment to the DPI and DTI signals that exposes the error effect at a DPO or

DTO and justifies every givess,).

This problem can be formulated as that of finding a solution to a system of non-linear
equations [Lee92b]. For special cases, such as that of datapaths containing only linear
modules, efficient deterministic methods can be devised to solve the system. However
such techniques are not applicable to the non-linear systems that result in most practical
cases. Lee and Patel [Lee92b] suggested the use of discrete relaxation in the context of
high-level test generation for physical fault testing. The main advantages of this technique
are its simplicity and its ability to deal with any type of combinational datapath modules.

A disadvantage is that it is not a complete method: it cannot prove that the system has no
solutions, and may fail to find a solution even if one exists. A key observation is that

during path selection, appropriate justification and propagation paths are selected so that

106

the system to be solved during value selection is likely to be underdetermined, in which

case discrete relaxation is likely to converge quickly.

In our discrete relaxation algorithm, each net in the datapath is characterized by two
pairs of variables, one corresponding to the error-free circuit, the other to the erroneous
circuit. Each pair consists of an integer in the range specified by the bit-width of the net,
and a type which is in the rangefassigneddeterminedfixed. The algorithm iteratively
re-evaluates the modules in the circuit until a consistent assignment is obtained or until a
maximum iteration count is exceeded. The mechanism is event-driven. Events, associated
with the terminals of a net, are triggered when the value of that net is changed. An event is
processed by re-evaluating the module to which the corresponding terminal belongs. If the
current values of the nets connected to the module are consistent with the module’s
functionality, no further action is required. Otherwise the values of one or more nets
connected to the module are changed in order to make them consistent. New events are
generated for all terminals (except those belonging to the module that is being processed)

of the nets whose value has been changed.

The choice of which net to update and what value to assign can, in principal, be random,
but it strongly influences convergence. We implemented a number of heuristics whose

goal is to try to exercise all possible modes of event propagation and to aid convergence.

4.7 CTRLJUST: CTRL line value justification

DPTRACE computes a set of paths to activate and propagate the error in the datapath;
during this process values are assigned to some CTRL lines. These assignments, which
may involve multiple time frames, need to be justified by CTRLIJUST. The CTRL line
value justification problem is that of finding an input sequence that, when applied to the
circuit, and starting from its reset state, makes the controller produce the desired values on
the CTRL lines.

We are only concerned with errors in the datapath, and assume that the error effects do

not propagate through the controller. Hence, CTRLJUST is concerned with the error-free

107

controller only. The CTRL line value justification problem is related to the state

justification problem in conventional sequential ATPG.

Approach

We propose a PODEM-like search to solve the justification problem. In our approach,
however, the decision variables are the CPI, CTS, and STS signals. Decisions on CTS
signals need further justification. Decisions on STS signals need to be justified by
DPRELAX. This is in contrast to conventional approaches where decisions are made on
the primary andsecondarysignals. Our approach can be viewed as a middle ground
between two extremes. At one end of the spectrum are iterative methods that process
strictly a single timeframe at a time. At the other end of the spectrum, is FASTEST

[Kels93], which is not iterative and does not require intermediate justification.

An example of a method of the first type is to apply PODEM iteratively in a single
timeframe. This is one of the techniques HITEC [Nier91b] uses for state justification. This
allows for a fairly efficient search for a predecessor state. However, if the selected
predecessor is not reachable from the reset state, or if it requires a very long transfer
sequence, this approach may suffer. This difficulty stems from the locality of the decision
process: decisions concerning one timeframe are made without considering their

dependencies on signals in the previous timeframe.

FASTEST [Kels93] is at the other end of the spectrum. FASTEST first computes an
estimate of the number of time frames required to activate and propagate the fault; it then
directly applies PODEM to an ILA of the estimated length. Consequently, no decisions
need justification. If the estimated length is accurate, the ability to use information
spanning more than one timeframe may lead to a more efficient search. A weakness of this
approach is that the decision space may become very large, which may lead to a large

amount of backtracking.

Our approach uses information spanning more than one timeframe, but is also iterative.
Furthermore for the designs that we target, the number of decision variables that need

justification is smaller than in the conventional iterative approach.

108

A complication of our approach is that tertiary signals, which are the decision variables
that need justification, directly depend on primary and tertiary signals in more than just the

previous timeframe. We elaborate on this next.

Transition system

In the conventional, timeframe-based organization the secondary signals define the
partition on the ILA. This corresponds to the conventional FSM view of the circuit. In the
pipeframe organization, the tertiary signals define the partition on the ILA. The transition

system corresponding to this organization can be derived as follows.

Consider the FSM viewM (1,0, S §, A, §,) of a pipelined sequential circuit, where
is the input spaceQ is the output spac®, s the state sgace, are the next-state

functions,A are the output functions, afg s the reset state.

Referring to Figure 4.2, the state registersMbf are partitioned according to the pipe
stage they belongtd® = §xS,x...xS§,_; ,where isthe number of pipeline stages.
The complete state is composed of components from every stage (except for the last
stagen, which does not contain any pipeline registers)= (s, S,, ..., Sy_1) . The
component next-state functions are:

0,:Sxl - S:s" =9(s X,wherei =1,...,n-1.

Let U be the space of the tertiary signals. The next-state functions can be expressed in
terms of the tertiary signals as follows:

Vi:S_1xUxl - S§:s" =vyi(s_q U X),wherei = 2,...,n-1.

yi-Uxl - S0 = y,(u, X)

p:Sx 1 - U:u=p(s X
Note how the pipeline structure is expose(: directly depends only on compgngnt

of s. Let § denotes, in timeframe ,thesﬁ = sitJ'1

)
S = Vi(Stj, ut_l, xt_l),wherei =2 ..,n=-1

_ t—1 t—1
S, = y(u X

t t t
P(Sy -y Sq_1 X)

c
I

109

t t t t
Yy = A(Sy -y Sy X)

We can iteratively eliminate aff , starting wish

S5 = Yoy (U5 X TA), U T X T,

S = Vi(Sf:i Ut_l, xt_l),wherei =3,..,n=-1

u' = p(yl(ut_l, xt_l), ...,stn_l, xt)

yt =)\(yl(ut_l, xt_l), ...,sf]_l, X
Finally we obtain:

u' = Lp(ut_l, TR ...,xt_n+1) (4.1)

yt = K(ut,...,ut_n+1, xt,...,xt_n+1) (4.2)

We define an extended pipestate = (u',...,u" " "1 x, ..., x""*Y asacubein the
spaceU"x 1" . Letws, = (Ury ..., upy " 5 X ..o X2 ") be the reset pipestate. The

pipestate justification problem is to find an input sequence that brings the machine from

the reset state into the desired pipestate.

Equation 4.1 is illustrated in Figure 4.14b for the three-stage pipelined circuit shown in
Figure 4.14a. The co-domains of the transition functions for tertiary signals (Equation 4.1)
span multiple timeframes. To justify assignment to signals in timeframe , assignments to
primary signals in timeframeg,...,t—n+1 and to tertiary signals in timeframes

t—1,...,t—n+ 1 may be required.

Algorithm

Pseudo-code for the overall algorithm TG is presented in Figure 4.15. TG is built on top of
the directed search CTRLJUST. In fact, what is left of TG after dropping steps 2, 3.3, and
3.4 is CTRLJUST. DPTRACE selects justification and propagation paths in the datapath
for activating and exposing the error, and thereby produces path objectives, which are
partial assignments to the CTRL lines. These path objectives are used to guide the search
performed by TG. DPRELAX uses discrete relaxation to determine appropriate data

values.

110

u3 //\\ t—2
N]
—) - =
t— t—
‘X Uz
/’\\ t—l
AU
t—-1
X

a) b)

Figure 4.14: Pipelined controller: a) circuit b) pipeframe-based transition system

DPTRACE computes an initial path selection and corresponding set of path objectives
(step 2). CTRLIUST makes decisions on CPI, CTS and STS signals (step 3.8.9.2), guided
by the objectives (step 3.8.9.1). These decisions are implied on three fronts. First, they are
implied in the controller (step 3.2) where they affect the CPO, CTO and CTRL signals.
Second, DPTRACE checks whether the updated CTRL signals are consistent with the
current set of justification and propagation paths in the datapath (step 3.3). If there is
consistency, no further action is required. Otherwise DPTRACE computes a new set of
justification and propagation paths, taking into account the current state of the CTRL
lines. The objectives on the CTRL lines are updated accordingly. Only if DPTRACE fails
to derive a set of justification and propagation paths will DPTRACE cause TG to
backtrack. The third aspect of implication involves invoking DPRELAX (step 3.4) to
compute data values. Failure to converge will cause TG to backtrack. Actual relaxation is
only performed if the path objectives are completely satisfied, that is, all required CTRL
assignments have been justified in terms of CPIl and CTS signals. Otherwise, DPRELAX

returns with an undetermined status (neither success nor failure). Steps 3.6.1-3.6.4 are the

111

TG
1. status— UNDETERMINED
2. DPTRACE /* derive initial path objectives */
3. while (status =UNDETERMINED) {
3.1 [* imply */
3.2 ctriStatus— CTRLIUST:Imply()
3.3 pathStatus- DPTRACE()
34 valueStatus- DPRELAX()
3.5 status— Status(ctrlStatus, pathStatus, valueStatus)
3.6 if (status =CONFLICT) {
3.6.1 Undolmplications(currentDecision)
3.6.2 status— UNDETERMINED
3.6.3 while (NoUntriedValuesLeft(currentDecision)) {
3.6.3.1 Undolmplications(currentDecision)
3.6.3.2 if (DecisionStackEmpty) {
3.6.3.21 status- FAILURE
3.6.3.2.2 break /* out of inner while */
3.6.3.3 }
3.6.3.4 else{
3.6.34.1 currentDecision Pop(decisionStack)
3.6.35 }
3.6.4 }
3.6.5 if (status =UNDETERMINED) {
3.6.5.1 SelectNextUntried(currentDecision)
3.6.6 }
3.7 }
3.8 else{ /* status =UNDETERMINED */
3.8.7 if (reset state reached and all objectives satisfied) {
3.8.7.1 status- SUCCESS
3.8.8 }
3.8.9 else{
3.8.9.1 currentObjective- SelectObjective()
3.8.9.2 currentDecisior- BackTrace(currentObjective)
3.8.9.3 Push(currentDecision, decisionStack)
3.8.10 }
3.9 }
4, }

Figure 4.15: Overall test generation algorithm

usual actions for backtracking. Step 3.8.7 checks whether the reset state has been reached.

If so, and if all objectives are satisfied, we return successfully with a test.

To prevent the generation of cycles during justification, we check that the pipestate is

not covered by the pipestates encountered in the current sequence.

112

4.8 Experiments

Test generator implementation

We have built a prototype implementation of the proposed test generation algorithm. The
inputs to the test generator are 1) a high-level structural description of the datapath, 2) a
synthesizable Verilog description of the controller, 3) an attribute file that identifies signals
in the controller according to our pipeframe model, 4) a list of bus SSL errors in the

datapath to target, 5) a BDD variable order.

During preprocessing of the controller, the next state and output functions are derived.
These are internally represented by ordered binary decision diagrams (BDD’s) [Brya86].
We use CUBDD, a BDD package from Colorado University [Some97] that is included in
the VIS distribution [Bray96]. Subsequently, the secondary variables are eliminated and
expressions for the CTRL and CTO signals in terms of CPI, CTS and STS signals are
derived (See Equations 4.1 and 4.2).

Test vehicle

We use a version of the DLX microprocessor [Henn90] as a test vehicle. This
implementation was studied earlier in Chapter 2 (DLX1 in Table 2.1 and Table 2.4), and
Chapter 3, Section 3.8. This design implements 44 instructions, has a five-stage pipeline,
static and dynamic branch prediction logic, and consists of 1552 lines of structural Verilog
code, excluding the models for library modules such as adders and register-files, and not
counting blank and comment lines. For the purpose of test generation we disabled the
dynamic branch predication. A simplified schematic showing the data-control dichotomy
is presented in Figure 4.16. Architectural state elements, such as register file (RF),
instruction memory (IMEM), data memory (DMEM), interrupt address register (IAR), are
modeled as primary inputs and outputs. Registers that are clocked each cycle are

represented by lightly shaded boxes; those that have a hold-function are represented by

DMEM IAR RF

Z:D—
CONTROLLER

M
L

1
M
L

FWD

113

IAR

BTB

RF

PC IMEM

BTB

Figure 4.16: Simplified schematic of DLX implementation

114

darker boxes. Squashing logic is represented by hashed boxes; in this design the actual
logic consists of amaND gate. The diagram also exposes the tertiary signals in the
controller. These are the stall signals (to registers with a hold function), the squash signals
(see squash logic), and the registers with a hold function. This design has three STS
signals, which are also shown in the figutet(zerq ovf); the generation of the CTRL
signals is not shown. The controller has 95 bits of state; the number of tertiary signals in
the controller is 43. The pipeframe organization reduces the number of decision variables
that need justification from 95 to 43 compared to the conventional timeframe organization.
The datapath has 512 bits of state, not including those in the register file. The high-level
model of the datapath consists of 100 combinational modules. Counts for each of the
signal types defined by our model are given in Table 4.3. Note that most data signals

(Dxx) have a bit-width greater than one, whereas control signals are single-bit signals.

We targeted our test generation system at all bus single stuck line (bus SSL) errors
[Bhat85] in the decode, execute, memory and write-back stages of the datapath. Short-cuts
in the implementation of the test generator have resulted in the inability to handle errors
related to the program counter PC. These errors are mainly located in the fetch stage and
are not considered in the experiments. Although our test generation algorithm can be used
in conjunction with other error models, such as CSSL1, the bus SSL model was chosen for
these initial experiments because it defines a number of error instances linear in the size of
the circuit. The results are summarized in Table 4.4. A total of 316 errors were targeted;
test generation succeeded for 87% of these errors. Typical sequences consist of slightly
more than 11 cycles: 6 cycles to reset the machine followed by one or more non-trivial
instructions, followed by 4 cycles. The overall algorithm performed only 50 backtracks for
the successfully detected errors. Analysis of the 42 aborted errors showed that 8 of them
are undetectable, 2 failed because the maximum number of backtracks in DPTRACE was
exceeded, 14 errors require a non-sequential instruction stream (branches). The remaining
18 errors require error propagation through STS signals, which is not yet supported. The
current implementation does not use error simulation, and much re-use of work by the
algorithm has not yet been exploited. Therefore, we can expect that run times will

significantly improve as these issues are addressed.

115

Table 4.3: Model parameters of DLX design

Parameter Value
No. of DPI's 6
No. of DPO’s 9
No. of DSI's/DSO’s 16
No. of DTI's/DTO’s 15
No. of CPI's 32
No. of CPO’s 0
No. of CSI's/CSO’s 95
No. of CTS's/CTO'’s 43
No. of STS signals 3
No. of CTRL signals 103
No. of comb. datapath modules 100

Table 4.4: High-level test generation for bus-SSL errors in DLX implementation

Parameter Value
No. of errors 316
No. of errors detected 274
No. of errors aborted 42
Coverage 0.8671
No. of backtracks (detected errors only) 50
CPU time [minutes] 17

Table 4.5: Gate-level test generation for standard SSL errors using HITEC

Parameter Value
No. of errors 385
No. of errors detected 278
No. of redundant errors 14
No. of errors aborted 93
Coverage 0.7221
Efficiency 0.7493
CPU time [minutes] 46

Table 4.6: Comparison of high-level and gate-level test generation for DLX

Parameter HITEC Our method Manual
Total no. vectors 207 2,893 11,937
Total no. of errors 385 385 385
No. of errors detected 278 332 355
No. of errors not detected 93 53 30

Coverage 0.7221 0.8623 0.9221

116

To put our results in perspective, we also investigated gate-level test generation for this
design. We synthesized a gate-level implementation, containing 10,117 gates and 640 flip-
flops, for the same DLX version using Synopsys Design Compiler [Syn97]. For each bus
SSL error in the high-level design, we selected SSL errors corresponding to bits 0, 15, 16
and 31. For some of the signals in the high-level design we were not able to identify
corresponding signals in the gate-level design. We used HITEC [Nier91b] to generate
tests; two passes with progressive time-out and abort-limits were run; the results are
summarized in Table 4.5. The number of SSL errors in this table is after error collapsing,
which is not the case for the number of bus SSL errors reported. Analysis of the gate-level
test generation results revealed that HITEC has great difficulty generating tests for errors
that require a sequence of instructions with register dependencies. Gate-level test
generation succeeded for only one of a total of 14 forwarding paths, whereas our method
generated tests for errors associated with 9 forwarding paths (2 paths are redundant, and 2
more require branches to exercise them). For further comparison, we error-simulated the
test sequences obtained with our high-level test generator for the standard SSL errors.
Note that these tests were targeted at bus SSL errors. The results are summarized in
Table 4.6. As can be seen from the table, our method compares favorably with HITEC.
Our test generator does not perform error simulation after generating a test sequence for
an error; this explains why our method generated an order of magnitude more vectors than
HIITEC. Finally, we also computed the SSL coverage obtained by a set of manually
generated focussed tests. Again, these tests were not targeted at the SSL errors.
Considering the 14 redundant errors that HITEC identified, the focussed tests detect
95.7% of the detectable errors. The lower coverage achieved by the test set generated

using our method is primarily due to the absence of branch and jump instructions.

4.9 Conclusions

Test generation for synthetic errors is similar to test generation for SSL faults in a
sequential circuit, which is known to be a very hard problem. To cope with this
complexity, we focus on a limited, but important, class of pipelined microprocessors.

Domain-specific knowledge can then be incorporated in the test generation algorithm. For

117

this purpose, we have introduced a model that exposes high-level knowledge about
pipeline structure. We have developed a high-level test generation algorithm that has the
following features: 1) ‘pipeframe-based’ iterative organization, which we have shown to
reduce the decision space and avoid many conflicts; 2) integration of high-level treatment
of the datapath with fully detailed treatment of the controller; 3) separation of path and

value selection.

Our test generation experiments with a DLX implementation show that our method can
generate test sequences that achieve higher coverage than those produced by a powerful

gate-level test generator.

The current implementation of our test generation method does not implement the

following aspects:

» Error effects are not propagated through the controller. This results in failure to
detect some errors.

* Only bus-SSL errors in the datapath are targeted. Extensions to different error
models are straightforward; extensions for errors in the controller are not. This is
also a limitation of Lee and Patel’s work.

» The current implementation does not perform error simulation. Including an error

simulator will improve run times and result in smaller test sets.

The limitations of our method are as follows:

» The method is incomplete. It cannot prove errors redundant. It is common for
high-level test generators to sacrifice completeness for sake of efficiency.

» No support is provided to efficiently handle memory arrays that are not part of the
ISA. A branch target buffer is an example, and although it can be ignored during
test generation by forcing it to always ‘miss,’ this is not desirable as it makes some

errors undetectable.

CHAPTER 5
Conclusions

This chapter summarizes our contributions and suggests directions for future research.

5.1 Contributions

Functional design verification is one of the most serious bottlenecks in modern
microprocessor design. Most present-day simulation-based methods use biased-random
test generation in combination with a variety of coverage measures. A different, but
previously little studied, approach is to construct test sets targeted at specific design errors.
We have studied this approach, which involves modeling design errors and generating
functional vectors for modeled errors using methods adapted from physical fault testing

techniques.

The major contributions of this thesis are summarized below.

» A systematic method for collecting design error data.

» Design error data statistics collected from design projects at the university.

* An evaluation of the value to design verification of a number of design error
models.

* A novel class of conditional error models.

* An efficient error simulation algorithm, called CESIM, for conditional errors.

* A high-level test generation method for a class of pipelined microprocessors. Its
key features are its ‘pipeframe-based’ iterative organization, which exploits high-
level knowledge about pipeline structure, and the integration high-level treatment
of the datapath with fully detailed treatment of the controller.

* An experiment that compares our high-level test generation method with a gate-

level method.

118

119

5.2 Future work

We suggest three main directions for future work; they concern 1) design error data, 2)

error models, and 3) high-level test generation.

Design error data collection

Comparison of different methods for functional design verification is difficult. In an ideal
situation, this could be accomplished by applying two competing methods to verify and
debug the same design. For a given amount of time, the preferred method is the one that
achieves the highest functional quality of the design. The latter itself is hard to quantify. A
meaningful standard would be to run a large collection of real-life workloads on the
debugged designs (obviously, running these workloads would have to require much more
time than allowed to do debug the design); functional quality would then be defined as the
fraction of correctly run workloads. It is clear that an ideal comparison requires a large
effort. Furthermore, practical verification methods are typically specific to the design

being verified.

The experiments we have described in Section 3.8 of Chapter 3 attempt to approximate
the ideal comparison. They require recording the state of the design, and the uncovered
errors, throughout the debug process of an actual design project. The competing
verification methods can then be applied to the unverified design, and the functional
guality can be more easily defined as the fraction of uncoverd actual design errors. One

problem is that the set of actual design errors would have to be kept confidential.

We suggest that during future design projects undertaken at universities design errors
are systematically recorded. Our methodology and experience with collecting design
errors, reported in Chapter 2, together with industrial experience, can serve as a good

starting point. The verification community would greatly benefit from such data.

Error modeling

We have shown that the CSSL1 error model is well suited for error-directed design

verification. However, the quadratic (in the size of the circuit) number of error instances

120

limits its practical use. One way to address this, is to use the design hierarchy to define
restrictions on the basic error and condition components of CSSL1 errors. Further work is

required to study the effect of such restrictions on coverage.

High-level test generation

High-level test generation is very useful, not just in the context of our error-directed
verification approach. A test generator can also serve as a powerful debugging and
diagnosis tool. For example, a designer may suspect that a certain local behavior of part of
the design is incorrect, but he may not be sure if this behavior can actually be excited
during normal operation. A test generator could be used to generate a sequence that

excites the behavior and exposes it with respect to the ISA, if such a sequence exists.

This thesis has shown that domain-specific test generation is a promising way to handle
larger designs than those that can be handled by general methods. We have studied a class
of pipelined microprocessors. State-of-the-art microprocessors incorporate many
complicated micro-architectural features, such as, multiple pipelines (superscalar), out-of-
order completion, and register-renaming, to name just a few. A common element in these
implementations is the presence of memory arrays that are not part of the ISA
specification. Effective test generation for such designs will require the use of high-level
models for these structures that hide the underlying individual memory elements but still
allow the complete functionality to be exercised. The need for such models has also been
realized by researchers in different areas. For example, Velev et al. have recently

developed models for array memories of symbolic simulation [Vele97].

In summary, the functional design verification approach that we have developed in this
thesis has proven to be a valuable addition to the range of simulation-based methods

already available.

APPENDICES

121

122

APPENDIX A
Relationship between CSSL1
errors and bridging faults

An important parameter of an IC manufacturing process is the minimal allowed spacing
between metal lines. The minimal line spacing design rule guards against imperfections in
the manufacturing process that may lead to shorts between normally unconnected signals.
However, integration density is typically very sensitive to the minimal spacing rule.
Consequently, the minimal line spacing is set very close to what is achievable by process
control. Therefore, despite the minimal spacing rule, shorts are still a common
manufacturing defect. A fault model specifically targeted at these defects Isitlgeng

fault (BF) model [Abra90]. The BF model has some similarities with the CSSL1 error

model, and in this appendix we study the relationship between them.

A BF between two lines x and y is denoted byy), and causes the fanoutsoény to
assume the same value, denotedZby, y). Z(x, y) is a function that has the property that
Z(a,a) = a. Figure A.1 illustrates the concept. If there exists a combinational path between
x andy, then a BF X,y) is called afeedback bridging faulFBF), otherwiseX,y) is called
a nonfeedback bridging faufNFBF). FBF’s transform a combinational circuit into a
sequential one. In this appendix we only consider NFBF’s. This restriction is in concert

with our definition of CE’s (see Chapter 3, Section 3.2) that stipulates that the signals

_1G - _G—L
- T

a) B b) Y

Figure A.1: BF K, y): a) Fault-free circuit, b) faulty circuit

123

Table A.1: Bridging functionZ(x, y)

Xy Zl Zz Z3 Z4
00 0 0 0 0
01 0 1 0 1
10 0 1 1 0
11 1 1 1 1

appearing in the condition part are not to be part of the transitive combinational fanout of

the basic error part.

If we restrict the domain and co-domain &, y) to binary values, then there are four
possible function; they are listed in Table A.1. BF's witd = Z;, andZ = Z, are the

most commonly used BF’s; they are referred to as AND BF’s, and OR BF’s, respectively.

We derive the following results:

* (% y) with Z=Z, is equivalent to the multiple CSSL1 err&i=0,y/ 0),
(y=0,x/0).

« Similarly, (x,y) with Z = Z, is equivalent to the multiple CSSL1 error£ 1,y / 1),
(y=1,x/1).

* (% y) with Z=Z3is equivalent to the signal source ergoreplaced by, but this
cannot be accurately modeled by (multiple) CSSL1 errors. Howexgy) (vith
Z = Zg dominates bothx= 0,y /0), and k= 1,y/ 1). In other words, any test that
detectsXx=0,y/0) or (x=1,y/ 1) will also detectX, y) with Z=Z5. This can be
seen as follows: To detect £ 0,y / 0), a test has to s&tto 0,y to 1 and to sensitize
y. Note that for input vectors that seto 0 andy to 1, the faulty/erroneous circuits
defined by the BF and the CSSL1 operate identically. Therefore, we conclude that
the error detection conditions fox € 0,y / 0) are identical to those for the BF. A
similar argument holds fox(= 1,y/ 1). The dominance relationship may not hold
for sequential circuits.

* (%, y) with Z=Z, dominates bothx(=0,y/0), and x=1,y/1).

124

APPENDIX B
Conditional error simulation
on ISCAS 89 benchmarks

This appendix describes an experiment, using the ISCAS’89 benchmarks, to measure
the effectiveness of our error simulation algorithm CESIM, which is presented in
Section 3.5.

We generated test sequences for SSL faults using HITEC [Nier90, Nier9la]. The
parameters that determine when to abort a fault were set as follows: the backtrack limit
was set to 10,000; the state backtrack limit was set to 10,000; the time limit per fault was
set to 2 seconds. We separately fault simulated the obtained test sequences using PROOFS
[Nier90, Nier9la]. Test generation and fault simulation were performed on a Fujitsu
HALStation/300; the results are summarized in Table B.1. We did not try to improve fault

coverage further by increasing the abort limits.

We error-simulated the same test sequences using CESIM for CSSLO and CSSL1
errors. The error list for CSSLO errors is identical to the collapsed SSL fault list from
before. The CSSL1 error list was constructed as follows. For each CSSLO error, we
considered a maximum of 500 lines to condition the error. The smaller circuits have less
than 500 lines, so every line in the circuit is considered as the condition line. This leads to
a maximum of 1000 CSSL1 errors per CSSLO error. However, some CSSL1 errors are
rejected because their condition is part of the transitive fanout of the error site. The results
of error simulation using CESIM are summarized in Table B.2. In the analysis that
follows, we exclude benchmarks for which the test sequence achieves an SSL coverage

less than 0.1.

Comparing the results of CSSLO error simulation using CESIM in Table B.2 with the
results of SSL fault simulation using PROOFS in Table B.1, we conclude the following.

Fault/error coverages for corresponding circuits are identical, as expected. We can deduce

125

that CESIM is on average 4.5 times slower than PROOFS. The actual slowdown varies
between 0.3 and 7.7; for the largest benchmark it is 5.6. CESIM does not include any

optimizations that are specific to CSSLO errors.

The last two columns in Table B.2 compare error simulation for CSSL1 errors to error
simulation for CSSLO errors. We observe that the ratio of coverage of CSSL1 errors to
coverage of CSSLO varies between 0.58 and 0.94; its average is 0.76. We also computed
the ratio of CPU time per error for CSSL1 errors to CPU time per error for CSSLO errors.
This ratio attempts to measure the speedup of CESIM for CSSL1 errors compared to a
naive approach. We observe an average speedup varies between 2 and 78, its average is 34,
and for the largest benchmark a speedup of 43 was obtained. This speedup can be
displayed graphically by plotting the CPU time per test vector versus the number of errors,
as in Figure B.1 (s27 was dropped because of its size). The figure also shows least-square
fits for the data. The improved performance of our error simulation algorithm is achieved
by exploiting the close relationship between CSSL1 errors derived from the same CSSLO
error. The execution time of CSSLO error simulation with CESIM is dominated by event-
driven simulation of faulty circuits. However, when simulating for CSSL1 errors,
checking whether the condition of each CSSL1 error holds dominates the execution time.
Least-square analysis shows that the CPU time per test vector is proportional to the
number of CSSLO errors to the power 1.33. The superlinear behavior reflects that those
data points with a larger number of CSSLO errors correspond to larger circuits, and hence
the execution time of each event-driven simulation increases. For the CSSL1 execution
time we find an exponent of 1.13. The almost linear behavior is a consequence of checking
CSSL1 conditions, which is independent of the size of the circuit, dominating the

execution time.

The experiments demonstrate that error simulation with CSSL1 errors is practical for
moderately sized circuits. However, as the run time of our algorithm is linear in the
number of errors, for very large circuits the quadratic number of CSSL1 errors becomes
prohibitive. For those circuits restrictions on the general CSSL1 model may be

appropriate. For example, when deriving CSSL1 errors from a given CSSLO error, one

126

Table B.1: Test generation and fault simulation of ISCAS’89 circuits using HITEC
Detected RedundantAborted HITEC PROOFS

Circuit faults faults faults Vectors Efficiency Coverage CPU[s] CPU[s]
s27 32 0 0 21 1.0000 1.0000 0.12 0.03
s208.1 18 146 53 12 0.7558 0.0829 164.07 0.07
5298 265 26 17 220 0.9448 0.8604 48.18 0.25
s344 321 9 12 89 0.9649 0.9386 32.38 0.15
s349 329 11 10 106 0.9714 0.9400 31.57 0.17
s382 281 2 116 881 0.7093 0.7043 267.70 1.45
s386 314 70 0 273 1.0000 0.8177 5.52 0.22
s400 331 9 86 1,228 0.7981 0.7770 215.72 1.20
s420.1 28 151 276 20 0.3934 0.0615 635.98 0.15
s444 254 16 204 316 0.5696 0.5359 777.90 0.88
s526 51 14 490 34 0.1171 0.0919 1,167.25 0.15
s526n 55 13 485 37 0.1230 0.0995 1,162.57 0.18
s641 404 63 0 203 1.0000 0.8651 3.97 0.35
s713 476 105 0 196 1.0000 0.8193 5.55 0.40
s820 811 29 10 940 0.9882 0.9541 96.17 1.52
s832 813 46 11 962 0.9874 0.9345 99.63 1.78
s838.1 48 515 368 28 0.6047 0.0516 849.52 0.40
s953 89 990 0 14 1.0000 0.0825 38.68 0.28
51196 1,239 3 0 439 1.0000 0.9976 2.95 0.80
51238 1,283 72 0 472 1.0000 0.9469 4.77 0.97
51423 578 11 926 89 0.3888 0.3815 2,100.88 0.85
51488 1,368 20 98 778 0.9341 0.9206 325.48 2.30
51494 1,447 32 27 991 0.9821 0.9608 118.78 2.93
s5378 3,146 159 1,298 894 0.7180 0.6835 2,941.93 14.68
59234 18 3,916 0 6 1.0000 0.0046 1.38 1.05
s9234.1 366 181 3,391 38 0.1389 0.0929 7,562.58 3.62
513207 557 8,218 672 76 0.9289 0.0590 2,266.77 16.08
s13207.1 858 7,583 1,148 106 0.8803 0.0895 3,475.12 28.25
515850 85 11,407 21 8 0.9982 0.0074 60.15 2.97
s$15850.1 4,374 1,229 5,920 2,493 0.4862 0.3796 16,302.12 383.82
s$35932 34,868 3,984 242 300 0.9938 0.8919 2,350.30 45.47
s38417 1,088 356 29,016 51 0.0474 0.0357 96,335.17 46.05
s38584 7,798 6,759 21,744 1,593 0.4010 0.2148 54,293.70 1,293.65
s38584.1 20,589 1,948 13,766 4,383 0.6208 0.5671 38,090.13 1,535.40

could restrict the condition signals to those signals appearing in the same hierarchical
module as the CSSLO error.

127

Table B.2: Error simulation of ISCAS’89 circuits using CESIM

[CPUD

CSSLO cssL1 cover, Hno. %

o cover, PU

Circuit Vectors No. Coverage CPU [s] No. Coverage CPU [g] Ono. 0,
s27 21 32 1.0000 0.01 664 0.7289 0.10 0.7289 2.08
s208.1 12 217 0.0829 0.11 44,492 0.0228 D.67 0.2750 33.66
s298 22(308 0.8604 0.63 75,468 0.7103 7.80 0.8255 19.79
s344 8¢ 342 0.9386 0.839 114,294 0.7598 5.09 0.8095 25.61
s349 106 350 0.9400 0.82 117,484 0.7796 5.20 0.8294 20.66
s382 881 399 0.7043 5.1 130,656 0.5830 60.35 0.8278 30.44
s386 273 384 0.8177 1.80 93,060 0.6040 12.60 0.7387 25.00
s400 1,228 426 0.7770 7.07 144,628 0.6275 7M.47 0.8076 35.42
s420.1 20 455 0.0615 0.28 199,616 0.0180 .60 0.2927 34.12
s444 316 474 0.5359 3.44 175,616 0.4185 4p.15 0.7809 30.24
s526 34 555 0.0919 0.65 218,816 0.0656 y.15 0.7138 35.84
s526n 37 553 0.0995 0.69 219,166 0.0704 7.54 0.7075 36.27
s641 203 467 0.8651 1.81 349,832 0.7219 24.87 0.8345 39.46
s713 196 581 0.8193 1.89 452,256 0.6742 3p.78 0.8229 33.01
s820 94(850 0.9541 6.80 442,758 0.6456 160.27 0.6767 20.48
s832 962 870 0.9345 6.y2 445,274 0.6355 165.86 0.6800 20.74
s838.1 2 931 0.0516 1.02 821,774 0.0158 17.72 0.3062 50.81
s953 14 1,079 0.0825 0.63 879,540 0.0321 1p.95 0.3891 39.66
51196 439 1,242 0.9976 5[/5 1,058,844 0.7483 15%1.78 0.7501 32.30
s1238 472 1,355 0.9469 749 1,140,402 0.6969 186.76 0.7360 33.75
51423 89 1,515 0.3815 544 1,287,036 0.2695 72.08 0.7064 64.12
51488 778 1,486 0.9206 10,18 1,142,374 0.6615 272.48 0.7186 28.72
s1494 991 1,506 0.9608 10,74 1,151,208 0.6993 327.06 0.7278 25.10
s5378 894 4,603 0.6835 94)80 4,517,276 0.5418 1,7563.33 0.7927 53.06
s9234 3,934 0.0046 2.11 3,850,188 0.0004 43.25 0.0870 47.75
s9234.1 38 3,938 0.0929 21{70 3,854,738 0.0490 147.79 0.5274 143.73
s13207 76 9,447 0.0590 77)66 9,325,456 0.0132 638.82 0.2237 120.00
s13207.1 106 9,589 0.0895 115/96 9,453,928 0.0363 1,167.80 0.4056 97.90
515850 11,513 0.0074 1192 11,197,872 0.0021 1%1.72 0.2838 76.42
s15850.1 2,493 11,523 0.3796 2735.14 11,186,886 0.2574 33,994.54 0.6781 78.11
$35932 300 39,094 0.8919 170}70 38,708,548 0.8400 4,541.98 0.9418 37.21
s38417 51 30,460 0.0357 249|88 30,222,794 0.0109 1,981.77 0.3053 125.11
s38584 1,598 36,301 0.2148 6233.05 36,124,976 0.1244 122,142.85 0.5791 50.78
s38584.1 4,383 36,303 0.5671 8,656.32 36,124,758 0.4423 199,8346.07 0.7799 43.21

CPU / vectors

128

102 F T T T T T T T T T Trororg 'O' M
i o
10 | ° .
(o]

100 £ speedup 9
101 L .
4
102 | .

o CSSLO
[¢ CSSL1
]_0'3 R | A | T | R | A |
102 103 10% 10° 108 107 108

No. errors

Figure B.1: Run time analysis of CESIM on ISCAS’89 benchmarks

BIBLIOGRAPHY

129

130

BIBLIOGRAPHY

[0In]
[AA95]

[AA9S]

[Abadss]

[Abra90]
[AH96]

[Ahar91]

[Ahar9s]

[Alex96]

[Bass95]

[Baum98]

[Beer96]

[Beiz90]

0-In Design Automation, http://www.0-in.corivlethodology overview

H. Al-Asaad and J. P. Hayes. Design verification via simulation and automat-
ic test pattern generation. FProc. Int. Conf. Computer-Aided Desigoages
174-180, 1995.

H. S. Al-Asaad.Lifetime validation of digital systems via fault modeling and
test generationPhD thesis, University of Michigan, 1998.

M. S. Abadir, J. Ferguson, and T. E. Kirkland. Logic design verification via
test generationEEE Trans. Computer-Aided Desigi(1):138-148, January
1988.

M. Abramovici.Digital systems testing and testable desi@omputer Sci-
ence Press, New York, 1990.

G. Al Hayek and C. Robach. From specification validation to hardware test-
ing: A unified method. IfProc. IEEE Int. Test Confpages 885—-893, 1996.

A. Aharon, A.Bar-David, B. Dorfman, E.Gofman, M. Leibowitz, and
V. Schwartzburd. Verification of the IBM RISC System/6000 by dynamic bi-
ased pseudo-random test program generdBiv Systems Journapbages
527-538, 1991.

A. Aharon, D.Goodman, M. Levinger, Y. Lichtenstein, Y. Malka,
C. Metzger, M. Molcho, and G. Shurek. Test program generation for func-
tional verification of PowerPC processors in IBM.Pnoc. Design Automa-
tion Conf, pages 279-285, 1995.

T. B. Alexander, K. A. Dickey, D. N. Goldberg, R. V. La Fetra, J. R. McGee,
N. Noordeen, , and A. Prakash. Verification, characterization, and debugging
of the HP PA 7200 processdfewlett-Packard Journabpages 1-12, Febru-

ary 1996.

M. Bass, T. W. Blanchard, D. D. Josephson, D. Weir, and D. L. Halperin.
Design methodologies for the PA 7100LC microprocesdenvlett-Packard
Journal, pages 23-35, April 1995.

A. J. Baum and A. J. Smith. Hot chips — hot stEEE Micro, pages 11-13,
March/April 1998.

|. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: An industry-
oriented formal verification tool. IfProc. Design Automation Confpages
655-660, 1996.

B. Beizer.Software testing techniqueégan Nostrand Reinhold, New York,

131

2nd edition, 1990.

[Beiz95] B. Beizer. The Pentium bug — an industry watershiegkting Techniques
Newsletter (TTN), TTN Online Editio8eptember 1995.

[Bent97] B. Bentley. Personal Communication, 1997.

[Bhag94] V. Bhagwati and S. Devadas. Automatic verification of pipelined micropro-
cessors. IfProc. Design Automation Conpages 603—-608, 1994.

[Bhat85] D. Bhattacharya and J. P. Hayes. High-level test generation using bus faults.
In Digest of Papers - FTCS 15, Fifteenth Annual International Symposium on
Fault-Tolerant Computingpages 65-70, 1985.

[Bisc97] G. P. Bischoff, K. S. Brace, S. Jain, and R. Razdan. Formal implementation
verification of the bus interface unit for the Alpha 21264 microprocessor. In
Proc. Int. Conf. Computer Desigpages 16-24, 1997.

[Bose98] P.Bose and T. M. Conte. Performance analysis and its impact on design.
Computer pages 41-49, 1998.

[Bray96] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A.Aziz, S.-T. Cheng, S.Edwards, S.Khatri, Y.Kukimoto, A.Pardo,
S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Shiple, G. Swamy, T. Villa,
R. Alur, and T.A. Henzinger. VIS: a system for verification and synthesis. In
Proc. Int. Conf. on Computer-Aided Verificatigrages 428-432, 1996.

[Brow96] R.B.Brown, T. D.Basso, P. N. Parakh, S. M. Gold, C. R. Gauthier, R. J. Lo-
max, and T. N. Mudge. Complementary GaAs technology for a GHz micro-
processor. IfProc. GaAs IC Symposiyrh996.

[Brya86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computeypages 677—691, August 1986.

[Burc94] J.R. Burch and D. L. Dill. Automatic verification of pipelined microproces-
sor control. InComputer-Aided Verificatigrpages 68—80, June 1994.

[Burg97] D. Burger and T. M. Austin. The SimpleScalar tool $&uter Architec-
ture News25(3), June 1997.

[Cad94] Cadence Design Systeidsrilog-XL Reference ManudDecember 1994.

[Casa96] F. Casaubieilh, A. Mclsaac, M. Benjamin, M. Bartley, F. Pogodalla,
F. Rocheteau, M. Belhadj, J. Eggleton, G. Mas, G. Barrett, and C. Berthet.
Functional verification methodology of Chameleon processoPrbyt. De-
sign Automation Confpages 421-426, 1996.

[Cede93] P.Cederqyist et al. Version management with CVS. Signum Support AB,
1993.

[Chan94] A.K. Chandra, V.S. lyengar, R.V. Jawalekar, M.P. Mullen, 1. Nair, and B.K.
Rosen. Architectural verification of processors using symbolic instruction
graphs. IHEEE Int. Conference on Computer Design VLSI in Computers and
Processorspages 454459, 1994.

[Chan95]

[Chen96]

[Clar96]

[Clar98]

[Cohn87]

[Cohn89]

[DeMi78]

[Deva9ge6]

[Dohm98]

[Ec096]
[EET94]

[Fallosa]

[Fallogb]

[Gana96]

[Geis96]

132

A.K. Chandra, V.S. lyengar, D. Jameson, R. Jawalekar, I. Nair, B.K. Rosen,
M.P. Mullen, J. Yoon, R. Armoni, D. Geist, and Y. Wolfsthal. AVPGEN - a
test generator for architecture verificatidBEE Trans. on VLSIpages 188—
200, 1995.

K.-T. Cheng. Gate-level test generation for sequential cir@@M Trans.
Design Automation of Electronic System@l):405-442, October 1996.

E. M. Clarke and R. P. Kurshan. Computer-aided verificatiBEE Spec-
trum, pages 61-67, June 1996.

P. Clarke. EDA software — code coverage for state machEEsTimes
(1012), 1998.

A. Cohn. A proof of correctness of the VIPER microprocessor: the first level.
In G. Birtwistle and P. A. Sybrahmanyam, editow4,S| Specification, Veri-
fication and Synthesi&luwer, 1987.

A. Cohn. Correctness properties of the VIPER block model: the second level.
In G. Birtwistle and P. A. Sybrahmanyam, edito@yrrent Trends in Hard-
ware Verification and Automated Theorem Provipgges 1-91. Springer
Verlag, 1989.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection:
help for the practicing programmé&omputey pages 34-41, April 1978.

S. Devadas, A. Ghosh, and K. Keutzer. Observability-based code coverage
metric for functional simulation. IRroc. Int. Conf. Computer-Aided Design
pages 418-425, 1996.

N. Dohm, C. Ramey, D. Brown, S. Hildebrandt, J. Huggins, M. Quinn, and
S. Taylor. Zen and the art of Alpha verification.Pnoc. Int. Conf. Computer
Design pages 111-117, 1998.

A survey of the world economy: The hitchhiker’s guide to cybernomics - the
hitchhiker’s guide to cybernomicghe EconomistSeptember 28 1996.

Chrysalis aims tools at commercial applications:DAC to see formal ‘insight’.
EE Times(800), June 1994.

F. Fallah, S. Devadas, and K. Keutzer. OCCOM: Efficient computation of
observability-based code coverage metric for functional simulatioRrade.
Design Automation Confpages 152-157, 1998.

F. Fallah, S. Devadas, and K. Keutzer. OCCOM: Efficient computation of
observability-based code coverage metric for functional simulatioRrade.
Design Automation Confpages 152-157, 1998.

G. Ganapathy, R. Narayan, G.Jorden, D.Fernandez, M.Wang, and
J. Nishimura. Hardware emulation for functional verification of K5Pimoc.
Design Automation Confpages 315-318, 1996.

D Geist, M Farkas, A Landver, Y Lichtenstein, S Ur, Y Wolfsthal, M Srivas,
and A Camilleri. Coverage-directed test generation using symbolic tech-

[Ghos91]

[Goel81]
[Goer95]
[Goer97]
[Gold79]

[Gupt97]

[Ham94]

[Hans953a]

[Hans95b]

[Hard96]

[Henn90]

[Ho95]

[Ho96a]

[Ho96b]

[Hosk95]

[Hoss96]

133

niques. InProc. Int. Conf. Formal methods in Computer-Aided Despages
143-158, 1996.

A. Ghosh, S. Devadas, and A. R. Newton. Test generation and verification
for higly sequential circuits.IEEE Trans. Computer-Aided Design
10(5):652-667, May 1991.

P. Goel. An implicit enumeration algorithm to generate tests for combina-
tional logic circuitsIEEE Trans. Computer€£-30(3):215-222, March 1981.

R. Goering. Chrysalis expands tool to prove equivalency — verification gets
upgradeEE Times(873), November 1995.

R. Goering. Model checker leads Lucent’'s commercial-EDA push — Bell
Labs goes formal with design verificatideE Times(948), April 7 1997.

L. H. Goldstein. Controllability/observability analysis of digital circuits.
IEEE Trans. Circuits and Systenmages 685-693, September 1979.

A. Gupta, S. Malik, and P. Ashar. Toward formalizing a validation method-
ology using simulation coverage. Proc. Design Automation Confpages
740-745, 1997.

Hamarsoft, Heerlen, The NetherlanHamarsoft's 86BUGS lis¥4 edition,
November 1994. Available from http://www.xs4all.nl/~feldmann.

M. C. Hansen and J. P. Hayes. High-level test generation using physically-in-
duced faults. IfProc. IEEE VLSI Test Sympages 20-28, 1995.

M. C. Hansen and J. P. Hayes. High-level test generation using symbolic
scheduling. IrProc. IEEE Int. Test Confpages 586-595, 1995.

R. H. Hardin, Z. Har’El, and R. P. Kurshan. CospanPioc. Int. Conf. on
Computer-Aided Verificatigrpages 423-427, July 1996.

J. Hennessy and D. Patters@umputer Architecture: A quantitative Ap-
proach Morgan Kaufman Publishers, San Mateo, Calif., 1990.

R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architecture valida-
tion for processors. IProc. Int. Symp. Computer Architectumgages 404—
413, 1995.

C.-M. R. HoValidation tools for complex digital designBhD thesis, Stan-
ford University, 1996.

R. C. Ho and M. A. Horowitz. Validation coverage analysis for complex dig-
ital designs. InProc. Int. Conf. Computer-Aided Desigpages 146-151,
1996.

Y. V. HoskoteFormal techniques for verification of synchronous sequential
circuits. PhD thesis, The University of Texas at Austin, 1995.

A. Hosseini, D. Mavroidis, and P. Konas. Code generation and analysis for
the functional verification of microprocessors. Pnoc. Design Automation
Conf, pages 305-310, 1996.

[IEEESS]

[IEEE94]

[IEEE96]

[Int89]

[lwas94]

[John91]

[Kang94]

[Kantos]

[Kels93]

[King91]

[Kogg77]
[Kuel97]
[Kumag7]
[Kurs97]

[Kusk94]

[Lee92a]

[Lee92Db]

134

IEEE Standards Board. IEEE standard 1076-1987 VHDL language reference
manual. New York, NY 10017, 1988.

IEEE Standards Board. IEEE standard 1175-1994 standard reference model
for computing system tool interconnections. New York, NY, 1994,

IEEE Standards Board. IEEE standard 1364-1995 verilog hardware descrip-
tion language reference manual. New York, NY, 1996.

Intel Corp.8086/8088 User’'s manual. Programmer’s and hardware refer-
ence manual1989.

H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose. Automatic test program
generation for pipelined processorsAroc. Int. Conf. Computer-Aided De-
sign pages 580-583, 1994.

M. JohnsorSuperscalar microprocessor desidgPrentice Hall, Englewood
Cliffs, N.J., 1991.

S. Kang and S. A. Szygenda. The simulation automation system SAS; con-
cepts, implementations, and resulEEEE Trans. on VLS$I1994.

M. Kantrowitz and L. M. Noack. I'm done simulating; now what? Verifica-
tion coverage analysis and correctness checking of the DECchip 21164 Alpha
microprocessor. IRroc. Design Automation Conpages 325-330, 1996.

T. P. Kelsey, K. K. Saluja, and S. Y. Lee. An efficient algorithm for sequen-
tial circuit test generatiodnEEE Trans. Computergpages 1361-1371, No-
vember 1993.

K.N. King and A.J. Offutt. A Fortran language system for mutation-based
software testingSoftware Practice and Experienc1(7):685-718, July
1991.

P. M. Kogge. Microprogramming of pipelined processorsPhoc. Ann.
Symp. Comput. Archjtpages 63—-69, 1977.

A. Kuelmann and F. Krohm. Equivalence checking using cuts and heaps. In
Proc. Design Automation Conpages 263—-268, June 1997.

J. Kumar. Prototyping the M68060 for concurrent verificatl&izE Design
& Test of Computergpages 34-41, 1997.

R.P. Kurshan. Formal verification in a commercial setting?tac. Design
Automation Conf.pages 258-262, June 1997.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Hennessy. Stanford FLASH multiprocessoPRrioc. Int. Symp. Com-
puter Architecturepages 302-313, 1994.

J. LeeArchitectural level test generation and fault simulatiégthD thesis,
University of Illinois at Urbana-Champaign, 1992.

J. Lee and J. H. Patel. A signal-driven discrete relaxation technique for archi-

135

tectural level test generation. Proc. 1991 IEEE Int. Conf. on Computer-
Aided Design - ICCAD-9lpages 458-461, 1992.

[Lee94] J. Lee and J. H. Patel. Architectural level test generation for microprocessors.
IEEE Trans. Computer-Aided Desigrages 1288-1300, 1994.

[Levi97] J. Levitt and K. Olukotun. Verifying correct pipeline implementation for mi-
croprocessors. IRroc. Int. Conf. Computer-Aided Desigpages 162—-169,
1997.

[Lewi96] D. Lewin, D. Lorenz, and S. Ur. A methodology for processor implementa-
tion verification. InProc. Int. Conf. Formal methods in Computer-Aided De-
sign pages 126-142, 1996.

[Malk98] Y. Malka and A. Ziv. Design reliability - estimation through statistical anal-
ysis of bug discovery data. IRroc. Design Automation Confpages 644—
649, 1998.

[Mall95] C. H. Malley and M. Dieudonne. Logic verification methodology for Power-
PC microprocessors. IRroc. Design Automation Confpages 234-240,
1995.

[Mang97] S. T. Mangelsdorf, R. P. Gratias, R. M. Blumberg, and R. Bhatia. Functional
verification of the HP PA 8000 processoHewlett-Packard Journal
48(4):22-31, August 1997.

[Marc96] T. E. Marchok, A. EI-Maleh, W. Maly, and J. Rajski. Complexity analysis of
sequential atpglEEE Trans. Computer-Aided Desigpages 1409-1422,
November 1996.

[McFa93] M. C. McFarland. Formal verification of sequential hardware. a tutorial.
IEEE Trans. Computer-Aided Desigrages 633—-654, May 1993.

[McGe95] P.C. McGeer and A. Saldanha. Multivalued diagrams show the RRay.
Times (867), Sept. 25 1995.

[McMi93] K. L. McMillan. Symbolic model checkingluwer Academic, Boston, 1993.

[McMi94] K. L. McMillan. Fitting formal methods into the design cycle. Rroc. De-
sign Automation Confpages 314-319, 1994.

[Micz86] A. Miczo. Digital logic testing and simulationHarper & Row, New York,
1986.

[MIP94] MIPS Technologies InAMIIPS R4000PC/SC Errata, Processor Revision 2.2
and 3.0 May 1994.

[Mona96] J. Monaco, D. Holloway, and R. Raina. Functional verification methodology
for the PowerPC 604(TM) microprocessor. Rroc. Design Automation
Conf, pages 319-324, 1996.

[Moun98] D. Moundanos, J. A. Abraham, and Y. V. Hoskote. Abstraction techniques
for validation coverage analysis and test generatl®BE Trans. Computers
47(1):2-14, January 1998.

[Murr90]

[Murr92]

[Nels97]

[Nier90]

[Nier91a]

[Nier91b]

[Offu96]

[Owre96]

[Paln94]
[Paxs98]

[Pope96]

[Post96a]

[Post96b]

[Rat97]
[Shep97]

[Some97]

136

B. T. Murray and J. P. Hayes. Hierarchical test generation using precomputed
tests for moduleslEEE Trans. Computer-Aided Desigpages 594-603,
June 1990.

B. T. Murray and J. P. Hayes. Test propagation through modules and circuits.
In Proc. IEEE Int. Test Confpages 748-757, 1992.

K. L. Nelson, A. Jain, , and R. E. Bryant. Formal verification of a superscalar
execution unit. IfProc. Design Automation Conpages 161-166, 1997.

T. Niermann, W. T. Cheng, and J. H. Patel. PROOFS: A fast memorry effi-
cient fault simulator for sequential circuits. FRroc. Design Automation
Conf, pages 190-196, 1990.

T. Niermann.Techniques for sequential circuit automatic test generation
PhD thesis, University of lllinois, 1991.

T. Niermann and J. H. Patel. HITEC: A test generation packaged for sequen-
tial circuits. InProc. European Design Automation Cqrgages 214-218,
1991.

A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimen-
tal determination of sufficient mutant operatof€M Trans. Software Engi-
neering and Methodologypages 99-118, April 1996.

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, M. Srivas, R. Alur, and T.A.
Henzinger. PVS: Combining specification, proof checking and model check-
ing. In Proc. Int. Conf. on Computer-Aided Verificatiopages 411-414,
1996.

S. Palnitkar, P. Saggurti, and S.-H. Kuang. Finite state machine trace analysis
program. Inint. Verilog HDL Conf. pages 52-57, 1994.

C. Paxson. Analyze the reliability of your softwalie/a ReportApril 1998.

V. Popescu and B. McNamara. Innovative verification strategy reduces de-
sign cycle time for high-end SPARC processorPhoc. Design Automation
Conf, pages 311-314, 1996.

Matt PostiffLC-2 Programmer’s Reference Manual. Revision Bldiversi-
ty of Michigan, 1996.

R. M. PostorAutomatic Specification-Based Software TestlagcE Com-
puter Society Press, May 1996.

Rational Softward?urify’s user guideversion 4.1 edition, 1997.

K. Shepard, S. Carey, E. Cho, B. Curran, R. Hatch, D. Hoffman, S. McCabe,
G. Northrop, and R. Seigler. Design methodology for the s/390 parallel enter-
prise server g4 microprocessaBM Journal of Research and Development
pages 515-547, Jul.-Sep. 1997.

F. Somenzi. CUDD: CU decision diagram package release 2.1.1. Technical
report, Dept. of Electr. and Comp. Engineering, University of Colorado at
Boulder, 1997.

[SP92]

[SR]

[Syn97]

[Tayl98]

[Upto94]

[Upto97]

[VC97]

[VC98]

[Vele97]

[Weir97]

[Wile97]

[Wils99]
[Wind95]

[Wolf98a]

137

M. St. Pierre, S.-W. Yang, and D. Cassiday. Functional visi design verifica-
tion methodology for the CM-5 massively parallel surpercomputelE EE
International Conference on Computer Design: VLSI in Computers and Pro-
cessorspages 430-435, 1992.

Software Research Inc., San Francisco, TédstWorks/ Coverage for UNIX
http://www.testworks.com.

Synopsys Indesign Compiler Reference Manual: Fundamentaéuary
1997.

S. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt, J. Huggins, and
C. Ramey. Functional verification of a multiple-issue, out-of-order, supersca-
lar Alpha processor - the DEC Alpha 21264 microprocessdprat. Design
Automation Conf.pages 638-643, 1998.

M. Upton, T. Huff, T. Mudge, and R. Brown. Resource allocation in a high
clock rate microprocessor. Proceedings sixth international conference on
Architectural support for programming languages and operating systems
pages 98-109, 1994.

M. Upton.Architectural Trade-offs in a Latency Tolerant Gallium Arsenide
Micrprocessor PhD thesis, University of Michigan, 1997.

D. Van Campenhout and S. Raasch. Getting started with CVS. Internal Re-
port, University of Michigan, 1997.

D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown.
High-level design verification of microprocessors via error modelAQM
Trans. Design Automation of Electronic Systerd@!):581-599, October
1998.

M. N. Velev, R. E. Bryant, and A. Jain. Efficient modeling of memory arrays
in symbolic simulation. In O. Grumberg, editéroc. Int. Conf. on Comput-
er-Aided Verification LNCS 1254, pages 388—-399. Springer-Verlag, June
1997.

D. Weir and P. G. Tobin. Verifying the correctness of the PA 7300LC pro-
cessorHewlett-Packard Journak8(3):69-72, June 1997.

B. Wile, M. Mullen, C. Hanson, D. Bair, K. Lasko, P. Duffy, E. J. Kaminski,
T. Gilbert, S. Licker, R. Sheldon, W. Wollyung, W. Lewis, and R. Adkins.
Functional verification of the CMOS S/390 parallel enterprise server G4 sys-
tem.IBM Journal of Research and Developmgmages 549-566, July/Sep-
tember 1997.

R. Wilson and B. Fuller. Soaring mask costs roil fine-geometry ASEIS.
Times March 26 1999.

P. J. Windley. Formal modeling and verification of microprocesd&&E
Trans. Computerpages 54—72, January 1995.

A. Wolfe. CPU clone-makers wrestle with X&E Times01/28 1998.

138

[Wolf98b] A. Wolfe. Merced grips Intel in verification vis&eE Times (990), January
1998.

[Wo0d93] M.R. Woodward. Mutation testing—its origin and evolutidmformation-
and-Software-Technologpages 163-9, 1993.

[X86] Intel’s secrets. x86 Monthly digest, http://www.x86.0rg.

[Yoel90] M. Yoeli, editor.Formal Verification of Hardware DesignEEE Computer
Society Press, Los Alamitos, Calif., 1990.

	CHAPTER 1 Introduction
	1.1 Microprocessor design
	1.2 Functional verification
	1.3 Test generation for FDV
	1.4 Checking the outcome of a simulation
	1.5 Measuring and predicting functional quality
	1.6 Related area: physical fault testing
	1.7 Related area: software testing
	1.8 Thesis outline

	CHAPTER 2 Design error data
	2.1 Published error data
	2.2 Collection method
	2.3 Collected error data
	2.4 Guidelines for implementing an error collection system
	2.5 Discussion

	CHAPTER 3 Design error models
	3.1 Error model requirements
	3.2 Design error models
	3.3 Number of error instances defined by error model
	3.4 Test generation
	3.5 Error simulation
	3.6 Analytical coverage evaluation of CSSL1
	3.7 Coverage evaluation using error simulation
	3.8 Coverage evaluation by analysis of actual errors
	3.9 Conclusions

	CHAPTER 4 High-level test generation for design verification of pipelined microprocessors
	4.1 Related work
	4.2 Pipelined processor model
	4.3 Pipeframe model
	4.4 Test generation algorithm
	4.5 DPTRACE: path selection in datapath
	4.6 DPRELAX: value selection in datapath
	4.7 CTRLJUST: CTRL line value justification
	4.8 Experiments
	4.9 Conclusions

	CHAPTER 5 Conclusions
	5.1 Contributions
	5.2 Future work

	APPENDIX A Relationship between CSSL1 errors and bridging faults
	APPENDIX B Conditional error simulation on ISCAS 89 benchmarks
	BIBLIOGRAPHY

