
FUNCTIONAL DESIGN VERIFICATION FOR
MICROPROCESSORS BY ERROR MODELING

by

David Van Campenhout

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
1999

Doctoral Committee:

Professor Trevor Mudge, Chair
Professor Richard B. Brown
Professor John P. Hayes
Professor Karem A. Sakallah

© 1999
All Rights Reserved

David Van Campenhout

ii

To my parents.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor Trevor Mudge for his

mentoring and guidance. Trevor has also given me broad freedom in my research and has

been much more than just a research advisor. My appreciation and thanks also goes to

John Hayes. Working with John has been a great learning experience. I would like to thank

Karem Sakallah and Richard Brown for serving on my committee.

I would like to thank those who volunteered their time and effort to participate in our

error collection effort: Hussain Al-Asaad, Todd Basso, Mary Brown, Juan Antonio

Carballo, Subhachandra Chandra, Robert Chappell, Jim Dundas, David Greene, Jonathan

Hauke, Rohini Krishna Kaza, Michael Kelley, Matt Postiff, and Steve Raasch.

I thank my friends and colleagues in ACAL: Hussain Al-Alsaad, Jeff Bell, I-Cheng

Chen, Brian Davis, Jim Dundas, Jonathan Hauke, Tom Huff, Jim Huggins, Hyungwon

Kim, Keith Kraver, Victor Kravets, Chih-Chieh Lee, Charles Lefurgy, João Paulo Marques

da Silva, Phiroze Parakh, Steeve Raasch, Mike Riepe, Mike Upton, and Hakan Yalcin.

These individuals together with the faculty provided an intellectually stimulating

environment where it was also fun to work. I will never forget Tim Stanley who left us

much too early. I am grateful for several close friends I met during my years in Michigan

and hope that they will continue to be part of my life.

My deepest appreciation goes to my parents for their unconditional love and

encouragement. I am grateful to my brothers for their understanding.

I would like to acknowledge the Belgian American Educational Foundation for having

given me the opportunity to study in the US and supporting my first year of study.

 . ii

iii

 . vi

 . viii

 . ix

. 1

 . 2
. 5
. 8
. 11

13
 . 18
. . 20
 . 23

 . 26

. . 26
 . 28
 . 30

37
 . 39

 . 41

 . 41
 . 42
. 45
. . 47
. 48
. 60
 . 64
 . 68
 . 74
TABLE OF CONTENTS

DEDICATION .

ACKNOWLEDGEMENTS .

LIST OF FIGURES .

LIST OF TABLES .

LIST OF APPENDICES .

CHAPTER

1. Introduction .

1.1 Microprocessor design .
1.2 Functional verification .
1.3 Test generation for FDV .
1.4 Checking the outcome of a simulation .
1.5 Measuring and predicting functional quality .
1.6 Related area: physical fault testing .
1.7 Related area: software testing .
1.8 Thesis outline .

2. Design error data .

2.1 Published error data .
2.2 Collection method .
2.3 Collected error data .
2.4 Guidelines for implementing an error collection system
2.5 Discussion .

3. Design error models .

3.1 Error model requirements .
3.2 Design error models .
3.3 Number of error instances defined by error model
3.4 Test generation .
3.5 Error simulation .
3.6 Analytical coverage evaluation of CSSL1 .
3.7 Coverage evaluation using error simulation .
3.8 Coverage evaluation by analysis of actual errors
3.9 Conclusions .
iv

 . 77

 . 78
 . 83
 . 86
 . 89
 . 90
. 105
106
 . 112
 . 116

 . 118

 . 118
 . 119

. . 121

. 129
4. High-level test generation for design verification of
pipelined microprocessors .

4.1 Related work .
4.2 Pipelined processor model .
4.3 Pipeframe model .
4.4 Test generation algorithm .
4.5 DPTRACE: path selection in datapath .
4.6 DPRELAX: value selection in datapath .
4.7 CTRLJUST: CTRL line value justification .
4.8 Experiments .
4.9 Conclusions .

5. Conclusions .

5.1 Contributions .
5.2 Future work .

APPENDICES .

BIBLIOGRAPHY .
v

 . 23
 . 24

 . . 27
. . 29
 . 31
. . 33
 . 34
. 35
. 36

37

45
. 51

53

 . 55
. 57

 . 58

. . 59

. . 60
 . 61

66

 . 68
 . 70
. 71

 . 84
. . 85
 . 87
LIST OF FIGURES

Figure

1.1 Relationship between physical design verification and physical
fault testing .

1.2 Deployment of the proposed verification system .

2.1 Example of instruction sequence that exposes an error
2.2 Bug report example .
2.3 Error collection system .
2.4 Difference between two successive revisions .
2.5 Project evolution: code size [lines] and lines touched over time
2.6 Revisions motivated by bug correction and other revisions over time
2.7 Design errors: time to discovery [days] vs. error size [lines]
2.8 Frequency of design errors in function of their size and multiplicity

3.1 CSSL1 error (x = 1, y / 0): a) error-free design; b) erroneous design
with x ≠ 1; c) erroneous design with x = 1 .

3.2 PROOFS’ error simulation algorithm .
3.3 CESIM error simulation algorithm for conditional errors
3.4 Example execution of CESIM for a 3-vector test sequence:

a) PS- and PSBE-partitions of errors, b) corresponding state transitions . . .
3.5 Run-time analysis of CESIM on the ISCAS’89 benchmarks
3.6 Coverage of CSSL0 and CSSL1 errors on s1238 by a CSSL0 test set

generated by HITEC .
3.7 Error simulation on s1238 with CSSL0 and CSSL1: number of

distinct states .
3.8 Number of error sets during error simulation on s1238 with CSSL0

and CSSL1 errors .
3.9 Some basic error types [AA95] .
3.10 Simplified schematic of DLX implementation showing modules

decode andtop .
3.11 Coverage of restricted CSSL0, restricted CSSL1, and actual errors

by 14 biased random test sets T0-T13 for top .
3.12 Experiment to evaluate the proposed design verification methodology
3.13 Example of an actual design error in our DLX implementation

4.1 Instruction interaction mechanisms: a) bypassing, b) squashing,
c) stalling .

4.2 Pipelined microprocessor model .
4.3 Pipelined controller .
vi

 . 88
. 89
. . 91
. 92
. 94
. . 99
 . . 100
. . 101
. . 102
 . 103
. 110
 . 111
113

122

. 128
4.4 Iterative array of pipelined controller: a) conventional organization;
b) alternative organization .

4.5 Composite circuit dealt with in pipeframe organization
4.6 The three parts of the test generation algorithm and their interactions
4.7 Flowchart of overall test generation algorithm .
4.8 Overall iterative organization of path selection .
4.9 C- and O-propagation tables .
4.10 Path selection using C-values .
4.11 Directed search PODEM .
4.12 Backtrace rules for path selection: add, and .
4.13 Backtrace rules for path selection: fan, mux .
4.14 Pipelined controller: a) circuit b) pipeframe-based transition system
4.15 Overall test generation algorithm .
4.16 Simplified schematic of DLX implementation .

A.1 BF (x, y): a) Fault-free circuit, b) faulty circuit .

B.1 Run time analysis of CESIM on ISCAS’89 benchmarks
vii

viii

LIST OF TABLES

Table:

1.1 Phases in the design of a microprocessor . 3

2.1 Design projects for which error data was collected . 32
2.2 Design files written for the X86 project . 33
2.3 Error distribution in X86 . 34
2.4 Design error distributions [%] . 39

3.1 Characteristics of two modules of the DLX microprocessor
implementation . 65

3.2 Coverage of synthetic and actual errors by biased random tests
T0-T13 . 67

3.3 Actual design errors and the corresponding dominated modeled errors
for DLX . 72

3.4 Actual design errors and the corresponding dominated modeled errors
for LC2 . 74

3.5 Comparison of practical design error models . 76

4.1 Initial C- and O- values . 98
4.2 Computation of controllability and observability measures for a node

with incoming edgesx1…xm and outgoing edgesy1…yn 105
4.3 Model parameters of DLX design . 115
4.4 High-level test generation for bus-SSL errors in DLX implementation 115
4.5 Gate-level test generation for standard SSL errors using HITEC 115
4.6 Comparison of high-level and gate-level test generation for DLX 115

A.1 Bridging functions Z(x, y) . 123

B.1 Test generation and fault simulation of ISCAS’89 circuits using
HITEC . 126

B.2 Error simulation of ISCAS’89 circuits using CESIM 127

ix

LIST OF APPENDICES

Appendix

A. Relationship between CSSL1 errors and bridging faults 122

B. Conditional error simulation on ISCAS 89 benchmarks 124

the

ideas

ters,

m98].

le in

the

rld.

ust of

ames,

rcuits

d new

latest

d are

ve to

at very

s are

deep

every

, the

ents

ajor
CHAPTER 1
Introduction

Information technology is drastically changing our world. Economies are shifting from

industrial age of steel and cars to the information age of computer networks and

[Eco96]. In 1998, the gross domestic product (GDP) in the US due to compu

semiconductors, and electronics reached that of the automobile industry: 3.5% [Bau

The microprocessor, which saw its birth in 1971 with the Intel 4004, plays a central ro

this information revolution. Indeed, Intel now dominates the hardware side of

computer industry. It is the largest (by dollar volume) chipmaker in the wo

Microprocessors have become commodity products and are essential parts, not j

computers, but also of cars, cellular phones, personal digital assistants, and video g

to name just a few. Continuous technological improvements have led to integrated ci

becoming smaller, faster and cheaper. Simultaneously, people have continued to fin

uses of microchips and computers. The Internet, with its explosive growth, is just the

example.

The markets for microprocessors demand low cost and high performance, an

changing rapidly. To meet these demands, microprocessor design houses ha

overcome great technological challenges: Circuits need to be designed that operate

high speed. New design methodologies to deal with signal integrity and timing issue

becoming necessary now that the minimum feature size has dropped well into the

sub-micron regime. The number of transistors integrated on a single chip is doubling

18 months. This has led to an enormous growth in functional complexity. Furthermore

pressure put on the design cycle by time-to-market is enormous.

Functional verification, which is concerned with ensuring that the design implem

the intended functional behavior, is considered one of microprocessor design’s m
1

2

esign

do

8b].

nting

are

eed

on

e the

en an

p so

over

ed a

n of

mine

next

: test

ement

tware

tline

cess

se98].

n, 2)
bottlenecks. A verification team today is the size of what an entire microprocessor d

team was 10 years ago [Wolf98b]. The technology and knowledge required to

verification ‘right’ is expected to become a differentiator among companies [Wolf9

Successful companies will have to put together a complete set of compleme

technologies to ensure their designs’ functional quality. Also, microprocessors

increasingly being used in (safety-) critical applications, which directly influence the n

for better design verification.

The cost of doing verification ‘wrong’ can be very high. Manufacturing an extra silic

revision of a chip is becoming increasingly expensive [Wils99]. Far more severe can b

loss in expected sales and margin due to the delay in planned shipping date wh

unplanned silicon revision is required. Finally, production volumes are ramping u

rapidly, that letting the first customers do the debugging is no longer an option. To c

the replacement of faulty chips containing the infamous FDIV bug, Intel announc

charge against earnings of $475 million [Beiz95].

The subject of this thesis is a new methodology for functional design verificatio

microprocessors. To put functional design verification into perspective, we first exa

the design process. We then define functional design verification in Section 1.2. The

three sections discuss some important issues in functional design verification

generation (Section 1.3), correctness checking (Section 1.4), and quality measur

(Section 1.5). We examine related work in the areas of physical fault testing and sof

testing in Sections 1.6 and 1.7, respectively. We conclude this introduction with an ou

of the thesis.

1.1 Microprocessor design

To put functional design verification into perspective, we first examine the design pro

of microprocessors. Our discussion is based on an article by Bose and Conte [Bo

Referring to Table 1.1, four major phases can be identified: 1) architectural exploratio

microarchitecture definition, 3) design implementation, and 4) post tape-out.

3

essor.

ower

nerate

key

of the

ns.

itects

need

ilding

the
Architectural exploration

Both economical and technological forces set the design targets for a new microproc

The specifications include performance goals for certain applications, cost and p

consumption constraints.

One of the first tasks of the architects is to select representative applications, ge

corresponding workloads, and reduce these tobenchmarksthat are small enough for

microarchitectural simulation. Other activities include the analysis of the dataflow of

applications and the development of a crude model to evaluate the performance

architecture. Architects bound the design space based on technological consideratio

Microarchitecture definition

The second phase is concerned with the definition of the microarchitecture. Arch

work on microarchitectural innovations, determine which microarchitectural features

to be considered, and build simulation models for them. These models are the bu

blocks of a simulation model for the complete microarchitecture. The purpose of

Table 1.1: Phases in the design of a microprocessor

Phase
Synthesis
activities

Analysis (verification)
activities

Design
representations

Architectural
exploration

Application selection Validation of traces Performance,
cost, and power
goals

Workload selection
Trace generation

Microarchitecture
definition

Development of
trace-driven simulator

Performance
verification

ISA
Trace-driven
simulation
model (µarch.)

Microarchitecture
definition

Design
implementation

Logic design Func. design verif. Behavioral RTL
Circuit design Func. impl. verif. Structural RTL
Physical design Timing verification Transistor-level

schematicsElectrical verification
Layout verification Layout

Post tape-out Machine-specific
compiler tuning

Functional testing First silicon
Electrical charact.
Performance charact.

4

given

er of

lation

1]. A

y the

e of a

s of

e the

aints

ge of

lator;

only

tural

ms,

ansfer

h as

the

ers

ners

l RTL

ogic)

In

ned
microarchitectural simulator, also referred to as atimer or aperformance simulator, is to

compute an accurate estimate of the execution time, in number of clock cycles, of a

benchmark on a given concrete microarchitecture [Burg97, John91]. As the numb

design points is very large and the size of the benchmarks is very large as well, simu

speed is important. A popular simulation technique is trace-driven simulation [John9

concrete microarchitecture is defined by a set of parameters that further specif

features used, such as the number and latency of integer execution units, or the siz

cache. Also associated with each microarchitectural feature is its cost in term

hardware, but also in terms of design and verification effort. To accurately estimat

cost some floorplanning and circuit design studies may be required.

The design problem is that of finding the microarchitecture that meets all the constr

and provides the best trade-off between performance and cost. Verification at this sta

the design is mainly concerned with the correctness of the microarchitectural simu

the systematic study of this problem, also referred to as performance verification, has

recently gained interest [Bose98].

Design implementation

In the third phase the microarchitecture is implemented. The microarchitec

specification is typically not formal, and consists of textual descriptions, block diagra

and parameter values. The first step in this phase is to design the first register-tr

level (RTL) description. Standardized hardware description languages (HDL’s), suc

Verilog [IEEE96] and VHDL [IEEE88], or C/C++ are commonly used to describe

RTL model. This activity is sometimes referred to ascontrol design. Logic designers

refine this behavioral RTL description to a structural RTL description. Circuit design

generate transistor-level netlists that implement the structural RTL. Layout desig

generate layouts for the transistor-level schematics. The refinement from behaviora

to layout differs significantly among industrial design methodologies.

There are numerous verification problems at this stage. They include functional (l

verification, timing verification, electrical verification, physical design rule verification.

functional verification we distinguish between design verification, which is concer

5

ion

two

t the

atics

e first

pre-

ause

suites

trical

ecific

on has

for

y the
with the functional correctness of the initial RTL description, and implementat

verification, which is concerned with checking the functional equivalence between

versions of the implementation. The latter includes comparing the RTL view agains

structural view, the structural RTL view vs. transistor level schematics, and the schem

vs. the layout.

Post tape-out

Functional design verification continues after the design has been taped out. Onc

silicon is available, extensive functional testing can begin. The main difference with

silicon design verification is the vast increase in test throughput. Diagnosing the root c

of a discrepancy can be difficult. Functional test suites are complemented with test

aimed at measuring performance. Other activities in this phase include elec

characterization, and physical fault testing and diagnosis.

Software activities that critically depend on the hardware, such as machine-sp

compiler tuning, and post-hardware measurements, can start as soon as the silic

been found sufficiently functional. This may involve engineering workarounds

remaining functional bugs, or fabrication of corrected versions of the chip.

1.2 Functional verification

Functional verification has gained a lot of interest in recent years as evidenced b

surge in publications detailing industrial experience with the topic:

• AMD’s K5: [Gana96]

• DEC’s Alpha: [Kant96, Tayl98]

• HP’s PA RISC: [Alex96, Bass95, Mang97, Weir97]

• IBM’s S/390: [Shep97, Wile97]

• Metaflow’s Sparc: [Pope96]

• Motorola/IBM’s PowerPC: [Mall95, Mona96]

• SGS Thomson’s Chameleon: [Casa96]

6

mon

e two

w the

may

may

ce of

ially

able.

ting

thods

vel)

f two

uch a

ecial

thods

or

n set

s. The

rmer

ts,

y the
Although concrete methodologies differ from company to company, some com

themes can be identified as we shall see.

Functional implementation verification. Functional implementation verification

refers to checking the functional equivalence between two versions of the design. Th

versions may be representations of the design at a different level of abstraction (belo

microarchitectural level), such as behavioral and structural RTL. Alternatively they

be different versions of the design at the same level of abstraction; for example, one

be a retimed version of the other.

Efficient methods have been developed to formally check the boolean equivalen

large combinational circuits [Kuel97], and have recently become available commerc

[Goer95]. For library-based logic design methodologies these tools are readily applic

In custom methodologies a significant effort may be involved in automatically extrac

an accurate gate-level view from the transistor level netlist. Nevertheless, these me

are becoming a favorable alternative for regression verification using a (switch-le

simulator.

Combinational equivalence checkers can be used to check the equivalence o

sequential circuits if there is a one-to-one mapping between the state registers. If s

mapping does not exist, the complexity of the problem greatly increases. For the sp

case of circuits whose state registers differ because of retiming, more specialized me

have been developed [Bisc97, Hosk95].

Functional design verification. Functionaldesignverification (FDV) is concerned

with verifying the functional correctness of the first RTL model of the design. F

microprocessor design correctness, this means conformance to the instructio

architecture (ISA) and to some (incomplete) microarchitectural specification.

Functional design verification undergoes several phases as the project progresse

complete effort can be divided into a pre-silicon and a post-silicon phase. The fo

phase is further divided into unit verification and system verification.

During unit verification a portion of the design is verified in isolation. For larger uni

another (lower) level of integration (designer macros) may be appropriate. Basicall

7

ages of

e unit

in the

d. A

s may

nce

n

wift

most

t al.

and

ies of

isms,

stood

the

ting

icon

ut of

take

t led

TL

l and

sing

ods

d its
same verification techniques as those at the system level are applicable. The advant

this bottom-up approach are as follows. Functional bugs that are confined to a singl

are usually easier to detect and diagnose when that unit is exercised in isolation than

system. Furthermore, verification does not have to wait until every unit is complete

disadvantage is the overhead required to set-up testbenches for all of the units. Thi

require abstract models to mimic other units interfacing with the one being verified. O

functional quality criteria for the units have been met,systemverification can be started.

The aim ofpre-siliconfunctional verification is not to eliminate every functional desig

error, but to raise the functional quality of the design to a level that facilitates s

hardware bring-up and test. Consequently the system has to be able to perform

functions perfectly, but a small number of remaining errors can be tolerated. Wile e

[Wile97] report three key elements in achieving this goal: 1) The strengths

weaknesses of verification methods used need to be understood. 2) The priorit

hardware bring-up need to be understood and verified. 3) Work-around mechan

which allow for avoidance of failing aspects of the system behavior, need to be under

and fully functional. If these conditions are met, a much higher confidence in

functional quality of the design can be obtained in a given amount of time by fabrica

the chip and performing extensive functional testing than by any of the pre-sil

verification techniques. This is essential for meeting time-to-market. The throughp

test cases duringpost-siliconverification is typically 3 to 5orders of magnitudegreater

than that during pre-silicon verification. On the other hand, diagnosing an error may

significantly more time. The first step is usually to try to reconstruct the conditions tha

to the discrepancy in the RTL simulation model. The observability offered by the R

model can then be used to diagnose the error to its root cause.

Approaches to functional design verification

There are two broad approaches to functional hardware design verification: forma

simulation-based. Formal methods try to verify the correctness of a system by u

mathematical proofs [Clar96, Kurs97, McFa93, McMi94, Yoel90]. Such meth

implicitly consider all possible behaviors of the models representing the system an

8

ge of

ls is a

DV

a very

ods

lass of

great

ng a

tors)

g of

heir

s use

C++

gic

sed

uring

the

igner

e in

debug.

omes

eover,

le to

gest
specification, whereas simulation-based methods can only consider a limited ran

behaviors. The accuracy and completeness of the system and specification mode

fundamental limitation for any formal method. The spectrum of formal methods for F

is broad. At one end there are methods that are highly automated, but address only

restricted problem space [Beer96, EET94, Goer97, Hard96, Kuel97, McMi93]. Meth

at the opposite end, such as theorem proving, use formalisms to address a richer c

problems, and have mechanisms to use hierarchy and abstraction, but require a

amount of expertise to apply them [Cohn87, Cohn89, Owre96, Wind95].

Simulation-based design verification tries to uncover design errors by detecti

circuit’s faulty behavior when deterministic or pseudo-random tests (simulation vec

are applied. All of the microprocessor manufacturers mentioned in the beginnin

Section 1.2 report that they still rely heavily on simulation-based methods to verify t

products. Simulation-based methods are readily applicable as typical design flow

HDL descriptions that can be simulated using standard logic simulation tools, or C/

descriptions in conjunction with a proprietary (cycle-based) simulator. Also, lo

simulation is an area hardware designers are very familiar with.

In the following sections we examine some important issues in simulation-ba

functional design verification: test generation, checking correctness, and meas

functional quality.

1.3 Test generation for FDV

Manual test generation. Hand-written tests have been used with great success in

early days of computer design. With an intimate understanding of the design, a des

can write a very powerful and yet small set of verification tests that are very effectiv

exercising the design. Hand-written tests also have the advantage of being easier to

However, as the size and complexity of designs have dramatically increased, it bec

harder for one person to comprehend the complete design at a detailed level. Mor

modern simulation technology, such as cycle-based simulation [McGe95], is ab

simulate millions of clock cycles per day on a single workstation, even for the big

9

ration

o

equires

to

with

e very

hods.

alidate

9%

udo-

erators

icro-

er to

gth of

s might

-called

ith an

ficult

th

highly

tion of

5]. The

et of

uction

. One

es a

esult

he load
designs. To take advantage of this simulation capability, automated test gene

methods are needed.

Pseudo-random test generation.In the area of physical fault testing, it has long ag

been recognized that test patterns can easily be generated randomly. The method r

very little effort, but its efficiency and effectiveness, are rather low compared

algorithmic approaches. Furthermore, the effectiveness and efficiency decrease

increasing design size [Abra90]. Nevertheless, random test pattern generation can b

useful to complement manual test generation in the absence of better met

Sophisticated pseudo-random exercisers have been used very successfully to v

complex microprocessor designs [Ahar91, Kant96]. Taylor et al. [Tayl98] report that 7

of the functional bugs in the DEC Alpha 21264 microprocessor were found by pse

random tests. To achieve this high effectiveness such pseudo-random test gen

incorporate knowledge about the instruction set architecture and the concrete m

architecture. They typically have many parameters that allow the verification engine

bias test generation towards “interesting behaviors,” such as corner cases. A stren

random test generators is that they can generate test cases that verification engineer

have never thought of. On the other hand, most random test generators have so

holes: these are areas in the space of valid test sequences that are covered only w

extremely low probability, or even are not covered at all. Random tests are more dif

to debug than hand-written tests.

Template-based test generation.Certain aspects of designs are difficult to cover wi

biased random tests. This may be the case if the space of valid input sequences is

constrained. Specialized tools have been developed to help automate the genera

such focused tests. One example is a code generator described in [Chan94, Chan9

user provides so-called symbolic instruction graphs that compactly describe a s

instruction sequences that exhibit certain properties. The tool generates actual instr

sequences that satisfy all the properties by using constraint solving techniques

property might be that the third instruction is a load-class instruction, which caus

cache miss, and that the fourth instruction is an arithmetic instruction using the r

produced by the load instruction. Free variables, such as the register that serves as t

10

out the

ool

e

n the

nly

a97].

uilder.

l x86

is a

s the

d can

ticks

tion.

ternal

lly

sure of

trics is

at are

test

or

esign

ne a

each

d with

od to
target, are chosen in a biased random manner. The tool incorporates knowledge ab

micro-architecture, in the form of implicit constraints and biasing functions. A similar t

is described in [Hoss96].

Operating system (OS) and application code.Other sources of verification tests ar

operating system code and application code. However, booting an OS requires o

order of ten billion cycles [Kuma97], therefore the use of this type of verification has o

recently become feasible through hardware emulation [Gana96, Bass95, Kum

Demonstrating that the design correctly boots several OS’s is a great confidence b

Furthermore, for architectures that are not very well documented, such as the Inte

architecture [Wolf98a], successfully running application software with the OS in place

common practice [Gana96]. In spite of the fact that the x86 architecture dominate

industry, there are some subtle features [X86] which are not officially documented an

cause compatibility problems. Ultimately application and OS software are the yards

for compatibility. In-circuit emulation is one step closer towards real system opera

The emulator is hooked up to a (modified) system board and hence receives real ex

events from other devices on the system bus.

Coverage-directed test generation.Pseudo-random test generators are typica

deployed in conjunction with extensive coverage measurements. Coverage is a mea

the completeness of a test suite for a design. A discussion of prevalent coverage me

given in Section 1.5. Coverage data is analyzed to identify regions of the behavior th

not (well) covered. Usually, verification engineers manually tune the pseudo-random

generators, or write a focussed test to cover the verification hole.

Error-oriented test generation. A different approach is to use synthetic design err

models to guide test generation. This exploits the similarity between hardware d

verification and physical fault testing. For example, Al-Asaad and Hayes [AA95] defi

class of design error models for gate-level combinational circuits. They describe how

of these errors can be mapped onto single-stuck line (SSL) faults that can be targete

standard automated test pattern generation (ATPG) tools. This provides a meth

generate tests with a provably high coverage for certain classes of modeled errors.

11

nted

detail

lied

g a

ly

neer,

at of

rce.

ircuit

an be

ction

root

the

owed

ared

y, it is

arger

letely

table

ome

to be

is)

s the

er
A second method in this class stems from mutation testing, which is an error-orie

structural approach to software testing. Mutation testing will be discussed in greater

in Section 1.7. Recently, Al Hayek and Robach [AH96] have successfully app

mutation testing to hardware design verification in the case of small VHDL modules.

1.4 Checking the outcome of a simulation

A nontrivial task in simulation-based FDV is to determine the outcome of simulatin

verification test, i.e., did the verification test detect an error?

Manual inspection. Manual inspection of the simulation output is still a common

used method, especially in the early stages of the verification effort. The engi

typically the designer, inspects the simulation output through an interface similar to th

a logic analyzer. This method is very flexible way for tracking down an error to its sou

The interface allows the designer to explore the entire design. Every signal in the c

can be examined. Once the outcome of a simulation run has been validated, it c

stored together with the test for later use (regression testing). Although manual inspe

is error-prone and impractical for large test sets, it is still necessary to diagnose the

cause of discrepancies detected by the methods discussed below.

Self-checking tests.A first approach to automated correctness checking is to make

tests self-checking. The tests start by setting up the system’s initial state. This is foll

by the bulk of the verification test. At the end, part of the system’s final state is comp

to a precomputed final state included with the test. If the test was generated manuall

not uncommon that the test writer computes the expected final state himself. For l

tests, and for tests that were generated with tool assistance or even comp

automatically, the final state is usually computed by running the test through a sui

high-level simulation model of the system, such as an interpreter for the ISA. The outc

of a self-checking test is basically pass or fail. In case of failure, the test needs

simulated again, this time with full visibility. Tracking down the error (error diagnos

can be very tedious and time consuming. Another complication of the approach i

problem oferror masking. At some point in the simulation, a verification test may uncov

12

error

this

that

atable

e use

oack

lar

cking

the

chine

ancy

the

t the

likely

pass

the

tion

ween

ount

eral

cesses

Co-

the

ests

ically

nt96,

ckers
a design error (make it observable in the visible part of the machine state), but the

effect might get annihilated in the remaining part of the simulation. To overcome

difficulty, tests are usually restricted in length. An advantage of self-checking tests is

only the implementation needs to be simulated. The absence of a suitable simul

reference model (specification) makes it the only choice for correctness checking. Th

of self-checking tests has been reported in [Chan94, Ho96a]. Kantrowitz and N

[Kant96] worked on the functional verification of a commercial supersca

microprocessor. They reported some of these difficulties associated with self-che

tests, and mainly used theco-simulation approach to correctness checking.

Co-simulation. The second approach for automated checking is to simulate

implementation and the specification together and to compare the states of both ma

constantly. This approach has been referred to as co-simulation [Ho96a]. A discrep

between implementation and specification states indicates either an error in

implementation (a design error), or an error in the reference model. Provided tha

reference model and the implementation are developed independently, it is very un

that both models exhibit exactly the same error and hence that an error would

unnoticed. The main difficulty with this approach is that the reference model and

implementation are usually at different levels of abstraction. Synchronizing the simula

of both models, and providing an appropriate mapping (both in time and in space) bet

the state of the reference model and the implementation may require a significant am

of effort. A superscalar processor with out-of-order execution might be working on sev

tens of instructions at any given time, whereas the sequential reference model pro

only a single instruction at a time. The benefits of this approach are as follows.

simulation allows large verification tests to be run without supervision. Changes in

implementation only require changing the state mapping. No individual verification t

need modification, as might be the case for self-checking tests. Co-simulation is typ

used in verification methodologies that use pseudo-random test generation [Ka

Tayl98].

Assertion checkers.Assertion checkers, also referred to aswatchdogsor snoopers, are

agents that check certain properties about the design during the simulation. Che

13

orting

self-

hecks

le is a

chine

the

ass

f the

sign

n is

tive

od is

hieve

tion

sis of

ity of a
increase observability, help diagnosis, and prevent wasted simulation cycles by ab

the simulation as soon as a violation occurs. They can be used in conjunction with

checking tests or co-simulation. A module that monitors the signals on a bus and c

these signals against the bus protocol is an example of a checker. Another examp

unit that monitors a finite-state machine and halts the execution as soon as the ma

enters an illegal state.

1.5 Measuring and predicting functional quality

Perhaps the most challenging problem in simulation-based FDV is to estimate

confidence in the functional quality of a design after a certain amount of verification. B

et al. report the following acceptance criteria that were used in the verification effort o

HP PA 7100LC microprocessor [Bass95]:

• all failures are diagnosed to their root cause

• no chip failures exist

• all handwritten tests pass

• random code generators have run for a “long time” without finding any failures

• application software has run without any indication of hardware bugs

The problem can be stated informally as two questions: “How thoroughly has the de

been verified?” and “When am I (going to be) done simulating?” The first questio

concerned withcoverage, the completeness of a verification test set. Given that exhaus

simulation is not practical, and that therefore any simulation-based verification meth

incomplete, the second question is concerned with predicting the effort required to ac

a certain level of functional quality. Determining coverage and predicting the verifica

effort are closely related aspects. Both analysis of bug detection data, and analy

coverage have been used to gauge the (expected) confidence in the functional qual

design.

14

t the

per

trial

r time

entially

cal

jects

test

used

term

e that

for

read.

ht be

ure of

gful to

nted,

ercise

t these

other

anos,

io of

an be
Analysis of bug detection data

Upton collected design error data from the Aurora GaAs microprocessor designs a

University of Michigan [Upto94, Upto97]. He observed error rates of one design error

every 100 to 200 lines of Verilog code. This figure has been confirmed by indus

sources [Bent97]. Upton also analyzed the cumulative number of detected bugs ove

and suggested that the bug detection process can be modeled as a function expon

tapering off in time.

Malka and Ziv apply techniques from software reliability engineering for statisti

analysis of bug detection data from two industrial microprocessor design pro

[Malk98]. They use trend analysis to gauge the effect of the introduction of a new

generation techniques on reliability growth. Modeling of the bug discovery process is

to make short term predictions, such as the mean time to the next failure, and long

predictions, such as when a certain level of reliability can be expected. They conclud

statistical analysis of bug detection data can provide very relevant information

determining tapeout dates.

The use of quality criteria based on analysis of bug detection data is widesp

However very little data of this type has been published [Mona96]. One reason mig

that this data is highly dependent on the design and verification methodology, the nat

the design, and the designers themselves. Also, bug detection data is only meanin

the extent that a detailed verification plan has been carefully designed and impleme

and that continuous efforts have been made to improve and extend techniques to ex

the design. Biased-random test generators can generate new tests indefinitely, bu

tests tend to loose their effectiveness over time. Analysis of coverage provides an

means to assess the functional quality of a design.

Analysis of coverage

Coverage is a measure of the completeness of a test suite for a design. Mound

Abraham and Hoskote [Moun98] give an idealized definition of coverage as the rat

the exercised behaviors over the total number of specified behaviors. A behavior c

15

se all

eeded

ey are

tate of

iz90].

guages

ugh

e is an

etrics

ical

n is

ng an

rage

sing a

iently,

s a

a part

f the

s this

n

for

ment

agate
modeled as an execution trace of the design. Unfortunately, attempting to exerci

possible execution paths is an intractable problem. Practical coverage metrics are n

to expose shortcomings of test suites and to spur further directed test generation. Th

also needed to complement the methods discussed above for evaluating the s

completion of the verification effort.

Code coverage metrics from software testing

Software design also poses the problem of measuring the effectiveness of testing [Be

Classical structural metrics such asstatement, branch and path coveragealso apply to

hardware design, as designs are usually represented in hardware description lan

today. It is well known that many design errors may still go undetected even tho

complete statement and branch coverage has been achieved. Full path coverag

impractical goal as the number of paths can be exponential. An advantage of these m

is that their computation imposes only a small overhead on logic simulation. A typ

flow for code coverage measurement is as follows. First the original HDL descriptio

instrumented. The instrumented code is then simulated for the given test suite usi

standard logic simulator that is augmented with library functions provided by the cove

tool vendor. Part of the simulation outcome is coverage data that can be examined u

coverage analysis tool.

OCCOM

Although code coverage metrics such as statement coverage can be computed effic

they suffer from not taking into account observability. A verification test that activate

particular statement, but fails to propagate the effect of executing that statement to

of the machine state that is truly observable (those signals that are also part o

specification), cannot be considered to have “covered” that statement. To addres

shortcoming Devadas et al. [Deva96] propose a code coverage metric based otag

propagation, which was later refined in [Fall98a] and is called OCCOM, which stands

observability-based code coverage metric. Errors are associated with assign

statements in the code. The effect of an error is represented by a “tag” that can prop

16

The

te over

k in

logic

tag

neous

results

ich is

llers.

An

rage

uence.

asily

et of

ould be

o95]

ven

ontrol

osed

es is

ge in

ndors

ize of

apply

at the

control

ation
through the circuit according to a set of rules similar to the D-calculus [Abra90].

metric measures the fraction of tags that have been propagated to the observable sta

the number of tags injected. The major extension of [Fall98a] to the earlier wor

[Deva96] is an efficient method for computing OCCOM coverage using a standard

simulator. The efficiency of computation is closely related to the definition of the

propagation rules. The propagation rules are defined so that, in essence, the erro

machine stays on the same execution path as the error-free machine. Experimental

on small examples show a modest overhead factor of 1.5-4 over logic simulation, wh

a much smaller overhead than that incurred by fault simulation.

FSM based metrics

Microprocessor designs typically have a natural partition: datapaths and contro

Controllers have been found to be particularly prone to design errors [Ho96a].

appropriate model for small controllers is that of a finite-state machine (FSM). Cove

can then be measured as the fraction of states or state transitions visited by a test seq

FSM transition coverage is not a meaningful metric for microprocessors, which can e

contain thousands of state registers. Even if it were possible to compute the s

reachable states, any coverage measurement with respect to complete state graph w

negligibly small. However, most of the state registers are part of the datapath. Ho [H

worked on the verification of the protocol processor in the FLASH project [Kusk94]. E

after abstracting the datapath, he was still faced with the state explosion problem. C

is usually distributed and consists of a number of interacting smaller FSM’s. Ho prop

an incremental strategy in which coverage with respect to the individual state machin

attempted first. This type of coverage measurement is referred to as FSM covera

industry [Hoss96, Kant96, Nels97, Paln94, SP92], and is also supported by EDA ve

[Clar98]. Next, larger composite state machines can be considered. To reduce the s

that state graph further, Ho defined an equivalence relation on states. All states that

the same control signals to the datapath are considered equivalent. Provided th

machine has been partitioned in such a way that the datapath does not store any

state, this is a very reasonable assumption. Ho applied his methodology in combin

17

state

these

This

96a,

hip

pt97].

ental

sing

that

crete

alysis

98,

l

ed

sed

ns

hat

g

for
with hand-generated self-checking tests. He found that designers presented with

transitions that were not covered had great difficulty generating tests to exercise

transitions. An automated method for test generation would have helped a lot.

direction of research set in [Ho95] has gained considerable following: [Ho96b, Ho

Geis96, Gupt97, Lewi96, Moun98]. Of particular interest is a study of the relations

between reduced-FSM coverage and design error coverage by Gupta et al. [Gu

However, theoretical results in this area tend to be weak and extensive experim

studies have not appeared in the literature.

Design-specific coverage analysis

The functional complexity of commercial microprocessors has been increa

continuously. Functional verification of these designs poses formidable challenges

verification teams tackle with very pragmatic approaches that are specific to the con

design to be verified, and build on past experience. We list some of the coverage an

techniques from the functional verification effort of the DEC Alpha processors [Dohm

Kant96, Tayl98]:

• State transition analysis.State transitions coverage is measured on individua

FSM’s in the design. Some aspects of the design may not be directly implement

as a localized FSM, but may have a natural abstract FSM view that can then be u

to measure transition coverage. The analysis may include checking for transitio

that are not supposed to occur.

• Sequence analysis.A sequence of microarchitectural events in a particular window

of time is measured. This type of analysis can be used, for example, to ensure t

a behavioral model for an external device on the system bus is fully randomizin

events.

• Occurrence analysis.Occurrence analysis refers to counting events without any

time relationship. An example is checking that a carry-out has been generated

every stage of an adder.

Similar work appears in [Mona96, Pope96].

18

use

tio of

fault

at it

tion.

tems.

r over

em.

fault

ndent

tively

cal

the

its.

from

that

error

ing 1)

fault/

ly

ed is

orrect

f the
Design error coverage

A class of simulation-based verification approaches [Abad88, AA95, Kang94, VC98]

synthetic error models to guide test generation. Coverage is then defined as the ra

detected synthetic errors to the total number synthetic errors. This is similar to a

grade in physical fault testing [Abra90]. An advantage of design error coverage is th

addresses observability. A limitation is its high computational cost, as in fault simula

1.6 Related area: physical fault testing

Physical fault testing addresses the problem of detecting physical errors in digital sys

Physical faults may be introduced during the manufacturing process or may appea

time “in the field” due to wear, etc. Direct analysis of physical faults is a physical probl

Furthermore, a wide variety of technology-dependent physical faults exist. Logical

models and delay fault models have been developed to model in a technology-indepe

way the physical faults that affect a system’s function and operating speed, respec

[Abra90]. In the following we restrict the discussion to testing for logical faults. Logi

fault models greatly simplify the testing problem by moving the problem from

physical domain to the Boolean domain.

A logical fault model together with the circuit under test, defines a set of faulty circu

The test generation problem is to find tests that distinguish each of the faulty circuits

the fault-free circuit. Likewise, in error-directed FDV, tests need to be generated

distinguish the given design from a number of erroneous circuits defined by a design

model. Despite this close relationship, the problems have major differences concern

the reference model, 2) the nature of the circuit: combinational vs. sequential, 3)

error models, and 4) hierarchy.

Reference model.In physical fault testing the fault-free circuit is given and complete

specified. In design verification, a design (implementation) that needs to be verifi

given; the correct design is unknown. Instead, and at best, a complete model of the c

design at a higher abstraction level is given also. Often only a partial specification o

system’s behavior is available.

19

a

n96,

le to

n for

f any

bility

very

ereby

test

ques

ence

model

ult

SSL)

the

esign

odel

can

In

level.

ise of

ts are

then

r test,

DV

ified.

plete
Combinational vs. sequential circuits.Test generation for sequential circuits is

much harder problem than test generation for combinational circuits [Micz86, Che

Marc96]. Although several test generators are commercially available that are ab

generate very high quality tests for very large combinational circuits, test generatio

sequential circuits the size of modern microprocessor is well beyond the reach o

current automatic test pattern generation (ATPG) system. However, design for testa

techniques (DFT) [Abra90] can greatly reduce the complexity. In full scan design, e

register is replaced by a scan register and the registers are linked in a chain, th

making every register observable and controllable. This effectively reduces the

generation problem to one for combinational circuits. Unfortunately these DFT techni

do not apply to design verification, since typically there is no one-to-one correspond

between the state elements of the design implementation and the reference

(specification).

Fault/error models. A third difference between the two areas is that physical fa

testing has a proven and widely accepted logical fault model, the single-stuck line (

model. The SSL combines simplicity with the property that it forces each line in

circuit to be exercised. A large body of research has been based on this model. D

verification, as yet, does not have such a fault model. The success of the SSL m

provides a motivation to develop error models for design verification, which

potentially benefit from the work on SSL faults.

Hierarchy. Physical fault testing and FDV also differ in the role hierarchy plays.

physical fault testing the goal is always complete (SSL) fault coverage at the gate-

Hierarchical test generation approaches have been proposed that carry the prom

being able to handle larger designs than purely gate-level methods. Typically, test se

precomputed for gate-level descriptions of individual modules. System tests are

derived at the high-level representation that apply the test stimuli to the module unde

and propagate the error effects to the system’s primary outputs [Murr90, Murr92]. F

can be done in a bottom-up fashion. First, the units constituting the design are ver

Verification tests are applied to the unit in isolation during this phase. Next, the com

design is verified, shifting the focus towards the interaction of the units.

20

0’s,

g and

Ada.

user

ming

r, these

map

plex

r of

iz90].

esting

One

thods

tware

ting

a

time

tion

tions

need

nded

nefit

tware

ansfer

tions.

s, but
1.7 Related area: software testing

Since the introduction of HDL’s to mainstream design methodologies in the 8

hardware design has started to resemble software design. HDL’s, such as Verilo

VHDL, take after general-purpose programming languages, such as C/C++ and

Complex mechanisms, such as dynamic memory allocation, recursion, arbitrary

defined data type and pointers, are readily supported by general-purpose program

languages and are commonly used in software design. In hardware designs, howeve

mechanisms need to be implemented explicitly by the designers so that they readily

onto hardware. Functional verification of software is therefore substantially more com

than hardware verification.

The task of software testing is to ensure the reliability of software. A large numbe

methodologies and techniques have been proposed; an overview can be found in [Be

However, most of these techniques are not supported by tools that automate the t

process. This is in contrast to most areas of hardware testing and verification.

explanation is that software tends to be more complex and more diverse. Testing me

that are both practical and effective tend to rely on expert knowledge about the sof

under test that is very difficult to automate. Another explanation is that most tes

methods crucially depend on aspecification. Written specifications are now considered

cornerstone of any software development project [Post96b], but there has been a

when the software community stubbornly tried to avoid taking time to record a descrip

of how software was supposed to behave.

Programmers obviously need specifications to write code, but these specifica

should also be written down to facilitate making changes and repairs later. Testers

written specifications to determine whether an observed behavior conforms to the inte

behavior.

Informal specifications, plain English descriptions of the requirements, have the be

of being easy to read. Unfortunately they are a major obstacle to automation of sof

testing. Recently, formal languages that are still readable, such as Semantic Tr

Language (STL) that appears in [IEEE94], have been proposed to capture specifica

Such formal specifications can automatically be checked not only for syntax problem

21

ic test

l and

n as a

f this

c to a

the

ts or

and

ork at

h than

h, and

ecuted

rogram

verage

neral

t and

ted by

erage

R].

are

s,

as

uct

es a

1] a

mer

e. The
also for semantic inconsistencies. Formal specifications are essential to systemat

case generation and functional coverage measurement.

Beizer [Beiz90] distinguishes two major approaches to software testing: functiona

structural. Functional methods are specification-directed and view the implementatio

black box. Structural methods are driven by the implementation. In the remainder o

section we discuss some of the few techniques that 1) are general, i.e., not specifi

particular application domain, and 2) have substantial support for automation.

Control flowgraph path testing. Path testing methods are based on the use of

control flowgraph of the program. In this graph nodes represent branching poin

junction points in the programs. Arcs represent branch-free code with a single entry

exit. Path testing is the oldest of all structural test techniques. Beizer references w

IBM from 1964. Tests are targeted at bugs that make the program take a different pat

intended. Completeness of test sets is measured in terms of their statement, branc

path coverage. Statement coverage requires that all statements in the program be ex

at least once. Branch coverage require that each alternative at each branch in the p

is exercised at least once. Branch coverage implies statement coverage. Path co

requires that all control flow paths through the program are exercised. This is in ge

not practical to achieve as the number of paths can be exponential. Full statemen

branch coverage are common targets during unit testing. Additional paths are selec

other test methods, such as dataflow testing, or logic-based testing. Cov

measurement is widely supported by software development tool vendors [Paxs98, S

Mutation testing. Mutation testing is an error-oriented structural approach to softw

testing introduced by DeMillo et al. in [DeMi78]. Mutation testing considers program

termed mutants, that differ from the given program by only simple errors, such

replacing ‘<‘ by ‘≤’ in one conditional expression. The task of the tester is to constr

tests that distinguish the mutants from the given program. Mutation testing provid

metric, mutation coverage, to grade test sets. King and Offutt described in [King9

system to automatically generate tests using constraint solving techniques.

Mutation testing is predicated on two hypotheses. The competent program

hypothesis assumes that programmers write code that is very close to correct cod

22

om a

plex

er of

of the

ssed

tors,

reful

ective

cond

y the

ion a

the

tion,

ct to

d.

ly

rs are

iting

e of

ution

trol

r when

sign

these

ndard
coupling effect hypothesis states that a test that distinguishes all programs differing fr

correct one by only simple errors (mutants), will also be sensitive for more com

errors.

Mutation testing has several high costs associated with it: 1) the large numb

mutants that need to be considered, 2) the requirement to execute tests on all

mutants still alive, and 3) the complexity of test generation. The first problem is addre

by selective mutation [Offu96]. Selective mutation considers only mutation opera

which generate a number of mutants which is linear in the size of the program. A ca

experimental study indicates that tests having good coverage with respect to sel

mutation provides a good coverage for (non-selective) mutation as well. The se

source of the cost is addressed by weak mutation [Wood93]. In weak mutation onl

activation of the error is considered, not the propagation. This makes weak mutat

much easier criterion to satisfy. In firm mutation [Wood93], the error is introduced in

program, during the execution, and it only persists for a limited duration of the execu

not till completion of the execution. The correlation between coverage with respe

weak or firm mutation and that with respect to (strong) mutation has not been studie

Run-time debugging.Errors involving dynamically allocated memory are notorious

difficult to debug because they are hard to analyze statically. Examples of such erro

leaking memory, using uninitialized variables, using freed memory, and reading or wr

beyond array boundaries. The widely used Purify tool [Rat97] is designed for this typ

errors. Purify instruments the object code of a program so that during program exec

all code is checked for these run-time errors and memory leaks.

A common type of late-cycle error in hardware designs involves complex con

interactions. A register leak occurs when a shared register latches corrupted data, o

it is overwritten before its data has been used. To combat this type of error, 0-In De

Automation [0In] proposes to automatically synthesize assertions that check for

errors. The instrumented design containing the assertions is then simulated with a sta

HDL simulator.

23

and

ysical

esign

rts

r this

as SSL

sign

n to

n is

DL,

test

nd the

sting
1.8 Thesis outline

This thesis explores functional design verification by modeling design errors

generating functional vectors for modeled errors using methods adapted from ph

fault testing techniques. The close relationship between physical fault testing and d

verification is illustrated in Figure 1.1. The task of physical fault testing is to identify pa

that are functionally defective due to imperfections in the manufacturing process. Fo

purpose, tests are generated that are targeted instances of logical fault models, such

faults. Likewise, the task of FDV is to detect functional design errors. We develop de

error models based on empirical error data.

The deployment of our methodology is illustrated in Figure 1.2. An implementatio

be verified and its specification are given. For microprocessors, the specificatio

typically the ISA, and the implementation is a description of the new design in an H

such as VHDL or Verilog. In this approach, synthetic error models are used to guide

generation. The tests are applied to simulated models of both the implementation a

System
model

Manufactured
system

Fault model

Physical
fault tests

Physical faults

Manufacturing

Error model

Verification
tests

Design errors

Design

Residual
design errors

Figure 1.1: Relationship between physical design verification and physical fault te

24

error,

hout

tune

eeded

ollect

at the
specification. A discrepancy between the two simulation outcomes indicates an

either in the implementation or in the specification. The figure also shows that throug

the verification process, actual errors are recorded. This information can be used to

error models.

Chapter 2 examines design error data. Published design error data lack the detail n

to derive structural error models. We therefore devised a systematic method to c

error data. We present and analyze error data we collected from design projects

University of Michigan.

Design error
models

Test
generator

Implementation
simulator

Specification
simulator

Equal?

Diagnose
& debug

Specification

Unverified
design

Verified
design

Error
database

Unknown actual error

…

Assisted
verification

Assisted
verification

Figure 1.2: Deployment of the proposed verification system

25

entify

show

rs in

aults

but

ethod

-level

high-

cribe

ns for
Chapter 3 develops synthetic error models based on the empirical data. We id

requirements that error models must satisfy to be useful for design verification. We

how well each of the proposed error models meets these requirements.

Chapter 4 considers the problem of generating verification tests for synthetic erro

microprocessors. As we will see, this problem is not unlike test generation for SSL f

in a very large sequential circuit. To cope with this complexity, we consider a limited,

important, class of pipelined microprocessors, and develop a test generation m

specific to these designs. To this end, we introduce a model that captures high

information about the structure of pipelined microprocessors. We then develop a

level test generation method that exploits the high-level knowledge. We des

experiments to evaluate the effectiveness of this algorithm.

Chapter 5 summarizes our research contributions and presents some directio

future research.

Good

rs. To

y, and

ors in

mon

tary

d us to

ished

esign

ssons

on,

since

95]

les of

ior to

n of

ction

nd the

ump
CHAPTER 2
Design error data

Our design verification approach uses design error models to direct test generation.

design error models should result in test sets that detect many actual design erro

construct such design error models a good understanding of the nature, frequenc

severity of actual design errors is required. Despite the abundance of design err

large-scale projects, very little data has been published on these errors. It is com

practice in industry to record design errors, but this information is considered proprie

and, perhaps, embarrassing, so it rarely appears in public. These considerations le

collect error data from design projects at the university. Section 2.1 presents publ

error data from industry. Section 2.2 describes our method to systematically collect d

errors. Section 2.3 presents the error data we collected. Section 2.4 offers some le

learned. A summary and a discussion of our results is given in Section 2.5.

2.1 Published error data

Although design errors that make their way into final products are comm

manufacturers have not always been forthcoming about them. This has changed

MIPS began to publish their bug list beginning with [MIP94]; the Pentium bug [Beiz

also influenced this change. To give a feel for these errors, we present a few examp

design errors that appeared in major commercial microprocessors.

The errata list for the MIPS R4000PC and R4000SC microprocessors (revisions pr

revision 3.0) [MIP94] documents 55 bugs. Many of these require a rare combinatio

events before they become visible. The following is a representative bug: If an instru

sequence which contains a load causing a data cache miss is followed by a jump, a

jump instruction is the last instruction on the page and, further, the delay slot of the j
26

27

the

The

e the

he

ts

f the

to

ding

while

sons:

dels

t the

that

ssor

rrors

subtle

g the

are not
is not mapped at the time, then the (VM) exception vector is incorrectly overwritten by

jump address. The R4000 will use the jump address as the exception vector.

workaround suggested in [MIP94] is that jump and branch instructions should never b

last location in a page.

Early versions of the Intel 8086 were shipped with the following bug [Ham94]: T

architecture specifies that forMOVandPOPinstructions to a segment register, interrup

are not to be sampled until completion of thefollowing instruction [Int89]. This feature

allows a 32-bit pointer to be loaded to the stack pointer registersSS andSP without the

danger of an interrupt occurring between the two loads. However, early versions o

8086 do not disable interrupts following aMOVto a segment register. This causes them

crash when an interrupt uses the stack betweenMOV SS, reg andMOV SP, op. A

workaround is to insert instructions to temporarily disable the interrupts when reloa

SS. An uncorrectable problem occurs when an unmaskable interrupt takes place

executing the instruction pair.

These published bug lists are inadequate for error model construction for two rea

1) Errata lists typically provide only a programmer’s view on the errors. Our error mo

depend on the design implementation. Therefore, more detailed information abou

errors is required, namely the concrete modification to the design implementation

fixes the error. 2) Errata lists only concern errors in the final product. Microproce

companies go to great efforts to functionally validate their designs. Those design e

that remain undetected before the product is shipped to customers tend to be very

and difficult to detect. The majority of all design errors are detected before reachin

customer, and hence are not documented in errata lists. Consequently, errata lists

Figure 2.1: Example of instruction sequence that exposes an error

lw // data cache miss
noop // one or two noops
jr // last instruction in the page
------ // page boundary
noop // first instruction (delay slot of jump)

// on the next page

28

us to

ror is

error

f the

ners’

The

were

d and

ecause

m by

ment

the

ed the

mpany

ction,

ement

out a

in

n; in

was

esign

king

gic
representative for the overall population of design errors. These considerations led

systematically collect design errors from design projects at the university.

2.2 Collection method

The most suitable point to collect design error data is immediately after the design er

discovered and corrected. At that point, all relevant information about the design

should be recorded. This record-keeping requirement conflicts with the interests o

designer. Overhead has to be reduced to a minimum in order to overcome desig

natural reluctance to cooperate.

Our error collection method uses the revision management tool CVS [Cede93].

revision management tool archives successive revisions of the design. Designers

asked to submit a new revision of their design whenever a design error was correcte

whenever they interrupted work on the design. Some designers resist the system b

they see it as a way their work can be monitored. We defused this potential proble

providing designers with a handout [VC97] explaining the use of the revision manage

system, and by explaining our objectives to obtain the designers’ cooperation.

Our first design error collection effort took place during the summer of 1996. Only

bare revision management system was in place. Experience with that project motivat

system described above. It was clear that a standardized form was needed to acco

each revision so that interesting revisions, i.e., those involving a design error corre

can be separated from other revisions. We therefore augmented the revision manag

system so that each time a new revision is submitted, the user is prompted to fill

questionnaire. The questionnaire, in the form of a multiple choice form shown

Figure 2.2, gathers four pieces of information: 1) the motivation for revising the desig

the case of a bug, the following apply as well: 2) the method by which the bug

detected, 3) the class to which the bug belongs, 4) a short description of the bug. D

errors can be detected by reading the HDL code (inspection), by syntax chec

performed by the HDL simulator (compilation) or a synthesis tool (synthesis), or by lo

29
(replace the _ with X where appropriate)

MOTIVATION:

X bug correction
_ design modification
_ design continuation
_ performance optimization
_ synthesis simplification
_ documentation

BUG DETECTED BY:

_ inspection
_ compilation
X simulation
_ synthesis

BUG CLASSIFICATION:

Please try to identify the primary source of the error. If in doubt, check
all categories that apply.

X combinational logic:

_ wrong signal source
x missing input(s)
_ unconnected (floating) input(s)
_ unconnected (floating) output(s)
_ conflicting outputs
_ wrong gate/module type
_ missing instance of gate/module

_ sequential logic:

_ extra latch/flipflop
_ missing latch/flipflop
_ extra state
_ missing state
_ wrong next state
_ other finite state machine error

_ statement:

_ if statement
_ case statement
_ always statement
_ declaration
_ port list of module declaration

_ expression (RHS of assignment):

_ missing term/factor
_ extra term/factor
_ missing inversion
_ extra inversion
_ wrong operator
_ wrong constant
_ completely wrong

_ buses:

_ wrong bus width
_ wrong bit order

_ verilog syntax error

_ conceptual error

_ new category (describe below)

BUG DESCRIPTION:

Forgot to select NOP in case of stall

Figure 2.2: Bug report example

30

is

to fix

of the

ation

erm

ult is

asked

and

d in

ittle

oses

ister

97.

the

ll of

90]

arried

f the

the

in

aduate

zable

point

izable

the
simulation. The operation of our error collection method within the design cycle

illustrated in Figure 2.3.

From the raw revision management data, we identified the design modifications

each error by computing the differences between successive revisions. The analysis

design error data lead to a preliminary classification of design errors. This classific

was used in our first major design error collection effort, which took place in the fall t

of 1996. Analysis of this design error data lead us to revise our classification. The res

shown in Figure 2.2. The categories are not completely disjoint, so designers were

to check all applicable categories.

2.3 Collected error data

Design projects.Design error data was collected from both class design projects

research projects at the University of Michigan. All of the designs were describe

Verilog [IEEE96]. Table 2.1 lists these projects. LC2 concerns the design of the L

Computer 2 (LC-2) [Post96a], which is a small microprocessor used for teaching purp

at the University of Michigan. The design of both a behavioral and a synthesizable reg

transfer level model was carried out by Hussain Al-Asaad [AA98] in the summer of 19

DLX1, DLX2, and DLX3 concern design projects that were undertaken as part of

senior/first-year-graduate level computer architecture course (EECS470) in the fa

1996. Students designed a pipelined implementation of the DLX [Henn

microprocessor at the structural level. X86 concerns an EECS470 design project c

out in the Fall of 1997. Students designed a pipelined implementation of a subset o

Intel x86 architecture [Int89]. FPU concerns the design of a floating-point unit for

PUMA processor [Brow96], which is a PowerPC microprocessor implemented

complementary GaAs process technology, and was undertaken as part of the gr

level VLSI design class (EECS627). Both a purely behavioral and a mixed synthesi

behavioral/structural model were designed. FXU concerns the design of the fixed-

unit of the PUMA processor. James Dundas and Todd Basso wrote the synthes

behavioral description in the Fall of 1996. For each of the projects the table lists

31
Design input

Simulate design

Correct bug

Fill out questionnaire

Detect bug

CVS
revision
database

Figure 2.3: Error collection system

32

of the

r the

rams.

nd by

ect,

nt the

ign

ence

, the

roken

ce no

on or

our

rding

.”

error
number of designers, the duration of the design entry and logic debug part, the size

design description, and the number of errors that were logged. Design verification fo

class projects relied on simulating the design for a few handwritten assembly prog

Simulation outcome was checked by comparing the final state of the processor, a

examining internal signals over the duration of the simulation. For the FXU proj

designers also wrote a random program generator, and used that to augme

handwritten test cases.

Data of one project in detail. In this section we examine the data obtained from des

project X86. This was chronologically the latest project we collected data from, and h

it benefited the most from past experience.

Table 2.2 lists the design files created in this project. For each file, we list its size

total number of revisions it underwent, and the number of design errors recorded, b

down by detection method. Note that in this project no synthesis tools were used; hen

errors were detected this way. Errors of interest are those detected by inspecti

simulation. The designers were aware that syntax errors are of very little value to

work. We can therefore assume that many syntax errors were corrected without reco

a new design revision, and hence do not appear in the table the column “compilation

Figure 2.4 shows the difference between a design revision motivated by an

correction and the previous revision. In revision 1.49,NOR gateControls_NOPsel_nor2

misses inputStallin. Revision 1.50 corrects this error.

Table 2.1: Design projects for which error data was collected

Project Class Date
Duration
[days]

No. of
designers

Code size
[lines]

No. of
errors

LC2 N/A Summer ‘97 11 1 1,179 22
DLX1 EECS 470 Fall ‘96 16 1 3,010 39
DLX2 EECS 470 Fall ‘96 21 1 3,015 35
DLX3 EECS 470 Fall ‘96 29 1 5,210 13
X86 EECS 470 Fall ‘97 42 3 6,071 59
FPU EECS 627 / PUMA Fall ‘96 96 2 5,607 17
FXU PUMA Fall ‘96 - Winter ‘97 135 2 27,587 113

33

e of

and

ing

end of

ion of
Table 2.3 gives the distribution of design errors by error category. The dominant typ

design error is wrong signal source. Errors involving missing logic are also notable

amount to 31%.

Figure 2.5 shows the evolution of the project over time. HDL coding and debugg

spanned 42 days in this project. The chart shows the total size of the design at the

each day. Also shown is the number of lines of code that were touched over the durat

Table 2.2: Design files written for the X86 project

Design file
Code
size

[lines]

No. of
rev-

isions

Errors-detection method

Inspec-
tion

Comp-
ilation

Simu-
lation

Syn-
thesis

decode.v 984 63 1 2 18 0
datapath.v 530 54 0 9 12 0
stages1.v 294 19 0 1 9 0
modules1.v 1750 27 1 3 8 0
smallmodules.v 1010 21 0 4 2 0
fetch.v 140 23 1 2 2 0
datacaches.v 674 13 0 0 1 0
exe1.v 135 8 0 1 1 0
modules.v 554 27 3 1 0 0
Total 6071 255 6 23 53 0

Figure 2.4: Difference between two successive revisions

Index: project/decode.v
===
RCS file: /x/users/davidvc/repositories/repositories_470_f97/jhauke/470_reposit
ory_98/project/decode.v,v
retrieving revision 1.50
retrieving revision 1.49
diff -r1.50 -r1.49
3c3
< $Revision: 1.50 $

> $Revision: 1.49 $
5c5
< $Date: 1997/12/13 22:45:54 $

> $Date: 1997/12/13 20:43:41 $
878c878
< nor4$ Controls_NOPsel_nor2(Controls_NOPsel_nor2_out,
CounterInput,HLT_NOP,ScoreNOP,Stallin);

> nor3$ Controls_NOPsel_nor2(Controls_NOPsel_nor2_out,
CounterInput,HLT_NOP,ScoreNOP);

34

g can

mber

tions
each day. Most of the design description is in place by day 21, and integration testin

start.

Figure 2.6 shows the number of revisions over the duration of the project. The nu

of revisions logged on any day is broken up into revisions that are due to bug correc

Table 2.3: Error distribution in X86

Error category Frequency

Wrong signal source 32.8%
Missing instance of gate/module 14.8%
Missing input(s) 11.5%
Wrong gate/module type 9.8%
Unconnected (floating) input(s) 8.2%
Missing latch/flipflop 6.6%
Conceptual error 4.9%
Wrong next state 3.3%
Other finite state machine error 1.6%
Extra term/factor 1.6%
Extra inversion 1.6%
Wrong bit order 1.6%
Other 1.6%

Figure 2.5: Project evolution: code size [lines] and lines touched over time

0 5 10 15 20 25 30 35 40 45

0

1000

2000

3000

4000

5000

6000

7000

Days

S
iz

e
[li

ne
s]

Code size
Lines touched

35

etween

ar for

bugs

were

lines

on of

rom

d and

umber

h of

. For

rrors

e

and those due to other reasons. Ideally, there is a one-to-one correspondence b

uncovered design errors and revisions motivated by error correction. Hence the b

number of revisions logged due to error corrections also gives the total number of

corrected during the corresponding day. It can be seen that most of the bugs

discovered and corrected in the second half of the project.

Figure 2.7 plots the time at which each error was corrected versus the number of

of code that were touched to correct the error. The vertical coordinate is an indicati

the structural complexity of the error. Although easy to compute, this metric is far f

ideal. It does not distinguish between lines of code that have merely been reformatte

lines that have truly been changed. More accurate measures, such as the minimum n

of ‘atomic’ modifications needed to remove the error from the control dataflow grap

erroneous circuit, would be more appropriate but are also much harder to compute

about half of the errors fewer than ten lines of code were involved, and only four e

resulted in modification to the design involving more than 100 lines of code.

Figure 2.6: Revisions motivated by bug correction and other revisions over tim

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

Days

N
o.

 o
f r

ev
is

io
ns

Revisions due to bug correction
Other revisions

36

s. We

r of

rrors

mple

or all

f

error.

and

rors

nly
We further characterize these design errors based on purely structural propertie

define thesizeof an error as the order of the polynomial that computes the numbe

similar errors as a function of the size of the circuit. For example, single inversion e

and single-stuck errors both are of size 1, because there areO(N1) such errors in a circuit

with N lines. Signal source errors are of size 2 as there areO(N2) such errors. We noted

that some actual errors consist of multiple instances of the same type of error. An exa

is an inversion error on a port connection of a module instance that is repeated f

instances of the module. We define themultiplicity of an actual error as the number o

identical and repeated instances of a simpler error that constitute the actual

Figure 2.8 plots the frequency of design errors when binned according to size

multiplicity. We observe that design errors of higher multiplicity are rare. Design er

with multiplicity 1 and sizes 1 or 2 account for more than half of all design errors. O

about 12% of the errors are very complex, as indicated by a size of 10 or greater.

Figure 2.7: Design errors: time to discovery [days] vs. error size [lines]

0 5 10 15 20 25 30 35 40 45

1

10

100

1000

Days

E
rr

or
 c

or
re

ct
io

n
si

ze
 [l

in
es

]

37

nly

ed by

see it as

and

ted

earch
2.4 Guidelines for implementing an error collection system

Revision management.A revision management system has proven priceless. Not o

does it allow detailed analysis of concrete design errors, but it also came to be valu

the designers. One reservation some designers have with these systems is that they

a way to monitor their work. This can usually be overcome by explaining the intent

the benefits.

The stigma of bugs.A key factor to success is to remove the stigma usually associa

with design errors. We made an effort to make designers feel engaged with our res

1
2

3-4
5-8

9-16
17-32

1
2

3
4

5
6

7
8

9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MultiplicitySize

F
re

qu
en

cy

>9 >32

Figure 2.8: Frequency of design errors in function of their size and multiplicity

38

class

he

best

gner

ly, the

some

s the

. The

design

ffects

habit

le

orate

very

e a

ical

nted

rs.

their

those

been

ut.

nce

ions.

ould
project, and explained to them the need for collecting error data. The participation of

projects in error collection was on a voluntary basis.

Overhead to the designer.The need to minimize the overhead of error logging for t

designer cannot be underestimated. Although the designer is, in principle, in the

position to classify each newly discovered error, this small effort, from which the desi

may not see any immediate benefit, may be felt as burden or threat. Consequent

designation of errors often becomes imprecise. We observed that for periods

designers marked all of there errors asconceptual error, even if the actual error involved a

single inversion error. This led us to reassess the raw revision data, and explain

discrepancies between the data reported here and that in our earlier work [VC98]

reassessment also corrected the counts assigned to errors that spanned multiple

files. Previously, these errors had been overrepresented. This adjustment primarily a

the bigger designs where such errors occurred more often.

A key element in an error collection effort is to encourage designers to adopt the

of systematicallyrecording everysingle design error that is not a syntax error. Simp

errors such as single inversion errors don’t require much explanation. For more elab

errors a brief textual description of the error, already in the present error template, is

helpful to analyze the error afterwards. Additional pieces of information could includ

measure of the difficulty of detecting the error, and the root source of the error. Typ

root sources include: oversight, failure to consider certain behavior, wrongly impleme

behavior, misunderstanding of specification, or miscommunication between designe

Designers should not be burdened with classifying the errors with respect to

structural aspects (item 3 of our questionnaire). This task can be performed by

analyzing the error data provided that a new design revision has systematically

recorded for each detected error.

Practical considerations.Finally some practical considerations need to be pointed o

Fixing a single design error may require multiple modify / simulate cycles, and he

multiple revisions. The designer should record information to distinguish such revis

Fixing a single design error may require modifications to multiple files. Designers sh

39

a can

rror

mon

put,

ble is

ected
submit new revisions for all of these files together. Otherwise, these revisions dat

wrongly be interpreted as concerning multiple errors.

2.5 Discussion

Table 2.4 shows the error distributions for all projects. Also listed is the average e

frequency over all projects. We observe that signal source errors are the most com

type of error at 30%. Errors involving missing logic (missing instance, missing in

missing term, missing state) are the second most common group at 26%. Also nota

that apparently very simple errors, such as extra/missing inversions and unconn

Table 2.4: Design error distributions [%]

Category LC2 DLX1 DLX2 DLX3 X86 FPU FXU Average

Wrong signal source 27.3 31.4 25.7 46.2 32.8 23.5 25.7 30.4
Missing instance 28.6 20.0 23.1 14.8 5.9 15.9 15.5
Missing inversion 8.6 47.1 16.8 10.3
New category 9.1 8.6 7.7 6.6 11.8 4.4 6.9
Unconnected input(s) 8.6 14.3 7.7 8.2 5.9 0.9 6.5
Missing input(s) 9.1 8.6 5.7 7.7 11.5 6.1
Wrong gate/module type 13.6 11.4 9.8 5.0
Missing term/factor 9.1 2.9 5.7 4.4 3.2
Always statement 9.1 2.9 2.7 2.1
Wrong constant 9.1 5.3 2.1
Missing latch/flipflop 4.9 5.9 0.9 1.7
Wrong bus width 4.5 7.1 1.7
Missing state 9.1 1.3
Conflicting outputs 7.7 1.1
Wrong constant 2.9 4.4 1.0
Conceptual error 2.9 3.3 0.9 1.0
Signal declaration 5.7 0.8
Extra term/factor 2.9 1.6 0.9 0.8
Wrong operator 4.4 0.6
Gate or module input 2.9 0.4
Case statement 2.7 0.4
Other FSM error 1.6 0.2
Extra inversion 1.6 0.2
Wrong bit order 1.6 0.2
Wrong next state 1.6 0.2
Latch 0.9 0.1
If statement 0.9 0.1
Expres. completely wrong 0.9 0.1

40

hows

ior of

equire

ave

hese

mber

cern
inputs, account for 17% of all errors. More detailed analysis of these simple errors s

that some of these were detected late in the project. This indicates that the behav

some parts of the design is not properly exercised, since these simple errors do not r

any activation conditions. Among the errors marked asnew categoryare timing errors, and

errors that required very elaborate corrections.

The limitations of our error collection effort are as follows. Student designers h

limited experience. Class projects are short in duration and the verification effort in t

projects is modest. Consequently our data may contain a disproportionately small nu

of hard-to-detect errors, compared to data from industrial design projects. This con

also applies to the data from the projects related to PUMA, but to a lesser extent.

fault

ee us

se

tudies

ter.

ful for

els

y each

odels

error

3).

odel

error

rent

d in

dels
CHAPTER 3
Design error models

Manufacturing testing uses logical fault models to guide test generation. Logical

models represent the effect of physical faults on the behavior of the system, and fr

from having to deal with the plethora of physical fault types directly. Similarly, we u

design error models to drive verification test generation. This chapter presents and s

design error models that are based on the error data described in the previous chap

Section 3.1 presents four requirements that error models should satisfy to be use

design verification. Section 3.2 proposes three classes of error models:basic, extended,

andconditionalerror models. The following sections analyze how well these error mod

meet the requirements: Section 3.3 analyzes the number of error instances defined b

model (requirement 4). Section 3.4 analyzes test generation with the error m

(requirement 2). Section 3.5 analyzes error simulation and presents an efficient

simulation technique for conditional error models called CESIM (requirement

Section 3.6 presents an analytical coverage evaluation of one conditional error m

(requirement 1). Section 3.7 presents an experimental coverage evaluation using

simulation (requirement 1). Another experimental study with the same goal but a diffe

approach is detailed in Section 3.8 (requirement 1). Our findings are summarize

Section 3.9.

3.1 Error model requirements

A design error modeldefines a class ofmodeled errors, also referred to assynthetic errors,

for a given design. In design verification, design error models play the role of fault mo

in physical fault testing. The different terminology,error vs. fault, is to underscore the
41

42

the

lso

any

debug

r our

the

rs. A

rrors

ray of

d an

only

have

aults,

us to

other

some

those

all

ols,

y-list
different contexts. To be useful for design verification, error models should satisfy

following four requirements:

1. Tests (simulation vectors) that are complete for the modeled errors should a

provide very high coverage of actual design errors.

2. The modeled errors should be amenable to automated test generation.

3. The modeled errors should be amenable to automated error simulation.

4. The number of modeled errors should be relatively small.

Since exhaustive simulation is prohibitive for practical verification problems,

simulation-based method can only aspire to produce test sets that, at the end of the

process, give very high confidence in the functional correctness of the design. Fo

approach, this goal crystallizes in requirement 1 on design error models and in

necessity for an efficient method to generate complete tests for the synthetic erro

naive attempt to satisfy requirement 1 would be direct modeling of concrete design e

based on error statistics (see Chapter 2). Unfortunately this would lead to a vast ar

models, thus greatly complicating automation of test generation (requirement 2), an

extremely large number of synthetic errors to be targeted. However, error models are

a means to generate high quality tests. This is similar to physical fault testing. Studies

shown that despite the fact that very few physical defects behave precisely like SSL f

complete test sets for SSL faults detect most manufacturing defects. This motivates

attempt to develop design error models that balance requirement 1 with the three

requirements.

3.2 Design error models

Standard logic simulation and synthesis tools have the side effect of detecting

classes of design errors (Table 2.4); hence there is no need to develop models for

particular errors. For example a logic simulator such as Verilog-XL [Cad94] flags

Verilog syntax errors, and incomplete port lists of modules. Also, logic synthesis to

such as those of Synopsys [Syn97], usually flag wrong bus-width errors and sensitivit

errors in thealways statement.

43

he

our

ar to

lt

es

s

ut not

ts on

tual

ets for

ed for

any

.4 to

rs.
Basic error models. A set of error models that satisfy the requirements for t

restricted case of gate-level logic circuits was developed in [AA95]. Motivated by

empirical design error data, similar error models for higher-level (RTL) designs appe

be useful. We propose the following five basic error models:

• Bus SSL error (SSL): A bus of one or more lines is (totally) stuck-at-0 or stuck-at-

1 if all lines in the bus are stuck at logic level 0 or 1. This generalization of the

standard SSL model was introduced in [Bhat85] in the context of physical fau

testing.

• Module substitution error (MSE):This refers to mistakenly replacing a module by

another module with the same number of inputs and outputs. This class includ

word gate substitution errors and extra/missing inversion errors.

• Bus order error (BOE): This refers to incorrectly ordering the bits in a bus;

mistakenly reversing the order appears to be the most common form of BOE.

• Bus source error (BSE):This error corresponds to connecting a module input to a

wrong source.

• Bus driver error (BDE): This refers to mistakenly driving a tristate bus from two

sources at the same time.

Extended error models.Prior work on SSL error detection [Abad88, Bhat85], show

that basic error models can be used to generate test sets that provide high, b

complete, error coverage. These results are further reinforced by our experimen

microprocessor verification (Section 3.8), which indicate that a large fraction of ac

design errors (67% in one case and 75% in the other) is detected by complete test s

the basic errors. To increase coverage of actual errors to the very high levels need

design verification, additional error models are required to guide test generation. M

more complex error models can be derived directly from the actual data of Table 2

supplement the basic error types, the following set being representative:

• Bus count error (BCE):This corresponds to defining a module with more or fewer

input buses than required.

• Module count error (MCE):This corresponds to incorrectly adding or removing a

module, which includes extra/missing word gate errors and extra/missing registe

44

tor,

errors,

ation.

osed

that a

of the

ion of

. The

odels

led to

hese

on.

er of

e

l
ll
• Label count error (LCE): This error corresponds to incorrectly adding or removing

the labels of a case statement.

• Expression structure error (ESE): This includes various deviations from the correct

expression, such as extra/missing terms, extra/missing inversions, wrong opera

and wrong constant.

• Next state error (NSE): This error corresponds to incorrect next state function in a

finite-state machine (FSM).

Although targeting these extended error models can increase coverage of actual

we have found them too complex for practical use in manual or automated test gener

Analysis of the more difficult actual errors revealed that these errors are often comp

of multiple basic errors, and that the component basic errors interact in such a way

test to detect the actual error must be much more specific than a test to detect any

component basic errors. An effective error model should necessitate the generat

these more specific tests without resorting to direct modeling of the composite errors

complexity of the new error models should be comparable to that of the basic error m

and the (unavoidable) increase in the number of error instances should be control

allow trade-offs between test generation effort and verification confidence. T

requirements can be combined by augmenting the basic error models with a conditi

Conditional error models. A conditional error (C, E) consists of a conditionC and a

basic errorE; its interpretation is thatE is only active whenC is satisfied. In general,C is

a predicate over the signals in the circuit during some time period. To limit the numb

error instances, we restrictC to a conjunction of terms (yi = wi), whereyi is a signal in the

circuit that is not in the transitive combinational fanout of the basic error1, andwi is a

constant of the same signal-width asyi and whose value is either all-0’s or all-1’s. Th

number of terms (condition variables) appearing inC is said to be the order of (C, E).

Specifically, we consider the following conditional error (CE) types:

• conditional single-stuck line error of ordern (CSSLn)

1. The requirement that condition signals are not to be part of the transitive combinationa
fanout of the basic error, eliminates problems of combinational feedback, and thus ensure that a
conditional errors are well defined. This requirement also facilitates efficient error simulation, as
we will see in Section 3.5.

45

hould

r

h

• conditional bus order error of ordern (CBOEn)

• conditional bus source error of ordern (CBSEn)

Figure 3.1 gives an example of a CSSL1 error, (x = 1, y / 0). If the condition does not

hold, x ≠ 1, the erroneous circuit operates as the error-free. If the condition holds,x = 1,

line y is stuck at 0.

3.3 Number of error instances defined by error model

The fourth requirement on error models states that the number of modeled errors s

be sufficiently small. Consider a designN signals; we denote by #M the number of erro

instances defined by error model M on the design.

Basic error models

• #SSL =O(N)

• #MSE =O(N)

• #BOE =O(N)

• #BSE =O(N2)

• #BDE =O(B.D2), whereB is the number of tristate buses, andD is the rms1 number

of drivers on a bus.

1.

x

y

x ≠ 1 x = 1

0
G G’ G”

G G’ G”
G G’ G”

y

a) b) c)

Figure 3.1: CSSL1 error (x = 1, y / 0): a) error-free design; b) erroneous design wit
x ≠ 1; c) erroneous design withx = 1

Di
2

i 1=

B

∑ B 1 B⁄() Di
2

i 1=

B

∑ 
 
 

2

BD2= =

46

ld

her

ng

as

d to a

le, the

ough

y be
Extended error models

• #BCE =O(N2)

• #MCE =O(N2)

• LCE. Consider a case statement with ann-bit signal making the selection; letL be

the number of labels (branches). The simplest type of missing label error wou

occur if the statements selected by the missing label are identical to those of anot

(not missing) label. Hence, there are (2n-L) missing label errors andL extra label

errors. For a circuit withC case statements, we have #LCE =O(C.2n) LCE’s with

n appropriately averaged.

• ESE. Consider an expression withL literals andE subexpressions. If we restrict

missing and extra term errors to a single literal, and further require that the missi

literal appears elsewhere in the expression, then there areO(L) extra term errors and

O(E.L) missing term errors.

• NSE. Consider an FSM withS states, andE distinct state transitions. A simplest

next state error would occur if for one of the state transitions, the next state w

wrong. There areO(S.E) of this type.

Conditional error models

The number of instances defined by a conditional error model (C,E) is given by the

product of the number of basic errors and the number of conditions:

• #CSSLn = O(2n+1Nn+1)

• #CBOEn = O(2nNn+1)

• #CBSEn = O(2nNn+2)

Forn = 0, a conditional error (C,E) reduces to the basic errorE from which it is derived.

Higher-order conditional errors enable the generation of more specific tests, but lea

greater test generation cost due to the larger number of error instances. For examp

CSSL1 model defines a number of instances quadratic in the size of the circuit. Alth

the total set of all signals we consider for each term in the condition can possibl

reduced, CSSLn errors wheren > 1 are probably not practical.

47

ld be

error

tance

t both

ation

For

logic

three

n for

t they

rors is

d by

. We

from

odel

an

lass of

ent of

ion is

crete

. The

aad

5].

etic
3.4 Test generation

The second requirement on design error models states that error models shou

amenable to automated test generation. In this section we investigate how well our

models meet this requirement.

The basic and conditional error models have the property that each error ins

together with the given design completely specifies an erroneous design, and tha

designs structurally differ in a very localized part. Consequently, the test gener

problem is well defined and very similar to that of test generation for SSL faults.

combinational circuits the D-calculus suffices, and for sequential circuits a 9-valued

is sufficient. Targeted test generation for SSL fault can be decomposed into

subproblems: fault excitation, fault propagation, and line justification. Test generatio

basic and conditional errors differs only in the excitation subproblem.

Some of the extended error models, e.g., ESE, need to be specified further so tha

completely define a set of erroneous designs. Although test generation for these er

in principle similar to test generation for SSL faults, automation is greatly complicate

the variety and complexity of the excitation conditions associated with these errors

therefore conclude that the extended error models are not practical, and drop them

further discussion.

Error instances of more abstract error models such as the universal fault m

[Abra90] and the tag model used in OCCOM [Fall98b] do not completely specify

erroneous machine. Instead, an instance together with the given design specifies a c

erroneous designs. The aim is then to generate a test that will distinguish each elem

that class from the original design. In case of the tag model, the error effect propagat

approximate. Consequently, an interpretation of tag coverage in terms of what con

design errors have been tested for is not possible.

There are two main approaches for generating tests for our synthetic error models

first approach is to modify the original design and to apply existing ATPG tools; Al-As

and Hayes follow this approach in their work on verification of gate-level designs [AA9

Another approach is to adapt existing ATPG algorithms to directly target the synth

48

TPG

, this

The

of

is

tools

with

level

el test

el test

higher

es all

at for

more

level if

et of

rs are

ysical

is

tion

duced

we
errors. The major advantage of the first approach is that it leverages existing A

technology. When the error model defines a super-linear number of error instances

approach may suffer from the significant increase in the size of the modified netlist.

second approach overcomes this problem. For the CSSLn models the effort required to

modify an SSL test generator is modest: error excitation requires the justificationn

extra lines over SSL excitation. For MSE’s, BSE’s, BOE’s, BDE’s a larger effort

required.

Another consideration about test generation is that most commercial ATPG

operate on gate-level netlists. Our design error models are primarily targeted for use

behavioral and structural RTL descriptions. The structure in these higher-

descriptions can be used beneficially during test generation, and therefore high-lev

generation carries the promise of being able to handle larger designs than gate-lev

generation. Nevertheless, gate-level test generators can still be used as follows: The

level description can be mapped (synthesized) to a gate-level design that preserv

signals of the high-level version. Such gate-level representations have the property th

each basic or conditional error instance, we can find a corresponding set of one or

error instances at the gate-level. More than one error instance is required at the gate

the original error instance involves multibit buses. For exampleA stuck-at-0, maps ontow

SSL errors at the gate-level:Ai stuck-at-0i = 0 …(w − 1), wherew is the width ofA.

3.5 Error simulation

The problem addressed by error simulation is as follows. Given a design, a s

(synthetic) design errors, and a sequence of test vectors, determine which erro

detected by the test sequence. Fault simulation addresses a similar problem in ph

fault testing, but differs in the error/fault models. Whereas physical fault testing

concerned with SSL faults, bridging faults, open faults, our design verifica

methodology needs to consider other errors, such as the conditional errors intro

earlier. In this section we address error simulation with conditional errors. First,

motivate error simulation.

49

mes.

other

t they

of a

ed in

errors

f the

rgeted

h is

nd the

better

eous

t our

tal

] are

puter,

drop

is not

als

es one

s

r the

back
Augmenting targeted test generation with error simulation can reduce overall run ti

Test generators typically target one error at a time. A targeted test may detect errors

than just the targeted error. These errors can be identified by an error simulator so tha

do not need to be considered by the test generator any more.

A stand-alone use of error simulation is the computation of design error coverage

given test suite. This is useful in regression testing, where one might be interest

selecting a subset of a given set of test sequences that provides coverage of design

similar to those of the complete test set. Error simulation can also reveal areas o

design that are not sufficiently tested by a given test suite, and hence spur further ta

test generation.

Error simulation needs to be efficient. Not only the length of test suites, whic

extremely large for pseudo-random tests, but also the nature of the error models, a

number of error instances to be considered affect the size of the task. It is clear that

methods are required than simple serial error simulation, which simulates the erron

designs for the complete test suite one by one.

In the remainder of this section we first discuss related work and we then presen

method for error simulation with conditional errors; we conclude with experimen

results.

Related work

Representative approaches to fault simulation for sequential circuits [Abra90, Nier91a

parallel, concurrent, deductive, and differential fault simulation.Parallel fault simulation

takes advantage of the word-level parallelism of the computer used. On a 32-bit com

32 faulty machines can be simulated in parallel. This method lacks the ability to

errors. The other methods are motivated by the observation that as long as a fault

detected, the good and faulty circuit differ in only a fraction of the number of sign

present. For this purpose, such methods process the complete set of faulty machin

vector at a time. Bothconcurrentanddeductivefault simulation compute the node value

of a faulty machine for the current vector, based on the good circuit’s node values fo

current vector, and the faulty machine’s node values for the previous vector. A draw

50

bility

lled

. As

efly

OFS

. For

en the

good

t test

f the

tized

ave

s not

uit,

good

not

are

ulate

uit.

hose

ulty

ault
of both methods is high memory requirement.Differential fault simulation, a variant of

concurrent fault simulation, addresses the memory problem, but suffers from the ina

to drop detected faults.

Niermann, Cheng and Patel [Nier90, Nier91a] described a fault simulator, ca

PROOFS, that combines ideas of concurrent, differential and parallel fault simulation

our error simulation method for conditional errors derives from PROOFS, we bri

describe its main features, referring to Figure 3.2.

Given is a gate-level sequential circuit, a fault list, and a test vector sequence, PRO

maintains two sets of signal values: one for the good, and one for a faulty machine

each undetected fault, PROOFS also stores the difference in present state betwe

good machine and the corresponding faulty machine.

The outermost loop of PROOFS processes one test vector at a time. First, the

machine is simulated for the current vector. Next, faults that are active for the curren

vector are identified. A fault is consideredactive if one or both of the following two

conditions holds: 1) the present state of the faulty machine is different from that o

good machine; 2) the fault is excited by the current vector, and the faulty line is sensi

through the first two levels of logic. Checking condition 1 is straightforward since we h

saved the faulty circuit’s state while processing the previous vector. If condition 1 doe

hold, that is, if the faulty circuit’s present state is identical to that of the good circ

checking condition 2 is inexpensive too, as it is very localized and requires only the

circuit’s values.

Faults that are not active for the current vector have the property that they are

detected by the current vectorandthe next states of the corresponding faulty machines

identical to the next state of the good machine. Consequently, there is no need to sim

these faulty machines for the current vector.

Each active fault is processed as follows: First, the fault is injected into faulty circ

The event list is initialized to reflect the fault injection and the present state lines w

values differ in the good and the faulty machine. The event-driven simulation of the fa

machine in PROOFS typically has a very low event activity, as in concurrent f

51

the

ine is

of the

2-bit

ed in

t bit

ly. A

. For

error

rs is

be

for

rrors

itional
simulation. If the fault is detected by the current vector, it is dropped. Otherwise,

difference between the next state of the faulty machine and that of the good mach

saved.

The basic algorithm, as discussed above, can be augmented to take advantage

word-level parallelism available on the computer executing the fault simulator. On a 3

machine, up to 32 iterations the simulation step 1.4.3 of loop 1.4 can be execut

parallel. This is done by assigning the values of different faulty machines to differen

positions within a word. The other steps of loop 1.4 still have to be executed serial

more detailed description of one implementation is given in [Nier90, Nier91a].

Extension to conditional errors

It is straightforward to modify PROOFS to handle conditional errors, such as CSSL1

a given circuit and a given test sequence, the average run time per error for CSSL1

simulation is very close to that for SSL error simulation. As the number of CSSL1 erro

quadratic in the size of the circuit, the cost of error simulation for CSSL1 may

prohibitively large. To address this, we develop an error simulation algorithm

conditional errors, called CESIM, that exploits the close relationship among CSSL1 e

derived from the same CSSL0 error. Its key features are processing of sets of cond

Figure 3.2: PROOFS’ error simulation algorithm

PROOFS(circuit, faultList, testVectorSequence)

1. while (vectors left) {
1.1 read next vector
1.2 simulate good circuit
1.3 determine which faults are active
1.4 for each active fault {
1.4.1 inject fault
1.4.2 add faulty node events
1.4.3 simulate faulty circuit
1.4.4 drop detected faults
1.4.5 store faulty next state
1.4.6 remove fault
1.5 }
2. }

52

that

rors

the

rror

he two

SBE-

set of

the

nd 3)

ts is

alent

et of

y

hence

first

o we

ines

h
nce
errors, and the injection of basic (instead of conditional) errors. We will demonstrate

this leads to improved performance over the naive extension of PROOFS.

First, we define two equivalence relations on conditional errors. Two conditional er

are PS-equivalentwith respect to the current vector iff the present states of

corresponding erroneous machines are identical. Two conditional errors arePSBE-

equivalentwith respect to the current vector, iff they are derived from the same basic e

and the present states of the corresponding erroneous machines are identical. T

equivalence relations define a hierarchical partition on the set of conditional errors; P

equivalence refines the partition defined by PS-equivalence. CESIM maintains the

undetected errors in partitioned form.

We redefine the activity criterion of PROOFS as follows: A conditional error isactive

for the current vector iff 1) its condition holds in the erroneous circuit, and 2)

corresponding basic error is excited in the erroneous machine for the current vector, a

that basic error is sensitized through the first two levels of logic.

The inner loop 1.4 of PROOFS (Figure 3.2) that iterates over individual active faul

replaced in CESIM, outlined in Figure 3.3, by one that iterates over sets of PS-equiv

conditional errors:

Given is a setS1 of undetected PS-equivalent conditional errors, we process this s

errors for the current vector as follows. First, we simulate the erroneous machine1 with no

errors injected, starting from the present state associated withS1 for the current vector

(steps 2.3.1 and 2.3.2 of Figure 3.3).

For each conditional error inS1, we check if it is active. Activation is determined b

three conditions (see above). Conditions 2 and 3 only depend on the basic error, and

are identical for all PSBE-equivalent errors. We therefore check conditions 2 and 3

(one check for each class of PSBE-equivalent errors). Only if both conditions hold d

have to check condition 1 (one check per individual conditional error). Note that l

1. Note that CESIM uses a single copy of the circuit structure but associates two values wit
each signal, one corresponding to the error-free machine, the other to an erroneous machine. He
by simulating theerroneous machinewe mean simulating the circuit using the set oferroneous
values.

53

tive

be

all

t state

xt
appearing in the condition of a conditional error are not part of the transi

combinational fanout of the basic error. Therefore, the activation conditions can

evaluated using the values computed in step 2.3.2. This partitionsS1 into a subsetA of the

active conditional errors, and a subsetD of dormant (not active) errors (step 2.3.3).

If any outputs computed in 2.3.2 differ from those of the good circuit (step 2.2)

errors inD are detected and can be dropped. Otherwise, we record the erroneous nex

corresponding toD, and insertD into thenextU, the set of undetected errors for the ne

vector.

Figure 3.3: CESIM error simulation algorithm for conditional errors

CESIM (circuit, errorList, testVectorSequence)

1. U = errorlist /* hierarchically partitioned set of undetected errors */
2. while (vectors left) {
2.1 read next vector
2.2 simulate good circuit
2.3 for each setS1 of PS-equivalent contional errors inU {
2.3.1 add the erroneous present-state events
2.3.2 simulate the erroneous machine (no errors injected)
2.3.3 partitionS1 into an active and an inactive subset,A, andD, resp.
2.3.4 if error effect is exposed {
2.3.4.1 drop all errors inD
2.3.5 }
2.3.6 else {
2.3.6.1 save next state forD
2.3.6.2 insertD in nextU
2.3.7 }
2.3.8 for each setS2 of PSBE-equivalent conditional errors inA {
2.3.8.1 inject the corresponding basic error
2.3.8.2 add the erroneous node events
2.3.8.3 simulate the erroneous circuit
2.3.8.4 if basic error is detected {
2.3.8.4.1 drop all errors inS2
2.3.8.5 }
2.3.8.6 else{
2.3.8.6.1 save the erroneous next state forS2
2.3.8.6.2 insertS2 in nextU
2.3.8.7 }
2.3.8.8 remove the error
2.3.9 }
2.4 }
2.5 U = nextU
3. }

54

s

ved

ines

n has

, the

s to

ector

em is

r each

none

ess is

are

a one-

m in

.3 in

nd

The

the

. The

to

of

PSBE

of

ar in

ize of
For each setS2 of PSBE-equivalent errors inA, we inject thebasicerror corresponding

to S2, apply the erroneous present state corresponding toS2, and simulate the erroneou

circuit. If any outputs differ from those in the good circuit, all errors inS2 are dropped.

Otherwise, we record the erroneous next state forS2, and insertS2 into nextU.

Example. Figure 3.4 illustrates CESIM. Consider sets of conditional errors deri

from three basic errors , , and . Initially, the corresponding erroneous mach

are all in the same present state, namely the unknown state . The initial PS-partitio

a single class, which is further partitioned with respect to PSBE-equivalence. First

error-free machine is simulated for the first vector; the next state is . This allows u

separate those conditional errors that are active (shaded in the figure) for the first v

from those that are not. For the dormant errors no further work is required: none of th

detected, and the next state of the corresponding erroneous machines is . Fo

PSBE class that contains active conditional errors, the correspondingbasic error is

injected and the erroneous circuit is simulated for the current vector. In the example,

of these errors is detected, and the next states and are distinct. This proc

repeated for the next vector. In the example, the active errors in PSBE class

detected by the second vector; all other errors remain undetected. Note that there is

to-one correspondence between a single transition in the state transition diagra

Figure 3.4 and a circuit simulation step in the algorithm (steps 2.2, 2.3.2, or 2.3.8

Figure 3.3).

Analysis. CESIM minimizes the overall computational cost by exploiting PS- a

PSBE-equivalence of conditional errors. We now analyze the algorithm’s complexity.

two major components of the cost of one iteration of the top-level loop (step 2) are

simulation cost of steps 2.2, 2.3.2, and 2.3.8.3, and the partition cost of step 2.3.3

partition cost is proportional to the number of conditional errors for which we have

check activation condition 1, which is typically a small fraction of the total number

conditional errors. The event-driven simulator is called as many times as there are

partition classes on all setsA; this is a fraction of the number of PSBE partition classes

U. In summary, the cost of one iteration has one component with complexity subline

the size of the error list (partition cost), and a second component proportional to the s

e1 e2 e3

s0
0

s0
1

s0
1

s1
1

s2
1

s2
1

e2,()

55

nd
s0
0

s0
1

s1
1

s2
1

s0
2

s1
2

s2
2

s3
2

s0
1

s1
1

s2
1

s3
2

s2
2

s1
2

s0
0

s0
2

s0
1

e1,() s0
1

e2,() s0
1

e3,() s0
2

e1,() s0
2

e2,() s0
2

e3,()s0
0

e1,() s0
0

e2,() s0
0

e3,()

e1

e1

e1
e2

e2

e3

s2
1

e2,()

s1
1

e1,()

s1
2

e3,()

s2
2

e1,()

s3
2

e2,()

s1
2

e1,()

Figure 3.4: Example execution of CESIM for a 3-vector test sequence: a) PS- a
PSBE-partitions of errors, b) corresponding state transitions

undetected undetected undetected

detected

undetected errors undetected errors undetected errors

detected errors

a)

b)

er
ro

r-f
re

e

error-free

error-fre
e

error-fre
e

56

tates

due

ing

are

s.

l start

rrors

), the

occurs

tes

or sets

mber

ed the

ults

the

el. To

ntify

e of

91b,

and

list.

red a

500

um

cause

tion
the circuit and the product of the number of basic errors and the number of distinct s

(simulation cost). In our experiments, we observed that 90% of the execution time is

to partitioning, while only 10% is due to simulation. The algorithm requires maintain

both partitions (PS and PSBE) on the set of undetected errors. All partitions

implemented using hash tables, which allow for constant time insertions of error set

Initially, all errors are undetected and the corresponding erroneous machines al

from an unknown present state. Hence all errors are PS-equivalent initially, and all e

derived from the same basic error are PSBE-equivalent. In the partition step (2.3.3

number of error sets (PSBE equivalence classes) may increase. The worst case

when 1) neitherA nor D is empty, 2) neither of them is detected, and 3) the next sta

generated in steps 2.3.8.3 and 2.3.2 are all distinct. For this case, the number of err

can double in a single iteration of step 2, leading to an exponential growth in the nu

of vectors. However, the total number of PSBE-equivalence classes can never exce

total number of individual conditional errors we started with. Our experimental res

(see below) show that, in practice, the number of error sets remains fairly constant.

Optimizations. As in PROOFS we take advantage of the word-level parallelism of

host computer; hence multiple iterations of 2.3.2 and of 2.3.8.3 are executed in parall

further reduce execution time, static dominators [Nier91a] could be used to ide

redundant errors during a preprocessing step.

Experiments. We used the ISCAS’89 benchmarks to evaluate the performanc

CESIM. First, we generated test sequences for SSL faults using HITEC [Nier

Nier91a]. We then error-simulated these test sequences using CESIM for CSSL0

CSSL1 errors. The error list for CSSL0 errors is identical to the collapsed SSL fault

The CSSL1 error list was constructed as follows. For each CSSL0 error, we conside

maximum of 500 lines to derive CSSL1 errors. The smaller circuits have fewer than

lines, so every line in the circuit is considered as condition line. This leads to a maxim

of 1000 CSSL1 errors per CSSL0 error. However, some CSSL1 errors are rejected be

their condition is part of the transitive fanout of the error site. A more detailed descrip

of the experiments is given in Appendix B.

57

ctor

There

error

t. The

of

the

alysis

rs to

larger

e of

t the

1.13.

h is
The efficiency of CESIM can best be seen by plotting the CPU time per test ve

versus the total number of errors simulated for each benchmark, as in Figure 3.5.

are two sets of data: the first concerns CSSL0 error simulation, the other CSSL1

simulation. The plot also shows a least square fit (linear regression) for each data se

execution time of CSSL0 error simulation is dominated by event-driven simulation

faulty circuits. However, when simulating the CSSL1 errors, checking whether

condition of each CSSL1 error holds dominates the execution time. Least-square an

shows that the CPU time per test vector is proportional to the number of CSSL0 erro

the power 1.33. This superlinear behavior reflects the fact that those data with a

number of CSSL0 errors correspond to larger circuits, and hence the execution tim

each event-driven simulation increases. For the CSSL1 execution time we find tha

CPU time per test vector is proportional to the number of CSSL1 errors to the power

This near-linear behavior is because checking if CSSL1 errors are active, whic

independent of the size of the circuit, dominates the execution time.

C
P

U
 ti

m
e

/ v
ec

to
rs

No. errors simulated

102

101

100

10-1

10-2

10-3

102 103 104 105 106 107 108

CSSL0
CSSL1

Figure 3.5: Run-time analysis of CESIM on the ISCAS’89 benchmarks

speedup

CSSL0 CSSL1

1

58

n of

FS.

ase in

e of

SL1

OFS

t the

es for

by a

This

tes.

plied.

0.49

set
Figure 3.5 also allows us to compare CESIM with the straightforward extensio

PROOFS for CSSL1 error simulation, which we will refer to here as CPROO

CPROOFS treats CSSL1 errors the same way CESIM treats CSSL0 errors. The incre

execution time of CPROOFS for CSSL1 errors compared to the execution tim

PROOFS for CSSL0 errors is therefore proportional to the ratio of the number of CS

errors to the number of CSSL0 errors. The figure shows the execution time of CPRO

for only one benchmark (s1423); the speedup for that circuit is 64. We can see tha

speedup is roughly equal to the vertical distance between the linear regression lin

CSSL0 and CSSL1 datasets. We conclude that CESIM outperforms the CPROOFS

wide margin.

We further analyze the behavior of CESIM for a representative circuit, s1238.

circuit has 14 inputs, 14 outputs, 18 D-type flip-flops, 80 inverters and 428 ga

Figure 3.6 shows the error coverage as a function of the number of test vectors ap

The ratio of coverage of CSSL1 errors to coverage of CSSL0 errors varies between

and 0.72.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test vector

C
ov

er
ag

e

Figure 3.6: Coverage of CSSL0 and CSSL1 errors on s1238 by a CSSL0 test
generated by HITEC

Coverage of CSSL0 errors

Coverage of CSSL1 errors

59

test

after

aining

umber

ber of

IM.

th are

se is

s the

n steps

sets

rops as

r sets
Figure 3.7 shows the number of distinct states as a function of the number of

vectors applied. For CSSL0 error simulation, the number of states rapidly drops;

vector 300 there are at most five distinct states among the present states of the rem

undetected erroneous machines. For CSSL1 error simulation, we observe that the n

of states hovers around 20 but never becomes larger than 35 (about twice the num

flip-flops in the circuit).

Figure 3.8 details the number of error sets occurring during the execution of CES

We show both the total number of error sets, and the number of error sets in use. Bo

normalized with respect to the total number of errors. The number of error sets in u

the number of PSBE-equivalence classes of the set of undetected errorsU in loop 2.3 of

Figure 3.3. The total number of error sets is the number of error sets in use plu

number of errors sets detected by previous vectors (those error sets are dropped i

2.3.4.1 and 2.3.8.4.1 of Figure 3.3). For CSSL0 simulation, the total number of error

remains constant at the number of errors, whereas the number of error sets in use d

coverage increases. For CSSL1 simulation we observe that the total number of erro

Figure 3.7: Error simulation on s1238 with CSSL0 and CSSL1:
number of distinct states

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

Test vector

N
o.

 o
f s

ta
te

s

No. of states during CSSL1 simulation
No. of states during CSSL0 simulation

60

emains

1000

ts for

n this

SSL1

rrors,

ror
increases steadily, as coverage increases. However, the number of error sets in use r

fairly constant and hovers around the total number of basic errors, which is about

times smaller than the total number of errors.

3.6 Analytical coverage evaluation of CSSL1

The first and foremost requirement for design error models is that complete test se

the modeled errors should also provide very high coverage of actual design errors. I

section we analyze the detection of basic design errors by complete test sets for C

errors in gate-level circuits. LetD0 be a gate-level circuit; constructD1 by injecting a

single errore1 into D0, wheree1 is an instance of error modelM1. Let T0 andT1 be test

sets that provide complete coverage of all detectable CSSL0 and CSSL1 e

respectively, inD1. We analyze the coverage provided by test setsT0 andT1 with respect

to the error modelsM1 proposed in [AA95]. In particular, we are interested in those er

classes covered byT1, but not byT0.

Figure 3.8: Number of error sets during error simulation on s1238
with CSSL0 and CSSL1 errors

N
o.

 e
rr

or
 s

et
s

/ n
o.

 e
rr

or
s

100

10-1

10-2

10-3

0 50 100 150 200 250 300 350 400 450 500

Test vector

No. of CSSL0 sets in use / no. of CSSL0 errors

Total no. of CSSL0 sets / no. of CSSL0 errors

No. of CSSL1 sets in use / no. of CSSL1 errors

Total no. of CSSL1 sets / no. of CSSL1 errors

61

rther

e

We use the notation introduced in [AA95], and refer the reader to that paper for fu

details of the error models. Lety = G(x1,…,xn) be a gate in the error-free circuit. A gat

substitution errorG/G’ occurs if a gateG is erroneously replaced with a gateG’ that has

the same number of inputs but is of a different type. The set of all 2n input vectors of ann-

input gate is divided into disjoint subsetsV0, V1,…,Vn, whereVk contains all input vectors

with exactlyk 1s in their binary representation, 0≤ k ≤ n. The disjoint setsVnull, Vall, Vodd,

andVeven are defined as follows:

Vnull = V0; Vall = Vn; Vodd = ; Veven = .

The setsVnull, Vall, Vodd, andVeven are called thecharacterizing sets or C-sets of G.

Consider the following sets of CSSL0 and CSSL1 errors in the erroneous circuit:

GG’

G

GG

G”

G’

G

G”

G’

G

GSE

Missing gate error

Wrong input error

Missing 2-input gate error

G’

GG

Error-free designErroneous design

Figure 3.9: Some basic error types [AA95]

G”G”

Vi
i odd i n≠∧=

∪ Vi
i even i 0≠ i n≠∧ ∧=

∪

62

o

g

n

• E1 = {(1, y / 0)}

• E2 = {(1, y / 1)}

• E3 = {(1, xi / 0) |i=1…n}

• E4 = {(1, xi / 1) |i=1…n}

• E5 = {(xi = 0, y / 0) |i=1…n}

• E6 = {(xi = 1, y / 0) |i=1…n}

• E7 = {(xi = 0, y / 1) |i=1…n}

• E8 = {(xi = 1, y / 1) |i=1…n}

Let Ti, wherei = 1…8, be a complete test set forEi.

Single-input gate substitution errors. Gate substitution errors (GSE’s) involving

buffers or inverters are calledsingle-input GSE’s. A necessary and sufficient condition t

detectG/G’ is to sensitizey. Any test inT1 or T2 must sensitizey and hence detectsG/G’.

If both T1 andT2 are empty,y is not sensitizable and henceG/G’ is undetectable.

Multiple-input GSE’s. Consider amultiple-input GSE(MIGSE) G,AND, i.e., gateG is

erroneously replaced by an AND gate. To detect (G,AND), we have to identify the AND

gate in the erroneous circuit. Note that:

• any test inT1 or T3 or T6 excitesG’ for Vall

• any test inT2 or T7 excitesG’ for Vnull ∪ Veven∪ Vodd

• any test inT4 excitesG’ for Vn –1

• any test inT8 excitesG’ for Veven∪ Vodd

• T5 = ∅

Case 1:T4 ≠ ∅, T1 ≠ ∅. T1 ∪ T4 uncovers all detectableMIGSE’s with the exception of

XNOR/AND (XOR/AND) for n even (odd). Detection of this last error requires excitin

G’ for Vnull ∪ Veven (Vnull ∪ Vodd). None of the error sets considered can enforce this

condition.

Case 2:T4 ≠ ∅, T1 = ∅. T4 uncovers all detectableMIGSE’s with the exception of NOR/

AND and XNOR/AND (XOR/AND) forn even (odd). Detection of these last two errors

requires excitingG’ for bothVnull and Veven (Vodd). None of the error sets considered ca

enforce this condition.

63

1

t sets

te

mplete

test

r

plete

n test

lete

to be

l

of a

ted

to
Case 3:T4 = ∅, T8 ≠ ∅, T1 ≠ ∅. T1 ∪ T8 uncovers all detectableMIGSEs with the

exception of XNOR/AND (XOR/AND) forn even (odd).T1 ∪ T2 might fail to uncover

OR/AND as well.

Case 4:T4 = ∅, T8 ≠ ∅, T1 = ∅. T8 might fail to detect NOR/AND and either XNOR/

AND or XOR/AND.

Case 5:T4 = ∅, T8 = ∅. G’ cannot be excited forVeven∪ Vodd. T1 ∪ T2 excitesG’ for each

remaining C-set.

The analysis forMIGSE’s whereG’=NAND,OR,NOR,XOR,XNOR is similar to that

presented above.

We conclude that the coverage ofMIGSEsprovided by complete test sets for CSSL

errors is only marginally better (see case 3) than that provided by test complete tes

for CSSL0 errors.

Gate count errors. Two types of gate count errors are defined in [AA95]: extra-ga

errors and missing gate errors. Extra-gate errors are shown to be detected by any co

test set forGSE’s. Hence the same conclusions with respect to coverage by complete

sets apply to CSSL1 errors.

It is shown in [AA95] that detection of missing gate errors requires applying eitheV2

or Vn – 2. These sets cannot be enforced using a single CSSL1 error, and hence com

test sets for CSSL1 errors do not provide more coverage for missing gate errors tha

sets for CSSL0 errors.

Input count errors. Extra input errors have been shown to be covered by any comp

test set for CSSL0 errors [AA95]. The coverage for missing input errors was shown

only partial. A missing input error occurs when ann-input gate (n ≥ 3) is replaced by an (n

– 1)-input gate with itsn – 1 inputs connected to an arbitrary subset of the originan

inputs. The error detection requirements of this type of error map exactly onto those

CSSL1 error, except in the case of XOR or XNOR gates.

Wrong input error. A wrong input error occurs when a single gate input is connec

to the wrong signal: in the error-free circuit,y = G(x1,…,xn), while in the erroneous

circuit: y = G(z, x2,…,xn). A necessary and sufficient condition to detect this error is

64

the

SL1

, all

put

e other

rrors.

ass of

rrors is

our

are

t many

rified

ls. The

more

l test

f test

t were

ell as
sensitizezwhile zandx1 have opposite values. This is equivalent to detecting either of

CSSL1 errors (x1 = 0,z / 0) or (x1 = 1,z / 1).

Missing 2-input gate error. This error occurs if the error-free circuit contains a gatey =

G(x1, x2) that is completely missing in the erroneous circuit andy = x1. It can be shown

that the error detection requirements for this error are equivalent to those of a CS

error. For example if G=AND, the corresponding CSSL1 error is (x2 = 0, y / 0). A

complete test set for CSSL0 errors may fail to detect this error.

Conclusion.Complete test sets for CSSL1 errors also detect all wrong input errors

missing input errors on gates that are not of type {XOR,XNOR}, and all missing 2-in

gate errors; complete test sets for CSSL0 errors can fail to detect these errors. For th

error types, no increased coverage is guaranteed by complete test sets for CSSL1 e

3.7 Coverage evaluation using error simulation

From the analysis presented in the previous section, one could conclude that the cl

design errors that is guaranteed to be detected by a complete test set for CSSL1 e

very limited. In fact, most actual design errors do not fall in this class. However, as

analytical study tries to establish properties that hold for any design, its results

conservative. For a concrete design, complete test sets for CSSL1 errors may detec

more design errors than those reported in the previous section.

To compare the effectiveness of two design error models, we could take an unve

design, and generate test sets that are complete with respect to the two error mode

test set that uncovers more (and harder) design errors in a fixed amount of time is

effective. However, for such a comparison to be practical, fast and efficient high-leve

generation tools for our error models appear to be necessary. Although this type o

generation is feasible, it has yet to be automated. Instead we consider test sets tha

not specifically targeted, and compute their coverage of modeled design errors as w

of actual design errors.

65

esign

errors

he

44

made

were

ics of

l actual

ign,

s to

se a

lator

n run

en for

large;

ical. A

lines

ion
In this section we present a set of experiments whose goal is to compare different d

error models and investigate the relationship between coverage of modeled design

and coverage of more complex actual errors.

The test vehicle for this study is the well-known DLX microprocessor [Henn90]. T

particular DLX version considered is a student-written design that implements

instructions, has a five-stage pipeline and branch prediction logic. The design errors

by the student during the design process were systematically recorded. They

presented earlier in Chapter 2 (DLX1 in Table 2.1 and Table 2.4). Some characterist

two of the modules of the design are shown in Table 3.1. Moduletop integrates the

different pipeline stages and contains the forwarding logic. Moduledecode describes the

decode stage of the pipeline. These modules are analyzed here because 75% of al

errors were made within these two modules. A simplified block diagram of the des

indicating both modules, is shown in Figure 3.10.

For these experiments, we modified the original design description to allow u

automatically inject synthetic errors into the design. The modifications do not cau

significant overhead during simulation and do not require recompilation of the simu

when a new error is injected. On the other hand, this approach requires a simulatio

for each error considered.

The error models considered in this study are the CSSL0 and CSSL1 models. Ev

moderately sized modules under consideration, the number of CSSL1 errors is very

for example, there are 141,756 CSSL1 errors intop . Given our error simulation

approach, the number of errors needs to be reduced to make the experiment pract

subset of the CSSL1 errors was selected by imposing the following constraints: 1)

Table 3.1: Characteristics of two modules of the DLX microprocessor implementat

Parameter
Module 1:

top
Module2:
decode

No. of lines of code 302 263
No. of CSSL0 errors 574 816
No. of CSSL1 errors 141,756 238,732
No. of restricted CSSL0 errors 178 82
No. of restricted CSSL1 errors 21,864 18,788
No. of detectable actual errors 8 16

66

ered

ude.
considered in the condition are restricted to signals of bit-width 1, and 2) lines consid

as error sites are restricted to signals with bit width > 1.CE’sof this type are referred to as

restricted CE’s. This reduces the number of CSSL1 errors by about an order of magnit

For example, there are 21,864 restricted CSSL1 errors intop . Error simulation for

Figure 3.10: Simplified schematic of DLX implementation showing modulesdecode
andtop

GC

IR

PC

+

IMEM

+
1

1

0

A
LU

+

EQ
0

0
1

BTB IARRF BTB

FWD

DMEM IAR RF

top

decode

top top top

67

a

CPU

DLX

, such

ues. To

sed on

the

reasing

cles.

n of

is, as

ge of

(and

owly as

pear

. For

ts for

SSL0

mber

d to

error

13
restricted CSSL1 errors intop and the test set described below took 34 hours on

HAL300 workstation; an average simulation speed of 140 simulated clock cycles per

second was observed.

We developed a tool for generating random but valid assembly programs for the

instruction set architecture. The tool is biased towards generating ‘interesting’ cases

as data dependencies, control dependencies, exceptions, and boundary data val

satisfy the requirement that the programs generated be valid, some structure is impo

the programs which limits their variety. A number of parameters allow the user to vary

size and structure of the programs. We constructed a sequence of test programs inc

in size and complexity. The combined execution length of the programs was 3445 cy

We then computed the coverage for synthetic and actual errors of the test set.

The results of error simulation are summarized in Table 3.2. A significant fractio

CSSL0 errors is not covered by the test set. The coverage of restricted CSSL1 errors

expected, lower than that of restricted CSSL0 errors. Figure 3.11 shows the covera

three error sets as a function of the number of test programs applied. The first

shortest) test program uncovers many easy-to-detect errors. Coverage increases sl

more test programs are applied. The profiles for both synthetic error models ap

similar. Both error models reveal areas insufficiently exercised by the test programs

instance, none of the test programs contains instructions with illegal opcodes.

Our analytical evaluation of the CSSL1 error model shows that complete test se

CSSL1 errors also detect a number basic errors for which complete test sets for C

errors provide only partial coverage. However, as the CSSL1 error model defines a nu

of error instances quadratic in the size of the circuit, further evidence is neede

demonstrate the model’s merits for design verification. We therefore have conducted

Table 3.2: Coverage of synthetic and actual errors by biased random tests T0-T

Parameter
Module 1:

top
Module2:
decode

CSSL0 errors 77% 64%
Restricted CSSL0 errors 86% 93%
Restricted CSSL1 errors 72% 69%
Actual errors 75% 69%

68

rs by

rs and

s and

e use

eting

arder

rison

s are

e to be

s the

test

by 14
simulation experiments in which the coverage of CSSL0, CSSL1, and actual erro

biased random test sets is computed. The correlation between coverage of SSL erro

coverage of actual errors is very similar to that between coverage of CSSL1 error

coverage of actual errors. Hence this study does not provide any grounds to justify th

of the CSSL1 error model instead of the SSL model.

3.8 Coverage evaluation by analysis of actual errors

To show the effectiveness of a verification methodology, one can apply it and a comp

methodology to an unverified design. The methodology that uncovers more or h

design errors in a fixed amount of time is more effective. However, for such a compa

to be practical, fast and efficient high-level test generation tools for the error model

necessary. We have discussed such test generation tools in Section 3.4 but they hav

automated. We therefore designed a controlled experiment that approximate

conditions of the discussed experiment, while avoiding the need to automate

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

10

20

30

40

50

60

70

80

90

100

Figure 3.11: Coverage of restricted CSSL0, restricted CSSL1, and actual errors
biased random test sets T0-T13 fortop

CSSL1errors

CSSL0 errors

Actual errors

Test set Ti

C
ov

er
ag

e
[%

]

69

ology

the

e test

to the

ere

n.

o that

s

l

The

est

error

l

rror

at

n in

the

on

very

ity

y end

n

one

r if we
generation. The experiment evaluates the effectiveness of our verification method

when applied to two student-designed microprocessors. A block diagram of

experimental set-up is show in Figure 3.12. As design error models are used to guid

generation, the effectiveness of our design verification approach is closely related

synthetic error models used.

To evaluate our methodology, a circuit was chosen for which design errors w

systematically recorded during its design. LetD0 be the final, presumably correct, desig

From the CVS revision database, the actual errors were extracted and converted s

they can be injected into the final designD0. In the evaluation phase, the design wa

restored to an (artificial) erroneous stateD1 by injecting a single actual error into the fina

designD0. This set-up approximates a realistic on-the-fly design verification scenario.

experiment answers the question: givenD1, can the proposed methodology produce a t

that determinesD1 to be erroneous? This is achieved by examining the actual error inD1

to determine if a modeled design error exists that isdominatedby the actual error. LetD2

be the design constructed by injecting the dominated modeled error inD1, and letM be the

error model that defines the dominated modeled error. Such a dominated modeled

has the property that any test that detects the modeled error inD2 also detects the actua

error in D1. Consequently, if we were to generate a complete test set for every e

defined onD1 by error modelM, D1would be found erroneous by that test set. Note th

the concept of dominance in the context of design verification is slightly different tha

physical fault testing. Unlike the case with the testing problem, we cannot remove

actual design error fromD1 before injecting the dominated modeled error. This distincti

is important because generating a test for an error of omission, which is generally

hard, becomes easy if givenD0 instead ofD1.

The erroneous designD1 considered in this experiment is somewhat artificial. In real

the design evolves over time as bugs are introduced and eliminated. Only at the ver

of the design process, is the target circuit in a state where it differs from the final desigD0

in just a single design error. Prior to that time, the design may contain more than

design error. To the extent that the design errors are independent, it does not matte

70

s are

l but

r. We

n

ent-

anch

the

mitted

error

ct it.

dels

only

gy
consider a single error or multiple design errors at a time. Furthermore, our result

independent of the order in which one applies the generated test sequences.

We implemented the preceding coverage-evaluation experiment for two smal

representative designs: a simple microprocessor and a pipelined microprocesso

present our results in the remainder of this section.

A pipelined microprocessor. Our first design case study considers the well-know

DLX microprocessor [Henn90]. The particular DLX version considered is a stud

written design that implements 44 instructions, has a five-stage pipeline and br

prediction logic, and consists of 1552 lines of structural Verilog code, excluding

models for library modules such as adders, registerfiles, etc. The design errors com

by the student during the design process were systematically recorded using our

collection system.

For each actual design error we painstakingly derived the requirements to dete

Error detection was determined with respect to one of two reference mo

(specifications). The first reference model is an ISA model that is not cycle-accurate:

Figure 3.12: Experiment to evaluate the proposed design verification methodolo

Simulate

Evaluation of verification methodologyDesign and debug

…

Design

Actual error
Modeled error

Design error
model

Inject
single
actual
error

Inject
modeled

error

Test for
modeled

error

Expose
actual error

Expose
modeled error

Simulate

Debug by
designer

Design error
collection

Actual error
database

revisions

D1 D2D0

71

er file

about

ISA-

each

rrors

two

hem as

ent) in

uires

odeled

ltiple

r the

t

the changes made to the ISA-visible part of the machine state, that is, to the regist

and memory, can be compared. The second reference model contains information

the microarchitecture of the implementation and gives a cycle-accurate view of the

visible part of the machine state (including the program counter). We determined for

actual error whether it is detectable with respect to each reference model. E

undetectable with respect to both reference models may arise for the following

reasons: (1) Designers sometimes make changes to don’t care features, and log t

errors. This happens when designers have a more detailed specifications (design int

mind than that actually specified. (2) Inaccuracies can occur when fixing an error req

multiple revisions.

We analyzed the detection requirements of each actual error and constructed a m

error dominated by the actual error, wherever possible. One actual error involved mu

signal source errors, and is shown in Figure 3.13. Also shown are the truth tables fo

immediately affected signals; differing entries are shaded. Error detection via fanouY1

requires settingS1 = 1, S0 = 1, (X1 ≠ X2), and sensitizingY1. However, the combination

(S1 = 1,S0 = 1) is not achievable and thus error detection viaY1 is not possible. Detection

Erroneous design D1 Correct design D0

Figure 3.13: Example of an actual design error in our DLX implementation

S1,S0 Y1 Y2,Y3

0 0 X0 X0
0 1 X1 X1
1 0 X2 X2
1 1 X2 X2

S1,S0 Y1 Y2,Y3

0 0 X0 X0
0 1 X1 X0
1 0 X2 X2
1 1 X1 X2

M0
M0

M1
M1

S1
S0

X0

X1
X2

Y3

Y2

Y11
0

1
0

S0
S1

X0

X2
X1

Y3

Y2

Y1
1
01

0

72

on

tion

rrors

issing

The

ISA-

ro-

tal’;

either

deled

r DLX
via Y2 orY3 requires settingS1 = 0,S0 = 1, (X0 ≠ X1), and sensitizingY2 orY3. However,

S0 = 1 blocks error propagation viaY2 further downstream. Hence, the error detecti

requirements are:S1 = 0,S0 = 1, (X0 ≠ X1), and sensitizingY3.

Now consider the modeled errorE1 = S0 s-a-0 inD1. Activation of E1 in D1 requires

S1 = 0, S0 = 1. Propagation requires (X0 ≠ X1), and sensitizingY1, Y2 or Y3. As

mentioned before,S0 = 1 blocks error propagation viaY2. But asE1 can be exposed viaY1

without sensitizingY3, E1 is not dominated by the given actual error. To ensure detec

of the actual error, we can conditionS0 s-a-0 such that sensitization ofY3 is required. The

design contains a signaljump_to_reg_instrthat, when set to 1, blocks sensitization ofY1,

but allows sensitization ofY3. Hence the CSSL1 error (jump_to_reg_instr= 1, S0 s-a-0) is

dominated by the actual error.

The results of this experiment are summarized in Table 3.3. A total of 39 design e

were recorded by the designer. The actual design errors are grouped by category. ‘M

instance’ and ‘wrong signal source’ errors account for more than half of all errors.

column headed ‘ISA’ indicates how many errors are detectable with respect to the

model; ‘ISAb’ lists the number of errors only detectable with respect to the mic

architectural reference model. The sum of ‘ISA’ and ‘ISAb’ does not always equal ‘To

the difference corresponds to actual errors that are not detectable with respect to

reference model. The remaining columns give the type of the simplest dominated mo

Table 3.3: Actual design errors and the corresponding dominated modeled errors fo

Actual errors Corresponding dominated modeled errors

Category ISA ISAb Total INV SSL BSE CSSL1 CBOE CSSL2 Unknown

Missing instance 8 2 14 0 2 0 6 1 0 1
Wrong signal source 9 2 11 1 4 5 1 0 0 0

Complex 3 0 3 0 3 0 0 0 0 0

Inversion 1 2 3 3 0 0 0 0 0 0

Missing input 1 0 3 0 0 0 1 0 0 0

Unconnected input 3 0 3 3 0 0 0 0 0 0

Missing minterm 1 0 1 0 0 0 0 0 1 0

Extra input 1 0 1 0 1 0 0 0 0 0

Total 27 6 39 7 10 5 8 1 1 1

73

errors,

. For

rror.

iven

From

verter

. Any

esign

least

e

used

f 16

rs. To

erilog

ts of

of a

stom

tation

h as

logic

tically

ere

were

d/or

ed by

error

ignal-
error corresponding to each actual error. Among the ten detectable missing instance

two dominate an SSL error, six dominate a CSSL1 error, and one dominates a CBOE

the remaining one, we were not able to find a sufficiently simple dominated modeled e

A conservative measure of the overall effectiveness of our verification approach is g

by the coverage of actual design errors by complete test sets for modeled errors.

Table 3.3 it can be concluded that for this experiment, any complete test set for the in

insertion errors (INV) also detects at least 21% of the detectable actual design errors

complete test set for the INV and SSL errors covers at least 52% of the actual d

errors. If a complete test set for all INV, SSL, BSE, CSSL1 and CBOE is used, at

94% of the actual design errors will be detected.

A simple microprocessor.Al-Asaad [VC98] performed a similar experiment for th

Little Computer 2 (LC-2) [Post96a], a small microprocessor of conventional design

for teaching purposes at the University of Michigan. It has a representative set o

instructions which, are a subset of the instruction sets of most current microprocesso

serve as a test case for design verification, behavioral and RTL synthesizable V

descriptions for the LC-2 were designed. The behavioral model of the LC-2 consis

235 lines of behavioral Verilog code. The RTL design (implementation) consists

datapath module described as an interconnection of library modules and a few cu

modules, and a control module described as an FSM with five states. The implemen

comprises 921 lines of Verilog code, excluding the models for library modules suc

adders, register files, etc. A gate-level model of the LC-2 can thus be obtained using

synthesis tools. The design errors made during the design of the LC-2 were systema

recorded using our error collection system (Chapter 2).

The actual design errors in both the behavioral and RTL designs of the LC-2 w

analyzed, and the results are summarized in Table 3.4. A total of 20 design errors

made during the design, of which four are easily detected by the Verilog simulator an

logic synthesis tools, and two are undetectable. The actual design errors are group

category. The columns in the table give the type of the simplest dominated modeled

corresponding to each actual error. For example, among the four remaining wrong-s

source errors, two dominate an SSL error and two dominate a BSE error.

74

rs or

lation

1 are

use

ents

ts for

error

uld be

iently

three

ls. We

ended

been

r LC2
We can infer from Table 3.4 that most errors are detected by tests for SSL erro

BSEs. About 75% of the actual errors in the LC-2 design can be detected after simu

with tests for SSL errors and BSEs. The coverage increases to 90% if tests for CSSL

added.

3.9 Conclusions

Unlike the case with other simulation-based design validation methodologies, we

design error models to direct test generation. We have identified four key requirem

that error models should satisfy to be useful for design validation: 1) complete test se

the modeled errors should also provide very high coverage of actual errors, 2) the

models should be amenable to automated test generation 3) the error models sho

amenable to error simulation, and 4) the number of modeled errors should be suffic

small.

Based on the error data presented in the previous chapter, we have proposed

classes of design error models: basic, extended and conditional design error mode

have analyzed how well each error model satisfies the four requirements. The ext

error models were found too difficult for automated test generation, and have

Table 3.4: Actual design errors and the corresponding dominated modeled errors fo

Actual errors
Corresponding dominated

modeled errors

Category
Total

Easily
detected

Unde-
tectable

SSL BSE CSSL1
Un-

known

Wrong signal source 4 0 0 2 2 0 0
Expression error 4 0 0 2 0 1 1

Wrong bus width 3 3 0 0 0 0 0

Missing assignment 3 0 0 0 0 2 1

Wrong constant 2 0 0 2 0 0 0

Unused signal 2 0 2 0 0 0 0

Wrong module 1 0 0 1 0 0 0

Always statement 1 1 0 0 0 0 0

Total 20 4 2 7 2 3 2

75

found

rithm

IM

4 on

t 1. An

rs do

ts that

d the

lation

imilar

ated

te test

esign

cially

t to

four

t on

of the

dard

orts

sts for

n the

ides a

d for

mber

SL1
discarded on that ground. Test generation for the other two classes of models was

similar to test generation for SSL errors. We have developed an error simulation algo

for conditional errors called CESIM. Our experimental results show that CES

outperforms a state-of-the-art fault simulation algorithm by a wide margin (a factor 3

average).

We conducted three studies to assess how well the error models meet requiremen

analytical study of CSSL1 errors shows that complete test sets for CSSL1 erro

provide higher coverage for common design errors in gate-level designs over test se

are complete for SSL errors. A second study used error simulation, and compare

coverage of SSL, CSSL1 and actual errors on a microprocessor design. The corre

between coverage of SSL errors and coverage of actual errors was found to be very s

to that between coverage of CSSL1 errors and coverage of actual errors.

A final study analyzed actual errors in microprocessor designs, and investig

whether our methodology can detect such errors. The results indicate that comple

sets for synthetic errors provide a very high coverage of actual errors (97% for one d

and 90% for another). The results also show the conditional error models are espe

useful for detecting actual errors that involve missing logic, which are often difficul

detect using basic errors only.

Table 3.5 summarizes our findings. Each error model is graded with respect to the

requirements relative to the SSL model. The SSL model scores the highes

requirements 2 and 3, since standard ATPG tools use the SSL model. The scores

other models reflect the effort required to either modify the design and to use stan

tools, or to modify the tools to handle the new models. Our methodology supp

incremental design validation: First, generate tests for SSL errors. Then generate te

other basic error types such as MSE. Finally, generate tests for conditional errors.

Our studies suggest that the CSSL1 model is a good candidate to improve o

coverage provided by a complete test sets for SSL errors. The CSSL1 model prov

natural extension of the SSL model; standard ATPG algorithms can easily be modifie

CSSL1; we have demonstrated efficient error simulation with CSSL1 errors. The nu

of CSSL1 errors is quadratic in the size of the circuit. Although, the number of CS

76

des a

dition

ame

ion is
errors for a flattened design hierarchy is extremely large, the design hierarchy provi

natural means to reduce the number of CSSL1 errors. If the stuck line and the con

line that constitute a CSSL1 error are restricted to signals belonging to the s

hierarchical module the number of CSSL1 errors to be targeted during test generat

typically small enough for practical use of CSSL1 errors.

Table 3.5: Comparison of practical design error modelsa

a.N is the number of signals in the circuit;D is the average number of drivers on a tristate bus.

Error model
Req. 1:

Coverage
Req. 2:

Test generation
Req. 3:

Error simulation
Req. 4:

No. of instances

Basic

SSL + + + O(N)
MSE + -- -- O(N)
BOE - --- --- O(N)
BSE ++ --- --- O(N2)
BDE + -- -- O(B.D2)

CSSL1 ++ - - O(22N2)
Conditional CBOE + --- --- O(2N2)

CSSL2 +++ - - O(23N3)

on of

esign

on for

very

large

, but

the

llable.

.

ical

logic

ly be

eans

hese

state

llow

his

ls do

that

ation
CHAPTER 4
High-level test generation for
design verification of
pipelined microprocessors

Our design validation methodology uses design error models to direct the generati

verification tests. In the previous chapter we presented error models suitable for d

verification and showed that test generation for these errors is similar to test generati

SSL faults.

The area of automatic test pattern generation (ATPG) for combinational circuits is

mature and several commercial ATPG tools are available that are able to handle very

designs. ATPG for sequential circuits is a much harder problem [Chen96, Marc96]

design for testability (DFT) techniques, such asscan [Abra90], greatly reduce this

complexity. In full scan design, every register is replaced by a scan register and

registers are linked in a chain, thereby making every register observable and contro

This effectively reduces the test generation problem to one for combinational circuits

Unfortunately, DFT techniques do not apply to design verification. Unlike in phys

fault testing, the error-free design is unknown. This may seem contradictory since in

simulation every signal in the design can be examined. However, a signal can on

considered observable if we can easily discern incorrect from correct values. This m

that only the signals that are part of the specification are observable. Typically t

include all primary inputs and primary output, as well as a small subset of the

registers. The same observation applies to controllability. Logic simulators typically a

us to override the logic driving any signal, and ‘force’ the signal to an arbitrary value. T

might give the illusion that every signal is controllable, but since most of these signa

not appear in the specification, we cannot easily bring the specification in a state

corresponds to that of the implementation. Hence we cannot easily verify the simul
77

78

only

t of

for a

rea of

d the

s test

rch is

signs

ds are

In this

s. We

cture.

The

path

ive

ed

high-

ation

main

give

test

rray
outcome if signals have been forced to arbitrary values. Therefore test vectors can

specify the values of the primary inputs, and the initial state of the subse

implementation registers that is also part of the specification.

We conclude that the test generation problem in design validation has to be solved

sequential circuit. Although recently significant advances have been made in the a

gate-level sequential ATPG, designs of the size of microprocessors are well beyon

capabilities of present methods. Most previous work in this area attempts to addres

generation for general gate-level sequential circuits. An alternative direction of resea

to restrict the class of circuits targeted. Domain-specific information about these de

can then be exploited so that larger circuits can be handled than the general metho

capable of. We chose a class of pipelined microprocessors as our design domain.

chapter, we develop a high-level test generation method for pipelined microprocessor

first describe a model that captures high-level knowledge about microprocessor stru

We then develop a high-level test generation algorithm that uses this information.

main features of the method are 1) the integration of high-level treatment of the data

with fully detailed treatment of the controller, 2) its “pipeframe” based iterat

organization, 3) the separation of path and value selection.

We review relevant previous work in Section 4.1. Our high-level model for pipelin

processors is presented in Section 4.2. The iterative organization of the proposed

level test generation algorithm is described in Section 4.3. The overall test gener

algorithm is described in Section 4.4. Sections 4.5, 4.6, and 4.7 describe the three

components of the algorithm. We present experimental results in Section 4.8, and

some concluding remarks in Section 4.9.

4.1 Related work

Test generation for gate-level sequential circuits

Typical test generators for sequential circuits [Abra90, Chen96] iteratively apply a

generation algorithm for combinational circuits by using a gate-level iterative logic a

79

for

ult,

r that

cuit,

akes

in a

larger

tically

lems:

tate

ee

rs in

ules.

ction

ntrol

ber of

posed

g path

ized to

clock

alues

. This

les in

The

xpress

ule’s
(ILA) model of the circuit. Kelsey et al. [Kels93] describe a test generation algorithm

sequential circuits that does not follow the iterative structure of the ILA. For a given fa

an estimate of the test sequence length is computed, and the circuit is unrolled ove

many cycles. The PODEM algorithm [Chen96, Goel81] is applied to the resultant cir

which is treated as a single combinational circuit. Because this approach only m

decisions on primary inputs and only propagates information forward, it can result

more efficient search. On the other hand, the search process is performed on a much

and deeper circuit than in conventional approaches, hence its efficiency depends cri

on the backtracing heuristics used.

Ghosh et al. [Ghos91] decompose the test generation problem into three subprob

combinational test generation, fault-free state justification, and fault-free s

differentiation. By performing state justification and differentiation in the fault-fr

machine, their algorithm can re-use a significant amount of computation.

High-level test generation

Lee and Patel describe a high-level test generation method for microprocesso

[Lee92a, Lee94]. They model a processor as an interconnection of high-level mod

During a preprocessing step they symbolically simulate each instruction of the instru

set to derive the control behaviors corresponding to each instruction. These co

behaviors can be seen as ‘configurations’ of the processor (datapath) over a num

clock cycles (as many as the corresponding instruction takes to execute). The pro

test generation method has two phases: path selection and value selection. Durin

selection, a sequence of instructions is assembled so that a set of paths is sensit

activate the targeted error and propagate its effect. These paths may span multiple

cycles and may require multiple instructions. The task of computing the concrete v

that need to be applied to the primary inputs is delegated to the value selection phase

second problem can be formulated as a system of non-linear equations. The variab

this problem correspond to the signals in the datapath (in multiple timeframes).

equations correspond to the modules and interconnections of the datapath. They e

the relationship between the input and output signals, as defined by the mod

80

alue

ies to

and

or by

e for

T, in

ional

rcuit

n a

t of

to the

ling).

ded

es to

apped

plicit

. Some

s are

ctural

ether

t have

using

rk is

cation

the
functionality. Lee and Patel propose a simple discrete relaxation method for v

selection. The reason why such a simple method works well is that path selection tr

avoid selections that may lead to conflicts during value selection. A limitation of Lee

Patel’s method is that it explicitly enumerates the control behaviors of the process

considering every instruction in the ISA. Such an enumeration is no longer possibl

pipelined processors, as instructions do not execute in isolation.

Hansen and Hayes describe a high-level test generation algorithm, called SWIF

[Hans95b]. SWIFT can guarantee low-level fault coverage through the use of a funct

fault model, described in [Hans95a]. SWIFT uses high-level information about the ci

in the form a set of (multicycle) operations that the circuit can execute. Give

precomputed test for a module, SWIFT first constructs a partially-ordered se

operations needed to apply that test to the module and propagate the fault effects

system outputs. It then proceeds with detailed low-level processing (schedu

Although the results in [Hans95b] are very promising, it is not clear how to derive nee

high-level information automatically.

Iwashita et al. [Iwas94] describe a technique for generating instruction sequenc

excite given “test cases”, such as hazards, in pipelined processors. Test cases are m

onto states of a reduced FSM model of the processor. The technique performs im

enumeration of the reachable states to synthesize the desired test sequences

limitations are that the reduced FSM model is derived manually, and that no detail

given on the effect of the abstraction on the types of test cases that can be handled.

Chandra et al. [Chan95] present a sophisticated code generator for archite

validation of microprocessors. The user provides symbolic instruction graphs tog

with a set of constraints; these compactly describe a set of instruction sequences tha

certain properties. The system expands these templates into test sequences

constraint solvers, an architectural simulator, and biasing techniques. A similar wo

discussed in [Hoss96]. As these techniques operate on the microarchitectural specifi

of the design only, they are not suitable for generating tests for structural errors in

implementation.

81

lined

pping

given,

ut the

on

ted

the

olic

ation

of

of

tions.

line.

still

ction

, the

esign

i96,

sed.

ences

rivial
Formal verification

Bhagwati and Devadas [Bhag94] describe an automated method to verify pipe

processors with respect to their ISA specification. The method assumes that a ma

between input and output sequences of the implementation and the specification is

and that the implementation can be approximated by ak-definite1 FSM. The equivalence

of the two machines is checked by symbolic simulation. The assumptions made abo

implementation and the lack of abstraction limit the applicability of this approach.

Burch and Dill [Burc94] propose a method for microprocessor verification based

symbolic simulation and the use of a quantifier-free first-order logic with uninterpre

functions. The method requires manually generated abstract models of both

implementation and the specification in terms of uninterpreted functions. Symb

simulation of the models is used to construct the next-state functions. The verific

problem is turned into checking the equivalence of the next-state functions

implementation and specification.

Levitt and Olukotun [Levi97] develop a methodology for verifying the control logic

pipelined microprocessors. The datapath is modeled using uninterpreted func

Verification is performed by iteratively merging the two deepest stages of the pipe

After each step a check is made to see whether the newly obtained pipeline is

equivalent to the previous one. The equivalence is proven automatically using indu

on the number of execution cycles. To achieve the high degree of automation

approach of [Levi97] uses high-level knowledge about the design, such as the d

intent of a bypass.

Hybrid verification techniques

A class of hybrid verification techniques [Geis96, Gupt97, Ho95, Ho96b, Lew

Moun98] that combine simulation with formal verification has recently been propo

These techniques construct a reduced FSM model of the implementation. Test sequ

are then generated to achieve full coverage on the reduced FSM model. A non-t

1. A k-definite FSM is one that can only remember the lastk inputs.

82

pplied

n by

n only

rface

ation

ious

ually.

test

es of

nerator

d the

d in

rk

l the

s

all

n

.

problem with these methods is transforming the test sequences so that they can be a

to the implementation. The reduced FSM model may abstract part of the desig

replacing the interface signals by primary inputs. The transformed test sequences ca

specify primary inputs to the specification; these need to justify the abstracted inte

signals specified in the original test sequence. Ho et al. [Ho95] avoid the transform

problem by ‘forcing’ the desired interface signals onto the implementation. A ser

drawback of this approach is that the simulation outcome needs to be verified man

Moundanos et al. [Moun98] use conventional gate-level ATPG to transform

sequences. Lewin et al. [lLewi96] first map the test sequences onto sequenc

architectural constraints; these constraints are then used by an architectural test ge

[Ahar95] to produce test sequence for the implementation. The implementation an

specification are then simulated for the transformed test set.

Discussion

Our method uses high-level knowledge about pipeline structure similar to that use

Levitt and Olukotun’s work [Levi97]. Among all related work, Lee and Patel’s wo

[Lee92a, Lee94] is closest to our work. Our method borrows from Lee and Pate

following ideas:

• Separation of path and value selection

• Path selection aimed at avoiding value conflicts

• The use of discrete relaxation for value selection

Our method goes beyond Lee and Patel’s in the following:

• Our method handles pipelined microprocessors.

• The iterative organization of our method is based on what we call pipeframe

instead of timeframes, which leads to a reduction of the decision space, as we sh

see.

• Our method uses a new formulation of the path selection problem. This formulatio

allows ATPG to be one with a PODEM-like directed search in a flexible manner

83

f the

vel

ized

ay’s

(case

r-level

are

state

can be

and

esign

t is

om

s the

the

n the

ine

tate,

nn90]

se

in the
4.2 Pipelined processor model

In this section we introduce a new model for pipelined processors. The purpose o

model is to facilitate a more efficient test generation method by identifying high-le

information about the structure of pipelined microprocessors.

An important element of microprocessor structure is the distinction betweendata and

control. The merits of treating datapaths and controllers differently have been recogn

in many other domains such as high-level synthesis, formal verification, etc. In tod

design methodologies, controllers are often described by behavioral HDL code

statements). These descriptions are then synthesized into a gate-level or transisto

netlist either by tools or by hand. Most signals appearing in controller descriptions

unstructured binary signals. Controllers are essentially sets of interacting finite-

machines. Datapaths, on the other hand, process structured data words and so

represented at a higher level than the gate level, using high-level, multibit modules

buses. This high-level representation drastically reduces the size of the d

representation.

From a verification point of view, it is also important to distinguish machine state tha

visible to the specification, typically an instruction set architecture (ISA) model, fr

machine state which is specific to the implementation. In pipelined microprocessor

pipeline registers contain the implementation-specific machine state. Much of

complexity of these processors stems from the interaction between instructions i

pipeline. If instructions were to interact only through the ISA-visible part of the mach

state, they could be treated independently for verification test generation.

However, instructions also interact through the implementation-specific machine s

and this is intimately related to pipeline hazards. Hennessy and Patterson [He

describe three standard techniques for dealing with pipeline hazards:stalling, squashing

and bypassing; they are illustrated in Figure 4.1. The signals that control the

mechanisms are of interest because they reveal the essence of instruction interaction

84

much

usly.

eloped

level

control

trol

e as

. The

uction

stall;

quires

isters,

bal

alling
pipeline. They provide a means to characterize the control state of the pipeline in a

more compact way than by considering all the instructions in the pipeline simultaneo

Based on these considerations and on the analysis of actual designs, we have dev

the model for pipelined processors shown in Figure 4.2, which exposes high-

knowledge that can be used during test generation. We assume that data-stationary

[Kogg77] is chosen as implementation style of the controller, in which case con

‘follows’ the data through the pipeline providing the control signals at each stag

needed. Such controller implementations mimic the pipeline structure of the datapath

datapath and controller both exhibit pipeline structure and interact viastatusandcontrol

signals. The signals at each stage are classified as:

• primary: interfacing with the environment

• secondary: interfacing with the stage’s pipeline registers

• tertiary: interfacing with another pipeline stage

The tertiary signals are precisely the signals needed to describe essential instr

interaction. Typical examples of tertiary signals in the controller are squash and

typical examples of tertiary signals in the datapath are bypasses. Using the model re

no more than the appropriate labeling of control signals, status signals, and pipe reg

along with appropriate high-level modeling of the datapath. The block labeled ‘glo

0 1

0 10 1

0
stage i stage i stage i

Figure 4.1: Instruction interaction mechanisms: a) bypassing, b) squashing, c) st

from stage j
a) b) c)

bypass squash

stall

85

iary

tion of

n of

the

cular

o an
combinational logic’ generates the CTS’s. By isolating this block, the number of tert

signals can be minimized.

Our test generation method attempts to decouple decisions concerning the interac

instructions from those concerning only a single instruction. For example, a decisio

the former type might be whether the current instruction needs to be stalled by

previous instruction. Such a decisions allow us to defer deciding upon the parti

opcode and operand registers of that previous instruction. This is in contrast t

Figure 4.2: Pipelined microprocessor model

DPIi DPOi

DTIi

DPR(i-1)

from other
stages

to other
stages

DSIi DSOi

DTOi

Stage i

CPR(i-1)

CTRLiSTSi

CTSi

CSIi CSOi …

…

DATAPATH

CONTROLLER

…

…

DPRi

Stage i

Comb.
logic

from other
stages

to other
stages

xTI (TO): tertiary input (output)
xSI (SO): secondary input (output)
xPI (PO): primary input (output) DPR: data pipe register

STS: status signal
CTRL: control signal

CPRi

(Comb.)
datapath

logic

CPOi CPIi

Cxx: control signal
Dxx: data signal

CPR: control pipe register

Global
comb.
logic

CTS: control tertiary signal

86

in the

uple

and

e. In

sors.

ne

h are a

ined

.

lobal

e,

ed

nd the

that of

SI’s

mary

nd to

that is

ists of

ber of

time-
approach where the search is performed in the flat product space of all instructions

pipeline. In the next section we will show how the tertiary signals can be used to deco

decisions on instruction interaction from those that concern instructions in isolation.

4.3 Pipeframe model

Conventional test generation algorithms for sequential circuits use the ILA model

iteratively apply test generation techniques for combinational circuits in one timefram

this section we describe a different organizational model specific to pipelined proces

This pipeframe organizational model exploits high-level knowledge about pipeli

structure that is captured with the processor model. The advantages of this approac

reduction of the search space and the elimination of many conflicts.

Consider the application of a conventional test generation algorithm to a pipel

controller circuit without a datapath. Figure 4.3 shows a three-stage pipelined circuitC1,

C2 and C3 are combinational logic corresponding to the three pipe stages. The g

combinational logicCg sources all CPI’s and all CSI’s. In order not to clutter the figur

only the CPI’s sourced byC1 are shown, and the CPO’s produced byCi have been omitted.

The iterative logic array model for this circuit is shown in Figure 4.4a. If PODEM is us

as the combinational test generation algorithm, the decision variables are the CPI’s a

CSI’s in each timeframe. The decision space to be searched during each iteration is

the CSI’s and CPI’s. For the controller of pipelined microprocessors, the number of C

(state bits) is typically much larger than the number of CPI’s. This is because the pri

function of the controller is to decode the incoming instructions.

Taking into account that the circuit is pipelined and performs several concurrent, a

a large extent independent, decodes, a different organization of the search, one

directly in terms of the CPI’s, is desirable. When the global control logicCg is absent, it is

easy to see how this can be accomplished. In this case, the iterative array model cons

unconnected (horizontal) slices spanning a number of timeframes equal to the num

pipe stages. These horizontal slices will be referred to aspipeframes. It can be seen that

the size of the circuit to be considered is exactly the same as that in the conventional

87

nflicts

PI’s.

tional

s by

ame

a the

rame

tiple

frames

rtiary

ler
frame based search, although the depth is greater. However, in the new approach co

due to invalid (unreachable) states cannot arise as decisions are made only on the C

In general, there is interaction between pipestages through the global combina

logic Cg. To organize the search by pipeframe, the tertiary signalsCTSi, i = 1, … 3, need

to be included as decision variables. The iterative array is partitioned into pipeframe

cutting the tertiary signals, as shown in Figure 4.4b. A complication is that a pipefr

directly interacts with a number of other pipeframes via shared primary inputs and vi

tertiary signals feeding the pipeframe. In the conventional organization, each timef

depends directly only on the previous timeframe. To cope with this complication, mul

pipeframes need to be considered simultaneously during the search. The set of pipe

directly relevant to pipeframei is indicated by windowi in the figure. The linking of

pipeframes via the tertiary signals is shown in Figure 4.5. It can be seen that the te

signal CTS1 to pipeframei + 2 depends on CPI’s and CTS’s to pipeframesi, i + 1 and

i + 2. (In order not to clutter the figure the indices are omitted.)

Consider ap-stage pipelined controller with a total ofn1 CPI’s,n2 CSI’s per pipestage,

and n3 CTS’s per pipestage. In the usual timeframe organization, there aren1 + p.n2

decision variables per timeframe,p.n2 of which need justification. In our pipeframe

approach, there aren1 + p.n3 decision variables per pipeframe,p.n3 of which need

justification. Our approach is targeted at the circuits withn3 << n2. For such circuits the

following can be observed:

• The size of the search space in the pipeframe organization is significantly smal

than that in the usual timeframe organization. For example in the DLX

C3

Cg

C2C1

CTS1 CTS2 CTS3

Figure 4.3: Pipelined controller

88
C3

Cg

C2

C1

C3

Cg

C2

C1

Time-
frame i

Time-
frame i+1

C3

Cg

C2

C1

Cg

C2

C1

C1

C3

Cg

C2

C1

C3

Cg

C2

C1

C3

Cg

C2

C1

Pipeframe i

Pipeframe i+1

Window i

Window i+1

C3

Cg

C2

C1

C3

Cg

C2

C1

Cg

C2

C1

C1

Figure 4.4: Iterative array of pipelined controller: a) conventional organization;
b) alternative organization

a)

b)

89

er

h

l

rch

is

h

sign

path,

s the

he test

. A
implementation that will be discussed in Section 4.8, there are 95 CSI’s p

timeframe but only 43 CTS’s per pipeframe. The size of the circuit to be dealt wit

in the pipeframe organization is comparable to that in the conventiona

organization, although its depth is greater. This can be seen in Figure 4.5.

• For some pipelined controllers the pipeframe approach does not reduce the sea

space. This is the case when CSOi depends on CSIi+1 (referring to Figure 1) for

every pipestage. Circuits in which every pipe stage can be stalled exhibit th

property. For such circuits, all CSI’s are also CTS’s, the pipeframe approac

reduces to the usual timeframe approach.

4.4 Test generation algorithm

In this section we give an overview of our high-level test generation algorithm for de

verification of pipelined microprocessors. It is targeted at localized errors in the data

such as the SSL and CSSL errors described in Chapter 3. The algorithm follow

iterative pipeframe organization described in the previous section and decomposes t

generation problem into three subproblems:

• P1: path selection in the datapath,

• P2: value selection in the datapath, and

• P3: justification of control signals in the controller.

The procedures that solveP1, P2, andP3 areDPTRACE, DPRELAX, andCTRLJUST,

respectively. The interaction of the three subproblems is illustrated in Figure 4.6

C2

C1

C1

Cg
Pipeframe i

Pipeframe i+1

Figure 4.5: Composite circuit dealt with in pipeframe organization

90

error.

ath

the

in the

and

uired.

ing

are

n

r the

ssfully

t at a

be

if the
flowchart of the overall algorithm is presented in Figure 4.7. The overall algorithmTG is

built on top of the directed search (CTRLJUST) for solving P3. DPTRACE selects

justification and propagation paths in the datapath for activating and exposing the

Part of the solution produced byDPTRACEis a set of objectives (s, v), wheres is a CTRL

signal andv ∈ {0, 1}. These objectives are used to guide the search performed byTG.

DPRELAX uses discrete relaxation to determine appropriate data values.

DPTRACE computes an initial path selection and the corresponding set of p

objectives.CTRLJUSTmakes decisions on the CPI, CTS and STS signals, guided by

path objectives. These decisions are implied on three fronts. First, they are implied

controller where they affect the CPO, CTS and CTRL signals. Second,DPTRACEchecks

whether the updated CTRL signals are consistent with the current set of justification

propagation paths in the datapath. If there is consistency, no further action is req

Otherwise,DPTRACEcomputes a new set of justification and propagation paths, tak

into account the current values of the CTRL lines. The objectives on the CTRL lines

updated accordingly. Only ifDPTRACE fails to derive a set of justification and

propagation paths willDPTRACEcauseTG to backtrack. The third aspect of implicatio

involves invokingDPRELAXto compute data values. Failure to converge will causeTG to

backtrack. If no inconsistencies arise from the implication step, we check whethe

reset state has been reached. If so, and if all objectives are satisfied, we return succe

with a test. The three subalgorithms are described in the remainder of this section.

4.5 DPTRACE: path selection in datapath

The task of the path selection algorithmDPTRACEis to determine a set of justification

and propagation paths in the datapath to activate the error and expose its effec

primary output of the datapath.DPTRACEdoes not consider the values that need to

justified and propagated. This task is delegated toDPRELAX. This divide-and-conquer

approach reduces the problem size significantly, but may fail to find a solution, even

problem is feasible.

91

sent

em.

ns
We start by discussing the overall iterative organization of DPTRACE. We then pre

a controllability / observability graph (COG) for analyzing the path selection probl

This leads to a formulation that can be solved with a PODEM-like directed search.

CTS

STS

∨

∧

1 0
DPI

+ DPO

1 0

8’h27

8’hFF

8’h26

pipeframe (i-1)

pipeframe (i+1)

pipeframe (i)

CTRL

pa
th

CTRLJUST:

DPTRACE: path selection

DPRELAX: value selection

pipeframe (i)

pipeframe (i)

∨

∧
+

CPO

CPI

Controller

Datapath

Datapath

justification of CTRL

C
T

R
L

ju
st

ifi
ca

tio
n

ob
je

ct
iv

es

S
T

S
 ju

st
ifi

ca
tio

n

Figure 4.6: The three parts of the test generation algorithm and their interactio

92
CTRLJUST:IMPLY
Imply current decision
in controller

DPTRACE:IMPLY
Check if updated CTRL
signals consistent with
path selection

DPRELAX
If enough CTRL signals are
justified, perform discrete
relaxation on datapath

CTRLJUST:DECIDE
Backtrace + create decision

CTRLJUST:BACKTRACK
Undo implications of current
decision; backtrack

DPTRACE:BACKTRACK
Find new path selection,
subject to current state of
CTRL signals

DPTRACE:INIT
Create initial path selection:

REACHED INIT. STATE?
Check if initial state can
satisfy JFrontier

SUCCESS FAILURE

conflict

conflict

no convergence

convergence

yes

no

conflict

conflict

ok

ok

ok

ok

ok

conflict

Generate set of pathobjectives

Figure 4.7: Flowchart of overall test generation algorithm

FAILURE

93

ation

the

.8a).

lines

valid

et of

only.

other

eated

n is

the

and

path

at the

ut, by

path

.

dules

apath

xers,
Overall iterative organization

The overall iterative organization of DPTRACE is based on pipeframes. This organiz

is illustrated in Figure 4.8 for a four-stage pipeline. Initially, only a single pipeframe,

excitation frame, is considered when computing a set of justification paths (Figure 4

If this fails, another pipeframe is added to the COG. The process is repeated until all

are justified, or until a maximum number of frames has been explored. In the figure a

path selection is obtained after adding two pipeframes (Figure 4.8b). Next, a s

propagation paths is computed. Again, we start with considering the excitation frame

If no path selection is found, but the error effect can be exposed at a DTO, an

pipeframe is added to the COG. In Figure 4.8c a complete set of paths is obtained.

Controllability/observability graph (COG)

In Lee and Patel’s work [Lee92a, Lee94], justification and propagation paths are cr

by iteratively extending an instruction sequence with one instruction. A new instructio

chosen to minimize the remaining justification effort. This choice is among

instructions in the ISA.

In our work, decisions are made at a finer grain during path selection. Justification

propagation paths are created by setting individual CTRL signals. During the

selection phase, we wish to determine a partial assignment to the CTRL signals so th

error can be activated, and its effect can be propagated to a primary data outp

applying appropriate values to the data primary inputs. As in Lee and Patel’s work,

selection is aimed at avoiding conflicts during the subsequent value selection phase

Conflicts during value selection arise when constraints corresponding to the mo

and interconnection are violated. We can distinguish four classes of basic dat

modules:ADD, AND, MUX, andFAN. More complex modules such asALU’s are modeled as

a composition of simpler high-level modules, such as word-gates, adders, multiple

etc.

94
DPI

DTI

DPO

DTO

DTI

DTO

pipeframe 0

pipeframe +1

pipeframe -1

pipeframe -2

DPI

pipeframe 0

DPI

DPI

DTI

DTO

pipeframe 0

pipeframe -1

pipeframe -2

DPI

Figure 4.8: Overall iterative organization of path selection

…

…

a)

b)

c)

95

s in

n the

uts,

odule

ted.

STS

terior

have

ly a

n be

very

dder,

e

er to

e an

dules

e or

er to

needs

ut

quested
We define a controllability / observability graph (COG) for a sequence of pipeframe

the ILA of the datapath. Its nodes correspond to modules in the datapath, nets i

datapath with multiple fanout, primary inputs and outputs, tertiary inputs and outp

control and status signals; its edges correspond to pairs of connected ports (m

terminals) in the datapth. Note that in the ILA all (pipeline) registers have been elimina

The boundaries of the ILA are formed by nodes corresponding to DPI, DPO, CTRL,

signals, exterior CTI (driven by a pipeframe not in the sequence considered), and ex

CTO signals (sourced by pipeframes not part of the sequence considered only).

Modules in theADD class have one data output, and one or more data inputs. They

the property that the output can be justified (to an arbitrary value) by controlling on

single input, i.e., regardless of the values of the other inputs, the controlled input ca

assigned a value that will justify the output. Also, if the output is observable then e

input is observable as well. Modules in this class include the buffer, the inverter, the a

the subtractor, and theX(N)OR word gate. Predicate modules, which take twon-bit inputs

A andB and produce a single-bit outputY = A <op> B, where <op> ∈ { =, ≠, <, ≤, >, ≥,

ADDOVF, SUBOVF}, are also in theADD class for the controllability analysis. For th

observability analysis, they are in theAND class.ADDOVF andSUBOVF compute overflow

for signed addition and subtraction, respectively.

Modules in theAND class have one data output, and one or more data inputs. In ord

justify the output (to an arbitrary value) all inputs need to be controlled. To observ

input, the output needs to be observable and all side inputs need to be controlled. Mo

in this class include word gates such as (N)AND, (N)OR, andSHIFT modules.

Modules in theMUX class have one data output, one or more data inputs, and on

more control inputs. The control inputs determine which data input is selected. In ord

justify the output, the control inputs need to be assigned and the selected data input

to be controlled; the other data inputs are free1. In order to observe a data input, the outp

needs to be observable, and the control inputs need to be assigned such that the re

1. DPRELAX requires that select signals to multiplexers are set. Hence DPTRACE does not
consider justification of the output of a multiplexer by controlling all data-inputs and leaving the
select input unassigned.

96

ristate

re the

each

be

for

value

e, we

s

and

t need

dule

and

rting

rties

error

ds in

ined

r and

s

d and

ision
data input is selected. This class contains modules such as multiplexers and t

buffers.

FAN nodes correspond to nets in the datapath that have multiple fanouts, and a

only type of node in the graph that have more than one outgoing edge. AFAN node has one

incoming edge corresponding to the module driving the net, and outgoing edges to

module that sources the net.FAN nodes have the property that only one fanout can

justified by controlling the stem. Conflicts will arise if we attempt to use a stem

different simultaneous justification problems, unless all problems request the same

on the stem, but the concrete values are not known during path selection. Therefor

associate a so-calledFO-selectvariable withFAN nodes to reflect this constraint. Thi

variable indicates which outgoing edge ‘uses’ the incoming edge for its justification,

assumes values from {1,…,n, u}, wheren is the number of outgoing edges, andu stands

for unassigned.

Note that because this analysis does not take into account the concrete values tha

to be justified, it is an approximation. Consider for example the predicate mo

Y= A < B, which we classified as anADD-class module becauseY can be justified by

controlling just a single input. However, there is a singular case in whichY= 1 cannot be

justified by controlling onlyA, namely forB equal to the largest positive value.

Given a COG, and acompleteassignment to its CTRL and FO-select variables (nou

values), we can easily identify potential conflicts when trying to activate an error site

propagating the error effect. First, traverse the COG forwards in levelized order, sta

with the primary inputs, and compute the controllability of each edge, using the prope

discussed above. If the error site is controlled, we should be able to activate the

during value selection, otherwise conflicts are likely. Next, traverse the COG backwar

levelized order, and compute the observability of each edge. If the error site is determ

to be both controllable and observable, we should be able to activate the erro

propagate its effect to a primary output, otherwise conflicts are likely.

The path selection problem is that of finding apartial assignment to the CTRL variable

and the FO-select variables of the COG, such that the error site can be controlle

observed. A PODEM-like search with the CTRL and FO-select variables as dec

97

flicts

ts that

rtial

wing

ility

an

ry

ch

an

but

e

ve

ve

bility
variables is a good starting point for an algorithm. To make the search efficient, con

need to be identified as early as possible. In other words, we need to foresee conflic

may arise when trying to activate the error and expose its effect for the given pa

assignment to the CTRL variables. For this purpose, we have developed the follo

system:

We attribute to an edge in the COG a symbolic value that encodes controllab

information. The attributeC-state assumes values from the set {C1, C2, C3, C4}. The

interpretation is as follows:

• C4. TheC-state of edges that arecontrolled is C4. That is, for the current partial

assignment of CTRL and FO-select variables, the signal corresponding to such

edge can be set to an arbitrary value by applying appropriate values to the prima

inputs. This requires that there is at least one path from a DPI to this edge, for whi

the C-states of all path segments (edges) areC4. It also implies that all CTRL

variables in the transitive fanin of the edge are assigned.

• C3. TheC-state of edges that arenot-controlledis C3. That is, for the current partial

assignment of CTRL and FO-select variables, the signal corresponding to such

edge can be set to a value by applying appropriate values to the primary inputs,

not to an arbitrary value. This also implies that all CTRL variables in the transitiv

fanin of the edge are assigned.

• C2. TheC-state of edges that have unassigned decision variables in their transiti

fanin, and that can only become not-controlled (C3) after completing the current

partial assignment of CTRL and FO-select variables, isC2.

• C1. TheC-state of edges that have unassigned decision variables in their transiti

fanin, and that have the potential to become controlled (C4) after completing the

current partial assignment of CTRL and FO-select variables, isC1.

Similarly, edges in the COG are assigned symbolic values that encode observa

information. The attributeO-state assumes values from the set {O1, O2, O3}. The

interpretation is as follows:

98

of

er

een

t of

lass of

n in

l

gation
• O3. TheO-state of edges that are observable for the current partial assignment

CTRL and FO-select variables isO3. There exists at least one sensitized path from

such an edge to a primary output.

• O2. TheO-state of edges that are not observable isO2. No sensitized path exists

from such an edge to a primary output.

• O1. The O-state of edges that have the potential to become observable aft

completing the partial assignment to the decision variables, isO1.

Using these value systems, we can formally state the relationship betw

controllability and observability information of the incoming edges of a node and tha

the outgoing edges. We present propagation tables for a representative of each c

modules in Figure 4.9; the bottom two tables are for a net with stemx and two fanoutsy1

andy2. TheC- andO-state of terminal nodes are initialized as shown in Table 4.1.

Consider the datapath shown in Figure 4.6; the corresponding COG is show

Figure 4.10. The goal is to control edgen12−n13. So far all CTRL variables are stil

unassigned and one FOselect variable, that associated withn8, has been set (to 3). As a

result of this decision, edgen8−n12 is controlled, whereasn8−n9 andn8−n10 are not-

controlled. Note that theC3 state ofn8−n10 propagates ton10−n11. TheC2 value on

n10−n11 will avoid setting CTRL variablen5 to 1, which may lead to a conflict during

value selection. It can be seen that the current state is consistent with the propa

tables of Figure 4.9.

Table 4.1: InitialC- andO- values
Signal C-state O-state

DPI C4 O1
external DPO C1 O3
external DTI C3 O1
DTO C1 O2
CTRL N/A N/A
STS C1 O2
Other C1 O1

99

ith

, the

dge
Formulation

A path selection in COG consists of an assignment of theC-state andO-state of all edges,

and of the CTRL signals to the pipeframe. A path selection is valid if it is consistent w

theC- andO- propagation tables of all nodes. Given a localized error in the datapath

path selection problem is that of finding a valid path selection such that the e

associated with the error is both controllable (C4) and observable (O3).

y = ADD (x1, x2)

C(y) C(x2)
C1 C2 C3 C4

C(x1)

C1 C1 C1 C1 C1
C2 C1 C2 C2 C1
C3 C1 C2 C3 C4
C4 C1 C1 C4 C4

y = AND (x1, x2)

C(y) C(x2)
C1 C2 C3 C4

C(x1)

C1 C1 C2 C2 C1
C2 C2 C2 C2 C2
C3 C2 C2 C3 C3
C4 C1 C2 C3 C4

y = MUX2 (s, x1, x2) (s=1 selectsx2)

C(y)

s
u C2 if C(x1), C(x2) ∈{ C2,C3}

C1 otherwise
0 C(x1)
1 C(x2)

y = ADD (x1, x2)

O(x1) O(y)
O1 O2 O3

C(x2)

C1 O1 O2 O1
C2 O1 O2 O1
C3 O1 O2 O3
C4 O1 O2 O3

y = AND (x1, x2)

O(x1) O(y)
O1 O2 O3

C(x2)

C1 O1 O2 O1
C2 O2 O2 O2
C3 O2 O2 O2
C4 O1 O2 O3

y = MUX2 (s, x1, x2)

O(x1) O(y)
O1 O2 O3

 s
u O1 O2 O1
0 O1 O2 O3
1 O2 O2 O2

Figure 4.9:C- andO-propagation tables

(y1, y2) = FAN(x)

C(y1)C(y2) FOsel
u 1 2

C(x)

C1 C1 C1 C1 C2 C2 C1
C2 C2 C2 C2 C2 C2 C2
C3 C3 C3 C3 C3 C3 C3
C4 C1 C1 C4 C3 C3 C4

(y1, y2) = FAN(x)

O(x) O(y2)
O1 O2 O3

O(y1)
O1 O1 O1 O3
O2 O1 O2 O3
O3 O3 O3 O3

100

ision

d

DEM

n of
Path selections in which theC-state of CTI edges is set toC4 require further

justification. Similarly, path selections in which theO-state of CTO edges is set toO3

require further propagation.

In general, consider a set of edges, called theJ-frontier, whoseC-state needs to be

justified toC3 orC4. Also given is a set of edges, called theE-frontier, which contains the

error effect. At least one line in theE-frontier needs to be made observable (O3). The path

selection problem is as follows: Given the following: aJ-frontier = {(ei, cei) | i=1…n}

whereei is an data-edge, andcei ∈ { C3, C4}; an E-frontier1 = {ei | i=1…m}; a partial

assignment to the CTRL variables; determine a partial assignment to the dec

variables such that theC-state of every line in the J-frontier is justified to the specifie

value, and theO-state of at least one line in the E-frontier is justified toO3.

Directed search algorithm

The path selection problem can be solved using a directed search similar to PO

[Goel81, Abra90]. Pseudocode for PODEM is shown in Figure 4.11. The adaptatio

1. In design verification we use the termerror to differentiate from the termfault used in
physical fault testing; henceE-frontier instead ofD-frontier.

+

&

&

C1

C1C1

C4

C1

C4

C4 C1 C1

C3

C2

0
01
1

C3

C3
1
2
3

1
2

FOsel=3

FOsel=u

Figure 4.10: Path selection usingC-values

n1

n2

n3

n4=u n5=u

n6

n7

n8

n9

n10

n11
DPI DPO

DTI

DPI

CTRL

n12 n13

CTRL

101

ure,

m

te

es

ons

sal of

TRL

he

f the
PODEM involves appropriate definition of 1) decision variables, 2) implication proced

3) backtrace procedure, and 4) consistency checking.

Decision variables. The decision variables in the path selection problem are:

• CTRL variables, which are associated with the CTRL signals, assume values fro

{0, 1, u}.

• FO-select variables, which are associated with multiple-fanout nodes, indica

which outgoing edge uses the incoming edge for its justification. These variabl

assume values from {1,…,n, u}, wheren is the number of outgoing edges.

Implication procedure. After a decision variable has been assigned, the implicati

of that decision have to be computed. This is done by an event-driven forward traver

COG to computeC-values, and a similar backward-traversal of the COG to computeO-

values. The rules are those presented earlier in Figure 4.9. Decisions involving C

variables are also impliedfunctionally. For each pipeframe a predicate is kept that is t

conjunction of the assignments made to the CTRL variables so far. The support o

Figure 4.11: Directed search PODEM

PODEM()

1. if (goal satisfied) {
1.1 return SUCCESS
2. }
3. if (goal infeasible) {
3.1 return FAILURE
4. }
5. obj ← Select next objective ()
6. decision← Backtrace(obj)
7. Imply(dec)
8. if (PODEM() = SUCCESS) {
8.1 return SUCCESS
9. Undo implications of decision
10. while (untried alternatives to decision exists) {
10.1 dec← Select untried alternative (decision)
10.2 Imply(dec)
10.3 if (PODEM() = SUCCESS) {
10.3.1 return SUCCESS
10.4 }
11. }
12. return FAILURE

102

ng a

f the

each

which

, in
predicate is the CPI, CTI and STS signals. Functional implication of a decision involvi

CTRL variable involves updating the predicate to reflect the additional assignment. I

updated predicate is false, the search will backtrack. These predicates, one for

pipeframe, constitute the path objectives that DPTRACE returns upon success, and

are used by CTRLJUST to direct its search.

Backtrace procedure.Backtracing is a heuristic procedure that takes an objective

our case a pair consisting of an edge and a desiredC- or O- value, and produces an

Figure 4.12: Backtrace rules for path selection:ADD, AND

BacktraceAdd(port, obj)

1. nextObj ← obj
2. switch(obj) {
2.1 C3: nextPort← Select inPort with cState in {C1,C2}
2.2 C4: nextPort← Select lowest cost inPort with cState=C1
2.3 O3:if (oState(outPort)=O1) {
2.3.0.1 nextPort← outPort
2.3.1 }
2.4 else { /* oState(outPort)=O3 */
2.4.1.1 nextPort← Select side input with cState in {C1,C2}
2.4.1.2 nextObj← C3
2.4.2 }
3. }
4. decision← BacktraceNet(nextPort, nextObj)
5. return decision

BacktraceAnd(port, obj)

1. nextObj ← obj
2. switch(obj) {
2.1 C3: nextPort← Select inPort with cState in {C1,C2}
2.2 C4: nextPort← Select highest cost inPort with cState=C1
2.3 O3:if (oState(outPort)=O1) {
2.3.0.1 nextPort← outPort
2.3.1 }
2.3.2 else { /* oState(outPort)=O3 */
2.3.2.1 nextPort← Select highest cost side input with

cState=C1
2.3.2.2 nextObj← C4
2.3.3 }
3. }
4. decision← BacktraceNet(nextPort, nextObj)
5. return decision

103

4.12

ing is

ing

elect

eMux
assignment to a decision variable that is likely to help achieve the objective. Figure

and Figure 4.13 present a set of mutually recursive backtrace procedures. Backtrac

guided byCcostsand Ocoststhat are discussed below. The procedure for backtrac

through a net, BacktraceFan in Figure 4.13, shows how decisions involving a FO-s

variable are created. The procedure for backtracing through a multiplexer, Backtrac

in Figure 4.13, shows how decisions involving a CTRL variables originate.

Figure 4.13: Backtrace rules for path selection:FAN, MUX

BacktraceFan(port, obj)

1. switch (obj) {
1.1 C3: if (cState(fanin) in {C1,C2}) {
1.1.0.1 decision← BacktraceModule (fanin, obj)
1.1.1 }
1.1.2 else { /* FOselect unassigned */
1.1.2.1 decision← (FOSel,port)
1.1.3 }
1.2 C4: if (FOselect unassigned) {
1.2.3.1 decision← Select port
1.2.4 }
1.2.5 else {
1.2.5.1 decision← BacktraceModule(fanin, obj)
1.3 O3: fanOut← lowest cost fanout with oState = O1
1.3.6 decision← BacktraceModule (fanout, obj);
2. }
3. return decision

BacktraceMux(port, obj)

1. if (all selects determined) {
1.1 switch (obj) {
1.1.1 C3,C4: decision← BactraceNet(selected inPort, obj)
1.1.2 O3: decision← BactraceNet(outPort, obj)
1.2 }
2. }
3. else {
3.1 switch (obj) {
3.1.1 C3: inPort← Select selectable input with smallest cost
3.1.2 C4: inPort← Select lowest cost slectable input with cState in {C1,C4}
3.1.3 O3: inPort← port
3.2 }
3.3 decision← assign select signal to select inPort
4. }
5. return decision

104

2)

ignals)

tial

more

ative

the

90,

and

ifying

but

d for

ave

the

f

e is

COG

are
Objective selection.Initially there are two objectives: 1) to control the error site, and

to make the error site observable. As the search progresses, more lines (tertiary s

may need justification and the error effect may be observable at multiple sites.

Feasibility checks.After the implication phase we need to check if the current par

path selection can still be augmented to satisfy the goals. Such an augmentation is no

feasible if theC-state of a line in theJ-frontier is violated or if theE-frontier has become

empty.

Controllability and observability measures. Search algorithms such as PODEM

exhibit freedom as to the order of the decision variables and the order in which altern

values are tried. The way in which this freedom is used can significantly affect

execution time of the search. The following principles are commonly used [Abra

Goel81]:

• Among a set of unsolved subproblems, first attack the hardest one.

• Among a set of potential solutions to a problem, first try the easiest one.

To implement these principles, metrics to gauge the difficulty of problems

alternative solutions are required. The subproblems in path selection consist of just

(controlling) edges in the COG. Alternative solutions arise not only during justification

also during error effect propagation. The SCOAP measures [Gold79] are widely use

analyzing the controllability and observability of a node in gate-level designs. We h

adapted these metrics for the path selection problem.

The Ccostof an edge estimates the difficulty of controlling the edge. TheCcost is

computed by traversing the nodes of the COG forwards in level order, starting with

primary inputs. The expressions for theCcostof the outgoing edges in terms of these o

the incoming edges are given in Table 4.2. Similarly, the difficulty of observing an edg

measured by theOcost. These measures are computed by traversing the nodes of the

backwards in level order, starting with the primary outputs. Again the expressions

given in Table 4.2.

105

error

iven

a

O or

near

linear

ever

ctical

text of

nique

les.

as no

that

o that

th
4.6 DPRELAX: value selection in datapath

The task of the value selection algorithm is to determine DPI values that expose the

effect and justify any STS signals assigned byCTRLJUST. As in path selection, the

problem is solved on a per pipeframe basis.

More precisely, the value selection problem for a single pipeframe is as follows: G

a partial assignment to the CTRL, DPI, and DTI signals, and a set of (s, v) pairs that need

to be justified, wheres is a STS or DTO signal, andv is an integer value, determine

partial assignment to the DPI and DTI signals that exposes the error effect at a DP

DTO and justifies every given (s, v).

This problem can be formulated as that of finding a solution to a system of non-li

equations [Lee92b]. For special cases, such as that of datapaths containing only

modules, efficient deterministic methods can be devised to solve the system. How

such techniques are not applicable to the non-linear systems that result in most pra

cases. Lee and Patel [Lee92b] suggested the use of discrete relaxation in the con

high-level test generation for physical fault testing. The main advantages of this tech

are its simplicity and its ability to deal with any type of combinational datapath modu

A disadvantage is that it is not a complete method: it cannot prove that the system h

solutions, and may fail to find a solution even if one exists. A key observation is

during path selection, appropriate justification and propagation paths are selected s

Table 4.2: Computation of controllability and observability measures for a node wi
incoming edgesx1…xm and outgoing edgesy1…yn

Type Ccost(yj) Ocost(xj)

DPI 1 N/A
DPO N/A 0
DTI constant1 N/A
DTO N/A constant3
CTRL constant2 N/A
STS N/A MAXINT
ADD 1 + min{Ccost(xi) | i = 1…m} 1 + Ocost(y1)
AND 1 + Σ {Ccost(xi) | i = 1…m} 1 + Ocost(y1) + Σ {Ccost(xi) | i ≠ j, i = 1…m}
MUX 1 + min{Ccost(xi) | i = 1…m} 1 + Ocost(y1)
FAN Ccost(x1) min{Ocost(yi) | i = 1…n}

106

hich

two

eous

net,

ntil a

ciated

ent is

If the

ule’s

nets

ts are

ssed)

dom,

hose

ence.

apath;

which

ine

the

es on

cts do

r-free
the system to be solved during value selection is likely to be underdetermined, in w

case discrete relaxation is likely to converge quickly.

In our discrete relaxation algorithm, each net in the datapath is characterized by

pairs of variables, one corresponding to the error-free circuit, the other to the erron

circuit. Each pair consists of an integer in the range specified by the bit-width of the

and a type which is in the range {unassigned, determined, fixed}. The algorithm iteratively

re-evaluates the modules in the circuit until a consistent assignment is obtained or u

maximum iteration count is exceeded. The mechanism is event-driven. Events, asso

with the terminals of a net, are triggered when the value of that net is changed. An ev

processed by re-evaluating the module to which the corresponding terminal belongs.

current values of the nets connected to the module are consistent with the mod

functionality, no further action is required. Otherwise the values of one or more

connected to the module are changed in order to make them consistent. New even

generated for all terminals (except those belonging to the module that is being proce

of the nets whose value has been changed.

The choice of which net to update and what value to assign can, in principal, be ran

but it strongly influences convergence. We implemented a number of heuristics w

goal is to try to exercise all possible modes of event propagation and to aid converg

4.7 CTRLJUST: CTRL line value justification

DPTRACE computes a set of paths to activate and propagate the error in the dat

during this process values are assigned to some CTRL lines. These assignments,

may involve multiple time frames, need to be justified by CTRLJUST. The CTRL l

value justification problem is that of finding an input sequence that, when applied to

circuit, and starting from its reset state, makes the controller produce the desired valu

the CTRL lines.

We are only concerned with errors in the datapath, and assume that the error effe

not propagate through the controller. Hence, CTRLJUST is concerned with the erro

107

ate

ach,

CTS

d by

e on

nd

ocess

ST

gle

This

cted

nsfer

ision

their

s an

t then

ions

tion

of this

large

ative.

need
controller only. The CTRL line value justification problem is related to the st

justification problem in conventional sequential ATPG.

Approach

We propose a PODEM-like search to solve the justification problem. In our appro

however, the decision variables are the CPI, CTS, and STS signals. Decisions on

signals need further justification. Decisions on STS signals need to be justifie

DPRELAX. This is in contrast to conventional approaches where decisions are mad

the primary andsecondarysignals. Our approach can be viewed as a middle grou

between two extremes. At one end of the spectrum are iterative methods that pr

strictly a single timeframe at a time. At the other end of the spectrum, is FASTE

[Kels93], which is not iterative and does not require intermediate justification.

An example of a method of the first type is to apply PODEM iteratively in a sin

timeframe. This is one of the techniques HITEC [Nier91b] uses for state justification.

allows for a fairly efficient search for a predecessor state. However, if the sele

predecessor is not reachable from the reset state, or if it requires a very long tra

sequence, this approach may suffer. This difficulty stems from the locality of the dec

process: decisions concerning one timeframe are made without considering

dependencies on signals in the previous timeframe.

FASTEST [Kels93] is at the other end of the spectrum. FASTEST first compute

estimate of the number of time frames required to activate and propagate the fault; i

directly applies PODEM to an ILA of the estimated length. Consequently, no decis

need justification. If the estimated length is accurate, the ability to use informa

spanning more than one timeframe may lead to a more efficient search. A weakness

approach is that the decision space may become very large, which may lead to a

amount of backtracking.

Our approach uses information spanning more than one timeframe, but is also iter

Furthermore for the designs that we target, the number of decision variables that

justification is smaller than in the conventional iterative approach.

108

bles

t the

e the

the

ition

t-state

pipe

es.

e last

he

sed in
A complication of our approach is that tertiary signals, which are the decision varia

that need justification, directly depend on primary and tertiary signals in more than jus

previous timeframe. We elaborate on this next.

Transition system

In the conventional, timeframe-based organization the secondary signals defin

partition on the ILA. This corresponds to the conventional FSM view of the circuit. In

pipeframe organization, the tertiary signals define the partition on the ILA. The trans

system corresponding to this organization can be derived as follows.

Consider the FSM view of a pipelined sequential circuit, where

is the input space, is the output space, is the state space, are the nex

functions, are the output functions, and is the reset state.

Referring to Figure 4.2, the state registers of are partitioned according to the

stage they belong to: , where is the number of pipeline stag

The complete state is composed of components from every stage (except for th

stagen, which does not contain any pipeline registers): . T

component next-state functions are:

: : , where .

Let be the space of the tertiary signals. The next-state functions can be expres

terms of the tertiary signals as follows:

: : , where .

: :

: :

Note how the pipeline structure is exposed: directly depends only on component

of . Let denote in timeframe , then .

, where

M I O S δ λ S0, , , , ,() I

O S δ

λ S0

M

S S1 S2 …× Sn 1–××= n

s s1 s2 … sn 1–, , ,()=

δi S I Si→× si ′ δi s x,()= i 1 … n, , 1–=

U

γ i Si 1– U I Si→×× si ′ γ i si 1– u x, ,()= i 2 … n 1–, ,=

γ1 U I S1→× s1′ γ1 u x,()=

ρ S I U→× u ρ s x,()=

si' si 1–

s si
t si t s'i

t
si

t 1+
=

s1
t γ1 u

t 1–
x

t 1–,()=

si
t γ i si 1–

t 1–
u

t 1–
x

t 1–, ,()= i 2 … n 1–, ,=

u
t ρ s1

t … sn 1–
t

x
t, , ,()=

109

the

he

from

n in

4.1)

ts to

es

p of

, and

path

h are

search

data
We can iteratively eliminate all , starting with :

,

, where

Finally we obtain:

(4.1)

(4.2)

We define an extended pipestate as a cube in

space . Let be the reset pipestate. T

pipestate justification problem is to find an input sequence that brings the machine

the reset state into the desired pipestate.

Equation 4.1 is illustrated in Figure 4.14b for the three-stage pipelined circuit show

Figure 4.14a. The co-domains of the transition functions for tertiary signals (Equation

span multiple timeframes. To justify assignment to signals in timeframe , assignmen

primary signals in timeframes and to tertiary signals in timefram

 may be required.

Algorithm

Pseudo-code for the overall algorithm TG is presented in Figure 4.15. TG is built on to

the directed search CTRLJUST. In fact, what is left of TG after dropping steps 2, 3.3

3.4 is CTRLJUST. DPTRACE selects justification and propagation paths in the data

for activating and exposing the error, and thereby produces path objectives, whic

partial assignments to the CTRL lines. These path objectives are used to guide the

performed by TG. DPRELAX uses discrete relaxation to determine appropriate

values.

y
t λ s1

t … sn 1–
t

x
t, , ,()=

si s1

s2
t γ2 γ1 u

t 2–
x

t 2–,() u
t 1–

x
t 1–, ,()=

si
t γ i si 1–

t 1–
u

t 1–
x

t 1–, ,()= i 3 … n 1–, ,=

u
t ρ γ1 u

t 1–
x

t 1–,() … sn 1–
t

x
t, , ,()=

y
t λ γ1 u

t 1–
x

t 1–,() … sn 1–
t

x
t, , ,()=

u
t ψ u

t 1– … u
t n– 1+

x
t … x

t n– 1+, , , , ,()=

y
t κ u

t … u
t n– 1+

x
t … x

t n– 1+, , , , ,()=

w
t

u
t … u

t n– 1+
x

t … x
t n– 1+, , , , ,()=

U
n

I
n× wR

t
uR

t … uR
t n– 1+

xR
t … xR

t n– 1+, , , , ,()=

t

t … t n– 1+, ,

t 1– … t n– 1+, ,

110

tives

uided

ey are

als.

h the

re is

et of

TRL

fails

to

to

on is

TRL

LAX

are the

m

DPTRACE computes an initial path selection and corresponding set of path objec

(step 2). CTRLJUST makes decisions on CPI, CTS and STS signals (step 3.8.9.2), g

by the objectives (step 3.8.9.1). These decisions are implied on three fronts. First, th

implied in the controller (step 3.2) where they affect the CPO, CTO and CTRL sign

Second, DPTRACE checks whether the updated CTRL signals are consistent wit

current set of justification and propagation paths in the datapath (step 3.3). If the

consistency, no further action is required. Otherwise DPTRACE computes a new s

justification and propagation paths, taking into account the current state of the C

lines. The objectives on the CTRL lines are updated accordingly. Only if DPTRACE

to derive a set of justification and propagation paths will DPTRACE cause TG

backtrack. The third aspect of implication involves invoking DPRELAX (step 3.4)

compute data values. Failure to converge will cause TG to backtrack. Actual relaxati

only performed if the path objectives are completely satisfied, that is, all required C

assignments have been justified in terms of CPI and CTS signals. Otherwise, DPRE

returns with an undetermined status (neither success nor failure). Steps 3.6.1-3.6.4

u1
t 2–

u1
t 1–

u1
t

u2
t 1–

u2
t

u3
t

x
t 1–

x
t 2–

x
t

C3

C2

C1

Cg

u3

u2
u1

s1

s2

s'2

s'1

x

Figure 4.14: Pipelined controller: a) circuit b) pipeframe-based transition syste

a) b)

111

eached.

te is
usual actions for backtracking. Step 3.8.7 checks whether the reset state has been r

If so, and if all objectives are satisfied, we return successfully with a test.

To prevent the generation of cycles during justification, we check that the pipesta

not covered by the pipestates encountered in the current sequence.

Figure 4.15: Overall test generation algorithm

TG

1. status← UNDETERMINED

2. DPTRACE /* derive initial path objectives */
3. while (status =UNDETERMINED) {
3.1 /* imply */
3.2 ctrlStatus← CTRLJUST:Imply()
3.3 pathStatus← DPTRACE()
3.4 valueStatus← DPRELAX()
3.5 status← Status(ctrlStatus, pathStatus, valueStatus)
3.6 if (status =CONFLICT) {
3.6.1 UndoImplications(currentDecision)
3.6.2 status← UNDETERMINED

3.6.3 while (NoUntriedValuesLeft(currentDecision)) {
3.6.3.1 UndoImplications(currentDecision)
3.6.3.2 if (DecisionStackEmpty) {
3.6.3.2.1 status← FAILURE

3.6.3.2.2 break /* out of inner while */
3.6.3.3 }
3.6.3.4 else {
3.6.3.4.1 currentDecision← Pop(decisionStack)
3.6.3.5 }
3.6.4 }
3.6.5 if (status =UNDETERMINED) {
3.6.5.1 SelectNextUntried(currentDecision)
3.6.6 }
3.7 }
3.8 else { /* status =UNDETERMINED */
3.8.7 if (reset state reached and all objectives satisfied) {
3.8.7.1 status← SUCCESS

3.8.8 }
3.8.9 else {
3.8.9.1 currentObjective← SelectObjective()
3.8.9.2 currentDecision← BackTrace(currentObjective)
3.8.9.3 Push(currentDecision, decisionStack)
3.8.10 }
3.9 }
4. }

112

. The

, 2) a

nals

the

rived.

a86].

d in

and

s are

This

and

eline,

rilog

d not

d the

omy

(RF),

are

e are

ted by
4.8 Experiments

Test generator implementation

We have built a prototype implementation of the proposed test generation algorithm

inputs to the test generator are 1) a high-level structural description of the datapath

synthesizable Verilog description of the controller, 3) an attribute file that identifies sig

in the controller according to our pipeframe model, 4) a list of bus SSL errors in

datapath to target, 5) a BDD variable order.

During preprocessing of the controller, the next state and output functions are de

These are internally represented by ordered binary decision diagrams (BDD’s) [Bry

We use CUBDD, a BDD package from Colorado University [Some97] that is include

the VIS distribution [Bray96]. Subsequently, the secondary variables are eliminated

expressions for the CTRL and CTO signals in terms of CPI, CTS and STS signal

derived (See Equations 4.1 and 4.2).

Test vehicle

We use a version of the DLX microprocessor [Henn90] as a test vehicle.

implementation was studied earlier in Chapter 2 (DLX1 in Table 2.1 and Table 2.4),

Chapter 3, Section 3.8. This design implements 44 instructions, has a five-stage pip

static and dynamic branch prediction logic, and consists of 1552 lines of structural Ve

code, excluding the models for library modules such as adders and register-files, an

counting blank and comment lines. For the purpose of test generation we disable

dynamic branch predication. A simplified schematic showing the data-control dichot

is presented in Figure 4.16. Architectural state elements, such as register file

instruction memory (IMEM), data memory (DMEM), interrupt address register (IAR),

modeled as primary inputs and outputs. Registers that are clocked each cycl

represented by lightly shaded boxes; those that have a hold-function are represen

113
Figure 4.16: Simplified schematic of DLX implementation

GC

≡

IR

CONTROLLER

PC

+

IMEM

+
1

1

0

A
LU

ovf

+

EQ
0

0
1

BTB IARRF BTB

FWD

zero

DMEM IAR RF

hit Idata DATAPATH

≡

Key:

114

actual

the

ignals

STS

ls in

ables

tion.

-level

f the

gnals

ls.

rrors

rt-cuts

rrors

e and

used

en for

ize of

eted;

lightly

rivial

for

them

was

aining

. The

y the

will
darker boxes. Squashing logic is represented by hashed boxes; in this design the

logic consists of anAND gate. The diagram also exposes the tertiary signals in

controller. These are the stall signals (to registers with a hold function), the squash s

(see squash logic), and the registers with a hold function. This design has three

signals, which are also shown in the figure (hit, zero, ovf); the generation of the CTRL

signals is not shown. The controller has 95 bits of state; the number of tertiary signa

the controller is 43. The pipeframe organization reduces the number of decision vari

that need justification from 95 to 43 compared to the conventional timeframe organiza

The datapath has 512 bits of state, not including those in the register file. The high

model of the datapath consists of 100 combinational modules. Counts for each o

signal types defined by our model are given in Table 4.3. Note that most data si

(Dxx) have a bit-width greater than one, whereas control signals are single-bit signa

We targeted our test generation system at all bus single stuck line (bus SSL) e

[Bhat85] in the decode, execute, memory and write-back stages of the datapath. Sho

in the implementation of the test generator have resulted in the inability to handle e

related to the program counter PC. These errors are mainly located in the fetch stag

are not considered in the experiments. Although our test generation algorithm can be

in conjunction with other error models, such as CSSL1, the bus SSL model was chos

these initial experiments because it defines a number of error instances linear in the s

the circuit. The results are summarized in Table 4.4. A total of 316 errors were targ

test generation succeeded for 87% of these errors. Typical sequences consist of s

more than 11 cycles: 6 cycles to reset the machine followed by one or more non-t

instructions, followed by 4 cycles. The overall algorithm performed only 50 backtracks

the successfully detected errors. Analysis of the 42 aborted errors showed that 8 of

are undetectable, 2 failed because the maximum number of backtracks in DPTRACE

exceeded, 14 errors require a non-sequential instruction stream (branches). The rem

18 errors require error propagation through STS signals, which is not yet supported

current implementation does not use error simulation, and much re-use of work b

algorithm has not yet been exploited. Therefore, we can expect that run times

significantly improve as these issues are addressed.

115
Table 4.3: Model parameters of DLX design
Parameter Value

No. of DPI’s 6
No. of DPO’s 9
No. of DSI’s/DSO’s 16
No. of DTI’s/DTO’s 15
No. of CPI’s 32
No. of CPO’s 0
No. of CSI’s/CSO’s 95
No. of CTS’s/CTO’s 43
No. of STS signals 3
No. of CTRL signals 103
No. of comb. datapath modules 100

Table 4.4: High-level test generation for bus-SSL errors in DLX implementation
Parameter Value

No. of errors 316
No. of errors detected 274
No. of errors aborted 42
Coverage 0.8671
No. of backtracks (detected errors only) 50
CPU time [minutes] 17

Table 4.5: Gate-level test generation for standard SSL errors using HITEC
Parameter Value

No. of errors 385

No. of errors detected 278
No. of redundant errors 14
No. of errors aborted 93
Coverage 0.7221
Efficiency 0.7493
CPU time [minutes] 46

Table 4.6: Comparison of high-level and gate-level test generation for DLX
Parameter HITEC Our method Manual

Total no. vectors 207 2,893 11,937
Total no. of errors 385 385 385
No. of errors detected 278 332 355
No. of errors not detected 93 53 30
Coverage 0.7221 0.8623 0.9221

116

r this

0 flip-

bus

5, 16

ntify

erate

s are

sing,

-level

rrors

l test

ethod

, and 2

d the

rrors.

ized in

EC.

ce for

s than

ally

errors.

etect

erated

in a

this

ors.

. For
To put our results in perspective, we also investigated gate-level test generation fo

design. We synthesized a gate-level implementation, containing 10,117 gates and 64

flops, for the same DLX version using Synopsys Design Compiler [Syn97]. For each

SSL error in the high-level design, we selected SSL errors corresponding to bits 0, 1

and 31. For some of the signals in the high-level design we were not able to ide

corresponding signals in the gate-level design. We used HITEC [Nier91b] to gen

tests; two passes with progressive time-out and abort-limits were run; the result

summarized in Table 4.5. The number of SSL errors in this table is after error collap

which is not the case for the number of bus SSL errors reported. Analysis of the gate

test generation results revealed that HITEC has great difficulty generating tests for e

that require a sequence of instructions with register dependencies. Gate-leve

generation succeeded for only one of a total of 14 forwarding paths, whereas our m

generated tests for errors associated with 9 forwarding paths (2 paths are redundant

more require branches to exercise them). For further comparison, we error-simulate

test sequences obtained with our high-level test generator for the standard SSL e

Note that these tests were targeted at bus SSL errors. The results are summar

Table 4.6. As can be seen from the table, our method compares favorably with HIT

Our test generator does not perform error simulation after generating a test sequen

an error; this explains why our method generated an order of magnitude more vector

HIITEC. Finally, we also computed the SSL coverage obtained by a set of manu

generated focussed tests. Again, these tests were not targeted at the SSL

Considering the 14 redundant errors that HITEC identified, the focussed tests d

95.7% of the detectable errors. The lower coverage achieved by the test set gen

using our method is primarily due to the absence of branch and jump instructions.

4.9 Conclusions

Test generation for synthetic errors is similar to test generation for SSL faults

sequential circuit, which is known to be a very hard problem. To cope with

complexity, we focus on a limited, but important, class of pipelined microprocess

Domain-specific knowledge can then be incorporated in the test generation algorithm

117

about

s the

n to

ment

and

can

owerful

t the

to

ror

is

r

r

e

g

e

this purpose, we have introduced a model that exposes high-level knowledge

pipeline structure. We have developed a high-level test generation algorithm that ha

following features: 1) ‘pipeframe-based’ iterative organization, which we have show

reduce the decision space and avoid many conflicts; 2) integration of high-level treat

of the datapath with fully detailed treatment of the controller; 3) separation of path

value selection.

Our test generation experiments with a DLX implementation show that our method

generate test sequences that achieve higher coverage than those produced by a p

gate-level test generator.

The current implementation of our test generation method does not implemen

following aspects:

• Error effects are not propagated through the controller. This results in failure

detect some errors.

• Only bus-SSL errors in the datapath are targeted. Extensions to different er

models are straightforward; extensions for errors in the controller are not. This

also a limitation of Lee and Patel’s work.

• The current implementation does not perform error simulation. Including an erro

simulator will improve run times and result in smaller test sets.

The limitations of our method are as follows:

• The method is incomplete. It cannot prove errors redundant. It is common fo

high-level test generators to sacrifice completeness for sake of efficiency.

• No support is provided to efficiently handle memory arrays that are not part of th

ISA. A branch target buffer is an example, and although it can be ignored durin

test generation by forcing it to always ‘miss,’ this is not desirable as it makes som

errors undetectable.

ch.

dern

andom

but

rrors.

rating

sting

r

Its

-

nt

te-
CHAPTER 5
Conclusions

This chapter summarizes our contributions and suggests directions for future resear

5.1 Contributions

Functional design verification is one of the most serious bottlenecks in mo

microprocessor design. Most present-day simulation-based methods use biased-r

test generation in combination with a variety of coverage measures. A different,

previously little studied, approach is to construct test sets targeted at specific design e

We have studied this approach, which involves modeling design errors and gene

functional vectors for modeled errors using methods adapted from physical fault te

techniques.

The major contributions of this thesis are summarized below.

• A systematic method for collecting design error data.

• Design error data statistics collected from design projects at the university.

• An evaluation of the value to design verification of a number of design erro

models.

• A novel class of conditional error models.

• An efficient error simulation algorithm, called CESIM, for conditional errors.

• A high-level test generation method for a class of pipelined microprocessors.

key features are its ‘pipeframe-based’ iterative organization, which exploits high

level knowledge about pipeline structure, and the integration high-level treatme

of the datapath with fully detailed treatment of the controller.

• An experiment that compares our high-level test generation method with a ga

level method.
118

119

ta, 2)

eal

and

e that

fy. A

the

more

s the

arge

sign

imate

vered

eting

ional

. One

errors

sign

good

sign

ces
5.2 Future work

We suggest three main directions for future work; they concern 1) design error da

error models, and 3) high-level test generation.

Design error data collection

Comparison of different methods for functional design verification is difficult. In an id

situation, this could be accomplished by applying two competing methods to verify

debug the same design. For a given amount of time, the preferred method is the on

achieves the highest functional quality of the design. The latter itself is hard to quanti

meaningful standard would be to run a large collection of real-life workloads on

debugged designs (obviously, running these workloads would have to require much

time than allowed to do debug the design); functional quality would then be defined a

fraction of correctly run workloads. It is clear that an ideal comparison requires a l

effort. Furthermore, practical verification methods are typically specific to the de

being verified.

The experiments we have described in Section 3.8 of Chapter 3 attempt to approx

the ideal comparison. They require recording the state of the design, and the unco

errors, throughout the debug process of an actual design project. The comp

verification methods can then be applied to the unverified design, and the funct

quality can be more easily defined as the fraction of uncoverd actual design errors

problem is that the set of actual design errors would have to be kept confidential.

We suggest that during future design projects undertaken at universities design

are systematically recorded. Our methodology and experience with collecting de

errors, reported in Chapter 2, together with industrial experience, can serve as a

starting point. The verification community would greatly benefit from such data.

Error modeling

We have shown that the CSSL1 error model is well suited for error-directed de

verification. However, the quadratic (in the size of the circuit) number of error instan

120

efine

ork is

ted

and

art of

cited

e that

ts.

andle

a class

any

ut-of-

these

ISA

level

t still

been

ently

this

thods
limits its practical use. One way to address this, is to use the design hierarchy to d

restrictions on the basic error and condition components of CSSL1 errors. Further w

required to study the effect of such restrictions on coverage.

High-level test generation

High-level test generation is very useful, not just in the context of our error-direc

verification approach. A test generator can also serve as a powerful debugging

diagnosis tool. For example, a designer may suspect that a certain local behavior of p

the design is incorrect, but he may not be sure if this behavior can actually be ex

during normal operation. A test generator could be used to generate a sequenc

excites the behavior and exposes it with respect to the ISA, if such a sequence exis

This thesis has shown that domain-specific test generation is a promising way to h

larger designs than those that can be handled by general methods. We have studied

of pipelined microprocessors. State-of-the-art microprocessors incorporate m

complicated micro-architectural features, such as, multiple pipelines (superscalar), o

order completion, and register-renaming, to name just a few. A common element in

implementations is the presence of memory arrays that are not part of the

specification. Effective test generation for such designs will require the use of high-

models for these structures that hide the underlying individual memory elements bu

allow the complete functionality to be exercised. The need for such models has also

realized by researchers in different areas. For example, Velev et al. have rec

developed models for array memories of symbolic simulation [Vele97].

In summary, the functional design verification approach that we have developed in

thesis has proven to be a valuable addition to the range of simulation-based me

already available.

121

APPENDICES

122

cing

ns in

ignals.

ule.

ocess

mon

rror

t

een

a

cert

nals
APPENDIX A
Relationship between CSSL1
errors and bridging faults

An important parameter of an IC manufacturing process is the minimal allowed spa

between metal lines. The minimal line spacing design rule guards against imperfectio

the manufacturing process that may lead to shorts between normally unconnected s

However, integration density is typically very sensitive to the minimal spacing r

Consequently, the minimal line spacing is set very close to what is achievable by pr

control. Therefore, despite the minimal spacing rule, shorts are still a com

manufacturing defect. A fault model specifically targeted at these defects is thebridging

fault (BF) model [Abra90]. The BF model has some similarities with the CSSL1 e

model, and in this appendix we study the relationship between them.

A BF between two lines x and y is denoted by (x, y), and causes the fanouts ofx any to

assume the same value, denoted byZ(x, y). Z(x, y) is a function that has the property tha

Z(a,a) = a. Figure A.1 illustrates the concept. If there exists a combinational path betw

x andy, then a BF (x,y) is called afeedback bridging fault(FBF), otherwise (x,y) is called

a nonfeedback bridging fault(NFBF). FBF’s transform a combinational circuit into

sequential one. In this appendix we only consider NFBF’s. This restriction is in con

with our definition of CE’s (see Chapter 3, Section 3.2) that stipulates that the sig

G

G’

x

y

G

G’

x

y

Z

Figure A.1: BF (x, y): a) Fault-free circuit, b) faulty circuit

a) b)

123

ut of

r

vely.

at
appearing in the condition part are not to be part of the transitive combinational fano

the basic error part.

If we restrict the domain and co-domain ofZ(x, y) to binary values, then there are fou

possible functionsZ; they are listed in Table A.1. BF’s withZ = Z1, andZ = Z2 are the

most commonly used BF’s; they are referred to as AND BF’s, and OR BF’s, respecti

 We derive the following results:

• (x, y) with Z = Z1 is equivalent to the multiple CSSL1 error (x = 0, y / 0),

(y = 0, x / 0).

• Similarly, (x, y) with Z = Z2 is equivalent to the multiple CSSL1 error (x = 1, y / 1),

(y = 1, x / 1).

• (x, y) with Z = Z3 is equivalent to the signal source errory replaced byx, but this

cannot be accurately modeled by (multiple) CSSL1 errors. However, (x, y) with

Z = Z3 dominates both (x = 0, y / 0), and (x = 1, y / 1). In other words, any test that

detects (x = 0, y / 0) or (x = 1, y / 1) will also detect (x, y) with Z = Z3. This can be

seen as follows: To detect (x = 0, y / 0), a test has to setx to 0,y to 1 and to sensitize

y. Note that for input vectors that setx to 0 andy to 1, the faulty/erroneous circuits

defined by the BF and the CSSL1 operate identically. Therefore, we conclude th

the error detection conditions for (x = 0, y / 0) are identical to those for the BF. A

similar argument holds for (x = 1, y / 1). The dominance relationship may not hold

for sequential circuits.

• (x, y) with Z = Z4 dominates both (x = 0, y / 0), and (x = 1, y / 1).

Table A.1: Bridging functionsZ(x, y)
x y Z1 Z2 Z3 Z4

0 0 0 0 0 0
0 1 0 1 0 1
1 0 0 1 1 0
1 1 1 1 1 1

124

asure

in

The

limit

was

ROOFS

jitsu

ault

SSL1

om

, we

less

ds to

s are

sults

that

erage

the

ing.

educe
APPENDIX B
Conditional error simulation
on ISCAS 89 benchmarks

This appendix describes an experiment, using the ISCAS’89 benchmarks, to me

the effectiveness of our error simulation algorithm CESIM, which is presented

Section 3.5.

We generated test sequences for SSL faults using HITEC [Nier90, Nier91a].

parameters that determine when to abort a fault were set as follows: the backtrack

was set to 10,000; the state backtrack limit was set to 10,000; the time limit per fault

set to 2 seconds. We separately fault simulated the obtained test sequences using P

[Nier90, Nier91a]. Test generation and fault simulation were performed on a Fu

HALStation/300; the results are summarized in Table B.1. We did not try to improve f

coverage further by increasing the abort limits.

We error-simulated the same test sequences using CESIM for CSSL0 and C

errors. The error list for CSSL0 errors is identical to the collapsed SSL fault list fr

before. The CSSL1 error list was constructed as follows. For each CSSL0 error

considered a maximum of 500 lines to condition the error. The smaller circuits have

than 500 lines, so every line in the circuit is considered as the condition line. This lea

a maximum of 1000 CSSL1 errors per CSSL0 error. However, some CSSL1 error

rejected because their condition is part of the transitive fanout of the error site. The re

of error simulation using CESIM are summarized in Table B.2. In the analysis

follows, we exclude benchmarks for which the test sequence achieves an SSL cov

less than 0.1.

Comparing the results of CSSL0 error simulation using CESIM in Table B.2 with

results of SSL fault simulation using PROOFS in Table B.1, we conclude the follow

Fault/error coverages for corresponding circuits are identical, as expected. We can d

125

aries

any

rror

rs to

puted

ors.

to a

ge is 34,

an be

rrors,

square

ved

SSL0

ent-

rs,

time.

o the

those

ence

ution

cking

the

l for

the

mes

be

one
that CESIM is on average 4.5 times slower than PROOFS. The actual slowdown v

between 0.3 and 7.7; for the largest benchmark it is 5.6. CESIM does not include

optimizations that are specific to CSSL0 errors.

The last two columns in Table B.2 compare error simulation for CSSL1 errors to e

simulation for CSSL0 errors. We observe that the ratio of coverage of CSSL1 erro

coverage of CSSL0 varies between 0.58 and 0.94; its average is 0.76. We also com

the ratio of CPU time per error for CSSL1 errors to CPU time per error for CSSL0 err

This ratio attempts to measure the speedup of CESIM for CSSL1 errors compared

naive approach. We observe an average speedup varies between 2 and 78, its avera

and for the largest benchmark a speedup of 43 was obtained. This speedup c

displayed graphically by plotting the CPU time per test vector versus the number of e

as in Figure B.1 (s27 was dropped because of its size). The figure also shows least-

fits for the data. The improved performance of our error simulation algorithm is achie

by exploiting the close relationship between CSSL1 errors derived from the same C

error. The execution time of CSSL0 error simulation with CESIM is dominated by ev

driven simulation of faulty circuits. However, when simulating for CSSL1 erro

checking whether the condition of each CSSL1 error holds dominates the execution

Least-square analysis shows that the CPU time per test vector is proportional t

number of CSSL0 errors to the power 1.33. The superlinear behavior reflects that

data points with a larger number of CSSL0 errors correspond to larger circuits, and h

the execution time of each event-driven simulation increases. For the CSSL1 exec

time we find an exponent of 1.13. The almost linear behavior is a consequence of che

CSSL1 conditions, which is independent of the size of the circuit, dominating

execution time.

The experiments demonstrate that error simulation with CSSL1 errors is practica

moderately sized circuits. However, as the run time of our algorithm is linear in

number of errors, for very large circuits the quadratic number of CSSL1 errors beco

prohibitive. For those circuits restrictions on the general CSSL1 model may

appropriate. For example, when deriving CSSL1 errors from a given CSSL0 error,

126

hical
could restrict the condition signals to those signals appearing in the same hierarc

module as the CSSL0 error.

Table B.1: Test generation and fault simulation of ISCAS’89 circuits using HITEC

Circuit
Detected

faults
Redundant

faults
Aborted

faults
Vectors Efficiency Coverage

HITEC
CPU[s]

PROOFS
CPU[s]

s27 32 0 0 21 1.0000 1.0000 0.12 0.03
s208.1 18 146 53 12 0.7558 0.0829 164.07 0.07
s298 265 26 17 220 0.9448 0.8604 48.18 0.25
s344 321 9 12 89 0.9649 0.9386 32.38 0.15
s349 329 11 10 106 0.9714 0.9400 31.57 0.17
s382 281 2 116 881 0.7093 0.7043 267.70 1.45
s386 314 70 0 273 1.0000 0.8177 5.52 0.22
s400 331 9 86 1,228 0.7981 0.7770 215.72 1.20
s420.1 28 151 276 20 0.3934 0.0615 635.98 0.15
s444 254 16 204 316 0.5696 0.5359 777.90 0.88
s526 51 14 490 34 0.1171 0.0919 1,167.25 0.15
s526n 55 13 485 37 0.1230 0.0995 1,162.57 0.18
s641 404 63 0 203 1.0000 0.8651 3.97 0.35
s713 476 105 0 196 1.0000 0.8193 5.55 0.40
s820 811 29 10 940 0.9882 0.9541 96.17 1.52
s832 813 46 11 962 0.9874 0.9345 99.63 1.78
s838.1 48 515 368 28 0.6047 0.0516 849.52 0.40
s953 89 990 0 14 1.0000 0.0825 38.68 0.28
s1196 1,239 3 0 439 1.0000 0.9976 2.95 0.80
s1238 1,283 72 0 472 1.0000 0.9469 4.77 0.97
s1423 578 11 926 89 0.3888 0.3815 2,100.88 0.85
s1488 1,368 20 98 778 0.9341 0.9206 325.48 2.30
s1494 1,447 32 27 991 0.9821 0.9608 118.78 2.93
s5378 3,146 159 1,298 894 0.7180 0.6835 2,941.93 14.68
s9234 18 3,916 0 6 1.0000 0.0046 1.38 1.05
s9234.1 366 181 3,391 38 0.1389 0.0929 7,562.58 3.62
s13207 557 8,218 672 76 0.9289 0.0590 2,266.77 16.08
s13207.1 858 7,583 1,148 106 0.8803 0.0895 3,475.12 28.25
s15850 85 11,407 21 8 0.9982 0.0074 60.15 2.97
s15850.1 4,374 1,229 5,920 2,493 0.4862 0.3796 16,302.12 383.82
s35932 34,868 3,984 242 300 0.9938 0.8919 2,350.30 45.47
s38417 1,088 356 29,016 51 0.0474 0.0357 96,335.17 46.05
s38584 7,798 6,759 21,744 1,593 0.4010 0.2148 54,293.70 1,293.65
s38584.1 20,589 1,948 13,766 4,383 0.6208 0.5671 38,090.13 1,535.40

127

0
5
2
2
0
6

3
0
0
2
11
1
1

78
.21
Table B.2: Error simulation of ISCAS’89 circuits using CESIM

CSSL0 CSSL1

Circuit Vectors No. Coverage CPU [s] No. Coverage CPU [s]

s27 21 32 1.0000 0.01 664 0.7289 0.10 0.7289 2.08
s208.1 12 217 0.0829 0.11 44,492 0.0228 0.67 0.2750 33.66
s298 220 308 0.8604 0.63 75,468 0.7103 7.80 0.8255 19.79
s344 89 342 0.9386 0.39 114,294 0.7598 5.09 0.8095 25.61
s349 106 350 0.9400 0.32 117,484 0.7796 5.20 0.8294 20.66
s382 881 399 0.7043 5.61 130,656 0.5830 60.35 0.8278 30.44
s386 273 384 0.8177 1.30 93,060 0.6040 12.60 0.7387 25.00
s400 1,228 426 0.7770 7.77 144,628 0.6275 74.47 0.8076 35.42
s420.1 20 455 0.0615 0.28 199,616 0.0180 3.60 0.2927 34.12
s444 316 474 0.5359 3.44 175,616 0.4185 42.15 0.7809 30.24
s526 34 555 0.0919 0.65 218,816 0.0656 7.15 0.7138 35.84
s526n 37 553 0.0995 0.69 219,166 0.0704 7.54 0.7075 36.27
s641 203 467 0.8651 1.31 349,832 0.7219 24.87 0.8345 39.46
s713 196 581 0.8193 1.39 452,256 0.6742 32.78 0.8229 33.01
s820 940 850 0.9541 6.30 442,758 0.6456 160.27 0.6767 20.48
s832 962 870 0.9345 6.72 445,274 0.6355 165.86 0.6800 20.74
s838.1 28 931 0.0516 1.02 821,774 0.0158 17.72 0.3062 50.81
s953 14 1,079 0.0825 0.63 879,540 0.0321 12.95 0.3891 39.66
s1196 439 1,242 0.9976 5.75 1,058,844 0.7483 151.78 0.7501 32.3
s1238 472 1,355 0.9469 7.49 1,140,402 0.6969 186.76 0.7360 33.7
s1423 89 1,515 0.3815 5.44 1,287,036 0.2695 72.08 0.7064 64.1
s1488 778 1,486 0.9206 10.18 1,142,374 0.6615 272.48 0.7186 28.7
s1494 991 1,506 0.9608 10.74 1,151,208 0.6993 327.06 0.7278 25.1
s5378 894 4,603 0.6835 94.80 4,517,276 0.5418 1,753.33 0.7927 53.0
s9234 6 3,934 0.0046 2.11 3,850,188 0.0004 43.25 0.0870 47.75
s9234.1 38 3,938 0.0929 21.70 3,854,738 0.0490 147.79 0.5274 143.7
s13207 76 9,447 0.0590 77.66 9,325,456 0.0132 638.82 0.2237 120.0
s13207.1 106 9,589 0.0895 115.96 9,453,928 0.0363 1,167.80 0.4056 97.9
s15850 8 11,513 0.0074 11.92 11,197,872 0.0021 151.72 0.2838 76.4
s15850.1 2,493 11,523 0.3796 2735.14 11,186,886 0.2574 33,994.54 0.6781 78.
s35932 300 39,094 0.8919 170.70 38,708,548 0.8400 4,541.98 0.9418 37.2
s38417 51 30,460 0.0357 249.88 30,222,794 0.0109 1,981.77 0.3053 125.1
s38584 1,593 36,301 0.2148 6233.05 36,124,976 0.1244 122,142.85 0.5791 50.
s38584.1 4,383 36,303 0.5671 8,656.32 36,124,758 0.4423 199,346.07 0.7799 43

cover.1
cover.0

CPU
no.

----------- 
 

0

CPU
no.

----------- 
 

1

128
C
P

U
 /

ve
ct

or
s

No. errors

102

101

100

10-1

10-2

10-3

102 103 104 105 106 107 108

CSSL0
CSSL1

Figure B.1: Run time analysis of CESIM on ISCAS’89 benchmarks

speedup

CSSL0 CSSL1

129

BIBLIOGRAPHY

130

at-

d

via

st-

d
i-

,
nc-

e,
ging

rin.

try-
BIBLIOGRAPHY

[0In] 0-In Design Automation, http://www.0-in.com.Methodology overview.

[AA95] H. Al-Asaad and J. P. Hayes. Design verification via simulation and autom
ic test pattern generation. InProc. Int. Conf. Computer-Aided Design, pages
174–180, 1995.

[AA98] H. S. Al-Asaad.Lifetime validation of digital systems via fault modeling an
test generation. PhD thesis, University of Michigan, 1998.

[Abad88] M. S. Abadir, J. Ferguson, and T. E. Kirkland. Logic design verification
test generation.IEEE Trans. Computer-Aided Design, 7(1):138–148, January
1988.

[Abra90] M. Abramovici.Digital systems testing and testable design. Computer Sci-
ence Press, New York, 1990.

[AH96] G. Al Hayek and C. Robach. From specification validation to hardware te
ing: A unified method. InProc. IEEE Int. Test Conf., pages 885–893, 1996.

[Ahar91] A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, M. Leibowitz, an
V. Schwartzburd. Verification of the IBM RISC System/6000 by dynamic b
ased pseudo-random test program generator.IBM Systems Journal, pages
527–538, 1991.

[Ahar95] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka
C. Metzger, M. Molcho, and G. Shurek. Test program generation for fu
tional verification of PowerPC processors in IBM. InProc. Design Automa-
tion Conf., pages 279–285, 1995.

[Alex96] T. B. Alexander, K. A. Dickey, D. N. Goldberg, R. V. La Fetra, J. R. McGe
N. Noordeen, , and A. Prakash. Verification, characterization, and debug
of the HP PA 7200 processor.Hewlett-Packard Journal, pages 1–12, Febru-
ary 1996.

[Bass95] M. Bass, T. W. Blanchard, D. D. Josephson, D. Weir, and D. L. Halpe
Design methodologies for the PA 7100LC microprocessor.Hewlett-Packard
Journal, pages 23–35, April 1995.

[Baum98] A. J. Baum and A. J. Smith. Hot chips – hot suff.IEEE Micro, pages 11–13,
March/April 1998.

[Beer96] I. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: An indus
oriented formal verification tool. InProc. Design Automation Conf., pages
655–660, 1996.

[Beiz90] B. Beizer.Software testing techniques. Van Nostrand Reinhold, New York,

131

ro-

aults.
on

tion
. In

sign.

zi,
o,
lla,
. In

Lo-
ro-

ion.

s-

lla,
het.

AB,

.K.
ion
nd
2nd edition, 1990.

[Beiz95] B. Beizer. The Pentium bug – an industry watershed.Testing Techniques
Newsletter (TTN), TTN Online Edition, September 1995.

[Bent97] B. Bentley. Personal Communication, 1997.

[Bhag94] V. Bhagwati and S. Devadas. Automatic verification of pipelined microp
cessors. InProc. Design Automation Conf., pages 603–608, 1994.

[Bhat85] D. Bhattacharya and J. P. Hayes. High-level test generation using bus f
In Digest of Papers - FTCS 15, Fifteenth Annual International Symposium
Fault-Tolerant Computing, pages 65–70, 1985.

[Bisc97] G. P. Bischoff, K. S. Brace, S. Jain, and R. Razdan. Formal implementa
verification of the bus interface unit for the Alpha 21264 microprocessor
Proc. Int. Conf. Computer Design, pages 16–24, 1997.

[Bose98] P. Bose and T. M. Conte. Performance analysis and its impact on de
Computer, pages 41–49, 1998.

[Bray96] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somen
A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pard
S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Shiple, G. Swamy, T. Vi
R. Alur, and T.A. Henzinger. VIS: a system for verification and synthesis
Proc. Int. Conf. on Computer-Aided Verification, pages 428–432, 1996.

[Brow96] R. B. Brown, T. D. Basso, P. N. Parakh, S. M. Gold, C. R. Gauthier, R. J.
max, and T. N. Mudge. Complementary GaAs technology for a GHz mic
processor. InProc. GaAs IC Symposium, 1996.

[Brya86] R. E. Bryant. Graph-based algorithms for boolean function manipulat
IEEE Trans. Computers, pages 677–691, August 1986.

[Burc94] J.R. Burch and D. L. Dill. Automatic verification of pipelined microproce
sor control. InComputer-Aided Verification, pages 68–80, June 1994.

[Burg97] D. Burger and T. M. Austin. The SimpleScalar tool set.Computer Architec-
ture News, 25(3), June 1997.

[Cad94] Cadence Design Systems.Verilog-XL Reference Manual, December 1994.

[Casa96] F. Casaubieilh, A. McIsaac, M. Benjamin, M. Bartley, F. Pogoda
F. Rocheteau, M. Belhadj, J. Eggleton, G. Mas, G. Barrett, and C. Bert
Functional verification methodology of Chameleon processor. InProc. De-
sign Automation Conf., pages 421–426, 1996.

[Cede93] P. Cederqvist et al. Version management with CVS. Signum Support
1993.

[Chan94] A.K. Chandra, V.S. Iyengar, R.V. Jawalekar, M.P. Mullen, I. Nair, and B
Rosen. Architectural verification of processors using symbolic instruct
graphs. InIEEE Int. Conference on Computer Design VLSI in Computers a
Processors, pages 454–459, 1994.

132

sen,
a

vel.

evel.

on:

erage

nd

the

ht’.

of

of

and

s,
ch-
[Chan95] A.K. Chandra, V.S. Iyengar, D. Jameson, R. Jawalekar, I. Nair, B.K. Ro
M.P. Mullen, J. Yoon, R. Armoni, D. Geist, and Y. Wolfsthal. AVPGEN -
test generator for architecture verification.IEEE Trans. on VLSI, pages 188–
200, 1995.

[Chen96] K.-T. Cheng. Gate-level test generation for sequential circuits.ACM Trans.
Design Automation of Electronic Systems, 1(4):405–442, October 1996.

[Clar96] E. M. Clarke and R. P. Kurshan. Computer-aided verification.IEEE Spec-
trum, pages 61–67, June 1996.

[Clar98] P. Clarke. EDA software – code coverage for state machines.EE Times,
(1012), 1998.

[Cohn87] A. Cohn. A proof of correctness of the VIPER microprocessor: the first le
In G. Birtwistle and P. A. Sybrahmanyam, editors,VLSI Specification, Veri-
fication and Synthesis. Kluwer, 1987.

[Cohn89] A. Cohn. Correctness properties of the VIPER block model: the second l
In G. Birtwistle and P. A. Sybrahmanyam, editors,Current Trends in Hard-
ware Verification and Automated Theorem Proving, pages 1–91. Springer
Verlag, 1989.

[DeMi78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selecti
help for the practicing programmer.Computer, pages 34–41, April 1978.

[Deva96] S. Devadas, A. Ghosh, and K. Keutzer. Observability-based code cov
metric for functional simulation. InProc. Int. Conf. Computer-Aided Design,
pages 418–425, 1996.

[Dohm98] N. Dohm, C. Ramey, D. Brown, S. Hildebrandt, J. Huggins, M. Quinn, a
S. Taylor. Zen and the art of Alpha verification. InProc. Int. Conf. Computer
Design, pages 111–117, 1998.

[Eco96] A survey of the world economy: The hitchhiker’s guide to cybernomics -
hitchhiker’s guide to cybernomics.The Economist, September 28 1996.

[EET94] Chrysalis aims tools at commercial applications:DAC to see formal ‘insig
EE Times, (800), June 1994.

[Fall98a] F. Fallah, S. Devadas, and K. Keutzer. OCCOM: Efficient computation
observability-based code coverage metric for functional simulation. InProc.
Design Automation Conf., pages 152–157, 1998.

[Fall98b] F. Fallah, S. Devadas, and K. Keutzer. OCCOM: Efficient computation
observability-based code coverage metric for functional simulation. InProc.
Design Automation Conf., pages 152–157, 1998.

[Gana96] G. Ganapathy, R. Narayan, G. Jorden, D. Fernandez, M. Wang,
J. Nishimura. Hardware emulation for functional verification of K5. InProc.
Design Automation Conf., pages 315–318, 1996.

[Geis96] D Geist, M Farkas, A Landver, Y Lichtenstein, S Ur, Y Wolfsthal, M Sriva
and A Camilleri. Coverage-directed test generation using symbolic te

133

ation

ina-
.

gets

ell

s.

od-

ly-in-

bolic

-

-

ig-

ial

s for
niques. InProc. Int. Conf. Formal methods in Computer-Aided Design, pages
143–158, 1996.

[Ghos91] A. Ghosh, S. Devadas, and A. R. Newton. Test generation and verific
for higly sequential circuits. IEEE Trans. Computer-Aided Design,
10(5):652–667, May 1991.

[Goel81] P. Goel. An implicit enumeration algorithm to generate tests for comb
tional logic circuits.IEEE Trans. Computers, C-30(3):215–222, March 1981

[Goer95] R. Goering. Chrysalis expands tool to prove equivalency – verification
upgrade.EE Times, (873), November 1995.

[Goer97] R. Goering. Model checker leads Lucent’s commercial-EDA push – B
Labs goes formal with design verification.EE Times, (948), April 7 1997.

[Gold79] L. H. Goldstein. Controllability/observability analysis of digital circuit
IEEE Trans. Circuits and Systems, pages 685–693, September 1979.

[Gupt97] A. Gupta, S. Malik, and P. Ashar. Toward formalizing a validation meth
ology using simulation coverage. InProc. Design Automation Conf., pages
740–745, 1997.

[Ham94] Hamarsoft, Heerlen, The Netherlands.Hamarsoft’s 86BUGS list, 4 edition,
November 1994. Available from http://www.xs4all.nl/~feldmann.

[Hans95a] M. C. Hansen and J. P. Hayes. High-level test generation using physical
duced faults. InProc. IEEE VLSI Test Symp., pages 20–28, 1995.

[Hans95b] M. C. Hansen and J. P. Hayes. High-level test generation using sym
scheduling. InProc. IEEE Int. Test Conf., pages 586–595, 1995.

[Hard96] R. H. Hardin, Z. Har’El, and R. P. Kurshan. Cospan. InProc. Int. Conf. on
Computer-Aided Verification, pages 423–427, July 1996.

[Henn90] J. Hennessy and D. Patterson.Computer Architecture: A quantitative Ap
proach. Morgan Kaufman Publishers, San Mateo, Calif., 1990.

[Ho95] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architecture valida
tion for processors. InProc. Int. Symp. Computer Architecture, pages 404–
413, 1995.

[Ho96a] C.-M. R. Ho.Validation tools for complex digital designs. PhD thesis, Stan-
ford University, 1996.

[Ho96b] R. C. Ho and M. A. Horowitz. Validation coverage analysis for complex d
ital designs. InProc. Int. Conf. Computer-Aided Design, pages 146–151,
1996.

[Hosk95] Y. V. Hoskote.Formal techniques for verification of synchronous sequent
circuits. PhD thesis, The University of Texas at Austin, 1995.

[Hoss96] A. Hosseini, D. Mavroidis, and P. Konas. Code generation and analysi
the functional verification of microprocessors. InProc. Design Automation
Conf., pages 305–310, 1996.

134

ence

odel

crip-

r-

ram
-

con-

-
lpha

n-

ed

s. In

o,
m,

rchi-
[IEEE88] IEEE Standards Board. IEEE standard 1076-1987 VHDL language refer
manual. New York, NY 10017, 1988.

[IEEE94] IEEE Standards Board. IEEE standard 1175-1994 standard reference m
for computing system tool interconnections. New York, NY, 1994.

[IEEE96] IEEE Standards Board. IEEE standard 1364-1995 verilog hardware des
tion language reference manual. New York, NY, 1996.

[Int89] Intel Corp.8086/8088 User’s manual. Programmer’s and hardware refe
ence manual, 1989.

[Iwas94] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose. Automatic test prog
generation for pipelined processors. InProc. Int. Conf. Computer-Aided De
sign, pages 580–583, 1994.

[John91] M. Johnson.Superscalar microprocessor design. Prentice Hall, Englewood
Cliffs, N.J., 1991.

[Kang94] S. Kang and S. A. Szygenda. The simulation automation system SAS;
cepts, implementations, and results.IEEE Trans. on VLSI, 1994.

[Kant96] M. Kantrowitz and L. M. Noack. I’m done simulating; now what? Verifica
tion coverage analysis and correctness checking of the DECchip 21164 A
microprocessor. InProc. Design Automation Conf., pages 325–330, 1996.

[Kels93] T. P. Kelsey, K. K. Saluja, and S. Y. Lee. An efficient algorithm for seque
tial circuit test generation.IEEE Trans. Computers, pages 1361–1371, No-
vember 1993.

[King91] K.N. King and A.J. Offutt. A Fortran language system for mutation-bas
software testing.Software Practice and Experience, 21(7):685–718, July
1991.

[Kogg77] P. M. Kogge. Microprogramming of pipelined processors. InProc. Ann.
Symp. Comput. Archit., pages 63–69, 1977.

[Kuel97] A. Kuelmann and F. Krohm. Equivalence checking using cuts and heap
Proc. Design Automation Conf., pages 263–268, June 1997.

[Kuma97] J. Kumar. Prototyping the M68060 for concurrent verification.IEEE Design
& Test of Computers, pages 34–41, 1997.

[Kurs97] R.P. Kurshan. Formal verification in a commercial setting. InProc. Design
Automation Conf., pages 258–262, June 1997.

[Kusk94] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorlo
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblu
and J. Hennessy. Stanford FLASH multiprocessor. InProc. Int. Symp. Com-
puter Architecture, pages 302–313, 1994.

[Lee92a] J. Lee.Architectural level test generation and fault simulation. PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

[Lee92b] J. Lee and J. H. Patel. A signal-driven discrete relaxation technique for a

135

-

sors.

i-

ta-
e-

l-

r-

nal

of

ial.

.2

gy

ues
tectural level test generation. InProc. 1991 IEEE Int. Conf. on Computer
Aided Design - ICCAD-91, pages 458–461, 1992.

[Lee94] J. Lee and J. H. Patel. Architectural level test generation for microproces
IEEE Trans. Computer-Aided Design, pages 1288–1300, 1994.

[Levi97] J. Levitt and K. Olukotun. Verifying correct pipeline implementation for m
croprocessors. InProc. Int. Conf. Computer-Aided Design, pages 162–169,
1997.

[Lewi96] D. Lewin, D. Lorenz, and S. Ur. A methodology for processor implemen
tion verification. InProc. Int. Conf. Formal methods in Computer-Aided D
sign, pages 126–142, 1996.

[Malk98] Y. Malka and A. Ziv. Design reliability - estimation through statistical ana
ysis of bug discovery data. InProc. Design Automation Conf., pages 644–
649, 1998.

[Mall95] C. H. Malley and M. Dieudonne. Logic verification methodology for Powe
PC microprocessors. InProc. Design Automation Conf., pages 234–240,
1995.

[Mang97] S. T. Mangelsdorf, R. P. Gratias, R. M. Blumberg, and R. Bhatia. Functio
verification of the HP PA 8000 processor.Hewlett-Packard Journal,
48(4):22–31, August 1997.

[Marc96] T. E. Marchok, A. El-Maleh, W. Maly, and J. Rajski. Complexity analysis
sequential atpg.IEEE Trans. Computer-Aided Design, pages 1409–1422,
November 1996.

[McFa93] M. C. McFarland. Formal verification of sequential hardware. a tutor
IEEE Trans. Computer-Aided Design, pages 633–654, May 1993.

[McGe95] P. C. McGeer and A. Saldanha. Multivalued diagrams show the way.EE
Times, (867), Sept. 25 1995.

[McMi93] K. L. McMillan. Symbolic model checking. Kluwer Academic, Boston, 1993.

[McMi94] K. L. McMillan. Fitting formal methods into the design cycle. InProc. De-
sign Automation Conf., pages 314–319, 1994.

[Micz86] A. Miczo. Digital logic testing and simulation. Harper & Row, New York,
1986.

[MIP94] MIPS Technologies Inc.MIPS R4000PC/SC Errata, Processor Revision 2
and 3.0, May 1994.

[Mona96] J. Monaco, D. Holloway, and R. Raina. Functional verification methodolo
for the PowerPC 604(TM) microprocessor. InProc. Design Automation
Conf., pages 319–324, 1996.

[Moun98] D. Moundanos, J. A. Abraham, and Y. V. Hoskote. Abstraction techniq
for validation coverage analysis and test generation.IEEE Trans. Computers,
47(1):2–14, January 1998.

136

uted

uits.

alar

ffi-

n

uen-

n-

.A.
ck-

alysis

s de-

abe,
ter-
t

nical
at
[Murr90] B. T. Murray and J. P. Hayes. Hierarchical test generation using precomp
tests for modules.IEEE Trans. Computer-Aided Design, pages 594–603,
June 1990.

[Murr92] B. T. Murray and J. P. Hayes. Test propagation through modules and circ
In Proc. IEEE Int. Test Conf., pages 748–757, 1992.

[Nels97] K. L. Nelson, A. Jain, , and R. E. Bryant. Formal verification of a supersc
execution unit. InProc. Design Automation Conf., pages 161–166, 1997.

[Nier90] T. Niermann, W. T. Cheng, and J. H. Patel. PROOFS: A fast memorry e
cient fault simulator for sequential circuits. InProc. Design Automation
Conf., pages 190–196, 1990.

[Nier91a] T. Niermann.Techniques for sequential circuit automatic test generatio.
PhD thesis, University of Illinois, 1991.

[Nier91b] T. Niermann and J. H. Patel. HITEC: A test generation packaged for seq
tial circuits. In Proc. European Design Automation Conf., pages 214–218,
1991.

[Offu96] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experime
tal determination of sufficient mutant operators.ACM Trans. Software Engi-
neering and Methodology, pages 99–118, April 1996.

[Owre96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, M. Srivas, R. Alur, and T
Henzinger. PVS: Combining specification, proof checking and model che
ing. In Proc. Int. Conf. on Computer-Aided Verification, pages 411–414,
1996.

[Paln94] S. Palnitkar, P. Saggurti, and S.-H. Kuang. Finite state machine trace an
program. InInt. Verilog HDL Conf., pages 52–57, 1994.

[Paxs98] C. Paxson. Analyze the reliability of your software.Java Report, April 1998.

[Pope96] V. Popescu and B. McNamara. Innovative verification strategy reduce
sign cycle time for high-end SPARC processor. InProc. Design Automation
Conf., pages 311–314, 1996.

[Post96a] Matt Postiff.LC-2 Programmer’s Reference Manual. Revision 3.1. Universi-
ty of Michigan, 1996.

[Post96b] R. M. Poston.Automatic Specification-Based Software Testing. IEEE Com-
puter Society Press, May 1996.

[Rat97] Rational Software.Purify’s user guide, version 4.1 edition, 1997.

[Shep97] K. Shepard, S. Carey, E. Cho, B. Curran, R. Hatch, D. Hoffman, S. McC
G. Northrop, and R. Seigler. Design methodology for the s/390 parallel en
prise server g4 microprocessors.IBM Journal of Research and Developmen,
pages 515–547, Jul.-Sep. 1997.

[Some97] F. Somenzi. CUDD: CU decision diagram package release 2.1.1. Tech
report, Dept. of Electr. and Comp. Engineering, University of Colorado
Boulder, 1997.

137

ica-

ro-

nd
ca-

gh
n
ms

e

Re-

wn.

ys

ne

ro-

i,
s.
ys-
-

[SP92] M. St. Pierre, S.-W. Yang, and D. Cassiday. Functional vlsi design verif
tion methodology for the CM-5 massively parallel surpercomputer. InIEEE
International Conference on Computer Design: VLSI in Computers and P
cessors, pages 430–435, 1992.

[SR] Software Research Inc., San Francisco, CA.TestWorks/ Coverage for UNIX.
http://www.testworks.com.

[Syn97] Synopsys Inc.Design Compiler Reference Manual: Fundamentals, January
1997.

[Tayl98] S. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt, J. Huggins, a
C. Ramey. Functional verification of a multiple-issue, out-of-order, supers
lar Alpha processor - the DEC Alpha 21264 microprocessor. InProc. Design
Automation Conf., pages 638–643, 1998.

[Upto94] M. Upton, T. Huff, T. Mudge, and R. Brown. Resource allocation in a hi
clock rate microprocessor. InProceedings sixth international conference o
Architectural support for programming languages and operating syste,
pages 98–109, 1994.

[Upto97] M. Upton.Architectural Trade-offs in a Latency Tolerant Gallium Arsenid
Micrprocessor. PhD thesis, University of Michigan, 1997.

[VC97] D. Van Campenhout and S. Raasch. Getting started with CVS. Internal
port, University of Michigan, 1997.

[VC98] D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Bro
High-level design verification of microprocessors via error modeling.ACM
Trans. Design Automation of Electronic Systems, 3(4):581–599, October
1998.

[Vele97] M. N. Velev, R. E. Bryant, and A. Jain. Efficient modeling of memory arra
in symbolic simulation. In O. Grumberg, editor,Proc. Int. Conf. on Comput-
er-Aided Verification, LNCS 1254, pages 388–399. Springer-Verlag, Ju
1997.

[Weir97] D. Weir and P. G. Tobin. Verifying the correctness of the PA 7300LC p
cessor.Hewlett-Packard Journal, 48(3):69–72, June 1997.

[Wile97] B. Wile, M. Mullen, C. Hanson, D. Bair, K. Lasko, P. Duffy, E. J. Kaminsk
T. Gilbert, S. Licker, R. Sheldon, W. Wollyung, W. Lewis, and R. Adkin
Functional verification of the CMOS S/390 parallel enterprise server G4 s
tem. IBM Journal of Research and Development, pages 549–566, July/Sep
tember 1997.

[Wils99] R. Wilson and B. Fuller. Soaring mask costs roil fine-geometry ASICs.EE
Times, March 26 1999.

[Wind95] P. J. Windley. Formal modeling and verification of microprocessors.IEEE
Trans. Computers, pages 54–72, January 1995.

[Wolf98a] A. Wolfe. CPU clone-makers wrestle with X86.EE Times, 01/28 1998.

138
[Wolf98b] A. Wolfe. Merced grips Intel in verification vise.EE Times, (990), January
1998.

[Wood93] M.R. Woodward. Mutation testing–its origin and evolution.Information-
and-Software-Technology, pages 163–9, 1993.

[X86] Intel’s secrets. x86 Monthly digest, http://www.x86.org.

[Yoel90] M. Yoeli, editor.Formal Verification of Hardware Design. IEEE Computer
Society Press, Los Alamitos, Calif., 1990.

	CHAPTER 1 Introduction
	1.1 Microprocessor design
	1.2 Functional verification
	1.3 Test generation for FDV
	1.4 Checking the outcome of a simulation
	1.5 Measuring and predicting functional quality
	1.6 Related area: physical fault testing
	1.7 Related area: software testing
	1.8 Thesis outline

	CHAPTER 2 Design error data
	2.1 Published error data
	2.2 Collection method
	2.3 Collected error data
	2.4 Guidelines for implementing an error collection system
	2.5 Discussion

	CHAPTER 3 Design error models
	3.1 Error model requirements
	3.2 Design error models
	3.3 Number of error instances defined by error model
	3.4 Test generation
	3.5 Error simulation
	3.6 Analytical coverage evaluation of CSSL1
	3.7 Coverage evaluation using error simulation
	3.8 Coverage evaluation by analysis of actual errors
	3.9 Conclusions

	CHAPTER 4 High-level test generation for design verification of pipelined microprocessors
	4.1 Related work
	4.2 Pipelined processor model
	4.3 Pipeframe model
	4.4 Test generation algorithm
	4.5 DPTRACE: path selection in datapath
	4.6 DPRELAX: value selection in datapath
	4.7 CTRLJUST: CTRL line value justification
	4.8 Experiments
	4.9 Conclusions

	CHAPTER 5 Conclusions
	5.1 Contributions
	5.2 Future work

	APPENDIX A Relationship between CSSL1 errors and bridging faults
	APPENDIX B Conditional error simulation on ISCAS 89 benchmarks
	BIBLIOGRAPHY

