
ABSTRACT

Virtualizing Register Context

by

David W. Oehmke

Chair: Trevor N. Mudge

A processor designer may wish for an implementation to support multiple reg-

ister contexts for several reasons: to support multithreading, to reduce context

switch overhead, or to reduce procedure call/return overhead by using register

windows. Conventional designs require that each active context be present in its

entirety, increasing the size of the register file. Unfortunately, larger register files

are inherently slower to access and may lead to a slower cycle time or additional

cycles of register access latency, either of which reduces overall performance. We

seek to bypass the trade-off between multiple context support and register file

size by mapping registers to memory, thereby decoupling the logical register

requirements of active contexts from the contents of the physical register file.

Just as caches and virtual memory allow a processor to give the illusion of

numerous multi-gigabyte address spaces with an average access time approach-



ing that of several kilobytes of SRAM, we propose an architecture that gives the

illusion of numerous active contexts with an average access time approaching

that of a single active context using a conventionally sized register file. This dis-

sertation introduces the virtual context architecture, a new architecture that virtual-

izes logical register contexts. Complete contexts, whether activation records or

threads, are kept in memory and are no longer required to reside in their entirety

in the physical register file. Instead, the physical register file is treated as a cache

of the much larger memory-mapped logical register space. The implementation

modifies the rename stage of the pipeline to trigger the movement of register val-

ues between the physical register file and the data cache. With the same size reg-

ister file as a non register windowed machine, this architecture is within 1% of the

execution time of an idealized register window machine. The virtual context archi-

tecture enables support for both register windows and simultaneous multithread-

ing without increasing the size of the register file, increasing the performance by

50% over a single thread and 30% over a conventional multithreaded architec-

ture.
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Chapter 1

Introduction

1.1Motivation
Registers are a central component of both instruction-set architectures (ISAs)

and processor microarchitectures. From the ISA’s perspective, a small register

namespace allows the encoding of multiple operands in an instruction of reason-

able size. Registers also provide a simple, unambiguous specification of data

dependences, because—unlike memory locations—they are specified directly in

the instruction and cannot be aliased. From the microarchitecture’s point of view,

registers comprise a set of high-speed, high-bandwidth storage locations that are

integrated into the datapath more tightly than a data cache, and are thus far more

capable of keeping up with a modern superscalar execution core.

As with many architectural features, the abstract concept of registers can con-

flict with real-world implementation requirements. For example, the dependence

specification encoded in the ISA’s register assignment is adequate given the ISA’s

sequential execution semantics. However, out-of-order instruction execution

requires that the ISA’s logical registers be renamed into an alternate, larger physi-

cal register space to eliminate false dependencies.

We address a different conflict between the abstraction of registers and its

implementation: that of context. A logical register identifier is meaningful only in

the context of a particular procedure instance (activation record) in a particular

thread of execution. From the ISA’s perspective, the processor supports exactly

one context at any point in time. However, a processor designer may wish for an

implementation to support multiple contexts for several reasons: to support multi-

threading, to reduce context switch overhead, or to reduce procedure call/return
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overhead (e.g., using register windows) [8, 19, 24, 30, 35, 37]. Conventional

designs require that each active context be present in its entirety; thus each addi-

tional context adds directly to the size of the register file. Unfortunately, larger reg-

ister files are inherently slower to access. Thus, additional contexts generally lead

to a slower cycle time or additional cycles of register access latency, either of

which reduces overall performance. This problem is further compounded by the

additional rename registers necessary to support out-of-order execution.

The context problem has already been solved for memory. Modern architec-

tures are designed to support a virtual memory system. From the process’s per-

spective, each process has its own independent memory, only limited by the size

specified by the ISA. The architecture and operating system efficiently and

dynamically manage the hardware memories (cache, RAM and disk) to maximize

the memory performance of each process. Virtual memory never requires the pro-

cess memory to exist in its entirety at any level. Instead, it is only required that

those portions actively used exist at the last level (disk). All the other memory lev-

els simply cache a fraction of the memory to provide good performance. This is in

sharp contrast to how a traditional architecture manages the registers. Instead, all

the logical registers for the active contexts are kept in the physical register file.

Even in previous research that examined register caches, the full set of logical

registers is kept in its entirety in the relatively limited register cache hierarchy.

A system with the advantages of a register, but with the context free nature of

memory is desired. Such a system can be realized by mapping the registers to

memory. The question becomes: when does this mapping occur? The registers

go through several transformations between source code and execution in a pro-

cessor. These steps are summarized in Figure 1.1. At initial compilation, the

source code variables and temporary values are converted into virtual registers.

At register allocation, the compiler maps the virtual registers into logical registers

and the assembly code/binary is generated. Finally, in an out-of-order processor,

at rename, the logical registers are mapped into physical registers to remove any

false data dependencies imposed by the logical registers.
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The two obvious choices for memory mapping the registers are at register allo-

cation or decode/rename. The first possibility is to have the compiler map virtual

registers directly into memory at register allocation. In this case, the ISA will no

longer have a notion of registers, and will instead directly work with memory

addresses. The second possibility is to have the microarchitecture manage this

mapping. In this case, the compiler generates a more traditional assembly with

logical register specifiers. In the frontend of the pipeline, the microarchitecture

maps the logical register into memory, thus alleviating the context problem.

1.2Mapping compiler virtual registers to memory
By mapping the compiler virtual register directly to memory, we completely

remove registers from the instruction set architecture. This creates a memory to

memory instruction set architecture which we call the mem-machine. Such an ISA

has the advantage of unlimited resources (all of virtual memory) to use as storage

locations. The code is also free of explicit loads and stores, resulting in efficient

execution. However, this type of instruction set architecture also suffers from

 

Source Code: 
Variables 

Intermediate Language:
Virtual Registers 

Assembly/Binary: 
Logical Registers 

Data Flow/Micro Ops: 
Physical Registers 

Initial Compilation

Register Allocation 

Assembly/Binary: 
Logical Registers 

Compiler Pipeline 

Decode/Rename 

Figure 1.1: Register Specifier Transformations
The registers transformations from source code until the time the assembly instructions
are executed.
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some serious disadvantages. As previously stated, registers allow for efficient

encoding, unambiguous data dependencies and tight coupling into the microarchi-

tecture’s data path. One serious disadvantage would be the size of the instruc-

tions. As stated previously, a register specifier can be encoded in a small number

of bits. Encoding a memory address would require a large number of bits per

operand. Data dependencies are also no longer as unambiguous. Instead, poten-

tially every source and destination could be accessed using a dynamic address

calculated at run time. The tight coupling of the physical registers file is also lost.

For this architecture the data cache that requires tags becomes the first level of

storage. Reasonable performance requires a much larger and therefore slower

structure. Chapter 2 contains a detailed description of the mem-machine and

reports some results.

1.3Mapping ISA logical registers to memory
Delaying the memory mapping to the frontend of the pipeline, gives all the

advantages of registers with the automatic context management of virtual mem-

ory. We seek to bypass the trade-off between multiple context support and regis-

ter file size by decoupling the logical register requirements of active contexts from

the contents of the physical register file. Just as caches and virtual memory allow

a processor to give the illusion of numerous multi-gigabyte address spaces with

an average access time approaching that of several kilobytes of SRAM, we pro-

pose an architecture that gives the illusion of numerous active contexts with an

average access time approaching that of a single active context while still using a

conventionally sized register file. Our design treats the physical register file as a

cache of a practically unlimited memory-backed logical register space. We call

this scheme the virtual context architecture (VCA). An individual instruction needs

only its source operands and its destination register to be present in the register

file to execute. Inactive register values are automatically saved to memory as

needed and restored to the register file on demand. Compared to prior proposals

(see Chapter 9), the VCA:
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• unifies support for both multiple independent threads and register windowing

within each thread;

• completely decouples the physical register file size from the number of logical

registers by using memory as a backing store;

• enables the physical register file to hold just the most active subset of logical

register values, instead of the complete register contexts, by allowing the

hardware to spill and fill registers on demand;

• is backward compatible with existing ISAs at the application level for

multithreaded contexts, and requires only minimal ISA changes for register

windowing;

• requires no changes to the physical register file design and the performance-

critical schedule/execute/writeback loop;

• is orthogonal to the other common techniques for reducing the latency of the

register file—register banking and register caching;

• does not involve speculation or prediction, avoiding the need for recovery

mechanisms.

The virtual context architecture provides a near optimal implementation of reg-

ister windows, improving performance and greatly reducing traffic to the data

cache (by up to 10% and 20% respectively, in our simulations). The VCA naturally

supports both simultaneous multithreading (SMT) and register windowing simulta-

neously with a conventionally sized register file, avoiding the multiplicative growth

in register count that a straightforward implementation would require. Enable reg-

ister windows allows the virtual context architecture to achieve more than a 10%

increase in performance on top of the performance improvement associated with

SMT. The VCA also enabled four simultaneous threads on a pipeline without an

increase in the number of physical registers, providing over three times the best

speedup achieved with the baseline architecture with the same number of physi-

cal registers.
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Historically, register windows have been implemented on in-order machines

exemplified by the Sun SPARC family and the Intel Itanium. In contrast, SMT has

been implemented on out-of-order machines such as later versions of Intel's Pen-

tium and the (cancelled) Alpha 21464. The VCA’s unifying framework provides

support for both techniques in an out-of-order pipeline. It provides a hardware

scheme for efficiently managing register context. It is easily integrated into a con-

ventional out-of-order processor. The VCA enables support for both register win-

dows and simultaneous multithreading without increasing the size of the register

file while still providing nearly ideal performance.

1.4Organization
Chapter 2 contains a detailed description of the mem-machine and reports

some results. Chapter 3 provides details on the theory and design of the virtual

context architecture. Chapter 4 describes the methodology used to measure the

performance of the virtual context architecture. Chapter 5 studies the effects that

the various implementation parameters have on the performance of the virtual

context architecture. Chapter 6 evaluates the performance of the virtual context

architecture as an implementation of register windows. Chapter 7 evaluates the

virtual context architecture in a simultaneous multithreading processor. Chapter 8

describes and evaluates three techniques that can be used to optimize the perfor-

mance of the virtual context architecture. Chapter 9 briefly describes the research

that is related to this dissertation. Chapter 10 concludes the dissertation and dis-

cusses future work.



7

Chapter 2

Mem-Machine

The compiler can map virtual registers directly into memory at register alloca-

tion. In this case, the ISA will no longer have a notion of registers, and will instead

directly work with memory addresses. This creates a memory to memory instruc-

tion set architecture which we call the mem-machine. The ISA supports directly

accessing memory for all operands, thus eliminating the need for general purpose

registers. It has several advantages over a traditional register to register architec-

ture. One performance advantage is the elimination of all explicit load and store

instructions. The elimination of the general purpose registers also greatly reduces

the size of the context necessary for each thread. This allows efficient context

switches and large scale multithreading. The architecture is also very efficient at

emulating other types of machines. To emulate a machine, the internal state,

including the registers, is kept in memory. To execute an emulated instruction for a

register to register machine requires a load of all the values from memory into reg-

isters, then the instruction is executed and finally the result copied back to mem-

ory. An architecture that can access memory for each operand can directly

execute the operation without any extra loading or storing.

The main disadvantages of this architecture are its cache performance and

code size. All values are stored in memory, and all operands access memory. This

will place a much heavier burden on the caches than a register to register archi-

tecture. The code size is also likely to be much larger. To provide the information

for an operand to access memory will require more bits than simply specifying one

of a small set of logical registers. A memory address is usually 32 or 64 bits, while

a register can be specified using only 5 bits for most architectures. This means
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that instructions will be several times larger for this architecture than instructions

for an equivalent register to register architecture.

This chapter contains three sections. The first section describes the design of

the instruction set architecture (ISA) and application binary interface (ABI). The

second section discusses the implementation of the build infrastructure and simu-

lation environment. Finally, the third section evaluates the mem-machine.

2.1Design of the ISA and ABI
To support a modern programming language like C, an ISA needs to have sup-

port for function calls and the separate compilation and linkage of execution units.

This is usually accomplished by creating a stack in memory.   In most ISAs, the

top of the stack (stack pointer) is kept in a specific register. Any values that need

to be communicated across a function call can be placed in memory at specific

offsets from the stack pointer. Although many ABIs use additional specific regis-

ters to pass some of the information, for example the return address and several

parameters, this is only done for efficiency. The notion of a stack is also conve-

nient because it provides a simple and efficient mechanism for each function to

allocate local storage in a dynamic fashion. This dynamic allocation is easily

accomplished by growing the stack (adjusting the stack pointer). Separate compi-

lation and linkage can be achieved because the stack pointer is a global resource

available to all functions. The ABI specifies the location of all the arguments on

the stack, and the current location of the top of the stack is communicated to the

called function. The following two subsections describe the decisions made when

designing the system and the final ISA and ABI chosen.

2.1.1 Design Decisions
To enable the mem-machine to support a stack based ABI, the stack pointer

must somehow be communicated from the calling function to the callee. Another

important issue is that in these stack based systems, all local values are

addressed via offsets from the stack pointer. Thus, not only must the stack pointer

be in some shared location, but for reasonable performance, there must be an
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efficient way to access these local values. This becomes especially important if

you eliminate all general purpose registers. In this case not only will local vari-

ables be kept on the stack, but so must all temporary values. This leads to an

additional requirement: an operand or destination of an instruction must be able to

address a stack location. In other words, a stack location becomes the basic loca-

tion type, or at least the minimal that must be supported.

One solution is to assign the stack pointer a specific address. Since one fixed

address is used, easy communication of the value can be accomplished. The

callee can simply read the value from this location to determine the current posi-

tion of the stack pointer. To support the minimal addressing mode for operands

requires that each operand be able to access a location relative to the stack. In

this case an address and offset would be specified for each operand. The address

is read to provide a base pointer. The offset is added to the base pointer to gener-

ate a new address. The final value is read from this new address. There are two

problems with this approach. One obvious problem is that both an address and

offset must be allowed for each operand in an instruction. Since all local values

and temporaries will be stored on the stack, large offsets should be supported.

When combined with a 32 bit address, this would mean a large number of bits per

operand. The second problem is that this would require two memory accesses to

read/write a value to/from a location on the stack. Since all locals and temporaries

are located on the stack, a typical two source and one destination instruction

would require six memory accesses to execute. 

The other possibility is to support a stack pointer register. The system will no

longer be completely registerless, but it still won't have any general purpose regis-

ters, only a single special purpose one. As part of the opcode of the instruction, a

bit would specify whether to use the stack pointer. This would allow the operand to

be reduced to a single value. If the bit is set, this value is treated as an offset from

the stack pointer. If the bit is not set, it is treated as an absolute address. This

reduces the operand to a more manageable size. A typical instruction only

requires three memory accesses to execute. Considering that all values are
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stored in memory, this is as efficient as it can be. The advantages this solution has

over using a fixed address make it the obvious choice.

This simple displacement addressing is not adequate. Languages like C sup-

port accessing a value through a pointer. To support this, the ISA must be able to

read in a value from an address determined at runtime. At this point the operands

can only do this based on the stack pointer. A more general solution is required. In

particular the ISA must support reading a value from an address stored in a loca-

tion on the stack. A few special instructions could be added to accomplish this.

They would act like the standard load/store in a register ISA, but would only be

needed when reading/writing to/from a dynamic address. However, one of the

goals of the ISA is the elimination of explicit loads and stores. A more natural solu-

tion is expanding the addressing modes allowed for each operand. Specifically,

one more level of indirection could be allowed for each operand. Instead of read-

ing the value directly from the location on the stack, the value would be treated as

an address and the final value would be read from that location in memory. A sim-

ilar scheme would be used for destinations with the final access being a write

instead of a read. This provides all the necessary functionality to support C.

The final design was created to support a stack based instruction set architec-

ture and application binary interface. The ISA would support a small number of

fixed purpose registers: none (zero), stack pointer, and frame pointer. The zero

register is used to specify absolute addresses or constant values. The stack

pointer specifies the end of the stack. It is used to communicate the stack location

between function calls. The frame pointer is used to specify the top of the stack for

the current function. It is needed to support a variable size function frame which is

required to support alloca. Each operand would also support an indirection level

specifier. This would allow constants, stack locations and dynamic addresses to

be specified.

2.1.2 ISA and ABI
The instruction set architecture and application binary interface of the mem-

machine are modeled on the Portable Instruction Set Architecture(PISA)[4]. PISA
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is supported by both the compiler and simulator the mem-machine was going to

be implemented on and is typical of a modern day reduced instruction set archi-

tecture.

2.1.2.1 ISA

The instruction set architecture is a specification of the specific operations

supported, the operand specification (including a specification of the logical regis-

ters) and the instruction encoding. The mem-machine supports all the standard

operations and is similar to most RISC like ISAs (see Appendix A for a list of sup-

ported operations). The ISA was designed to be extremely easy to target for a

compiler and easy to decode. In particular, the operation has separate fields for

the various options.

The basic instruction is 128 bits, see Figure 2.1. It includes a 32 bit operation

and a full 32 bit offset for each operand. The first field is the opcode and signifies

the type of instruction. It supports all the standard operations including a full set of

Operation 
 

Offset 
1 
 

Offset 
2 
 

Offset 
3 
 

Opcode 
 

Type 
1 
 

Type 
2 
 

Op 
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Op 
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Op 
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32 bit 
 

32 bit 
 

32 bit 
 

32 bit 
 

8 bit 
 

4 bit 
 

4 bit 
 

4 bit 
 

4 bit 
 

4 bit 
 

Address 
Level 

 

Register 
 

2 bit 
 

2 bit 
 

Figure 2.1: Instruction Binary Encoding Format
The mem-machine instructions are encoded in a 128 bit instruction. The instruction for-
mat is separated into set fields for easy decoding. The operation field contains the opcode
of the instruction in the first 8 bits. The next 8 bits specify up to two value types for the
instruction. Finally, the operation field contains one 4 bit field for each operand. The first
2 bits in this field specify the address indirection level of the operand. The other 2 bits
specify one of three possible registers to use for the operand: none(zero), stack pointer,
or frame pointer. The rest of the instruction is composed of three 32 bit offsets, one for
each of the operands.
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conditional branches and conditional sets. This was done to minimize the amount

of work needed to translate from the compiler intermediate format to the final

instruction. The opcode is independent of value type. The next two 4 bit fields

specify up to two of the ten supported value types. The architecture supports 32

and 64 bit floating point types, and 8, 16, 32, and 64 bit signed and unsigned inte-

ger types. Depending on the opcode, zero, one or two types are needed. For

example, a jump requires no type, add requires a single type, and convert

requires two types. 

Finally, there are three 4 bit fields specifying how to treat the three operands.

Each of these fields has two subfields. The first is the address level. This specifies

the number of levels of indirection to use when reading or writing the value, see

Table 2.1. The second field specifies the register to use - none (zero), stack

pointer, or frame pointer. See Appendix B for an example of the assembly lan-

guage for a simple function.

2.1.2.2 ABI

The application binary interface is primarily a specification of the stack layout,

the communication of arguments/results between functions and the function epi-

logue and prologue. PISA uses registers to pass some of the arguments and the

Address
Level Read(Source) Write (Destination)

0 Value = Register + Offset
Offset must be zero and Register must be 
the stack pointer or frame pointer.
Register = Value

1 Value = Mem[Register + Offset] Mem[Register+Offset]=Value
2 Value = Mem[Mem[Register + Offset]] Mem[Mem[Register+Offset]]=Value

Table 2.1: Address Indirection Level Description
The mem-machine supports three levels of address indirection for each operand. Level 0
is used for constant values, addresses and to read or write to registers. This level requires
no memory accesses. Level 1 is used to read or write to stack locations or global vari-
ables. It requires one memory access. Finally, level 2 is used for read or writing through
a pointer value. It requires two memory accesses.
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return address, and to return any values. The mem-machine uses the stack

pointer register to communicate the location of the stack. All other values that

need to be communicated are placed in fixed positions on the stack, see

Figure 2.2. 

Like PISA, the stack grows down. The return address is placed at the stack

pointer. The return value placeholder is next on the stack at the stack pointer plus

4. If the return value is four bytes or less, it is placed directly at this location by the

callee and no initialization needs to be done by the caller. If the return value is

larger, the calling function allocates stack space for the value and initializes the

placeholder with the address of this location. The callee uses this pointer to store

Figure 2.2: Mem-Machine Stack Layout
The stack layout of the mem-machine is similar to other RISC machines. The frame point-
er (FP) is used to access the function arguments, function return, local variables and tem-
porary values. The stack pointer (SP) is used to access the arguments and return value
of any called functions. The return address is located at frame pointer + 0. The return val-
ue placeholder is at frame pointer + 4. Even if the function does not return a value, this
space is reserved. The function arguments start at frame pointer + 8. The arguments are
placed in order aligned to the appropriate address.
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the result. This is similar to how PISA handles structure return values. Even if the

function does not return a value, this space is reserved. This allows the arguments

to always start at the same location and enables the compiler to setup a function

call without knowing any information about the function being called. The argu-

ments are placed starting at the stack pointer plus 8 and aligned accordingly.

The function prologue and epilogue are similar to other stack based systems.

The prologue is composed of three things. First, the current value of the frame

pointer is saved. Second, the stack pointer is copied into the frame pointer. Finally,

a constant value is subtracted from the stack pointer to allocate all the local stor-

age. The epilogue reverses the prologue. First, it restores the original stack

pointer by setting it equal to the frame pointer. Second, it restores the original

frame pointer by loading it back from its save location. Finally, the function returns

using the return address saved at the stack pointer.

2.2Implementation
The implementation of the mem-machine required creating a complete build

tool chain and simulation environment. This required four major things. First, a

compiler needed to be modified to target the new instruction set architecture and

application binary interface of the mem-machine. Second, a C library needed to

be ported. Third, a complete set of binary utilities needed to be created, including

an assembler, linker and archiver. Finally, a simulator was ported to the new archi-

tecture to allow it to be evaluated.

2.2.1 Compiler
The compiler is a retargeted version of MIRV[13]. This required writing a

checker module and printer module, and modifying the register allocation. The

checker module is responsible for translating the internal assembly instructions

into a form that could be executed on the target machine. For this ISA, this

required two main things. First, the operands of each instruction had to be normal-

ized into a form that the ISA could handle. In particular, operands that used dis-

placed addressing (besides from the stack pointer) or indexed addressing had to
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have an add instruction inserted before them to calculate the address and then

place that address into a temporary variable. The problem operand was then

switched to dereference this temporary value. Secondly, the ABI had to be imple-

mented. This involved setting up the call stack for function calls and inserting the

function prologue and epilogue. The printer module simply had to print the instruc-

tions in the format expected by the assembler. A very easy to parse format was

used. Finally the register allocation needed to be modified. The standard allocator

allocates architectural registers for each virtual register. If not enough are avail-

able or for certain other cases, the virtual register is instead assigned a spill loca-

tion on the stack. This is appropriate for an ISA with general purpose registers, but

is not appropriate for one using memory operands. A very simple allocator for this

new architecture was implemented. It assigns a separate spill location to each vir-

tual register. While not very efficient, it is very simple to implement. This has sev-

eral repercussions though. MIRV relies on the register allocator to provide copy

propagation. This simple allocator did not implement this. Therefore, the gener-

ated code will have extra moves. Secondly, this means that no reuse of stack

locations will take place. This will have a negative effect on the cache perfor-

mance and on the compressibility of the code.

2.2.2 C Library
A C library was provided by porting newlib[6]. Newlib was chosen because it

was created to be as portable as possible. The task involved two main challenges.

The first was to prepare the library for compilation by MIRV instead of a gnu com-

piler. This involved working around gcc specific options and defining the appropri-

ate symbols. The second task was to provide the target specific code. This was

primarily the startup code and the interface to the system calls. The system call

interface is provided by a set of functions written in assembly language.

2.2.3 Binary Utilities
The binary utilities were created from scratch. The utilities included an assem-

bler, archiver, ranlib and linker. In each case, the simplest but still functional ver-
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sion was created. Specifically, they only needed to support the options and the

functionality required by MIRV and the newlib makefiles.

The assembler is responsible for reading in the assembly file produced by the

compiler and converting it into an object file. No attempt was made to perform any

optimizations or to keep the file size down. The object file format is essentially a

stored version of the structures used by the assembler.

The purpose of the archiver is to bundle several object files together to form

libraries. In order to build the library, it needed to both insert and extract object

files. A ranlib executable was also created, but it was just a stub and had no func-

tionality. Its only purpose was to exist because it was called by the newlib make-

files.

The linker takes a set of object files and libraries and creates the final binary.

Its two primary functions are to link all the labels and to layout the code and data.

The label linkage needs to resolve all symbol labels to their final address. Some

labels are local and defined in the same object file in which they are used. Other

labels are global; these are defined in one object file, but may be used in other

object files. To keep the code size of the executable small, the minimal set of

object files should be linked. To accomplish this, the linker starts with the object

file that defines the entry symbol and links it.   As each object file is linked, it is

checked for any undefined global labels. For each undefined label, the object files

are searched until the one that defines it is found. If this object file is not already

linked, it is linked now, and in turn checked. This recursive procedure continues

until all the globals are resolved, in which case the compilation is successful. If a

global label cannot be resolved, the linker exits with an unresolved symbol error.

Once all the files have been linked, it inserts a special label to mark the end of the

data. This is used by the code as the starting point for the heap. Next, the code

and data layout is done. This determines the address of everything in the object

files, obeying any alignment issues and size requirements. Finally, the executable

is written to a file in a binary format.
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2.2.4 Simulator
The simulator was provided by a new target for SimpleScalar. The port

required creating several files. The header file describes the basic features of the

architecture, including the instruction layout and register file description. The

instruction definition file contains descriptions of the instructions, how they are

decoded and their C implementation. The decode could be done directly, similar

to PISA, because of the simplicity of the binary encoding. The loader file provides

a function to load the executable from its file and copy the code and data into the

simulated memory. It is also responsible for setting up the arguments and environ-

ment in the simulated memory in the positions expected by the target code. The

final file primarily provides debugging features, in particular a function to print out

a disassembled instruction in a human readable format. Most of the simulator files

required no modification. However, no attempt was made to try to port the out of

order simulator because of the complexity of the operands. 

2.3Evaluation
A few of the SPEC benchmarks[15] were compiled using the new system and

the results verified against the reference output. The benchmarks were art00,

compress95 and equak00. Each was compiled using three different levels of opti-

mization: O0, O1, and O2. Two studies were performed. In the first, the dynamic

instructions are characterized to generate a code profile. In the second, the mem-

machine is compared against PISA to evaluate its effectiveness.

2.3.1 Code Profile
This section contains a profile of the dynamic instructions executed by the

benchmarks. Three statistics are examined: instruction value type, operand regis-

ter usage, and operand indirection level.

The results of the value type profile are shown in Table 2.2. In every case the

most common type by far is the unsigned word. This is the type used for pointer
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arithmetic and for moving 32 bit values, regardless of the type. For 32 bit values,

any extra moves in the system will be of this type. In general, as the optimization

level is increased, the percentage of this type tends to decrease. This is most

likely due to the reduction in extra moves and a general increase in the efficiency

of the code. The two benchmarks that contain a significant amount of floating

point code show an additional similar trend. As the optimization level increases,

the percentage of code involving the double precision type increases. This is a

good indication of the increasing efficiency of the code. Note that at the same time

the percentage of unsigned long type also increases. Similar to the unsigned

word, this type is probably used for moves involving 64 bit values, in this case

double precision values. This is most likely the result of the reduction of address

calculation and other extra code. In general, there is a relatively large difference

between no optimization and the first level, but little difference between the next

two.

The results of the register usage profile are shown in Figure 2.3. Unlike value

type, in most cases there is very little difference between optimization levels. Most

of the operands use the frame pointer register. This is the register used for tempo-

art00 compress95 equak00

O0 O1 O2 O0 O1 O2 O0 O1 O2

Single Float 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Double Float 11.01 20.54 20.54 0.43 0.46 0.47 11.27 18.19 18.11

Signed Byte 0.00 0.00 0.00 3.59 3.53 3.54 0.37 0.60 0.60

Signed Half 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.12 0.11

Signed Word 11.04 9.55 9.55 28.98 33.12 33.23 11.31 16.01 16.22

Signed Long 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Unsigned Byte 0.01 0.01 0.01 7.45 7.99 8.02 0.40 0.65 0.64

Unsigned Half 0.00 0.00 0.00 1.97 2.11 2.12 0.20 0.32 0.32

Unsigned Word 74.57 57.94 57.94 57.52 52.50 52.35 73.70 58.53 58.35

Unsigned Long 3.37 11.95 11.95 0.06 0.28 0.28 2.70 5.60 5.64

Table 2.2: Dynamic instruction value types
The percentage that each value type appears in the complete dynamic execution of each
of the benchmarks. The results are given for the three benchmarks at all three optimiza-
tion levels.
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rary values and local variables. For compress, over 60% of the instructions use

this type, while for equak it is over 75%. The next most often used register is the

zero register. In most cases this is used when using a constant or specifying a

label. The label could either be global data or a control flow instruction. It's inter-

esting that art uses such a high percentage of zero register operands, and that the

zero registers show a marked decrease in usage once optimization is applied. Art

seems to make heavy use of global data, and in particular global arrays. The

heavy zero register use is probably in address calculation instructions for these

globals. The stack pointer isn't used very often. It is primarily specified for param-

eters passing. It can be used as an indirect indicator of the number of function

calls occurring.

The results of the indirection level profile are shown in Figure 2.4. Like register

use, optimization level seems to have very little effect on indirection. In general

one level of indirection is the most common. This is the level used to access local

values and parameters. The next most common is no indirection. Its percentage is

almost exactly equal to the percentage of zero register usage. This would prima-

rily be used for constants or labels, although it is also used to directly access the
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Figure 2.3: Dynamic register usage
Breakdown of the operand register usage. The results are given for all three benchmarks
at all three optimization levels.
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registers. If used for constants or labels, the zero register is used; this explains

why the two percentages tend to be equal. In general, the direct register access

would only be in the function prologue or epilogue. Two levels of indirection is not

very common in the compress or equak benchmarks, but is used quite a bit more

in the art benchmark. The art benchmark also has a relatively high percentage of

no indirection operands. Once again this can be explained by its heavy use of glo-

bal arrays. The no indirection operands are probably used in address generation.

The two levels of indirection are necessary for reading or writing values using the

generated addresses for array accesses.

2.3.2 Comparison vs. PISA
The same benchmarks were compiled using MIRV for the Portable Instruction

Set Architecture(PISA) target and simulated using SimpleScalar. They also used

a ported version of newlib. Using the exact same compiler and C library ensures a

fair comparison.

The benchmarks were run to completion using the simulator, and a compari-

son of the number of executed instructions was made, see Figure 2.5. The num-
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Breakdown of the operand indirection level. The results are given for all three benchmarks
at all three optimization levels.
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ber of instructions for PISA was normalized to 100 and the number executed by

the mem-machine was compared to this. The base numbers correspond to the full

number of instructions executed. However, the lack of copy propagation leads to

extra moves. Any move with a source operand with one or zero levels of indirec-

tion and a destination with one level of indirection is a potential extra move. Any

operand that uses the destination of the move as a source could theoretically use

the original source of the move. Therefore, this is a rough estimation of the poten-

tial number of moves that could be eliminated. However, this would include moves

to or from parameters and return values. These are much less likely candidates

for elimination. Any moves that involved the stack pointers are probably in the

second category. The less extra moves bar adjusts the number of instructions by

removing all the potential extra moves. The less param moves bar also removes

the parameter move instructions. This gives an approximate indication of the

number of instructions once the compiler is more advanced. The number of extra

moves is non trivial for all these benchmarks. In most cases it is around 15% of

the instructions executed.

Figure 2.5: Dynamic instruction count comparison versus PISA
Less extra moves adjusts the number of dynamic instructions by removing those instruc-
tions that appear to be extraneous moves caused by the lack of copy propagation. Less
param moves includes both the regular extraneous moves and the moves that use the
stack pointer (param moves). The param moves are more likely to be actually required.
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The performance of both compress and equak on the mem-machine com-

pared favorably with that of PISA. Compress at no optimization only executed

about 75% of the instructions compared to PISA. However, as the optimization

level increases, this gap is reduced until at full optimization they are almost the

same. It seems that the optimization of the PISA target is more effective on this

benchmark then on the mem-machine. If the extra moves are taken into consider-

ation, even at the highest optimization the mem-machine executed about 20%

fewer instructions. Equak has the opposite trend. At low optimization, both exe-

cuted about the same number of instructions. However, as soon as any optimiza-

tion is done, the mem-machine required about 10% fewer instructions. Obviously

some optimizations work better for RISC like targets, while others have more

effect on the mem-machine. The performance of art on the mem-machine was

very inefficient in comparison to PISA. Even when the potential extra moves are

removed, it still required around 25% more instructions. Once again this comes

down to the characteristics of the benchmark. In this case, art does quite a bit of

access to global arrays. PISA is able to handle these using either displacement or

indexed addressing. However, the mem-machine cannot support these directly for

an operand. Therefore, it needs to use add instructions to do explicit address cal-

culations. MIRV assumes that these addressing modes are allowed, so the inter-

nal assembly is generated to reflect this. The assembly code for any type of array

access is optimized to make use of these address modes for efficient code on its

usual RISC targets. The mem-machine backend is forced to insert the necessary

adds, and it does it on a case by case basis and doesn't do any intra instruction

optimization. If the assembly generation could be adjusted to take the lack of

these instructions into account from the start, more efficient code could be gener-

ated.

The benchmarks were run over a range of cache sizes. All the caches are

direct mapped with a 32 byte line size, and only the most optimized code was run.

As expected, the mem-machine accesses the data cache much more often than

the PISA target, see Figure 2.6. In general, it averages between 2 and 2.5
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accesses per instruction depending on the benchmark, while PISA averages

between 0.3 and 0.7. Interestingly, the benchmarks display the same relative

trend on both machines. This is somewhat unexpected. The mem-machine needs

to access memory for all its temporary and local values besides just global data.

In particular, about the same number of accesses should be required regardless

of whether the data is global or local. I would have expected the average number

of accesses to stay relatively consistent.

The most important cache consideration for the mem-machine is how all the

extra accesses will affect performance. A simple comparison of miss ratios would

not be of any use. The mem-machine has so many more accesses that the miss

ratio should be very low. Therefore, a comparison of the absolute number of

misses is needed. In particular, the number of extra misses that the mem-machine

suffers will directly translate into decreased performance. To provide some con-

text, this difference is given as a percentage of executed instructions. Therefore, it

becomes the percentage of additional instructions (compared to PISA) that suffer

a data cache miss, see Figure 2.7. For compress, this is around 1% for most of

the cache sizes and remains relatively stable. Once the cache reaches 128 kilo-

Figure 2.6: Average data accesses per instruction
The data cache accesses per instruction for the mem-machine and PISA. The results are
given for all three benchmarks at the highest compiler optimization level.
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bytes, this percentage drops to almost zero. The sudden drop off seems to indi-

cate this isn't a capacity problem but something else, possibly conflict problems.

Equak shows a different trend; the percentage steadily decreases as the cache

size increases. This seems to indicate that it's primarily capacity issues for this

benchmark. The percentage starts at almost 2% for an 8 K cache, but quickly

drops to 1% at 16 K, then 0.5% at 32, and eventually settles around 0.1%. The

performance penalty these benchmarks suffer due to the additional data cache

misses should be relatively low for reasonable size caches. With a 32 K cache, for

both benchmarks, only about a half a percent more instructions suffer a data

cache miss. Depending on the cycle penalty for a cache, this is probably not

enough of a loss in performance for the PISA target to out perform the mem-

machine. The art benchmark has a much larger penalty than the other two bench-

marks; even with a 128 K cache, over 4% of the instructions are suffering a cache

miss. Although it decreases as the cache sizes increase, it only falls from about

5.1% with an 8 K cache to 4.25% with a 128 K cache. Both PISA and the mem-

machine suffer a large number of misses for this benchmark regardless of the size

Figure 2.7: Performance impact of extra data cache misses
The difference in the number of data cache misses between the mem-machine and PISA,
normalized to the number of instructions. This gives an indication of the relative perfor-
mance cost of any extra data cache misses. The results are given for the most optimized
compilation. All caches are direct mapped.
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of the cache. However, because the mem-machine makes so many more

accesses, the number of misses is greater by an almost fixed ratio.

The instruction cache performance is quite a bit different than the data cache,

see Figure 2.8. In this case, the mem-machine is not making more accesses;

however, each access is for 16 bytes instead of 4. The cache performance is pri-

marily going to depend on how well loop bodies fit into the cache. If the entire

body fits in, the cache performance will be good; if it doesn't it will be very bad. For

a small instruction cache, the mem-machine suffers quite a larger performance

penalty. Eventually when the threshold is reached, and the loops fit in the cache,

the penalty drops to almost zero. As expected, it takes a cache about four times

larger to show the same performance for the mem-machine as PISA. For these

benchmarks, an 8 K cache is definitely too small to give good performance. At 32

K, the performance penalty is less than 2%, and it reaches about zero for a 128 K

cache.

Code size is another important consideration for the mem-machine. The

instructions for the mem-machine are four times the size of the PISA instructions;

Figure 2.8: Performance impact of extra instruction cache misses
The difference in the number of instruction cache misses between the mem-machine and
PISA, normalized to the number of instructions. This gives an indication of the relative
performance cost of any extra instruction cache misses. The results are given for the most
optimized compilation. All caches are direct mapped.
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however, the mem-machine executables tend to contain fewer instructions, see

Table 2.3. For these benchmarks, the code size for the mem-machine is about

3.5x the size of the code for the PISA executable, see Figure 2.9. If the possible

extra moves are removed, it becomes only about 2.8x the size. Code compres-

sion should work well on the mem-machine, because although it has 32 bit offsets

art00 compress95 equak00

PISA instructions 13,644 11,465 15,433

Base instructions 11,753 9,953 13,478

Less extra moves 9,717 8,188 11,070

PISA instruction size 32.00 32.00 32.00

Mem-machine instruction size 128.00 128.00 128.00

Base compressed instruction size 33.33 32.62 37.37

Less moves compressed instruction size 34.13 33.39 38.15

Table 2.3: Code size statistic
The first three rows show the static number of instructions contained in each benchmark.
The last rows show the average instruction size. The mem-machine statistics are shown
both for the base and with the potential extra moves removed. The instruction size is
shown for both uncompressed and with a simple compression scheme employed.

Figure 2.9: Code size comparison versus PISA
The static code size for all three benchmarks normalized to the size of the PISA code.
The results are shown both base and with the extra moves removed (less) and uncom-
pressed and compressed (comp).
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and a 32 bit operation, the number of unique values these have in any executable

should be low. In particular, some operations, for example unsigned word move,

will be much more common while others are either not possible or not likely. The

offset behavior is a bit more varied. Some operations require fewer than 3 oper-

ands, so zero will be a very common value. Standard offsets for locals and param-

eters will also be common. However, labels (both code and data) will tend to be

unique, at least to the executable. A compression scheme could be used to

reduce the size. A simple one is to sort the values by order of use and use a bit

encoding to encode the most common values. For the mem-machine, it makes

sense to treat the operation and offset fields separately, see Table 2.4 for the

encodings used. If this simple compression scheme is applied, the base size of

the mem-machine code shrinks from about the same size to about 10% smaller

than the PISA. If the extra moves are removed, the code size becomes 15% to

25% smaller than the PISA. The average size of a compressed mem-machine

instruction is still a couple of bits larger than a PISA instruction (see Table 2.3), but

because there are fewer instructions, the total size is smaller. Notice that the aver-

age size of the compressed instruction increases when the extra moves are

removed. This is because these moves probably all have the same or at least a

Operation Offset

Size (bits) Number of Values Size (bits) Number of values

4 8 1 1

7 32 7 32

11 256 12 512

36 - 36 -

Table 2.4: Compression scheme.
The simple compression scheme used to compress the mem-machine code. The opera-
tion and offset fields are compressed separately. The values are sorted by order of fre-
quency and a simple replacement encoding scheme is used. Four different encodings are
used. The first three provide compression. They encode the value in the number of bits
specified by the size, but only for the number of unique values given by the second col-
umn. The final encoding is used for all the rest of the values.
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very common opcode and they only need two parameters. Therefore, they are

probably some of the more compressible instructions.

2.4Conclusion
The mem-machine exhibited mixed results. Some of the benchmarks were

able to show significant performance improvements compared to a traditional

RISC ISA. Because the mem-machine is a memory-to-memory architecture, it can

eliminate explicit load and store instructions. The mem-machine removes all gen-

eral purpose registers and therefore is also able to remove all the save and

restore instructions normally necessary on a function call/return for a RISC

instruction set. However, not all benchmarks show a performance advantage. In

particular, equak00 requires more than 25% more instructions to execute on the

mem-machine than on PISA. The mem-machine suffers from a limit on the

addressing modes available to its operands. Specifically, it is unable to support

displacement or indexed addressing. The mem-machine is therefore forced to

insert extra instructions to explicitly calculate these addresses.

Although the mem-machine generates many more accesses to the caches,

the performance impact is relatively minor. Only a small percentage of additional

instructions will suffer a data cache miss, with the percentage decreasing as the

size of the data cache is increased. The instruction cache shows similar results.

Although the mem-machine instructions are four times the size of a typical RISC

instruction, the extra misses in the instruction cache approach zero with a reason-

able cache size. This is due to a combination of factors. First, the static code size

was reduced. Therefore, the instruction cache can be used more efficiently. Sec-

ond, the critical factor in instruction cache performance is that entire loop bodies

fit into the cache. Once this threshold is achieved performance is relatively good.

The results of the mem-machine are affected by compiler limitations. The com-

piler used to generate code is a modified version of MIRV. The compiler was cre-

ated to target reduced instruction set architectures. This has ramifications with

regard to the quality of the code generated for the mem-machine. First, the com-



29

piler is optimized to generate intermediate code that uses indexed and displace-

ment addressing. This forces the mem-machine to undo this addressing on a case

by case basis. Although the final ISA had no general registers, compilers usually

generate intermediate code that uses an unlimited pool of virtual registers to

describe the data dependencies. Second, only a very simple allocator for this new

architecture was implemented. It assigns a separate spill location to each virtual

register. While not very efficient, it is very simple to implement. This has several

repercussions though. MIRV relies on the register allocator to provide copy propa-

gation. This simple allocator did not implement this. Therefore, the generated

code will have extra moves. In addition, this means that no reuse of stack loca-

tions will take place. This will have a negative effect on the cache performance

and on the compressibility of the code.

Perhaps the greatest complexity in the mem-machine would be designing an

implementation. A simple single issue in-order core would be possible. However,

it would still require complex hazard detection and a large number of data cache

ports. The only realistic out-of-order superscalar implementation would require

renaming the memory locations into physical registers (see Chapter 3 for an

example of such a rename). This would be necessary both for dependency track-

ing and providing a practical data path. In such a system, all zero and one level

indirection operands could be directly mapped into physical registers. However,

the dynamic nature of a two level indirection operand makes this impossible.

Instead, the operand would require the insertion of an additional micro op. Such a

micro op would be responsible for generating the address (the first level of indirec-

tion). This is reminiscent of how loads and stores work in conventional RISC

microprocessors. This relationship is further strengthened by the fact that two

level indirection operands occur at a rate similar to loads and stores.

In general, the disadvantages of the mem-machine outweigh its advantages.

The performance improvements are relatively mixed on the small set of bench-

marks we examined. The instructions size is much larger. As the compression

results show, these offsets can be compressed into approximately the same size

as a register specifier in a RISC ISA, but this would require the addition of com-
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plex decompression hardware. Finally, the mem-machine would be difficult to

realize in hardware, especially in an out-of-order pipeline. The greatest advantage

the mem-machine has is a complete lack of register context. This would allow a

large number of simultaneous contexts to be supported on a processor. In almost

all cases, register allocation is not the place to perform the memory mapping of

the registers.
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Chapter 3

VCA Design

This chapter provides details on the theory and design of the virtual context

architecture. It is composed of four sections: 1) theory 2) implementation 3) SMT

and multiprocessor implications and 4) rename table optimizations. The theory

section describes the theory that underlies the operation of the virtual context

architecture. The implementation section describes the specifics on how the VCA

can be implemented. The third section examines some of the implications a multi-

threaded or multiprocessor environment has on the virtual context architecture.

The final section discusses some potential optimizations that can be applied to the

implementation of the rename table. Finally, the chapter ends with a summary of

the pipeline modifications.

3.1Theory
The virtual context architecture is a modification to the processor pipeline. By

memory mapping the logical registers, we seek to keep all the advantages of reg-

isters while adding the automatic context management of virtual memory. This

section explores the theory behind these modifications. It is composed of four

subsections. The first subsection describes the processor model that is used as a

base for the virtual context architecture. The second subsection describes how

the memory mapping is accomplished. The third subsection explains the new

states required for the physical registers. The fourth subsection discusses the

new operational requirements of the register rename stage. 
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3.1.1 Processor Model
The design of the virtual context architecture builds on that of a typical super-

scalar out-of-order processor [32]. Instructions are dynamically issued from an

instruction queue out of program order, but commit in program order using a reor-

der buffer. To eliminate false dependencies and buffer speculative values, register

renaming is used to dynamically assign logical registers to physical registers. We

assume a merged register file implementation, like the ones used by the MIPS

R10000 and Alpha 21264 [14, 38]. This implementation maintains both the specu-

lative and architectural state of the registers in the physical register file with the

reorder buffer containing just the physical register tags.

The processor model was chosen to reflect the current state of the art out-of-

order pipeline. The VCA is in no way limited to this particular processor model. In

general, the techniques we employ to virtualize the register context can be applied

to most processor models. This includes processor models that use reservation

stations instead of a reorder buffer and store the actual value of source registers

in the buffer instead of just the tags.

Although it is not as natural a fit, the virtual context architecture could also be

applied to an in-order processor. In this case, the pipeline would need to be modi-

fied to implement register renaming. This would require the addition of a new

stage to perform register renaming. It would also require that the backend of the

pipeline use the physical register tags for purposes of hazard detection and value

forwarding.

3.1.2 Memory Mapping
The virtual context architecture maps logical registers to memory locations.

The physical register file caches register values based on these memory

addresses. As a result, a physical register can hold a value from any context at

any point in time. The exact technique used to accomplish this mapping is in some

ways independent of the virtual context architecture. There are only two require-

ments: independence and consistence. The two requirements when taken
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together ensure a unique one to one mapping between a given logical register in a

specific context and a memory address.

The memory mapping must result in addresses that are independent of each

other. In particular, the only time two logical registers can map to the same mem-

ory address is if they are the same logical register within the same context. If

either the logical register id or context (be it thread or function depending on the

model) is different, the mapping address must be different. This is required to

guarantee that there are no false positives when a physical register is looked up.

In other words, when the memory address is used by rename to translate to a

physical register, if the translation is successful (a physical register is caching that

memory address), the value represented by that physical register must corre-

spond to the value of the logical register.

The memory mapping must also result in addresses that are consistent. A par-

ticular logical register within a particular context must always map to the exact

same address. This is a similar but subtly different requirement than indepen-

dence. This is required to guarantee that there are no false negatives when a

physical register is looked up. In other words, when the memory address is used

by rename to translate to a physical register, if the translation is not successful (a

physical register is not caching that memory address), the current value of that

logical register must not be contained in the physical register file and must be

present in memory at that address.

A simple way to accomplish this mapping is using a base address within the

processes address space for each context. Depending on the usage model, a reg-

ister context can be as specific as a particular activation record within a particular

thread. Adding the scaled logical register index to the base address produces a

memory address that is unique for that logical register within the context and also

unique across all contexts.

In the case of simultaneous multithreading, the address space associated with

each process provides the independence. In the case of register windows this

base address is updated on each function call and return. The exact operation

depends on whether the register windows are overlapping or not. In the case of
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non overlapping windows, a function call would cause the base register to incre-

ment by a fixed amount equal to the total memory space of a single context’s

worth of registers. Thus the new function has a completely new set of memory

locations for its logical registers. On a function return, the base address is decre-

mented by a fixed amount. This restores the mapping of the previous function. In

the case of overlapping register windows, the increment size is smaller. The mem-

ory locations of the two function contexts are allowed to overlap. In some sense

this breaks the independence rule for the mapping. In particular, some registers in

the calling function map to the same memory address as some registers in the

called function. However, in the overlapping register window case this is the

desired behavior. Although the logical registers are in different contexts, they are

conceptually the same register. The virtual context architecture naturally and eas-

ily handles this.

To simplify the implementation, only the pipeline itself is allowed to read/write

to this address range. In particular, loads and stores should be prevented from

accessing this memory. If they were allowed to, complex dependency checking

would be needed in the pipeline to detect loads/stores to addresses that are

mapped into physical registers. Basically, once the address for a load/store was

determined, the address would need to be sent to the rename table to determine if

that location has been renamed to a physical register. This is further complicated

by the fact that the in order semantics of the instructions would somehow need to

be maintained. The address for a load/store is calculated some number of cycles

after going through rename. It is possible that an instruction after the memory

instruction defines the logical register corresponding to that memory location. The

instruction is allocated a new physical register and the rename table is updated to

map that address to this newly allocated physical register. The rename table

would identify that new physical register as the current mapping, even though it

wasn’t the mapping when the memory instruction was renamed. To fix this, the

pipeline would have to squash all the instructions following the problem memory

access and restore the rename table to the state it was in when the memory

instruction was renamed. This process is similar to recovering on a mispredicted
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branch. The logic would be further complicated by things like byte stores to regis-

ters.

3.1.3 Physical Register States
In a conventional out-of-order machine the physical registers are in one of two

states: free and not free. A register is not free when it contains architectural state,

either speculative or not. All of the registers in the system that are not free are the

committed state for all the logical registers, plus any physical registers renamed to

destination registers of yet to be committed instructions (all those instructions

between rename and commit). All the other physical registers are considered free

and are available to be used by rename. A physical register becomes free when a

later instruction which writes to a logical register commits. The physical register

that previously held the architectural state of that logical register becomes free,

because no instruction will ever need the old value.

Unlike the two states of a physical register in a typical machine, each physical

register in the virtual context architecture is considered to be in one of four states:

unavailable, available dirty, available, and free. The free physical registers are the

same as those in a conventional out-of-order processor. These correspond to reg-

isters without valid state. In other words, the semantics guarantee that no later

instruction will ever need the value held in this physical register. This registers are

free to be used by rename. The non free physical registers in a conventional

machine are split into the three other states in the virtual context architecture. The

distinction is based on the physical register’s availability or lack thereof to be used

by the rename stage.

A physical register is available when two conditions are met. First, the physical

register must contain architectural state, i.e. a committed value. A physical regis-

ter meets this condition once the instruction defining it is committed, until a later

instruction overwrites this value and the physical register becomes free. Second,

there can be no instructions in the pipeline after the rename stage that have not

read the value. If either of these conditions is not met, the physical register is con-

sidered unavailable. The second condition is critical. It is the guarantee that no
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instruction after rename requires the value any more. If this is the case, the physi-

cal register can be moved to memory and the physical register becomes free.

Available registers are additionally considered available dirty if they have been

modified since the last time they were moved to memory. An available register

that is not dirty can be used freely by the rename stage. However, if the available

register is dirty then its value must first be moved to memory before it can be

reused.

The virtual context architecture operates by treating the physical register file

as a cache of memory mapped logical registers. This requires that physical regis-

ters be removed from the physical register file and moved into the cache hierar-

chy. The unavailable state of a physical register can be viewed as a lock on the

physical register. Only an available physical register can be moved from the phys-

ical register file into memory and the corresponding physical register freed.

3.1.4 Register Rename Stage
To avoid modifying the scheduling and execution stages of the pipeline, we

guarantee that the physical register indices used by instructions in the instruction

queue are valid. Instructions issuing from the queue simply read their operands

from (and write their results to) the physical register file without any tag checking

or potential miss condition. Instruction scheduling is also performed based on

physical register indices as in a conventional processor.

To guarantee valid physical registers for each instruction in the queue, the

caching behavior of the physical register file is managed as part of the register

renaming process. If a logical register does not have a corresponding physical

register, the rename stage allocates a physical register and initiates a fill operation

to bring the register value in from memory. If necessary, the rename logic will first

spill an existing physical register’s value back to memory so that the register can

be reallocated. The new logic of the rename stage is shown in Figure 3.1,

Figure 3.2, Figure 3.3, and Figure 3.4. 

Figure 3.1 details the logic used to find a physical register. First, the rename

table must check to see if there are any free physical registers. If yes, it uses the



37

free physical register. If no, it uses some replacement policy to get the next avail-

able physical register to replace. If there are no available registers, the rename

stage must stall this cycle. If there is an available register, it checks if it is dirty. If

the register is not dirty, the rename stage frees the physical register then uses it. If

it is dirty, the register must be spilled. Once the spill is complete, the dirty status of

the physical register will be cleared, and the register can be freed.

Figure 3.2 details the logic used to find a rename table entry. First, the rename

table checks if there is an unused entry. If yes, it uses that entry. If all the entries

are used, the table checks if any of the entries are physical registers that are

available. If all the physical registers are unavailable, the rename stage must stall

this cycle. Eventually, one or more of the physical registers will become available.

If one of the physical registers is available, the table checks if it is dirty. If the reg-

ister is not dirty, the rename table frees the physical register then use its entry. If it
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Figure 3.1: Finding A Physical Register To Use
The logic used by the rename stage to find the next physical register to use.
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is dirty, the register must be spilled. Once the spill is complete, the dirty status of

the physical register will be cleared, and the register can be freed.

Figure 3.3 details the logic used by the rename stage for a logical register act-

ing as the source of an instruction. First, the memory address of the logical regis-

ter source is looked up in the rename table. On a hit, the renamed physical

register is used. On a miss, a physical register and rename table entry must be

found. These operations can occur in parallel and are detailed in Figure 3.1 and

Figure 3.2, respectively. If both a register and entry are found, a fill is done. The

found physical register is used and the rename table entry is updated. If either a

register or entry cannot be found, the stage is stalled this cycle.

Figure 3.4 details the logic used by the rename stage for a logical register act-

ing as the destination of an instruction. A destination register requires two things:

a physical register and a rename table entry. A physical register is found using the

logic detailed in Figure 3.1. For the rename table entry, first the memory address

 

Any 
Unused 
Entry? 

Any 
Entry 

Available?

 
Is Dirty? 

 
Stall 

 
Spill Register 

 
Use Entry 

 
Use Entry 

 
Free Register 

No 

Yes 

Yes 

No 

No 

Yes 
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The logic used by the rename table to find a rename table entry.
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of the logical register is looked up in the rename table. On a hit, the matching

entry is used. On a miss, the logic detailed in Figure 3.2 is used to find an entry. If

either a register or entry cannot be found, the stage is stalled this cycle.

The virtual context architecture enables the physical register file to hold just

the most active subset of logical register values, instead of the complete register

contexts, by allowing the hardware to move registers to and from memory (the

cache hierarchy) on demand. By using memory to maintain the architectural state

of the processor, the number of physical registers is decoupled from the number

of logical registers. This decoupling is what allows the processor to give the illu-

sion of a nearly infinite set of logical registers. In particular, this enables the pro-

Figure 3.3: Source Register Logic
The logic used by the rename stage when a source register is renamed.
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cessor to have fewer physical registers than logical registers. Normally, in a

merged register file, the number of logical registers must be less than the number

of physical registers to avoid a register-release deadlock [25]. In the VCA no

deadlock is possible. Note that the physical register file contains all the operands

and destination registers needed by instructions past the rename stage, so

instructions will continue to execute, eventually making registers available and

preventing deadlock. In the worst case, since instructions can continue to exe-

cute, the pipeline can eventually completely drain. At this point all the physical

registers become available. Therefore it is never possible for the pipeline to dead-

lock because of a lack of physical registers.
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Figure 3.4: Destination Register Logic
The logic used by the rename stage when a destination register is renamed.
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3.2Implementation
Building a machine based on the virtual context architecture requires some

modifications to the traditional pipeline. These modifications can be grouped into

four categories: rename, spill/fill implementation, branch recovery and operating

system changes. Most changes focus on the rename stage, including extensive

changes to the rename table itself. The pipeline requires minor modifications to

allow register spilling and filling to/from memory. The increased size of the rename

table influences the choice of branch recovery scheme. Lastly, the memory map-

ping of the registers requires some changes to the operating system.

3.2.1 Rename Stage
There are two main modifications that are needed to the rename stage. First,

the rename table is indexed by memory address, requiring modifications to the

table. Second, the pipeline must track the additional states of the physical regis-

ters.

3.2.1.1 Rename Table

The rename table is no longer indexed by logical register; instead, it is indexed

by a memory address. Therefore, the rename table can no longer be sized to han-

dle all possibilities. The rename table must therefore become more like a cache.

The rename table must have tags and valid bits. The tags are used to identify the

memory addresses that the rename table entry represents (since only part of the

address is used to index the table). The valid bit is used to signify a rename table

entry that does not contain a mapping.

A simple direct mapped table may not be adequate. The rename table must be

designed to prevent potential deadlocks. A deadlock is possible if two or more dif-

ferent logical registers in a single instruction map to a single rename table entry.

Preventing deadlock in a single instruction is sufficient because the entire pipeline

can be allowed to drain, which would make all the entries in the rename table

available. In the case where a thread contains only a single context (no register

windows), a simple direct mapped table with more entries than the number of log-
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ical registers would work. In the case where a single instruction can contain logi-

cal registers from multiple contexts, such as global and windowed registers, the

rename table must have some type of associativity. This associativity could be

accomplished in many ways: fully associative table, set associative table or direct

mapped table with a victim table. The only condition is that a single address must

be able to be mapped to at least as many entries as there are potential contexts in

a single instruction.

3.2.1.2 Tracking Physical Register States

The second modification to the rename stage is that the pipeline must be able

to track the additional states of each of the physical registers. A traditional pipeline

only tracks if a physical register is free or not free. The physical registers in the

VCA can be in four states (free, available, dirty available, not available). There-

fore, the pipeline needs to track availability. A physical register is available when

two conditions are met. First, the physical register must contain architectural state,

i.e. a committed value. Second, there can be no instructions in the pipeline after

the rename stage that are waiting to read the value. This can be simplified to the

requirement that no instructions in the reorder buffer (ROB) can be using the

physical register (depending on replay policy this may be overly cautious).

The first condition can simply be tracked with a commit vector, with one bit for

each physical register. When an instruction is committed, the bit corresponding to

the destination physical register is set. For the second condition, the pipeline must

keep track of which registers are sourced by instructions in the reorder buffer. As

in previous work[1, 22], this can be accomplished by a set of counters for each

physical register that tracks the number of instructions after rename in the pipeline

that use the physical register. The counters are incremented in the rename stage,

and decremented at commit. Another way to maintain this is to keep a table

indexed by physical register that contains the last ROB entry that uses the physi-

cal register. When an instruction is committed, it can index into the table with the

source specifiers and if this ROB is the last entry, the physical register becomes

available.
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The second condition is much easier to track in an out-of-order pipeline that

uses reservation stations or in an in order pipeline. In both these cases, the phys-

ical register file is accessed in an in order fashion. This is obvious in the in order

case, but also holds in the reservation station case. In a pipeline that uses reser-

vation stations the physical register file is only read from at rename, and the val-

ues are stored in the reservation station. Physical registers that are still pending

are read from the broadcast network, however the first condition already pre-

cludes these from being available (they are not committed yet). Therefore, in both

cases the physical register file is read in program order at rename. Therefore, the

pipeline can guarantee that for any committed physical register, any instruction

after rename will have already read the value from the physical register. This

means that condition two is not relevant in these cases and therefore need not be

tracked at all.

The dirty status of an available register also needs to be tracked. A simple bit

vector can be used for this. When an instruction commits, it marks all its destina-

tion registers as dirty. A fill does not mark its physical register as dirty; the value is

already in memory. Once a spill has completed, the dirty status of the physical

register is cleared.

3.2.2 Implementing Register Spills and Fills
The implementation of register spills and fills requires the insertion of the

equivalent of loads (fills) and stores (spills) into the pipeline. A simple way to

accomplish this is to insert these as operations directly into the pipeline. However,

these operations are simpler in several ways from the other loads and stores.

First, there are no input dependencies for these operations. The only input a fill

has is the already determined mapping address of the register. A spill has two

inputs: the register mapping address and the physical register being spilled. One

of the conditions to spilling a physical register is that it contain committed architec-

tural state. Thus, the instruction defining the physical register must already have

been committed, and the physical register is always ready. Therefore, these oper-

ations are ready to be executed as soon as they are inserted. Second, as previ-
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ously stated, the memory address for these operations is known when they are

inserted and has certain characteristics. A traditional memory operation is placed

in the load store queue (LSQ) where complex memory disambiguation logic deter-

mines when it is safe for operations to execute. The logic also checks for bypass-

ing between stores and loads. This logic is not necessary for these spill/fill

operations. Memory disambiguation is not needed because all the operations are

ready to be executed as soon as they are inserted and they never need to be exe-

cuted out of order. Bypass logic is not needed because of the nature of these

insertions - a spill and fill to the same memory address will never exist in the pipe-

line at the same time. If a fill is already in the pipeline, a spill cannot be inserted

because the physical register is not committed state until the fill has been commit-

ted. If a spill is already in the pipeline, a physical register will already exist that is

mapped to the register and therefore a fill will never need to be generated. Third,

these operations are never speculative. They are only transferring committed

architectural state between memory and the physical register file. Although a

speculative instruction can trigger them, the triggered operation itself is not specu-

lative because it is only working with non speculative values. Therefore, these

operations do not in fact need to be part of the speculative/squash system at all.

A more efficient way to implement spills and fills is to add a small queue—the

architectural state transfer queue (ASTQ)—to the pipeline. On one end, the

rename stage adds an entry to the queue when a spill or fill is necessary. On the

other end, the ASTQ feeds a mux that merges cache accesses coming from the

ASTQ and the instruction queue. If a memory function unit does not issue an

instruction during a cycle, the next entry from the ASTQ is issued. A conventional

tag broadcast is used to signal dependent instructions for register fills. In the case

of spills, the rename stage is stalled until the spill has issued. The addition of the

ASTQ means that spill and fill operations will not take up valuable resources by

residing in the LSQ, instruction queue (IQ) and ROB. In an in order pipeline, these

structures don’t exist, and therefore directly inserting the spill and fill as operations

in the pipeline would be the easiest solution.
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In order for the rename stage to add a spill operation, it requires the address of

a physical register to spill it. A table is needed to store these mappings. The table

requires one entry for each physical register and contains the memory address

tag. At commit, the memory address of the destination registers are stored in the

table. The table is only read when a register is spilled. It requires as many write

ports as the commit bandwidth of the pipeline, but only a few read ports since the

rename stage only dispatches a small number of spills at a time.

The purpose of a spill is to move the register value out to memory (specifically

the first level data cache) so that the physical register can be replaced by the

rename stage. The rename stage must stall until it is safe for the register to be

overwritten. The amount of time it must stall is dependent on the pipeline. In the

tag only out-of-order pipelines we are concerned with, the stage must stall until

the physical register has been read from the physical register file and put into the

store buffer. The rename stage must wait until this is done to guarantee that the

physical register would not be overwritten before it was read. If the rename stage

did not stall, the renamed instruction could theoretically be issued and writeback

before the spill operation was issued, causing the value to be spilled to be over-

written and lost. In an in order pipeline or an out-of-order pipeline that uses reser-

vation stations, the rename stage does not need to stall at all. As discussed in

Section 3.2.1.2, the order that instructions read from the physical register file is

fixed. In particular, all the reads and writes occur in the order that instructions are

dispatched from rename. Therefore, the rename stage can simply dispatch the

spill before the instruction that uses the replaced physical register. As the spill

operation is dispatched it will read the value from the physical register file. Thus,

the overwriting instruction can be dispatched immediately after it without any

stalls.

3.2.3 Branch Recovery
Branch recovery is a problem that all speculative pipelines face. Commonly,

architectures checkpoint the rename table at each branch. Our rename table is

larger than a conventional one, so this solution would be expensive in area.
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Another recently proposed solution, which is used in the Pentium 4 processor, is a

retirement map table [1]. This solution is more practical in the VCA because it

requires only a single duplicate of the rename table. This duplicate rename table

is kept in the commit stage. As each instruction is committed, it updates this retire-

ment map table. When a mispredicted branch is committed, the retirement map

table is now the correct rename table. To recover, the retirement rename table is

copied to the rename table, and the pipeline is flushed. A simple optimization is to

detect the misprediction at writeback time. The retirement map table is copied

immediately to the rename table. The ROB is then walked from the oldest instruc-

tion backwards until the branch is reached, and each entry updates the rename

table as if it was just renamed.

This branch recovery scheme integrates well with the counter scheme used to

track the use of a physical register mentioned in Section 3.2.1.2. When the retire-

ment map is copied to the rename table, all the use counters are reset to zero. If

the optimized recovery is used, the counters are updated as the ROB is walked.

The other scheme also fits in naturally with this type of recovery. Instead of zero-

ing the entries, all the entries are simply marked as invalid. In the optimized

scheme, as the ROB entries are walked, the last use entries are updated.

3.2.4 Operating System
The virtual context architecture requires some minor changes to the operating

system. Most of these changes are actually simplifications to the operating sys-

tem. These changes include: reserving a location in virtual memory for the register

mapping, implementing context switches/interrupts and changes to virtual mem-

ory management.

The location in virtual memory used for memory mapping is processor/operat-

ing system dependent. An unused range of addresses in the virtual address

space is reserved for the registers. The operating system can then set up the

base address to point to this location. When the operating system is asked to cre-

ate new threads, it assigns each thread a new space in these reserved

addresses. This is similar to what it is forced to do for the stack.
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On a context switch the operating system saves the current base address to

part of the process control block (like it used to do for all the registers) and loads

the new thread’s base address from its process control block. The saving and

restoring maintains the consistency necessary in the mapping. Unlike a conven-

tional machine, the logical registers themselves do not need to be explicitly saved

or restored. The pipeline itself will move the new thread’s registers from memory

into the physical register file as they are needed, while it moves the old thread’s

registers into memory as it needs to free up physical registers. The physical regis-

ter file is now simply a cache. Therefore, it no longer requires explicit manage-

ment by the operating system in the case of a context switch. This is similar to

how the data and instruction caches operate. On a context switch, nothing is

explicitly done. Instead, the memory values of the new thread are efficiently

loaded into the cache when they are needed while the old thread’s memory val-

ues are move back into higher levels of the cache as they are replaced by the new

thread’s memory.

The same automatic context management that the VCA brings to context

switching can also be used for interrupts. On an interrupt, the hardware can swap

in a new base register. This effectively gives the interrupt handler an entire con-

text of registers. There is no need for explicit saving or restoring. The same tech-

nique could also be applied to kernel code. In systems like the Alpha [31], a

separate set of 8 shadow registers is used to optimize the exit and entry from PAL

code. The VCA enables a very clean implementation of this. A separate base reg-

ister for kernel/PAL code could be used. This would provide a completely indepen-

dent set of registers for use in kernel code. A simple move instruction could then

be added to move values between the different register sets.

Treating the physical register file as another level in the data cache hierarchy

does add some complications to the management of virtual memory. In a conven-

tional machine, when the operating system needs to move a page to the disk, it

first issues a special instruction that forces all the caches to writeback any lines on

that page to memory. For the VCA, this operation needs to be extended to the

physical register file. In particular, if the operating system needs to reuse a page
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of memory that is currently mapped to the part of the virtual address space that

registers are mapped to, it must ensure that all registers mapped to that page are

moved out of the physical register file. Therefore, the VCA requires a special

instruction that spills all the registers that correspond to a particular page. This

could be simplified to ease the complexity of implementation to either just the reg-

isters for a particular address space, or all the physical registers. These would

trade efficiency for ease of implementation. The operating system would also

have to pin any page that is used for register mapping of registers currently in use

by the pipeline.

3.3SMT and Multiprocessor Implications
To support multiple threads in the pipeline typically means that many struc-

tures in the pipeline must be duplicated. In the case of the virtual context architec-

ture, most of the additional structures are completely independent of the number

of threads, including the mapping table and use counters. Unlike a traditional

pipeline, the rename table itself is not replicated. In fact, the only structures repli-

cated are the pipeline registers holding the current base pointer. Thus, the VCA

makes it practical to support large numbers of threads in a pipeline.

In a multiprocessor environment, treating the physical registers as another

level of cache does raise the issue of coherence. Trying to make the physical reg-

ister file coherent would be expensive because the physical register file has single

word block sizes and logic would be needed to prevent an in use physical register

from being removed from the pipeline. The physical register file is also accessed

much more frequently than the data cache, and the latency of these accesses is

critical to the performance of the processor. Our solution to this problem is two

fold. First, we limit how these mapped addresses can be accessed. In our system

these addresses should only be accessed through a register access; no code

should ever need to explicitly address these mapped registers. This is desirable

for several reasons, see Section 3.1.2. In addition, a protection scheme in the

page table could potentially be used to prevent this from ever occurring. We
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assume the operating system would keep the virtual memory segments separate

for each software thread; then, only when a thread is migrated from one processor

to another is coherence necessary. Second, we make use of the special instruc-

tions needed for virtual memory management in the VCA, see Section 3.2.4. Spe-

cifically, the VCA requires an instruction to force some or all of the physical

registers to be spilled to memory when the operating system needs to reclaim a

memory page used to hold register values. The operating system can detect when

a thread is being migrated from one processor to another and use this instruction

to force all the relevant architectural state (mapped physical registers) for the

thread to be spilled into the data cache. Then, the standard coherence mecha-

nism of the cache hierarchy would handle the coherence.

3.4Rename Table Optimizations
The access pattern of the rename table is not random. The table will generally

be accessed using memory addresses from a small number of contexts repre-

senting the active register windows of each thread. The maximum number of

simultaneous entries is also fixed to the maximum number of different registers

that can ever be renamed simultaneously. This is equal to the number of physical

registers. These restrictions open up the possibility of optimizing both the organi-

zation of the rename table and the rename table tags.

3.4.1 Rename Table Organization
The proposed implementation for the rename table is a set associative organi-

zation with a tag and valid bit for each entry. Although this organization provides

the greatest flexibility, it comes at the cost of a large rename table with complex

logic. The fact that the maximum number of rename table entries is fixed to the

number of physical registers means that a fully associative table sized to the num-

ber of physical registers is able to provide no capacity or conflict misses. How-

ever, a large fully associative table would be unlikely to meet cycle time limits. On

the other end of the spectrum is a simple direct mapped table with valid bits for

each entry, but only a single tag. The tag would represent the context that the
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entire table supports. When the context is switched, all of the registers belonging

to this context would need to be spilled to memory. Therefore, this design would

be impractical in a register window implementation. However, if a table was pro-

vided for each thread, this would be a reasonable implementation in a simulta-

neous multithreading processor. The valid bits would allow single register

granularity for caching in the physical register file. However, a more traditional

implementation for context switches and interrupts, one that explicitly saves all the

registers, would be required. Another theoretical possibility would be to provide a

tag for some number of registers and a valid bit for each. While this would reduce

the size of the table, it would still require tag checking for each access. It would

also require more complex logic for determining when a tag can be replaced (all of

the registers covered by this tag would need to be freed).

An intriguing possibility would be a combination of the two extremes. A map-

ping table is already required to hold the addresses for each physical register.

Some additional information could be stored in the table, allowing us to regener-

ate the rename table based on the entries in the mapping table. One or more sim-

ple direct mapped tables would cache the rename information for current

contexts. Thus, most accesses would simply use the direct mapped table and only

need to check the valid bit. On a context change (for example a register window

allocation or deallocation), the tables would be checked to find one holding this

context. If one is not found, the mapping table would be used to rebuild the table.

By providing more than one caching table, the fixup frequency could be lowered.

The complexity of the logic needed to perform this fixup would need to be studied

to determine if this idea is practical to implement.

3.4.2 Rename Table Tags
VCA requires a cache-like rename table with tags to map arbitrary addresses

to physical registers. Adding a full address tag to each entry in the table signifi-

cantly increases its size. Because the rename table will likely be replicated to

implement the required number of ports, this size increase may be costly. We can

take advantage of register address locality to drastically reduce the tag size with
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only a modest increase in complexity. Although any memory address could be

used as a base pointer, in practice only a relatively small number of addresses

(i.e. a few function contexts from a small number of threads) will be used as base

pointers within a given period of time. Register memory addresses also exhibit

spatial locality around each base pointer address.

To exploit these characteristics, we introduce an additional translation table

that maps the upper bits of each register memory address to a much smaller reg-

ister space identifier (RSID), see Figure 3.5. The concatenation of the RSID and

the remaining low-order memory address bits (the register space offset) are then

used for the rename table lookup. Figure 3.6 illustrates this process. In the exam-

ple shown there, the upper 48 bits of the 64-bit register memory address are

mapped to a 4-bit RSID. As a result, the tag on each rename table entry is only 11

bits rather than the 55 bits required without RSIDs. In this case, the translation

table could be implemented with a small 16-entry fully associative buffer where

the RSID is simply the index of the matching entry.

If a register memory address does not find a match in the RSID table, it must

allocate a new table entry, potentially replacing an existing valid table entry. In this

(rare) situation, any physical registers using the current RSID must be flushed to

memory before the RSID can be reused. In this unlikely event, a special instruc-

tion can be used to flush the physical registers to the data cache. The same

instruction is used if a physical page that contains register values needs to be

paged out by the virtual memory system, see Section 3.2.4. It may be desirable to

associate reference counters with each RSID so that unused RSIDs can be iden-

tified and reused without requiring a flush operation. RSIDs can be managed in

hardware (or low-level software, such as PAL code), and thus the very existence

of RSIDs is hidden from the operating system and user-level code.

We can reduce the overhead of the translation process by caching the RSID

associated with each base pointer, accessing the RSID table only when a base

pointer is updated (due to a context switch or a register-window call or return).

This optimization requires a modest alignment restriction on the base pointer so
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that a logical register offset cannot generate a memory address outside the range

of the current RSID. A similar scheme could be used to cache the physical
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dress space. (b) A 64 bit virtual address can be translated into a 17 bit register space ad-
dress. The upper 48 bits of the virtual address are translated into a register space
identifier using a small 16 entry table. The next higher 13 bits become the register space
offset. This is a large enough offset for 182 register windows. The lower 3 bits are discard-
ed because all the registers are 64 bit.

3 13 48 

4 13 

Translation 
Table 

Table Index 

Register Space Identifier Register Space Offset 

Virtual Address 

(b) 



53

addresses associated with each RSID, eliminating the need for TLB lookups (and

the possibility of page faults) on spill and fill operations.

Note that the optimal configuration of the RSID scheme (both the number of

RSIDs and the division of the register memory address bits between the RSID

table lookup and the register space offset) will depend on the expected usage

model. The number of RSIDs must be at least as large as the number of base

pointers, and perhaps larger to enable caching of registers across context

switches. For a system that does not support register windows, the register space

offset need only be large enough to map a single logical register file, while a regis-

ter-windowed machine would perform best with larger register spaces that can

map the working set of an active register stack. The number of entries in the

translation table will determine the number of simultaneous locations that can be

translated. However, the larger the table, the greater the number of bits that need

to be used in the RSID, thus requiring a corresponding increase in the size of the

rename table tags. Similarly, the number of bits used to index the translation table

Figure 3.6: Optimized rename process. 
The logical register index is added to the base pointer to produce a register memory ad-
dress. The upper 48 bits of this address are translated to a 4 bit RSID and concatenated
to the 13 remaining useful bits of the address. The resulting address is then looked up in
the set-associative rename table. For a 256-entry register file and a 4-way associative ta-
ble, the total size of the table is 4864 bits. This lookup logic must be replicated for each
register being renamed.
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determines the size of a location mapped - the more bits used to index, the fewer

bits left to form an offset. The determination of these sizes is dependent on the

system and would need to be optimized for the ISA, ABI and expected workloads.

3.5Summary of Pipeline Modifications
The virtual context architecture requires changes to three different stages in

the pipeline: rename, issue and commit.

Most of the changes that the virtual context architecture requires are located in

the rename stage of the pipeline. Figure 3.7 shows a summary of the new opera-

tion of the rename stage. The rename stage begins with a logical register indenti-

fier. This identifier is combined with the base register and index register to form an

optimized address. This optimized address is used to index into the rename table.

The rename table may require physical registers from the free list and/or available

list. A physical register is needed for each destination register and for any source

registers that require a fill. The rename table generates a physical register. In

every case, this physical register is sent to the reorder buffer for use in instruction

scheduling. The virtual context architecture also requires that the use of physical

registers be tracked. Therefore, the physical register is used to index into the use

counters, and the counter is incremented. If a spill or fill is generated, the rename

stage requires additional processing. On a fill, the physical register and optimized

address are sent directly to the architectural state transfer queue. On a spill, the

physical register for the register being spilled is used to index into the mapping

table. This lookup produces the optimized address for the physical registers. The

physical register and optimized address are then sent to the ASTQ.

The issue stage of the pipeline also requires some modifications. Figure 3.8

shows a summary of the new operation of the issue stage. These changes are

only necessary when spills and fills are implemented with an architectural state

transfer queue. To implement the ASTQ, a priority mux is placed between the

load/store queue (LSQ) and load/store function unit(s). The priority mux gives pri-

ority to instructions being issued from the load/store queue. If no instruction is
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being issued from the LSQ, the next operation is issued from the ASTQ. The oper-

ation is executed by the load/store function unit(s) and in almost the exact same

way as a traditional load or store. Fills, in fact, work exactly like a traditional load.

The address is sent to the first level of data cache. When the memory access is

complete the result is broadcast on the bypass network to wake up any depen-

dent instructions. A spill is handled almost exactly like a traditional store. Like a

store, the memory address and value are placed into the store buffer. At some

later time the store buffer will send the value to memory. Unlike a store, the spill

Figure 3.7: Rename Stage Summary
The virtual context architecture requires modifications to the rename stage.
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must also clear the dirty bit associated with the physical register being spilled.

This signals the frontend that it may not replace this physical register freely.

The final stage that requires modification is the commit stage of the pipeline.

Figure 3.9 shows a summary of the new operation of the commit stage. When an

instruction is committed in the virtual context architecture it goes through a similar

procedure as it does in rename. The logical registers from the ROB are converted

into an optimized address by using a version of the base register and index regis-

ter kept at commit. The optimized address is put into a copy of the rename table

called the retirement map table. This table should be the exact configuration as

the rename table. However, the logic associated with this table can be simplified

by passing the way in the rename table where each logical register was renamed.

Figure 3.8: Issue Stage Summary
The virtual context architecture requires some minor modifications to the issue stage of
the pipeline.
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Thus, the retirement map table can actually always be treated as a direct mapped

table. The optimized addresses of destination registers are also put into the map-

ping table. This table keeps track of the memory address each physical register

should be spilled to. The physical register tag associated with destination regis-

ters is also used to index into the dirty bit table, and set the physical register as

dirty. There is one exception to this. In the case of fill instructions implemented

using operations, the destination registers are not marked as dirty. Finally, all the

physical registers are used to index into the use counter table and the uses for

these registers is decremented.

Figure 3.9: Commit Stage Summary
The virtual context architecture requires modifications to the commit stage of the pipeline.
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Chapter 4

Experimental Methodology

This chapter describes the methodology used to measure the performance of

the virtual context architecture. This chapter is composed of four sections: bench-

marks, workloads, simulation and statistics. The benchmarks section describes

which benchmarks were used and how the binaries were created. The workloads

section discusses the techniques used to measure the performance of the bench-

marks. The simulation section describes the simulator used and the machine

models simulated. The statistics section describes the metrics used to measure

the performance.

4.1Benchmarks
The instruction set architecture (ISA) chosen for our experiments was the

Alpha [31]. This represents a modern reduced instruction set computer that was a

production machine and not just a research machine. The instruction set and

application binary interface (ABI) were designed to be as efficient as possible

while still being implementable. The ABI does not use register windows. Instead,

the logical registers are divided into callee saved and caller saved registers. See

Table 4.1 for a description of the Alpha registers. The first six function arguments

are passed in registers, while any remaining are passed on the stack. The return

value of the function is passed back in a register. The register allocation done by

the compiler is optimized in terms of callee saved and caller saved assignments to

minimize the save and restore instructions needed.

To test the capabilities of the virtual context architecture the application binary

interface needed to be modified to support register windows. By carefully design-
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ing the ABI, binary compatibility could be maintained with the conventional ABI.

This greatly simplified the simulation and allowed the baseline binaries to run on

the VCA. A non-overlapped register window implementation was chosen,

although the VCA would also work with an overlapped interface. Our register win-

dow interface divided the registers into two types: windowed and non-windowed.

The windowed/non-windowed assignments are summarized in Table 4.1.

Any register used to communicate values across a function call (in either direc-

tion) is treated as non-windowed. The mapping address for non-windowed regis-

ters does not change on function calls or returns. Therefore, these registers

represent a global set of registers that are shared by all the function contexts for a

given thread. However, the shared nature of these registers does require that the

compiler manage any necessary saving and restoring.

All other registers are treated as windowed. Unlike the non-windowed regis-

ters, the mapping address of these registers changes on function calls or returns.

Specifically, the mapping address is incremented by a fixed amount on function

Register Description Windowed

$0 Function Return no

$1 - $8 Temp, caller saved yes

$9 - $14 Temp, callee saved yes

$15 Frame pointer yes

$16 - $21 Function Argu-
ments no

$22 - $25 Temp, caller saved yes

$26 Return Address yes

$27 Procedure Value no

$28 AT yes

Table 4.1: Register window ABI
The base Alpha application binary interface was modified to include the concept of regis-
ter windows. Any register used to communicate values across a function (with the excep-
tion of the return address register) is non windowed. All other registers are treated as
windowed. Each function invocation has access to a complete set of windowed registers.

Register Description Windowed

$29 Global Pointer no

$30 Stack Pointer no

$31 Zero -

$f0 Function Return no

$f1 - $f9 Temp, callee saved yes

$f10 - $f15 Temp, caller saved yes

$f16 - $f21 Function Argu-
ments no

$f22 - $f30 Temp, caller saved yes

$f31 Zero -
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calls and decremented by the same amount on function returns. In this case, the

fixed amount is calculated as 45 windowed registers scaled by 8 bytes per regis-

ter or 360 bytes. This ensures that each new function context has a completely

independent set of windowed registers.

For simplicity, the call and return instructions were chosen to allocate and

deallocate register windows. A special instruction could be used instead, to give

the compiler the option of not allocating a new register window on a call, but this

was beyond the scope of our research. The call instruction allocates a new regis-

ter window for the next instruction. This saves the return address in the calling

functions register window set. The return instruction deallocates the register win-

dow before it executes. Therefore, all of its registers are referenced from the orig-

inal calling functions register window set (which is where the return address is

stored). This was done so that no instruction uses registers from more than one

register window set, thereby simplifying the decoding of an instruction.

The GNU compiler suite (gcc 3.3.3) [12] was chosen to compile the bench-

marks because it is available in source code and supports cross compiling. The

source code was necessary because the compiler needed to be modified to sup-

port the new ABI. This compiler modification was implemented by providing a

compiler switch which would suppress the output of any save and restore instruc-

tions for the windowed registers. The GNU standard C library (glibc 2.3.2) was

recompiled to support the new register window ABI.

To evaluate the architecture, the SPEC CPU2000 [15] benchmarks were used

(except for four Fortran 90 benchmarks the GNU compiler suite could not com-

pile). The benchmarks were compiled at -O3 optimization, which includes function

inlining. Each benchmark was compiled and linked twice: once with the standard

compiler and library, and once with the modified compiler and recompiled library.

4.2Workloads
It is not practical to do full runs of the entire benchmark with all inputs. A

detailed simulation of a full run of a single benchmark could take up to several
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monthes to finish. Therefore, a more efficient way was needed to get good esti-

mates of the overall performance while only running a small fraction of the instruc-

tions. Towards this end, a single representative input from the reference input set

was chosen for each benchmark. In the case of benchmarks with more than one

input, the input closest to the average IPC of all the inputs was selected.

To achieve practical simulation times, the common technique of SimPoints [29]

was used. A SimPoint is one or more fixed length intervals of the dynamic execu-

tion of a program that are representative of the entire program run. The SimPoints

of a program are first simulated in parallel. The statistics for the simulations are

then later combined using weighting factors to estimate the statistics of the entire

program. For our simulations we chose an interval size of 100 millions instruc-

tions.

The SimPoints for the baseline binaries were generated normally, using the

basic block traces found by performing a fast functional simulation of the refer-

ence input sets. The SimPoints for the register window binaries were generated

by finding the equivalent location to the SimPoints in the baseline binary. This was

done by counting the conditional control instructions executed to reach the start of

the SimPoint interval. Conditional control instructions were used for two reasons.

First, the frequency of conditional control instructions in the benchmarks is rela-

tively high; one occurs on average every 13 instructions. Second, the number of

conditional control instructions is nearly equal between the windowed and base-

line binaries. On average the difference is within 0.004% with the largest differ-

ence 0.03%.

Two sets of SimPoints were generated. For the first set, up to 10 SimPoints

were generated for each of the benchmarks. This set allowed for a very accurate

estimation of the performance at the expense of large numbers of simulations. For

the second set, a single SimPoint was generated for each benchmark. This set

was used when running multiple SimPoints for each benchmark was not practical.

The final step was selecting the workloads to use for the register window

experiments and for the simultaneous multithreading experiments.
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4.2.1 Register Windows
Register windows are used to reduce the save and restore overhead neces-

sary for a function call. The benefits of register windows are only realized when

there is a high frequency of function calls, therefore, we only gathered results for

those benchmarks that made a function call at least once every 500 instructions,

see Table 4.3. Both the 10 SimPoint and single SimPoint sets were used in these

experiments. Depending on the number of configurations being tested, a tradeoff

was made between the accuracy achieved using 10 SimPoints and the speed of

using a single SimPoint. The more accurate 10 SimPoint runs were always used

when comparing the virtual context architecture to a baseline.

4.2.2 Simultaneous Multithreading
Simultaneous multithreading requires that workloads be comprised of multiple

benchmarks. In our experiments, we wanted to use two-thread and four-thread

workloads. For our purposes, the workloads are composed of benchmarks from

the SPEC CPU2000 benchmarks. Unlike the register window experiments, we did

not limit the benchmarks to those with a high frequency of function calls. Instead,

we wanted to evaluate the VCA in as diverse a multithreaded environment as pos-

sible. It was not practical to run the full cross product of benchmarks. This would

result in too many simulations. Therefore, a scheme was needed to choose a rep-

resentative set of two-thread workloads and a prepresentative set of four-thread

workloads.

We used a scheme similar to that of Raasch [26] to generate representative

two thread workloads. First, each of the 253 possible two-thread workloads was

run using the baseline architecture. Next, we chose a set of statistics to character-

ize the benchmarks. The statistics fall into two groups. The first group character-

izes the benchmark’s absolute single-thread behavior, and includes: 1) data

cache accesses; 2) floating point register usage; 3) total number of unique

addresses to which registers are mapped; 4) ratio of dynamic instruction count

between register window binary and baseline binary; and 5) the ratio of data

cache accesses between the register window binary and the baseline binary. The
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second group represents the relative performance of a thread in an SMT work-

load, and is composed of: 1) committed IPC; 2) fetch rate; 3) issue rate; 4) branch

predictor accuracy; 5) instruction queue occupancy; 6) instruction queue ready

rate; 7) reorder buffer occupancy; 8) data cache miss rate; and 9) second level

cache miss rate. These statistics are normalized to the same benchmark’s single

thread values.

The statistics are all scaled to a mean of zero and variance of one. Principle

components analysis [11] is then used to eliminate correlation. Enough compo-

nents are used to cover more than 99% of the variance (in our case, 11 compo-

nents were needed). The workloads are then mapped into 22-dimensional space

and a linkage clustering algorithm is used to cluster the workloads. The Bayesian

Information Criterion (BIC) score is calculated for each cluster assignment. The

smallest number of clusters that has a BIC score within 2% of the maximum BIC

score is used. This resulted in 43 two thread workloads.

To generate the four-thread workloads the scheme was repeated. However,

instead of using the full set of possible four-thread workloads, the cross product of

the two-thread workloads was used to provide a starting set of 919 possible four-

thread workloads. After applying the scheme the result was a set of 127 four-

thread workloads.

4.3Simulation
The architecture was simulated using the M5 simulator [3]. M5 is a detailed

execution driven simulator. It supports a realistic out-of-order pipeline with a sepa-

rate instruction queue and reorder buffer. The memory model is an event driven

model which accurately times memory accesses. It simulates not only multiple

levels in the cache hierarchy, but the busses that interconnect them. Memory

instructions are split into two separate micro operations. The first operation is

placed into the instruction queue and calculates the memory address. The second

operation is placed in the load store queue and is responsible for the actual mem-

ory accesses (either a read for loads or a write for stores). The load store queue is
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responsible for doing memory disambiguation. Our experiments assumed a nor-

mal memory disambiguation policy: a load is not allowed to issue until all earlier

stores have a known address, or until an earlier store with the same address as

the load occurs later than any stores with unknown addresses (in which case the

value of the store can be bypassed to the load). The simulator was modified to

support the virtual context architecture. Each simulation was allowed to warm-up

for 5 million instructions. The simulation was then run until a thread reached 100

million executed instructions.

Several processor models were used. The main processor model was a mod-

ern four issue processor with a separate instruction queue and reorder buffer (see

Table 4.2). To test the performance of the virtual context architecture in a wider

pipeline, an eight issue version of the pipeline is also used. This pipeline is identi-

Pipeline
4 wide
Fetch queue: 32 entries
Instruction queue: 128 entries
Reorder buffer: 192 entries
Load/Store queue: 64 entries
Store buffer: 32 entries
ASTQ: 4 entry, 2 ports
Rename: 64x4
Hybrid branch predictor
Retirement table branch recovery

Caches
2 read/write ports
DL1: 64K 4-way 3 cycle hit
IL1: 64K 4-way 1 cycle hit
L2: 1M 4-way 15 cycle hit
Memory: 250 cycle

Table 4.2: Four Issue Processor Description
The processor description is composed of four parts: pipeline, cache, latencies (issue and
operation) and function units. The pipeline description describes the size and type of the
various structures in the processor pipeline. The cache section describes the size, asso-
ciativity and latencies of the caches and memory. The latencies section provides the issue
and operation latencies of the various types of integer (Int) and floating point (FP) opera-
tions. The issue latency is the number of cycles that the function unit is busy when per-
forming this operation. An issue latency of one means that operations can be fully
pipelined. The operation latency is the number of cycles until the result is ready. The num-
ber of function units of each type is specified in the function units section.

Issue and Operation Latencies
Int ALU: 1 issue, 1 operation
Int Multiply: 1 issue, 3 operation
Int Division: 19 issue, 20 operation
FP Add: 1 issue, 2 operation
FP Compare: 1 issue, 2 operation
FP Convert: 1 issue, 2 operation
FP Multiply: 1 issue, 4 operation
FP Divide: 12 issue, 12 operation
FP Sqrt: 24 issue, 24 operation

Function Units
Int ALU: 4
Int Mul/Div: 2
FP Add/Comp/Conv: 2
FP Mul/Div/Sqrt: 2
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cal to the four issue version except the width and number of function units has

been doubled. We also explored the performance of the virutal context architec-

ture on a narrower two issue pipeline. The two issue pipeline has half the number

of function units as the four issue. We also decreased by half the sizes of the

instruction queue, reorder buffer, load store queue, and store buffer. Finally, we

decided to evaluate the virtual context architecture in a simpler pipeline more

suited to embedded applications. To this end, the final pipeline examined is a one

issue in order pipeline. For this pipeline, we assume a single cycle hit latency for

the first level data cache.

4.4Statistics
A direct comparison of instructions per clock (a usual measure of perfor-

mance) is not possible between windowed binaries and non windowed binaries.

The binaries have different dynamic path lengths and therefore this metric is

meaningless. Instead of comparing rates, the total must be compared. Therefore,

the basic performance comparison used is total execution time. The totals are cal-

culated by multiplying a rate statistic (such as cycle per instruction) by the total

number of instructions needed to execute the benchmark. The rate statistic is

gathered by doing a detailed simulation of the SimPoints. The total instructions

needed to execute the benchmark were found by using a fast functional simulator

to simulate the complete benchmark. Table 4.3 contains the path length ratio

between the register window binaries and the baseline binaries.

4.4.1 Register Windows
For each experiment, we calculated the execution time and the number of 1st

level data cache accesses. Execution time was calculated by multiplying the aver-

age committed CPI (cycles per instruction) of the benchmark (from detailed simu-

lation of SimPoints) by the number of dynamic instructions needed to execute the

complete benchmark (from a fast functional simulation of the entire benchmark).

The cache accesses are calculated similarly, by multiplying the rate at which the
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cache is accessed (measured as average accesses per committed instruction) by

the total number of dynamic instructions.

Most of the results are normalized against a baseline configuration before

averaging. This is done to ensure an equal contribution to the average by each

benchmark. If the averaging was done before normalization, the value of the stat

in question (for example CPI) would influence the results. For example, suppose

we are measuring two benchmarks (one and two) under two different configura-

tions (A and B). Benchmark one has a CPI of 100 for configuration A and a CPI of

110 for configuration B. Benchmark two has a CPI of 10 for configuration A and a

CPI of 20 for configuration B. If we average first, then normalize to configuration

A, we get an average increase in CPI of 18%. In this case, because the CPI of

benchmark one is so much greater than benchmark two, benchmark one’s CPI

difference becomes much more important than benchmark two’s. However, if we

SpecInt
Benchmark Ratio SpecFloat

Benchmark Ratio

bzip2_graphic 0.92 ammp 0.98

crafty 0.93 equake 0.94

eon_rushmeier 0.94 mesa 0.92

gap 0.91 wupwise 0.93

gcc_expr 0.92

gzip_graphic 0.92

parser 0.92

perlbmk_535 0.85

twolf 0.99

vortex_2 0.82

vpr_route 0.90

Table 4.3: Path Length Ratio
The ratio of the number of dynamic instructions required to execute the full benchmark for
the register window binaries to the number of dynamci instructions required to execute
the baseline binaries.
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normalize first to configuration A, then average, we get an average increase in

CPI of 55%. Now, both benchmarks are equally weighted when determining the

average CPI change.

4.4.2 Simultaneous Multithreading
Measuring the performance of a multithreaded workload is more complicated

than measuring the performance of a single threaded workload. The most impor-

tant performance characteristic of a simultaneous multithreaded architecture is

the performance improvement achieved by allowing more than one thread to exe-

cute at the same time. If there is no speedup associated with running more then

one thread, than the extra hardware and design complexity needed to support

more than one thread is wasted. Previous work [28, 33] has used weighted

speedup to measure the performance of a simultaneous multithreaded core. How-

ever, this metric is based on using instruction per clock (IPC) statistics. As dis-

cussed in Section 4.4, IPC is meaningless when comparing binaries with different

dynamic path lengths. Therefore, we have adapted the idea behind weighted

speedup, but applied it to different starting statistics.

The first measurement is calculated based on total execution time. We call this

weighted execution time. This metric is calculated by summing the relative execu-

tion time of all threads—the execution time of each thread in the SMT workload,

divided by the execution time of the same benchmark running as a single thread.

The execution time was calculated by multiplying the cycles per instruction (CPI)

by the dynamic path length of the benchmark. This measurement can be used to

calculate the speedup associated with running multiple threads. However, since it

is based on total execution time it can be used to compare workloads with differ-

ent dynamic path lengths.

The second measurement is calculated based on total data cache accesses.

We can this weighted cache accesses. It is calculated similar to weighted

speedup, but using data cache accesses per instruction instead of execution time.

This measurement reveals the overhead, in terms of data cache accesses, that

running multiple threads simultaneously costs.
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In the following four chapters, the methodologies described here will be used

to evaluate the virtual context architecture.
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Chapter 5

Parameter Studies

This chapter studies the effects that the various implementation parameters

have on the performance of the virtual context architecture. The virtual context

architecture has a large number of parameters that can be used to optimize per-

formance. These parameters fall into two main groups. The first group is the

implementation of spills and fills. The second group is the rename stage configu-

ration. The chapter ends with a summary of the findings.

5.1Spill/Fill Implementation
The implementation of spills and fills is governed by two different parameters.

The first parameter is the register replacement policy used to choose which phys-

ical register to spill. The second parameter is the method used to implement spills

and fills.

5.1.1 Register Replacement Policy
One of the critical parameters affecting the performance of the virtual context

architecture is the physical register replacement policy. If the VCA does not have

any free registers to use for rename, it must use a register replacement policy to

choose an available register (dirty or not) to replace, see Figure 3.1. There are

two costs associated with replacing an available physical register. First, if the

physical register is dirty, the value must be spilled to memory before it can be

replaced. This requires not only a memory address, but the pipeline must stall

until it is safe for the physical register to be overwritten, see Section 3.2.2. The

second cost is that the replaced register may be sourced by a later instruction.
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This would result in a fill operation to bring the replace value back into the physical

register file. The fill not only requires a memory access, but the instruction sourc-

ing the value becomes dependent on the fill operation, possibly delaying its exe-

cution. Four different physical register replacement policies were investigated in

order to determine which would be most effective for use in the virtual context

architecture: least recently used, not dirty first, overwrite first, overwrite last.

The first policy is the least recently used policy (lru). This policy ignores the

dirty status of a physical register and simply bases the selection on the time of last

use. It attempts to always keep the more recently used logical registers in the

physical register file. This policy is very common in computer architecture and is

used in many places, including cache replacements. The effectiveness of the pol-

icy is dependent on temporal locality of the logical registers. A number of earlier

studies have shown that logical registers exhibit high temporal locality [22, 25,34,

39].

The second policy studied is the not dirty first policy. The policy is to always

favor spilling a non dirty available physical register over a dirty one. Thus, the pol-

icy treats the physical registers as three separate sets in terms of use by the

rename stage: free, available, dirty available. The rename stage always uses a

free register over an available register, and always uses an available register over

a dirty available one. Within the set of non dirty and dirty physical registers the

least recently used policy is used. This policy attempts to minimize the number of

spills generated by only spilling as a last resort. However, this comes at the cost of

potentially increasing the number of fill operations.

The overwrite last and overwrite first policies are slight modifications to the lru

policy. They behave like the least recently used policy except in the case that the

logical register a physical register is mapped to is possibly going to be overwritten.

The possibility exists when an instruction enters the pipeline (after rename for our

purposes) that writes to the same logical register. In this special case, these poli-

cies either move the physical register to the end of the list (overwrite last) or to the

front of the list (overwrite first). By moving the physical register to the end of the

list, the overwrite last policy attempts to minimize the number of unnecessary
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spills (the physical register will become free as soon as the overwriting instruction

commits). The overwrite first policy favors generating the unnecessary spill over

spilling a register that may need to be reloaded later. In this case, as long as the

overwriting instruction commits, the value will never be needed again.

In order to determine which policy yields the best performance, the full set of

benchmarks were run using each of the policies at a variety of physical register

file sizes. The execution time of the various policies are shown in Table 5.1. Over-

write last, lru and non dirty yield about the same execution time with overwrite last

being slightly better (0.25% better than non dirty and 0.05% better than lru) on

average. Overwrite first is slower than the others in all cases. Compared to the

other policies the execution time of the overwrite first policy increases dramatically

as the number of physical registers is decreased. At 192 physical registers it is

within 3% of the other policies, at 128 physical registers it slows to 9% of the oth-

ers and at 64 physical registers the benchmarks take over 21% longer to execute

with this policy.

The memory characteristics of the various policies are shown in Table 5.2. The

performance of the various policies can be explained by examining the data cache

accesses. In particular, the execution time tracks the number of data cache

accesses. The least recently used, non dirty and overwrite last policies all gener-

ate approximately the same memory traffic, while overwrite first generates more.

This can be explained by examining the total number of transfers generated. On

64 128 192

lru 1.000 1.000 1.000

not dirty first 0.998 1.003 1.004

overwrite first 1.212 1.093 1.029

overwrite last 0.996 1.000 1.002

Table 5.1: Replacement Policy Execution Time Comparison
The execution time of the various physical register replacement policies. The results are
normalized to the execution time of the least recently used policy. The columns show the
results for three different physical register file sizes.
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average, overwrite last generates the fewest number of transfers, while lru gener-

ates 0.5% more and not dirty results in nearly 4% more. Overwrite first generates

more than twice as many transfers as the other policies. In fact, a strict order

Data Cache Accesses

64 128 192

lru 1.000 1.000 1.000

not dirty first 1.003 1.008 1.005

overwrite first 1.217 1.105 1.061

overwrite last 0.998 1.001 1.000

Total Transfers

64 128 192

lru 1.000 1.000 1.000

not dirty first 1.005 1.039 1.069

overwrite first 1.853 1.993 2.432

overwrite last 0.994 0.996 0.996

Fills

64 128 192

lru 1.000 1.000 1.000

not dirty first 1.168 1.310 1.372

overwrite first 0.463 0.558 0.587

overwrite last 1.188 1.050 1.046

Spills

64 128 192

lru 1.000 1.000 1.000

not dirty first 0.967 0.985 0.948

overwrite first 2.187 2.327 3.177

overwrite last 0.965 0.985 0.980

Table 5.2: Replacement Policy Memory Comparison
The memory characteristics of the various physical register replacement policies. The re-
sults are normalized to the least recently used policy. The columns show the results for
three different physical register file sizes. The data cache accesses table shows the total
number of read and write accesses on the first level data cache. The total transfers table
shows the total number of spills and fills generated. The fills table shows the total number
of fills generated by each policy while the spills table shows the total number of spills gen-
erated by each policy.
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exists at each physical register file size in terms of number generated. Overwrite

last always generates the fewest transfers. Least recently used generates slightly

more. Not dirty generates slightly more than lru. Finally, in all cases overwrite first

generates around two times as many transfers as the other policies. 

Overwrite last remains relatively constant with respect to least recently used.

In contrast, the relative increase in transfers for both not dirty and overwrite first

decrease as the number of physical registers is decreased. This can probably be

explained by noting that the pressure on the physical register file increases dra-

matically as the number of physical registers is decreased. Therefore, when the

physical register file is relatively small, the pool of available registers (both dirty

and not) is going to be small and the rename stage will constantly be replacing

them to free up more registers for renaming. Therefore, the not dirty first policy will

start to behave more like the other policies. Although the relative number of trans-

fers generated by the overwrite first policy decreases, it is still very large com-

pared to the other policies. The overwrite first policy preferentially replaces those

registers that are more than likely going to become free in a few cycles. When the

spill has completed, the rename stage has a free register it can use. However, if it

spilled a different register, once the spill is completed, the rename stage is likely to

have two registers free, one that was just spilled and one that was just overwrit-

ten.

If you look at the spills and fills separately, the policies did act as expected in

comparison to the least recently used policy. Not dirty generated fewer numbers

of spills, about 3% fewer than least recently used. However, it generated between

17% and 37% more fills than lru. This shows that it is likely some registers are

being used for a long time without being changed. The not dirty policy would tend

to keep replacing these registers because they are not dirty, but would have to

keep generating fills to bring them back in memory. This type of access could be

seen for example in the frame pointer. It would tend to change only at the start of

a function and when a function returns. However, it would tend to be accessed

throughout the whole function.
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By favoring the spilling of registers that were not likely to be used again, over-

write first did generate the fewest number of fills, between 41% and 53% fewer

than least recently used. However, the decease in fills came at the cost of a huge

increase in the number of spills, between two and three times the number gener-

ated by lru. As explained previously in this section, this policy suffers because it is

very likely to be spilling registers that would be overwritten shortly. Once the regis-

ter was overwritten, this would have freed that physical register. The other policies

in contrast would tend not to be spilling these registers, and thus they would be

freed without a spill.

The overwrite last policy performs the best overall, generating the fewest num-

ber of total transfers in all cases. By reducing the number of unnecessary spills it

was able to decrease the total number of spills by between 2% to 4% in compari-

son to least recently used. However, this policy did generate more fills than least

recently used, from 5% at 192 physical registers to nearly 19% at 64 physical reg-

isters. The increased fill traffic was more than compensated for by the decreased

spill traffic.

With our particular implementation, the overwrite last policy provides the best

performance, both in terms of execution time and transfers generated. Therefore

this policy will be used in all of the following studies. However, the least recently

used and not dirty first policies provided almost identical performance. If in a given

implementation the costs of fills versus spills is drastically different one of the

other policies might perform better. If the cost of fills was drastically greater, this

would tend to favor the least recently used policy since it generated fewer fills. In

contrast, if the cost of spills was drastically greater, this would tend to favor the not

dirty first policy, which generated the fewest number of spills.

5.1.2 Method Used To Implement Spills and Fills
The implementation of register spills and fills requires the insertion of the

equivalent of loads (fills) and stores (spills) into the pipeline. As discussed in

Section 3.2.2, two possible methods could be used to accomplish the insertion.

The first method is to add a small queue to the pipeline that we call the architec-
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tural state transfer queue (ASTQ). The second method is to insert the operations

directly into the pipeline. It would also be possible to combine the methods. For

example, the fills could be implemented by inserting operations directly into the

pipeline while spills could be handled by an ASTQ.

Figure 5.1 shows the execution time of the workloads when both spills and fills

are implemented by inserting operations into the pipeline. The results are normal-

ized to the execution time when an ASTQ is used to implement both. In the vast

majority of cases, the ASTQ is able to provide better performance than using

operations. The relative performance is very dependent on two factors: the num-

ber of physical registers and the number of data cache ports.

The results clearly show a strong correlation between the size of the physical

register file and the relative performance of using operations versus a queue. With
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Figure 5.1: Operation Execution Time
The execution time of the benchmarks where both spill and fill are implemented by insert-
ing operations into the pipeline. The execution time is normalized to the execution time
when an ASTQ is used to implement both. The results are shown for a variety of pipeline
configurations. The pipeline configurations are expressed in the form XwYp, where X is
the issue width of the pipeline and Y is the number of read/write ports on the data cache.
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a large physical register file, the two techniques perform almost identically. On

average, across all the pipeline configurations, with 256 physical registers the

operations perform almost identically to the queue. With 192 physical registers,

using operations results in a 0.5% increase in execution time on average, and a

worse case of only 1%. However, the performance gap increases dramatically as

the number of physical registers is reduced. With 128, using operations is 3%

slower on average with a worst case of 9% and with only 64 physical registers, the

average climbs to almost 6% with a worst case of 16%. With 192 or more physical

registers, the rename stage does not to generate very many spills or fills. There-

fore, the effect of the method used to implement will be relatively small. With fewer

physical registers, the generation of spills and fills starts to climb drastically. At this

point the method used to implement them becomes critical.

The connection between the number of physical registers and the relative per-

formance of the ASTQ versus operations is clear. However, the results also

showed a very strong connection to the number of data cache ports. In particular,

the performance difference increases dramatically as the number of data cache

ports is decreased. This trend can be explained by looking at the relative number

of data cache accesses, see Figure 5.2. With 128 or fewer physical registers

using operations not only results in an increase in execution time, but an even

larger increase in data cache accesses. The results are nearly identical to the

execution time. Obviously, an increase in data cache traffic is going to have a

much greater effect on a pipeline with fewer data cache ports. It is possible for the

virtual context architecture to enter a vicious circle with a small number of physical

registers. As the register pressure increases, the rename stage will generate

more spills and fills. This will in turn slow down the pipeline, which can lead to

more instructions in the reorder buffer, and therefore an increase in register pres-

sure. The net result is that the pipeline is flooded with spills and fills. The architec-

tural state transfer queue is able to break this cycle because of its scheduling. In

the ASTQ implementation priority is always given to instructions in the pipeline.
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Therefore, spills and fills must wait until there are no other instructions to issue

before they are allowed to execute. This helps to minimize the problem cycle.

It is possible to combine the two implementations. Figure 5.3 shows the exe-

cution time of the workloads with a mixed implementation. In this case, spills are

implemented using the architectural state transfer queue while fills are imple-

mented by inserting operations directly into the pipeline. This is the more natural

implementation because the more numerous spills are still moved out of the load/

store queue while fill which requires access to the bypass network is handled by

an operation. The results are normalized to the execution time when an ASTQ is

used to implement both. The mixed implementation performs between the two

pure implementations. The trend of the relative performance is similar to the oper-

ation only implementation, but the magnitude of the performance differences is
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Figure 5.2: Operation Data Cache Accesses
The data cache accesses of the benchmarks where both spill and fill are implemented by
inserting operations into the pipeline. The data cache accesses are normalized to the data
cache accesses when an ASTQ is used to implement both. The results are shown for a
variety of pipeline configurations. The pipeline configurations are expressed in the form
XwYp, where X is the issue width of the pipeline and Y is the number of read/write ports
on the data cache.
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less. Although it is possible to do a mixed implementation it is probably not worth-

while. It suffers the performance penalty of the operation implementation, and also

the cost associated with implementing an architectural state transfer queue.

Both methods for implementing spills and fills have parameters associated

with them. In the following two subsections we discuss and evaluate these param-

eters.

5.1.2.1 Architectural State Transfer Queue Parameters

There are two parameters associated with the architectural state transfer

queue: ports and size. The ports on the queue specify the maximum number of

operations that can be added each cycle. The more ports the greater the com-

plexity of the rename logic. The size of the queue limits the number of operations

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

64 128 192 256
Physical Registers

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

4w1p
4w2p
8w1p
8w2p
8w3p
8w4p

Figure 5.3: ASTQ Spill / Operation Fill Execution Time
The execution time of the benchmarks where spills are implemented by the architectural
state transfer queue and fills are implemented by inserting operations into the pipeline.
The execution time is normalized to the execution time when an ASTQ is used to imple-
ment both. The results are shown for a variety of pipeline configurations. The pipeline
configurations are expressed in the form XwYp, where X is the issue width of the pipeline
and Y is the number of read/write ports on the data cache.
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that can be in the queue at once. If the queue is full and the rename stage needs

to add an operation, the rename stage is forced to stall.

Figure 5.4 shows the effect that reducing the number of ports on the ASTQ

has on the execution time. The results are normalized to the execution time with a

four ported queue. The chart shows the results for an eight issue pipeline. The

results for a four issue were similar with even smaller differences in performance.

The results show several things. First, reducing the number of ports (even to one)

does not have a huge impact on the performance. This is true across all the pipe-

line configurations studied. The worst case performance decrease is 0.6% with

respect to a four ported queue. The average execution time difference across all

pipeline configurations and physical register file sizes is a 0.1% increase in execu-

tion time for one port and a 0.03% increase in execution time for two ports. Sec-
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Figure 5.4: Architectural State Transfer Queue Ports
The execution time of the benchmarks with an ASTQ with varying ports. The execution
time is normalized to the execution time with a four ported ASTQ. The results are shown
for a variety of pipeline configurations. The pipeline configurations are expressed in the
form XwYpZq, where X is the issue width of the pipeline, Y is the number of read/write
ports on the data cache, and Z is the number of ASTQ ports.
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ond, the effect of reducing the ports is dependent on both the number of physical

registers and the number of data cache ports. As the number of physical registers

is decreased, the magnitude of the performance differences tends to increase.

This makes sense because the ports are only going to have an effect when spills

and fills are generated, and as the number of physical registers is decreased the

number of generated spills and fills increases.

The performance is also effected by the number of data cache ports. In gen-

eral, as the number of ports is decreased, the performance of an ASTQ with fewer

ports tends to increase relative to an ASTQ with more ports. This is especially

obvious in the results with only 64 physical registers. The one ported ASTQ is

over 0.6% slower than a four ported ASTQ when the pipeline has four data cache

ports. At three ports this is reduced to 0.5% slower, at two ports it’s 0.35% slower,

and with only one data cache port, the one ported ASTQ actually outperforms the

four ported ASTQ by over 0.2%. Finally, as was just mentioned, it is possible that

reducing the ports can improve performance. As stated in the previous section it is

possible with a small number of physical registers to enter a vicious circle and

flood the pipeline with spills and fills. Reducing the number of ports and the ASTQ

is one way of slowing down this cycle. Thus, this leads to improved performance

and a decrease in the number of spills and fills generated.

The second important parameter for the architectural state transfer queue is

the size of the queue. Figure 5.5 shows the results of reducing the size of the

architectural state transfer queue. The results are shown for an eight issue pipe-

line with one data cache port and with four data cache ports. Similar results are

seen for four issue pipelines. The results are similar to the ASTQ port results in

that they are dependent on the number of physical registers and number of data

cache ports. Like the previous results, the effect of reducing the size of the ASTQ

becomes more pronounced when the number of physical registers is reduced.

Once again reducing the number of physical registers results in many more spills

and fills which in turn puts more pressure on the ASTQ. With 256 physical regis-

ters, all sizes of queue provided nearly identical performance. In this configuration
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Figure 5.5: Architectural State Transfer Queue Size
The execution time of the benchmarks with an ASTQ of varying size. The execution time
is normalized to the execution time with a 32 entry ASTQ. The results are shown for an
eight issue pipeline. One set of results is for a pipeline with four data cache ports, the oth-
er set is for a pipeline with a single data cache port. ASTQs with 1, 2, 4, 8 and 16 entries
were studied.
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the pipeline is generating so few spills and fills that a single entry, single ported

ASTQ is adequate. As the number of physical registers is reduced this is no

longer the case. This is especially true of a single entry ASTQ. The performance

of this queue quickly decreases when the number of physical registers is reduced.

In a four data cache port pipeline, with 192 physical registers the single entry

queue is over 1% slower, this increases to over 2.5% with 128 and finally over 6%

with 64 physical registers.

The performance of the queue is also dependent on the number of data cache

ports in the pipeline. With four data cache ports, the relationship between execu-

tion time and the size of the architectural state transfer queue is straightforward.

As the size of the queue is decreased, the execution time increases. The loss of

performance is especially pronounced for one and two entry queues. When the

ASTQ has at least four entries, the performance is almost identical in all cases.

The worst case performance for a four entry queue occurs with 64 physical regis-

ters, and the execution time difference is less than 0.3%. In all other cases, the

performance difference is less than 0.1%. The results for a single data cache

pipeline are much more interesting. A single entry queue still results in worse per-

formance in all cases, with the performance loss increasing as the number of

physical registers is decreased. However, the other queue sizes in many cases

actually result in increased performance. The two entry queue is able to provide

better performance with both 192 and 128 physical registers, although it provides

worse performance with 64 physical registers. The four entry queue actually pro-

vides the best performance at every size of physical register (although once again

all perform nearly identically with 256 physical registers). The smaller queue

improves performance by between 0.1% and 0.3% over a queue with thirty two

entries. As discussed previously in this chapter, the virtual context architecture

sometimes benefits from restricting the generation of spills and fills. This once

again seems to be a case where this yields performance improvements. However,

as the results for the one entry queue demonstrates, more restriction does not

necessarily translate into improved performance. Instead, a careful balance is

required to achieve this improvement. The balance occurs between the cost of
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generating spills and fills and the cost associated with stalling the frontend while

waiting for physical registers to be freed for reuse. This effect is more pronounced

when the number of data cache ports is reduced. In such a pipeline, the cost of

spills and fills is increased because of the fierce contention over the data cache

ports.

Figure 5.6 shows the data cache accesses with various ASTQ sizes. The

results are normalized to the data cache accesses with a thirty-two entry queue.

The results plainly show that reducing the size of the queue results in fewer data

cache accesses. This decrease becomes more pronounced with fewer physical

registers. With 64 registers, a single entry queue has almost 8% fewer accesses

to the data cache, a two entry has a savings of 3% while for a four entry the sav-

ings is less than 1%. The difference in data cache accesses occurs because of

the change in spill and fill traffic. With a smaller queue and especially with fewer
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Figure 5.6: ASTQ Size: Cache Accesses
The data cache accesses of the benchmarks with an ASTQ of varying size. The
cache accesses are normalized to the accesses with a 32 entry ASTQ. The results
are shown for an eight issue pipeline with a single data cache port. ASTQs with 1,
2, 4, 8 and 16 entries were studied.
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physical registers, the spill and fill traffic can be reduced. In the case of two and

four entry queues, this reduction is large enough to provide some performance

benefit. In the case of a single entry queue, the reduction is so great that the per-

formance suffers as the frontend is forced to wait for needed spills and fills to be

generated.

These studies show that for the range of pipelines studied, a four entry queue

with two ports provides the best performance overall. Furthermore, it shows that

high performance is able to be achieved with a very modestly sized structure. In

an actual virtual context architecture design, the size and ports of the ASTQ would

need to be carefully balanced for the given pipeline configuration.

5.1.2.2 Operation Parameters

The insertion of spills and fills into the pipeline by the method of inserting oper-

ations does not have the flexibility of design that the architectural state transfer

queue has. As was shown earlier in this section, this method of implementing

spills and fills suffers in comparison to the ASTQ in pipelines with a small number

of data cache ports, in particular with a single data cache port. Unfortunately

inserting spills and fills directly into the pipeline means that almost all the control

of this implementation is lost to the operation of the pipeline itself. Therefore, this

section only examines a single optimization. As noted in Section 3.2.2, spills and

fills are never dependent on any other instructions and in fact never require

bypass or scheduling hardware. It was noted that this is the functionality that the

load store queue (LSQ) provides. Therefore, spill and fill operations are going to

suffer from delays caused by memory disambiguation logic that is never needed

by these particular operations. A possible optimization is to mark these operations

in the load store queue and allow them to bypass the normal memory disambigu-

ation logic. The result of this is that these operations are marked as ready as soon

as they are inserted into the LSQ. Figure 5.7 shows the execution time results

with an optimized load store queue. In all cases, the optimized load store queue is

able to provide a performance improvement. The performance increase is

between 0.4% for a mixed implementation on a four issue pipeline with 128 physi-
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cal registers to 1.9% for an operation only implementation on an eight issue pipe-

line with 64 physical registers. This results in a decrease in the performance

difference between the ASTQ only implementation of between 10% and 25%.

Although all the configurations show a performance increase, they are still all

slower than an architectural state transfer queue only implementation. This seems

to suggest that although memory disambiguation is a factor, it is not the major fac-

tor in the decreased performance of the operations implementation relative to the

architectural state transfer queue implementation.
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Figure 5.7: Operation With Optimized Load Store Queue
The execution time of operation only and mixed operation/ASTQ with an optimized load
store queue. The execution times are normalized to an ASTQ only implementation. The
base results are without any load store queue optimization. The fast LSQ results are when
spills and fills are allowed to bypass the normal memory disambiguation logic. The results
are shown for both four and eight issue pipelines, both with one data cache port and with
either 64 or 128 physical registers.
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5.2Rename Stage
We looked at several parameters that affect the operation of the rename stage,

including the associativity of the rename table, limiting the number of ports on the

table, and the cost of adding extra logic to the rename stage.

5.2.1 Associativity
The first parameter was the associativity of the rename table. As stated in

Section 3.3 the size of the rename table is theoretically independent of the num-

ber of threads. This is in direct contrast to a traditional pipeline which requires a

duplicated rename table for every supported thread. However, the rename table in

the virtual context architecture must be sized to provide adequate room to rename

all the registers from the currently active contexts, otherwise performance will suf-

fer. A quick study of the average number of rename entries shows that supporting

more threads leads to additional rename table entries. Figure 5.8 shows the aver-

age number of rename table entries with one, two and four threads. These results

were measured using a fully associative table with no capacity or conflict misses.

The results clearly show that two factors influence the number of rename table

entries: the number of physical registers and the number of threads.

The number of rename table entries represents the number of unique logical

registers active at any one time in the pipeline. The physical register file contains

both these registers and additional registers used for renaming purposes. As the

number of physical registers is increased, the pipeline can store registers from

more contexts simultaneously. For example, the pipeline may not need to spill

registers from the calling context, or even the context that called the calling con-

text. The results show that a single thread uses on average 57 rename table

entries with 192 physical registers and 96 with 256 physical registers. The multi

thread workloads show a similar trend. Two threads has 79 entries with 192 phys-

ical registers, 114 with 256 and 162 with 320 physical registers. Four threads has
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115 entries with 192 physical registers up to 293 entries with 448 physical regis-

ters.

The rename table for a single threaded pipeline will mostly contain registers

from the currently active context plus additional registers from some number of

calling contexts. In a pipeline that supports more than one thread, the rename

table will contain registers from the active context for each thread, plus some from

their calling contexts. The effect of the number of threads is limited by the physical

register file. With more threads in the pipeline, more registers are needed to hold

the registers from the active contexts of the threads, leaving fewer to hold regis-

ters from calling contexts. Similarly, with more active contexts fewer physical reg-

isters will be available for rename. In comparison to a single thread, two threads

requires 37% more rename entries with 192 physical registers and 19% more with

256 physical registers. For four threads, the percentages are 100% and 53%

respectively. A similar comparison can be made between two threads and four

0

50

100

150

200

250

300

192 256 320 384 448

Physical Registers

R
en

am
e 

Ta
bl

e 
En

tr
ie

s

1 Thread

2 Threads

4 Threads

Figure 5.8: Average Rename Table Entries
The average number of rename table entries for the one, two and four thread workloads.
The results are given at a variety of physical register file sizes.
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threads. Four threads requires 46% more entries with 192 physical registers, 28%

more with 256 physical registers and 16% with 320. The ratios all decrease as the

number of physical registers increases. Therefore, when sizing the rename table,

the number of threads in the pipeline must be taken into account.

We studied a fully associative table versus 64x4, 64x3 and 64x2 set associa-

tive rename tables for single thread workloads, see Figure 5.9 for the execution

time results. The performance of the processor with a 64x4 table is within 0.1% of

the fully associative table with 256 physical registers, and a negligible difference

with fewer physical registers. Similarly, the 64x3 table is within 0.2% at 256 regis-

ters and a negligible difference with fewer. The 64x2 table has a larger impact on
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Figure 5.9: Single Thread Rename Table Associativity
The average execution time of the benchmarks when the associativity of the rename table
is varied. The execution times are normalized to a fully associative rename table with one
entry for each physical register. This ensures that the rename table would never suffer a
capacity miss. The results are for 2, 3 and 4 way associative tables with 64 entries per
way. The results are given for a variety of physical register file sizes.
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the performance. It is 2% slower with 256 physical registers, 1% with 192 and

0.5% with 128.

Figure 5.10 presents the results for two threads. The results show that a

higher associativity is needed than when only a single thread is used. While a sin-

gle thread can achieve close to ideal performance with a 64x3 or a 64x4 table, two

threads requires 64x5 or 64x6 to achieve a similar level. A 64x6 rename table pro-

vides performance identical to a fully associative table, with a difference of less

than 0.05%. There is a slight performance loss with a 64x5 rename table of 0.2%

with 320 physical registers. However, the difference decreases as the number of

physical registers is decreased, with a difference of less than 0.08% with 256 or

192 registers. When the associativity is further decreased to four, the performance

difference widens even further. With 320 physical registers, the 64x4 table is
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Figure 5.10: Two Thread Rename Table Associativity
The average execution time of the two thread workloads when the associativity of the re-
name table is varied. The execution times are normalized to a fully associative rename
table with one entry for each physical register. This ensures that the rename table would
never suffer a capacity miss. The results are for 3, 4, 5 and 6 way associative tables with
64 entries per way. The results are given for a variety of physical register file sizes.
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nearly 0.9% slower than a fully associative table, with 256 registers the difference

is 0.5% and with 192 it is less than 0.4%. This performance difference is still rela-

tively small. However, with an associativity of three, the performance difference

becomes much larger. With 320 physical registers, the smaller table is 12.8%

slower. The difference decreases to 12.2% with 256 registers and 10.5% with 192.

Figure 5.11 presents the results with four threads. These results show trends

similar to two threaded results, although an increase in associativity is necessary

to achieve good performance. While two threads shows good performance with

64x5 and 64x6, to achieve comparable performance with four threads, the

rename table needs to be 64x7 or 64x8. With a 64x8 table, the execution time is

within 0.2% of the performance with a fully associative table. With a 64x7 table,

the execution time is within 0.4%. The 64x6 table yields execution times similar to
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Figure 5.11: Four Thread Rename Table Associativity
The average execution time of the four thread workloads when the associativity of the re-
name table is varied. The execution times are normalized to a fully associative rename
table with one entry for each physical register. This ensures that the rename table would
never suffer a capacity miss. The results are for 4, 5, 6, 7 and 8 way associative tables
with 64 entries per way. The results are given for a variety of physical register file sizes.
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a 64x4 table for two threads. The performance loss is over 1.3% with 448 physical

registers. The loss drops steadily as the number of physical registers decreases

until the loss is 0.7% with 192 physical registers. The performance loss with a

64x5 table becomes quite large, ranging between 4% with 192 physical registers

to over 6% at 448. A 64x4 table is 22% slower with 448 physical registers. This

drops to 16.7% with 192 registers. The performance of a 64x3 table is not shown

on the chart because the loss is so great, nearly 64% with 448 physical registers.

The previous results revealed that larger tables are needed for multithreaded

pipelines in comparison to single thread pipelines. One potential reason for the

poor performance of the smaller rename tables in a simultaneous multithreaded

pipeline is conflicts between the non windowed registers. The non windowed reg-

isters for each thread will always have the same mapping address and therefore

occupy the same sets in the table. These registers also will have definite patterns

in their usage frequency. For example, the stack pointer will tend to be used very

frequently, while the floating point return will only be used for a short time and only

in certain functions. The results presented so far map the non windowed registers

to the exact some memory location regardless of thread (the address space iden-

tifier in the tag will distinguish between them). With four simultaneous threads, this

will cause some sets to have major conflict problems. For example one set will be

associated with the stack pointer and may need to have the stack pointer for each

thread held in the various ways. If a windowed register now needs to be renamed

that maps to this set, this will lead to a large potential performance loss as the

pipeline needs to be drained. Therefore, one potential optimization in the case of

multiple threads is to ensure that the non windowed registers tend to be mapped

to different sets for the different threads. This was achieved by simply offsetting

the mapping address of the non windowed registers by a fixed amount multiplied

by the thread number. The fixed amount is simply the number of sets (64 in our

case) divided by the number of threads. The optimized results for four threads is

show in Figure 5.12. The chart shows the execution time for the optimized rename

normalized to the execution time for the non optimized rename table of the same
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size. The results show that with the smaller table sizes this optimization is able to

improve performance over a non optimized rename table. This optimization

decreases the performance loss of the rename configurations by approximately

half. While this is a sizable improvement, it is not large enough to necessarily

change which configurations one would want to use. Specifically, at least a 64x6

rename table is probably necessary to achieve good performance with four

threads.

The results show that a moderately sized table of 64x3 is able to achieve per-

formance approaching that of a fully associative table. Although larger than a con-

ventional rename table, it would still be practical to implement in a pipeline. The

studies in this section also indicated that larger tables are needed in simultaneous

multithreading pipelines. In the two thread case, a 64x4 table is adequate,

Figure 5.12: Four Thread Optimized Rename Table
The execution time difference achieved when the rename table is optimized for multiple
threads. The execution times are normalized to a fully associative rename table with one
entry for each physical register. This ensures that the rename table would never suffer a
capacity miss. The error bars indicate the normalized execution time of the non optimized
rename table. The chart presents the results for the four thread workloads with 192, 320
and 448 physical registers.
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although a 64x5 table would be preferred (especially with a larger physical regis-

ter file). In a conventional two thread SMT pipeline, the rename table would dou-

ble in size. In the virtual context architecture, the rename table increases, but the

increase is less than double. This trend is even more pronounced in the four

thread case. A conventional four thread SMT pipeline would require four complete

rename tables. In contrast, the VCA is able to achieve nearly ideal performance

with a 64x6 rename table. This is only twice the size of the single threaded virtual

context architecture rename table.

5.2.2 Ports
One of the factors that determines the size of a structure in a processor is the

number of ports. Reducing the number of ports will drastically reduce the size of

the structure. A fully ported rename table for a four issue processor requires 12

ports, while an eight issue processor requires 24 ports. It is unlikely that all these

ports are needed. This is particularly true if one assumes that lookups of the same

address can share a port. There are three situations where the full set of ports are

not needed. First, a full set of instruction may not be ready for rename every cycle.

Second, every instruction does not require two source register operands and one

destination register operand. Third, if port sharing is allowed, it is very likely that

instructions that are renamed at the same time would tend to share some regis-

ters between them. A quick study revealed that on a four issue pipeline an aver-

age of only about 3.3 ports are used per cycle, and 5.4 ports are used each cycle

that an instruction is actually renamed. An eight issue processor uses on average

only about 3.5 ports per cycle and 7.6 ports each cycle that an instruction is actu-

ally renamed. These results indicate that a fully ported rename table is not neces-

sary.

We studied the performance cost of reducing the number of ports, see

Figure 5.13 for the results. As expected, the results show a decline in perfor-

mance as the number of rename table ports is reduced. The effect of the rename

table ports seems to be mostly independent of the number of physical registers.

For a four issue pipeline, we studied reducing the ports to 10, 8 and 6: 10 ports
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Figure 5.13: Rename Table Ports
The execution time of the benchmarks with varying number of rename table ports. The
results are normalized to the execution time of a fully ported rename table. The top chart
shows the results for a four issue pipeline. The bottom chart shows the results for an eight
issue pipeline. The benchmarks were run with 128, 192 and 256 physical registers.
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results in a less than 0.01% change in execution time; 8 ports results in a reduc-

tion of 0.05%; and 6 ports results in a reduction of 0.7% on average. For an eight

issue pipeline, we studied reducing the ports between 18 and 6. Reducing the

ports to 14 or more shows almost no difference in performance, with a maximum

difference of less than 0.02%. Starting at 12 ports, the difference becomes to grow

substantially. With 12 ports the difference is 0.06%, with 10 the performance loss

is 0.3%. The performance now begins to degrade rapidly, with a difference of

1.5% with 8 ports and 6.9% with 6 ports.

This study demonstrates that good performance can still be achieved even

when substantially reducing the ports of the rename table. In a four issue pipeline,

the ports can be reduced from 12 to 8 while only incurring a 0.04% drop in perfor-

mance. In an eight issue pipeline an even more drastic reduction is possible. In

this case the ports can be reduced by half from 24 to 12 with only a 0.06%

increase in execution time.

5.2.3 Cost of Extra Logic
The rename stage in the virtual context architecture is more complicated than

a conventional rename stage. Not only is the rename table set associative instead

of direct mapped, but additional logic is also needed because of the spill and fill

generation. Because of the more complex logic necessary in the rename stage, it

may not be possible to meet the cycle time requirements of the pipeline. A solu-

tion is needed to allow the rename stage to meet the cycle time. We studied the

cost of two potential solutions: adding an extra stage and delaying rename on cer-

tain events. Figure 5.14 presents the costs of these solutions.

One possible solution is to add an extra stage to the frontend of the pipeline.

The logic of the rename stage would be pipelined across the two stages. It results

in a relatively modest decrease in performance that remains constant with differ-

ent physical register file sizes. 

A second solution is to implement some of the extra logic on an as needed

basis. In other words, if an instruction requires more logic to process it than can

be done in a cycle, the rename stage can stall for a cycle while it processes just
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that instruction. The next cycle it can dispatch the problem instruction, and

resume normal processing on the cycle after that. The rename stage must already

be able to stall when the instruction queue or reorder buffer are full. Therefore the

capability to stall already exists in the rename stage. The events that may require

these occasional stalls are as follows: 1) put a new entry in the rename table; 2)

replace an entry; 3) generate a spill or fill (transfer); and 4) change the register

window.

A new entry occurs when there is a miss in the rename table and a new table

entry must be allocated. This results in a relatively large penalty. This event

occurs whenever a logical register is defined that doesn’t exist in the rename table

(very likely to occur multiple times at the start of every function). The penalty

grows larger with fewer physical registers.

Replace entry occurs when there is a miss in the table, and a free entry does

not exist. In this case, the pipeline must check if any of the entries are available

and if at least one is, it must be freed. The performance loss due to this event is
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Figure 5.14: Cost of Extra Logic In The Rename Stage
The average relative execution time of processor when the given delay is added to the
rename stage of the pipeline. All delays are one cycle. The rename table is 64x3. The
bars represent runs with different number of physical registers(pr) and the average across
all the runs.
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very small. The penalty actually decreases with fewer physical registers, because

fewer valid rename table entries are possible.

A transfer delay occurs whenever the rename stage must generate a spill or

fill. This has the largest average penalty, but is very dependent on the number of

physical registers. With fewer physical registers, the VCA is forced to generate

more spills and fills, thus increasing the penalty. This delay does have the benefit

of reducing spill and fill traffic When the pipeline is forced to stall when generating

a spill, there is an increased chance that an instruction will commit freeing up a

physical register. At 64 physical registers, this delay reduces the data cache traffic

by almost 13%.

A change window delay occurs whenever a function call/return instruction is

renamed. This is also a relatively modest penalty and is independent of the num-

ber of physical registers.

The best solution is to add an extra stage to the pipeline—it only affects perfor-

mance when branches are miss predicted. If the rename logic is still too compli-

cated to meet cycle time constraints, a delay on entry replacement would make

sense. Not only is this one of the smallest delays, but the event itself involves the

most complex logic. The actual solution for a given implementation would be

dependent on how aggressively the processor is pipelined.

5.3Summary
This chapter studied the effects that the various implementation parameters

have on the performance of the virtual context architecture. These parameters fall

into two main groups. The first group is the implementation of fills and spills. The

second group is the rename stage configuration.

5.3.1 Spill/Fill Implementation
The implementation of spills and fills was dependent on several factors. The

first factor explored was the replacement policy for physical registers. The studies

revealed that an overwrite last policy provided the best performance. The perfor-

mance of the least recently used and not dirty first are very close. The overwrite
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first policy yielded very poor performance. The second major factor was the imple-

mentation technique used for spills or fills, either an architectural state transfer

queue or inserting operations directly into the pipeline, or a mix. The results show

that the ASTQ provides better performance in almost every case. The operations

are able to provide similar performance only with relatively large physical register

files and more than one data cache port.

The configuration of the architectural state transfer queue was also examined.

The two parameters studied were the number of ports and the size. The results

showed that a one or two port queue was able to provide about the same perfor-

mance as a four ported queue, with the two port providing slightly better perfor-

mance than the one port. The studies of queue size revealed that a four entry

queue is able to provide good performance in all pipeline configurations, and in

cases with only one data cache port better performance than a larger queue.

5.3.2 Rename Stage
We looked at several parameters that effect the operation of the rename stage.

The first set was the configuration of the rename table: associativity and ports.

Our studies showed that for a single thread a 64x3 or 64x4 set associative

rename was able to provide nearly ideal performance, within 0.2% and 0.1%

respectively to a fully associative rename table. A pipeline that supports two

threads requires a slightly larger rename table to achieve similar performance,

64x5 or 64x6. Similarly a four thread pipeline requires a larger table than those for

two threads, in this case 64x6 or 64x7. In the case of multithreaded pipelines, bet-

ter rename performance can be achieved by ensuring that the non windowed reg-

isters for the various threads map to different sets. We also found that it was

possible to reduce the number of rename table ports without significantly effecting

performance. The virtual context architecture was able to achieve good perfor-

mance on a four issue pipeline with as few as 8 ports. Similarly, on an eight issue

pipeline 12 ports was enough to provide good performance.

The second set of parameters we looked at was the cost of the extra logic in

the rename stage of the pipeline. The best solution is to add an extra stage to the
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pipeline—it only affects performance when branches are miss predicted. If the

rename logic is still too complicated to meet cycle time constraints, a delay on

entry replacement would make sense. Not only is this one of the smallest delays,

but the event itself involves the most complex logic.

These results were used to choose configurations to evaluate in detail. The

next several chapters provide a detailed evaluation of the virtual context architec-

ture against several baseline architectures.
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Chapter 6

Register Window Studies

This chapter evaluates the performance of the virtual context architecture as

an implementation of register windows. This chapter is composed of four sections,

each of which presents the results for a different pipeline configuration. The chap-

ter begins with a detailed analysis of the virtual context architecture implemented

in a four issue out-of-order pipeline. The second section examines the virtual con-

text architecture in a wider issue pipeline, in this case an eight issue out-of-order

pipeline. The third section looks at the performance in a narrower two issue out-

of-order pipeline. The final pipeline section examines the VCA in a simpler single

issue in-order pipeline. The chapter ends with a summary of the results. The pri-

mary metrics used to evaluate the performance of the VCA are the execution time

of the benchmarks and the number of accesses made to the first level data cache. 

The virtual context architecture is evaluated against three other architectures:

a baseline architecture that does not support register windows, an ideal imple-

mentation of registers windows, and a conventional register window implementa-

tion. The first architecture is a baseline architecture that represents a typical non

register window pipeline. The baseline pipeline executes the non register window

binaries. The second architecture is an ideal architecture that represents a theo-

retical pipeline in which spills and fills are handled instantaneously, and never

generate accesses to the data cache. It provides a theoretical limit on the register

window performance. The third architecture is a conventional register window

configuration. This represents a typical implementation of register windows and

uses the same ABI as the virtual context architecture. The physical register file is

split into several windows with the number of windows depending on the size of
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the physical register file. The remaining registers are used for renaming. When a

register window overflow or underflow occurs, the pipeline delays for 10 cycles (a

generous simulation time for the hardware trapping to the operating system). After

the delay, load/store instructions are inserted into the pipeline to either load all the

windowed registers of the new window on an underflow, or to store all the dirty

registers in the departing window on an overflow.

All the virtual context architecture configurations in these studies use the over-

write last policy and a four entry architectural state transfer queue with two ports.

In Chapter 5 we determined that these provide the best performance. The rename

table is configured according to the pipeline being studied. Specifically, the num-

ber of rename table ports needed is dependent on the issue width of the pipeline.

6.1Four Issue Pipeline
This section presents the performance of the virtual context architecture in a

four issue out-of-order pipeline. Several different VCA configurations were stud-

ied, see Table 6.1. These configurations represent a range of implementations,

from vca1 with the least restrictions and most hardware to vca4 with the most

restrictions and least hardware. The actual implementation used would depend on

the cycle time restrictions of the rename stage. The results are presented in three

subsections: benchmark details, results of two data cache ports and results for

one data cache port. The benchmark details section shows the effect register win-

Rename Table 
Size

Rename Table 
Ports Extra Logic Cost

vca1 64x4 10 none
vca2 64x3 8 extra stage
vca3 64x3 8 vca2 + replace entry delay, change window delay
vca4 64x2 6 vca3 + transfer delay

Table 6.1: VCA Configurations For The Four Issue Pipeline
The virtual context architecture configurations studied for the four issue pipeline. The con-
figurations represent a range of implementations. The configurations are composed of
two things. The first is the size and ports of the rename table. The second is the cost as-
sumed for the extra logic in the rename table.
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dows has on the individual benchmarks. The other sections present comparisons

of the different virtual context architectures to the baseline architectures described

in the introduction of this chapter.

6.1.1 Benchmark Details
This section presents the execution time and data cache access savings

achievable by using registers windows. Figure 6.1 shows the ideal execution time

of the register windows binaries for this pipeline normalized to the execution time

of the baseline binaries. See Section 4.1 for a description of the register window

and baseline binaries. The results show that register windows is able to decrease

the execution time of the binaries by an average of 5%. The benchmarks tend to

cluster into three distinct groups based on their relative performance. The majority

of the benchmarks experience a decrease in execution time of 3-8%. There are
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Figure 6.1: Register Window Binaries Execution Time
The execution time using the ideal configuration of the individual benchmarks used to
measure the register window performance. The results are normalized to the execution
time of the baseline binaries. These represent the theoretical limits of the improvement
associated with register windows for this particular pipeline.
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outliers on both sides, however. Three of the benchmarks actually experience a

performance decrease relative to the baseline binaries. The decrease in perfor-

mance is relatively small at approximately 2%. If one looks at the relative dynamic

path lengths in Table 4.3, the performance of twolf is easily explained. Although it

makes a lot of function calls, the code does not benefit very much from the regis-

ter window optimizations. However, both parser and vpr show nearly a 10%

decrease in dynamic path length for the register window binaries. A study of the

statistics reveals that the register window binary of vpr suffers from more branch

predictor mispredictions, approximately 10% more mispredictions per executed

instruction. If a perfect branch predictor is used, the results for vpr match the

dynamic path length ratio. On the other end of the spectrum, two benchmarks

(perlbmk and vortex) experience very large decreases in execution time of 17%

and 16% respectively. As the results show, the effect of registers windows is very

dependent on the benchmark.

The second metric considered is the number of data cache accesses.

Figure 6.2 shows the ideal data cache accesses of the register window binaries

for this pipeline normalized to the data cache accesses of the baseline binaries.

Register windows are used to reduce the save and restore overhead necessary

for a function call and the results show that in every case register windows is able

to decrease the number of data cache accesses. The average decrease is nearly

20%. The smallest decrease occurs for twolf which shows only a 3% reduction in

data cache traffic. The largest decreases occur for vortex and perlbmk. These

benchmarks show a decrease of almost 40%.

In general, the results show that the relative execution time of the benchmarks

is tightly coupled to the reduction in data cache accesses. However, the two prob-

lem benchmarks (parser and vpr) both show significant reductions in data cache

accesses of nearly 25% for parser and 15% for vpr, even though their execution

times are not improved.
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6.1.2 Two Data Cache Ports
This section provides a detailed comparison of the virtual context architecture

to the baseline architectures for a four issue pipeline with two data cache ports.

The results are presented for a variety of physical register file sizes. The smallest

number of physical registers examined is 64 physical registers, which is just

enough to hold the architectural state without rename registers. Only the virtual

context architecture and ideal register window architecture are able to run with

this few physical registers. The other architectures require their full architectural

state be kept in the physical register file. With the addition of rename registers,

this constrains them to a physical register file larger than 64. The largest number

examined is 256 physical registers. This is enough registers to guarantee that the

baseline architecture will never need to stall rename because of a lack of physical
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Figure 6.2: Register Window Binaries Data Cache Accesses
The data cache accesses using the ideal configuration of the individual benchmarks used
to measure the register window performance. The results are normalized to the data
cache accesses of the baseline binaries. These represent the theoretical limits of the im-
provement associated with register windows for this particular pipeline.
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registers. To ensure this, the processor must have one physical register for each

architectural register plus one physical register for each reorder buffer entry

(assuming instructions only have a single destination register). The results are

presented in two sections. The first section presents the execution time results.

The second section presents the cache results.

6.1.2.1 Execution Time Results

This section examines the execution time of the benchmarks in the four archi-

tectures being compared. Figure 6.3 presents the execution time results. The

results are all normalized to the baseline architecture with 256 physical registers.

The first three VCA configurations provide better performance at every physical

register file size than the baseline architecture. With 256 physical registers, vca1

is 5% faster, vca2 is 4% faster and vca3 is just under 3% faster. With 192 physical
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Figure 6.3: Four Issue Execution Time Comparison
The execution time of the baseline architecture (baseline), ideal register window architec-
ture (ideal), conventional register window architecture (register window) and four different
virtual context architecture configurations. The execution times are normalized to the ex-
ecution time of the baseline architecture with 256 physical registers. The results are given
for a range of physical register file sizes.
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registers, the performance improvement jumps to 6.5% for vca1, 5.5% for vca2

and 4.5% for vca3. With 128 physical registers, the improvement is even greater.

The first three configurations are between 10.5% and 9% faster. The fourth VCA

configuration is slightly slower than the baseline at 256 physical registers, pro-

vides the same performance at 192 and is 4% faster at 128. The performance

savings are great enough that the first three VCA configurations provide better

performance with 192 physical registers than the baseline with 256. With only 128

physical registers, the first two VCA configurations provide the same performance

as the 256 register baseline, while VCA configuration three is only 1% slower.

The results show that the virtual context architecture, at least the first three

configurations, is able to provide a nearly ideal implementation of register win-

dows. Figure 6.4 shows the relative execution times of the four virtual context

architecture configurations compared to the ideal implementation. The execution
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Figure 6.4: VCA Execution Time Relative To Ideal
The execution time of the four different virtual context architecture configurations. The ex-
ecution times are normalized to the execution time of the ideal implementation with the
same number of physical registers. The results are given for a range of physical register
file sizes.
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times are normalized to the ideal execution time with the same number of physical

registers. With 256 physical registers, vca1 is within 0.2% of idea, vca2 is within

1.1% and vca3 is within 2.6%. The fourth virtual context architecture configuration

does not fare as well. Even with 256 physical registers, it is nearly 8% slower than

ideal. With 192 physical registers, the vca1 configuration begins to slow down rel-

ative to ideal, becoming nearly 0.9% slower. The second virtual context configura-

tion also slows down, although the change is slightly less, with it slowing to just

1.6% slower. Interestingly, both the third and fourth configurations maintain the

same relative execution time at 192 physical registers as they do at 256 physical

registers. Both of these configurations include event delays to offset the cost of

the extra rename logic. The delays limit these configurations from taking advan-

tage of the additional physical registers available with 256 versus 192. Therefore,

these configurations actually have approximately the same performance with both

register file sizes. As the number of physical registers is decreased further, all of

the configurations began to slow relative to the ideal configuration. With so few

physical registers, the virtual context architecture is forced to generate many more

spills and fills. The ideal architecture can handle these instantly, but the actual

VCA configurations are forced to generate more data cache accesses and the

pipeline slows while it waits for the accesses to complete.

Unlike the virtual context architecture, the conventional register window archi-

tecture is not able to provide good performance in this range of physical register

file sizes. The conventional register window architecture is 8% slower than the

baseline with 256 physical registers and almost 15% slower than ideal. The per-

formance decreases rapidly from there. The reason for the poor performance is

that even with 256 physical registers, the conventional register window implemen-

tation only has room for four register windows after reserving physical registers for

the non windowed logical registers and some rename registers. The small number

of windows forces many overflow and underflow conditions. When these condi-

tions occur, a large number of loads or stores is generated, forcing the pipeline to

slow down drastically while it processes them. Therefore, unlike the VCA, the con-
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ventional register window performance dramatically decreases when the number

of physical registers is decreased.

All of the architectures slow down as the number of physical registers is

decreased, although their rates of slowdown are different. For the baseline, the

number of physical registers needed for architectural state never changes. There-

fore, any decrease in the number of physical registers directly decreases the num-

ber of registers available for rename. For any out-of-order pipeline to achieve

good performance, it must have enough instructions in the instruction queue to

find enough instruction level parallelism to issue close to the width of the pipeline.

However, as you decrease the number of physical registers available for rename,

the pipeline loses the ability to keep large numbers of instructions in the instruc-

tion queue. This in turn decreases the size of the instruction window that the pipe-

line can find independent instructions in and causes the pipeline to slowdown.

The ideal register window architecture also slows down with fewer physical

registers. Although it can instantly move the unused architectural state into mem-

ory, it is still constrained to keep the used registers in the physical register file.

Therefore, like the baseline architecture, as the number of physical registers is

decreased it is able to keep fewer instructions in the instruction queue and reorder

buffer. However, the ideal architecture is able to rename more instructions than

the baseline with the same number of physical registers because it is only con-

strained to keep the used registers in the physical register file. This results in the

ideal maintaining a higher level of performance as the number of physical regis-

ters is decreased.

Like the baseline architecture, the conventional register window architecture

must also keep its architectural state in memory. For this architecture, the problem

is further exacerbated by the large quantity of registers set aside for use as regis-

ter windows. As the number of physical registers decreases, both the number of

simultaneous register windows supported and the number of registers available

for rename will decrease. This leads to the very drastic loss of performance as the

number of physical registers is decreased.
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Although the virtual context architecture also slows down as you decrease the

number of physical registers, its rate of slowdown is less than that of the baseline.

Therefore, the performance advantage that the virtual context architecture has

over the baseline increases as the number of physical registers decreases. The

VCA is able to take advantage of its ability to move architectural state out to mem-

ory to free more physical registers for rename. There are two situations in which

this occurs. The first would be moving most of the integer or floating point state

out of the register file because it is not currently being used. The second is the

pipeline can dynamically balance the ratio of physical registers used for renaming

and those used for architectural state. If, for example, the current section of code

is a loop that uses a limited number of different logical registers, as the VCA runs

out of registers for rename it will began to spill the unused logical register to mem-

ory, freeing them up for rename. This will continue until the pipeline naturally bal-

ances the cost of spilling to the number rename registers. The balance occurs

when the rate at which instructions are being committed is enough to supply free

registers for the rename stage.

The results in this section showed that the virtual context architecture is able to

provide an execution time advantage over the baseline architecture with most of

the configurations tested. The VCA has very close to ideal performance when the

physical register file is relatively large. In contrast, the conventional register win-

dow architecture has very high execution times in this range of physical register

file sizes. Finally, the virtual context architecture is able to take advantage of its

ability to move architectural state to memory to increase its performance advan-

tage over the baseline architecture as the number of physical registers is

decreased.

6.1.2.2 Cache Results

The advantage of using register windows is a removal of the explicit save and

restore instructions from the binary. Instead, the architectures themselves

become responsible for managing this. Figure 6.5 presents the data cache results

of the four architectures in a four issue pipeline with a range of physical register
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file sizes. The results have been normalized to the data cache accesses of the

baseline binary with 256 physical registers. The data cache results are more com-

plicated than the execution time results seen earlier. In particular, some of the

architectures experience more data cache accesses as the number of physical

registers is decreased. The other architectures experience the opposite effect;

their data cache accesses decrease as the number of physical registers is

decreased.

The two architectures that have decreasing accesses with decreasing num-

bers of physical registers are the baseline architecture and the ideal register win-

dow architecture. For both of these architectures, only instructions in the binary

will ever generate a data cache access. Therefore, the minimum level of data

cache accesses is fixed by the binary. Any additional accesses are caused by
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Figure 6.5: Four Issue Data Cache Accesses Comparison
The first level data cache accesses of the baseline architecture (baseline), ideal register
window architecture (ideal), conventional register window architecture (register window)
and four different virtual context architecture configurations. The accesses are normal-
ized to the accesses of the baseline architecture with 256 physical registers. The results
are given for a range of physical register file sizes.
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instructions executed as part of speculative execution after a mispredicted

branch. The more speculative execution occurs, the more the number of data

cache accesses will increase. As the number of physical registers is decreased,

the execution rate is decreasing. When the execution rate slows down, fewer

instructions will tend to be executed after a mispredicted branch. This leads to the

phenomenon we see, the data cache results decreasing as the number of physi-

cal registers decreases.

For the virtual context architecture and conventional register window architec-

ture, the program instructions are not the only source of data cache accesses. For

these, architectural state is moved to and from memory as needed. In the case of

the conventional register window processor, entire register windows need to be

saved or restored on underflow or overflow conditions. As stated earlier in this

section, as the number of physical registers decreases, the number of register

windows that the physical register file can hold decreases. This leads directly to

more underflow and overflow conditions, which in turn lead to many more data

cache accesses. This effect completely overwhelms any decrease caused the

execution of fewer speculative instructions. With 256 physical registers, the con-

ventional register window processor is able to achieve a nearly 17% savings in

data cache accesses. With this many physical registers, a relatively small number

of overflows and underflows occur, allowing the configuration to obtain most of the

cache savings that a register window binary can produce. A comparison against

the ideal register window shows this to be the case. When the physical register file

decreases to 192 registers, this savings drops by half to only 10%. The decrease

in the number of register windows in the physical register file results in more over-

flows and underflows which lead directly to more data cache accesses. With only

128 physical registers, only two register windows are held in the register file. At

this point, a conventional register window implementation suffers. The number of

overflow and underflow events rises dramatically causing not only a large loss in

performance, but a huge increase in cache traffic. With this few physical registers,

the data cache accesses are nearly double those of the baseline architecture.
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The virtual context architecture has in some ways the same cache behavior as

the conventional register window architecture. The VCA also moves architectural

state to and from memory. However, the virtual context architecture is able to do

this on an as needed basis with single register granularity. Although it also gener-

ates more cache traffic as the number of physical registers is decreased, it does

so at a much slower rate and in almost linear fashion. With 256 physical registers,

all of the VCA configurations show a large reduction in data cache accesses rela-

tive to the baseline architecture with a nearly 20% reduction. This large a register

file enables all of the virtual context architecture configurations to achieve within

1.5% of the data cache savings of an ideal implementation. With 192 physical reg-

isters, the VCA still provides a large savings in data cache relative to the baseline,

with a 12% to 14% savings depending on configuration. The savings are slightly

larger than those of the conventional register window design. With 128 physical

registers, things become quite different. The conventional register window proces-

sor generated a huge number of data cache accesses at this point. The VCA also

generates more cache accesses, but the level is greatly reduced. With this size

physical register, the first three virtual context architecture configurations generate

the same number of data cache accesses as the baseline does with this number

of registers. The small physical register file causes the VCA configurations to gen-

erate enough spills and fills to remove the advantage of the register window bina-

ries. However, they still generate somewhat fewer data cache accesses than the

baseline does with 256 physical registers, while providing equivalent perfor-

mance. The fourth VCA configuration still maintains a 5% improvement over the

baseline with this size register file. As mentioned in Section 5.2.3, the transfer

delay tends to trade performance for a decrease in transfers as the number of

physical registers is decreased. The same trends continue when the physical reg-

ister file is decreased to 64 registers. The increase in data cache accesses of the

first three VCA configurations continues and they generate between 12% to 14%

more accesses than the baseline did with 256 registers. The fourth configuration

generates nearly 16% fewer accesses, and is still 2% less than the baseline with

256.
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The data cache access behavior is strongly dependent on the generation of

spills and fills. Figure 6.6 presents the spill and fill rate of the virtual context archi-

tecture. The rates are given as the number of spills or fills per committed instruc-

tion. As expected, the rates are very low with large physical register files, but

rapidly increase as the number of physical registers is decreased. The first three

VCA configurations generate between 2 and 3 spills per one thousand committed

instructions with 256 physical registers. The fourth configuration generates over

twice as many with approximately 7.5 spills per one thousand instructions. With

192 physical registers, all four configurations generate almost exactly the same

number of spills of around 3 spills per one hundred instructions. The decrease in

physical registers has caused the spill generation to increase by an entire order of

magnitude. Unlike 256 physical registers, the fourth configuration is actually gen-

erating slightly fewer spills than the other three. As mentioned, the transfer delay

implemented in the fourth configuration tends to limit the numbers of spills and fills

at smaller physical register file sizes. This trend becomes even more pronounced

with smaller physical register file sizes. With 128 physical registers, the rate of the

first three configurations doubles to just over 6 spills per one hundred instructions,

while the fourth configuration only generates 4.5 spills. With 64 physical registers

the difference becomes even greater. The first three configurations generate

around 12.5 spills per one hundred instructions (with the third configuration gener-

ating slightly fewer than the first two). The fourth configuration only generates 8

spills per one hundred instructions.

The fill rates show similar trends as the spill rates, but the rate of fills is much

lower. A fill is only needed when architectural state has been moved out of the

physical register file and into memory by a spill. However, a spill can move state

out to memory and if the program never needs that state or overwrites the value of

that logical register, a fill will not result from that spill. Therefore, the number of fills

will always be less than the number of spills. With 256 physical registers, the first

three VCA configurations generate 1 fill per one thousand instructions, while the

fourth once again generates more, with 2 fills per thousand instructions. With 192
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Figure 6.6: Spill And Fill Rate
The spill and fill rate of the four virtual context architecture configurations. The rates are
given as spills or fills per committed instruction. The results are presented for a range of
physical register file sizes.
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physical registers, once again the rate is the same for all four configurations, with

5 fills per one thousand instructions. This is only one fifth as many fills as spills.

This ratio continues at 128 physical registers, where the first three configurations

generate approximately 12 fills per thousand instructions with the fourth generat-

ing only 8. With 64 physical registers, the rates become 3 fills per hundred instruc-

tions for the first three and 2 fills per hundred instructions for the fourth

configuration. As the results show, the rates of spills and fills are very tightly cou-

pled. Both rates show the exact same trends with changes in the number of phys-

ical registers and between the different configurations tested. This is expected

because of the nature of spills and fills, with a fill in general only being needed

when a value was previously spilled.

The virtual context architecture also shows a slight decrease in instruction

cache accesses with respect to the baseline architecture with 256 physical regis-

ters, with an average decrease of 2% and a maximum decrease of 5%. This is

easily explainable because of the decreased dynamic path length of the register

window binaries. However, with fewer physical registers this is no longer the case.

With 192 physical registers, the baseline and virtual context architecture have

nearly identical numbers of instruction caches. Similar to the data cache

accesses, this is explainable by the decrease in speculative execution attributable

to a slow down in the execution rate. As the data presented in Section 6.1.2.1

showed, the baseline architecture tends to slow down faster than the VCA as you

decrease the number of physical registers. With 128 physical registers, the base-

line architecture accesses the L1 data cache almost 5% less than the virtual con-

text architecture configurations.

The virtual context architecture does show a dramatic increase in the number

of second level cache accesses compared to the baseline architecture (25% to

45%). However, the ideal register window processor shows an identical increase

(43%). Therefore, the increase is related to the register window binaries, and not

any overhead of the VCA. A quick look at the statistics for the individual bench-

marks shows that most of the difference is attributable to the eon benchmark. The

L2 cache accesses for this benchmark are over seven times higher with any of the
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register window architectures compared to the baseline. Eon generates the few-

est L2 cache accesses by over an order of magnitude. Therefore, a slight change

in the absolute number has a huge impact on the relative numbers. For all four vir-

tual context architecture configurations at all four sizes of physical register file, the

VCA at most generates less than 2% more accesses than the ideal implementa-

tion, and often generates fewer. This shows that the extra cache accesses gener-

ated by spills and fills does not adversely affect the cache hit rate.

The advantage of using register windows is a removal of the explicit save and

restore instructions from the binary. The results in this section showed that the vir-

tual context architecture is able to provide most of this savings with larger physical

register file sizes, providing a nearly 20% data cache access savings over the

baseline with 256 physical registers. With a smaller number of physical registers,

the VCA generates more spills and fills and the cache savings is decreased.

6.1.3 One Data Cache Port
This section provides a detailed comparison of the virtual context architecture

to the baseline, ideal, and conventional register window architectures for a four

issue pipeline with only one data cache port. The results are presented in two sec-

tions. The first section presents the execution time results. The second section

presents the data cache results.

6.1.3.1 Execution Time Results

This sections presents the execution time results of a four issue our-of-order

pipeline with a single data cache port. Figure 6.7 shows the execution time

results. The results in general are similar to the results for two data cache ports.

The register window architecture performs worse than the baseline architecture,

and the performance becomes drastically worse as the number of physical regis-

ters is decreased. The virtual context architecture still shows a performance

advantage over the baseline at every physical register file size. However, the vir-

tual context architecture is able to take advantage of the reduction in data cache

accesses versus the baseline to provide an even larger performance advantage,
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especially at 256 physical registers. The first VCA configuration is almost 8%

faster than the baseline in the one data cache port pipeline versus only 5% faster

in the two port pipeline. Both vca2 and vca3 see a similar decrease in execution

time. The fourth configuration has an even greater difference. The difference is

great enough to realize a 2% performance improvement over the baseline archi-

tecture. In contrast, vca4 was slower than the baseline in the two data cache port

pipeline. With 192 physical registers this trend continues, with the first three con-

figurations still showing a 2% to 2.5% improvement in the relative performance

compared to the same configurations with two data cache ports. The fourth con-

figuration retains the same advantage. With a smaller physical register file, things

began to change for the first three configurations. With 128 physical registers, the

performance difference drops to between no difference and a 1.5% improvement.
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Figure 6.7: Four Issue One Data Cache Port Execution Time
The execution time of the baseline architecture (baseline), ideal register window architec-
ture (ideal), conventional register window architecture (register window) and four different
virtual context architecture configurations with a four issue pipeline with one data cache
port. The execution times are normalized to the execution time of the baseline architec-
ture with 256 physical registers. The results are given for a range of physical register file
sizes.
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With 64 physical registers, the trend reverses. The relative performance is

between 0.5% and 1.7% worse than the relative performance with two data cache

ports. The behavior of vca4 is very different. This configuration continues to see

an improvement relative to the results with two data cache ports. With 128 physi-

cal registers, the improvement is still 4.5% better, and with 64 physical registers

the improvement actually increases to over 6%.

In a pipeline with a single data cache port, the number of data cache accesses

is going to play a critical role in the overall performance. With a large physical reg-

ister file, the VCA will decrease the overall number of data cache accesses rela-

tive to the baseline. The cache accesses removed by register windows are

register save and restore instructions. These instructions are saving/loading their

values to/from locations on the stack. These accesses will tend to hit in the data

cache. Therefore, the instructions do not take a significant amount of time to exe-

cute (versus if they tended to miss in the data cache). However, with only a single

data cache port, the bandwidth to the cache is limited. Therefore, any memory

instructions will tend to be more expensive to execute. This means that removing

memory instructions in this situation will tend to have a larger impact on the exe-

cution time. This explains the results for one data cache port. If one looks at the

rate at which instructions were executed (measured in instructions per clock or

IPC), with two data cache ports, the rate of instruction execution is 3% slower in

the ideal architecture than the baseline. The removal of the relatively quick to exe-

cute stack accesses increases the average execution time of instructions. The

decrease in dynamic path length can more than make up for it, leading to the 5%

decrease in execution time for the idea case with 256 physical registers. However,

with only one data cache port, the IPC of the ideal architecture is the same as the

baseline. Because the execution of the save and restore instructions is more

expensive given the limited cache bandwidth, their removal doesn’t change the

average execution time. The advantage of the decreased dynamic path length is

fully expressed. This accounts for the increase in relative execution time that the

virtual context architecture enjoys with a single data cache port.
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The removal of one data cache port also affects the performance of the virtual

context architecture relative to the ideal. Figure 6.8 presents the execution time of

vca1 relative to the execution time of the ideal register window configuration. The

results are given for a pipeline with two data cache ports and for a pipeline with

one data cache port. As previously noted, with a single data cache port, any type

of memory access is going to cost more performance. The ideal architecture

never generates additional data cache accesses for its spills and fills. In contrast,

the virtual context architecture generates additional cache traffic for spills and fills.

With 256 physical registers, although only a small number of spills and fills are

generated, the difference in expense is enough for vca1 to be 0.7% slower than

ideal with one data cache port versus only 0.2% slower with two data cache ports.

The relative difference increases as the number of physical registers is reduced,

forcing the VCA to generate more and more spills and fills. With 192 physical reg-
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Figure 6.8: Execution Time Relative To Ideal
The relative execution time of vca1 to ideal in a pipeline with two data cache ports and in
a pipeline with one data cache port. The execution times are normalized to the execution
time of the ideal register window architecture with the same number of physical registers.
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isters, the relative difference between one port and two ports grows to 1.6%. With

128, it increases to 3.3% and with only 64 physical registers it becomes over a 5%

difference.

The relative performance difference of the various virtual context architecture

configurations is also affected by the removal of one data cache port. In every

case, the performance differences between vca1 and the other three configura-

tions is smaller with one data cache port than with two data cache ports. The two

port results show that all the configurations maintain an almost constant difference

between themselves. This is not the case with only one data cache port, espe-

cially for vca2 and vca3. These two configurations with 256 physical registers

show less of a performance decrease with respect to vca1 when the pipeline only

has a single data cache port. As the number of physical registers is decreased,

this difference shrinks even further, until the first three configurations display

almost the exact same performance. The behavior of the fourth configuration is

somewhat different. As mentioned, at every size of physical register file, the per-

formance difference between it and vca1 is smaller with one data cache port than

with two. The fourth configuration follows a somewhat similar trend, with the differ-

ence decreasing as the number of physical register is decreased. However, with

only 64 physical registers, the performance difference increases back to the same

level it was with 192 physical registers. The increase is probably related to the

capability of the transfer delay in limiting the number of spills and fills generated.

As the physical register file size is decreased, the performance influence of this

capability increases relative to the cost associated with delaying on each transfer.

However, when the physical register file size reaches 64, the balance probably

begins to shift the other way, with the cost becoming more of a factor.

The virtual context architecture is able to provide a performance advantage

over the baseline architecture. The advantage is greater when the pipeline has a

single data cache port. The performance advantage is great enough for the virtual

context architecture to achieve the same performance with a single data cache

port that the baseline needs two data cache ports to achieve. Figure 6.9 presents
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the execution time of the virtual context architecture on a pipeline with one data

cache port normalized to the execution time of the baseline architecture with two

data cache ports. All four VCA configurations outperform the baseline when the

physical register file is 128 physical registers. With this size register file, the first

three configurations are almost 2.5% faster even though the pipeline has only one

data cache port. With 192 physical registers, the first three configurations show

nearly the same performance as the baseline. The fourth configuration is over 3%

slower. This trend continues with 256 physical registers. The first configuration

provides the same performance, vca2 is now 0.5% slower and vca3 is over 1%

slower. The fourth configuration has also slowed further; relative to the baseline, it

is now over 5% slower.

Figure 6.9: One Port VCA Versus Two Port Baseline
The execution time of the four virtual context architectures on a pipeline with one data
cache port. The results are normalized to the execution time of the baseline architecture
on a pipeline with two data cache ports with the same number of physical registers. The
results are given for a range of physical registers.
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6.1.3.2 Data Cache Results

The data cache accesses are also affected by the number of data cache ports.

Figure 6.10 presents the data cache access results for a pipeline with one data

cache port. As already seen in the execution time results, the data cache results

for one data cache port are very similar to the results seen for a pipeline with two

data cache ports. In fact, the results for all the architectures except for the virtual

context architecture are almost exactly the same. In all of these architectures, the

non speculative data cache accesses are a constant, or in the case of a conven-

tional register window architecture, a constant for a given number of physical reg-

isters. Therefore, the slight differences in cache accesses for these architectures
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Figure 6.10: Four Issue One Data Cache Port Data Cache Accesses
The data cache accesses of the baseline architecture (baseline), ideal register window
architecture (ideal), conventional register window architecture (register window) and four
different virtual context architecture configurations with a four issue pipeline with one data
cache port. The data cache accesses are normalized to the data cache accesses of the
baseline architecture with 256 physical registers. The results are given for a range of
physical register file sizes.



123

are directly attributable to the variance of the number of speculative instructions

executed with the execution rate of the pipeline.

The data cache accesses for the virtual context architecture are not constant.

Instead, they are dependent on a complex interplay between the size of the phys-

ical register file, the execution rate of the pipeline and the configuration of the VCA

architecture. In particular, the rate at which spills and fills can be completed affects

the number of spills and fills generated. The one data cache port pipeline has

much less bandwidth to the first level data cache. Therefore, in general, spills and

fills will tend to take longer to complete. This will tend to slow down the execution,

resulting in more pressure on the physical register file as more instructions

become resident in the reorder buffer. This increased pressure leads to more

spills, which results in more fills.

This trend is clear for the first three virtual context architecture configurations.

With 256 physical registers, only a small number of spills and fills are generated,

and we see the one port pipeline generating less than 1% more data cache

accesses relative to the baseline architecture than the pipeline with two ports.

Although the generation of spills and fills is small, the one data cache port pipeline

will execute more slowly than the two, increasing the pressure on the physical

register file. The difference grows as we decrease the size of the physical register

file. With 192 physical registers, the difference becomes 2%. This grows to 5%

with 128 physical registers and over 7% with 64 physical registers. The fourth vir-

tual context architecture also shows this trend, but at a much reduced level. The

ability of this configuration to restrict the generation of spills and fills results in a

difference of less than 0.5% with 256 physical registers, 0.8% with 192, 1.4% with

128 and less than 2% with 64.

6.1.4 Summary
The results in this section show that the virtual context architecture is able to

provide a nearly ideal implementation of register windows. In contrast to a con-

ventional register window design, the VCA provides a performance advantage

over the baseline architecture even with small physical register file sizes. Even
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with an extra stage added, the virtual context architecture reduces execution time

versus the baseline architecture with the same number of physical registers

between 4% and 10% for a pipeline with two data cache ports and 7% to 10.5%

for a pipeline with one data cache port. The improvement in performance is great

enough that vca2 is 3%-5% faster with 192 physical registers than the baseline

architecture with 256. The VCA has the same execution time with 128 physical

registers as the baseline does with 256. These reductions are enough that the

VCA can provide nearly identical performance over the range of physical registers

studied on a pipeline with only one data cache port to the baseline architecture

with two data cache ports. The virtual context architecture improves relative to the

baseline as hardware becomes more restricted; that is, when either the number of

physical registers or the number of data cache ports is reduced.

6.2Eight Issue Pipeline
This section presents the performance of the virtual context architecture in an

eight issue out-of-order pipeline. The purpose of this study is to examine the dif-

ferences that a wider pipeline make in the performance of the virtual context archi-

tecture. Two different VCA configurations were studied, see Table 6.2. The

configurations are equivalent to the first two configurations for the four issue pipe-

line. The only difference is the increase in the number of rename table ports

because of the increased width of the pipeline. Everything else is the same. The

other configurations are not repeated in this study because the relative perfor-

Rename Table 
Size

Rename Table 
Ports Extra Logic Cost

vca1 64x4 12 none
vca2 64x3 10 extra stage

Table 6.2: VCA Configurations For The Eight Issue Pipeline
The virtual context architecture configurations studied for the eight issue pipeline. The
configurations represent a range of implementations. The configurations are composed
of two things. The first is the size and ports of the rename table. The second is the cost
assumed for the extra logic in the rename table.
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mance characteristics were shown in the four issue pipeline. The results are pre-

sented for the same range of physical registers as was studied in the four issue

results. The size of the reorder buffer is the same in the two pipelines, and there-

fore the number of physical registers needed by the baseline to provide no stalls is

the same. Results are presented for pipelines with three, two and one data cache

port.

6.2.1 Three Data Cache Ports
The execution time of the architectures with three data cache ports is pre-

sented in Figure 6.11. The results show trends similar to the four issue pipeline

with two data cache ports. However, the execution times relative to the baseline

architecture with 256 physical registers are all slower in the eight issue pipeline
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Figure 6.11: Eight Issue Three Data Cache Ports Execution Time
The execution time of the baseline architecture (baseline), ideal register window archi-
tecture (ideal), conventional register window architecture (register window) and two dif-
ferent virtual context architecture configurations with an eight issue pipeline with three
data cache ports. The execution times are normalized to the execution time of the
baseline architecture with 256 physical registers. The results are given for a range of
physical register file sizes.
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than in the four issue. This is true for every architecture and with every physical

register file size. In almost every case, the difference increases as the number of

physical registers is decreased. As the number of physical registers is decreased,

the number of registers available for renaming decreases.

For any out-of-order pipeline to achieve good performance, it must have

enough instructions in the instruction queue to find enough instruction level paral-

lelism to issue close to the width of the pipeline. It is always the case that with a

fixed number of instructions available to execute, the pipeline is much more likely

to find four independent instructions than to find eight. For example, assume a

theoretical stream of instructions. For simplicity assume that for every eight

instructions in the instruction window, one independent instruction can be found.

Therefore, with a 64 instruction window we have 8 independent instructions, but

with a 32 instruction window we have only 4 independent instructions. With a four

issue pipeline, both a 32 and 64 instruction window can provide the four instruc-

tions it needs. However, the eight issue pipeline will only be able to issue four

instructions if it has a 32 instruction window, costing it half its performance.

This effect is visible in this chart for all the architectures. Consider the baseline

architecture. With 192 physical registers, the execution time of the four issue

increases by 2% relative to 256 physical registers, while for an eight issue this

increase is 3.5%. With 128 physical registers, the four issue is 10% slower while

the eight issue is 15.5% slower. The only instance that does not see this increas-

ing decline in performance relative to the four issue is the conventional register

window. With 192 physical registers compared to 256 physical registers, the eight

issue is 10% slower relative to the four issue. However, with 128 physical regis-

ters, this percentage drops to less than 5%. With so few register windows in the

physical register file, this architecture benefits more from the extra data cache port

than it loses from the lack of rename.

The results for the virtual context architecture on this pipeline are mixed. With

256 physical registers, vca1 is only a little over 3% faster than the baseline archi-

tecture while vca2 is only a little over 2% faster. This compares to 5% and 4%

respectively for the four issue pipeline with two data cache ports. The larger num-
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ber of data cache ports decreases the relative cost of issuing loads and stores,

decreasing the impact register windows has on the performance. This is con-

firmed by the results of the ideal register window architecture. Similar to the four

issue with two data cache ports, both VCA configurations are very close to ideal

with 256 physical registers, with 0.2% and 1.5% respectively. The virtual context

architecture also loses performance more quickly in the eight issue pipeline when

the number of physical registers is decreased. With 128 physical registers, vca1 is

over 2.5% slower than the baseline with 256 physical registers. In the four issue

pipeline the two had the same performance. However, the decline is less rapid

than occurs for the baseline architecture. The ability of the virtual context architec-

ture to dynamically balance the number of physical registers used for rename

allows it to not lose as much performance. With 128 physical registers, the differ-

ence between vca1 and the baseline architecture is 13% while in the four issue it

was only 10%.

The data cache accesses for the virtual context architecture show trends simi-

lar to the execution time. Figure 6.12 presents the data cache access results for

an eight issue pipeline with three data cache ports. The data cache access behav-

ior of the various architectures is similar to that seen for a four issue pipeline.

Unlike the execution time, the architectures can be divided into two distinct groups

based on relative cache performance compared to the four issue pipeline. All of

the architectures except for the virtual context architecture see a decrease in the

data cache accesses relative to the change seen in a four issue pipeline. As men-

tioned previously in this chapter, these architectures produce a constant number

of non speculative cache accesses (the conventional register window architecture

is constant, but dependent on the size of the physical register file). The results

show that all of the architectures lose performance faster with decreases in the

physical register file size in the eight issue pipeline as compared to the results for

a four issue pipeline. Therefore, the decrease in relative data cache accesses can

be attributed to the decrease in speculative execution caused by the greater slow-

down of the execution.
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The virtual context architecture does not generate a constant number of non

speculative data cache accesses. The virtual context architecture dynamically

balances the number of physical registers used for rename and the number of

registers used for architectural state. As mentioned previously in this section, the

VCA is able to use this to help with the decline in performance that all of the archi-

tectures experience with decreasing physical register file sizes. The cost of this

balancing is the generation of spill and fill traffic to the data cache. In an eight

issue pipeline, it is desirable to try to keep as many registers as possible used for

renaming. This will keep as many instructions as possible in the instruction queue,

increasing the number of independent instructions that can be found. The VCA is

able to adjust to this situation, generating more cache accesses but decreasing

the performance loss. With 192 physical registers, the virtual context architecture
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Figure 6.12: Eight Issue Three Data Cache Ports Data Cache Accesses
The data cache accesses of the baseline architecture (baseline), ideal register window
architecture (ideal), conventional register window architecture (register window) and two
different virtual context architecture configurations with an eight issue pipeline with three
data cache ports. The data cache accesses are normalized to the accesses of the base-
line architecture with 256 physical registers. The results are given for a range of physical
register file sizes.
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generates 2% more relative data cache accesses than in a four issue pipeline.

The difference climbs to 7.5% with 128 physical registers and 9% with 64.

The results of this section show that the performance of all of the architectures

declines faster when reducing the number of physical registers than was seen

with a four issue pipeline. The large number of data cache ports reduces the

potential performance savings. Thus, the virtual context architecture shows only a

small performance advantage over the baseline with 256 physical registers. How-

ever, the virtual context architecture is able to effectively trade additional cache

accesses for reduced execution time as the number of physical registers is

decreased. Therefore, with a small physical register file size, the virtual context

architecture provides a 13% decrease in execution time relative to the baseline

architecture.

6.2.2 Two Data Cache Ports
This section presents the results of an eight issue pipeline with two data cache

ports. The results for this pipeline are very similar to those with three data cache

ports. With 256 physical registers, the relative execution time for the virtual con-

text architecture configurations are almost identical to those of the four issue pipe-

line with two data cache ports with a 5% decrease in execution time for vca1

compared to the baseline. The slowdown in relative execution time as compared

to the four issue pipeline results are still present, but somewhat diminished. With

only two data cache ports, the overall performance of the pipeline is decreased.

The decreased performance lowers the pressure on the pipeline to supply a large

number of independent instructions each cycle. This reduces the performance

loss as the number of physical registers is reduced. With 128 physical registers,

the virtual context architecture with two data cache ports is just over 1.5% slower

than the baseline with 256 physical registers while with three data cache ports it is

nearly 3% slower.

As seen in the four issue results, the relative execution times of the virtual con-

text architecture are improved when the number of data cache ports is reduced.

The difference decreases as the number of physical registers is decreased. With
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256 physical registers, vca1 with two ports is 5% faster than the baseline, while

with three ports it’s only 3% faster. With 192 physical registers, vca1 with two

ports is 7% while three ports is 6%. With 128 physical registers, the relative exe-

cution times are identical.

The execution time of the virtual context architecture relative to the ideal regis-

ter window architecture remains nearly the same when moving from three data

cache ports to two data cache ports. With 256 physical registers, vca1 with three

data cache ports is 0.3% slower than ideal while vca1 with two data cache ports is

0.4% slower. The other three physical register file sizes show an almost constant

difference between three ports and two ports. The vca1 with two ports is an addi-

tional 0.5% slower than ideal than in a pipeline with three ports. The removal of

one data cache port makes the relative cost of a data cache access slightly

higher. This not only accounts for the improved relative performance mentioned in

the previous paragraph, but also for the increase in execution time relative to the

ideal register window, which never accesses the cache for spills or fills. With 256

physical registers, the virtual context architecture generates so few spills and fills

that the additional cost barely affects performance. When the number of spills and

fills increases, the difference becomes greater.

The data cache accesses also show similar behavior with two data cache

ports as was seen with three data cache ports. All the architectures except for the

virtual context architecture generate nearly identical relative data cache accesses

with two ports compared to three ports because the non speculative data cache

accesses are constant for these architectures. The small differences in relative

execution time of these architectures results in a negligible difference in the num-

ber of speculatively executed instructions. The virtual context architecture shows

a slight increase in relative data cache accesses as the number of physical regis-

ters is decreased. With 256 physical registers, the difference is 0.5% more relative

cache accesses with two data cache ports. The number grows until with 64 physi-

cal registers it becomes 2.5%. The decrease in ports causes the pipeline to slow,

which in turn puts more pressure on the physical register file. This increased pres-

sure results in the slight increase in spill and fill traffic. As the number of spills and
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fills increases, more pressure is put onto the data cache ports. With one less port,

the added pressure causes the pipeline to slowdown. The slowdown puts even

more pressure on the physical register file. This cycle eventually reaches an equi-

librium because of the limited resources in the ASTQ and physical register file.

6.2.3 One Data Cache Port
This section presents the results of an eight issue pipeline with a single data

cache port. With only a single data cache port, the relative cost of a cache access

becomes very high. The pipeline slows down drastically compared to pipelines

with two and three data cache ports, especially with a large physical register file.

With 256 physical registers, the average execution time of the benchmarks

increases by nearly 25% for a single cache port compared to a pipeline with three

ports. The increase is nearly 20% for a single port compared to a two port pipe-

line. These factors have a significant effect on the results.

The execution time results for this pipeline are presented in Figure 6.13. The

basic trends seen so far are still present. All of the architectures slow down as the

size of the physical register file is decreased. However, the rate of slowdown for

the architectures has changed. Both the baseline architecture and ideal architec-

tures are able to maintain a higher relative level of performance in this pipeline

than in the previous eight issue pipelines studied. For example, with 128 physical

registers the baseline architecture is 11% slower than with 256 physical registers.

With two and three data cache ports, the slowdown is 14% and 15.5% respec-

tively. Because the performance of this pipeline is so much slower to began with,

restricting the number of rename registers has much less of an effect. The same

behavior is seen in the ideal register window architecture. With 64 physical regis-

ters and one data cache port, the ideal architecture is 13% slower than with 256

physical registers. This compares with 16% and 17% for the two and three data

cache port pipelines.

This is not the only change in behavior for the ideal register window architec-

ture in this pipeline. As noted previously, the relative execution time of architec-

tures that support register windows is decreased (improved) as the number of
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data cache ports is decreased. With fewer data cache ports, the performance

impact of data cache accesses is significantly increased. Therefore, the perfor-

mance impact of removing some of these accesses becomes greater too. The

ideal architecture experiences a nearly 5% drop in relative execution time to the

baseline with respect to a two cache port pipeline. With 256 physical registers, the

ideal register window is nearly 10% faster than the baseline, while with two data

cache ports the ideal is only 5% faster than the baseline.

The conventional register window architecture also experiences this. With 256

physical registers it is 8% slower than the baseline in a pipeline with one data

cache port versus nearly 14% slower than the baseline in a pipeline with two data

cache ports and 16% slower with three data cache ports. The improvement is still

present with 192 physical registers, but disappears with 128 physical registers.
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Figure 6.13: Eight Issue One Data Cache Port Execution Time
The execution time of the baseline architecture (baseline), ideal register window architec-
ture (ideal), conventional register window architecture (register window) and two different
virtual context architecture configurations with an eight issue pipeline with one data cache
port. The execution times are normalized to the execution time of the baseline architec-
ture with 256 physical registers. The results are given for a range of physical register file
sizes.



133

With so few register windows in the physical register file, the architecture is forced

to generate nearly double the cache accesses of the baseline architecture due to

overflow and underflow conditions. In contrast, the conventional register window

still provides a cache access savings with 192 physical registers of nearly 10%.

Since the architecture generates even more accesses than the baseline, it suffers

due to the increased cost of cache accesses instead of benefitting from it like it did

with more physical registers.

The relative performance of the virtual context architecture is also greatly influ-

enced by the increased cost of data cache accesses. Its behavior is reminiscent of

the behavior of the conventional register window architecture. With a relatively

large physical register file, the virtual context architecture generates very few

spills and fills and therefore benefits from the increased cost of data cache

accesses. However, like the conventional register window architecture, when the

physical register file reaches a certain size, the VCA actually begins to generate

more cache accesses than the baseline architecture. At this critical point, the high

cost of data cache accesses that used to be an advantage becomes a disadvan-

tage. The combination of all the factors causes the virtual context architecture in

the eight issue pipeline with a single data cache port to behave in a way unlike all

the other pipeline configurations, both four and eight issue. Specifically, as the

number of physical registers is decreased, the performance advantage the virtual

context architecture provides over the baseline architecture decreases.

Figure 6.14 presents the execution time of the first virtual context architecture nor-

malized to the execution time of the baseline with the same number of physical

registers. The results are presented for all three eight issue pipeline studied. With

256 physical registers, vca1 is 8.5% faster than the baseline architecture. This

compares to only 5% with two data cache ports and 3% with three data cache

ports. With 192, the advantage vca1 has over the baseline decreases to 7.2%

while with two ports it has increased to 6.8% and three ports has increased to

almost 6%. With 128 physical registers, with one port the advantage is now only

slightly over 4% while with two and three ports the advantage has grown to 11%.
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The increased cost of cache accesses also effects the relative performance of

the virtual context architecture to the ideal register window architecture. The vir-

tual context architecture is forced to generate data cache accesses to implement

the spills and fills necessary. However, the ideal never generates any additional

cache accesses. Therefore, the greater the cost of cache accesses, the greater

the difference between the VCA and the ideal. Figure 6.15 presents the execution

time of the first virtual context architecture configuration normalized to the execu-

tion time of the ideal register window architecture with the same number of physi-

cal registers. The results are given for all three eight issue pipelines studied. With

256 physical registers, vca1 is 1% slower than ideal compared to only 0.4%

slower with two and three ports. With 192 physical registers, the differences start

to increase, with the one port becoming over 5% slower, while two ports is only

1.5% slower and three ports is within 1%. The difference increases dramatically
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Figure 6.14: Eight Issue VCA Execution Time Improvement
The execution time of the first virtual context architecture configuration normalized to the
execution time of the baseline architecture with the same number of physical registers.
The results are given for an eight issue pipeline with three data cache ports, two data
cache ports and one data cache port. A range of physical registers is shown.
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as the number of physical registers is decreased to 128. At this point, vca1 with

one port is over 14% slower than ideal while with two ports it’s still within 3% of

ideal and three ports is just over 2% slower. The performance begins to get a little

closer when the register file shrinks further. With 64 physical registers, one port is

18% slower while two ports is 7.5% slower and three ports is 7%. With so few

physical registers, the lack of rename registers begins to dominate the perfor-

mance and therefore the influence of the cost of spills and fills is somewhat miti-

gated.

The data cache accesses have the same behavior as seen in the previous

sections. The baseline and ideal architectures generate fewer data cache

accesses as the number of physical registers is decreased, while the conventional

register window architecture and virtual context architecture generate more. The

rate at which the VCA generates additional data cache accesses is greater with
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Figure 6.15: Eight Issue VCA Execution Time Versus Ideal
The execution time of the first virtual context architecture configuration normalized to the
execution time of the ideal register window architecture with the same number of physical
registers. The results are given for an eight issue pipeline with three data cache ports, two
data cache ports and one data cache port. A range of physical registers is shown.
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one data cache port than was seen with two or three. Figure 6.16 presents the

data cache accesses of vca1 normalized to the data cache accesses of the base-

line architecture with 256 physical registers. The results are given for all three

eight issue pipelines studied. The results show that decreasing the number of

data cache ports results in the virtual context architecture generating more spills

and fills as the number of physical registers is decreased. While the three and two

port results are relatively close, the VCA in a pipeline with a single port generates

significantly more than the other two pipelines. With fewer data cache ports, the

pipeline does not have as much cache bandwidth to execute the spills and fills.

Therefore, the pipeline slows down. As mentioned previously, when the pipeline

slows, the pressure is increased on the physical register file. When the pressure is

increased on the physical register file it results in the generation of more spills and

fills. In an eight issue pipeline with a single data cache port, this will result in the
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Figure 6.16: Eight Issue VCA Data Cache Accesses
The data cache accesses of the first virtual context architecture configuration normalized
to the data cache accesses of the baseline architecture with 256 physical registers. The
results are given for an eight issue pipeline with three data cache ports, two data cache
ports and one data cache port. A range of physical registers is shown.
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generation of large numbers of spills and fills. For example, with 128 physical reg-

isters, the three port pipeline generates 4.5% more cache accesses than the

baseline with 256 physical registers. In the two port pipeline this number

increases to 7%. The one port is much higher. It generates over 21% more cache

accesses than the baseline with 256 physical registers. These results provide a

further factor why the execution time of the virtual context architecture behaves

differently in a pipeline with only one data cache port versus a pipeline with two or

three. Not only is the cost of a data cache access higher, but the virtual context

architecture is also generating more accesses relative to the two and three port

pipelines as the number of physical registers is decreased.

6.2.4 Summary
The results in this section show that similar to the four issue pipeline, the vir-

tual context architecture in an eight issue pipeline is able to improve performance

over the baseline architectures at all physical register file sizes and with between

one and three data cache ports. The increased issue width causes the virtual con-

text architecture to try to balance the physical register file so that it has more reg-

isters to use for rename, especially with smaller physical register file sizes. This is

necessary to try to maintain large numbers of instructions in the instruction queue

to maximize the number of independent instructions available to issue every

cycle. The relationship between the cost of a data cache access and the perfor-

mance of the virtual context architecture is very apparent in the eight issue pipe-

line. When the pipeline has several data cache ports, the cost of a cache access

is relatively low. Under these conditions the improvement possible by using regis-

ter windows is modest. However, the virtual context architecture is able to better

maintain its performance as the size of the physical register file shrinks and can

provide nearly ideal performance even with a small number of physical registers.

If the cost of a data cache access is high, the virtual context architecture behavior

changes. Under these conditions the improvement possible by using register win-

dows is much greater. Therefore, the VCA shows a much larger improvement with

large physical register files. However, the greatly increased cost of spills and fills
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causes the virtual context architecture to lose performance rapidly as the size of

the physical register file is decreased.

6.3Two Issue Pipeline
This section presents the performance of the virtual context architecture in an

two issue out-of-order pipeline. The purpose of this study is to examine the differ-

ences that a narrower pipeline makes in the performance of the virtual context

architecture. As in the eight issue pipeline section, two different VCA configura-

tions were studied, see Table 6.3. The configurations are equivalent to the first

two configurations for the four issue pipeline. The only difference is that a fully

ported rename table is used for both configurations. The results are presented for

a range of physical register file sizes. The reorder buffer is half the size of the four

issue pipeline; therefore, a smaller number of physical registers is needed to guar-

antee that no stalls occur in the baseline architecture. Thus, the range of physical

registers tested only extends to 160 physical registers. Although the number of

physical registers is less, the various numbers represent the equivalent to the four

and issue eight pipelines of the physical register file size based on the relative

number of registers available for rename versus the full number needed for no

stalls. Thus, 160 represents a full complement of rename registers. 128 repre-

sents only two thirds of the full complement of rename registers. 96 represents

only one third of the full complement of rename registers. Finally, 64 represents no

rename registers.

Rename Table 
Size

Rename Table 
Ports Extra Logic Cost

vca1 64x4 6 none
vca2 64x3 6 extra stage

Table 6.3: VCA Configurations For The Two Issue Pipeline
The virtual context architecture configurations studied for the two issue pipeline. The con-
figurations represent a range of implementations. The configurations are composed of
two things. The first is the size and ports of the rename table. The second is the cost as-
sumed for the extra logic in the rename table.
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The results are presented in two subsections. The first subsection presents the

execution time results. The second subsection presents the data cache results.

6.3.1 Execution Time Results
Figure 6.17 presents the execution time results for the two issue pipeline. The

general trends seen in the two and four issue pipeline still exist. As the number of

physical registers is decreased, all of the architectures lose performance. The

baseline architecture loses 2% of its performance with 128 physical registers.

With 96 physical registers, the performance drop is 7%. The equivalent drops for

the four issue pipeline are 2% and 10%. In a two issue pipeline, a smaller number

of instructions are needed to find enough independent instructions to fully issue

every cycle. The baseline architecture is able to provide better performance with

Figure 6.17: Two Issue Execution Time Comparison
The execution time of the baseline architecture (baseline), ideal register window architec-
ture (ideal), conventional register window architecture (register window) and two different
virtual context architecture configurations. The execution times are normalized to the ex-
ecution time of the baseline architecture with 160 physical registers. The results are given
for a range of physical register file sizes.
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the equivalent physical register file size because the probability of finding two

instructions ready to execute requires a much smaller number of instructions than

trying to find four.

The ideal register window architecture has a trend similar to the baseline archi-

tecture. Specifically, although the performance drops as the number of physical

registers decreases, the drop is much less than the equivalent physical register

file sizes of a four issue pipeline. In fact, the two issue ideal architecture only

slows down 3% when the number of physical registers shrinks from 160 to 64.

The four issue ideal architecture with two data cache ports slows down almost

11%. This is somewhat misleading. The ideal register window architecture only

needs to maintain the actual in use registers in the physical register file. This is

composed of the registers used for rename plus any architectural state currently

being used by instructions in the pipeline. These values are fixed for any given set

of instructions. In contrast, the baseline architecture must maintain the complete

set of architectural state in the physical registers at all times (preventing it from

running with fewer than 64 physical registers). This means that for the baseline,

the number of instructions that can be renamed is approximately a function of the

number of physical registers minus the number of physical registers needed for

architectural state. For the ideal architecture on the other hand, the number of

instructions that can be renamed is purely a function of the number of physical

registers. Thus, the physical register files sizes used for the two issue are really

only equivalent to the four issue in terms of the baseline architecture.

The virtual context architecture is also able to take advantage of it’s indepen-

dence on the number of architectural registers. Therefore, the VCA is also able to

show a relatively small decrease in overall performance over the range of physical

register file sizes. In the two issue pipeline, the vca1 execution times increase by

only 9% when the number of physical registers is decreased from 160 to 64. The

four issue pipeline experiences a change of nearly 18% when the number of phys-

ical registers is decreased from 256 to 64. Besides the smaller decrease in perfor-

mance, the virtual context architecture also starts at a relatively large performance

improvement over the baseline architecture. The cost of a cache access instruc-
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tion in this pipeline will be relatively high. Although the ratio of data cache ports to

issue width is equivalent to two ports in the four issue, the overall cost of an

instruction is also increased in a two issue pipeline relative to a four issue pipeline.

Therefore, the performance is closer to that seen in the four issue one data cache

port pipeline. With 160 physical registers, vca1 is over 7% faster than the base-

line. In comparison, vca1 in the four issue pipeline with two data cache ports was

only 5% faster than the baseline with 256 physical registers, while in the four issue

pipeline with one data cache port it was 7.5% faster. Combined with the slow

decrease in performance as the physical register file is shrunk, this leads to the

VCA being between 7% and 12% faster than the baseline at all the physical regis-

ter file sizes studied.

The execution time of the virtual context architecture in a two issue pipeline

does compare favorably to the execution time of the ideal register window archi-

tecture. With 160 physical registers, vca1 is within 0.5% of the ideal execution

time. The difference steadily increases as the number of physical registers is

decreased. With 128 physical registers, vca1 is 1% slower than ideal. With 96

physical registers, vca1 is 2.5% slower than ideal. Even with only 64 physical reg-

isters, the execution time of vca1 is still within 6% of the execution time of the

ideal register window architecture. This is very close to the behavior seen in the

four issue pipeline with two data cache ports. In this pipeline, vca1 is within 0.2%

of ideal at 256 physical registers and slows as you decrease the physical register

file size, until with 64 registers it is 7% slower than ideal. The two issue pipeline

slows much less than the four issue pipeline with one port, which while within

0.6% with 256 physical registers, slows to 12% longer execution time than ideal

with 64 physical registers.

One potential concern with the virtual context architecture on a narrower pipe-

line was the decrease in extra issue that could be used by the architectural state

transfer queue to execute spills and fills. The priority mux is set to always give pri-

ority to instructions issuing from the instruction queue. Therefore, spills and fills

will only be executed when less than the full complement of instructions is issued

on a given cycle. It stands to reason that this is much more likely to occur in a four
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issue pipeline than in a two issue pipeline. The statistics confirm this suspicion.

The fills in the two issue pipeline take between 12.5 and 21.5 cycles to issue on

average. The range reflects the rates at different physical register file sizes. In

contrast, the fills in the four issue pipeline with two data cache ports take between

4 and 10 cycles to issue. In the four issue pipeline with one data cache port, the

fills take between 7.5 and 16 cycles to issue. The spills show similar results. The

average time to issue a spill in the two issue pipeline is between 8 and 51 cycles

while the range in the four issue pipeline with two data cache ports is 2.5 to 23

cycles. The average time to issue a fill or spill is longer in the two issue pipeline,

but the execution time results show that the increased issue time does not play a

large factor in the results. Specifically, the virtual context architecture in the two

issue pipeline maintains a similar performance gap to the ideal register window

architecture as the four issue pipeline with two data cache ports.

6.3.2 Data Cache Results
The data cache results for the two issue pipeline are shown in Figure 6.18.

Like the execution time results just discussed, the data cache results are also very

similar to the results of the previous pipelines. The baseline and ideal register win-

dow architectures both decrease the number of data cache accesses as the num-

ber of physical registers is reduced. As noted earlier in this section, the execution

time degradations in the two issue pipeline are slow compared to the other pipe-

lines. Thus, for these architectures, the difference in data cache accesses over

the range of physical register file sizes studied is also small. Unlike in the four and

eight issue pipelines, the conventional register window architecture does not pro-

vide any data cache access savings. Even with 160 physical registers, it gener-

ates almost 18% more data cache accesses than the baseline architecture. With

the smaller physical register file sizes studied, only a few register windows can be

kept in the physical register file. Therefore, the data cache accesses caused by

overflow and underflow events overshadow any savings due to the register win-

dow binary. The virtual context architecture is able to maintain a significant cache

savings with both 160 and 128 physical registers. Even with as few as 96 physical
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registers, the virtual context architecture is generating nearly 4% fewer cache

accesses than the baseline architecture with the same number of physical regis-

ters. The relative cache performance of the virtual context architecture in the two

issue pipeline is better than that seen in both the four and eight issue pipelines,

when compared to the baseline architecture with a full set of physical registers.

The four issue pipeline with two data cache ports has 19% fewer cache accesses

with 256, 12% fewer with 192, 3% fewer with 128 and 14% more with 64 physical

registers. The two issue pipeline starts the same with 19% fewer with 160, but

only drops to 16% fewer with 128, 6% fewer with 96 and 7% more with 64 physical

registers. As the virtual context architecture compensates for the decreased phys-

ical register file size, it is forced to generate fewer spills and fills with the narrower

pipeline.
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Figure 6.18: Two Issue Data Cache Accesses Comparison
The data cache accesses of the baseline architecture (baseline), ideal register window
architecture (ideal), conventional register window architecture (register window) and two
different virtual context architecture configurations. The data cache accesses are normal-
ized to the data cache accesses of the baseline architecture with 160 physical registers.
The results are given for a range of physical register file sizes.
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The results in this section show that the virtual context architecture is able to

provide good performance even on a narrow out-of-order pipeline. It provides a

7% to 12% improvement of the baseline architecture over the range of physical

registers studied. On this pipeline the degradation of the execution time perfor-

mance is smaller than any other pipeline as the physical register file size is

decreased. The smaller issue width does limit the unused issue bandwidth that

the architectural state transfer queue can use to issue spills and fills. Thus, the

delay until a fill or spill can be issued is longer in this pipeline than the four issue,

even the four issue with a single data cache port. However, the VCA does not

generate as many fills and spills as the number of physical registers is reduced.

This enables the virtual context architecture to still provide as close to ideal perfor-

mance as it could in the four issue pipeline with two data cache ports.

6.4Single Issue In-order Pipeline
This section presents the performance of the virtual context architecture in a

single issue in-order pipeline. The purpose of this study is to evaluate the perfor-

mance of the virtual context architecture in an in-order processor. The pipeline

and VCA implementation are somewhat different from the other pipelines studied.

The data cache for this pipeline is assumed to have a single cycle hit latency. This

corresponds to a more conservative embedded processor. The virtual context

architecture implements spills and fills by inserting operations directly into the

pipeline instead of using an architectural state transfer queue. The in-order nature

of the pipeline made this a more natural fit. As with normal instructions, the pipe-

line was constrained to dispatch only one spill or fill each cycle instead of a single

instruction. Two virtual context architectures were studied, see Table 6.4. A con-

ventional in-order pipeline does not require any renaming. Therefore, an addi-

tional stage is always going to be necessary. The two virtual context

configurations only differ in the number of rename stages.

The execution time results of the single issue in-order processor are presented

in Figure 6.19. The results are normalized to the execution time of the baseline in-
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order processor. The baseline in-order processor does not require any extra regis-

ter for rename purposes therefore it has a fixed physical register file size of 64

registers, one physical register for each logical register. The execution time of the

ideal register window architecture does not change within the physical register file

Rename Table 
Size

Rename Table 
Ports Extra Logic Cost

vca1 64x3 3 one extra stage
vca2 64x3 3 two extra stages

Table 6.4: VCA Configurations For The Single Issue In-order Pipeline
The virtual context architecture configurations studied for the single issue in-order pipe-
line. The configurations represent a range of implementations. The configurations are
composed of two things. The first is the size and ports of the rename table. The second
is the cost assumed for the extra logic in the rename table.
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Figure 6.19: Single Issue In-order Execution Time Comparison
The execution time of the ideal register window architecture (ideal), conventional register
window architecture (register window) and two different virtual context architecture con-
figurations. The execution times are normalized to the execution time of the baseline ar-
chitecture. The results are given for a range of physical register file sizes.
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sizes studied. To maintain maximum performance, this architecture only requires

enough registers to fully rename instructions. In the case of an in-order machine,

this would be only enough registers to rename a single instruction. As seen in the

previous pipelines, the conventional register window architecture is not able to

provide good performance with this few physical registers. Its performance is 5%

slower than the baseline with 160 physical registers, and rapidly declines from

there.

The virtual context architecture is able to provide very good performance for

the full range of physical register file sizes studied. While the performance of the

VCA declines as the number of physical registers is decreased as in the other

pipelines, the rate of decrease in almost negligible for this range of physical regis-

ters. With 128 physical registers, vca1 is 5.5% faster than the baseline. When the

size of the physical register file is dropped to 64, vca1 is still 4.5% faster than the

baseline. Thus, even with one extra stage and no extra physical registers, the vir-

tual context architecture is able to provide a 4.5% improvement in performance.

The results for adding to additional stages (vca2) are almost as good. This config-

uration is 0.3% slower than vca1 at all physical register file sizes. The virtual con-

text architecture is very near the ideal performance over the entire range of

physical registers. With 128 physical registers it is within 0.5%. Even with only 64

physical registers, vca1 is still within 1.4% of the performance of an ideal register

window implementation.

As discussed previously in this chapter, the execution time benefit of register

window is very dependent on the relative cost of executing a load or store instruc-

tion. This cost is composed of the general expense of executing an instruction

plus the added expense of a data cache access. In this pipeline, the cost of exe-

cuting an instruction is high. The pipeline is only single issue and there is no extra

issue width that can hide an instructions cost. In this particular implementation,

the first level data cache was chosen to have only a single cycle latency. There-

fore, the additional cost of a cache access is low. If this latency was increased, the

performance improvement of the virtual context architecture would become much

greater.
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The data cache characteristics of this pipeline are similar to the previous stud-

ied pipeline. As was the case in the two issue pipeline study, the conventional reg-

ister window architecture does not fare well with this few physical registers. Only a

small number of register windows are held in the physical register file. This results

in a large number of overflow and underflow events, yielding very poor data cache

performance. In this case, with 128 physical registers the conventional register

window design generates nearly 20% more data cache accesses than the base-

line architecture, explaining its poor performance. In contrast, the virtual context

architecture has very good data cache performance. With 128 physical registers,

it has a savings of nearly 20% relative to the baseline. With 96 physical registers,

this only drops to a 19% savings. Even with the same number of registers as the

baseline architecture, with just enough physical registers to hold all the logical

registers, the virtual context architecture generates 14% fewer data cache

accesses than the baseline.

6.5Summary
The results in this chapter show that the virtual context architecture is a very

efficient implementation of register windows for a variety of different pipelines. In

every pipeline studied, the virtual context architecture is able to provide nearly

ideal performance when the physical register file is sized to guarantee no stalls for

the baseline architecture. In almost every case, the performance of the virtual

context architecture versus the baseline architecture improves as the number of

physical registers is decreased. The VCA is able to dynamically balance the num-

ber of physical registers it is using for renaming to maximize the performance. In

contrast, the conventional register window design using the same instruction set

and modified binaries as the VCA was unable to provide good performance for the

range of physical registers studied. Although the modified instruction set has a

high number of windowed registers, this has the advantage of minimizing the

saves and restores that the compiler may be forced to insert at register allocation.
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The studies showed that the performance of the virtual context architecture is

very dependent on the relative cost of a load/store instruction and the cost of a

data cache access. When these costs are high, the architectures that support reg-

ister windows have a higher potential performance improvement due to the

removal of the save and restore instructions from programs. With a large physical

register file, the virtual context architecture is able to achieve very near this ideal

performance. However, when the number of physical registers is decreased, the

VCA is forced to generate more spills and fills. If the cost of a data cache access

is high, these spills and fills will degrade performance quickly.
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Chapter 7

Simultaneous Multithreading Studies

This chapter evaluates the virtual context architecture in a simultaneous multi-

threading processor. The chapter is composed of three sections. The first and

second sections present the results for a pipeline which support two and four

threads respectively. The virtual context architecture using register window bina-

ries is evaluated against the baseline non register window architecture and an

ideal register window architecture. The conventional register window architecture

was not studied because its physical register requirements were much higher than

all the other architectures. The final section pulls together the results from the pre-

vious two sections, as well as the previous chapter, to compare the performance

of the virtual context architecture in a one, two and four thread pipeline to deter-

mine the cost of adding threads.

All of the studies in this chapter were done with a four issue out-of-order pipe-

line with two data cache ports, see Table 4.2 for a description of this pipeline. The

workloads were created by combining two and four benchmarks from the SPEC

2000 benchmark suite. A description of the methodology used to create the work-

loads can be found in Section 4.2. The two metrics used to measure the perfor-

mance of the architectures are the weighted execution times of the workloads and

the weighted data cache accesses. These metrics are similar to the single thread

execution time and data cache accesses but weigh each of the individual bench-

mark statistics in the workload to the value of the benchmark when running as a

single thread. This normalizes the contributions of the individual benchmarks in

the workload and ensures they are given equal weight. A more thorough discus-

sion of this can be found in Section 4.4.2. In the rest of this chapter, the weighted
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terminology will be dropped and these will simply be referred to as execution time

and data cache accesses.

The most important performance characteristic of a simultaneous multi-

threaded architecture is the performance improvement achieved by allowing more

than one thread to execute at the same time. If there is no speedup associated

with running more than one thread, then the extra hardware and design complex-

ity needed to support more than one thread is wasted. Therefore, in the sections

that discuss execution time, the speedup is also reported. Speedup is calculated

as the total time to execute both benchmarks on a single thread machine divided

by the total time to execute both benchmarks on a multithread machine. The

speedup is calculated using the weighted execution times to ensure that each

benchmark in the workload contributes equally to the results. For consistency

across all the architectures and register file sizes, the speedups are always calcu-

lated with a single thread pipeline with enough physical registers to never stall.

For the four issue pipeline studied, this is 256 physical registers.

7.1Two Thread SMT
This section presents the performance of the virtual context architecture in a

two thread simultaneous multithreading four issue pipeline with two data cache

ports. The results are presented in two subsections. The first subsection presents

the execution time results. The second subsection presents the data cache

access results. Two different VCA configurations were studied, see Table 7.1. The

Rename Table 
Size

Rename Table 
Ports Extra Logic Cost

vca1 64x6 10 none
vca2 64x5 8 extra stage

Table 7.1: VCA Configurations For Two Thread SMT
The virtual context architecture configurations studied for the two threaded simultaneous
multithreaded four issue pipeline. The configurations are composed of two things. The
first is the size and ports of the rename table. The second is the cost assumed for the ex-
tra logic in the rename table.
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configurations are equivalent to the first two configurations for the single threaded

four issue pipeline studied in the previous chapter. The only difference is the

increase in the associativity of the rename table. As discussed in Section 5.2.1, a

larger rename table is required in pipelines that support multiple threads.

The results are studied over a range of physical register file sizes. The small-

est number of physical registers examined is 64 physical registers, which is just

enough to hold the architectural state for a single thread without rename registers.

Only the virtual context architecture and ideal register window architecture are

able to run with this few physical registers. The baseline architecture requires its

full architectural state be kept in the physical register file. With the addition of

rename registers, this constrains them to a physical register file larger than 128

physical registers for a two thread pipeline. The largest number examined is 320

physical registers. This is enough registers to guarantee that the baseline archi-

tecture will never need to stall rename because of a lack of physical registers. To

ensure this, the processor must have one physical register for each architectural

register plus one physical register for each reorder buffer entry (assuming instruc-

tions only have a single destination register).

7.1.1 Execution Time
This section examines the execution times of the baseline architecture, ideal

register window architecture and virtual context architecture in a two thread simul-

taneous multithreading pipeline. Figure 7.1 presents the execution time results.

The execution times are normalized to the execution time of the baseline architec-

ture with 320 physical registers. As seen in the results for a single thread, all three

architectures slowdown as the number of physical registers is decreased. The vir-

tual context architecture and ideal register window architecture are both faster

than the baseline at every level of physical register file size. As the number of

physical registers is decreased, the relative performance advantage of these two

architectures over the baseline architecture increases. With a decrease in physi-

cal register file size from 256 to 192, the execution time of the baseline architec-
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ture increases by over 10%, while the virtual context architecture only has a 1.5%

increase.

The virtual context architecture has lower execution time than the baseline at

every level of physical register file. With 320 physical registers, the performance

difference is relatively small with only a 2.3% improvement. With 256 physical reg-

isters, the improvement almost doubles to 4.5%. With 192 physical registers, the

difference becomes very large. The execution time of the virtual context architec-

ture is over 13% faster than the baseline architecture. The virtual context architec-

ture is able to provide a similar level of performance with 192 physical registers as

the baseline with 320 physical registers.

The virtual context architecture is able to provide a nearly ideal implementation

of register windows. This is especially true with the larger physical register file

sizes. The difference in execution time between the VCA and the ideal register
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Figure 7.1: Two Thread Execution Time Comparison
The execution time of the baseline architecture (baseline), ideal register window architec-
ture (ideal), and two different virtual context architecture configurations. The execution
times are normalized to the execution time of the baseline architecture with 320 physical
registers. The results are given for a range of physical register file sizes.
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window architecture is directly attributable to the virtual context architecture’s gen-

eration of spills and fills. The ideal register window architecture is able to instanta-

neously transfer register values to and from memory, without generating any

cache accesses. In contrast, the virtual context architecture generates spills and

fills to perform these transfers. With a large enough physical register file, the vir-

tual context architecture generates only a small number of spills and fills. As the

number of physical registers is reduced, the number of spills and fills generated

increases. The increased time to execute these spills and fills causes the virtual

context architecture to slow in relation to ideal. With 320 physical registers, the

execution time difference is only 0.5%. With 256 physical registers, the difference

is still only 0.8%. As the number of physical registers is decreased further, the

number of generated spills and fills increases rapidly and differences become

larger, with a 2% difference with 192 physical registers, 5% with 128 and nearly

20% with 64 physical registers.

Register windows are used to reduce the save and restore overhead neces-

sary for a function call. The benefits of register windows are only realized when

there is a high frequency of function calls. In the single thread experiments, we

only gathered results for those benchmarks that made a function call at least once

every 500 instructions. Unlike the single thread experiments, in the creation of the

multithread workloads we did not limit the benchmarks to those with a high fre-

quency of function calls. Instead, we wanted to evaluate the VCA in as diverse a

multithreaded environment as possible. In Figure 7.2, we present the execution

time results of only those workloads where both benchmarks make at least one

function call every 500 instructions. Out of the 43 workloads, 28 of them are com-

posed only of these benchmarks. The results show that with workloads able to

take advantage of register windows, the performance improvement of the virtual

context architecture is even greater compared to the baseline architecture. This is

true at every physical register file size. With 320 physical registers, the virtual con-

text architecture is 4.3% faster than the baseline versus only 2.3% faster with the

full set of workloads for a difference of 2%. With 256 physical registers, the differ-
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ence remains the same. However, as the number of physical registers is

decreased further, the difference increases. With 192 physical registers, the differ-

ence grows to 2.5%. With 128 physical registers, the difference is 4.5%. Finally,

with 64 physical registers the difference is 7.5%. The results show that even when

all of the threads have a high frequency of function calls the virtual context archi-

tecture is still able to provide a high level of performance.

Finally, the most important characteristic of a multithread pipeline is the

speedup over a similar single thread pipeline. Figure 7.3 presents the speedup of

the two thread simultaneous multithreading pipeline over a single thread pipeline.

Since speedup and execution times are inversely proportional, the speedups

decrease as the number of physical registers is decreased. The rates of decrease

are similar to the rates of increase of the execution times reported earlier in this
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Figure 7.2: Two Thread High Call Rate Execution Time Comparison
The execution time of the baseline architecture (baseline), ideal register window architec-
ture (ideal), and two different virtual context architecture configurations. The workloads
are restricted to those in which both benchmarks make at least one function call every
500 instructions. The execution times are normalized to the execution time of the baseline
architecture with 320 physical registers. The results are given for a range of physical reg-
ister file sizes.
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section. The results show that all three architectures are able to significantly

speedup execution over a single thread pipeline. With a full set of 320 physical

registers, the two thread pipeline is on average 30% faster than a pipeline with a

single thread. With this full set of registers, the virtual context architecture pro-

vides a speedup of nearly 31.5% versus a speedup of 28.5% for the baseline

architecture. With 256 physical registers, the vca1 still achieves a speedup of

31%, a 6% improvement over the baseline with this physical register file size.

Even with as few as 192 physical registers, the virtual context architecture is able

to provide the same speedup as the baseline has with 320 physical registers. With

128 physical registers, which is only enough to hold the architectural state of the

two threads, vca1 is still able to achieve a 21% speedup. The baseline architec-

ture is unable to run with this few physical registers. Finally, with 64 physical regis-
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Figure 7.3: Two Threaded SMT Speedups
The speedups of the baseline architecture (baseline), ideal register window architecture
(ideal), and two different virtual context architecture configurations in a two threaded si-
multaneous multithreading four issue pipeline. The speedups are relative to a single
threaded four issue pipeline. The results are given for a range of physical register file siz-
es.
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ters, the virtual context architecture has slowed so much that it is unable to

provide any speedup over the single thread pipeline.

The virtual context architecture is able to achieve a 2%-13% improvement in

execution time over the baseline architecture. With 256 or more physical regis-

ters, the VCA provides very close to ideal register window performance. In the

case when all of the threads have a high frequency of function calls, the virtual

context architecture is still able to provide a high level of performance and the

improvement in execution time over the baseline increases. The two thread pipe-

line is able to achieve a 30% increase in performance over the single thread pipe-

line. The speedup of the virtual context architecture is 3% to 15% higher than the

speedup of the baseline architecture with the same number of physical registers.

The VCA is able to achieve the same speedup with 192 physical registers as the

baseline with 320 physical registers.

7.1.2 Data Cache Accesses
This section examines the data cache accesses of the baseline architecture,

ideal register window architecture and virtual context architecture in a two thread

simultaneous multithreading pipeline. Figure 7.4 presents the data cache

accesses of the two thread pipeline. The results are normalized to the data cache

accesses of the baseline architecture with 320 physical registers. The data cache

access behavior of the architectures is the same as was seen in the single thread

results. The baseline architecture and ideal register window architecture generate

a decreasing number of cache accesses as the number of physical registers is

reduced. In these architectures, the number of data cache accesses is solely

affected by the number of speculatively executed instructions. Therefore, as the

pipeline slows, fewer instructions are executed speculatively and there are fewer

data cache accesses.

The virtual context architecture generates more data cache accesses as the

number of physical registers is reduced. The additional accesses are the result of

the spills and fills generated by the pipeline. However, the virtual context architec-

ture is also executing binaries that support register windows. These binaries have
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fewer load and store instructions than the binaries used by the baseline architec-

ture. With 320 physical registers, the virtual context architecture generates very

few spills and fills and accesses the data cache over 16% fewer times than the

baseline architecture. With 256 physical registers, the data cache difference

shrinks to 11%. With 192 physical registers, the VCA is generating 5.5% more

accesses than the baseline architecture with the same number of physical regis-

ters. This is the same number of data cache accesses as the baseline with 320

physical registers. With this number of physical registers, the number of spills and

fills being generated is approximately equal to the number of load and store

instructions removed by using register windows. With fewer physical registers, the

spills and fills increase even further. With 128 physical registers, the virtual con-

text architecture is now generating 15% more data cache accesses than the base-
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Figure 7.4: Two Thread Data Cache Accesses Comparison
The data cache accesses of the baseline architecture (baseline), ideal register window
architecture (ideal), and two different virtual context architecture configurations. The data
cache accesses are normalized to the data cache accesses of the baseline architecture
with 320 physical registers. The results are given for a range of physical register file sizes.
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line binary with 320 physical registers. With 64 physical registers, this difference

becomes nearly 55%.

The virtual context architecture is able to provide a nearly ideal implementation

of register windows with a large enough physical register file. With 320 physical

registers, the VCA generates only 1.3% more data cache accesses than the ideal.

As the number of physical registers is decreased, the number of spills and fills

generated by the virtual context architecture increases. These spills and fills are

the only difference between the VCA and the ideal register window architecture.

The results clearly show this, with the data cache difference increasing rapidly as

the size of the physical register file is reduced. With 256 physical registers, the vir-

tual context architecture is still within 5% of the ideal. With 192 physical registers,

the difference grows to almost 19%. The difference continues to increase drasti-

cally from here, with a difference of 35% with 128 physical registers and 77% with

64.

As mentioned in the execution time section, these results are for workloads

composed of all the benchmarks. If we restrict the results to those workloads com-

posed of only benchmarks that make a high frequency of function calls, the bene-

fit obtained from using register windows will be greater. The data supports this.

With 320 physical registers and the restricted workload set, the virtual context

architecture generates 19% fewer data cache accesses. With the full set of work-

loads, the difference is 16%. The difference grows as the number of physical reg-

isters is decreased. With 256 physical registers, the restricted workloads have

15% fewer than the baseline while the full set is 11%. With 128, the virtual context

architecture with the restricted set of workloads still generates 2.5% fewer data

cache accesses than the baseline with the same number of physical registers. In

contrast, with the full set of workloads, the VCA generates 5.5% more than the

baseline.

Confining the results to this restricted set also affects the virtual context archi-

tecture’s behavior versus ideal. With 320 physical registers, the VCA with

restricted workloads generates 2% more data cache accesses than the ideal reg-

ister window architecture using the restricted set. This compares to a difference of
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1.3% will the full set of workloads. One might expect that this difference would

grow as the number of physical registers is reduced. Benchmarks that make a

high frequency of function calls generate a much larger set of architectural state

than benchmarks that rarely call functions. The expectation would be that this

added pressure would result in a relative increase in the generation of spills and

fills. The data, however, shows the opposite affect. As the number of physical reg-

isters is decreased, the additional data cache accesses generated by the VCA

over the ideal register window architecture is less with the restricted set of work-

loads than with the full set. With 256 physical registers, the difference between the

virtual context architecture and ideal is the same for both sets of workloads. With

192 physical registers, the difference with the restricted set is 14% versus 18%

with the full set. With 128 physical registers, these become 25% and 35%. Finally,

with 64, the restricted set has a difference of 61% compared with 77% for the full

set. The behavior is most likely a secondary effect of the benchmarks that make a

high frequency of function calls. If the benchmarks were in general slower to exe-

cute, than the pressure on the physical register file would not increase as rapidly

as the number of physical registers is reduced. Another possibility is that these

benchmarks may tend to use fewer different logical registers, and therefore the

number of in use physical registers would be smaller.

The virtual context architecture is able to provide a data cache access savings

over the baseline architecture with a large physical register file. With 320 physical

registers, the virtual context architecture generates 16% fewer data cache

accesses than the baseline architecture and is within 1.3% of ideal. The savings

decreases as the number of physical registers is decreased, until with 128 physi-

cal registers the virtual context architecture generates 5.5% more cache accesses

than the baseline. Similar to the execution time results, if the workloads are

restricted to those composed solely of benchmarks which make a high frequency

of function calls, the advantage of the virtual context over the baseline increases.
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7.2Four Thread SMT
This section presents the performance of the virtual context architecture in a

four thread simultaneous multithreading four issue pipeline with two data cache

ports. The results are presented in two subsections. The first subsection presents

the execution time results. The second subsection presents the data cache

access results. Two different VCA configurations were studied, see Table 7.2. The

configurations are equivalent to the first two configurations for the single threaded

four issue pipeline studied in the previous chapter and the configurations used for

the two thread experiments. The only difference is the increase in the associativity

of the rename table. As discussed in Section 5.2.1, a larger rename table is

required in pipelines that support multiple threads.

The results are studied over a range of physical register file sizes. The range

of physical registers is larger than the range used for two threads. The smallest

number of physical registers examined is still 64. This is just enough registers to

hold the architectural state for a single thread. The large number of simultaneous

threads in this section requires a large number of physical registers. Four threads

require 256 physical registers to hold their architectural state. Therefore, the mini-

mum number of physical registers we use for the baseline is 320 physical regis-

ters. To guarantee the baseline architecture will never stall requires 192 registers

for rename for a total of 448 physical registers. This is the upper limit used in our

experiments in this section.

Rename Table 
Size

Rename Table 
Ports Extra Logic Cost

vca1 64x7 10 none
vca2 64x6 8 extra stage

Table 7.2: VCA Configurations For Four Thread SMT
The virtual context architecture configurations studied for the four threaded simultaneous
multithreaded four issue pipeline. The configurations are composed of two things. The
first is the size and ports of the rename table. The second is the cost assumed for the ex-
tra logic in the rename table.
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7.2.1 Execution Time
This section examines the execution times of the baseline architecture, ideal

register window architecture and virtual context architecture in a four thread simul-

taneous multithreading pipeline. Figure 7.5 presents the execution time results.

The results are normalized to the baseline architecture with 448 physical regis-

ters. The results in general are similar to those seen in all the other pipeline con-

figurations. As the number of physical registers is decreased, the execution time

tends to increase. However, the results are more complex than seen previously. In

particular, all of the architectures at some point actually decrease their execution

times with a decrease in physical registers. The baseline architecture is 0.4%

faster with 384 physical registers than with 448 physical registers. The ideal regis-

ter window architecture is 1.3% faster with 128 physical registers than any larger
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Figure 7.5: Four Thread Execution Time Comparison
The execution time of the baseline architecture (baseline), ideal register window architec-
ture (ideal), and two different virtual context architecture configurations. The execution
times are normalized to the execution time of the baseline architecture with 448 physical
registers. The results are given for a range of physical register file sizes.
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physical register file size. The virtual context architecture is 0.3% faster with 256,

320 and 384 physical registers than with 448 physical registers.

The difference between this experiment and previous experiments is the

greater number of simultaneous threads. In particular, in this experiment we have

four threads on a four issue machine. This has two potential repercussions:

scheduling complexity and independent instructions. First, the scheduling com-

plexity is greatly increased. Each cycle the fetch stage will fetch from the thread

with the least number of instructions in the pipeline. Each cycle the instruction

queue determines which instructions to issue, giving priority to the oldest instruc-

tions. At any given point a small change in the execution can drastically change

the execution for the rest of the run. For example, say the lack of a rename regis-

ter prevents a load instruction from being dispatched. The next cycle instructions

are dispatched from a different thread and a store to the conflicting cache line is

dispatched. The store is issued first, replacing the cache line. Later the load from

the first thread misses, causing the thread to stall. This in turn allows the other

threads more resources to execute. This complexity allows a small change to the

pipeline to have unexpected results on execution.

Second, the large number of threads greatly increases the chances of finding

independent instructions with a given number of instructions in the instruction

queue. Specifically, instructions from different threads are always independent of

each other. In a pipeline with a single thread, the chance of finding four indepen-

dent instructions with eight instructions in the instruction queue is very small.

However, with two instructions each from the four threads, the chance of four of

those instructions being independent is greatly increased. This is the theory

behind simultaneous multithreading, increasing the instruction level parallelism.

This has the added effect of making the execution time less dependent on the

number of physical registers. Therefore, the potential performance difference with

128 registers available for rename versus 192 could become quite small. The exe-

cution time results of this section indicate that this is the case in this situation. The

baseline architecture with four threads loses only 7.5% of its performance when
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dropping from the full set of physical registers to only 64 rename registers. With

two threads, the same drop results in a 13% decrease in performance.

The virtual context architecture provides better performance than the baseline

architecture at every size of physical register file. With 448 physical registers, the

virtual context architecture is 4% faster than the baseline. The performance differ-

ence remains the same with 384 physical registers. With 320 physical registers,

the baseline has reached the limit of where it can run. At this point, the VCA is

12% faster. The relative performance of the virtual context architecture to the

baseline is better with four threads than two with a large register file. With a full set

of physical registers (448 for four thread, 320 for two thread), the VCA with four

threads is 4% faster than the baseline, with two threads it is only 2.3% faster.

While the baseline architecture loses performance over its range of physical regis-

ter files in both experiments, the virtual context architecture’s performance

remains approximately constant over the same range. As stated previously, with

decreasing physical register file sizes the performance loss is greater with two

threads than with four. With 64 physical registers fewer than the full complement,

the relative performance of the virtual context architecture to the baseline is 4%

faster with four threads and 4.5% faster with two. With 128 fewer physical register,

the percentages are 12% and 13%.

The virtual context architecture is able to maintain its 4% improvement in per-

formance over the baseline architecture with 448 physical registers with as few as

256 physical registers. This is just enough registers to hold the architectural state

of four threads. With 192 physical registers, the virtual context architecture is still

nearly 3% faster than the baseline with a full set of registers. This is with less than

half the physical registers of the baseline and not enough to even hold the full

architectural state of the four threads. The ability of the virtual context architecture

to dynamically manage the architectural state of the threads provides a huge

advantage in this situation. The results dramatically demonstrate that the VCA can

efficiently manage the movement of this state between the physical registers and

the data cache. This allows the virtual context architecture to provide better per-

formance with a much smaller set of physical registers.
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The virtual context architecture is once again able to provide very near ideal

performance with large physical registers files. In these results, the VCA is able to

maintain very close to ideal performance with as few as 256 physical registers.

With between 256 and 448 physical registers, vca1 is never slower than 0.2% of

ideal and at some physical register file sizes is up to 0.3% faster than ideal. As

stated previously in this section, the results show instances when a decrease in

physical register file size actually improves performance. The virtual context archi-

tecture experiences such a drop with between 256 and 384 physical registers.

Over this same range, the performance of the ideal register window architecture

remains the same (its decrease in execution time occurs at 128 physical regis-

ters). The drop in performance of the virtual context architecture is enough to

bring the execution time below that of ideal with the same number of physical reg-

isters, although the execution time is still higher than the lowest execution time

that ideal ever has.

These results are for workloads composed of all the benchmarks. As men-

tioned in the section on two threads, if we restrict the results to those workloads

composed of only benchmarks that make a high frequency of function calls, the

benefit obtained from using register windows will be greater. Of the 127 four

thread workloads, 61 are composed solely of benchmarks that make a high fre-

quency of function calls. Restricting the workloads to these shows results similar

to what was seen with two threads. With this restricted set, the virtual context

architecture is up to 6.8% faster than the baseline architecture (also running the

restricted set) with 448 physical registers. With the full set of workloads, the VCA

is only 4.5% faster. Even with the larger number of function calls and increased

pressure on the physical register file, the virtual context architecture is still able to

maintain a very high level of performance with as few as 192 physical registers.

Supporting four simultaneous threads on a pipeline is only worth it if it can pro-

vide a performance advantage over a pipeline supporting either a single thread or

two threads. Figure 7.6 presents the speedup of the four thread pipeline over a

pipeline which supports only a single thread. The results show that there is a large
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performance advantage in supporting four threads. The baseline architecture pro-

vides a 43% speedup over a single thread, compared to a 29% speedup for two

threads. The virtual architecture provides an even larger speedup. With four

threads, vca1 is 50% faster than a single thread while only 32% with two threads.

The virtual context architecture is able to take advantage of the register window

binaries to provide a 6.5% increase in speedup compared to the baseline with 448

physical registers. More importantly, as was seen in the execution time results,

the virtual context architecture is able to maintain this speedup over a large range

of physical register files. The speedup remains approximately constant with

decreasing numbers of physical registers, all the way to 256 physical registers,

the number of registers required to hold just the architectural state of four threads.

The baseline architecture requires more than 256 physical registers to run. With

192 physical registers, there is only a slight drop in speedup of 2.5%. With 128
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Figure 7.6: Four Threaded SMT Speedups
The speedups of the baseline architecture (baseline), ideal register window architecture
(ideal), and two different virtual context architecture configurations in a four threaded si-
multaneous multithreading four issue pipeline. The speedups are relative to a single
threaded four issue pipeline. The results are given for a range of physical register file siz-
es.
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physical registers, the virtual context architecture begins to slow down rapidly. At

this point the speedup is reduced to only 33% compared to the 50% we see with a

larger register file. With 64 physical registers, the virtual context architecture with

four threads is finally slower than the single threaded baseline architecture with

256 physical registers.

In a four thread simultaneous multithreading pipeline, the virtual context archi-

tecture is able to achieve a 4-12% improvement in execution time over the base-

line architecture. The VCA is able to maintain a high level of performance over a

large range of physical register file sizes. The virtual context architecture provides

a nearly ideal implementation of register windows with a physical register file size

of 256 registers or more. The four threaded virtual context architecture is able to

achieve a 50% increase in performance over a single thread pipeline compared to

a 30% increase for two thread SMT. The speedup of vca1 is 6% to 17% higher

than the speedup of the baseline architecture with the same number of physical

registers. The virtual context architecture with 192 physical registers provides a

5% greater speedup than the baseline architecture with 448 physical registers.

7.2.2 Data Cache Accesses
This section examines the data cache accesses of the baseline architecture,

ideal register window architecture and virtual context architecture in a four thread

simultaneous multithreading pipeline. Figure 7.7 presents the data cache access

results. The results are normalized to the data cache accesses of the baseline

architecture with 448 physical registers. The trends of the three architectures are

consistent with those seen with the single thread pipeline and two thread pipeline.

Unlike the execution time results, there are no exceptions to the basic trends.

Both the baseline architecture and ideal register window architecture generate

fewer data cache accesses as the number of physical registers is decreased. The

virtual context architecture generates more data cache accesses as the number

of physical registers is decreased.

The virtual context architecture is able to provide a data cache accesses sav-

ings compared to the baseline architecture with large register file sizes. The sav-
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ings are a result of the removal of explicit save and restore instructions from the

register window binaries. With 448 physical registers, the savings is 17%. As the

number of physical registers is decreased, the VCA generates more spills and fills

which in turn cause more data cache accesses. Thus, with 384 physical registers,

the savings has decreased to 14% fewer than the baseline with the same number

of physical registers. With 320 physical registers, the difference becomes 8.5%.

These savings are approximately the same as was seen with the three largest

physical register file sizes studied in the two thread experiments. In that case, the

savings started at 16% and dropped to 5.5%. With 256 physical registers, the

generation of spills and fills has not overcome the benefit of register windows. The

virtual context architecture generates 6% fewer data cache accesses than the

baseline did with 448 physical registers. With 192 physical registers, the spills and

fills start to dominate the register window savings. At this point, the virtual context
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Figure 7.7: Four Thread Data Cache Accesses Comparison
The data cache accesses of the baseline architecture (baseline), ideal register window
architecture (ideal), and two different virtual context architecture configurations. The data
cache accesses are normalized to the data cache accesses of the baseline architecture
with 448 physical registers. The results are given for a range of physical register file sizes.
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architecture is generating nearly 6% more data cache accesses than the baseline

did with 448 physical registers. The generation continues to grow to 26.5% with

128 physical registers and 105% with 64.

In a four threaded simultaneous multithreading pipeline with a large physical

register file, the virtual context architecture is still able to provide nearly ideal reg-

ister window performance with respect to the data cache. With 448 physical regis-

ters, vca1 generates 2.5% more accesses than ideal. This is slightly greater than

the 1.3% generated with the largest physical register file in the two thread experi-

ments. The additional threads introduce additional architectural state, which

needs to be managed and which in turn leads to more spills and fills. The virtual

context architecture steadily generates more data cache accesses compared to

ideal as the number of physical registers is decreased. With 384 physical regis-

ters, the difference between vca1 and ideal becomes 4%. With 320, the difference

is 6.5%. With 256, it rises to 14%. The trend continues until with just 64 physical

registers, the virtual context architecture is generating nearly 130% more data

cache accesses than ideal. For a set physical register file size, the four thread

pipeline always generates more data cache accesses relative to ideal than the

two thread pipeline. For example, with 256 physical registers, vca1 in the four

thread pipeline generates 14% more data cache accesses than ideal, while in the

two thread pipeline the difference is only 4.5%.

Restricting the workloads to those which contain only benchmarks which have

a high frequency of function calls has the same affect on the data cache accesses

with four threads, as was seen in two threads. In relation to the data cache

accesses generated by the baseline architecture, the cache savings provided by

the virtual context architecture is increased with the restricted set of workloads.

This is true at every size of physical register file. With 448 physical registers, vca1

generates 20% fewer data cache accesses using the restricted workloads, versus

17% with the full set. With 384 physical registers, the restricted has a difference of

17% versus 14% for the full. In relation to ideal, with large physical register files,

the virtual context architecture running the restricted set of workloads generates

more relative data cache accesses than with the full set of workloads. However,
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as the number of physical registers is decreased, this trend reverses itself until the

opposite is true. These effects were also seen in the two thread experiments. With

448 physical registers, vca1 running the restricted workloads generates 3.5%

more data cache accesses than ideal, while with the full set of workloads the dif-

ference is 2.5%. With 384 physical registers, restricted is 5%, the full set is 4%.

With 320, the numbers are 7% and 6.5% respectively. With 256 physical registers,

the situation is reversed. The virtual context architecture running the restricted

workloads generates 12% more than ideal while the full set generates 14%. The

relative difference continues to increase as the size of the physical register file is

decreased. With 192 physical registers, restricted is 19.5% while the full set is

26%.

Even with four threads, the virtual context architecture is able to provide a data

cache savings over the baseline architecture at every physical register file size.

With 448 physical registers, the savings is 17%. The virtual context architecture

provides approximately the same level of savings for the largest three register file

sizes studied with four threads as was seen with the largest three files with two

threads. The VCA is close to the data cache accesses of ideal with a large physi-

cal register file, within 2.5% with 448 physical registers. The rate at which the dif-

ference between the virtual context architecture and ideal grows is less with four

threads than with two. However, at any given physical register file size the VCA

will generate more data cache accesses relative to ideal with four threads than

with two. Restricting the workloads to those in which all the benchmarks have a

high frequency of function calls has the same affect as it did with two threads.

7.3Threads Study
This section examines the virtual context architecture’s performance with

regard to the number of threads supported in the pipeline. It combines the results

obtained in this chapter with the results in the previous chapter to investigate the

affects of adding threads to a virtual context architecture pipeline. All of the results

in this section are based on a four issue pipeline with two data cache ports. The



170

vca1 configuration from each experiment is used in the results in this section.

Three things are investigated. First, the relative execution time of the virtual con-

text architecture to the baseline architecture with a full set of physical registers is

examined. Second, the relative number of data cache accesses of the virtual con-

text architecture is compared to the baseline architecture with a full set of regis-

ters. Third, the potential speedups of the virtual context architecture and baseline

architectures are compared

7.3.1 Execution Time Study
This section examines the execution time of the virtual context architecture rel-

ative to the baseline architecture with a full set of physical registers. Figure 7.8
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Figure 7.8: Threads Execution Time Comparison
The execution time of the virtual context architecture in a single thread pipeline, two
thread pipeline and four thread pipeline. The results are normalized to the execution time
of the baseline architecture with a full set of physical registers on a pipeline with the same
number of threads. The multithread workloads are restricted to those composed solely of
benchmarks which make a function call at least once every 500 instructions. The results
are presented for a range of physical register file sizes. The results for each pipeline have
an upper limit of physical registers equal to the full set required for the baseline architec-
ture.
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presents the relative execution time results for a single thread, two threads and

four threads. The results are normalized to the execution time of the baseline

architecture with a full set of physical registers on a pipeline with the same num-

ber of threads. The results show the loss of performance of each pipeline as the

number of physical registers is decreased. The multithread workloads are

restricted to those used in the single thread register window studies. These are

benchmarks which make at least one function call every 500 instructions.

The virtual context architecture is able to provide a performance advantage in

all three pipelines. The maximum performance advantage of each pipeline is rela-

tively similar. The single thread pipeline has a maximum advantage of 5%, the two

thread pipeline has a maximum advantage of 4.5%, and the four thread has a

maximum advantage of 7%. The one and two thread pipelines provide nearly the

same benefit, while the four thread is 2% better. As mentioned in Chapter 6, the

performance benefit obtained from register windows is relative to the removal of

load and store instructions. The performance improvement is dependent on the

relative cost of executing these instructions. The cost of executing an instruction is

inversely related to the probability of there being another independent instruction

that could be executed instead. In other words, the cost of executing an instruc-

tion is in some respects zero if there are no other instructions that could be issued

instead that cycle. The probability of this occurring is much higher in a one or two

thread pipeline than in a four thread pipeline. However, the results of each pipe-

line were obtained running a completely different set of workloads. The workloads

are composed of the same set of benchmarks, but as was shown in Section 6.1.1,

the benefits obtained from register windows has a large variation across the

benchmarks. Therefore, it is possible that the maximum performance difference is

actually a result of an over representation of high benefit benchmarks in the four

thread workloads.

The decrease in execution time of all three pipelines as the number of physical

registers is decreased is remarkably similar. The execution time of the virtual con-

text architecture remains relatively constant with 192 or more physical registers.

The data suggests that decrease in performance is independent of the amount of
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architectural state and instead is solely a factor of the pipeline configuration. Each

of the three pipelines is able to achieve near its maximum performance with as

many physical registers as reorder buffer entries. In contrast, the baseline archi-

tecture must reserve one physical register for each architectural register and have

additional registers for renaming. With 128 physical registers, the execution time

of all three pipelines is approximately equal to the execution time of the pipeline

using the baseline architecture. At this point, an equilibrium has been reached

between the benefit of register windows and the cost of generating spills and fills.

The performance also suffers from the lack of physical register available for

rename. 

With fewer physical registers, the execution time of all three pipelines

increases dramatically. With so few physical registers, two factors are governing

the performance: a lack of rename registers and the generation of many spills and

fills. The lack of rename registers limits a pipeline’s ability to keep many instruc-

tions in the instruction queue, which in turn decreases the probability of indepen-

dent instructions. As mentioned previously in this chapter, multiple threads

increases the probability of finding independent instructions in a fixed number of

instructions. Therefore, the four thread pipeline should be least affected by this,

followed by the two thread and finally the single thread. The generation of spills

and fills increases the number of operations that need to be executed to complete

a given set of code. This factor will affect the pipeline based on the relative cost of

an additional operation. As mentioned previously in this section, the greater the

probability of finding independent instructions, the greater the cost of additional

operations. Therefore, this will affect the single thread pipeline the least, followed

by the two thread and finally the four thread. The results show that the second fac-

tor dominates. With 64 physical registers, the relative execution time of the four

thread pipeline is much higher than the two thread which is much higher than the

single thread.
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7.3.2 Data Cache Accesses Study
This section examines the data cache accesses of the virtual context architec-

ture relative to the baseline architecture with a full set of physical registers.

Figure 7.9 presents the relative data cache accesses for a single thread, two

threads and four threads. The results are normalized to the data cache accesses

of the baseline architecture with a full set of physical registers on a pipeline with

the same number of threads. The multithread workloads are restricted to those

used in the single thread register window studies. These are benchmarks which

make at least one function call every 500 instructions.
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Figure 7.9: Threads Data Cache Access Comparison
The data cache accesses of the virtual context architecture in a single thread pipeline, two
thread pipeline and four thread pipeline. The results are normalized to the data cache ac-
cesses of the baseline architecture with a full set of physical registers on a pipeline with
the same number of threads. The multithread workloads are restricted to those composed
solely of benchmarks which make a function call at least once every 500 instructions. The
results are presented for a range of physical register file sizes. The results for each pipe-
line have an upper limit of physical registers equal to the full set required for the baseline
architecture.
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The virtual context architecture is able to decrease the number of data cache

accesses for a wide range of physical register file sizes, regardless of the number

of threads the pipeline supports. In each case, the VCA provides approximately a

20% savings in data cache accesses with a full set of physical registers. As the

number of physical registers is decreased, all of the pipelines generate more data

cache accesses. Unlike the execution time results of the previous section, the

data cache results show a very strong ordering based on thread. At every physical

register file size, the four thread pipeline generates more data cache accesses rel-

ative to its baseline architecture than the two thread pipeline does to its baseline.

Similarly, two threads always generates more than single thread. In all three pipe-

lines, the virtual context architecture generates fewer data cache accesses than

the baseline architecture if there are at least 192 physical registers. With 128

physical registers, the single thread generates slightly fewer accesses than the

baseline. The two thread pipeline generates about the same number of accesses.

The four thread pipeline generates over 10% more data cache accesses than the

baseline. With 64 physical registers, all three pipelines generate more data cache

accesses than the baseline architecture. The results show that unlike the execu-

tion time, the data cache savings are affected by the threads. For a given number

of physical registers, the more architectural state that the pipeline has, the more

spills and fills it will generate to move this state between the physical register file

and data cache.

7.3.3 Speedup Study
This section examines the potential speedup associated with the virtual con-

text architecture and baseline architecture. Figure 7.10 presents the speedup

results. Results are presented for the virtual context architecture and baseline

architecture in a single thread pipeline, two thread pipeline and four thread pipe-

line. The speedups are relative to the baseline architecture with a full set of physi-

cal registers (256) in a single thread pipeline. The results for each pipeline have

an upper limit of physical register file size equal to the full set required for the

baseline. This many physical registers allows the baseline architecture to achieve
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its maximum performance, and previous experiments have shown that the virtual

context architecture achieves very near ideal performance also.

The virtual context architecture is able to provide a higher speedup at every

size of physical register than the baseline architecture. The ability of the four

thread virtual context architecture to maintain its performance even with a small

register file greatly increases the potential speedup that can be achieved at each

physical register file size. With 384 or 448 physical registers, the four thread base-

line architecture is able to provide a speedup of 43%. The four thread virtual con-

text architecture can provide a slightly higher speedup of 50%. With 320 physical

registers, both the two and four thread baseline architectures provide a speedup

of approximately 30%. While the two thread VCA can provide a similar speedup,
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Figure 7.10: Thread Speedup Comparison
The speedup of the virtual context architecture and baseline architecture in a single
thread pipeline (1T), two thread pipeline (2T) and four thread pipeline (4T). The speedups
are relative to the baseline architecture with 256 physical registers in a single thread pipe-
line. The results are presented for a range of physical register file sizes. The results for
each pipeline have an upper limit of physical registers equal to the full set required for the
baseline architecture. This upper limit is also the upper limit on the performance for that
configuration.
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the four thread still provides a speedup of 50%. This is 20% higher than any base-

line architecture can provide. With 256 physical registers, the four thread baseline

can no longer run. The two thread baseline provides a speedup of 25%. The vir-

tual context architecture can provide a speedup with any of its pipelines at this

point. With a single thread, the speedup is only 5%. With two threads, a 31%

speedup is possible, 6% higher than any baseline architecture. With four threads,

the speedup is still 50% or double that achievable by any baseline architecture.

With 192 physical registers, the single thread baseline architecture itself begins to

slow while the two thread baseline architecture slows down dramatically. The two

thread baseline is 16% faster than the single baseline with the same number of

physical registers. The single thread virtual context architecture is 6% faster than

the baseline with the same number of physical registers. The multithread virtual

context architectures are still able to maintain most of their performance. The two

thread VCA is 32% faster than the single thread baseline or double the speedup

achieved with the two thread baseline. The four thread virtual context architecture

is 50% faster than the baseline. This is over three times the speedup achieved by

the two thread baseline. With 128 physical registers, the two thread baseline can

no longer run and the performance of the single thread baseline drops even fur-

ther. The single thread virtual context architecture is 10% faster than the baseline,

the two thread is 33% faster and the four thread is 47% faster.

7.4Summary
The results in this chapter showed that the virtual context architecture per-

forms very well in a simultaneous multithreading pipeline. The VCA enables the

use of register windows in an SMT processor with no additional physical registers,

providing better performance than the baseline architecture. Both two and four

thread SMT pipelines provide significant speedups of 30% and 50% respectively

in a four issue pipeline over a single thread. The performance of the virtual context

architecture relative to the baseline architecture is virtually independent of the

number of threads. Thus, while multiple threads in a conventional architecture
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require much larger physical register files, the virtual context architecture is able

to achieve the same performance with no more physical registers than a single

thread pipeline. This greatly increases the potential speedup achievable with

moderate size register files. For example, with 192 physical registers, the best

achievable performance for the baseline architecture is with two threads for a 16%

increase over the single thread. The virtual context architecture with this size reg-

ister file provides a 32% improvement with two threads or by using four threads it

can achieve a 50% speedup.

The virtual context architecture is able to achieve nearly ideal register window

performance with a large physical register file. With a smaller number of physical

registers, the VCA must generate more spills and fills. The virtual context architec-

ture’s performance suffers with respect to ideal, which never generates spills and

fills. In the next chapter, we investigate several techniques for reducing the num-

ber of generated spills.
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Chapter 8

Spill Optimization

A study of the results obtained in Chapter 6 shows that up to 80% of the spills

generated by the virtual context architecture are not needed. These extra spills

occur when the value of an architectural register is spilled out of the physical reg-

ister file to the data cache, but the architectural register is rewritten without the

spilled value being brought back from the data cache. In other words, the value is

spilled after its last use. This chapter evaluates three techniques that can be used

to eliminate some of these unnecessary spills. All of the studies in this chapter

were done with a four issue out-of-order pipeline, see Table 4.2 for a description

of this pipeline. The experiments are done with physical register file sizes of 64,

128 and 192. These smaller sizes are where the performance of the virtual con-

text architecture begins to diverge from ideal. The first three sections of this chap-

ter describe the three techniques used to optimize spills: delay queue, register

window deallocation and dead value information. These sections also determine

the optimum size of any structures needed to implement the optimization. The

final section evaluates the effectiveness of these techniques at reducing the num-

ber of spills generated by the virtual context architecture.

8.1Delay Queue
Examining the results of our previous experiments shows that for a large frac-

tion of the extra spills, the time between when the spill is executed and when the

value is overwritten is relatively short. This section presents a completely architec-

tural technique that makes use of this observation to eliminate some of the

unneeded spills. We call this technique the delay queue. The idea of this tech-
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nique is to delay the completion of these spills for a short time. If the value is over-

written during this time, the spill can be squashed. 

The delay queue is a small queue that is placed between the architectural

state transfer queue and the store buffer. Normally, when a spill is executed, the

value being spilled and its address are placed directly into the store buffer.

Instead, the spill is now placed into the delay queue. The operation of the delay

queue requires two things: a delay and squashing.

First, the value is held in the delay queue for some set amount of time. If the

value has not been squashed in that amount of time, the value and address are

moved from the delay queue into the store buffer. The time that values are held in

the delay queue is a parameter that needs to be determined. If the time is too

long, a very large queue will be needed to hold the values. If the time is too short,

many of the opportunities to squash will be lost. Instead of a fixed delay, the delay

queue can operate based on its size. In this case, the delay queue is set up as a

fixed size queue. As long as there is at least one empty entry in the queue, all the

spills are held indefinitely. When the queue becomes full, the oldest entry is

moved to the store buffer. This is a more practical implementation and will ensure

that values are held as long as possible.

Second, the operation of the delay queue involves catching opportunities to

squash the spills. A spill can be squashed when a new value mapped to the same

location (same register in the same context) is committed by the pipeline. To

accomplish this, when a value is committed by the pipeline, its address is sent to

the delay queue. The delay queue cams this address. Any delay queue entries

that match the address are squashed. A squashed delay queue entry is never

moved to the store buffer and therefore does not cause a data cache access. For

a four issue pipeline, this involves checking up to four address each cycle. How-

ever, this check need not be on the critical path. It can be pipelined arbitrarily. A

missed opportunity to squash a spill costs performance, but does not affect the

correct execution.

The removal of these spills will result in a decrease in the data cache accesses

generated. For the delay queue to be effective, the majority of extra spills must be



180

overwritten in a short amount of time. Otherwise, the delay needed will be too

large and the queue size will be impractical. Figure 8.1 presents the relative data

cache accesses with a range of delay times. No limit is imposed on the size of the

queue. The results are presented for the three different physical register file sizes.

The data shows that the majority of extra spills are overwritten in a relatively short

amount of time. With a delay queue time of 512 cycles, the relative data cache

accesses are already within 5% of their maximum decrease. The extent of the

cache savings is very dependent on the size of the physical register file. With

fewer physical registers, a larger percentage of the data cache accesses are the

result of a spill. The percentage of extra spills remains relatively constant with the

number of physical registers. Therefore, there is a higher potential gain with fewer

physical registers.
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Figure 8.1: Delay Queue Time Study
The normalized data cache accesses of the virtual context architecture with a delay
queue with different delay times. The delay queue time is studied from 0 cycles to 4096
cycles. The results are normalized to the 0 cycle (or no delay queue) data cache access-
es. The results are provided for the three different physical register file sizes.



181

The previous results showed that the delay needed to remove a high percent-

age of extra spills is relatively low. The practicality of this technique however, is

dependent on the size of the delay queue needed. Figure 8.2 presents the relative

data cache accesses with various sizes of delay queue. The larger the physical

register file the smaller the delay queue needed to realize most of the optimiza-

tion. The results show that a 64 entry queue is large enough to delay the spill long

enough to squash most of those that can be squashed. This is the size queue

used in the evaluation of this technique.

8.2Register Window Deallocation
The application binary interface we have defined for our architecture specifies

that all of the communication between functions uses the non window registers.

Figure 8.2: Delay Queue Size Study
The normalized data cache accesses of the virtual context architecture with a delay
queue of different sizes. The delay queue size is studied from 0 to 128 entries. The results
are normalized to the no delay queue data cache accesses. The results are provided for
the three different physical register file sizes.
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Therefore, when a register window is deallocated, any physical register mapped

to one of the windowed registers in that window can be freed. This section

explores a technique for implementing this optimization. 

The register window deallocation optimization is purely architectural and

requires no changes to the existing instruction set architecture. The implementa-

tion of this optimization requires that when a return instruction is executed, all of

the windowed registers in the deallocated register window be freed. Therefore,

the hardware must keep track of which physical registers are mapped to win-

dowed registers and which register window each of these registers is in.

One possible way to track this is to maintain a circular buffer of bit vectors with

one bit for each physical register. A current index is kept, specifying which vector

is currently active. As an instruction is committed, if the destination register is win-

dowed, it sets the bit in the current vector. Thus, the vector specifies which physi-

cal registers are assigned to windowed registers in the current window. When the

instruction deallocating the window is committed, the bit vector is ored with the

free list vector to make the new free list (all windowed registers from the deallo-

cated window immediately become free). The vector is then cleared. When an

instruction allocating a new window is committed, the current index is incremented

and the new current bit vector is cleared. Clearing the bit vector on allocations and

deallocations naturally handles the circular nature of the buffer and the fact that

it’s a finite resource. 

With n bit vectors, it is possible to maintain the information for the last n win-

dows allocated. If the call depth is greater than n, the implementation will lose

information about which physical registers were assigned to the oldest function’s

register window. For example, with a n of 2, say function A calls function B. At this

point, the implementation is able to track which register window each windowed

register belongs to. Now say function B calls function C. The implementation will

lose the information on function A. Instead, that vector will now start tracking func-

tion C. When function C returns, the implementation can clear its registers. Simi-

larly, when function B returns it also has the information to clear its registers.

However, at this point there is no information for function A. However, once again
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the bit vector will start to track the register usage of function A. When function A

returns, only those registers defined between the return of B and the return of A

will be cleared. Therefore, the only registers affected by the limited number of vec-

tors will be those physical registers used before the call to function B and subse-

quently not spilled or overwritten. This implementation requires very little space

and very little additional logic.

A study of the possible values of n shows that a very small value will capture

most of the potential savings. The number of data cache accesses generated with

a single bit vector is only 0.3% higher than with an infinite number of bit vectors.

Two bit vectors is within 0.12% of infinite. Four bit vectors is within 0.04% of the

data cache accesses generated with an infinite number of vectors. Eight bit vec-

tors is enough to capture all of the information and yields the same number of

data cache accesses as an infinite number of vectors. We choose to use four bit

vectors because it is a good compromise between size and performance.

8.3Dead Value Information
As part of the compilation process, register lifetime information is generated.

This information is used throughout the compilation process for such things as

register allocation and optimizations. The lifetime information can be used to

determine the last use of any given register value. This is called dead value infor-

mation. This is exactly the information required to remove the extra spills. This

section describes how the instruction set architecture can be modified to allow this

information to be inserted into the instructions.

The idea of using this information in the architecture has been explored before.

Martin et al. [20] and Lo et al. [18] both used dead value information to reclaim

physical registers as soon as the last use was committed. This is similar to what

our optimization is trying to accomplish. However, although we will benefit from

reclaiming the physical register faster, the main purpose is to prevent these dead

values from being spilled.
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We insert dead value information into the instruction set architecture in two

ways. The first way is two mark the source registers of instructions in which this is

the last use of the register. The way in which an instruction was marked was

dependent on its binary layout. Specifically, if there were unused bits in the

instruction itself, these bits were used to specify the last use of the source oper-

and. If there were no unused bits in the instruction, a new opcode was used to

specify the same operation but with a dead source register. In the case of a two

source instruction, this required three new opcodes to represent the possible

combination of dead source registers: only the first source dead, only the second

source dead, or both sources dead. The Alpha ISA as used by our compiler and

simulator had several unused opcodes that could be used for this purpose. The

majority of common instruction types were modified to allow for dead value infor-

mation. The notable exceptions were the load/store address operand and condi-

tional branch instructions.

The second way in which dead value information was inserted into the pipeline

was with the addition of special instructions. Two types of special instructions

were used. The first special instruction was a modified call instruction. Any call to

a function outside the compilation unit is done by loading the address of the func-

tion in a specific register ($27 or the procedure value register). The call instruction

always uses the return address register as the destination. We added a new call

instruction to the instruction set architecture. The instruction used these fixed

source and destination registers and did not encode them in the binary. Instead, it

encoded the live status of all 12 argument registers. Any call instruction that used

these registers was instead replaced by the special instruction. The second type

of special instruction was a dead value information only instruction. The sole pur-

pose of this instruction is to communicate register lifetime information to the hard-

ware. The instruction used one bit to specify either floating point or integer register

file. The live status of all the windowed registers for the register file was then

encoded into the instruction. The compiler inserted a pair of these instructions

(one for floating point and one for integer) before every call instruction.
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To implement this optimization, the compiler was modified to generate the con-

servative lifetime of all the registers used in a function just before the assembly

was generated. As the compiler generated the assembly, each instruction refer-

enced this lifetime information to determine if this instruction was the last use of

any of the registers it was sourcing. If a register was on its last use, the register

was marked in the assembly by adding 100 (for example $103 or $f129) to the

register number. The compiler also used the special call instruction in all the

appropriate cases and inserted the dead value information only instructions. The

assembler was modified to recognize both the new instructions and the new regis-

ter identifiers. If an instruction had one or more marked registers, the assembler

determined if an encoding existed to specify the information. If an encoding

existed, the new encoding was output. If no encoding was possible, the unmodi-

fied instruction was output. Finally, the simulator was modified to recognize the

new instructions and all of the modified encoding.

8.4Evaluation
This section evaluates the effectiveness of these three techniques in removing

the extra spills. The three techniques were run individually and in two combina-

tions. The first combination is composed of both the register window deallocation

optimization and the dead value information optimization. Neither of these tech-

niques requires very much hardware and they are completely compatible. The

second combination consists of all three techniques. This represents the limit of

what we could achieve. The results are presented in two subsections: data cache

results and execution time results.

8.4.1 Data Cache Accesses
This section presents the data cache results. We use this to evaluate how

many data cache accesses were optimized away. This is an indication of the

effectiveness of the technique. The results are presented for a four issue pipeline

with two data cache ports and for a four issue pipeline with one data cache port.
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The normalized data cache accesses that the two port pipeline generates with

each technique investigated is presented in Figure 8.3. The results are normal-

ized to the data cache accesses generated by the unoptimized virtual context

architecture. The data cache accesses generated by the ideal register window

architecture are also included. The ideal data cache accesses represent the theo-

retical limit that our optimizations can achieve.

The delay queue optimization proves to be very effective at removing the extra

spills. At every size of physical register file studied, this optimization reduces the

number of data cache accesses to within 3% of those generated by the ideal reg-

ister window architecture. This is a decrease in data cache accesses of between

8% and 30%. The percentage of data cache accesses removed grows as the

number of physical registers is reduced. However, the percentage of removed
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Figure 8.3: Spill Optimization With Two Data Cache Ports
The data cache accesses generated by the delay queue optimization (dq), register win-
dow deallocation (ret), dead value information optimization (dvi) and combinations of
these techniques. The results are normalized to the data cache accesses generated by
the unoptimized virtual context architecture with the same number of physical registers.
The data cache accesses generated by the ideal register window architecture (ideal) are
also included to provide a limit to the potential optimization.
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data cache accesses compared to the difference between the unoptimized VCA

and ideal remains relatively constant as the number of physical registers is

reduced. These experiments were run with a 64 entry delay queue. Smaller queue

sizes would reduce the savings.

The register window deallocation optimization proves to be the least effective

at removing extra spills. Unlike the other two techniques, this is not a general pur-

pose technique. Instead, it specifically targets a certain type of extra spill.

Although all of the register windows become invalid when a function returns, even

without any optimization it is possible for these registers not to be spilled. If

another function call is made (even to a different function), as registers are written

to by instructions in that function, they will overwrite and free the physical registers

allocated by the previous function. This combination of factors leads to a relatively

modest decrease of 3% in the data cache accesses. The percentage remains rel-

atively constant with the number of physical registers. This would be expected

because of the strong dependence of this optimization on the program behavior.

The dead value information optimization proves to be moderately effective,

reducing the number of data cache accesses by up to 12%. The percentage of

data cache accesses removed increases as the number of physical registers is

decreased. However, unlike the delay queue, the increase is less than the

increase in the number of data cache accesses generated. Therefore, the per-

centage of removed accesses relative to the difference between the unoptimized

VCA and ideal decreases. With 192 physical registers, this optimization reduces

the increase over ideal by over 50%. With 64 physical registers, the reduction is

only 35%. The dead value information inserted by the compiler is conservative. A

register is only marked dead if the instruction must be its last use, taking into

account all the possible control flow of the program. In addition, the dead value

information could not be encoded in every instruction type. Our results show that

about 27% of committed instructions contain dead value information. Therefore,

the dead value information is not capable of marking all the last uses, especially in

the last use instructions. A full dead value specification is inserted at every call

site. With more physical registers there is less pressure on the physical register
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file, fewer spills and fills are generated, and there is a greater chance that the

compiler will have been able to mark a register as dead. Thus, this technique is

not as effective as the delay queue and is less effective with a smaller physical

register file.

Two combinations of techniques were also evaluated. The first combination

consists of the register window deallocation optimization and the dead value infor-

mation optimization. These two techniques are low cost in terms of hardware and

easily combined. The results show that the combination is more effective than

either separate optimization. However, the combination is only slightly better than

dead value information by itself, reducing the number of data cache accesses by

an additional 1%. This can be explained by the overlap between the two tech-

niques. Specifically, the dead value information will free some of the windowed

registers before the function returns. These would also be freed by the register

window deallocation optimization. The second combination employs all three

techniques. In this case, there is virtually no difference between the combination

and the delay queue by itself. The delay queue is able to remove almost every

possible extra spill by itself.

These optimization techniques were also tested in a four issue pipeline with

one data cache port. See Figure 8.4 for the results. The results are very similar to

those seen in the two data cache port pipeline. The difference between the unop-

timized virtual context architecture and ideal has increased with the loss of the

data cache port. The delay queue removes a higher percentage of accesses, but

the percentage removed relative to the difference between unoptimized and ideal

remains the same. Thus, the delay queue is still able to remove almost all of the

extra spills. The percentage of data cache accesses removed by the register win-

dow deallocation technique and dead value information technique remains the

same. Therefore, the percentage relative to the difference has decreased. These

two techniques are dependent on the benchmark themselves. In particular, they

have the capability of removing a fixed number of spills based on the program

itself. Therefore, they are less affected by the loss of the data cache port. The
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dvi+ret combination behaves the same as the two techniques it is composed of,

while the behavior of the combination of all three techniques behaves like the

delay queue which dominates its performance.

8.4.2 Execution Time
This section evaluates the execution time effects caused by the use of the

three optimization techniques. The overhead associated with the virtual context

architecture is the cost of generating spills and fills. The previous section showed

that these optimization techniques can significantly reduce the data cache

accesses associated with this overhead. The results are presented for the same

configurations tested in the previous section in a pipeline with two data cache

ports and a pipeline with one data cache port.
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Figure 8.4: Spill Optimization With One Data Cache Port
The data cache accesses generated by the delay queue optimization (dq), register window deallo-
cation (ret), dead value information optimization (dvi) and combinations of these techniques. The
results are normalized to the data cache accesses generated by the unoptimized virtual context
architecture with the same number of physical registers. The data cache accesses generated by
the ideal register window architecture (ideal) are also included to provide a limit to the potential
optimization.
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The normalized execution time of the virtual context architecture with these

three optimization techniques is presented in Figure 8.5. The results are normal-

ized to the execution time of the unoptimized virtual context architecture. The exe-

cution time of the ideal register window architecture is also included. The ideal

execution time represents the theoretical limit that our optimizations can achieve.

Although the delay queue has the largest effect on the cache accesses, it has

the smallest effect on the execution time, with a difference in execution time of

less than 0.8% relative to the unoptimized execution time. The cost associated

with a spill is composed of two factors. The first factor is the amount of time that

the pipeline stalls while waiting for the spill to issue so that it can reuse the physi-

cal register. The second factor is the overhead of additional entries in the store

buffer and their eventual writeback to the data cache. Unlike the other two optimi-
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Figure 8.5: Optimization Execution Time With Two Data Cache Ports
The relative execution time of the delay queue optimization (dq), register window deallo-
cation (ret), dead value information optimization (dvi) and combinations of these tech-
niques. The results are normalized to the execution time of the unoptimized virtual context
architecture with the same number of physical registers. The execution time of the ideal
register window architecture (ideal) is also included to provide a limit to the potential op-
timization.
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zations, the delay queue only alleviates the second factor. Spills are still issued,

but they are sent to the delay queue where the majority are eventually squashed.

In a pipeline with two data cache ports, the cost of the second factor is relatively

small.

The register window deallocate optimization has a greater effect on the execu-

tion time than the delay queue. With 64 physical registers, there is a reduction in

execution time of 1.2%. Although this optimization only affects a small number of

spills, the physical registers are immediately freed. This removes the entire cost of

the spill. The optimization also occurs when the pipeline is transitioning from one

function context to another. This is one of the points in the execution when extra

pressure is exerted on the physical register file. It is forced to try to hold the regis-

ter state of multiple active contexts. Thus, the freeing of a large number of physi-

cal registers from one of these contexts has a greater benefit to the execution time

than the removal of the data cache accesses would necessarily indicate.

The dead value information optimization provides the most benefit to the exe-

cution time. Although the reduction is very small with 192 physical registers, the

smaller registers files experience a nearly 50% reduction in their execution time

relative to the ideal execution time. This corresponds to a decrease of 3% for 64

physical registers and 1% for 128. All of the techniques show a larger impact as

the register file is decreased. With the larger register file, the cost of the spills is

more easily absorbed in the execution time. With the smaller register files, the

large number of spills generated begins to have a much greater performance

impact and the execution time impact of these optimizations increases.

The combination of dead value information and register window deallocation

optimizations has similar performance to just the dead value information. As was

seen with the data cache access results, the spills that these optimizations affect

overlap. The combination of all three optimizations does show a significant

decrease in execution time relative to the other combination. With 64 physical reg-

isters there is a further 0.6% reduction in execution time. The addition of the delay

queue does provide savings. In fact, the savings are almost additive. The modest

performance improvement gained by the removal of so many data cache
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accesses is not diminished very much from the much smaller reduction in data

cache accesses caused by the other two optimizations.

The execution time results of these optimizations in a one data cache port

pipeline are presented in Figure 8.6. The configurations and statistics are the

same as for the two data cache port results. With a single data cache port, the rel-

ative cost of a data cache access increases and the difference between the unop-

timized virtual context architecture and ideal register window architectures

increase. We would expect to see a more significant contribution by the optimiza-

tions. The results do show a significant decrease in the execution time with 192

physical registers. In contrast, the two data cache port results show almost no

change in the performance with 192 physical registers. This shows that the cost of
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Figure 8.6: Optimization Execution Time With One Data Cache Port
The relative execution time of the delay queue optimization (dq), register window deallo-
cation (ret), dead value information optimization (dvi) and combinations of these tech-
niques. The results are normalized to the execution time of the unoptimized virtual context
architecture with the same number of physical registers. The execution time of the ideal
register window architecture (ideal) is also included to provide a limit to the potential op-
timization.
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spills is much more significant with 192 physical registers with only a single data

cache port that when there are two data cache ports.

The delay queue has a much different effect on the execution time in the pipe-

line with only a single data cache port. This optimization provides the largest per-

formance benefit at every physical register file size, reducing the execution time

by between 1.2% and 4.5%. This is in contrast to the two port pipeline where it

provided the least benefit. As mentioned in the two port execution results, the

delay queue only removes the store buffer and cache access costs of a spill. With

only a single data cache port, these become a much more significant percentage

of the overall cost. With every size of physical register file, the delay queue is able

to decrease the difference between the virtual context architecture and ideal by

almost half.

The register window deallocation optimization with a larger register file has

approximately the same percentage reduction in execution time as it did in the two

data cache port pipeline. This is true, even with the increased overall cost of a

spill. With the increase in the difference between unoptimized and ideal, this rep-

resents a smaller percentage of the difference. Like the other optimizations, the

execution time benefit with 192 physical registers is much greater than in the two

data cache port pipeline.

The dead value information optimization has very similar results to those

achieved with two data cache ports. Like the other optimizations, it also experi-

ences an increase in benefit with the larger register files. With 192 physical regis-

ters, this optimization reduces the execution time an additional 1%. With 128

physical registers, the percentage drops to only 0.5%. Finally, with 64 physical

registers, the execution time is only reduced an additional 0.2% compared to the

two data cache port pipeline. With the increased difference between the unopti-

mized virtual context architecture and the ideal register window architecture, this

translates to a smaller percentage of the difference. While with 64 physical regis-

ters in the two data cache port pipeline this optimization was able to remove

almost 50% of the overhead associated with the VCA, with one data cache port

the dead value information optimization removes under 30% of the difference.



194

The dead value information and register window deallocation combination pro-

vides the same performance improvement as it did with two data cache ports.

Since both of these techniques behave the same individually, it makes sense that

the combination also does. The combination of all three provides the best perfor-

mance. With 64 physical registers, the execution time of this configuration is 6.5%

less than the unoptimized execution time. Across the whole range of physical reg-

ister files studied, it reduces the difference between the virtual context architec-

ture and the ideal register window architecture by between 53% and 63%.

Although the delay queue is not quite additive with the first combination, there is

still a substantial performance improvement.

8.5Summary
This chapter examined three techniques for reducing the number of spills gen-

erated by the virtual context architecture. The first technique examined was the

delay queue. This was an architectural solution which delayed the transfer of spills

values to the store buffer. If the value was overwritten before being transferred,

the spill could be squashed. Of the three techniques, this one reduced the data

cache accesses by the most, to within 3% of ideal. However, because it only elim-

inates the cache access itself and not the generation of the spill, a significant per-

formance savings was only observed in a pipeline with one data cache port. In this

context, it reduced the difference between the virtual context architecture and the

ideal register window architecture by half.

The second technique examined was an optimization to register window deal-

location. The application binary interface specifies that all the windowed registers

in a function are dead when the function returns. Our implementation used a small

set of four bit vectors to track which physical registers belong to which context.

This technique had very modest hardware costs, but also very modest improve-

ments, both in terms of performance and reducing the data cache accesses.

The third technique was the introduction by the compiler of dead value infor-

mation into the instruction set. Requiring virtually no new hardware, this technique
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however required changes to the instruction set. Results indicated that nearly

27% of all committed instructions contained dead value information. This optimi-

zation produced good results in all the situations. With 64 physical registers, it

reduced the performance difference between the virtual context architecture and

the ideal register window architecture by almost 50% in a pipeline with two data

cache ports and 30% in a pipeline with one data cache port.

The techniques provide additional improvements when combined. The combi-

nation of all three techniques produced the greatest reductions in data cache

accesses and execution time.
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Chapter 9

Related work

This chapter briefly describes the research that is related to this dissertation.

First, we discuss other research that has used memory as a backing store to the

register file. Next, we examine the various ways other researches have tried to

reduce the save and restores imposed by register contexts. We then describe

other work that has more aggressively managed the physical registers. We then

look at other research that has enabled the use of large numbers of logical regis-

ters by creating efficient large physical register files. Finally, we examine work that

has been done to enable more threads in a simultaneous multithreading proces-

sor without increasing the size of the physical register file.

9.1Memory As A Backing Store To The Register File
The virtual context architecture maps the logical register to memory. The phys-

ical register file is treated as level in the cache hierarchy. It is backed up by the

traditional data cache hierarchy, which is in turn backed by memory. Several other

researches have used memory as a backing store to the register file.

Nuth et al. [23] proposed the Named State Register File, which like the VCA

treats the physical register file as a cache and memory maps the logical registers.

They explored the use of this new register file design for both block multithreading

and as a more efficient implementation of register windows. The architecture was

designed around a single issue in-order pipeline. Their design required a CAM of

the entire register file on every read and write access. A miss in the register file

stalled the pipeline until an entry for that register was allocated. This involved the

location of a free entry. If entries were free, an existing entry is spilled to memory.



197

In the case of a read access, a miss also requires that the value be read from

memory and placed into the register file (similar to our fill operation). They esti-

mated that their design would increase the access time of the register file by 5%.

This could potentially increase the cycle time of the processor. Unlike the rename

table access, the register file access cannot be easily pipelined. Similar to pipelin-

ing the rename stage, adding an extra stage to the register file access would

increase the branch misprediction penalty. Any additional stages would also add

extra levels to the bypass logic which is a critical component of the backend of

out-of-order processors. These extra stages would also increase the lifetime of

physical registers. The register file access would be further complicated by the

logic necessary to handle potential misses. In an out-of-order processor, this

would either require a stall on the entire issue/execute loop or complex logic to

handle issued instructions dependent on the stalled instruction. The virtual context

architecture requires no changes to the backend of the pipeline. Our design

requires no modifications to the physical register file. The VCA guarantees at

rename that every logical register used by instructions in the backend of the pipe-

line will be mapped to a valid physical register. Therefore, the processor register

file access does not need to modified. Unlike the Named State Register File, when

the virtual context architecture stalls to handle register state transfers, only the

frontend of the pipeline is stalled. The backend can continue to execute and com-

mit instructions.

Idea of pointers associated with registers and background save/restore was

proposed by Huguet and Lang [16]. This architectures uses a register mask to

track live values for the current function context. The mask is updated as registers

are used. The architecture also keeps a table with the save location of all the cur-

rently live registers. Save locations for all the registers are reserved in each func-

tion activation record. When a register is written to, the save location for that

register in the current function is entered into the table. Only one location is speci-

fied for each register, although the location can be from any function activation

record. The compiler was also modified to insert a mask of all registers that are

live within the function at function entry and exit. On function entry, an intersection
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of the current live register mask is done with the mask of all registers that are live

in the function. This intersection specifies which registers need to be saved. The

architecture stalls the pipeline and saves all the registers that need to be saved.

The live register mask is updated to mark these registers as no longer live. On

function exit, the live register mask is updated with the mask of all registers that

are live in the function to clear the registers defined in this function. When a regis-

ter is sourced, if the corresponding bit is not set in the live register mask, the pipe-

line is stalled while the register is read from its save location in the function

activation record (current frame pointer plus register number). This architecture is

able to take advantage of both static and dynamic liveness information to mini-

mize the amount of saving and restoring done. While this technique does mini-

mize the save and restore traffic, it only applies to a single register window. It is

unable to take advantage of a larger physical register file. The original research

was done using a simple single issue in-order pipeline. Like Nuth’s architecture, it

also has the potential of servicing a miss in register access with the same inherent

complexities.

Ditzel et al. [10] proposed replacing the register file with a large circular buffer

in the C machine stack cache. The instruction set for this architecture did not use

registers, but instead all the values were stored in memory (similar to the mem-

machine we proposed), with local values specified as offsets in the stack. The

stack was mapped onto this buffer (they allowed byte level addressing into the

cache, as long as you don’t cross word boundaries). On a call or return, an enter

or catch instruction was used to guarantee that as much of the stack as possible

was mapped onto the circular buffer. On an underflow or overflow, the buffer was

backed up by memory. The instruction cache held decoded instructions that con-

tain full addresses instead of stack offsets. The lower order bits of these

addresses could be used to access the cache entries. Any addresses that fall out-

side the circular buffer were accessed using memory. Unlike the virtual context

architecture, this machine required a completely new instruction set similar to the

one proposed in Chapter 2 (they do not specify how they encode the instructions).

One of their arguments in favor of this new ISA was the complexity and speed of
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multipass optimizing compilers and register allocation. Now, multipass optimizing

compilers and register allocation are mature and well understood fields. The vir-

tual context architecture is much more efficient in its resource utilization. In the

VCA, the physical register file is managed on single register granularity. In the C

machine stack cache, the buffer contains a large contiguous section of the stack,

which is likely to contain a large fraction of unused values. Unlike the virtual con-

text architecture, this architecture was designed for a single issue in-order proces-

sor and does not lend itself to out-of-order processing due to the complexity of

dependence checking with memory addresses.

This section briefly described three other architectures that used memory as a

backing store. The first architecture used memory as a backing store of the regis-

ter file to implement register windows and block multithreading. This architecture

required a CAM of a fully associative physical register file on every read and write

leading to either increased cycle time or multiple stages for register access. In

contrast, the virtual context architecture does not modify the physical register file

and therefore its access time is unchanged. The second architecture takes advan-

tage of both static and dynamic liveness information to minimize the amount of

saving and restoring done. The virtual context architecture is able to efficiently

implement register windows and remove most of the save and restore traffic. The

third architecture implemented a new instruction set and replaced the physical

register file with a cache of a contiguous section of the stack. The virtual context

architecture works with existing instruction sets and more efficiently manages the

cache using single register granularity. These architectures were all implemented

in an in-order processor. In contrast, the virtual context architecture is designed

around a higher performance superscalar out-of-order processor.

9.2Reducing Save/Restore
The virtual context architecture can provide an almost ideal implementation of

register windows. By providing each function with its own set of logical registers,

register windows reduces the save and restore overhead associated with a func-
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tion call. A lot of research has been done on the reduction of save and restore traf-

fic.

Register windows provides each function with its own set of general purpose

registers, pushing the responsibility of spilling and filling down to hardware[10, 24,

30]. In these architectures, a large register file capable of handling several win-

dows is provided in the core. Windows are allocated on function calls and deallo-

cated on returns without significant overhead, but some method of handling

overflow or underflow is required. Two commercial architectures that use register

windows are the SPARC and Itanium[37,8]. SPARC processors use a software

approach to handling this problem by trapping to the operating system on an

underflow or overflow condition. The Itanium uses a hardware approach known as

the register stack engine (RSE). When an overflow or underflow occurs, the pro-

cessor halts the execution of the program and the RSE proceeds to move regis-

ters to or from memory. In either case, the handling of an underflow or overflow

halts the execution of the program and adds a significant amount of overhead.

The virtual context machine is able to provide a nearly optimal implementation of

register windows by spilling/filling on single register granularity instead of entire

register windows. It also does not require the entire register window to be resident

in the physical registers and thus uses the register file much more efficiently than

most previous schemes. As the experiments in Chapter 6 showed, the virtual con-

text architecture is able to implement register windows in an out-of-order proces-

sor without any additional physical registers. In contrast, a conventional register

window architecture requires a much larger physical register file. In the VCA, spill-

ing and filling are handled by the frontend, and the backend of the pipeline can

continue execution in parallel with these operations. The out-of-order nature

enables it to tolerate the extra latency of the infrequent spills/fills just like it

enables conventional systems to tolerate long memory latencies.

Researchers have also explored techniques for using liveness information to

minimize the amount of saving and restoring done. As mentioned in the previous

section, Huguet and Lang [16] explored the use of liveness information and use

masks to dynamically determine which registers needed to be saved on function



201

entry. Their technique also delayed the restore of a register value until its actual

use. Martin et al. [20] also explored the use of liveness information. In their

research, dead value information is inserted into instruction set architecture. The

architecture could make use of this information to efficiently determine the set of

live registers on function entry. The hardware used this set to squash any save

instructions that were saving dead values. They also proposed maintaining a

stack of live register sets. By saving a snapshot of the live register information on

function entry, restore instructions that were restoring dead registers could be

squashed at function exit. This technique can also be expanded to reduce the

saves and restores necessary on a context switch.

The virtual context architecture has two advantages over Martin’s solutions.

First, they require that all the save and restore instructions still exist in the binary,

even though they may eventually be squashed. The virtual context architecture

does not require these instructions, thus reducing the static size of the binary and

improving the fetch efficiency. Second, the VCA is able to take advantage of its

ability to keep registers from multiple contexts in the physical register file to actu-

ally eliminate some saves and restores. Martin’s solution minimizes the number of

saves and restores, but if a register is live at function entry, it still must be saved

and later restored. In the virtual context architecture, the register is only saved

(spilled) if its physical register needs to be reclaimed.

Previous work has also focused on reducing the memory bandwidth of save

and restore traffic by splitting out part of the memory stream and directing it to a

separate pipeline and cache. Cho et al. [7] proposed the data decoupled architec-

ture. In this architecture the memory stream is split into two streams - local vari-

able accesses and the rest. The architecture provided a small separate cache and

load store queue for local variable accesses. They also explored a fast data for-

warding (using the offset field) and access combining. Lee et al. [17] proposed the

Stack Value File. Like the data decoupled architecture, this architecture split the

memory stream into two separate streams, in this case stack accesses and non

stack accesses. The easily identified stack based accesses (those that are stack

pointer relative) are moved into a simple pipeline that renames them into register
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operations. The stack value file is a simple direct mapped cache that represents a

contiguous piece of memory at the top of the stack. Both implementations reduce

the bandwidth to the first level data cache, but only by directing it to a separate

cache. Programs still require the same number of cache accesses and dynamic

instructions. The virtual context architecture actually eliminates cache accesses

and reduces the number of instructions required to execute the program. Both

architectures could easily be combined with the virtual context architecture. How-

ever, because of the reduction in accesses in the redirected stream, their effec-

tiveness would be diminished.

In this section, we briefly described previous research done to reduce the save

and restore overhead. Register windows is a well known technique for reducing

this overhead. Unlike other architectures, the virtual context architecture is able to

provide a nearly ideal implementation of register windows in an out-of-order pro-

cessor without increasing the number of physical registers. Liveness information

has also been used to reduce the save and restore traffic. These techniques

required the save and restore instructions to still be inserted into the binary, but

squashed them. Although they are effective at minimizing the number of saves

and restores, they cannot remove them. The virtual context architecture, by effi-

ciently implementing register windows, allows the complete removal of save and

restore instructions from the binary and the elimination of almost all of the over-

head associated with saving and restoring. Finally, two techniques were described

that reduce the bandwidth to the first level cache by directing save and restore

traffic to a different pipeline and cache. As mentioned previously, the virtual con-

text architecture is able to eliminate most of these accesses and therefore truly

removes the bandwidth overhead.

9.3Aggressive Physical Register Management
The traditional management of the physical register file is very conservative. A

logical register is renamed to a physical register at the rename stage. The execu-

tion and writeback of the instruction is all accomplished using the physical register
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tags. When an instruction is committed, the value of the destination operand is

committed and becomes architectural state. If a physical register was currently

holding the old architectural state of this register, it was freed. By waiting to free a

physical register until it is overwritten, the pipeline guarantees it can recover from

any branch misprediction. The virtual context architecture is able to manage the

physical registers more aggressively. The VCA is able to move architectural state

out of the physical register file and reclaim the physical registers before they are

overwritten. This allows the VCA to keep only the most active registers in the

physical register file. Several researches have investigated more aggressive man-

agement of the physical register file.

Martin et al. [20] and Lo et al. [18] proposed software identification of dead reg-

ister values to free physical registers early. The dead value information is inserted

into instruction set architecture either as modifications to the instructions or as

special instructions. When an instruction containing dead value information com-

mits, the physical register mapped to the dead logical register can be immediately

freed. Our design targets similar goals, and also achieves them in part by moving

dead values out of the register file into memory. Our scheme has two advantages:

it does not require software annotations, and it also seamlessly manages the effi-

cient saving and restoring of values that are not dead but have not been accessed

recently (e.g., live values from calling procedures or from active but stalled

threads). The proposed dead-value annotations would be a useful addition that

should integrate easily into our design, allowing us to avoid spilling dead values to

memory and to reclaim dead registers preferentially over live but inactive ones.

Dead value information was integrated into our design in Chapter 8 and the

results showed that it was effective at reducing the number of extra spills.

Akkary et al [1] also examined reclaiming physical registers early in their pro-

posed Checkpoint Processing and Recovery architecture. Branch recovery was

done using checkpoints. However, the checkpoints were not taken on every

branch, instead they used a confidence estimator to pick branches likely to be

mispredicted. They also checkpointed every 256 instructions. A use counter was

used to keep track of the number of uncompleted instructions in each checkpoint
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and, as in the virtual context architecture, the number of instructions in the pipe-

line currently using the register. To handle a misprediction, when a checkpoint is

created, it incremented the use counter for all the currently mapped physical reg-

isters. This ensured that the checkpoint can always restore the correct logical reg-

ister values. The combination of their new checkpointing scheme and register use

counters allowed them to implement a more aggressive management of physical

registers. They reclaim the register as soon as the use counter drops to zero and

the register has been renamed. A traditional architecture must wait until the

renaming instruction commits; this guarantees it is not speculative. Otherwise the

physical register may be needed for branch recovery. This architecture was able

to free the physical register as soon as the register was renamed. By having the

checkpoint increment the use counter, they guaranteed that the physical registers

required for branch recovery will always be available. The virtual context architec-

ture could potentially be combined with this architecture. Both track the use of

physical registers using counters, so the hardware cost is shared. However, the

virtual context architecture does require larger checkpoints, so that may make the

combination impractical.

In contrast to the previous research, Monreal et al. [21] proposed an architec-

ture to delay the allocation of a physical register instead of reclaiming it early.

Their architecture was called the virtual-physical register scheme. In this architec-

ture, a physical register is not allocated until writeback. This was accomplished by

using a larger set of virtual physical tags to track dependency. A second renaming

occurred at the writeback stage. This renamed a virtual physical tag to a free

physical register. One of the drawbacks to this scheme was the potential deadlock

that can occur if there are no free physical registers to use when the oldest

instruction is trying to commit. Their proposal for avoiding this deadlock was to

make sure there was always a physical register for the oldest instruction with a

destination in the reorder buffer. This allowed the oldest instruction to always be

able to commit. In a conventional pipeline, the commit of an instruction with a des-

tination will always free a physical register (the physical register holding the old

architectural state). Their virtual physical register scheme could more efficiently
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use the physical registers, either for better performance with the same sized file,

or the same performance with a smaller file. This work is orthogonal to ours.

Although they decreased the lifetime of physical registers, they do not increase

the number of logical registers that can be handled, or allow physical registers to

be reclaimed by moving their state out to memory. The virtual context architecture

may be compatible with this scheme. There are two potential problems. The first

problem is their deadlock solution. Because we can spill architectural state, it is

possible that committing an instruction with a destination will not free a physical

register. The second problem is potentially doing spills at writeback. It is much

more expensive and harder to stall at writeback versus rename.

This section briefly described several techniques used to allow more aggres-

sive management of the physical registers. Two architectures were described that

use dead value information to reclaim physical registers more quickly. In

Chapter 8, we showed how this could be integrated into our design. Unlike these

techniques, the virtual context architecture also manages the efficient saving and

restoring of values that are not dead but have not been accessed recently. The

Checkpoint Processing and Recovery architecture [1] could also reclaim physical

registers more quickly. This architecture made use of its checkpointing scheme to

reclaim physical registers as soon as an overwriting instruction was renamed,

even though it was speculative. The integration of dead value information into the

virtual context architecture accomplishes the same thing. Finally, we discussed

the virtual-physical registers scheme and its ability to delay the allocation of a

physical register and thereby decrease its lifetime. Although they decreased the

lifetime of physical registers, they do not increase the number of logical registers

that can be handled, nor allow physical registers to be reclaimed by moving their

state out to memory. The integration of dead value information into the VCA also

allows it to reduce the lifetime of physical registers.
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9.4Efficient Large Physical Register Files
The virtual context architecture is able implement a large number of logical

registers (register windows) without increasing the number of physical registers. A

large number of logical registers is impractical if it requires a large physical regis-

ter file. The large multiported physical register file can make it difficult to meet

cycle time goals. There has been a lot of research into this problem. The two main

research areas are register caches and register banking.

Register caches [2, 5, 9, 25, 39] have been proposed as a way to support a

large number of logical registers with the access time of a small physical register

file. These architectures are similar to the virtual context architecture in that they

treat the physical register file as a cache. Specifically, they break the physical reg-

ister file into a hierarchy of caches. The first level of cache is generally small but

fully ported. The higher levels of cache have more entries but fewer ports and

serve as a backing store to the first level of register cache. The architectures differ

in how they organize the hierarchy, implement the first level, transfer values

between levels, and rename the registers; their insertion policy into the first level;

and their replacement policy for the first level. In these designs, the full architec-

tural state is still kept in the register file; thus die area continues to limit the num-

ber of supported contexts. In contrast, the virtual context architecture is able to

provide the appearance of an almost infinite number of logical registers. The VCA

could be combined with some of these other architectures. In this case, the spills

and fills would occur for the second level of register cache. Some of these tech-

niques modified the rename stage, and this would further complicate a combined

architecture.

Register banking [2, 9] has been proposed as a technique to reduce the

access time of a given size physical register file. Register banking is similar to reg-

ister caching in that it breaks the monolithic register file into smaller compone-

nents. In this case, the components are multiple banks. A register bank is a slice

of the register file. Each bank supports a smaller number of ports, with a resulting

decrease in latency and size. The cost of register banking occurs in the case of a

bank conflict. Ideally, the register read and writes will be spread out over all of the
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banks and each bank will have enough ports. However, a bank conflict can occur

when multiple reads or writes are made to a bank in a single cycle and the bank

does not have enough ports to service them. The pipeline must stall one of the

problem instructions and execute it the next cycle. The virtual context architecture

is completely orthogonal to register banking. The changes due to register banking

are usually confined to the execute stages of the pipeline. The virtual context

architecture makes no modifications to these stages and could therefore be very

easily combined with register banking.

9.5Simultaneous Multithreading
Tullsen et al. [35] explored a realistic model of an simultaneous multithreading

processor. They specifically stated that a large register file was required, and they

assumed a two cycle access time. They listed several ramifications to the

increased access time. It increases the misprediction penalty (extra stage). The

longer access time requires an extra level of bypass logic because it takes multi-

ple cycles to write. While the two cycle access time does not increase the inter-

instruction latency for fixed latency instructions, it might for loads unless they are

speculatively issued. This also adds a couple extra stages between rename and

commit, increasing the lifetime of a physical register. They conclude that “register

file access time will likely be a limiting factor in the number of threads an architec-

ture can support“. The virtual context architecture is able to support a large num-

ber of simultaneous threads with no increase in the size of the physical register

file over a single thread pipeline. Several other researchers have investigated

techniques for supporting a larger number of threads without increasing the size

of the physical register file.

Waldspurger et al. [36] proposed register relocation, a technique that allowed

static or dynamic partitioning of a register file into variable size contexts for use by

a multithreading processor. They introduced a special register, the register reloca-

tion mask (RRM). At decode, the register offsets were combined using a bitwise

OR with the RRM to yield the actual register number. The scheduling of the con-
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texts was managed in software. Each context maintained the RRM mask for the

next context. This formed a linked list of contexts, and each thread could always

jump to the next context. Simple modifications to this scheme could yield different

scheduling policies. Dynamic allocation was possible by maintaining an allocation

bitmap and using shift and mask operations to search it. Their research assumed

that all the threads are from one application. The compiler was responsible for fig-

uring out context sizes for each thread and for managing memory. This scheme

was targeted at a much older in-order style course grained multithreaded proces-

sor. It would be possible to use the virtual context architecture to implement some-

thing similar if user code was allowed to modify the base register. This would allow

the user code to switch between contexts whenever it wanted, without having to

deal with actually storing or loading contexts. The VCA could also very easily

implement a variable size context if it was desired. However, the virtual context

architecture is able to allow a large number of threads in a modern out-of-order

SMT processor without compiler support or increasing the size of the physical reg-

ister file.

Redstone et al. [27] proposed minithreads to increase the number of contexts

in an SMT processor without increasing the register file size. They provided full

contexts for some number of threads. The minithread architecture also provided

the additional hardware needed to run some number of minithreads within each

context (PC, control registers, return stacks, etc.). The minithreads were like nor-

mal threads, except they share the same set of architectural registers. They inves-

tigate a static partitioning. The minithreads required a lot of operating system and

compiler support. In particular, to support a mixed environment, the OS was mod-

ified to block the other minithreads when a minithread makes an OS call. They

would probably also need to provide both standard libraries and libraries compiled

with the minithread convention of only using half the logical registers. The virtual

context architecture could easily be used to do something similar. In this case, the

same hardware is duplicated to provide however many contexts you want. To get

the same effect, you can simply compile the programs so that they only use half

the normal number of registers. The virtual context architecture makes it easier



209

though, because the threads can actually use the full set of registers if they want

to. In other words, the operating system and libraries could be allowed to use the

full set of registers; it would just cause more spill and fill traffic. A simple change

could be made to mark as dead all those registers not used by the user mode pro-

grams when the OS code returns to user code. This would prevent these registers

from causing extra spills. In Chapter 7, the experiments showed that the virtual

context architecture was able to provide a full set of logical registers, including

using register windows, with four threads without increasing the size of the physi-

cal register beyond that used by the single thread pipeline.

9.6Summary
This chapter briefly described the research that was related to the virtual con-

text architecture. The previous work covered five different areas. First, we

described the research related to the virtual context architecture’s use of memory

as a backing store. Second, we outlined the research related to the virtual context

architecture’s reduction of save and restore traffic. Third, we presented research

on architectures that also aggressively managed the physical register file. Fourth,

we provided a brief overview of other research that has enabled a large number of

logical registers. Finally, we examined work that also enabled a larger number of

threads in a simultaneous multithreading processor without increasing the size of

the physical register file.

The virtual context architecture is able eliminate much of the register save and

restore overhead by providing a nearly ideal implementation of register windows.

The VCA allows physical registers to be reclaimed by moving their state out to

memory, while the integration of dead value information also allows it to reduce

the lifetime of physical registers. The virtual context architecture is able to provide

the appearance of an almost infinite number of logical registers without increasing

the size of the physical register file. The virtual context architecture is able to sup-

port a large number of simultaneous threads with no increase in the size of the

physical register file over a single thread pipeline. Although the other architectures
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described in this chapter may be able to provide some of these benefits, none of

them provide all of these benefits. While many of the other architectures are

implemented in a single issue in-order pipeline, the virtual context architecture

provides all of these benefits in an aggressive superscalar out-of-order pipeline

without modifying the critical backend of the pipeline.
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Chapter 10

Conclusion

Multiple logical register contexts can increase CPU efficiency by storing sev-

eral function contexts (i.e., register windows) or storing the state of several inde-

pendent threads (multithreading). Register windows reduce the number of load

and store instructions by removing many of the spill and fill operations resulting

from function calls. Simultaneous multithreading (SMT) improves throughput by

using processor resources more efficiently. These techniques have been difficult

to integrate, because each requires a large number of logical registers, and their

combination would have a multiplicative effect. We sought to bypass the trade-off

between multiple context support and register file size by mapping registers to

memory, thereby decoupling the logical register requirements of active contexts

from the contents of the physical register file. This dissertation proposed a new

register-file architecture that virtualizes logical register contexts. We call this archi-

tecture the virtual context architecture.

10.1 Summary
First, we looked at mapping compiler virtual registers to memory. By mapping

the compiler virtual registers directly to memory, we completely remove registers

from the instruction set architecture. This created a memory to memory instruction

set architecture which we called the mem-machine. We detailed the design of the

mem-machine instruction set architecture and application binary interface. In gen-

eral we found that the disadvantages of the mem-machine outweighed its advan-

tages. The performance improvements were relatively mixed on the small set of

benchmarks we examined. The instructions size is also much larger. Although the
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compression results showed these offsets can be compressed into approximately

the same size as a register specifier in a RISC ISA, this would require the addition

of complex decompression hardware. Finally, the mem-machine would be difficult

to realize in hardware, especially a superscalar out-of-order pipeline.

Next, we looked at mapping ISA logical registers to memory. By delaying the

memory mapping to the frontend of the pipeline, this architecture gets all of the

advantages of registers and the automatic context management of virtual mem-

ory. We called this scheme the virtual context architecture. Although the architec-

ture requires extensive changes to the rename stage, it requires no changes to

the physical register file design and the performance-critical schedule/execute/

writeback loop. The changes necessary to the rename stage are the addition of

tags and multiple ways. We presented an optimization that greatly reduces the

size of the tags in comparison to a full memory address.

The virtual context architecture has a number of parameters that can be used

to optimize performance. These parameters include the implementation of spills

and fills and the rename stage configuration. Our results showed that an overwrite

last physical register replacement policy combined with a four entry architectural

state transfer queue with two ports provided the best implementation of spills and

fills. We showed that the configuration of the rename table is dependent on the

number of threads supported in the pipeline. For a single thread, a 64x3 rename

table provided good performance, while two threads required a 64x5 and four

threads required a 64x6. Several solutions were examined to compensate for the

extra logic required in the rename stage. We found that the best solution was add-

ing an extra stage. If the rename logic is still too complicated to meet cycle time

constraints, we determined that a delay on rename table entry replacement would

not impact performance very much.

Our experiments showed that the virtual context architecture is a very efficient

implementation of register windows for a variety of different pipelines. In every

pipeline studied, the virtual context architecture provided nearly ideal performance

when the physical register file was sized to guarantee no stalls for the baseline

architecture. In contrast to a conventional register window design, the VCA pro-
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vides a performance advantage over the baseline architecture even with small

physical register file sizes. The virtual context architecture was between 3% and

15% faster than the baseline architecture with the same number of threads. The

VCA also reduced the data cache accesses by up to 20%. The studies showed

that the performance of the virtual context architecture is very dependent on the

relative cost of a load/store instruction and the cost of a data cache access. When

these costs are high, the architectures that support register windows have a

higher potential performance improvement due to the removal of the save and

restore instructions from programs. With a large physical register file, the virtual

context architecture is able to achieve very near this ideal performance. However,

when the number of physical registers is decreased, the VCA is forced to gener-

ate more spills and fills. If the cost of a data cache access is high, these spills and

fills will degrade performance quickly.

The virtual context architecture enables the use of register windows in an SMT

processor with no additional physical registers, providing better performance than

the baseline architecture. Both two and four thread SMT pipelines provide signifi-

cant speedups of 30% and 50% respectively in a four issue pipeline over a single

thread. The performance of the virtual context architecture relative to the baseline

architecture is virtually independent of the number of threads. Thus, while multiple

threads in a conventional architecture require much larger physical register files,

the virtual context architecture is able to achieve the same performance with no

more physical registers than a single thread pipeline. This greatly increases the

potential speedup achievable with moderate size register files. For example, with

192 physical registers, the best achievable performance for the baseline architec-

ture is with two threads for a 16% increase over the single thread. The virtual con-

text architecture with this size register file provides a 32% improvement with two

threads, or by using four threads it can achieve a 50% speedup.

The virtual context architecture is able to achieve nearly ideal register window

performance with a large physical register file. With a smaller number of physical

registers, the VCA must generate more spills and fills. The virtual context architec-

ture’s performance suffers with respect to ideal, which never generates spills and
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fills. We proposed three techniques for reducing the number of spills generated by

the VCA: the addition of a delay queue, a register window deallocation optimiza-

tion and dead value information. Our experiments showed that with these tech-

niques it was possible to reduce the performance difference between the virtual

context architecture and the ideal register window architecture by almost 50% for

pipelines with small register files.

The virtual context architecture provides a hardware scheme for efficiently

managing register context. The VCA enables support for both register windows

and simultaneous multithreading without increasing the size of the register file

while still providing nearly ideal performance. This unifying framework provides

support for both techniques in an out-of-order pipeline.

10.2 Future Work
The work begun in this dissertation can be continued in two ways. The first

way is improving the virtual context architecture implementation. The second way

is exploring new uses for the virtual context architecture.

10.2.1 Improving The VCA Implementation
The virtual context architecture requires modifications to the rename table.

The table is modified to be set associative and requires tags. As described in

Section 3.2.1.1, the tags can be optimized to reduce their size. The table itself is

still large, and the set associative nature complicates the rename logic. The

access pattern of the table is not random. The table will generally be accessed

using memory addresses from a small number of contexts representing the active

register windows of each thread. The maximum number of simultaneous entries is

also fixed. The maximum number of different registers that can ever be renamed

simultaneously is equal to the number of physical registers. This indicates that

some type of caching scheme could be used to minimize the cost of the average

type of access. Although a penalty may result when transitioning from one window

to the next, the potential savings may be worth it if the penalty is small enough.
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Although the virtual context architecture does not require any changes to the

physical register file itself, it does tend to put more pressure on it. This would merit

investigating some previously studied techniques on optimizing the physical regis-

ter file itself. In particular, banking and caching can be easily incorporated into the

VCA design. Previous work has also focused on more aggressively managing

physical registers. This work should be compatible with the VCA and allow a more

aggressive reclamation of physical registers (freeing them).

10.2.2 Exploring New Uses
The virtual context architecture has three main advantages over a traditional

out of order architecture. First, it completely decouples the physical registers from

the logical registers. This allows the compiler and operating system to work with

an unlimited set of logical registers and allow the architecture to handle them.

Second, it allows for fast context switching. The operating system is only respon-

sible for changing the base pointer. The architecture will move architectural state

into and out of the physical registers as needed. Third, the architecture can

directly map addresses into physical registers.

10.2.2.1 Decoupling The Physical Registers

Decoupling the physical registers from the logical registers can have several

potential applications. The normal limitations on the number of active thread con-

texts is relaxed. This allows the architecture to naturally support multiple contexts

simultaneously. Within one thread, each function activation record can be given its

own context (register windows). Also, multiple threads can have active contexts in

the processor at once (SMT). The initial results in these areas are promising.

However, a more aggressive approach is possible in both areas. 

Register windows are used to reduce some of the memory traffic imposed by

register management. By modifying the compiler to mark loads/stores used for

this management, the remaining overhead could be measured. If significant, a

new ABI could be developed to try to alleviate these costs. Each function could be

allowed to allocate a larger pool of registers and his pool could be used to hold all

the local variables, removing any necessary spill or fill traffic. Instead, the memory
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traffic would be solely dependent on the size of the physical register file. A simple

move instruction could be introduced to move a value from the pool into the stan-

dard logical registers or from a logical register back into the pool. A similar move

could also be used to allow a function to access the registers in the register win-

dow of the calling function. This would remove the need for non windowed regis-

ters.

By decoupling the number of logical registers and physical registers, the cost

of supporting additional thread contexts is greatly reduced. This has the potential

of allowing large numbers of simultaneous threads. A limit study could be used to

determine the performance improvement achieved by adding additional threads.

This could be done in both the ideal physical register file case, then repeated with

more practical register file sizes. A scheduling algorithm could also be introduced.

The processor could support a very large number of active threads, but an internal

hardware scheduling algorithm could be introduced to schedule them. The algo-

rithm would have to take into account both resource utilization and the cost of reg-

ister spilling and filling. The study may reveal how close to 100% resource

utilization it is possible to get.

10.2.2.2 Fast Context Switching

Fast context switching also has several potential benefits. The performance/

simplicity of an operating system can be enhanced by allowing the hardware to

manage some of the context switch overhead. Very efficient interrupts are possi-

ble by using a separate context to handle the interrupts. In fact, completely differ-

ent contexts could be used for kernel code, simplifying it and enhancing security.

This has the potential for allowing efficient microkernels and virtual machines.

10.2.2.3 Directly Mapping Addresses To Physical Registers

Directly mapping addresses to physical registers also has several potential

applications. In particular, it has the potential of allowing very efficient emulation of

other instruction sets. This would allow for an efficient implementation of a stack

based architecture (Java) without placing any limits on the size of the stack. Sys-

tems with vastly different logical register requirements (x86 and Itanium) could
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coexist on the same system. The backend of the pipeline would implement a

micro-op architecture with enough flexibility to support both systems. Separate

decodes could supply the backend of the pipeline with micro-ops that use

addresses for sources and destinations. The virtual context architecture’s rename

stage and backend could then efficiently implement this.

The virtual context architecture has shown great promise in these initial stud-

ies. There is potential in the future for simplifying its implemenation and for explor-

ing new uses.
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Appendix A

Mem-Machine Supported Operations

jal - jump and link

jail - jump and link indirect

b(cond)* - conditional branch

j - jump

ji - jump indirect

omov - offset move

mov - move

cvt - convert type

add - add

sub - subtract

mul - multiply

div - divide

mod - modulus

sll - shift left logical

srl - shift right logical

sla - shift left arithmetic

sra - shift right arithmetic

neg - negation

and - logical AND

or - logical OR

xor - logical XOR

comp - logical complement

s(cond) - set conditional where cond: eq(=), ne(!=), lt(<), le(<=), gt(>), ge(>=)
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Appendix B

Mem-Machine Assembly Language

C code:
#include <stdio.h>

int main()
{
int i;
  for (i=0;i<10;++i) {
    printf("test = %d\n",i);
  }
  return 0;
}

Assembly code:
.data
        .align 2
$__mirv_pack.m1.200:
        .ascii "test = %d\n\0"

.text

.ent main

.globl main
main:
$L46:
        // Prologue sizes local=12 call=16 frame
size=32
        !mov.uw -4(%sp), %fp
        !mov.uw %fp, %sp
        !sub.uw %sp, %sp, #32
$L47:
        !mov.uw -12(%fp), #0
$L51:
        !bge.w -12(%fp), #10, #$L50
$L49:
        !mov.uw 8(%sp), #$__mirv_pack.m1.200
        !mov.uw 12(%sp), -12(%fp)
        !jal 0(%sp), #printf
        !add.w -12(%fp), -12(%fp), #1
        !j #$L51
$L50:
        !mov.uw 4(%fp), #0
        !j #$L48
$L48:
        !mov.uw %sp, %fp
        !mov.uw %fp, -4(%sp)
        !ji 0(%sp)
.end main

‘#’ - 0 level
‘ ‘ - 1 level
‘*’ - 2 level

Indirection Level

s - single precision float
d - double precision float
b - byte
h - half word
w - word
l - long word
ub - unsigned byte
uh - unsigned half word
uw - unsigned word
ul - unsigned long word

Type Specifier

%0 - zero register
%sp - stack pointer
%fp - frame pointer

Register Specifier
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