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CHAPTER 1

The Importance of
OS/Architecture Interactions

1.1 Introduction

Operating systems are important. Services provided by or accessed through the
operating system (OS) are part of almost every application. Yet, most architectural studies
have not considered OS effects. A lack of tools capable of capturing OS references,
coupled with the complex behavior of the operating system, has forced most researchers

either to qualitatively reason about the OS or to neglect the OS altogether.

This is in stark contrast to application/architecture research, which has developed a
very good quantitative analysis methodology. Today, architects build accurate models that
analyze interactions between hardware and application software, measuring the impact of
various designs and helping to select architectural components that deliver the best
performance within the constraints of a technology. The use of these results, however, is
severely limited by their inability to account for the operating system’s influence on

architectural performance.

This dissertation addresses this problem by extending the quantitative approach to
the study of the interactions between operating systems and architectures (OS/architecture
interactions). Using a hybrid hardware/software monitoring system to gain access to all
hardware and software activity, we measure the performance of real systems, analyze the
interactions between the OS and architecture, and explore architectural design trade-offs

that improve performance. Our goal is to provide designers with an understanding of how



P "
Bonchmar | Siulaed | Agusl | e Difence Setween| Spon e
the Benchmark
foppp 2.49 3.05 22.5% 0.7%
gs 1.31 1.68 28.2% 48.6%
ipeg_play 1.30 1.50 15.4% 12.8%
mpeg_play 1.37 1.82 32.9% 25.6%
small 1.01 1.27 25.7% 30.0%
video_play 1.17 2.44 108.6% 69.4%

Table 1.1 Simulation vs. actual architectural performance

Performance estimates obtained from simulation tools (e.g., cache2000 and pixstats)
can be very inaccurate. The absolute error in cycles per instruction (CP1) varies from
15% (jpeg_play to over 100% (video_play). The “Actual CPI" does not include the CPI
contribution due to TLB misses.

To produce the simulated CPI, each benchmark was annotated to produce an address
trace of every instruction and data reference. The address trace was fed into a simulator,
cache2000, which models a DECstation 3100 memory system. The results from
cache2000 were combined with the static analysis results from the MIPS tool pixstats to
compute the “Simulated CPI” values. Actual CPl was measured from a running
workstation using our Monster monitoring system (see Chapter 2).

to analyze OS/architecture interactions and how architectures can overcome current

performance problems.
1.2 Why consider the operating system?

Neglecting the OS would not be a serious problem if the OS did not adversely
influence the behavior and performance of a system. However, the handful of works that
have measured OS/architecture interactions consistently show a performance problem
over a range of applications' [Smith82, Clark84, Clark85, Clark8s, Agarwal89,
Torrellas92]. Consider the measurements in Table 1.1 (p. 2), a comparison of application-

only simulation against actual machine performance, including all OS and system service

1. The exception is scientific applications, which typically utilize few OS services and can be
accurately characterized without considering the operating system.



Benchmark U?::ilx Maf:::ls.o
TPpPP 3.05 299
gs 1.68 1.83
jpeg_play 1.50 il
kenbus 2.20 2.38
p— 1.82 2.00
real_gcc 1.68 1.83
sdet 1.89 224
video_play 2.44 2.28

Table 1.2 Architectural performance differences
between Ultrix and Mach 3.0

The data show that different operating systems can have very different architectural
performance. Despite the fact that the same binaries were used under both operating
systems, there are significant differences in architectural performance between Ultrix and
Mach 3.0. Both measurements were taken from a DECstation 3100.

activity. In each case, the simulation tool’s inability to account for OS activity' leads to a

large gap between the predicted and actual performance.

Aggravating this problem are fundamental changes in OS and software
technologies. Applications are increasing their use of OS services, operating systems are
providing more functionality, and advances in OS technology are fundamentally changing
the behavior of the operating system and its interaction with the processor and memory
architecture. Table 1.2 (p. 3) compares the actual CPI measurements of two different
operating systems: an old-style monolithic OS, Ultrix, and a newer microkernel based OS,
Mach 3.0. The data show a large difference in CPI, even though both measurements are

from the same machine running the same set of application and X server binaries.

Neglecting the operating system clearly results in an inaccurate characterization of

performance. The data in Table 1.2 demonstrates that performance can differ between

1. “OS activity” includes memory references from the OS kernel, OS servers (for Mach 3.0),
system service references (such as an X display server) and multi-tasking effects,
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Figure 1.1 Stall breakdown by architectural component

The figure shows three different measurements of the mpeg_play workload running
on a DECstation 3100.

The DECstation 3100 is a MIPS R2000 based workstation with a 64-KByte
instruction cache (l-cache), 64-KByte data cache (D-cache), a 4-entry write buffer,
and a 64-entry fully-associative TLB (translation lookaside buffer). Processor stalls
can be due to any of these hardware structures or other types of stalls including
integer multiply/divide, interrupts, and floating point stalls.

operating systems and that architects may need to consider multiple operating systems in
order to fully characterize OS/architecture interactions. The results, however, do not
provide any insight into where performance is lost. We examine this question in the next

section.
1.3 Where is the performance going?

To answer this question, we used our system monitoring facilities (see Chapter 2)
to measure the amount of time a workload spends stalling in each of the architectural
components of a DECstation 3100. From these measurements, we can determine which

hardware structures are the most important in terms of stall cycles. This information can



then be used to redesign the architecture to better support the software. Figure 1.1 (p. 4)

shows the stall breakdown for an example' workload, mpeg_play.

In the cache2000 simulations, which only consider application references, the two
most important architectural components are the write buffer and “other”, which include
integer multiply/divide stalls, floating point stalls and exception stalls. Together, write
buffer and other stalls account for over 75% of all stall cycles. Using this data, an architect
would find the instruction cache (I-cache) and data cache (D-cache) performance

acceptable and focus on improving the write buffer and “other” performance.

Real measurements under Ultrix reveal a very different performance picture. Here,
the write buffer and “other” account for less than 30% of the total stall cycles. The biggest
performance problem is the D-cache, which is responsible for over 40% of the stall cycles.
Combined, the I- and D-caches account for 70% of the stall cycles. In contrast, cache2000

measurements suggest that caches account for less than 26% of the stall cycles.

The Mach 3.0 measurements portray yet another picture. Like Ultrix, the I- and D-
caches are responsible for the largest portion of stalls. However, the total number of stall
cycles has increased and the relative importance of I- and D-caches has switched, with the
I-cache now responsible for over 40% of the total stall cycles. The graph also shows a
significant increase in translation lookaside buffer (TLB) stalls, from 0.01 to 0.13 CPI.
This shift between D- and I-cache and the increased importance of the TLB are important

differences because they can influence architectural design trade-offs.

Measurements across a range of workloads show similar results (Figure 1.2, p. 6. -
see Table 2.3, p. 27, for a description of the workloads). In almost every case, I-cache
stalls are the largest source of stalls under Mach 3.0. Mach 3.0 also increases the number

of TLB misses over Ultrix, by 300% in the average case.

1. mpeg_play’s performance characteristics are very similar to the performance characteristics
averaged over our entire benchmark suite.
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Figure 1.2 Stall breakdown for workload suite

Most of the workloads show a shift in the relative importance of D- and l-cache
stalls and an increase in TLB stalls, between Ultrix and Mach.

This information is invaluable because it shows the extent to which architectural
components contribute to performance loss, allowing designers to focus their attention dn
the important architectural issues. However, the results do not explain why there are
significant differences between the operating systems; the results only provide a coarse-
grained architectural view of the system’s performance. Understanding “why” is far more
important because it helps designers reason about how current and future software trends
will impact the architecture. This, in turn, allows hardware designers to build architectures

that meet the needs of current and future generations of software.



14 Analyzing OS/architecture interactions

The data in Figure 1.2 (p. 6) demonstrate that the OS can significantly impact
performance. Identifying the hardware components responsible for lost performance is
only the first problem. The more difficult problem is to determine what are the source(s) of

the performance loss. In particular to understand if performance problems are due to:
¢ the architecture,
* the operating system,

* or some interaction(s) between the architecture and the operating

system.

In the next chapter, we examine this question by analyzing the structure of the
architecture, the operating system and the nature of their interactions. Our base
architecture is a MIPS R2000 based DECstation 3100. The operating systems considered
are three variants of UNIX with diverse internal structures: DEC Ultrix, OSF/1, and Mach

3.0.

After identifying several interactions between the operating system and
architecture, we focus on OS interactions with the TLB and the I-cache. Analysis begins
by identifying the reasons for TLB and I-cache performance problems. Using several
different simulation techniques, we explore architectural design trade-offs to determine
how much support the architecture can provide. Towards the end of our analysis, we
propose a framework for studying OS/architecture interactions and use the framework to

relate previous and concurrent research in the field.

The major contributions of this work are the following. First, we analyze
OS/architecture interactions across several UNIX based operating systems with radically
different internal organizations. Second, we explore architectural trade-offs to help

alleviate the performance problems introduced by the operating system. Finally, we use



our results and the works of others to develop an OS/architecture framework that allows
researchers to better analyze OS/architecture interactions.

Chapter 2 explores the performance problems and recent attempts to measure
OS/architecture interactions. It also outlines our approach and applies the approach to
diagnose the basic performance problems found in Ultrix, OSF/1 and Mach 3.0 running on
a DECstation 3100. In Chapter 3, we begin our analysis, focusing on the translation look-
aside buffer (TLB) and its interaction with the software. Chapter 4 explores caches and
instruction fetching techniques. In Chapter 5, we review previous and concurrent work,
describing what we have learned about OS/archite;:ture interactions and outlining issues
that remain unresolved. Conclusions and future work are presented in Chapter 6.

While we defer a full discussion of previous work to Chapter 5, we should mention
that there have been other important contributions to the body of research in this area.
Concurrent examples are Flanagan at Brigham Young University [Flanagan93] and Chen
at Carnegie Mellon University [Chen94]. There are also several previous studies by Smith
[Smith82], Clark et al. [Clark83, Clark85a, Clark85b], Agarwal [Agarwal88] and McRae
[McRae93] which cover similar material. Chapter 5 will summarize both previous and
concurrent work, placing issues into an OS/architecture framework that allows designers

to understand how various components and design issues interact and affect performance.



CHAPTER 2
Measuring OS/Architecture Interactions

The art and science of computer performance boils
down to characterizing the workload

Domenico Ferrari
2.1 Introduction

Why are OS/architecture interactions difficult to analyze? Probably the most
common problem is the lack of tools capable of probing into the system. Even when the
tools are available, there are a number of issues which are not usually encountered in
standard application/architecture analysis. This chapter explores some of these issues. We
begin by examining how recent works have attempted to analyze OS/architecture
interactions, discussing some of the problems other works have encountered and the role
benchmarks play in determining the results. We continue the discussion of benchmarks,
examining issues that are unique to OS/architecture studies. Next, we outline a number of
software and hardware tools that can be used to probe into the system. Finally, we discuss
our tools and techniques, how they work and how we have applied them to the problem of

analyzing OS/architecture interactions.
2.2 How should we look at the problem?

One of the major challenges in exploring the interactions between architectures
and operating systems is understanding how to approach the problem. One approach is to

treat the operating system as just one more piece of software. Several previous works have
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adopted this architecture-centric viewpoint [Smith82, Clark83, Clark85a, Clark85b,
Agarwal88)]. Using either hardware monitoring facilities or complete address traces’,
these works show that operating system code can significantly degrade the performance of

hardware structures such as TLBs, write buffers, and caches.

A more OS-centric approach focuses on the performance of basic OS functions
and associated architectural support. Two recent works, [Ousterhout89, Anderson91], use
this approach, applying software methods and qualitative analysis techniques to analyze
the performance of specific architectural structures. Their results suggest that current
architectural trends cause OS performance to lag behind expected performance, creating a

gap between application and OS performance.

Unfortunately, neither approach provides a complete picture of how
OS/architecture interactions affect overall performance. By treating the OS as just another
piece of code, the architecture-centric viewpoint is unable to determine how OS policy and
implementation impact the architecture. This prevents architecture-centric studies from
determining if the problem is best solved in hardware, software, or some combination of
the two. Likewise, by focusing on specific architectural structures, the OS-centric

approach cannot determine how the architecture, as a whole, impacts OS performance.

Worse, using a one-sided approach can sometimes lead to inaccurate results and
misleading conclusions. For example, Ousterhout [Ousterhout89] and Anderson et al.
[Anderson91] employed an OS-centric approach to show that “the performance of OS
functions has not scaled in a commensurate way” with respect to application performance.
Using a set of micro-benchmarks that implemented several operating system primitives
such as context switching and exception handling, both works measured the micro-
benchmark performance across a range of architectures, comparing the micro-

benchmarks’ relative performance increases against the performance increases of the

1. These complete address traces included OS references.
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DEC MIPS Relative Speed
Operation CVAX R2000 RZOO‘:)GIC\? :;

(LLsecs) (LLsecs) ( )
Null system call 15.8 9.0 1.8
Trap 23.1 15.4 1.5
Page table entry change 8.8 3.1 28
Context switch 28.3 14.8 1.9
Application Performance —_ —_ 4.2

Table 2.1 Relative performance of primitive OS functions

This table, reproduced from Anderson et al. [Anderson91], compares the performance
of the 11.1 MHz DEC CVAX with the 16.67 MHz MIPS R2000 processor. Whife the
R2000's performance is better than the CVAX, the relative speed of R2000 to CVAX is
significantly below that found by comparing the two machines’ SPEC90 performance
numbers.

SPEC90 application-based benchmark suite!. The data for one set of experiments is
reproduced in Table 2.12 and was used to show how OS performance is lagging behind
application performance. The implication was that architectural trends are not supporting
operating system code as well as application code and that technologies such as RISC
make it more difficult to implement efficient operating systems. To quote Ousterhout,

“Operating systems are not getting faster as fast as hardware.”

Unfortunately, the analysis did not consider important architectural issues, causing
the researchers to draw several inaccurate conclusions. First, the comparison is based on
the SPEC90 benchmark suite, which includes floating point and integer benchmarks. One
source of significant improvement for SPEC90 is the superior floating point hardware
found in many newer architectures. This clearly will not benefit operating system code

which executes almost no floating point operations. Second, the CVAX on-chip cache is

1. Ousterhout used the millions of instructions per second (MIPS) rating as the base for
comparison. While this is different from Anderson, who uses SPEC90, architectural analysis of
Ousterhout’s workstations reveals similar problems in his analysis.

2. For the complete list of results, refer to Anderson et al., Table 1 [Anderson91].
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too small to hold the working set of any of the SPEC90 benchmarks!. Therefore, we
expect the R2000’s large primary caches to give the SPEC90 benchmarks a significant
performance improvement over the CVAX. The cache difference will not, however,
provide any performance improvement for the micro-benchmarks because their working

sets fit comfortably inside either the CVAX or MIPS primary cache.

With this architectural information, it becomes clear that this experiment provides
little insight into OS/architecture interactions. It is true that the micro-benchmark
performance did not scale at the same rate as the SPEC90 benchmarks. But, comparing the
SPEC90 benchmark suite against the micro-benchmarks biased the experiment in favor of
SPEC90 because it utilizes the floating point and cache improvements, while the micro-

benchmarks do not.

Ironically, the data collected by Anderson can be used to answer an important
question: “Are newer architectures improving the performance of OS primitives?” We
answered this question by computing the number of cycles the CVAX and the MIPS
architectures require to execute each primitive (Table 2.2). The results show that the MIPS
architecture requires fewer cycles to execute each primitive OS function. So, while OS
code may not be seeing the same rate of performance improvement as some user
applications, architectural features are improving the performance of OS primitives. In

other words, “operating systems are getting faster faster than hardware.”

The fundamental limitation of most of the previous work has been its singular
viewpoint. This is not to suggest that the previous work did not make a significant
contribution. On the contrary. The VAX hardware measurement papers [Clark83, Emer84,

Clark85, Clark88] clearly showed that OS code can significantly degrade the performance

3. For example, the R2000's floating point add, subtract and multiply algorithms are a full cycle
faster than the CVAX.

1. The CVAX has a |-KByte unified primary cache backed by a 64-KByte second level unified
cache (2 cycle penalty on a primary cache miss that hits in the second level cache,
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DEC MIPS DEC MIPS
Operation CVAX R2000 CVAX R2000
(Lisecs) (Llsecs) {cycles) (cycles)
Null system call 15.8 9.0 176 150
Trap 23.1 15.4 257 257
Page table entry change 8.8 3.1 98 52
Context switch 28.3 14.8 314 247

Table 2.2 Number of cycles required to execute
primitive OS functions

Using the data from Anderson et al. [Anderson91], this table shows the number of
cycles required to execute each primitive OS function. The resuits show that the MIPS
architecture actually requires fewer cycles to execute each primitive.

of hardware structures. Smith [Smith82] and Agarwal [Agarwal89] examined how OS
code is affected by various cache design trade-offs and that neglecting OS references can
result in optimistic performance simulations. Finally, while some of the quantitative
analysis by Ousterhout [Ousterhout89] and Anderson et al. [Anderson91] misses the mark,
their qualitative analysis of operating system and architectural trends was very insightful

and has helped to guide much of the work that has been done over the last 4 years.
2.3 Benchmarking for OS/architecture interactions

Benchmarks are the basic ruler used to measure performance. However, choosing
an appropriate benchmark is one of the most difficult aspects of designing a good
experiment. A well-chosen set of benchmarks, carefully applied, will exercisc appropriate
system component(s), revealing valuable performance information. A poorly chosen set
can overlook important components, focusing attention on issues of negligible
importance.

Using benchmarks to construct a meaningful experiment requires a researcher to

answer two basic questions.

e  What specific relationship is being examined?
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e Do the benchmarks exercise the system in such a way as to generate

data that can elucidate this relationship?

While these questions may seem obvious, experimental work has often overlooked the
second question, applying a “standard” benchmark suite without considering whether the
benchmarks are appropriate for the performance issues being evaluated. For example,
many published experiments only use the SPEC Floating Point and Integer Benchmark
Suite to evaluate memory system designs. These benchmarks, however, do not exercise the
instruction side of a memory system [SPEC91, Gee93, Uhlig95]. This limits the general
applicability of the experimental results because the benchmarks are not an appropriate set

of workloads for many studies. 1.2

Researchers often overlook another important question, “Do the benchmarks bias
the results of the experiment?” This is particularly true of experiments that use code
fragment benchmarks (also known as micro-benchmarks) instead of real applications.
Code fragments can rigorously exercise specific system component(s), but do not provide
any information on the relative importance of the component(s). They can also remove the
effects of hardware andfor software structures, creating artificially good or bad results

{Bershad9l].

Benchmarking issues become even more complex when studying OS/architecture
interactions. Unlike experiments that only measure an application’s interaction with the
hardware, OS/architecture studies must consider how a workload exercises the hardware,

the operating system, various software services, the interactions among these components,

1. The question of what is an appropriate workload has been widely debated by the research
community for many years. The only conclusion is that there is no such thing as one
appropriate set of workloads for all users. However, many studies have relied on a narrow
range of workloads, neglecting to consider important software trends and their impact on
design trade-offs.

2. Two reasons why researchers have been unable to consider a wider range of applications are
the lack of application source code and tools capable of capturing the behavior of those
applications.
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Figure 2.1 Complexity of OS/architecture studies

While traditional application/architecture studies consider only architecture and
application interaction, OS/architecture studies must consider interactions among the
operating system, application and architecture.

and the effects of competing workloads (Figure 2.3, p. 15). For example, decomposition of
OS services can increase the amount of interprocess communication (IPC). It also can
stress hardware components such as the TLB, but only when a significant number of
services are concurrently used. Unfortunately, most OS-oriented benchmarks do not
utilize a sufficient number of concurrent services, completely missing the interaction
among OS, application and TLB (for a more detailed analysis, refer to Chapter 3).
Environmental issues must also be considered when measuring a system’s
performance. The number of tasks running, the task page allocation policy, and the size of
physical memory play an important role in determining the experimental results. This is

completely different from an application/architecture study, where the behavior of the
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system is invariant between program runs. Our own measurements have shown that as
Mach 3.0 ages, OS data structures can become scattered between the virtual and physical
space, increasing the TLB miss rate. However, this type of phenomenon can only be

observed after the system has been running for several hours or even several days.

Because these issues can have a pronounced effect on the results of an experiment,
it is important that we examine how benchmarks should be used when studying
OS/architecture interactions. The following sections summarize our findings. We begin by
outlining basic benchmarking issues common to all types of performance research. This is
followed by a discussion of benchmarking issues that are important to OS/architecture
research. We conclude with a discussion of our benchmarks, why they were chosen, and

some of their limitations.

2.3.1 Benchmarking 101

2.3.1.1 How benchmarks are used

Often, benchmarks are used to compare the speed or throughput of different
systems. The speed measurement is like a race: each system runs the same set of
benchmarks and the computer that finishes in the least amount of time is the winner. The
throughput measurement is like a weightlifting contest. Each system runs a number of
concurrent workloads and the one that can sustain the largest number of workloads per
unit time is the winner. Benchmark suites such as SPEC Integer, SPEC Floating Point,
SPEC SDM, SPEC SFS, and the Perfect Club are all designed to compare performance
across various systems.

Benchmarks can also be used to determine the relative importance of various
system components. For example, measurements of scientific applications show that they
rely heavily on floating point computation and large data sets [Gee93] while

measurements of video applications show a need for special integer computation.
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Understanding the requirements of a user’s workload allows designers to allocate system

resources to deliver the best performance.

Finally, benchmarks are useful for studying the interactions between hardware and
software components and for analyzing the impact of design trade-offs. Hardware
structures such as caches or register windows have been implemented because workload

studies showed that software could utilize these structures to improve performance.

2.3.1.2 Types of benchmarks

Hennessy and Patterson outline four basic types of benchmarks [Hennessy91].

e Programs: applications that are used by computer users. The SPEC

Integer and Floating Point Benchmark Suites consist of real programs.

* Kernels: key fragments of code. The Livermore Loops are kernel

benchmarks.

* Toy: real, but small programs such as quicksort or the 8-Queens game.
Stanford University has a collection of small benchmarks, called the

Small Benchmark Suite.

* Synthetic: programs designed to simulate some aspect of a workload’s
behavior, but not based on any real code. Whetstone and Drystone are

synthetic benchmarks.

Any of these benchmark categories can be used to compare the performance of
different systems. However, synthetic and toy benchmarks tend to be poor indicators of
overall performance. Kernel benchmarks, also known as micro-benchmarks, are drawn
from key fragments of code such as the computational loops in a matrix multiply routine
or a system call to an OS service. These benchmarks can determine how well a machine
performs a specific set of software operations. However, their narrow focus prevents

kernels from providing information on the relative importance of various operations.
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If well chosen, real program benchmarks can be the most useful because they
provide a complete view of how the software utilizes the hardware. This allows designers
to understand the relative importance of various hardware and software structures and to
focus their attentioﬁ on optimizations that will provide the greatest improvements in

overall performance.

23.1.3 Evaluating the performance of a system

There are two basic methods for evaluating the performance of a system. The first
compares the performance of two or more machines. Metrics such as benchmark
execution time, SPEC marks, or throughput are used to make the comparisons, providing
quantitative comparisons that allows one to determine which machine is better for his or
her set of workloads. The second method is to evaluate a system’s performance against a
bound. Here, measurements such as miss rate, CPI and the number of instructions
executed are used to determine how close to “optimal” the performance is. This type of
measurement is typically used by designers who try to find inefficiencies in various system

structures.
23.2 Using benchmarks to study OS/architecture interactions
23.2.1 Whatis a good set of benchmarks?

The answer to this question depends very heavily on the types of questions one is
trying to answer. For example, a study focusing on the performance of file system design
trade-offs would probably use workloads that exercised the file system. The benchmarks
might be real programs such as compress and tar, or micro-benchmarks such as the
Modified Andrew Benchmark [Ousterhout91]. In contrast, a study that is trying to
determine the relative importance of the file system should use a wider range of

benchmarks representative of the types of workloads a system would normally run.
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For OS/architecture studies, both real applications and micro-benchmarks should
be used. General performance trends should be measured using a large set of real
applications. This prevents certain poorly performing components from dominating the
results unless the components are critical to overall performance. Further, real applications
determine the relative importance of various system components. Therefore, it is
important to come as close as possible to real workloads when determining which
hardware and software components are important to optimize. Once performance-critical
hardware and software structures have been identified, micro-benchmarks can be used to

examine the performance and interaction of specific components.

Neither type of benchmark is ideal. Micro-benchmarks suffer from several
problems. First, they provide no understanding of the relative importance of various
system components. This problem is best overcome by using representative applications to
determine which hardware and/or software structures are important and then selecting
micro-benchmarks that focus on the important structures. Second, micro-benchmarks can
under or over emphasize certain hardware or software effects, such as cache misses, TLB
faults and context switches. These changes in behavior can generate overly optimistic
results or obscure the real cause of the performance problem.

Real applications do not suffer these drawbacks. They can, however, create very
complex interactions among the hardware, the operating systems and system software
services. While this is exactly the behavior a designer should measure, the complexity of
the system can be overwhelming, making it difficult to isolate the source of specific

performance problems.

2.3.2.2 The system environment

Another important consideration is the system environment. Unlike
application/architecture studies where the behavior of the software does not change from

run to run, OS behavior can dramatically change between program runs. Policies such as
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virtual to physical page mapping and scheduling, non-deterministic events such as
interrupts, the locations of files in either the file cache or on disk, and the current state of

OS data structures all influence the behavior of the system at a particular point in time.

Of course, the important question is, “Do changes in OS behavior significantly
impact results?” The answer is most definitely yes. Sites, Kessler and Uhlig [Sites88,
Kessler91, Uhlig95] have shown that page mapping within an address space can increase
the cache miss rate enough to increase run time by several percent. It is also possible that
random page mappings between address spaces will increase miss rates during some
program runs. We have also observed that aging in kernel data structures can decrease
performance. For example, the Mach 3.0 memory allocation algorithm for kernel data
structures does not always distinguish between mapped and unmapped memory. As the
system ages, this results in a higher reliance on mapped kernel memory. A workload
executing on a system that has been alive for several days will incur up to 400% more TLB

misses than the same workload run on a freshly booted machine.

These types of behavior have a number of ramifications. Studies that collect only
one trace and then use the trace to drive many simulations may be relying on a trace that is
particularly good or bad. This might cause the work to overlook important issues or focus
attention on issues that occur very infrequently. For systems that process the trace on-the-
fly, the variability between program runs may obscure the benefits of different
implementations, making it difficult to evaluate design trade-offs where performance gains

are only expected to be a few percent.
23.23 Summary

Using benchmarks to study OS/architecture interactions is fundamentally different
from benchmarking application/hardware interactions. Benchmarks must not only stress
application/architecture interactions, but also OS/architecture interactions and

application/OS interactions. This can create a very complex set of interactions, making it
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difficult to isolate the cause(s) of performance problems. The irreproducable nature of the
OS and environmental issues such as the system aging can cloud results, making system
analysis even more difficult. But, all of these issues should be considered because they are

all components of real system behavior.

24 Tools and techniques for analyzing OS/architecture
interactions

There are a number of tools and techniques that can be used to analyze
OS/architecture interactions. This section surveys these tools and how we have used them
in our work. It is followed by a discussion of our monitoring system, Monster, and our

simulation techniques.
241 Coarse-grain tools and measurement techniques
2411 Time and ps

Two of the most useful tools for evaluating the high-level behavior of a system are
the Unix commands time and ps. time reports the estimated number of seconds a task
spends in user mode, kernel mode, and the amount of idle time. ps reports the amount of
time all living tasks have spent in user and system mode. By executing the ps command at
the beginning and end of a benchmark, we are able to determine how much time a
benchmark spends utilizing system services, such as the X display server, the AFS or NFS
daemons, or the Mach BSD Unix server. We also use this information to verify that our
Monster traces contain roughly the same proportion of benchmark and system service

execution times as reported by ps.

Time and ps data are generated by sampling the state of the system at specific time
intervals. This can create some error. For example, a benchmark that incurs a significant

number of TLB misses will spend a lot of time in the kernel handling the TLB misses.
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However, on our systems, some of the TLB handling code cannot be interrupted. While
this code is executing, the system will not sample its state for time and ps statistics.
Therefore, time and ps will underestimate the amount of time a task spends executing in

kernel mode.
24.1.2 Other system utilities: vmstat, pstat

The operating system keeps numerous statistics on its behavior and interaction
with specific hardware components. Tools like vmstat and pstat provide information on
virtual and physical mefnory requirements, I/O activity, paging and swapping, and the
number of interrupts per second. We use this information to determine if the system’s

paging activity is dominating performance.
2.4.1.3 Profiling the kernel

Operating systems can be profiled to measure the number of times and the amount
of time spent in each OS function. OS designers use this information to identify which
areas of the OS are most heavily used and to focus optimization techniques on those areas.
For example, McRae [McRae91] has shown that the interface between the machine
dependent and machine-independent virtual memory functions in Mach is one source of
performance loss. Optimizing this interface could significantly reduce the cost of virtual
memory management in Mach.

Profiling can also be used to determine the cost of primitive OS functions such as
flushing the cache or memory-to-memory copy (bcopy). Architects can use this
information to redesign specific aspects of the architecture, reducing the frequency and/or

cost of expensive primitives.
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24.1.4 Software event counters

Software event counters embedded in the OS can be a very effective tool for
measuring various performance problems. Usually incurring very low overhead (e.g., 3 or
4 instructions), counters can identify frequently used modules or objects. They can also
identify a significant increase in the use of a module or object. This information can be
invaluable to a designer tweaking a system’s performance.

Software event counters, however, provide no information about the cost! of using
a module or object. Therefore, one must be very careful when using counters to determine
the importance of components because without knowing the cost, software counts can be

misleading.
2.4.1.5 Summary of coarse-grained tools

Understanding the system’s behavior at the highest level is an important part of
measuring OS/architecture interactions. Tools such as time, ps, and vmstat help to
characterize a workload’s interactions with various software and hardware components.
The major limitation of coarse-grained tools is their inability to provide detailed, cycle-by-
cycle information about how the software is interacting with the hardware. This
information is crucial ‘to understanding the performance and behavior of the architecture

and its interaction with the software system.
2.4.2 Fine-grained tools and measurement techniques
2.4.2.1 Cycle and event counters

To measure and understand the behavior of the hardware, it is important to obtain

fine-grained, cycle-by-cycle measurements. One approach is to use hardware and software

1. Cost as measured by the number of cycles.
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counters to time and count specific events. One of the basic measurements this technique

can obtain is the hardware efficiency measure, CPI.

CPI = number of cycles/number of instructions

Using a cycle and an instruction counter that increments every instruction, we computed
the CPI for each of our benchmarks (see Chapter 1).

Cycle counters can also measure the cost of software functions. By recording a
cycle counter’s value at the entry and exit points of a code fragment, we can build a
histogram of the code fragment’s execution times, allowing us to compute the average
execution time and the distribution of execution times. This method provides a much more
accurate picture than the micro-benchmark technique, because the timing can be collected
while real workloadé execute, allowing the measurements to accurately capture the effects
of hardware stalls such as TLB and cache misses.

More sophisticated counters can record hardware events such as cache and TLB
misses, write buffer stalls, mis-predicted branches, floating point and integer
muliply/divide stalls and superscalar issue rates'. Currently, several microprocessors,
including the DEC Alpha and IBM RS/6000, provide these types of on-chip counters. A
recent work by Cvetanovic et al. [Cvetanovic94] used the Alpha’s hardware monitoring
counters to measure its performance across a range of workloads.

Counters are very good at obtaining information about the performance of
hardware and software structures. However, they cannot be used to evaluate the
effectiveness of design trade-offs. For this, we must turn to tracing tools used in

conjunction with trace-driven simulators.

1. For superscalar processors.
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2422 Tracing tools

The most common example of software-based tracing tools are code annotation
tools such as pixie and AE [Larus90, Smith91]. These tools annotate a program with extra
instructions which generate a trace of all memory references. Recently, Chen [Chen93a]
has extended the technique to include the operating system. By annotating every
application, daemon, server and the operating system, Chen has been able to produce
address traces which contain most of the system’s activity. This is an important extension
to the code annotation technique because it enables OS/architecture studies without
additional hardware. Other researchers can use Chen'’s tools to annotate their operating

systems and investigate OS/architecture interactions.

However, this approach suffers from several drawbacks. First, it is not possible to
annotate the entire kernel, leaving some, perhaps important, portions of the operating
system untraced. Second, it provides no information about the performance of the
operating system on the hardware being traced. Hardware events such as cache misses and
write buffer stalls are not reflected in the address trace. Detailed hardware models must be
constructed in order to investigate performance problems. Third, the annotated code
increases the run time of all software and changes the memory reference pattern. These
changes can alter the behavior of the system and must be accounted for by the simulation

tools.

A recently developed approach for tracing the operating system is called -driven
simulation [Uhlig94c]. Using a hardware trap to expose events, such as cache or TLB
misses, to the software, trap-driven simulation can be very fast because it relies on the
hardware to process unimportant events such as cache hits. This reduces the time
distortion caused by simulation. Further, because the hardware triggers the tracing

mechanism, neither the application nor the operating system needs to be annotated. Hence,
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there is almost no distortion in the memory system. We discuss Uhlig’s prototype trap-

driven simulator, Tapeworm, in Section 2.5.3 (p. 31).

A third type of tracing mechanism is a hardware monitoring system. Using a
hardware monitor attached to the pins of the CPU, the monitor captures traces of all
system activity, including address references and stall cycles. Because the monitor is
autonomous from the processor, it can capture the traces without distorting the behavior of
the system. However, when the hardware monitor’s storage capacity fills, the processor
must stall while the trace-buffer is processed. This creates distortion at regular intervals
during a program run, using making outstanding asynchronous events such as disk 1/Os
appear almost instantaneous. We discuss our hybrid hardware/software monitoring system

in Section 2.5.2 (p. 28).

2.4.23 Summary of tools and techniques

As we have seen, a wide range of tools and techniques can be used to help in the
study of OS/architecture interaction. Coarse-grained tools should be used first, to
understand issues such as 1) which services an application uses and how much time is
spent in each service; 2) which kernel routines are used the most; 3) whether an
application creates activity, such as paging, that will dominate all other performance
issues. Fine-grained tools can then focus on specific areas of concern, measuring the
cycle-by-cycle interactions between the hardware and software, and identifying hardware

and software components that cause performance loss.

2.5 Our approach

The previous sections have outlined various issues that are important to consider
when studying OS/architecture interactions. In this section, we present our approach and

how it resolves some of the issues raised in the first part of this Chapter.
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Workload Description

gcc The GNU C compiler (version 2.6)

groft GNU C++ implementation of the UNIX nroff text formatting program (version
1.09).

gs Ghostscript (version 2.4.1) distributed by the Free Software Foundation.
Renders and displays a single postscript page with text and graphics in an X
display window

10zone A sequential file 1/0 benchmark that writes and then reads a 10 Megabyte
file. Written by Bill Norcott.

jpeg_play The xloadimage program written by Jim Frost. Displays four JPG images.

mab John Ousterhout’s Modified Andrew Benchmark [Ousterhout89].

mpeg_play mpeg_play V2.0 from the Berkeley Plateau Research roup. Displays 610
frames from a compressed video file [Patel92].

nroff Unix text formatting program shipped with Ultrix 3.1.

ousterhout John Ousterhout's benchmarks suite from [Ousterhout89).

sdet A multiprocess, system performance benchmark which includes programs
that test CPU, OS and /O performance. From the SPEC SDM benchmark
suite.

verilog Verilog-XL (version 1.6b) simulating the logic design of an experimental
microprocessor.

video_play A madified version of mpeg_play that displays 610 frames of an uncom-
pressed video file.

Table 2.3 Workloads

These are the workloads used throughout this dissertation. Some experiments use a
subset of the entire suite or a single workload for illustration.

2.5.1 Workloads

As discussed in Section 2.5.1 (p. 27), the choice of workloads can completely
determine the outcome of an experiment. For example, to show bad TLB performance one
should use the SPEC nasa7 program or the UNIX compress utility; to show bad D-cache
performance, use Spice or compress. However, our goal is to understand OS/architecture
interactions across a range of applications and to put various performance trends into
perspective. Therefore, we used a wide range of applications described in Table 2.3 (p.

27). We also describe the operating systems in Table 2.4 (p. 28).



28

Operating
System Description

Ultrix Version 3.1 from Digital Equipment Corporation

OSFN OSF/1 1.0 is the Open Software Foundation's version of Mach 2.5

Mach 3.0 Carnegie Mellon University’s version mk77 of the kernel and nk38 of the
UNIX server

Mach3+AFSin |Same as Mach 3.0, but with the AFS cache manager (CM) running in the
UNIX server

Mach3+AFSout |Same as Mach 3.0, but with the AFS cache manager running as a separate
task outside of the UNIX server.

Table 2.4 Operating systems

The basic operating systems were used in this dissertation: Ultrix, OSF/1 and Mach 3.0.
in Chapter 3, we use all 3 plus to variants on Mach to explore TLB performance issues.
In Chapter 4, we only use Ultrix and Mach 3.0.

Workloads like mab and ousterhout exercise specific aspects of the OS/architecture
interface. jpeg_play is CPU intensive. Most of the rest of the benchmarks are more
general, representative of workloads like digital-media, simulation, text formatting, and
multiprogramming. These are some of the most interesting workloads, revealing complex

interactions between various hardware and software components.
2.,5.2 Monster - a hybrid hardware/software monitoring system

Monster is a hybrid hardware/software monitoring system which allows us to
monitor a MIPS R2000 based DECstation 3100 (Figure 2.4, p. 29). Monster consists of; 1)
a Tektronix DAS 9200 logic analyzer that is attached to the R2000’s CPU pins and 2)
custom software modules written to control the logic analyzer, its built-in state-machine
and the traces captured by the logic analyzer. With access to the CPU pins, Monster can
observe every processor event including floating point, write buffer and cache stalls. This
allows Monster to accurately monitor the systems activity by eithef counting and timing

specific events or by capturing traces of the hardware activity.
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Figure 2.2 Monster monitoring system

Monster is attached to the CPU pins of a DECstation 3100. Because the caches
are external to the R2000 processor, Monster can observe all system activity.

To count events, such as the number of instructions executed, we program the
logic analyzer’s built-in state machine and pattern matching hardware to watch for specific
events. When the event occurs, a counter is incremented. This allows us to collect data
measurements like CPI or miss rates without any distortion to the system under test. We
also annotate the operating system with special markers! that denote specific points in the
software. This allows us to locate and time events, such as kernel crossing or TLB misses.
These markers do introduce some distortion into the system. However, we have measured
the amount of distortion introduced and it is usually under 2%. Further, most of the

experiments can correct for the distortion.

It is also possible to gather fine-grained timings by using the logic analyzer’s
memory buffer to record timestamps. We use this technique to measure the average cost of
a TLB miss. The TLB miss handler is annotated with markers at its entry and exit points.
Every time the logic analyzer detects one of the markers, it write the current timestamp

into its buffer memory (Figure 2.5, p. 30). Once the buffer is full, the timestamps are

{. The markers are implemented by performing an uncached load into register RO from an
address in the kernel's text segment. This technique was taken from Torrellas [Torrellas92].
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Marker Time_(in nanoseconds Delta
tib miss entry 200

tlb miss exit 1400 1200
tlb miss entry 20000

tib miss exit 21400 1400
tib miss entry 42000

tlb miss exit 43000 1000

Figure 2.3 Logic analyzer buffer with timestamps

The logic analyzer buffer can store timestamps for specific events detected by the
state machine. Processing the data generates a histogram of timings that can be used
to compute various statistics such as the average amount of time spent in a routine
and the standard deviation.

processed and used to compute the average amount of time spent in each TLB miss

routine.

2.5.2.1 Monster traces

Probably the most important use of the logic analyzer is to gather traces of the
system’s activity. The traces include all instruction and data references as well as every
stall cycle. We use the traces to drive various trace-driven simulators that model and

analyze various system performance issues.

Because of the finite amount of space available in Monster’s trace buffer (512-K
entries or 256-K cycles), we adopt two different approaches to gathering traces. The first
approach forces the system to stall while the trace buffer is emptied (Figure 2.6, p. 31).
This is done by entering a stall loop in the kernel’s clock interrupt handler. Using this
method, we can gather contiguous traces of each workload. The second approach, called
trace sampling, does not stall the processor when the buffer fills. Instead, the workload is
executed multiple times and during each program run, a sample is captured from a
different portion of the workload. Capturing 50 or more samples usually provides enough

data to accurately characterize specific aspects of the system’s behavior.
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stall while buffer is emptied stall while buffer is emptied

] ] -]
collect trace 1 collect trace 2 collect trace 3

—_—

One contiguous trace

Figure 2.4 Capturing a contiguous trace

To capture a contiguous trace, the operating system enters a stall loop every time the
logic analyzer buffer fills. Once the buffer is emptied, the operating system exits the loop
and resumes execution.

The major drawback of collecting contiguous traces is that activity such as disk
I/O can appear almost instantaneous. However, this does POt affect the performance issues
we examine. Trace sampling overcomes this problem, but each trace is very small, usually
containing 100,000 instruction addresses and 30,000 data references, limiting their use in
trace-driven simulation. However, because the segments are un-distorted, they are very

good for analyzing the behavior of the system.

2.5.3 Tapeworm - a trap-driven simulation tool

Trace-driven simulation has become the de facto standard for evaluating hardware
trade-offs. Relying on the fact that an application’s trace is invariant to changes in the
hardware structure, a single address trace can be used to explore many different types of

architectural trade-offs.

However, once OS and multiprocess references are included in the address trace,

the trace is no longer invariant to changes in the hardware. In fact, any change in the
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hardware could alter the address stream, possibly creating very different interactions than
those found in the original trace. This limits the use of trace-driven simulation when
analyzing OS/architecture interactions.

To overcome this problem, Uhlig has developed a technique called trap-driven
simulation [Uhlig94c). The technique uses the real hardware to model a simulated
architecture by setting traps on various data structures, such as a simulated TLB or cache.
Whenever the real machine touches an “invalid” entry in one of these data structures, the
hardware traps to the operating system where the trap-driven simulator is invoked. The
simulator records the event and then validates the data structure entry to reflect the change
in the simulated architecture’s state, and then returns control to the executing application.
This allows trap-driven simulation to accurately reflect variations in the address stream
due to changes in the simulated architecture.

The original prototype trap-driven simulator, Tapeworm I, is capable of simulating
various TLB designs (Figure 2.7, p. 33). Relying on the fact that the MIPS R2000 handles
all TLB misses in software, calls to the Tapeworm simulator are placed at the beginning of
all TLB miss handlers. On every TLB miss, the Tapeworm simulator checks to see if the
real miss would have resulted in a miss or hit in the simulated TLB. If a simulated miss
occurs, Tapeworm handles it and then returns to the real TLB handlers. For simulated
TLBs larger than the MIPS R200 TLB (64 entries), Tapeworm maintains a simulated TLB
data structure. For simulated TLBs smaller than on the R2000, Tapeworm modifies the OS
TLB handlers so that the physical behavior is identical to the simulated TLB. For example,
to mode! a 32 entry TLB, Tapeworm would instruct the OS TLB handlers to use only 32
entries of the real TLB. For a complete description of the Tapeworm and enhancements to

the simulation technique, the reader is referred to [Uhlig95].
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Figure 2.5 Tapeworm simulator

The Tapeworm TLB simulator is built into the operating system and is invoked
whenever there is a real TLB miss. The simulator uses the real TLB misses to
simulate its own TLB configuration(s). Because the simulator resides in the operating
system, Tapeworm captures the dynamic nature of the system and avoids the
problems associated with simulators driven by static traces.

2.5.4 Verifying our measurements and results

It was important to guarantee that the results accurately reflect the behavior of the
system being measured. Three different measurements were used to verify the results.
First, each workload’s CPI is measured with Monster’s instruction and cycle counters,
which are very accurate. Second, at least one continuous trace of each workload is
collected and analyzed to determine the source of stalls. Many times a sample-based trace
is also collected and analyzed. Sampling does not stall the processor during sample
collection. Instead, each sample is taken during a separate program run. This allows us to
collect a set of 50 to 200 samples from various parts of a program and guarantees that
tracing does not affect the program execution. Third, traces are run though a software

simulation of a DECstation 3100. All of the measurements for each benchmark are then
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compared. Typically, we see a small amount of variation, 3% - 5%, which is due to the
dynamic behavior of the system. Any variation larger than 10% usually suggests a

problem with the measurements and is investigated further.

2.5.5 Exploring architectural trade-offs

Throughout this dissertation, we rely on both Tapeworm and trace-driven
simulation tools to model various architectural trade-offs. Tapeworm I was used in the
TLB studies in Chapter 3. Trace-driven simulators driven by Monster traces were used to
model the cache and prefetching simulations in Chapter 4. In each instance, the simulators

were verified against real hardware measurements as discussed in Section 2.5.4.
2.6 Summary

The data in Chapter 1 provided a firm understanding of the OS/architecture
performance problems. We now apply the tools and techniques described in this chapter to
relate our performance data to the rest of the system. Our goal is to uncover the sources of
the performance problems and use that information to help guide our exploration of the

architectural design space.



CHAPTER 3

TLBs and their Interaction with the
Operating System

3.1 OS impact on software-managed TLBs

Operating system references can have a strong influence on TLB performance. Yet,

few studies have examined these effects, with most confined to a single operating system

[Clark85, DeMoney86]. However, differences between operating systems can be

substantial. To illustrate this point, we ran a set of benchmarks on each of the operating

systems listed in Table 2.4 (p. 28). The results (Table 3.1) show that although the same

application binaries were run on each system, there is significant variance in the number of

TLB misses and total TLB service time. Some of these increases are due to differences in

Operating System Rl(':ezis';'e To.:.?jB" a';;gi';o' S::::i:leT 'Il'-ilrane F_Ira:ig é: rl.‘llll:;x
(secs)* Time
Ultrix 3.1 583 9,177,401 11.82 1.0
OSFN 892 11,691,398 51.85 4.39
Mach 3.0 975 24,349,121 80.01 6.77
Mach 3+AFSin 1,371 33,933,433 106.56 9.02
Mach3+AFSout 1 ,5.1 7 36,649,834 134.71 11.40

Table 3.1 Total TLB misses across the benchmarks

The total run-time and number of TLB misses incurred by the benchmarks compress,
10zone, jpeg_play, mab, mpeg_play, ousterhout and video_play. Although the same
application binaries were run on each of the operating systems, there is a substantial
difference in the number of TLB misses and their corresponding service times.

*Time based on measured median time to service TLB miss.

35
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the functionality between operating systems (i.e. UFS vs. AFS). Other increases are due to
the structure of the operating systems. For example, the monolithic Ultrix spends only
11.82 seconds handling TLB misses while the microkernel-based Mach 3.0 spends 80.01
seconds.

Notice that while the total number of TLB misses increases 4 fold (from 9,177,401
to 36,639,834 for AFSout), the total time spent servicing TLB misses increases by a a
factor of 11.4. This is due to the fact that software-managed TLB misses fall into different
categories, each with its own associated cost. For this reason, it is important to understand
page table structure, its relationship to TLB miss handling and the frequencies and costs of

different types of misses.

3.2 Page tables and translation hardware

OSF/1 and Mach 3.0 both implement a linear page table structure (Figure 3.1).
Each task has its own level 1 (L1) page table, which is maintained by machine-
independent pmap code [Rashid88]. Because the user page tables can require several
megabytes of space, they are themselves stored in the virtual address space. This is
supported through level 2 (L2 or kernel) page tables, which also map other kernel data.
Because kernel data is relatively large and sparse, the L2 page tables are also mapped. This
gives rise to a 3-level page table hierarchy and four different page table entry (PTE) types.

The R2000 processor contains a 64-slot, fully-associative TLB, which is used to
cache recently-used PTEs. When the R2000 translates a virtual address to a physical
address, the relevant PTE must be held by the TLB. If the PTE is absent, the hardware
invokes a trap to a software TLB miss handling routine that finds and inserts the missing
PTE into the TLB. The R2000 supports two different types of TLB miss vectors. The first,
called the user TLB (uTLB) vector, is used to trap on missing translations for L1U pages.
This vector is justified by the fact that TLB misses on L1U PTEs are typically the most

frequent [DeMoney86]. All other TLB miss types (such as those caused by references to
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User Kernel
Data Data
Page L1U PTE Page
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one, 1,024 entry user

page table page.

L2

Virtual Address Space

L3 PTE Physical Address Space
L3 Each L3 PTE maps 1

page of either L2 PTEs or

L1K PTEs.

Figure 3.1 Page table structure in OSF/1 and Mach 3.0

The Mach page tables form a 3-level structure with the first two levels residing in
virtua! (mapped) space. The top of the page table structure holds the user pages
which are mapped by level 1 user (L1U) PTEs. These L1U PTEs are stored in the L1
page table with each task having its own set of L1 page tables.

Mapping the L1 page tables are the level 2 (L2) PTEs. They are stored in the L2 page
tables which hold both L2 PTEs and level 1 kernel (L1K) PTEs. In turn, the L2 pages
are mapped by the level 3 (L3) PTEs stored in the L3 page table. At boot time, the L3
page table is fixed in unmapped physical memory. This serves as an anchor to the
page table hierarchy because references to the L3 page table do not go through the
TLB.

The MIPS R2000 architecture has a fixed 4 KByte page size. Each PTE requires 4
bytes of storage. Therefore, a single L1 page table page can hold 1,024 L1U PTEs, or
4 Megabytes of virtual address space. Likewise, the L2 page tables can directly map
either 4 Megabytes of kernel data or indirectly map 4 GBytes of L1U data.
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TLB Miss Type Ultrix OSFNM Mach 3.0
L1vU 16 20 20
L1K 333 355 294
L2 494 511 407
L3 — 354 286
Modify 375 436 499
Invalid 336 277 267

Table 3.2 Costs for different TLB miss types

This table shows the number of machine cycles (at 60 ns/cycle) required to service
different types of TLB misses. To determine these costs, Monster was used to collect a
128K-entry histogram of timings for each type of miss. We separate TLB miss types into
the six categories described below. Note that Ultrix does not have L3 misses because it
implements a 2-level page table.

L1V TLB miss on a level 1 user PTE.

L1K TLB miss on a level 1 kernel PTE.

L2 TLB miss on level 2 PTE. This can only occur after a miss on a level 1 user
PTE.

L3 TLB miss on a level 3 PTE. Can occur after either a level 2 miss or a leve! 1
kernel miss.

Modify A page protection violation.
Invalid An access to an page marked as invalid (page fault).

kernel pages, invalid pages or read-only pages) and all other interrupts and exceptions trap
to a second vector, called the generic exception vector.

For the purposes of this study, we define TLB miss types (Table 3.2) to correspond
to the page table structure implemented by OSF/1 and Mach 3.0. In addition to L1U TLB
misses, we define five subcategories of kernel TLB misses (L1K, L2, L3, modify and
invalid). Table 3.2 also shows our measurements of the time required to handle the
different types of TLB misses. The wide differential in costs is primarily due to the two
different miss vectors and the way that the OS uses them. L1U PTEs can be retrieved
within 16 cycles because they are serviced by a highly-tuned handler inserted at the uTLB
vector. However, all other miss types require from about 300 to over 400 cycles because

they are serviced by the generic handler residing at the generic exception vector.
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Mapped Service Service Add.
oS Kernel Data Miarati D OS Servi
Structures gration ecomp. ervices
Ultrix Few None None X Server
OSF/1 Many None None X Server
Mach 3.0 Some Some Some X Server
Mach3+AFSin Some Some Some X Server & AFS CM
Mach3+AFSout Some Some Many X Server & AFS CM

Table 3.3 Characteristics of the operating systems studied

The R2000 'I'LB hardware supports partitioning of the 'I'LB into two sets of slots.
The lower partition is intended for PTEs with high retrieval costs, while the upper partition
is intended to hold more frequently-used PTEs that can be re-fetched quickly (e.g. L1U) or
infrequently-referenced PTEs (e.g L3). The TLB hardware _also supports random
replacement of PTEs in the upper partition through a hardware index register that returns
random numbers in the range 8 to 63. This effectively fixes the TLB partition at 8, so that
the lower partition consists of slots O through 7, while the upper partition consists of slots

8 through 63.
3.3 OS influence on TLB performance

In the operating systems studied, there are three basic factors which account for the
variation in the number of TLB misses and their associated costs (Table 3.2 & Figure 3.2).
The central issues are (1) the use of mapped memory by the kernel (both for page tables
and other kernel data structures), (2) the placement of functionality within the kernel,
within a user-level server process (service migration) or divided among several server
processes (OS decomposition) and (3) the range of functionality provided by the system
(additional OS services). The rest of Section 3.1 uses our data to examine the relationship

between these OS characteristics and TLB performance.
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3.3.1 Mapping kernel data structures

Mapping kernel data structures adds a new category of TLB misses: L1K misses.
In the MIPS R2000 architecture, an increase in the number of L1K misses can have a
substantial impact on TLB performance because each L1K miss requires several hundred
cycles to service'.

Ultrix places most of its data structures in a small, fixed portion of unmapped
memory that is reserved by the OS at boot time. However, to maintain flexibility, Ultrix
can draw upon the much larger virtual space if it exhausts this fixed-size unmapped
memory. Table 3.4 shows that few L1K misses occur under Ultrix.

In contrast, OSF/1 and Mach 3.0 place most of their kernel data structures in
mapped virtual space, forcing them to rely heavily on the TLB. Both OSF/1 and Mach 3.0
mix the L1K PTEs and L1U PTEs in the TLB’s 56 upper slots. This contention produces a
large number of L1K misses. Further, handling an L1K miss can result in an L3 miss’. In
our measurements, OSF/1 and Mach 3.0 both incur more than 1.5 million L1K misses.

OSF/1 must spend 62% of its TLB handling time servicing these misses while Mach 3.0
spends 37% of its TLB handling time servicing L1K misses.

3.4 Service migration

In a traditional operating system kernel such as Ultrix or OSF/1 (Figure 3.2), all
OS services reside within the kernel, with only the kernel’s data structures mapped into the

virtual space. Many of these services, however, can be moved into separate server tasks,

1. From 294 to 355 cycles, depending on the operating system (Table 3.3).

2. Like Ultrix, Mach 3.0 reserves a portion of unmapped space for dynamic allocation of data
structures. However, it appears that Mach 3.0 quickly uses this unmapped space and must
begin to allocate mapped memory. Once Mach 3.0 has allocated mapped space, it does not
distinguish between mapped and unmapped space, despite their differing costs.

3. LI1K PTEs are stored in the mapped L2 page tables (Figure 3.1).
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Total
System TF::"; LU | LK | L2 | 13 |Invalid | Modity | Total
(sec)
Ultrix 583 9,021 136 3.8 — 16.2 | 115.0 | 9,177
OSFAN 892 9818 | 1510 | 350 | 2071 | 79.3 425 | 11,691
Mach3 975 | 21,466 | 1,683 | 352.7 | 556.3 | 165.9 | 125.4 24,349
Mach3+AFSin 1,871 | 30,123 | 2,493 | 330.8 | 690.4 | 168.4 | 127.0 33,933
Mach3+AFSOut | 1,517 | 31,611 | 2,713 [1,042.6 | 987.7 | 168.1 127.5 | 36,649
Table 3.4 Number of TLB misses (in thousands)
Toa
System Se!'vice L1uU L1K L2 L3 Invalid | Modity ‘g:::l
.(223 Time
Ultrix 11.82 | 8.66 2.7 0.1 — 0.33 0.00 | 2.03%
OSF/ 5185 | 11.78 | 3216 | 1.07 | 440 | 1.32 111 | 581%
Mach3 80.01 | 25.76 | 29.68 | 8.61 955 | 2.66 375 | 8.21%
Mach3+AFSin | 106.56 | 36.15 | 43.98 | 8.08 | 11.85 | 2.70 381 | 7.77%
Mach3+AFSOut | 134.71 | 37.93 | 47.86 | 25.46 | 16.95 | 2.69 3.82 | 8.88%

Table 3.5 Time spent handling TLB misses (in seconds)

These tables show the number of TLB misses and amou
misses for each of the operating systems studied. In Ultri
TLB miss time is spent servicing L1U TLB misses. Ho
versions of Mach 3.0, L1K and L2 misses can overshadow t
increase in Modify misses is due to OSF/1 and Mach 3.0

implement copy-on-write memory sharing.

wever,

nt of time spent handling TLB
x, most of the TLB misses and

for OSF/1 and various

he L1U miss time. The
's use of protection to
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increasing the modularity and extensibility of the operating system [Anderson91]. For this
reason, numerous microkernel-based operating systems have been developed in recent
years (e.g. Chorus [Dean91], Mach 3.0 [Acetta86], V [Cheriton84]).

By migrating these services into separate user-level tasks, operating systems like
Mach 3.0 fundamentally change the behavior of the system for two reasons. First, moving
OS services into user space requires both their program text and data structures to be
mapped. Therefore, they must share the TLB with user tasks, possibly conflicting with the
user tasks’ TLB footprints. Comparing the number of L1U misses in OSF/1 and Mach 3.0,
we see a 2.2 fold increase from 9.8 million to 21.5 million. This is directly due to moving
OS services into mapped user space. The second change comes from moving OS data
structures from mapped kernel space to mapped user space. In user space, the data
structures are mapped by L1U PTEs-which are handled by the fast uTLB handler (20
cycles for Mach 3.0). In contrast, the same data structures in kernel space are mapped by

LIK PTEs which are serviced by the general exception (294 cycles for Mach 3.0).
3.5 Operating system decomposition

Moving OS functionality into a monolithic UNIX server does not achieve the full
potential of a microkernel-based operating system. Operating system functionality can be
further decomposed into individual server tasks. The resulting system is more flexible and
can provide a higher degree of fault tolerance.

Unfortunately, experience with fully decomposed systems has shown severe
performance problems. Anderson et al. [Anderson91] compared the performance of a
monolithic Mach 2.5 and a microkernel Mach 3.0 operating system with a substantial
portion of the file system functionality running as a separate AFS cache manager task.
Their results demonstrate a significant performance gap between the two systems with

Mach 2.5 running 36% faster than Mach 3.0, despite the fact that only a single additional
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File system, networking, scheduling and
Unix interface reside inside a monolithic
kernel. Kernel text resides in unmapped
space. Ultrix places most kernel data
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Unix Server
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File system, networking, and Unix
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Unix Server. Kernel text and some data
reside in unmapped virtual space but the
Unix Server is in mapped user space.

kernel mode
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Unix Server
File system
Networking
Scheduling
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AF
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Same as standard Mach 3.0, but with
increased functionality provided by a
server task. The AFS Cache Manager is
either inside the Unix Server or its own,
user-level server (as pictured above).

Mach 3.0 + AFSout

Figure 3.2 Monolithic and microkernel operating systems

A comparison of the monalithic Ultrix and OSF/1 and the microkernel Mach 3.0. In
Ultrix and OSF/1, all OS services reside inside the kernel. in Mach 3.0, these services
have been moved into the UNIX server. Therefore, most of Mach 3.0's functionality
resides in mapped virtual space. Mach3+AFS is a modified version of Mach 3.0 with
the AFS Cache Manager residing in either the Unix Server (AFSin) or as a separate
user-level server (AFSout).
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server task is used. Later versions of Mach 3.0 have overcome this performance gap by
integrating the AFS cache manager into the UNIX Server.

We compared our benchmarks running on the Mach3+AFSin system, against the
same benchmarks running on the Mach3+AFSout system. The only structural difference
between the systems is the location of the AFS cache manager. The results (Table 3.5)
show a substantial increase in the number of both L2 and L3 misses. Many of the L3
misses are due to missing mappings needed to service L2 misses.

The L2 PTEs compete for the R2000’s 8 lower TLB slots. Yet, the number of slots
required is proportional to the number of tasks concurrently providing an OS service. As a
result, adding just a single, tightly-coupled service task overloads the TLB'’s ability to map
L2 page tables. Thrashing results. This increase in L2 misses will grow ever more costly as

systems continue to decompose services into separate tasks.
3.6 Additional OS functionality

In addition to OS decomposition and migration, many systems provide
supplemental services (e.g. X, AFS, NFS, Quicktime). Each of these services, when
interacting with an application, can change operating system behavior and how the
operating system interacts with the TLB hardware.

For example, adding a distributed file service (in the form of an AFS cache
manager) to the Mach 3.0 Unix server adds 10.39 seconds to the L1U TLB miss handling
time (Table 3.5). This is due solely to the increased functionality residing in the Unix
server. However, L1K misses also increase, adding 14.3 seconds. These misses are due to
the additional management the Mach 3.0 kernel must provide for the AFS cache manager.
Increased functionality will have an important impact on how architectures support
operating systems and to what degree operating systems can increase and decompose

functionality.
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3.7 Improving TLB performance

In this section, we examine hardware-based techniques for improving TLB
performance under the operating systems analyzed in the previous section. However,
before suggesting changes, it is helpful to consider the motivations behind the design of
the R2000 TLB.

The MIPS R2000 TLB design is based on two principal assumptions
[DeMoney86]. First, L1U misses are assumed to be the most frequent (> 95%) of all TLB
miss types. Second, all OS text and most of the OS data structures (with the exception of
user page tables) are assumed to be unmapped. The R2000 TLB design reflects these |
assumptions by providing two types of TLB miss vectors: the fast uTLB vector and the
much slower general exception vector (described in Section 3.2). These assumption are
also reflected in the partitioning of the 64 TLB slots into two disjoint sets of 8 lower slots
and 56 upper slots (also described previously). The 8 lower slots are intended to
accommodate a traditional UNIX task (which requires at least three L2 PTEs) and UNIX
kernel (2 PTEs for kernel data), with three L2 PTEs left for additional data segments
[DeMoney86].

Our measurements (Table 3.4) demonstrate that these design choices make sense
for a traditional UNIX operating system such as Ultrix. For Ultrix, L1U misses constitute
98.3% of all misses. The remaining miss types impose only a small penalty. However,
these assumptions break down for the OSF/1- and Mach 3.0-based systems. In these
systems, the non-L.1U misses account for the majority of time spent handling TLB misses.
Handling these misses substantially increases the cost of software-TLB management
(Table 3.5).

The rest of this section proposes and explores four hardware-based improvements
for software-managed TLBs. First, the cost of certain types of TLB misses can be reduced

by modifying the TLB vector scheme. Second, the number of L2 misses can be reduced by
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increasing the number of lower slots'. Third, the frequency of most types of TLB misses
can be reduced if more total TLB slots are added to the architecture. Finally, we examine
the trade-offs between TLB size and associativity.

Throughout these experiments, software policy issues do not change from those
originally implemented in Mach 3.0. The PTE replacement i)olicy is FIFO for the lower
slots and Random for the upper slots. The PTE placement policy stores L2 PTEs in the
lower slots and all other PTEs in the upper slots. The effectiveness of these and other

software-based techniques are examined in a related work [Uhlig93].
3.8 Additional TLB miss vectors

The data in Table 3.4 show a significant increase in L1K misses for OSF/] and
Mach 3.0 when compared against Ultrix. This increase is due to both systems’ reliance on
dynamic allocation of mapped kernel memory. The R2000’s TLB performance suffers,
however, because L1K misses must be handled by the costly generic exception vector
which requires 294 cycles (Mach 3.0).

To regain the lost TLB performance, the architecture could vector all L1K misses
through the uTLB handler, as is done in the newer R4000 processor. Based on our timing
and analysis of the TLB handlers, we estimate that vectoring the L1K misses through the
uTLB handler would reduce the cost of L1K misses from 294 cycles (for Mach 3.0) to
approximately 20 cycles.

An additional refinement would be to dedicate a separate TLB miss vector for L2
misses. We estimate that the L2 miss service time would decrease from 407 cycles (Mach
3.0) to under 40 cycles.

Table 3.6 (p. 47) shows the same data for Mach3+AFSin as Table 3.4 (p. 41), but
recomputed with the new cost estimates resulting from the refinements above. The result

of combining these two modifications is that total TLB miss service time drops from

1. The newer MIPS R4000 processor [Kane92] implements both of these changes.



47

Previous T .
Typ:ngsPTE Counts from sTaglt: l:!(.‘:iust Totl:legost me(z:;ved
(secs) (sec)
L1U 30,123,212 36.15 36.15 0.00
L2 330,803 8.08 0.79 7.29
L1K 2,493,283 43.98 2.99 40.99
L3 690,441 11.85 11.85 0.00
Modify 127,245 3.81 3.81 0.00
Invalid 168,429 2.70 2.70 0.00
Total 33,933,413 106.56 58.29 48.28

Table 3.6 Recomputed cost of TLB misses given additional
miss vectors (Mach 3.0+AFSin)

Supplying a separate interrupt vector for L2 misses and allowing the uTLB handler to
service L1K misses reduces their cost to 40 and 20 cycles, respectively. Their
contribution to TLB miss time drops from 8.08 and 43.98 seconds down to 0.79 and
2.99 seconds, respectively.

106.56 seconds down to 58.29 seconds. L1K service time drops 93% and L2 miss service
time drops 90%. More importantly, the L1K and L2 misses no longer contribute
substantially to overall TLB service time. This minor design modification enables the TLB
to much more effectively support a microkernel-style operating system with multiple
servers in separate address spaces.

Multiple TLB miss vectors provide additional benefits. In the generic trap handler,
dozens of load and store instructions are used to save and restore a task’s context. Many of
these loads and stores cause cache misses which require the processor to stall. As
processor speeds continue to outstrip memory access times, the CPI in this save/restore
region will grow, increasing the number of wasted cycles and making non-uTLB misses
much more expensive. TLB-specific miss handlers should not suffer the same
performance problems because they contain only a single data reference to load the

missed PTE from the memory-resident page tables.
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Figure 3.3 L2 PTE miss cost vs. number of lower slots

The total L2 miss time for the mab benchmark under different operating systems. As
the TLB reserves more lower slots for L2 PTEs, the total time spent servicing L2 misses
becomes negligible.

3.9 Lower slots & partitioning the TLB

The MIPS R2000 TLB fixes the partition between the 8 lower slots and the 56
upper slots. This partitioning is appropriate for an operating system like Ultrix
(DeMoney86). However, as OS designs migrate and decompose functionality into
separate user-space tasks, having only 8 lower slots becomes insufficient. This is because,
in a decomposed system, the OS serviées that reside in different user-level tasks compete
by displacing each other’s L2 PTE mappings from the TLB.

To better understand this effect, we measured how L2 miss rates vary depending
on the number of lower TLB slots available. Tapeworm was used to vary the number of

lower TLB slots from 4 to 16 while keeping the total number of TLB slots fixed at 64.
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Figure 3.4 Total cost of TLB misses vs. number of lower TLB slots

The total cost of TLB miss servicing is

plotted against the L1U, L1K, L2 and L3

components of this total time. The number of lower TLB slots varies from 4 to 32, while

the total number of TLB entries remains constant at

64,

The benchmark is video_play running under Mach 3.0.

OSF/1 and all three versions of Mach 3.0 ran the mab benchmark over the range of

configurations and the total number of L2 misses was recorded (Figure 3.3).

For each operating system, two distinct regions can be identified. The left region
shows a steep decline which levels off near zero seconds. This shows a significant
performance improvement for every extra lower TLB slot made available to the system, up
to a certain point. For example, simply moving from 4 to 5 lower slots decreases OSF/1 L2

miss handling time by almost 50%. After 6 lower slots, the improvement slows because

the TLB can hold most of the L2 PTEs required by OSF/1!,

I. Two for kernel data structures and one each for a task’s text, data and stack segments,



50

In contrast, the Mach 3.0 system continues to show significant improvement up to
8 lower slots. The additional 3 slots needed to bring Mach 3.0’s performance in line with
OSF/1 are due to the migration of OS services from the kernel to the UNIX Server in user
space. In Mach 3.0, whenever a task makes a system call to the UNIX server, the task and
the UNIX server must share the TLB’s lower slots. In other words, the UNIX server’s
three L2 PTE’s (text segment, data segment, stack segment) increases the lower slot
requirement for the system as a whole to 8.

Mach3+AFSin’s behavior is similar to Mach 3.0 because the additional AFS cache
manager functionality is mapped by the UNIX server’s L.2 PTEs. However, when the AFS
cache manager is decomposed into a separate user-level server, the TLB must hold three
additional L2 PTEs (11 total). Figure 3.3 shows how Mach3+AFSout continues to
improve until all 11 L2 PTEs can simultaneously reside in the TLB.

Unfortunately, increasing the size of the lower partition at the expense of the upper
partition has the side-effect of increasing the number of L1U, L1K and L3 misses, as
shown in Figure 3.4. Coupling the decreasing L2 misses with the increasing L1U, L1K
and L3 misses yields an optimal partition point shown in Figure 3.4.

This partition point, however, is only optimal for the particular operating system.
Different operating systems with varying degrees of service migration have different
optimal partition points. For example, the upper graph in Figure 3.5 shows an optimal
partition point of 8 for Mach 3.0, 10 for Mach3+AFSin and 12 for Mach3+AFSout, when
running the Ousterhout benchmark.

Applications also influence the optimal partition point. The lower graph in Figure
3.5 (p. 51) shows the results for various applications running under Mach 3.0. compress
has an optimal partition point of 8. However, video_play requires 14 slots and
mpeg_play requires 18 slots. Some of the additional slots are used to hold the X Server’s

L2 PTEs. This underscores the importance of understanding both the decomposition of the
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Figure 3.5 Optimal partition points for various operating systems and
benchmarks

As more lower slots are allocated, fewer upper slots are available for the L1U, L1K and
L3 PTEs. This yields an optimal partition point which varies with the operating system
and benchmark.

The upper graph shows the average of 3 runs of the ousterhout benchmark run under 3
different operating systems. The lower graph shows the average of 3 runs for 3 different
benchmarks run under Mach 3.0.
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Figure 3.6 TLB service time vs. number of upper TLB slots

The total cost of TLB miss servicing for all seven benchmarks run under OSF/1. The
number of upper slots was varied from 8 to 512, while the number of lower slots was
fixed at 16 for all configurations.

system and how applications interact with the various OS services, because both

determine the use of TLB slots.
3.10 Increasing TLB size

In this section we examine the benefits of building TLBs with additional upper
slots. The trade-offs here can be more complex because the upper slots are used to hold
three different types of mappings (L1U, L1K and L3 PTEs), whereas the lower slots only
hold L2 PTEs.

To better understand the requirements for upper slots, we used Tapeworm to
simulate TLB configurations ranging from 32 to 512 upper slots. Each of these TLB

configurations was fully-associative and had 16 lower slots to minimize L2 misses.
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Figure 3.6 shows TLB performance for all seven benchmarks under OSF/1. For
smaller TLBs, the most significant component is L1K misses; L.1U and L3 misses account
for less than 35% of the total TLB miss handling time. The prominence of L1K misses is
due to the large number of mapped data structures in the OSF/1 kernel. However, as
outlined in Section 3.8, modifying the hardware trap mechanism to allow the uTLB
handler to service L1K misses reduces the L1K service time to an estimated 20 cycles.
Therefore, we recomputed the total time using the lower cost L1K miss service time (20
cycles) for the OSF/1, Mach 3.0 and Mach3+AFSout systems (Figure 3.7).

With the cost of L1K misses reduced, TLB miss handling time is dominated by
L1U misses. In each system, there is a noticeable improvement in TLB service time as
TLB sizes increase from 32 to 128 slots. For example, moving from 64 to 128 slots
decreases Mach 3.0 TLB handling time by over 50%.

After 128 slots, invalid and modify misses dominate (listed as “other” in the
figures). Because the invalid and modify misses are constant with respect to TLB size, any
further increases in TLB size will have a negligible effect on overall TLB performance.
This suggests that a 128- or 256-entry TLB may be sufficient to support both monolithic
operating systems like Ultrix and OSF/1 and microkernel operating systems like Mach
3.0. Of course, even larger TLBs may be needed to support large applications such as
CAD programs. However, this study is limited to TLB support for operating systems
running a modest workload. The reader is referred to [Chen92] for a detailed discussion of

TLB support for large applications.

3.1 TLB associativity

Large, fully-associative TLBs (128" entries) are difficult to build! and can

consume a significant amount of chip area. To achieve high TLB performance, computer

1. Current-mode sensing avoids some of the problems associated with large CMOS CAMs
[Heald93].
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Figure 3.7 Modified TLB service time vs. number of upper TLB slots

The total cost of TLB miss servicing (for all seven benchmarks) assuming L1K misses
can be handled by the uTLB handler in 20 cycles and L2 misses are handled in 40
cycles. The top graph is far OSF/1, the bottom for Mach 3.0. Note that the scale varies
for each graph.

Other is the sum of the invalid, modify and L2 miss costs.
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Number of | Number of

Processor Associativity | Instruction Data

Slots Slots
DEC Alpha 21064 fuil 8+4 32
IBM RS/6000 2-way 32 128
Tl Viking full 64 unified -
MIPS R2000 full 64 unified -
MIPS R4000 full 48 unified —

HP 9000 Series 700 full 96+4 96+4
Intel 486 4-way 32 unified —

Table 3.7 Number of TLB slots for current processors

Note that page sizes vary from 4K to 16 MBytes and are variable in many processors.
The MIPS R4000 actually has 48 double slots. Two PTEs can reside in one double slot if
their virtual mappings are to consecutive pages in the virtual address space. [Talluri92]

architects could implement larger TLBs with lesser degrees of associativity. The following
section explores the effectiveness of TLBs with varying degrees of associativity.

Many current-generation processors implement fully-associative TLBs with sizes
ranging from 32 entries to 100* entries (Table 3.7). However, technology limitations may
force designers to begin building larger TLBs which are not fully-associative. To explore
the performance impact of limiting TLB associativity, we used Tapeworm to simulate
TLBs with varying degrees of associativity.

The graphs in Figure 3.9 (p. 57) show the total TLB miss handling time for the
mpeg_play benchmark under Mach3+AFSout and the video_play benchmark under Mach
3.0. Throughout the range of TLB sizes, increasing associativity reduces the total TLB
handling time. These figures illustrate the general “rule-of-thumb” that doubling the size
of a caching structure will yield about the same performance as doubling the degree of
associativity [Patterson90].

Some benchmarks, however, can perform badly for TLBs with a small degree of
set associativity. For example, the graph in Figure 3.9 (p. 57) shows the total TLB miss

handling time for the compress benchmark under OSF/1. For a 2-way set-associative TLB,
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Figure 3.8 Total TLB service time for TLBs of different sizes and
associativities
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Figure 3.9 Total TLB service time for compress under OSF/1

compress displays pathological behavior. Even a 512-entry, 2-way set-associative TLB is
outperformed by a much smaller 32-entry, 4-way set-associative TLB.
These three graphs show that reducing associativity to enable the construction of

larger TLBs is an effective technique for reducing TLB misses.
3.12 Summary

This chapter demonstrates the importance of understanding the interactions
between TLBs and operating systems. Software-management of TLBs magnifies the
importance of this understanding, because of the large variation in TLB miss service times
that can exist.

TLB behavior depends upon the kernel’s use of virtual memory to map its own
data structures, including the page tables themselves. TLB behavior is also dependent
upon the division of service functionality between the kernel and separate user tasks.

Currently popular microkernel approaches rely on server tasks, but can fall prey to
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performance difficulties. Running on a machine with a software-managed TLB like that of
the MIPS R2000, current microkernel systems perform poorly, even with only a modest

degree of service decomposition into separate server tasks.



CHAPTER 4

Instruction Cache Performance and Design
Trade-offs to Support Operating Systems

4.1 Introduction

It is well recognized that the continuing disparity between processor and memory
speed continue to make instruction and data caches crucial to overall performance. The
data in Figure 4.1 reaffirms this point, showing that both Ultrix and Mach spend

approximately 70% of their stall cycles servicing cache misses.

I-cache % @ ultrix
D-cache / l l I—/ﬁ kc_hw
Write Buffer %
TLB:
Other @
~(l)' - '0.1' ; ‘0.2' B '0.3. a '0.4

CPI component
Figure 4.1 Stall breakdown by architectural component

The figure shows the architectural stall components for the workload suite* running
on a DECstation 3100.

We excluded the micro-benchmarks 10zone, mab and ousterhout,

59
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Figure 4.1 (p. 59) also shows a fundamental difference between Ultrix and Mach’s
cache behavior. While Ultrix stresses the D-cache more than I-cache, Mach’s major source
of stalls is the I-cache, over 60% greater than Ultrix. This was a surprising result because
intuition suggested that the lack of locality in OS data structures should dominate cache
performance. However, almost every benchmark consistently showed Mach’s I-cache
performance to be worse than its D-cache performance.

We believe that this shift, between D- and I-cache, represents a trend: that OS and
software technologies are increasing the importance of the I-cache. For architects, this
suggests a careful re-evaluation of I-cache designs, a difficult task since most commonly
used benchmarks perform very well in very small I-caches [Gee94]. For OS designs, this
performance problem could limit the advancement of OS technologies.

This chapter examines the reasons for and impact of increasing I-cache misses,
using Monster traces to drive trace-driven simulators that model various memory system
architectures. Section 4.2 analyzes how the structure of Mach increases the importance of
the I-cache. Section 4.3 explores I-cache trade-offs and then uses those results in
Section 4.4 to determine the best on-chip memory organization. The last section explores
other architectural techniques, such as increasing bandwidth, prefetching, bypassing and

instruction stream-buffers, that can further reduce stalls due to the instruction stream.
4.2 Reasons for increased I-cache misses

The longer invocation path to services in Mach is one of the major components
responsible for the increase in I-cache misses. Our measurements' indicate that the round-
trip call and return path to services in Ultrix (steps (a) and (b) in Figure 4.2 (p. 61) is less
than 100 instructions. In contrast, the call path (1-4) under Mach consists of

approximately 1000 instructions and the return path (5-7) uses about 850 instructions.

1. Similar measurements can be found in [Ford94].
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In Ultrix, BSD UNIX services reside in the kernel and are accessed through a single
system call trap. In Mach, services reside in a user-level BSD server accessed via a
remote procedure call (RPC) mechanism that passes through the Mach kernet.
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Note that these are just service invocation paths. The actual OS code that provides the
service must still execute in both Ultrix and Mach, but differences with respect to this
service code are minor because both systems are derived from the same 4.2 BSD code
[Chen93]. Using the instruction path lengths above, and assuming 4 bytes per instruction,
we see that Mach increases the code path to OS services by approximately 4 K-bytes of
instruction memory and the return path by about 3 K-bytes. These are long paths relative
to the typical size of on-chip instruction caches in today’s microprocessors. For example, a
single system call under Mz;ch will completely overrun a 4-Kbyte on-chip I-cache on the
path to the BSD server, which will then have to warm the I-cache to run well. The return
path overruns the I-cache as well, leaving the calling user task with a cold I-cache. Our
measurements show that roughly one third of the time spent in the kernel during
mpeg_play is due to the send and receive messages that compose RPCs, so this case
happens frequently enough to have a substantial impact on overall I-cache performance.

Other structural differences are also responsible for increased I-cache misses under
Mach. For example, in Ultrix, paging is implemented in the kernel, but Mach supports an
external pager, running in user mode, that is responsible for locating pages in a backing
store after a page fault [Draves91]. Similarly, recent versions of Mach have migrated I/O
device drivers from the kernel to the user level [Forin91]. As a third example, Black et al.
have described efforts to further decompose monolithic API servers (like the BSD server
shown in Figure 4.2) into multiple, small-granularity servers (e.g., for naming,
authentication, and file access) [Black92]. Each of these restructuring trends spreads out
system code and further increases instruction path lengths between software modules.

It should be noted that the long path to system services under Mach is not a case of
poor coding. This service invocation mechanism is common to other modular, object-
oriented software systems (e.g. [Khalidi92]) and simply represents a cost for the
advantages that they offer over traditional, single-service systems. In fact, the Mach

implementation of RPC has been highly optimized through the use of techniques such as
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stack-handoff scheduling and continuations [Draves91] for the common case of small
messages, and out-of-line (virtual memory) transfers for the expensive case of large
messages [Dean91].

Bershad has suggested other ways to avoid the costs of RPC, such as pre-allocating
buffers between client and server address spaces for small messages using virtual memory
primitives, or migrating more OS services into the client’s address space as is currently
done to a limited degree with the Mach emulation library [Bershad92]. Avoiding RPCs
through more aggressive virtual memory sharing, however, is likely to shift misses from
the I-cache to the TLB.

Though they have their performance penalties, these OS-structuring approaches
offer important advantages. Dynamically-loaded emulation libraries enable binary
compatibility. External pagers can simplify the implementation of distributed database or
network-shared-memory applications. User-level device drivers are easier to debug, port
and install, and small-granularity OS servers enhance opportunities for code reuse.

In summary, the functional advantages of modular, object-oriented software
systems have been extensively documented in the literature. They include enhanced code
re-usability, increased fault tolerance and ease of service distribution. We accept these
trends as given, but note that they shift utilization of hardware components and thus
prompt a re-evaluation of hardware architectures. In particular, the importance of I-caches
and TLBs seems to increase relative to D-caches according to direct hardware

measurements of a machine that implements its caches off-chip.

4.3 Instruction cache performance

The top left graph in Figure 4.3 (p. 64) shows that under Ultrix, small on-chip
I-caches have fairly low miss ratios. For example, the miss ratio for an 8K-byte I-cache

with a 4-word (16-byte) line is 0.028 and a 32K-byte I-cache with a 4-word line size has a



64

0.3
1 Ultrix 2.5?
025- ] B 2m8
] 2]
02
9 ] o~ 0%
g _1.5'_
8 &
g 0 - 8%
-0 1634
-~ 3268
Line Size (Wards) Ling Size (Words)
0.3*{
| Mach 2'51
I]
@
id
s o
0.-
J0--—g- g~ .V
K T
S G SR S
g—--o---0
I I T~

Line Size (Words) Line Size (Words)

Figure 4.3 Instruction cache performance

This figure plots average I-cache miss ratios and l-cache contribution to CPI for the
entire benchmark suite for various direct-mapped |-cache organizations. Notice that
cache pollution due to large line sizes is more of an issue for Ultrix than for Mach.

The benchmarks include: 10zone, jpeg_play, mab, mpeg_play, ousterhout and
video_piay.
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miss ratio of 0.013. Note that cache pollution due to large line sizes is an issue when Ultrix .
runs with small caches.

The bottom left graph in Figure 4.3 (p. 64) shows that Mach generally exhibits
higher I-cache miss ratios than Ultrix. For example, an 8K-byte, 4-word-line I-cache
configuration under Mach has a miss ratio of 0.065, which is more than double that of
Ultrix. The plot indicates that I-cache performance under Mach improves in larger
increments (relative to Ultrix) as line size is increased. Further, cache pollution does not
occur even for the largest line sizes of 32 words. This suggests that large I-cache line sizes
are an effective means for lowering miss ratios under Mach. In fact, doubling the line size
is more effective in reducing the miss ratio than doubling the cache size. To see why this is
so, recall that Mach has a long instruction path to its user-level API servers. The
instructions along this path typically execute only once per invocation of an OS service
and have a high probability of being displaced in a small cache before they are used again.
Because of this, large line sizes are effective in reducing the average cost to load these
instructions into the cache for each use. However, as shown in the CPI plots of Figure 4.3
(p. 64), the degree to which large line sizes can be used without increasing overall CPI is
limited due to the additional cycles required to load a large line. For the miss penalties that
we selected, I-cache line sizes of 16 words mark an upturn in the CPI plot.

Mach also experiences greater benefits from increased I-cache associativity than
does Ultrix. The left side of Figure 4.4 (p. 66) shows that Ultrix exhibits the largest
reductions in miss ratio for small caches and primarily when moving from a direct-
mapped to a 2-way set-associative I-cache. On the other hand, increased associativity
yields benefits over a broader range of cache configurations under Mach. For Mach,A
highly-associative I-caches can reduce the miss ratio, but cannot completely overcome the
problems created by Mach’s long code paths. An 8-way, 4K-byte I-cache still has a miss

ratio of over 0.03.
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Figure 4.4 Performance of set-associative instruction caches

These plots show increased I-cache performance for various cache sizes and
associativities. The line size for both graphs was fixed at 4 words. Increased
associativity benefits Mach more than Ultrix over a broader range of cache
configurations. The CPI graphs plot the I-cache's contribution to CPI.

The benchmarks include: 10zone, jpeg_play, mab, mpeg_play, ousterhout and
video_play.
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For small caches, Mach’s D-cache miss ratios are also higher than those of Ultrix
(not shown). However, unlike the I-cache where longer line sizes and associativity
significantly improved miss ratios, D-caches see a more modest improvement. Further, in
contrast with I caches, line sizes greater than 8 words begin to result in D-cache pollution
under both operating systems. For our miss penalties, D-cache line sizes above 4 words

begin to increase CPL

4.4 Cost and benefit analysis

The data in Section 4.3 show that tuning the I-cache’s line size and increasing
associativity can significantly reduce CPljq. Once system parameters are tuned,
however, the most influential component is the cache size. Unfortunately, microprocessor
technologies prohibit large on-chip primary caches. Even with sufficient chip area, timing
constraints limit the size of on-chip primary caches. Table 4.1 (p. 68) lists a number of
current-generation microprocessor cache configurations. The largest primary on-chip
cache is the SuperSPARC with 36-KBytes'.‘ Even the DEC 21164 with 112-KBytes of on-
chip cache can only use 16-KBytes for primary cache.

It is important for architects to evaluate design on-chip memory design trade-offs
within a specific chip-area budget. Therefore, we use the I-cache performance results from
Section 4.3 and the TLB results from Chapter 3 to evaluate the impact of various memory
configurations within a limited area budget. We begin by outlining the area model uses to
estimate the cost of various memory components. We then combine the area estimates

with performance results to construct a list of the best performing configurations.
44.1 Cost analysis

Several cost models have been developed to estimate the die area required for a
given memory structure (e.g. register file, cache, TLB, write buffer) [Mulder91, Hill84,
Alpert88]. This study uses the MQF model mentioned earlier [Mulder91]. The MQF
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Processor Die Sizze l-cache . _ D-cache . TLB
(mm®) | (size, assoc, line) (size, assoc, line) (size, assoc)

Intel 1486DX 81 8-KB  4-way (unified) 32-U 4-way
Cyrix 486DX 148 8-KB  4-way 4-word (unified) 32-U 4-way
Intet Pentium 296 8-KB 2-way 8-word 8KB  2.way 8-word 324 64-D  4-way
DEC 21064 234 8KB tway 8-word 8-KB  1-way 8-word 324 12-0 fult
DEC 21164* 8-KB  1-way 8-word 8KB  1-way 8-word

Hitachi HARP-1 264 8KB  t1.way 8-word 16-KB  1-way 8-word 128-1 128-D 1-way
PowerPC 601 121 32-KB  8-way 16-word (unified) 256-U 2-way
MIPS R4000 184 8-KB  t-way 8-.word 8KB 1-way 8-word 96-U full
MIPS R4200 81 16-KB 1-way 8-word 8KB tway 4-word 64-U full
MIPS R4400 184 16-KB  1-way  8.word 16-KB  1-way 8-word 86-U full
MIPS TFP 298 16-KB  1-way 8-word 16-KB  t1-way 8-word 384-U 3-way
SuperSPARC - 20-KB  5-way 16-word 16-KB  4-way 8-word 64-U full
MicroSPARC 225 4-KB tway 8-word 2:KB  t-way 4.word J2-U full
TeraSPARC - 4KB  tway 8-word 4-KB  1-way 8-word _ — —_—

Table 4.1 On-chip memory in current generation microprocessors

Typical parameters for current on-chip memory structures. These data were collected from a
variety of processor data books and issues of Microprocessor Report during the past two
years [MReport 92, MReport93]. Throughout this paper we report line sizes in 4-byte words

* The DEC 21164 also has a 96-KByte on-chip second level cache.

model considers the memory cell type (dynamic or static), tag and data bits, organization
(fully-associative, set-associative or direct-mapped), drivers and comparators to estimate
die area using a technology-independent unit, the register-bit equivalent (rbe). This section
summarizes the costs of TLBs and caches as predicted by the MFQ model using the
default parameters defined by the authors of the model.

Figure 4.5 (p. 69) graphs the area cost of TLBs with varying degrees of size and
associativity. For small, set-associative TLBs (< 64 entries, 1- to 8-way set-associative),
increasing the degree of associativity increases the relative die area required. A 16-entry,
8-way set-associative TLB requires 3 times the area of a 16-entry, direct-mapped TLB.

For larger TLBs (> 64 entries), associativity has a much smaller impact on die area. For
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Figure 4.5 Area cost for TLBs of different sizes and associativities

This figure shows the size of various TLB configurations. Fully-associative TLBs
require significantly more area than set-associative TLBs. For large TLBs, component
sharing (sense amps, drivers, etc.) may actually make some associative structures
smaller in area than direct-mapped TLBs.

example, with the largest TLB size (512 entries), there is little difference in cost between a
direct-mapped TLB and an 8-way, set-associative TLB.

Cost trade-offs also exist between set-associative and fully-associative TLBs (see
Figure 4.6). Direct-mapped TLBs are always smaller than fully-associative TLBs.
However, for small TLBs (< 64 entries), full associativity costs less than 4- or 8-way set-
associativity. For TLBs with 64 or more entries, the opposite is true. In this range, a fully-
associative TLB requires twice as much area as a 4- or 8-way, set-associative TLB. For
example, for approximately the same cost, designers can choose either a 256-entry, fully-
associative TLB or a 512-entry, 8-way TLB.

For larger memory structures, such as caches, there is a different set of trade-offs.
Figure 4.7 (p. 71) plots the relationship between area cost and cache organization. Larger
line sizes reduée the cost of a cache by as much as 37% when moving from a 1-word line

to an 8-word line size. Associativity (not pictured) has a much smaller impact on die area.
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Figure 4.6 Area cost of set-associative TLBs
relative to fully-associative TLBs

This graph plots the cost of 1-, 4- and 8-way, set-associative TLBs relative to the cost
of fully-associative TLBs of the same size. For small TLBs, it is cheaper to build a
fully-associative TLB than to implement 4- or 8-way associative TLBs. For larger
TLBs, the trade-offs change; full associativity can cost twice as much as set
associativity,

In general, the MQF model gives a good approximation of the total cost for a given
memory structure. Mulder at al. compared the model’s area predictions against 12 actual
processor designs and found typical errors of under 10% and a maximum error of 20.1%.
The authors note several limitations of their model. First, it does not consider the
relationship between access time and area cost. Second, optimal layout geometry for
different memory sizes cannot be completely modeled. Third, changing the aspect ratio
can cause the model to underestimate actual area costs. To achieve a higher degree of
accuracy, designers should use their own model to determine cost trade-offs within their
specific processor technology. For the purposes of this paper, the MQF model is accurate

enough to allow us to estimate first-order cost trade-offs in on-chip memory allocation.
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Figure 4.7 Area cost for caches of different capacity and line size

This graph plots the cost of various caches with 1-, 2-, 4- and 8-word lines. Larger
line sizes reduce the cost by amortizing the cost of tag and status bits over more
data bits.

4.4.2 Performance-driven area allocation

To determine which on-chip memory system configurations have the best
performance within the constraints of a fixed, on-chip memory budget, we performed a
cost/benefit analysis by combining the cost estimates from the MQF model with our TLB
and cache performance data.

We selected a maximum die-area budget by examining various current generation
microprocessors (Table 4.1). The data show that most TLBs are between 32 and 96 entries
(fully-associative) while on-chip caches do not exceed 32K Bytes (for both instruction and
data). The MQF model predicts that the total of these memory structures should cost less
than 250,000 rbes. This relatively small amount of on-chip memory reflects technology
constraints that will continue for the next several years [MReport93]. High-end systems

will provide more on-chip memory, but access times will probably require that this be in a
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second-level cache. Moreover, trends towards inexpensive, scaled-back processors such as
the MIPS R4200 and the DEC Alpha will keep many processors’ on-chip primary caches
small.

To illustrate our optimization process, we need CPI values rather than miss ratios
or service times. Therefore, we assumed TLB miss penalties to be the same as with an
R2000 processor. Because this is a software-managed TLB, miss penalties range from
about 20 cycles for misses on user pages to over 400 cycles for kernel-space misses. As
noted previously, cache miss penalties were estimated to be 6 cycles for the first word in a
line and 1 cycle for each additional word. Of course, different miss penalties will lead to
different optimal configurations.

With 250,000 rbe’s as our maximum amount of die area for on-chip memory
structures, we used the MQF model to determine which combinations of TLB and cache
configurations would fit on-chip. The configurations explored are listed in Table 4.3. Next,
we used our TLB measurements and cache miss ratios from Mach to compute the
contribution to CPI for each configuration, and then sorted the possible combinations by
total CPI. The resulting list was very large.

Table 4.8 lists the 10 configurations with the lowest total CPI under Mach. All of

the best configurations include a 512-entry TLB. This is due to two factors. First, large

Total Storage - . .
Capacity Degree of Associativity |Line Size (words)
TLB 64 entries up to 512 1-, 2-, 4-, 8-way
entries and fully-associative (up to
64 entries)
I- and D-cache |2K-bytes to 32K-bytes [1-, 2-, 4-, and 8-way 1,2, 4,8, 16, 32

Table 4.2 TLB and cache configurations considered

The size for each passible TLB and cache configuration was computed using the MQF
model. Combinations of I-cache, D-cache and TLB configurations that required fewer
than 250,000 total rbes represent feasible allocations of on-chip memory that fit within
the design budget.
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TLB l-cache D-cache Total Cost | Total
(size, assoc) (size, line, assoc) (size, line, assoc) (rbes) cPl
512  8-way 16-KB 8word 8-way |[8KB 8-word  8-way 163,438 1.333
512 4way [16KB  8word Bway 8-KB 8-word  8-way 162,497 1.334
512  2-way 16-KB 8-word 8-way |8-KB 8word  B-way 162,579 1.335
512 8-way 32-KB 16word 8-way 18-KB 8-word  8-way 249,089 1.335
512 4-way 32.KB  i6-word B8-way |8-KB 8-word  8-way 248,148 1.336
512 8-way 32-KB 8word 4-way |8-KB 8-word  8-way 243,502 1.336
512 2-way 32.KB 16-word 8-way {8-KB 8word  8-way 248,230 1.337
512 4-way 32-KB 8-word 4-way |8-KB 8-word  B8-way 242,561 1.337
512 2-way 32-KB 8word 4-way |8-KB 8-word  8-way 242,643 1.338
512 8-way 16-KB 16-word 8-way [8-KB 8-word  8-way 167,815 1.339

Table 4.3 The ten best area allocations

The ten best allocations of die area given a budget of 250,000 rbes. Note that the
CPI of these configurations only differ in the third decimal place, making them
essentially equivalent in terms of experimental uncertainty.

TLBs substantially reduce the TLB’s contribution to CPI. Second, large TLBs do not cost
very much relative to on-chip caches. For example, a 512-entry, 8-way set-associative
TLB costs just 19,000 rbes while an 8K-byte, direct-mapped, 4-word-line cache costs over
74,000 rbes. Providing a lar;ge, set-associative TLB improves performance without
significantly adding to total die size.

With respect to caches, the top allocation increases the I-cache size at the expense
of the D-cache. Further, this allocation actually requires only 163,438 rbe’s, 35% less than
the maximum number of rbe’s and has only 16-Kbytes of I-cache. Costlier configurations,
like row four, supply more I-cache capacity, but their line size/associativity trade-offs
lower the system’s overall performance.

Most of the best performing configurations include a significant amount of cache
associativity. However, access-time requirements may prohibit 4- or 8-way set-associative
caches. Therefore, we computed another table by restricting cache configurations to set-

associativities of 1 or 2. Table 4.3 shows that this restriction increases the best possible
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TLB l-cache D-cache Total Cost
Rank | (slze, assoc) (size, line, assoc) (size, line, assoc) (rbes) Total CPI
1 5§12 8.way 32KB 8word  2-way 8KB 4wod  2-way 239,259 1.428
5 512 8way 32KB 4-word  2-way 8KB gwod  2way 248,628 1.447
13 512 B.way 32.KB 16-word  2-way 8-KB 8wod  2-way 232,040 1.462
21 512  8-way 32-KB 16-word  2-way 8-KB 2-word 2-way 241,256 1.473
24 512 8-way 32KB  4-word  2-way 4KB 4-word  2-way 228,214 1.475
27 256 8-way 32KB  4word  2-way 8KB 2word  2-way 249,684 1.477
59 64 Fuil 32KB 8wod  2-way 8KB d.word  2-way 225,438 1.497
61 128 8-way 32-KB  8-word  2-way 8-KB  4-word 2-way 226,971 1.498
73 5§12  8-way 32.KB 16-word  2-way 8KB 16-word  2-way 232,117 1.503
77 512 8-way 16-KB  8word 2way | 16KB 2word  2way 212,442 1.504
92 5§12 8way 16-KB  4-word 2-way | 16KB 2.word  2-way 219,138 1.51%
99 512 8way 16-KB  8-word  2-way 8KB 8wod  2-way 151,875 1.512
113 64 Full 32KB 4-word  2.way 8KB 6wod 2-way 234,807 1.516
1529 64 4-way 8-KB  1-word 1-way 16-KB  2-word 1-way 176,909 2.529

Figure 4.8 Configurations that cost under 250,000 rbes

Memory configurations restricted to caches that are 1- or 2-way set associative, This list
represents some of the first 113 best configurations and one of the poorer performing
configurations (#1529). Configurations with similar features were removed from the list.

CPI'to 1.428. Again, in these configurations, TLBs are large and I-caches are typically 2 to

4 times bigger than D-caches.

4.5

One of the limitations of the results from Table 4.2 (p. 72) and Table 4.3 (p.-73)is

Other techniques to improve I-cache performance

that I-cache performance is enhanced at the expense of D-cache size. However, a general

purpose workstation must support a wide range of applications, including scientific codes

that stress the D-cache. While trading D-cache for I-cache will help improve performance

for applications which rely heavily on the OS, it will significantly impact the performance

of other applications.
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There are other techniques for improving I-cache performance. In this section we
examine 4 common techniques: increasing bandwidth, instruction prefetching, instruction
bypassing, and pipelining the memory system. Because these experiments only test the
instruction stream, we have removed the I0zone, mab and ousterhout workloads and have
added several more instruction-intensive workloads including gcc, gs, sdet, nroff, groff.
Also, because of technology issues, we assume a two-level cache hierarchy. Level 1 (L1)

is the primary cache and Level 2 (L2) is a second level cache.
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Figure 4.9 L1 CPl;,s¢, Vs. line size

L1 contribution to CPlng, for an 8-KB direct-mapped I|-cache backed by an L2 cache
with a 6-cycle latency. The data show that as the bandwidth increases, so does the
optimal line size (denoted by black symbols). Note that for bandwidths greater than 16
bytes/cycle, the optimal L1 line size is actually greater than the L2's optimal line size.
This is due to the large difference in bandwidth and latency between the upper and
lower levels of the memory hierarchy.

The execution model for this figure assumes the processor must wait for the entire
cache line to refill before it resumes execution.

4.51 Bandwidth

Figure 4.6 (p. 70) plots the impact that increasing bandwidth has on LI cache
performance. The plot also shows that a side effect of increasing bandwidth is an increase
in the optimal L1 line size (denoted by the black symbols). This benefits cache design in
two ways. First, increasing the line size decreases the size of the cache tags. Second, the
reduction in area reduces the cache access time. The Mulder area model predicts a 10%
reduction in area when moving from a 16-byte to a 64-byte line (8-KB, direct-mapped
cache) [Mulder91] while the Wilton and Jouppi timing model shows a 6% decrease in

access time [Wilton94)].
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Number of Line Size (Bytes)
Lines Prefetched 16 32 64
0 0.439 0.335 0.297
1 0.305 0.271 —
2 0.270 _ _—
3 0.260 —_ —

Table 4.4 Prefetching

L1 CPl;g, for various line sizes and prefetch lengths. The L1-L2 bandwidth was 16
bytes/cycle and the processor must stall until both the miss and the prefetches
where returned to the cache.

The cells with an “—", denote data points that were either not reasonable, or that
showed an increase in CPljgi

The incremental improvements due to increasing bandwidth begin to diminish for
rates greater than 16 bytes/cycle. Further, building large cache buses (> 128 bits) can
consume a significant amount of chip area and possibly impact the overall cache size. This
suggests that once the L1-L2 interface reaches a bandwidth of 16 or 32 bytes/cycle, other
techniques might be better suited to improving the L1 cache performance. To investigate
this, we fixed the L1-L2 interface at 16 bytes/cycle and used this configuration to examine

the effects of prefetching, bypassing and pipelining.

45.2 Prefetching

One simple prefetch strategy is sequential prefetch-on-miss, where a cache miss is
serviced by returning both the missing line and the next N sequential lines into the cache.
Table 4.4 (p. 77) shows that for small line sizes, prefetching can significantly improve
performance. The table also shows a result noted by Smith [Smith82]: prefetching over
multiple small lines yields better performance than implementing a cache with longer
lines. For example, the 64-byte line has a CPI;,q,, of 0.297 while the 16-byte line with 3

sequentially prefetched lines has a lower CPI;, of 0.260. Both configurations return 64
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bytes of instructions, however, the longer ‘line size forces the system to fetch more
potentially useless instructions. This is particularly true for a miss on the second half of a
long cache line because the system must bring in the first half of the line. We have found
that when the miss occurs near the end of a line, instructions in the first part of the line are
often evicted from the cache before they are referenced. The finer granularity of a 16-byte
line overcomes this problem by beginning the fetch much closer to the missing word while
allowing the system to prefetch instructions that have a greater potential for being

referenced!.

45.3 Bypassing

Sequential prefetch-on-miss can be enhanced by placing the missing line into both the
cache and into special bypass buffers. These dual-ported buffers allow the processor to
continue execution as soon as the missing word has returned from the L2 cache. One
limitation is that while the cache refills, the processor may only fetch instructions from the

bypass buffers. Table 4.5 shows CPI;,, with and without bypass.

Another policy is to only cache prefetched lines if they are used by the processor. This
eliminates any cache pollution due to prefetching. However, our simulations show that
this policy does not improve performance over prefetching into the cache. Unless
prefetched instructions are used almost immediately, they are likely to be replaced due to
the limited number of bypass buffers. Placing the prefetched data into both the cache and
bypass buffers increases the chance that a prefetched instruction will be available if it is
accessed later in a program run. This is particularly useful for short subroutine calls and

forward branches in loops.

1. Our results also show that a 64-byte line with 16-byte sub-block placement can perform
almost as well as a 16-byte line with 3 line prefetch. On a cache miss, the system only
refills the missing sub-block and all subsequent sub-blocks in the line. While the sub-
block configuration had more cache pollution, the decrease in refill cost provided the
performance gains.
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Number of Line Size (Bytes) Line Size (Bytes)
Lines No Bypass Buff With Bypass Buff
Prefetched o Byp: uffers ith Bypass Buffers
16 32 64 16 32 64

0 0.439 0.335 0.297 —_ 0.296 0.226
1 0.305 0.271 —_ - 0.218 0.224
2 0.270 — —_ 0.205 -— —
3 0.260 —_ — 0.181 _— —

Table 4.5 Bypassing

This table compares the performance of configurations with and without bypass buffers.
The bypass buffers significantly reduce CPl,, by allowing the processor to continue
execution as soon as the missing word returns.

For each system, there were as many bypass buffers as lines returned from the memory
system (fetched + prefetched lines). The cells with an “—", denote data points that were
either not reasonable or that showed an increase in CPligy.

4.5.4 Pipelining

The final enhancement we investigated is pipelining the L1-L2 interface. This allows
the L2 cache to accept a request on every cycle and return a request on every cycle with
some latency between requests and refills. During cycles where the processor hits in the
cache, the pipeline is kept busy with sequential prefetch requests'. Prefetches are stored in

a special buffer, called a Stream Buffer [Jouppi90]. The stream buffer is a fully-associative

memory with 1 or more lines and is very similar to a bypass buffer.

The results in Table 4.6 (p. 80) show that stream buffers effectively improve I-fetch
performance until the stream buffer reaches 6 lines, after which the improvements are
marginal. However, stream-buffer performance might be further improved by

implementing multiple stream buffers and switching between the stream buffers on

1. Pipelining the memory system also allows data references to be mixed with prefetch

requests.
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Number of Lines in 16 bytes/cycle | 32 bytes/cycle
Stream Buffer CPlinstr CPlinstr

0 0.439 0.287

1 0.267 0.186

3 0.184 0.137

6 0.147 0.118

12 0.122 0.103

18 0.114 - 0.099

Table 4.6 Pipelined memory system with a stream buffer

The L1 cache line size is set by the bandwidth between the L1 and L2 caches (16 or
32 bytes/cycle). This allowed the memory system to accept a request on every
cycle.

The modei assumes that instructions can be moved from the stream buffer to the I-
cache without incurring a penalty. Some implementations may incur a 1 cycle
penalty during the move if an instruction fetch cannot be serviced by the stream
buffers.

subroutine jumps. ‘I'his would be particularly usetul for short leat-node tunction calls.
Another optimization would be to add a target prefetch table [Smith78]. This table would
store the addresses of non-sequential pairs of lines. As every fetch or prefetch is issued
into the pipelined memory system, the table is checked to see if there exists an entry. If so,
- the next prefetch would use the address stored in the table and not a sequential address.

We are currently evaluating both techniques.

4.6 Conclusions and fUture work

OS trends are shifting the way that components of existing computer architectures
are utilized. In particular, operating systems trends require more TLB and I-cache support.
At the same time, IC process limitations and cycle-time goals are forcing on-chip
microprocessor memories to fit into tight design constraints. Our cost/benefit analysis
found a number of die-area allocations that provide good support for Mach while staying

within a given area budget. In general, the best configurations include large, set-
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associative TLBs because they eliminate a substantial component of CPI for relatively
little cost and I-cache 2 to 4 times larger than the D-cache. Further, large I-cache line sizes
were found to be very effective in reducing both CPI and die area without leading to cache
pollution under Mach. We also explored other instruction fetching techniques that do not
require a significant amount of chip area, but that nevertheless do effectively increase the
performance of a primary I-cache. These techniques reduce the need for larger I-caches,
allowing designers to allocate chip area for structures such as D-caches, prefetch buffers

and branch prediction units.

This work could be extended in two ways. First, we did not consider the impact of
size and associativity on memory access times in a rigorous fashion. An accurate access-
time model, such as that developed by Wada et al., could be used to add another dimension
to this style of cost/benefit analysis [Wada92]. Second, we only considered the I-cache, D-
cache and TLB in die area allocations. A more ambitious study could model the die-area
cost and performance benefits of other architectural structures, such as write buffers, pre-
fetching units, streaming buffers, branch-prediction units and floating-point units to see if,

or to what extent they should be allocated space under a given microprocessor die budget.



CHAPTERS5
Building a Framework for OS/architecture Analysis

5.1 Introduction

Most OS and architecture performance research has focused on isolated areas of
the system, illuminating the behavior of some system components, but unable to provide
an understanding of how the various components fit into a complete picture of the system.
Our work has shown the importance of developing this complete picture. By examining
both the OS and architectural point-of-view, we have developed an understanding of how
various design issues impact each other and the performance of the system.

This chapter continues the discussion by surveying previous and concurrent work,

Most previous work has focused on small portions of the overall system, making it
difficult to generalize the results. To help overcome this problem, we have used our work
to build an OS/architecture framework which partitions OS/architecture research into
three levels. The framework is shown in Figure 5.1 (p. 83).

At the lowest level of the framework hierarchy are hardware structures such as
pipelines, caches, and TLBs. These structures must execute the software as efficiently as
possible. Above the hardware is the software/hardware interface through which the
operating system supports and manages the underlying hardware structures. This is also
the level where architectural policies, such as virtual vs. physical caches, constrain the
software. At the top of the framework are high-level OS issues that determine the lower

levels use and behavior.

82
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Figure 5.1 OS/architecture framework

There are three levels to the OS/architecture framework. Level 1 contains hardware
structures. Leve! 2 Is the hardware/software interface. Level 3 is the higher-level OS
design and implementation issues. By examining the behavior and interaction
between each level, it is possible to understand the entire system’s performance.
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Throughout this chapter, we use the framework to structure the discussion,
examining where each study fits within the hierarchy, and where works span multiple
levels of the hierarchy. We also look for points of commonality and possible trends. The
goal is to combine our results with previous and concurrent work into a framework that
provides system designers with a better understanding of OS/architecture interactions.

Section 5.? reviews work at the lowest level of the hierarchy. It is followed by a
discussion of the hardware/software interface level and OS implementation issues in
Section 5.3. Section 5.4 explores the top level of the hierarchy, tracing various high-level
design decisions through the framework to understand how these decisions ultimately

effect performance.

5.2 Hardware efficiency

Most architecture studies that consider the operating system have focused on the
efficiency of hardware structures [Satya81, Smith82, Emer84, Clark85, Alexander85,
Clark85, Alexander86, Clark88, Agarwal89, Flanagan93, Chen94, Cvetanovic94,
Maynard94]. Using hardware monitoring or tracing facilities to gather measurements and
traces from actual machines, each of these works accurately characterizes the performance
of a running workstation. They are also some of the few works that have been able to
quantitatively analyze how various architectural design trade-offs impact overall
performance.

We begin our discussion by examining various cache performance studies,
followed by an analysis of the TLB and other architectural features such as write buffers
and multi-issue machines. The results are compared to find points of commonality and
possible trends. We also relate the previous results to our own and to three concurrent

works [Flanagan93, Chen94, Maynard94].
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5.2.1 Caches

Probably the most common result found in many previous studies is that operating
system references hurt cache performance. Clark and Agarwal both cite Milandre et al.
[Milandre75] and Harding et al. [Harding80] as two of the earliest published works
describing this result — a result which has been confirmed by subsequent measurements
[Smith82, Alexander86, Agarwal89, Flanagan93, Chen94, Nagle94, Maynard94]. Agarwal
notes that both OS references and multiprogramming effects contribute to the difference
between user-only and user+OS measurements, with user+OS miss rates typically double
user-only miss rates.

Two previous works provide data suggesting that conflict misses between user and
OS references are not a significant problem [Agarwal89, Chen94]. In both works, conflict
misses between OS and user code usually accounts for between 10% and 20% of the total
miss count. Measurements by Flanagan, however, are quite different [Flanagan93). For
Mach 3.0 running the sdet benchmark, 30% to 40% of cache misses where due to conflicts
between user and system! code, with the percentage increasing with larger degrees of
cache associativity.

To understand the different results, we measured the number of OS/user conflict
misses across our workload suite. Figure 5.2 (p. 86) shows that the percentage of conflict
misses is highly dependent upon the workload. Chen uses benchmarks very similar to
groff, real_gcc, and verilog, while Flanagan concentrates on sdet. Therefore, our
measurements confirm both Flanagan and Chen’s results, showing that they are not truly
contradictory.

Our results also show that conflict misses are highly dependent upon the size of the

cache (Figure 5.3, p. 87). We believe this is because larger caches reduce the number of

1. Both Flanagan and Chen define system references to include the user-level BSD server and OS
kernel.
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Figure 5.2 Variation in conflict misses

There is a wide variation in the number of misses between OS (kernel + BSD
server) and user code. This data was collected from a DECstation 3100 with 64-
KBytes of split instruction and data cache, running under Mach 3.0

inter-task conflict misses faster than they reduce the number of intra-task conflict misses.
For example, a small 4-KByte cache cannot hold all of the instructions required to perform
an RPC under Mach 3.0. Therefore, Mach conflicts with itself as it performs an RPC. A
256-KByte cache can hold the entire path, increasing the intra-task conflicts as a
percentage of total misses.

Agarwal’s data also showed that OS misses under Ultrix contribute a larger
fraction of total misses than under VMS. This is an interesting result because it points to a
potential trend: a significant increase in the operating system’s contribution to the overall
cache miss rate. Just like Ultrix and Mach, VMS and Ultrix are fundamentally different
operating systems. VMS i)laces all system services and system commands inside the

operating system kernel. Ultrix, a BSD version of UNIX, places many system commands
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Figure 5.3 Variation in conflict misses across cache sizes

The number of OS/user conflict misses increases with increasing cache size.

in applications programs like cat, grep, and Is. This difference represents a decomposition
of OS functionality, shifting services outside of the kernel and into user space. Our results
show a similar trends between Ultrix and Mach 3.0 (Figure 5.4, p. 88).

Many of the works also evaluate how various cache parameters (size, associativity,
and line size) impact OS and user codes. Agarwal shows that even with large caches (1-
MByte), both user and system references (instruction and data) have a miss rate of at least
1% [Agarwal]. However, this result may be due to the limited size of the traces! (<512-K
references). [Flanagan93] uses much longer traces (> 1 billion references) and shows that
a 256-KByte, 8-way set-associative cache can reduce the combined I- and D-cache miss
rate to 0.33%. [Maynard94] shows similar results for instruction caches. However,
Maynard et al’s D-cache results measure a 1-MByte D-cache miss rate over 2% for

commercial workloads. such as TPC or SDET.

1. Agarwal uses a technique called “trace stitching” to create a long trace from shorter segments.
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For each cache size, the percentage of total misses due to Mach 3.0 (kernel + BSD
Server) is larger than for Ultrix. However, as cache size increases, the difference

between Ultrix and Mach decreases.

For smaller caches, in the range of 8-KByte to 32-KByte, Agarwal and Flanagan

we have used.

1. This is not to suggest that our workloads do not stress the memory system. It only shows that

there are even bigger workloads.

both show direct-mapped unified cache miss rates between 2% and 7%. Maynard et al.’s
commercial workload results are much more pessimistic, with I-cache miss rates between
4% and 22%, and D-cache miss rates between 4% and 10%. Our own results show miss
rates similar to Agarwal and Flanagan. The difference between Maynard et al.’s data and
our own results can be traced to differences between the workloads. Commercial

benchmarks such as TPC, LADDIS require significantly more memory than the workloads
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Comparing the work of Smith and Clark with our work and that of Chen and
Maynard et al., we see a shift in the relative importance of I- and D-caches [Smith82,
Clark84, Chen94, Maynard94]. Smith and Clark both see more D-cache than I-cache stalls
while the other works show that I-cache stalls are significantly greater than D-cache stalls.
Our own data in Chapters 2 and 4 show that the I-cache is responsible for the largest
portion of stall cycles. In Maynard et al.s’ data, the I-cache miss rate is typically twice the
D-cache miss rate for caches in the 8-KByte to 32-KByte range. Because there are many
more instruction references than data references, the I-cache miss rate will be the
dominant factor for small caches. This is an important result because most processors
provide a very small on-chip level 1 instruction cache (see Table 4.1, p. 68).

There are two reasons for this shift: 1) the OS and software trends discussed in
Chapter 4; 2) Smith and Clark’s results are from a CISC architecture. Since CISC
machines execute far fewer instructions that RISC machines [Bhandarkar91], it is possible
that architectural differences influence the relative importance of the I-and D-caches.

There is also some agreement on the effects of tuning the cache line size. Using a
combined I- and D-cache, Agarwal shows that increasing line size does improve the cache
miss rate. However, the largest benefit from longer line sizes is seen in larger caches (> 32-
KBytes), a result influenced by the unified cache used in [Agarwal89]. The measurements
of Maynard et al. and our own measurements distinguish between instruction and data
references. For I-caches both works show a significant improvement in overall miss rate
with increasing line size!. For the D-cache, Maynard et al. shows only a small

improvement in miss rate for line sizes greater than 16 Bytes.

1. Our results for Mach are similar to Maynard et al., for Ultrix, small I-caches cannot tolerate
large line sizes (> 8 Bytes).
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522 TLBs

In general, TLB stall cycles account for a small portion of a program’s total
execution time (usually under 10%) and have fairly low miss rates (usually under 4%).
Clark’s studies show TLB misses consume 6% to 8% for the VAX-11/780 and 4.6% for
the 8800 [Clark85a, Clark88]. The reduction is due to the increased size of the 8800
TLB— the VAX-11/780 has an 128-entry TLB, the 8800 has a 1K-entry TLB. Clark et al.
note that while the 8800 TLB is 8 times larger than the VAX-11/780, there is only a 1/3
reduction in TLB stall cycles. They hypothesize that the small decrease may be due to
software’s increasing code and data size. Our measurements confirm this hypothesis,
showing that, on average, TLB stall cycles account for 2% of our workloads’! run times
under Ultrix and 8% under Mach.

[Satya81, Alexander85, Clark85, Chen92, Talluri92] show that TLB size is an
important consideration. Until a workload’s working set can be mapped by the TLB, TLB
stall cycles will significantly impact overall performance. Associativity can eliminate a
significant number of conflict misses. However, because of the coarse granularity of a PTE
entry2, TLBs are much more sensitive to small amounts of associativity than caches. For
example, Clark and Emer found that a 2-way set-associative TLB performs as well as a
direct-mapped TLB that is 4 times larger [Clark85].

Several studies reveal a large variation in TLB service cost. The VAX-11/780
average TLB-miss service time is 21 cycles [Clark85]. Huck and Hays and our work show
the average ranging from 10 to 60 cycles depending on various implementation issues
[Huck93]. Some works estimate that the increasing disparity between cache and main

memory access times will increase the cost of a TLB miss to between 60 and 100 cycles

1. Averaged over the workloads, groff, gs, jpeg_play, kenbus, mpeg_play, nroff, ousterhout,
real_gcc, verilog and video_play.

2. Ontoday's' processors, each TLB entry typically maps at least 4-KBytes of memory.
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[Chen92, Talluri94]. Without careful consideration of TLB management design, it is
possible that future systems could see these large miss penalties. However, better TLB
designs aimed at reducing the TLB miss rate could alleviate some of the performance
impact.

There are some applications where TLB performance dominates the overall
performance. Talluri’s simulations show that coral, nasa7 and compress can spend 50%,
40% and 26% (respectively) of total execution time servicing TLB misses [Talluri94].
Graphics applications can also see significant TLB performance problems. McCormack
describes how drawing a line in the X display server can touch hundreds of 4-KByte
pages, each of which must be mapped by the TLB [McCormack91]. Because little time is
spent on any one page, TLB misses become a significant portion of the total cost.
McCormack suggests that the TLB provide a special TLB entry “dedicated to mapping a
frame buffer into virtual memory, ” in effect, providing architectural support for multiple
page sizes. The idea of architectural support for multiple page sizes have become very
popular in recent microprocessors and we will continue discussion of this in Section 5.3
(p. 93).

In general, all of the studies have shown that TLBs are a small but important aspect
of architectural performance. Subtle changes in the architecture or software structure can
significantly increase the cost of TLB management. While most measurements show that
TLB performance usually accounts for 10% or less of total execution time, TLB misses
account for up to 20% of the machine’s stall cycles. Further, architectural advances such as
multi-issue are increasing the relative importance of the TLB by increasing the number of
instructions executed per cycle. It is important that TLB designs and their impact on OS
technologies be continually re-evaluated to insure that TLBs consistently deliver good

performance.
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5.2.3  Other hardware issues

There are several other architectural components that can influence performance.
Chen’s results demonstrate that OS references stress the write buffers more than user
applications [Chen94]. This is understandable given the role of the OS as a mover of data.
Graphics services also heavily utilize the write buffer. In the R4200 processor, a low cost
version of the MIPS R4000, the write buffer design was modified to meet the graphics
needs of the WindowsNT operating system. It also contains an I-cache twice as large as
the D-cache, again to support Windows NT (see Table 4.1, p. 68).

Other potentially important architecture trends include superpipelining, multi-
issue (superscalar and VLIW), multithreaded and multiprocessor architectures. Many
works have examined OS interactions with multiprocessors, but most have focused on
numerically intensive workloads. Few have examined how the other architectural trends
influence OS design and performance. It is possible that superpipelining and multi-issue
might decrease OS performance. Or, superpipelining and multi-issue could improve OS
performance, especially if the compiler can better schedule OS code. The effects of newer
hardware structures, such as branch prediction, is also unknown. As an example, the
effectiveness of branch prediction methods that store extra state in the instruction cache

might need to be re-evaluated if OS I-cache performance continues to decline.
5.2.4 Summary of hardware issues

It is clear that caches are the most influential hardware structure for OS and overall
performance. The increased modularity, functionality and portability of software affect
performance by reducing the effectiveness of caches. Operating systems that neglect to
consider how their design and implementation impacts the cache could encounter

significant performance problems.
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TLB performance can also be a problem. Software’s growing trend towards sparse
address spaces significantly reduces the ability of a TLB to completely cache a software
system’s working set. However, multiple page sizes and Talluri’s subblock TLB work
show that hardware can support software trends if we understand how the trends utilize the
hardware [Talluri94].

(0N degigners might spend more time tuning OS code to leverage architectural
advancements. Once commonly used code paths are located, OS designers can tune the
code paths to the architecture. One should ensure that frequently used code paths do not
map to the same set of cache lines, causing a performance drop because of conflict misses.
For example, Tapeworm II's performance improved 33% by rearranging code to reduce

cache conflicts in critical sections of the simulator [McFarling89, Uhlig94c].
5.3 Direct hardware/software interactions

The hardware/software interface forms the middle portion of our framework. Its
main purposes are to define how the hardware and software communicate, the amount of
OS support necessary to manage the hardware, low-level virtual memory and protection
mechanisms and the ability of the OS to efficiently provide higher-level functionality. It is
also the place where OS and hardware designers can provide direct support for each other.

The first part of this section focuses on hardware management and policy issues
where the OS directly interfaces to the architecture. This is followed by a discussion of OS
techniques that avoid costly hardware functions and OS techniques which can improve the

hardware’s performance.
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5.3.1 Hardware management and policy
53.1.1 TLB design and management

There are a wide range of TLB and virtual memory designs. Some architectures
provide software-managed TLBs, others have hardware-walkers, while a few use both.
Some architectures provide fine-grained control over page size while others only provide
small and large page sizes. This diversity is a problem for operating system designers
because each system requires its own special memory management code. It also
underscores the fact that there does not seem to be a single “good” approach to virtual
memory support.

One of the most basic differences is hardware vs. software TLB management. The
argument against software managed TLBs is that hardware can more efficiently service a
TLB miss. However, the results in Chapter 3 show that if the architecture provides
sufficient support, software-managed TLBs can have very good performance. Further, as
memory latencies increase, the most significant component of a TLB miss handler could
become the cost of fetching a page table entry from memory. Software-managed TLBs
also provide a greater degree of freedom in determining page table structure and TLB
caching policy. This allows the OS to optimize the page table structure and TLB
replacement policy for a given software environment.

Another issue is the TLB’s replacement policy. Traditionally, we think of
replacement policies such as first-in first-out, least recently used, or random. For TLBs,
Uhlig et al. have shown that replacement policy does not significantly impact TLB
performance [Uhlig94b]. It is important, however, that the architecture allow the OS to
manage the replacement of performance-critical PTEs. In architectures like the MIPS, this
is accomplished by partitioning the TLB. Chapter 3 showed that the number of special
hardware slots can influence performance. Subsequent MIPS processors, like the R4000,

allow the operating system to determine the specific partition point. An alternative solution
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is to provide a special lock bit on each TLB entry, allowing the OS to dynamically adjust
the number of special entries to best suit the needs of the workload.

Many previous TLB designs did not provide space for process identifiers (PIDS).
Without PIDS, the TLB must be flushed on a context switch. Clark et al.’s measurements
showed that the impact of TLB flushing varies widely: anywhere from 0.4% to over 80%
of all TLB misses are due to flushing [Clark85a].

Another issue is how the TLB maps the operating system. Systems such as the
VAX-11/780 split the TLB into two sections, user and system [Clark85]. The VAX-11/780
maps the operating system while other architectures, such as MIPS, place the OS in
unmapped space, allowing all OS text and pre-allocated data references to bypass the
TLB. Other architectures use multiple page size TLBs to map the OS. Both the DEC
Alpha and IBM PowerPC provide a special “super-page” TLB slot to map the operating
system.

Architectural support for multiple page sizes has become very popular in recent
microprocessors. In the simple case, a few TLB entries are dedicated to mapping specific
software modules, such as the operating system kernel or X display server. The PowerPC
architecture provides a special BAT TLB which holds a few large pages managed by the
operating system [IBM94]. If the MIPS R2000 architecture provided this feature, mapping
the X and BSD servers could have reduced the growth in expensive TLB misses seen with
Mach 3.0.

Multiple page sizes can create page management problems for the operating
system. Talluri has shown that the overhead associated with changing the operating
system’s VM code, the increased cost of page table management, and the time required to
effectively utilize multiple page sizes can be prohibitive [Talluri94]. However, Talluri also
shows that small architectural changes in the TLB design significantly reduce the
operating system burden. This allows the system to use large pages when it is cost

effective while not penalizing the system when the cost is prohibitive.
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5.3.1.2 Exception handling

There are three important issues to consider in exce:ptionI handling: 1) the number
of exception vectors; 2) the amount of information the architecture provides the operating
system and; 3) the amount of hardware state and processing the OS must manage. Each of
these impacts the performance of the system by influencing the amount of OS code and
data movement.

Chapter 3 showed that the architecture should supply enough exception vectors so
that the operating system can provide efficient handlers. This is best done by architecting a
unique vector for every type of exception. While some may consider this overkill for
current OS and software, it does allew the system to grow, possibly avoiding performance
problems in future OS technologies.

It is also important for the architecture to supply enough information to the
operating system. Anderson discusses how, during a page fault, the Intel i860 processor
provides neither the type of page fault nor the faulting address [Anderson91]. This forces
the operating system to spend a considerable amount of time deriving this information (26
additional instructions according to Anderson). The page fault could be serviced more
quickly if the hardware simply provided the relevant information.

Architects also need to consider the amount of state the OS must manage during a
kernel crossing. Software exposed pipeline registers, such as those in the Motorola 88000,
or large register sets like the SPARC register windows, slow down a kernel crossing or
context switch [Anderson91]. Some architectures (e.g., MIPS and PowerPC) reserve
registers for the operating system, allowing the OS to sometimes avoid the expense of

saving and restoring a task’s register set.

1. The term exception has never been well defined by the architecture community. We refer to an
exception as any event that causes the machine to enter the operating system. This includes
TLB misses, floating point exceptions, and device interrupts.
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Finally, it is important to note that architectural trends such as multi-issue and
superpipelining are increasing the number of instructions that a processor executes
concurrently. Since most processors will abandon all uncompleted processing at a kernel
entry, there is the potential to waste many cycles of computation. While this has not been a
performance problem in the past, increasing concurrency may reach the point where this

does become a performance issue.

5.3.1.3 Cache management

To guarantee consistency between the caches and main memory, operating systems
must sometimes flush part or all of the cache. This is true for both physically and virtually
indexed caches. Some flushes are unavoidable, such as flushing a write-back cache before
a direct memory access (DMA) write. Other times, intelligent OS design can circumvent
or minimize the problem.

There are two basic management issues for physically-indexed caches. When a
physical page is initially mapped into the virtual space, the OS must insure that the cache
does not contain any references to that page. UNIX implementations that zero fill a data
page when allocating it to a task avoid this problem because the zero fill code (bzero)
flushes any inconsistent lines from the D-cache. Newly allocated instruction pages

_however, must still be flushed. DMA I/O can also create inconsistencies. Write-back
caches must be flushed before a DMA write to insure that main memory contains an up-to-
date copy of the data. Both write-back and write-through caches must be flushed before a
DMA read to guarantee that the cache will not contain stale data after the read is complete.

Virtually-indexed caches present a number of problems for the OS. Unlike
physical caches, which have a one-to-one mapping between cache and memory, virtual
caches can have a many-to-one mapping between cache and memory. Commonly referred
to as aliasing, this ability for the cache to contain multiple copies of a memory location

can create data inconsistencies. Figure 5.5 (p. 98) illustrates this problem.
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Aliasing can create performance problems. For example, copy-on-write improves
task creation performance by allowing the parent and child tasks to share one copy of text
and data (see Section 5.3.2, p. 99). However, unless the two sets of virtual addresses
(parent’s and child’s) map to the same cache lines, the two tasks will each cache separate
copies of the text and data. This increases the number of cache misses for two reasons.
First, the child task experiences compulsory misses while loading the text and data into the
cache. Second, the child task might displace part of the parent’s cache state, further
increasing the cache miss rate.

To overcome this problem, the operating system’s page allocation policy can

carefully map virtually-shared memory to the same cache lines. This requires aligning the
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pages modulo the cache size [Chao80, Inouye, Wheeler92]. Chao et al. and Wheeler and
Bershad present other techniques which allow the operating system to avoid or postpone
cache flushing. Both show that these techniques allow virtual caches to provide
performance similar to physically addressed caches. However, Chao et al. argues that
operating systems running on large, linear addressed spaces with virtual caches should use

shared memory to support memory sharing.

5.3.2 Avoiding costly hardware

The performance of some hardware mechanisms, such as memory copy, are
difficult to improve. Therefore, operating system designers have avoided copying data by
implementing software mechanisms that map the same physical memory into multiple
virtual address spaces. This memory mapping occurs without the knowledge of an
application, preserving a system’s semantics while avoiding unnecessary work
[Accetta86].

For example, when a UNIX task (process) forks, the semantics call for a complete
copy of the task to be created in its own address space. With memory mapping, the
operating system can virtually copy each page by marking every page read-only. Now,
only pages that are modified will be physically copied. In the worst case, a task will force
the operating system to copy every data page. However, the text pages can be shared by
both tasks. Memory mapping is also used to pass data between tasks. This allows one task
to fill a region of memory with data and then to pass the data to another task without
forcing the data to be copied.

Stodolsky et al. describe another software technique that avoids costly hardware
operations [Stodolsky93]. Operating systems often use interrupt masking to protect
critical sections of the operating system. However, architectures provide minimal interrupt
mask support, making it a costly operation. Relying on the fact that interrupts during

critical sections are infrequent, Stodolosky et al. set a software interrupt mask to indicate
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which interrupts need to be masked. Setting a software interrupt mask is an inexpensive
operation. The general case, when a critical section is not interrupted, can proceed at full
speed. In the special case, where a critical section is interrupted, the OS must provide a
special handling mechanisms. However, this cost remains relatively small relative to the

cumulative cost of masking hardware interrupts for every critical section.
5.3.3 OS strategies to improve hardware performance.

The operating system’s role as manager of hardware structures gives it an
enormous amount of control over the hardware’s performance. Some OS functions, such
as the operating system’s memory routines (e.g., bcopy, bemp), have very explicit control.
Other components, like page-mapping algorithms, have more subtle, implicit effects. This
section examines how the operating system’s hardware management functions influence
overall performance

Memory copy, fill, and compare functions are some of the most carefully tuned
components of an operating system. Using code techniques such as loop unrolling and
strength reduction, and an intimate knowledge of the ISA, write buffers, and cache sizes,
these functions attempt to deliver the maximum possible memory speed.

Operating systems’ also utilize RAM to help reduce the cost of I/0 operations.
When possible, small I/O requests are buffered in special kernel RAM caches. This allows
the operating system to more efficiently access the I/O device. Most operating systems
also provide a RAM based file system cache to store frequently accessed disk blocks.
Multiple requests to the same file can be serviced from the file cache, completely avoiding
a costly disk access.

Because of the high cost of accessing a disk, operating systems also employ
scheduling algorithms. The disk scheduler combines multiple disk requests, attempting to

maximize the amount of data that can be read from or written to a disk. Brusch and
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Kondoff have shown that disk scheduling techniques can increase the file system
performance several hundred percent [Busch85].

There are other, mort;, subtle, ways in which operating systems can influence
hardware performance. Sites and Agarwal observed that physically-indexed caches
usually performed worse than virtually-indexed caches in low multiprogramming
environments [Sites88]. The loss in performance is due to the conflict misses introduced
by poor page mappings. Kessler and Uhlig have also observed this effect [Kessler91,
Uhlig95]. Uhlig’s results, for several of our workloads, are shown in Figure 5.6 (p. 102).
Kessler’s work showed that careful page-mapping algorithms can reduce the number of
total cache misses by as much as 55%.

Torrellas has also examined conflict misses, focusing on code layout in the
operating system kernel [Torrellas95). This optimization is very important to OS
performance because bad conflicts cannot be removed by a page mapping algorithm.
Torrellas has shown that carefully arranging OS code to minimize the number of conflict
misses reduces the I-cache miss rate by 30% - 80% and improves overall execution time
7% - 15%.

Another technique the operating system can use to improve hardware performance
is to not cache references that will not benefit from caching. For example, memory
operations that are much larger than the cache cannot benefit from being cached. They
will, however, have the effect of flushing the cache. McCormack reports that caching the
DECstation 3100's frame buffer! usually reduced - the overall performance

[McCormack91].

1. The DECstation’s D-cache is 64-KBytes. The frame buffer is 864-KBytes.
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Figure 5.6 Variability in CPlj,, versus l-cache size and associativity

These plots show variability in performance over multiple runs of the same
workload in a physically-indexed l-cache. Performance varies because the
allocation of virtual pages to physical cache page frames is different from run to
run. Variability is reported on the y-axis in terms of one standard deviation of
CPlissir- The plots are reproduced from [Uhlig95).

5.3.4 Summary

The hardware/software interface presents a number of issues for both OS and
hardware designers. Some are obvious, such as TLB miss service time, while others, like
the effects of conflict misses in the cache, are more subtle and difficult to quantify. Most

influence both the architecture and the operating system. Architecture and OS designers
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need to understand this interface, and how it fits into the entire framework, in order to

design better computing systems.

5.4 System software issues

At the top level of our analysis framework (Figure 5.1) are the various OS
implementation and design issues that influence the behavior and performance of the
system. Unlike the previous layer, where there was a direct connection between software
and hardware interactions, this layer has few direct connections, making it more difficult
to reason about how design trade-offs will impact overall performance. The system
software issues layer is broken into two distinct components: OS implementation and OS
design. While the boundary between implementation and design is sometimes fuzzy, we
separate the two by distinguishing between the types of abstractions the OS presents and

how those abstractions are implemented.

5.4.1 OS implementation

Software engineers are constantly developing new techniques for implementing
software systems. However, at the most basic level of software performance, there are just
two main issues: 1) how many instructions are executed and 2) how much data is touched.
This section focuses on these issues, using several examples to illustrate how OS

performance can be improved.

5.4.1.1 Coding strategies and implementation

Producing efficient code is essential to achieving good OS performance. The size
and complexity of the operating system, however, can make this a difficult task. Porting
OS code between architectures exasperates this problem because hand coded routines
optimized for one system may not perform well on other systems. Further, OS code has a

very long life. Often a software designer uses implicit information to optimize a software
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module. The implicit optimization can be lost by subsequent code writers who do not
understand the rational for the original code’s structure.

One example of how code porting can result in poor performance is the Ultrix
UDP/IP research by Kay and Pasquale [Kay93]. Measuring the performance of a
DECstation 5000, Kay and Pasquale showed that the operating system software prevented
the network hardware from achieving its maximum performance. While some
performance loss due to software overhead is expected, their measurements showed
UDP/IP throughput was 1/5 the expected rate. Using good analysis techniques, Kay and
Pasquale discovered that the UDP/IP checksum algorithm was the problem. Carefully
written to exploit CISC architectural features, it was ill suited for the RISC-based
DECstation. By rewriting the code to take advantage of the RISC Architecture, Kay and
Pasquale improved UDP/IP throughput 33%.

Another example of poor code performance can be found in the Andrew File
system’s (AFS) local cache manager. AFS is a distributed file system that caches recently
used files to improve file system performance. Using the local disk to cache files should
allow AFS to provide cached-file performance near that of the local file system.
Stolarchuk, however, discovered that AFS code increased the cost of an AFS cache access
by 300% over the local file system [Stolarchuk92). Modifying the code to utilize an
.optimized, common-case code path, brought the performance of cached AFS files to
within 10% of the local file system’s performance.

Code tuning can eliminate some performance problems. However, overall code
structure often limits system performance. In these cases, a more radical restructuring of
the code, possibly adopting a different algorithm or paradigm while maintaining the
higher-level abstraction(s), can improve performance

For example, tuning the thread management routines can improve Mach 3.0’s
performance. However, Draves et al. have shown that a more radical change in thread

management can also improve performance [Draves91]. Typically, a thread that blocks
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inside the kernel must have its register state and stack saved before the OS can switch to
another thread. Using continuations to reduce the amount of state that the kernel must save
and restore when a thread blocks, Draves et al. were able to reduce the amount of thread
state by 85% and improve RPC performance by 14%.

A more radical restructuring technique is the migrating thread model used by Ford
and Lepreau to improve the performance of user level services in Mach 4.0 [Ford94].
Unlike many operating systems, where a thread must be “awakened” when a service is
requested, migrating threads allow the caller’s thread to execute in the server’s address
space. This bypasses the scheduler code and avoids the cost of saving and restoring server
state (registers, stacks). Ford’s implementation reduces the RPC instruction count by
500% and increases the speed of RPC by about a factor of 2 when compared with Mach
3.0.

Interestingly, the migrating thread optimizations actually increase the machine’s
CPI. While Ford and Lepreau could not determine the exact cause of this increase, they
believe that the higher percentage of load/store instructions in the migrating thread path,
coupled with the fact the code was not carefully scheduled, could account for the decrease
in architectural efficiency [Ford94). The increase also underscores the interplay between
software and hardware and the never ending need to evaluate performance at every level

of the framework.

5.4.1.2 Data movement

Section 5.3.2 (p. 99) discussed how operating systems can reduce data movement
by using virtual mapping techniques [Acetta86, Peterson90]. Mach 3.0 has extended this
idea by mapping IO devices into a user task’s address space [Forin91]. This reduces the
amount of user-kernel communication in some user-level servers.

Data movement can also be reduced through shared memory. Unlike virtual

mapping, which occurs without the application’s knowledge, shared memory is visible to
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the application. In fact, the application must explicitly request that the operating system
share memory between different address spaces. The X display server currently supports
shared memory [Corbet91].

Shared memory is also very useful on machines with virtually-indexed caches
because it removes most of the inconsistency problems associated with virtual mapping. It
can, however, increase the number of TLB misses because the TLB will hold a separate
entry for each address space. The HP Precision Architecture avoids this problem by

supporting multiple PIDs per TLB entry [HP90].
5.4.2 OS design

Almost all of the issues discussed so far can be associated with some measurable
cost. It may be difficult to determine the relative importance of the cost; it may be difficult
to understand how much of the cost is due to the hardware vs. the software. But usually it
is possible to isolate each component and determine some cost function.

This has not usually been true for high-level OS design issues. Combining all of
the software components into sophisticated abstractions obscures the importance of
various components and creates very complex and unforeseen interactions. This makes it
difficult to determine the system’s behavior and identify important performance issues.

Our results in Chapters 3 and 4 have shown that it is possible to correlate how
high-level design decisions influence performance throughout the framework. However,
this requires a careful understanding of each level’s components and how they interact.
The issues outlined in Section 5.2, Section 5.3 and Section 5.4.1 help architects and
operating system designers understand these interactions. We now complete the discussion

with two case studies.
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5.42.1 Example 1 - File cache design

To improve file system performance, many operating systems reserve a portion of
main memory for a file system cache. One version of the HP-UX operating system used
the same file system structure (I-nodes) to rnanage both the disks and file cache.
Braunstein et al. noticed that this design incurred substantial overhead! when managing
linear address spaces such as RAM [Braunstein89]. In particular, seeks within a file were
forced to traverse the I-node structure. To reduce this overhead, Braunstein et al. modified
the OS, using the VM system to manage the file cache (the system was called XMF). This
reduced the file cache’s seek time, improving application performance by as much as 30%.

Because the new file cache design increased the amount of virtual space used by
the system, Braunstein et al expected to see an increase in the TLB miss rate. When the
TLB miss rate was measured, however, its performance had actually improved, accounting
for 20% of the overall performance increase. At first, this result seemed counter-intuitive
— increasing the size of the VM space should increase the number of PTEs a TLB must
map. But this was not the case. The authors propose three possible reasons for the decrease
in TLB miss rate.

* Mapping the file cache into the VM space reduced the instruction

counts: fewer instructions, smaller working set, fewer TLB misses.

* The hardware TLB hashing algorithm interacted better with the

“spread-out” references with XMF.
* The contiguous virtual address space references of XMF minimized the

number of collisions on consecutive READs and WRITEs.

1. The overhead in terms of cycles is the same for both systems. But because RAM accesses are
much quicker than disk accesses, the overhead as a percentage of total cost is much higher in
the file cache.



108

This is an excellent example of how OS/architecture interactions often generate
unexpected behavior, underscoring the fact that OS/architecture interactions play an

integral part of system design and performance.

5422 Example 2 - VM management

The wide range of virtual memory support found in today’s architectures makes
the OS’s VM component one of the most difficult parts to port between machines. To ease
this burden, OS designers have proposed separating the OS’s virtual memory software into
two distinct parts:. the architecture-dependent code and the architecture independent code
[Rashid88, Abrossimov89]. With a well designed VM system, the machine independent
component can easily be moved between architectures by recompiling the source code,
leaving only the machine-dependent code to be ported to each architectures’s specific VM
support. Mach and another micro-kernel operating system, Chorus, implement their
virtual memory support using this type of structure [Rashid88, Abrossimov89].

Micro-benchmark measurements by Rasid et al. showed that Mach’s VM system
outperformed the native UNIX implementation [Rashid88] as measured by wall-clock
time. However, their measurements also showed that Mach spent more CPU time
(user+system) than either 4.3 BSD or SunOS 3.3 UNIX. While the wall-clock time is
important to end-users, the amount of CPU time is important to system designers because
it implies that the modularization of the VM system has an associated cost.

McRae investigated this cost using a hardware-based profiler [McRae93]. His
results show that while Mach’s VM performance was very good under micro-benchmarks,
more complex tasks, such as creating a task (fork), did have performance problems.
McRae traced much of the problem to the interface between the machine-independent and
machine-depend portions of the VM system. McRae suggests that optimizing this path

could improve overall performance.
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5.5 Summary

Throughout this work, we have shown how ©S/architecture interactions impact
performance and have advocated continuing the analysis of this problem. In reviewing the
literature, we realize that a significant number of performance studies have contributed to
the area. However, there was no unifying model that could place each work’s results
within the context of the entire OS/architecture framework. This has made it difficult for
designers to apply results outside of the specific systems.

We believe that the OS/architecture interactions framework is a step towards
solving this problem. Comparing various works and integrating their results into the
framework helps to build a more complete model which can be used to understand the
impact each work has on other levels of the hierarchy. However, it is just a framework, not
a complete picture of all system issues. Changes in architecture and OS systems can add
too or alter the framework, changing the behavior of the system and the relative

importance of system components.



CHAPTER 6

Where We Have Been and Where We are
Going

6.1 Summary

Our work is an important contribution to the study of OS and architecture
interactions. Techniques and tools similar to ours can be used by system designers to
identify performance hot spots, possibly averting serious performance problems. During
the course of this work, several announcements have shown that industry is responding to
OS/architecture issues. The MIPS R4200 design improvements for WindowsNT and the
IBM PowerPC’s support for 68000 emulation are two examples. However, there are also
examples where OS/architecture interactions have been overlooked. Apple was forced to
delay the release of its PowerPC Macintosh notebook because the PowerPC 603 had very
poor cache performance [MacWeek94]. Recently, IBM has announced the formation of a
new group focused on analyzing performance issues in object-oriented programming,
multimedia and microkernel operating systems [Clark94].

One of the limitations of any performance measurement study is that the results are
intricately tied to the systems evaluated. Our results are no exception. A different TLB
design could have withstood the increased stress presented by Mach. Better cache design
with prefetching might have reduced the impact of Mach’s larger working set. However,
our results are based on real architectures and reflect real performance problems. Further,
they provide insight into the causes of poor OS/architecture interactions, helping designers

understand why design trade-offs improve performance. This is an important contribution
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because while some designs may provide good performance, the reasons for the good
performance can be unknown. This is especially true of OS/architecture interactions.

There are three results that are important to the types of systems we have
evaluated. They are:

¢ Service decomposition and migration can degrade the performance of

the TLB.

* Increasing code paths make the I-cache the most important

architectural component.

* Changes in the architecture, such as better désigned TLB systems and

more sophisticated instruction fetching mechanisms can recapture
much of the performance lost to OS and software trends.

Generalizing even further, we believe there are two basic issues that architects
should consider. First, consider how the OS utilizes the caches. This is probably an
obvious statement, but operating systems like user applications need carefully tuned
caches. Second, provide a clean and efficient software/hardware interface. Most
OS/architecture interface logic requires very little chip area and often is not in the critical
path of the chip. Small enhancements such as additional registers for the OS or multiple

interrupt vectors can really help OS implementation.

6.2 Where are we going

OS and architecture advances during the last several years have found their way
into mainstream computing. Multi-issue processors, branch prediction, multi-level caches,
multiple-API's, and microkernel (or at least multi-server) technologies are now available
at your local computing store.

The design of future systems is not so clear. OS functionality will continue to
grow, through technologies such as Taligent, and applications will increasingly rely on OS

functionality. Architectures are also changing. HP and Intel have recently announced a



112

joint venture to develop a VLIW architecture. Other trends such as architecture emulation,
Networks of Workstations (NOW), Personal Digital Assistants and Set-top Computing
will also change the way we think about and use computing devices.

The increasingly important role operating systems are playing in computing is
making OS performance critical to overall performance. We hope that as the number of
OS/architecture performance studies grows, software and hardware designers will better
understand which performance issues are the most important and how to design operating

systems and architecture the work in concert, providing the best performance possible.
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continuation
cache2000

CAM
CPI

CPIinstr
DMA

IPC
Mach 3.0

miss rate

(O]
OSF/1

page table entry

PID

pixie

TERMINOLOGY

Andrew File System
A function that a thread should execute when it next runs.

A trace-driven cache simulator developed by the MIPS Cor-
poration.

Content Addressable Memory

Clock Cycles Per Instruction; CPI is one measure of the effi-
ciency of the hardware.

CPI due to instruction cache.

Direct Memory Access. Special hardware which performs
170 operations, allowing the CPU to perform other work.

interprocess communication

A micro-kernel version of the Mach operating system origi-
nally developed at Carnegie Mellon University

misses / (misses + hits); typically used to describe the effec-
tiveness of caches and TLBs

Operating System

A version of Mach 2.5 originally developed by Carnegie
Mellon University.

a mapping from a task’s virtual address space to the hard-
ware’s physical address space. Also used to hold protection
and usage information (e.g. read only, valid).

See process identifier.

A code annotation tool developed by MIPS Incorporated.
pixie annotates a program so that when the program is run,
the program will record the number of times each basic
block was executed. It can also annotated the program to
output the address of every instruction and data reference.
This address stream can be used to drive architectural simu-
lators like cache2000 or cheetah. Another tool, called pix-
stats, is used to perform static analysis on the basic block
counts output by a pixified program.
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pixstats A static analysis program that determines the execution pat-
tern of a program using a count of the number of times each
basic block was executed.

process identifier A unique number assigned to each process (task) in the Sys-
tem. In Mach there are also MIDs (Mach Identifiers) which

PTE See Page Table Entry.

TLB See Translation Lookaside Buffer

Translation Lookaside Buffer An hardware structure used to cache recently used page
table entries.

Ultrix The type of Unix operating system used on the DECstation
3100. Derived from BSD 4.2.
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