
LOOP OPTIMIZATION TECHNIQUES
ON

MULTI-ISSUE ARCHITECTURES

by

Dan Richard Kaiser

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer and Communication Sciences)

in The University of Michigan
1994

Doctoral Committee:

Professor Trevor N. Mudge, Chair
Associate Professor Richard B. Brown
Professor Edward S. Davidson
Professor Ronald J. Lomax
Associate Professor Karem A. Sakallah





© Dan Richard Kaiser 1994
All Rights Reserved



Dedicated to the memory of
Francis Marie Kaiser,

1911-1994.
ii



n-

their

er and

e stu-

ring

port

g my

jects

nce
ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Trevor Mudge for his co

tinued support and encouragement. I would also like to thank my committee for

comments and suggestions. Thank you to the students and faculty of the Comput

Communication Sciences Department, where I began my graduate work, and to th

dents and faculty of the Aurora project. Thanks to my parents for their support du

my school years. A special thanks to my family, Pam, Seth and Tadd, for their sup

and encouragement, and for bearing with me through the long process of finishin

dissertation.

This work was partially supported by the Defense Advanced Research Pro

Agency under DARPA/ARO Contract Number DAAL03-90-C-0028, and by Cade

Design Systems, Inc.
iii



.... iii

..... vi

..... vii

.......1

.......2

......5

.....12

.....13

.15

...15

....22

..27

...29
....33
...37

....41

....43

...44

.44

..45

.....48

....52

..55
...59
...62

65

....69

....71

...73
...74
...74
..75
TABLE OF CONTENTS

ACKNOWLEDGMENTS..............................................................................................

LIST OF TABLES ........................................................................................................

LIST OF FIGURES .....................................................................................................

CHAPTER I
INTRODUCTION ........................................................................................................

1 Scheduling.............................................................................................

2 Methodology. .........................................................................................

3 Research Contributions.........................................................................

4 Thesis Organization ..............................................................................

CHAPTER II
INSTRUCTION LEVEL PARALLELISM ......................................................................

1 Available Parallelism Analysis ...............................................................

2 Machine Architectures...........................................................................
2.1 VLIW Architectures.....................................................................
2.2 DAE Architectures......................................................................
2.3 Superscalar Architectures ..........................................................
2.4 Memory System Support ............................................................

3 Similar Studies.......................................................................................

CHAPTER III
LOOP OPTIMIZATIONS..............................................................................................

1 Loop Unrolling........................................................................................
1.1 An Example of Loop Unrolling ....................................................
1.2 Loop Unrolling Performance Benefits .........................................

2 Trace Scheduling...................................................................................

3 Software Pipelining................................................................................
3.1 An Example of Software Pipelining ............................................
3.2 Software Pipelining Scheduling Methods...................................
3.3 The Performance of Software Pipelining....................................

CHAPTER IV
THE STRUCTURE OF THE OPTIMIZING COMPILER TORTOISE ...........................

1 The Organization of Tortoise .................................................................

2 Data Flow Analysis and Transformations..............................................
2.1 Canonical Loop Formatting ........................................................
2.2 Block Flow Graph Reconstruction..............................................
2.3 Initial Program Dependence Graph Construction.......................
2.4 Initial Data Flow Analysis ...........................................................
iv



...76

....79
...80
..81
...87
....89

....91
..91
...92
....93
...93
...94

.....94

...95

...98
.110

..113

..116

..119

..120

..124

...129
.129
..133
41

.146

...147
.147
.148
151
.156
..156

....157

...157

..163

....1

..168
2.5 Data Dependency Graph Optimization.......................................
2.6 Constant Propagation.................................................................
2.7 Loop Invariant Detection ............................................................
2.8 Induction Variable Detection .......................................................
2.9 Iteration Distance Computation ..................................................
2.10 Array Reference Refinement......................................................

3 Machine Independent Optimizations .....................................................
3.1 Loop Invariant Hoisting ...............................................................
3.2 Induction Variable Strength Reduction.......................................
3.3 Type Propagation .......................................................................
3.4 Dead Code Elimination...............................................................
3.5 Summary of Machine Independent Transformations..................

4 Code Generation ...................................................................................
4.1 Instruction Selection ...................................................................
4.2 Instruction Scheduling ................................................................
4.3 Register Allocation .....................................................................

CHAPTER V
EXPERIMENTS AND RESULTS ................................................................................

1 Scheduling a Scalar Architecture...........................................................
1.1 Register Use ...............................................................................
1.2 Code Size ...................................................................................

2 Scheduling for Long Operation Latencies .............................................

3 Scheduling and Issue Policies...............................................................
3.1 Aurora III ....................................................................................
3.2 Decoupled Execution .................................................................
3.3 Comparisons with VLIW and DAE.............................................1
3.4 Aurora III Cache Behavior..........................................................

4 Cache Effects ........................................................................................
4.1 Previous Work.............................................................................
4.2 Cache Performance Effects from Software Pipelining ...............
4.3 Cache Behavior with Loop Unrolling..........................................
4.4 Context Switch Effects................................................................
4.5 Summary of Cache Effects ........................................................

CHAPTER VI
CONCLUSIONS..........................................................................................................

1 Research Contributions.........................................................................

2 Future Directions ...................................................................................

APPENDIX..................................................................................................................66

BIBLIOGRAPHY..........................................................................................................
v



vi

LIST OF TABLES

TABLE

1 Machine Configurations....................................................................................115
2 Compiler/Technique Performance on a Scalar Architecture ............................117
3 Registers Use vs. Scheduling Technique ..........................................................119
4 Scheduling Techniques Performance Ratios.....................................................122
5 Percent Dual Issue under Different Scheduling Models...................................137



.......2
.....23
....23
.....24
....26
.....45
...45
....45
.....46
...47
......49
......52
.....53
......54
......55
....55
...56
.....56
....57
.....57
....58
.....70
......73
.....74
......76
......77
.....78
.....79
.....82
....83
....84
.....85
.....87
.....90
LIST OF FIGURES

FIGURE

1 Source for a vector loop.................................................................................
2 Block diagram of a pipelined scalar processor ..............................................
3 Block diagram of a VLIW processor ..............................................................
4 BLock diagram of a superscalar architecture.................................................
5 Block diagram of a DAE architecture.............................................................
6 Source for a vector loop.................................................................................
7 The loop body without unrolling .....................................................................
8 The loop body with unrolling .........................................................................
9 Unrolled Loop................................................................................................
10 Loop Efficiency vs. Number of Iterations Unrolled ........................................
11 Trace Scheduling Example. ..........................................................................
12 Sequential loop execution .............................................................................
13 Pipelined Loop Execution..............................................................................
14 Phases of pipelined loop execution...............................................................
15 Source for a vector loop................................................................................
16 The loop body without unrolling. ...................................................................
17 Execution of a few iterations of a loop without unrolling. ..............................
18 Compressed execution of a few iterations of the loop...................................
19 A Software Pipeline version of the loop body. ...............................................
20 The Kernel of the loop body. .........................................................................
21 A Software Pipelined loop body with register expansion...............................
22 Organization of Tortoise ................................................................................
23 Tortoise Analysis and Transformation Phases ..............................................
24 Canonical Loop Format .................................................................................
25 An extraneous flow dependency...................................................................
26 Dependency Graph Reconstruction - Flow Dependency..............................
27 Dependencies Involved in Removing Assignment ........................................
28 Input CSE Dependency Transformation ........................................................
29 Program fragment with nested induction variables. ......................................
30 A Nested Induction Transformation. ..............................................................
31 Program fragment with rewritten inner induction. .........................................
32 Program fragment with rewritten nested inductions. .....................................
33 A loop containing a recurrence. .....................................................................
34 Array Reference Load CSE Transformation..................................................
vii



.......94

....102

...105

...108

.109
.....118
....120
....121
...125
..126
..126
..127
....128
..131
..132
..133
..134
...135
..136
138
.139
..140
...140
....141
.142
...142
..143
....144
145
....146
....147
...149
..150
..151
.152
...153
..153
..154
.155
.155
35 Tortoise Code Generation Phases ................................................................
36 A Three Stage Pipeline Schedule..................................................................
37 Formation of Strongly Connected Components ............................................
38 Software Pipeline Realization........................................................................
39 Multiple Live Register Values in a Software Pipeline .....................................
40 Compiler/Technique Speedup on Scalar Processor .....................................
41 Registers Use vs. Scheduling Technique ......................................................
42 Code Size vs. Scheduling Technique ............................................................
43 Execution Time vs. Increasing FPU Latency.................................................
44 Execution Time vs. Increasing FPU Latency (FPU not pipelined).................
45 Execution Time vs. Increasing FPU Latency (FPU pipelined).......................
46 Execution Time Pipelined vs. not Pipelined FPU...........................................
47 Execution Time vs. Increasing FPU Pipe Stages (Constant Latency) ..........
48 Scalar Aurora III vs. R3000 w. MIPS CC.......................................................
49 Scalar Aurora III Double vs. Single Load/Stores ...........................................
50 Aurora III Cycles vs. I-queue Length .............................................................
51 Aurora III Stalls vs. I-queue Length ...............................................................
52 Livermore Loop 4 - Occasional Data Dependency........................................
53 Dual Issue Aurora III vs. R3000 w. MIPS CC................................................
54 Dual Issue Scheduling (VLIW Model) vs. R3000 w. MIPS CC ......................
55 Dual Issue Scheduling (Latency Doubling Model) vs. MIPS CC ...................
56 Dual v.s Scalar Issue (VLIW Scheduling Model)...........................................
57 Register Use vs. Issue Models with Software Pipelining ..............................
58 Superscalar Register Definitions...................................................................
59 VLIW Register Definitions..............................................................................
60 VLIW vs. Static Superscalar vs. Scheduling Technique................................
61 Register Use vs. Issue Policy with Software Pipelining .................................
62 DAE vs. Static Superscalar vs. Scheduling Technique.................................
63 Aurora III, VLIW, and DAE vs. Scheduling Technique ...................................
64 Percent Time Spent in D-Cache Stalls..........................................................
65 Percent Time Spent in I-Cache Stalls ...........................................................
66 Code Sizes for the First Fourteen Livermore Loops......................................
67 Execution Times for the First Fourteen Livermore Loops..............................
68 Execution Times for LL 1 vs. Primary Cache Size.........................................
69 Execution Times for the First Livermore Loop using Gnu-C..........................
70 Code Size for xlisp.........................................................................................
71 xlisp: Cycles vs. Primary Cache Size (Long Latency Mem.) .........................
72 xlisp: Cycles vs. Primary Cache Size (Short Latency Mem.).........................
73 Cycles Executed for xlisp vs. Unroll Size (Long Latency Mem.) ...................
74 Cycles Executed for xlisp vs. Unroll Size (Short Latency Mem.)...................
viii



hich

ater

om-

shown

imilar

the

hitec-

refer-

er or

diffi-

s in

ch-

ation

r are

n the
CHAPTER I
INTRODUCTION

Considerable effort has been put into designing computer architectures w

exploit instruction level parallelism in an attempt to achieve execution rates of gre

than one instruction per cycle. A wide variety of architectures and accompanying c

piler algorithms have been proposed and developed. The best examples have

good performance improvements relative to scalar architectures constructed in s

technologies.

Much of the experimental work on new architectures has focused on just

hardware architecture, with perhaps one scheduling algorithm designed for the arc

ture. A new architecture is generally compared to a similar scalar architecture as a

ence point. Few experiments have compared different architectures to each oth

investigated compiler scheduling algorithms across architectures, because of the

culty of retargeting the compiler.

This work is a first step towards a direct comparison of different architecture

conjunction with different scheduling algorithms. We compare loop scheduling te

niques on several architectures, together with accompanying compiler optimiz

techniques. In particular, loop optimizations as performed by an optimizing compile

implemented on a set of multi-issue architectures, allowing the interactions betwee

loop optimizations and the architectures to be studied.
1



2

set

s (o

d

of

ns-

ticu-

tions

f the

ined

the set

hich

ution

3 is

. State-

nship

ent.
1  Scheduling

Instruction schedulingis the process of determining an execution order for a

of operations. The instruction scheduler accepts a directed graph {V,E} of operationi

∈ V) and dependencies between the operations (<oi,oj>∈ E), and produces an ordere

list of operations L = <o1, o2,..., on>. The ordered list L maintains the dependencies E

the original graph, i.e. if the graph contained a dependency <oi,oj>∈ E, oi appears in the

list before oj. The function computed by the scheduler is shown in (1).

s:{V,E} → <o1, o2,..., on> where∀<oi,oj>∈ E => i < j. (1)

After the ordered list of operations is produced, the code generator will tra

form the list of operations into a list of instructions which can be executed on a par

lar architecture.

Instruction scheduling must be correct: the order placed on the set of instruc

must maintain the semantics of the original list of instructions. The semantics o

original list is called theprogram orderor in-order semantics. The in-order semantics is

dictated by the programming language. The ordering between instructions is determ

by the control and data dependencies between the instructions and is encoded as

of dependencies E in the program graph. This is generally a partial ordering, w

allows some leeway for the scheduler to reorder the instructions to improve exec

efficiency. For instance, in the program segment shown in Figure 1, statement

dependent on statement 1 and statement 1 must be scheduled prior to statement 3

ments 1 and 2 are independent and can be scheduled in any order. The relatio

between statements 2 and 3 depends on the values of i and j and may be depend

1. a = 5
2. x[i] = 10 * x[j]
3. d = x[j] * a

FIGURE 1. Source for a vector loop



3

any

order

truc-

nden-

x the

ction

g the

they

ns

truc-

the

ws:

e they

ored to

shar-

ome-

m the

ncies

y can
Control dependenciesare dependencies between conditional instructions and

other instructions whose execution depends on the conditional instructions. In-

semantics does not allow dependent instructions to execute until the conditional ins

tion has been executed and the result of the condition is known. Since control depe

cies are often a significant performance limiting factor, some execution models rela

requirement that the result of the condition be known before the dependent instru

begins execution. This is usually referred to asspeculative execution. If speculative exe-

cution is allowed, some method must be provided to undo the effects of executin

dependent instructions if the eventual resolution of the condition determines that

should not have been executed.

Data dependenciesare formed by the sharing of data and memory locatio

between instructions. There are four types of dependencies. If A and B are two ins

tions with A preceding B in program order, then the input and output locations of

two instructions can be denoted by the sets {InA, OutA, InB, and OutB}, respectively.

Furthermore, the possible dependencies between A and B can be defined as follo

1. Flow dependencies are the locations in InB ∩ OutA.

2. Anti-flow dependencies are the locations in InA ∩ OutB.

3. Output dependencies are the locations in OutA ∩ OutB.

4. Input dependencies are the locations in InA ∩ InB.

In some sense, flow dependencies are the only true dependencies becaus

express the sharing of data between instructions. Flow dependencies must be hon

obtain correct execution semantics. Anti-flow and output dependencies arise due to

ing memory locations between different instructions. These dependencies can s

times be removed by renaming memory locations. Input dependencies come fro

sharing of memory locations between instructions. The discovery of input depende

is not important for correctness, they do not impose an execution ordering, but the

be used to improve execution efficiency.



4

exe-

h any

ent

ency

truc-

sup-

tered.

est

Other

ance

ise

lative

hav-

llel-

ance

word

d not

hines

lin-

ome

ounts

ent
There is one other set of constraints that may be imposed on the instruction

cution order: exceptions produced by the execution of instructions should beprecise, i.e.

the machine state following the handling of an exception should appear as thoug

instructions following the exceptional instruction had not executed. This requirem

can be quite restrictive. Precise exceptions in effect introduce a control depend

between every instruction which can produce an exception and any following ins

tions. Implementing this in an aggressively scheduled machine requires hardware

port to maintain and restore the correct machine state when an exception is encoun

Implementing precise exceptions efficiently is a difficult problem. In the inter

of providing performance, some architectures do not provide precise exceptions.

architectures make precise exceptions optional, so that users only incur a perform

penalty if they require precise exceptions. Allowing reordering while providing prec

exceptions is a form of speculative execution, and processors designed with specu

execution in mind can usually provide precise exceptions with little extra overhead,

ing already incurred the hardware cost of implementing out-of-order execution.

If only correct execution were required, or the target architecture had no para

ism, the instruction scheduler would have nothing to do. There would be no perform

advantage in reordering the instructions. The in-order semantics would be the final

on instruction ordering and the instruction list produced by the code generator woul

need to be scheduled. However, most current high-performance commercial mac

have some form of parallelism, usually in the form of multiple function units or pipe

ing, and we can expect that machines issuing 4 to 8 instructions per cycle will bec

much more common. On machines with the hardware to support even modest am

of parallelism, exploiting the hardware to improve performance requires intellig

instruction scheduling.



5

ssor.

here

sched-

hedul-

ance

tion,

e in

are,

ule

ce of

sev-

hms

re-

ing

lgo-

e this

ithms

to

their

quire
Instruction scheduling can take place either in the compiler or the proce

Instruction scheduling at compile-time is calledstatic instruction scheduling.Dynamic

instruction schedule occurs at run-time, and is performed by the processor itself. T

are advantages and disadvantageous to each type of scheduling. Static instruction

uling has the advantage that the compiler can use a much wider scope to gather sc

ing information. The disadvantage is that some information that can affect perform

is not available until run-time. Dynamic schedulers have access to run-time informa

but the scope of available information is typically much more limited than is availabl

the compiler. Dynamic instruction scheduling also requires more complex hardw

which can adversely affect performance.

We will investigate a set of scheduling algorithms by using them to sched

loops for a set of machine architectures and then comparing the relative performan

the code produced by each algorithm. As part of this investigation, we will examine

eral instruction issue policies and their interactions with the scheduling algorit

employed in the compiler.

2  Methodology.

The goal of this work is to compare the performance of different architectu

compilersystems, i.e., a computer architecture in conjunction with compiler schedul

algorithms. In particular we want to explore the interaction of various scheduling a

rithms with different processor features such as instruction issue policies. To explor

design space requires a compiler in which the scheduling and other related algor

can be modified, as well as simulators for the range of architectures under study.

A compiler which allows access to its scheduling algorithms is a difficult item

obtain. Few compilers are available which are well documented and allow access to

compilation process. In addition, some of the scheduling and other optimizations re



6

rator

uling

cu-

iza-

on

done

ork

ns.

can

hard-

. For

perfor-

ew

hout

rchi-

ruc-

yield

this

tly for

ossi-
support early in the compilation process. This means that modifying the code gene

without access to the analysis portions of the compiler precludes important sched

and transformation opportunities. GNU C is publicly available and it is well do

mented. Unfortunately it does not readily allow the user to experiment with optim

tions prior to code generation.

Because of the difficulty of obtaining and modifying a compiler in conjuncti

with the other necessary work, much of the research into computer architecture is

without accompanying work on the compiler. This greatly reduces the amount of w

involved an investigation, but it creates a tendency toward hardware based solutio

Failing to investigate compiler algorithms along with architectural variations

lead to incorrect conclusions. Even though the architectural changes seem entirely

ware based, there is a strong software interaction which must be considered

instance, superscalar machines seem like a good idea because they can provide

mance improvement with an existing instruction set architecture (ISA), without n

compiler support. However, this expectation of performance improvements wit

compiler support may prove to be optimistic. In a study of a SPARC superscalar a

tecture [102], Lee et al. write:

“Unfortunately, an optimal scheduling policy is very hardware
dependent. The base compiler we use was not targeted for super-
scalar hardware, and most of the optimizations must be applied
manually. Our results confirm that superscalar hardware alone
would gain little without support from an optimizing compiler.”

Another possible method of investigation is to manually schedule the inst

tions for a new architecture. This is possible for small benchmarks and can quickly

performance numbers for an architecture. The are two potential pitfalls with

approach: Manual coding is tedious and error prone, and thus hard to do consisten

even medium size benchmarks. The other more important problem is that it is imp



7

com-

ules,

this

es.

ptimi-

sed in

s,

ob-

d set

Nar-

cause

RAN.

lan-

ram-

tion

um-

ycle

arks

tation

the
ble to assure ourselves that we are faithfully employing techniques available to a

piler. By building a compiler and insisting on using it to generate all the code sched

we avoid these problems.

Because of its key role in providing computer performance, a central part of

investigation will involve compiler’s optimization algorithms and scheduling techniqu

The particular optimizations employed, and the analysis necessary to support the o

zations are presented and discussed in Chapter IV. The scheduling techniques u

the compiler are discussed in Chapter III and Chapter IV.

The choice to build an optimizing compiler is not without its own problem

however. Building an optimizing compiler is a huge undertaking. To mitigate this pr

lem we have reduced the effort by limiting the benchmarks we execute to a limite

and also by allowing the compiler, referred to herein as Tortoise, to execute slowly.

rowing the set of benchmarks reduces the magnitude of the programming task be

we do not have to handle all the constructs in a rich language such as C or FORT

Allowing the compiler to run slowly frees us to use a more powerful, interpreted

guage to construct the compiler in, and relieves us of the tuning and careful prog

ming required to make a compiler run efficiently.

As with all computer performance studies, we would like to measure execu

time. In [67], Hennessy and Patterson give equation (2) for the execution time:

T = I x CPI x Tc (2)

where T is the execution time, I is the number of instructions executed, CPI is the n

ber of cycles per instruction (for the set of instructions executed), and Tc is the c

time of the processor. The number of instructions, I, is a function of the benchm

chosen, and the compilation process. CPI is a function of the processor implemen

and the instruction mix. The instruction mix is also a function of the benchmarks and



8

I in

ssor.

f the

an be

rac-

on of

om-

and

out-

me,

pen-

ard-

ding

sed in

Tc,

g to

by

this

com-

per-
compilation process. The work reported in this thesis will concentrate on I and CP

(2) and will assume a fixed Tc.

Tc is largely a function of the physical process used to implement the proce

However, Tc is not a completely independent variable and we should be aware o

dependencies here, even though we will not be able to measure them. Tc c

expressed as:

Tc = Tcp + Tcc (3)

where Tcp is the portion of the cycle time which can be attributed to the physical cha

teristics of the logic devices used to implement the architecture, and Tcc is the porti

the cycle time arising from the complexity of the architecture. In general, a more c

plex function, or architecture, will have a longer cycle time due to longer logic paths

larger fan outs.

Tcp can be reduced by improvements in process technology. This effect is

side the scope of this work; accordingly we will assume that it is fixed. We will assu

however, that increasing the functionality of the architecture, as in more dynamic de

dency checking and instruction scheduling, will result in greater complexity in the h

ware implementation. This additional complexity will necessarily increase Tcc, ad

to the cycle time and slowing down the system. Some of these effects are discus

[130], [131], [132] and [185]. For this investigation we limit ourselves to noting that

as shown in (3), increases with increasing architecture complexity without attemptin

quantify the increase.

In terms of effort involved it would be beneficial to fix the instruction stream

selecting a set of benchmarks and a compiler. With the set of instructions fixed,

would leave only CPI to be measured to determine performance. However, when

paring architectures in conjunction with compiler algorithms, CPI is not an accurate



9

the

igh

ay be

which

per-

per-

arly

most

Liver-

the

er-

rchi-

) The

ple

g an

era-

e con-

ils of

lica-

ke a

uage
formance metric. This is because the instruction mix is changing as well as

instruction cycles. For instance, replacing low latency instructions with fewer h

latency instructions can raise the CPI, even though the total cycles executed m

reduced. For this reason, the total cycles to execute a given program will be used,

is the I x CPI part of (2).

The instruction mix is also effected by the set of benchmarks chosen for the

formance evaluation. A wide variety of benchmark suites have been used to study

formance. Ad hoc collections of programs have been used, more typically in e

studies, as well as groups of programs explicitly designed as benchmarks. The

widely used benchmarks for processor performance are: the SPEC suite [184], the

more Loops [113], and for scientific machines: the Linpack Kernels. More recently

use of the PERFECT Club benchmarks [39] is also starting to appear.

This work uses the Livermore Loops for primarily two reasons: 1) The Liv

more Loops have been widely reported in the literature and many of the machine a

tecture studies have been done using some or all of the Livermore Loops; and 2

compiler scheduling techniques used here focus on loop optimization techniques.

In addition, the Livermore Loops are a small to medium size, relatively sim

set of benchmarks to compile. This reduces some of the effort involved in gettin

optimizing compiler debugged and running correctly. Focusing on a narrow set of op

tions and language constructs relieves us of the burden of handling every languag

struct in the source language and becoming distracted with the implementation deta

writing a compiler.

Restricting ourselves to a narrow set of benchmarks also limits the set of app

ble optimizations. On one hand this is unfortunate. It would be interesting to ma

broad study of compiler algorithms and computer architectures on all types of lang



10

ore

.

rrent

PER-

good

d some

ong

ring

rmore

d by

ore

puter

ore

s and

e a

con-

actual

of a

n or

s not

ench-

wieldy

k may

of its
constructs. However, by limiting our range somewhat we can examine much m

closely the interactions of a particular set of algorithms and computer architectures

Selecting the Livermore Loops as our benchmark suite is contrary to the cu

trend of running larger benchmark suites such as the SPEC benchmark suite, the

FECT Club benchmark suite, or even larger benchmarks. There are certainly some

reasons for running larger benchmarks. Capacity effects such as cache misses an

program behaviors will only show up when running very large benchmarks for very l

times [18]. However, our focus is not memory system performance, and for explo

the performance of loop scheduling techniques and system performance, the Live

Loops are still a viable benchmark suite.

The Livermore suite was developed in the 1970’s to study the code produce

the FORTRAN compilers for the CDC-6600 and CDC-7600 computers. The Liverm

suite has since been widely used to compare the performance of numerous com

architectures, particularly high performance architectures. In addition, the Liverm

Loops have been used to study and track the performance of different compiler

compiler versions for a single architecture.

A specific goal of the development of the Livermore Loops was to provid

small benchmark suite which would cover the range of commonly used Fortran

structs and provide accurate predictions of computer system performance under

application loads. The developers of the Livermore Loops realized that the size

benchmark is a trade-off. A very short benchmark, such as a dot-product functio

even the Linpack Loops is not an accurate performance predictor because it doe

cover the full range of computer system behaviors. On the other hand, very large b

marks have problems, especially on new systems where their size makes them un

to analyze, characterize and adapt to a new system. In addition, a large benchmar

not provide any additional performance information because it may spend most



11

, the

ugh it

uta-

mon

oops

ance

ore

ion.

perfor-

al 10

llenge

ctor

redic-

.

sti-

ines.

r-to-

f the

The

om-

1]

le-
time in a small part of the code, as Knuth noted in an early paper [86]. For instance

SPEC benchmark suite typically only exercises about 4000 lines of codes, even tho

is much larger in total source lines.

The Livermore benchmark suite is composed of a set of floating-point comp

tions taken from scientific applications. They are intended to cover the range of com

Fortran program constructs found in these types of applications. The Livermore L

have in general shown good correlation between their performance and the perform

of the scientific codes they were designed to mimic [113].

The original 14 Loops were criticized because they were found to be m

heavily weighted toward vectorizable codes than a typical scientific applicat

Because supercomputers tend to be vector architectures and have vastly superior

mance on vector codes, this would tend to over-predict performance. An addition

larger loops were added to the suite to balance the scalar/vector ratio and to “cha

the vectorization capability of Fortran compilers.” Since we are not exploring ve

architectures in this study and the original 14 loops were reported to be accurate p

tors of scalar architecture performance, we use the original 14 kernels in this study

Another important question that arises when beginning with this type of inve

gation is the type of machine to study. We wish to base our study on realistic mach

By this we mean architectures that might be commercially available in the next fou

five years. Accordingly we have based our studies on multi-issue implementations o

MIPS R3000 ISA. In particular, we have used the Aurora III for a case study.

Aurora III is a prototype superscalar processor being developed in the Advanced C

puter Architecture Laboratory at The University of Michigan [119][120][130][13

[132][133][185]. The Aurora III is a superscalar version of the MIPS R3000 ISA imp

mented in GaAs technology, and is scheduled for tape-out in the Fall of 1994.



12

tures

r to

, we

rchi-

ilored

essor

et of

loop

IW,

, we

tech-

ed to

lysis

tech-

nce

ware

d in

l 64

dual
We investigate the performance characteristics of a number of hardware fea

in the Aurora III, only some of which have been included in the final version. In orde

investigate the performance of processors with different instruction issue policies

construct several modified models of the Aurora III. Using the Aurora III as a base a

tecture, we build scalar, superscalar, VLIW, ad DAE processors, schedule code ta

to each architecture, and examine the performance of the combined compiler-proc

system.

3  Research Contributions

We explore the performance of a set of scheduling algorithms applied to a s

machine architectures. We compile a set of benchmarks using block scheduling,

unrolling, and software pipelining and evaluate their performance on scalar, VL

DAE and superscalar architectures.

In addition to evaluating the performance of different scheduling techniques

look at the analysis and compiler support required to implement the scheduling

niques effectively. We also explore the machine independent optimizations requir

obtain a good optimizing compiler. Some new algorithms for induction variable ana

and corresponding optimizations are presented.

We examine the interaction between operation latency and the scheduling

nique employed. We also look at the effect of pipelining function units on performa

and scheduling.

We look at the effects on scheduling and overall performance of some hard

features proposed for the Aurora III, a superscalar prototype being implemente

GaAs technology at The University of Michigan. The Aurora III incorporates interna

bit wide data paths, double precision floating point load and store instructions,



13

tion

atures

ing

issue

licy

egis-

algo-

ction

may be

f the

des

of a

n high

d for

ech-
instruction issue, decoupled integer and floating point units, fully pipelined func

units, load queues, store queues and result reordering. We look at each of these fe

in turn and the effect of each feature on performance and scheduling.

We also examine instruction issue policies in the context of the Aurora III. Us

a fixed set of function units and architectural components, we vary the instruction

policy to model scalar, VLIW, DAE and superscalar architectures. The issue po

affects register naming and use, which in turn affects the compiler scheduling and r

ter allocation algorithms. We examine the relationship between these features and

rithms and discuss some of the implications.

Different schedules use machine resources different ways. Registers and fun

units are obvious resources. Instruction and data cache are also resources and

allocated by a compiler. We briefly investigate the effects caused by interaction o

scheduling algorithms with the cache and memory systems.

4  Thesis Organization

Chapter 2 presents previous work pertinent to this investigation. This inclu

studies on the amount of parallelism available in typical programs and an overview

number of computer architectures designed to exploit instruction level parallelism.

Chapter 3 examines several scheduling techniques that have been used i

performance systems. Particular emphasis is given to loop scheduling techniques.

Chapter 4 discusses the internal workings of the Tortoise compiler develope

this investigation. The specific techniques employed and the justification for the t

niques are also given.



14

dis-
Chapter 5 describes the experiments performed for this investigation and

cusses their results.

Chapter 6 gives concluding remarks and suggestions for future work.



ne

lism

how

ne to

the

an if

tors,

n be

level

press

g an

bench-

tandard

dol-

of

’s ter-
CHAPTER II
INSTRUCTION LEVEL PARALLELISM

1  Available Parallelism Analysis

Determining the amount of parallelism available in typical programs is o

important aspect of the work on instruction level parallelism. The amount of paralle

available in a program is important to systems designers because it determines

much parallelism we should be attempting to achieve when designing a machi

exploit instruction level parallelism. If programs generally provide parallelism on

order of 10,000 operations per cycle, we would design a very different machine th

the available parallelism was closer to 10 operations per cycle.

Estimates of available parallelism range vary widely, depending on many fac

and the terminology used to describe parallelism also varies widely. Parallelism ca

expressed as operations per cycle, instructions per cycle, FORTRAN or other high

language (HLL) statements per cycle. Some studies invert the this relation and ex

results in cycles per instruction (CPI). Other studies avoid the problem of definin

abstract metric and use speedup with respect to a base architecture. For small

marks, where the absolute best performance is known or can be found,efficiency,

expressed as a percentage of the ideal performance, may be used. There is no s

metric for parallelism, the terminology used is determined by the goals and metho

ogy being used by each research group.

We will not attempt to reconcile the terminology used in reporting the results

the studies examined here. We will report the results of each study using the author
15



16

sm

eople

is to

it it.

eed-

study

to an

rg-

t two

f par-

ute a

dency

ight

ntial

par-

.

ount

ful

ional

n 200
minology. Our intention is not to find a definitive value for the amount of paralleli

present in general programs, but rather to show the general range of what other p

have found when studying this issue.

There are some major tends in the study of available parallelism: The first

study available parallelism given a particular model or device designed to explo

These studies tend to find relatively small amounts of available parallelism, with sp

ups on the order of 1.1 times to 10 times sequential machines. The second type of

is to examine the parallelism inherent in the execution of a program, without regard

implementation which could exploit this parallelism. A third approach is to find the la

est amount of parallelism available in any program. As could be expected, the las

types of studies tend to find much larger amounts of parallelism than the studies o

allelism on a particular machine.

The experiments which are not tied to an architectural model generally exec

program and save a trace of the instructions executed. A directed acyclic depen

graph (DAG) is then constructed from the trace. The DAG is examined to find its he

and width. The height of this DAG divided by the number of operations in the seque

program is the speedup. The width of the DAG divided by the height is the average

allelism, and the maximum width of the DAG is the maximum amount of parallelism

Studies using this methodology conclude that programs contain a large am

of parallelism. An early study by Kuck [91], finds a minimum of 16 processors use

and,

“As the programs become more complex, 128 or more processors
would be effective in executing our programs.”

However, this was an early study which ignored the problems presented by condit

code. The benchmarks used are very small by today’s standards, most “less tha

cards,” and many “do not even contain DO-loops.”



17

ms

e of

, and

same

arks

ently

llel-

ents

e that

s not

tion

rious

ance

ing, it
In a study of very large benchmarks using parallelism-time profiles for progra

[92], Kumar shows that the amount of parallelism varies widely during the cours

execution. Both the ideal case of full knowledge of control and data dependencies

the case where control and data knowledge is restricted, show approximately the

amounts of parallelism. Average parallelism was shown for the particular benchm

studied, to be on the order of “500-3500 FORTRAN statements executing concurr

in each clock cycle.” In an experiment with restricted knowledge, the amount of para

ism was reduced by a factor of 10, but was still as much as 1000 FORTRAN statem

per cycle.

The abstract studies on parallelism are encouraging because they indicat

common programs do have large amounts of parallelism. The problem is that it i

practical to exploit a large part of this parallelism. In a study by Wall [189], an execu

trace was produced and used to find the amount of parallelism available under va

machine models and software techniques. This study finds a large gap in perform

between “perfect” and “good” techniques:

“Our study shows a striking difference between assuming that the
techniques we use are perfect and merely assuming that they are
impossibly good. Even with impossibly good techniques, average
parallelism rarely exceeds 7, with 5 more common”

Riseman and Foster found the same results [150]:

“In fact, our results seem to indicate that even very large amounts
of hardware applied to programs at run time do not generate
hemibel [a factor of 3] improvements in execution speed. We are
left, then, with three alternatives: extensive preprocessing of pro-
grams as suggested by Kuck et al; recasting algorithms to take
advantage of machine parallelism as, for example, in the Good-
year STARAN or the Illiac IV; or just plain speeding up a conven-
tional monoprocessor so it gets the job done faster.”

So while the abstract studies showing large amounts of parallelism are encourag

seems that the speedups which can actually be achieved will be modest.



18

to

dency

rallel-

s per

gis-

ith

ecu-

mory

g all

ystem

d to

tion

aral-

ns a

ting

ore

tions

d the

le to

st of
In another similar study [12], Austin and Sohi use the MIPS program pixie

produce a trace, then the trace is fed into a dependency analysis tool. The depen

graph of an entire trace can then be used to investigate critical path length and pa

ism profile. The average parallelism is found to be between 13 and 23,000 operation

cycle for the SPEC suite. Much of this parallelism is available only after renaming re

ters, and with an instruction window of almost the entire program. A small window w

approximately 100 instructions only finds 10 to 20 operations per cycle.

The most aggressive experiments tied to architectural models provide for sp

lative execution with out-of-order issue and completion, register renaming and me

by-pass subsystems. In [59] Franklin and Sohi examine an architecture providin

these features and predict a 2 to 7 times speedup. Other studies of this type of s

[114][124][182] indicate similar speedups.

The problem with these architectures is that they are large and complicate

implement. In [182], Uht estimates over a million gates just to implement the instruc

window and ordering matrices. This brute force approach to exploiting instruction p

lelism may not be the best means of providing performance. More complexity mea

longer design and test cycle, and a potentially slower cycle time. These conflic

issues must be traded off against the gains from parallelism.

This is not to say that dynamically scheduled architectures are impractical. M

modest designs using either instruction windows or Tomasulo style reservation sta

[179] have been quite successful. Notable examples are the IBM 360/91 [10] an

RS/6000 [76]. The studies on this type of machine generally show that it is possib

achieve modest speedups with a small instruction window. Flynn reports to find mo

the available parallelism with a window size of 2 or 4 instructions in [56]:

“Under the constraint that instructions are not dispatched until all
preceding conditional branches are resolved, stack1 sizes as small



19

not

ution,

nefits

. The

oster

ion

times

ring

pro-

truc-

the

were

at the

n the

lti-

ula-

ified.

d lit-
as 2 or 4 achieve most of the parallelism that a hypothetically infi-
nite stack would.”

If control dependencies are strictly enforced, so that speculative execution is

allowed, speedups over scalar machines are modest. Without speculative exec

speedups tend to be a sub-linear function of the window size and performance be

disappear for general benchmarks at window sizes in the range of 4 instructions

average parallelism is limited to something on the order of 2 operations per cycle. F

also reports the same modest amount of parallelism in [58]:

“The limit on the parallelism that is achieved with an infinitely
large stack was found to be slightly more that 1.72;...”

In [177], Tjaden and Flynn explored the parallelism provided if an instruct

window was added to an IBM 7094. They found speedups between 1.2 and 3.2

scalar on their benchmarks. In [178], Tjaden and Flynn try several versions of orde

matrices to encode instruction dependencies, including one with shadow buffers to

vide some speculative execution. They find parallelism between 1.36 and 1.98 ins

tions per cycle (IPC).

In [138], Pleszkun and Sohi start with a set of Cray function units and study

effects of adding register renaming and multiple issue. Control dependencies

required to be resolved before dependent instructions could execute. They found th

best issue rates that could be achieved with the given set of function units were i

range 0.79 to 3.15 IPC.

In [80], Jouppi and Wall use a compiler and a machine simulator for the “Mu

Titan,” to explore superscalar and super-pipelined execution. The compiler and sim

tion system allowed the machine’s function units and operation latencies to spec

The compiler provided basic block scheduling and loop unrolling. The authors foun

1.  They used the term instruction stack to refer to the buffer we are calling an instruction window.



20

roxi-

sm in

vail-

sting

rallel

th of

alar

the

The

They

truc-

onfig-

tion:

etch

f up

tions

32

ister

cy of

egis-

ation

o 1.2.

puts
tle difference between superscalar and super-pipelining, and an IPC limit of app

mately 2. Furthermore, they show that for these types of machines, more paralleli

the form of additional function units is not useful. They also show a decrease in a

able parallelism when compiler optimizations are applied. They make an intere

comment: Cache misses impose a larger penalty for multi-issue and other pa

machines. This is because the number of instructions lost is magnified by the wid

the instruction window.

Smith, Johnson and Horowitz study the available parallelism for a supersc

MIPS architecture in [161]. In this study, trace driven simulations were used to find

parallelism for variations of the MIPS architecture, including superscalar versions.

benchmarks used were non-scientific code, i.e. avoiding the Livermore Loops.

start with code optimized for the R2000 in this study. Pixie is used to generate ins

tion traces and a simulator is used to analyze the traces for the different machine c

urations. A number of machine features are tried, along with superscalar execu

Register renaming, perfect branch prediction, 2 instruction or 4 instruction wide f

and decode units, infinite instruction windows and fixed size instruction windows o

to 32 instructions were tried. Tomasulo style execution units with reservation sta

are also used.

With an unlimited prefetch buffer, and an instruction window size of up to

instructions, they find speedups of 2.3 to 4.1 for prefect branch prediction and reg

renaming. This drops to a mean speedup of 2.0 with a branch prediction accura

85%, with a prefetch buffer of 4 instructions.

The instruction window architecture requires a large number of busses and r

ter ports. This can be mitigated by using Tomasulo style execution units and reserv

stations. With reservation stations and prefect branch prediction, the speedup falls t

A 1 cycle delay for taken branches and a fetch decode width of 2 or 4 instructions,



21

tion

tion

res is

is a

n is

ntial

“off

erfor-

scalar

ajor

scalar

re,

dy of

an

sing a
the speedup at approximately 1.3 for a 2 instruction window or 1.9 for a 4 instruc

window. With branch prediction, the speedup is in the range of 1.6 for a 2 instruc

window and 2.6 for a 4 instruction window.

As has been shown in these studies, the problem with superscalar architectu

not that they are impractical or that they fail to provide speedups. However, there

potential problem with superscalar architectures: their complexity. The questio

whether the additional complexity of a superscalar architecture outweighs the pote

parallelism exploitable by these architectures.

In addition, there is a question of how well superscalar architectures work

the shelf.” One reason these architectures are so popular is that they promise p

mance improvements running existing software andwithout compiler support. Super-

scalar architectures typically implement the same instruction set as some existing

architecture. Parallelism is detected and exploited by the hardware. This is a m

advantage in the commercial world because a company producing a new super

processor would not have to also provide new compilers or other software.

However, while it is true that existing code will run on the new architectu

compiler support may be necessary to achieve enhanced performance. In a stu

superscalar SPARC architectures [102], Lee et al. report:

“Unfortunately, an optimal scheduling policy is very hardware
dependent. The base compiler we use was not targeted for super-
scalar hardware, and most of the optimizations must be applied
manually. Our results confirm that superscalar hardware alone
would gain little without support from an optimizing compiler.”

Given that compiler support will be required to achieve maximum performance from

architecture, the natural question is whether better performance can be achieved u

less complicated architecture with compiler support.



22

truc-

a few,

archi-

iscov-

d the

hard-

par-

piler.

used

s are

sis for

ters.

se in

ithout

y cur-

orm

one

puter

ges,

to exe-

erent

exe-
2  Machine Architectures

Many varieties of machine architectures have been designed to exploit ins

tion level parallelism. The architectures presented here are designed to execute

e.g. less than ten, operations concurrently. The primary difference between these

tectures is in how the operations to be executed each cycle are specified and/or d

ered. One end of the spectrum is the superscalar machines like the IBM 360/91 an

RS/6000 [9][76] where the dependencies between instructions are resolved by the

ware. On the other end of the spectrum are the VLIW architectures [36][144] where

allelism between instructions must be discovered and specified by the com

Somewhere in between are the DAE architectures [156] where compiler support is

to provide the hardware with dependency information.

The basic architecture against which the other, more parallel architecture

compared, is the pipelined scalar architecture. This architecture is chosen as the ba

comparison because it is typical of today’s general purpose commercial compu

Instances of this architecture, such as the MIPS R3000, are readily available for u

these experiments. Comparison against a strictly scalar architecture, i.e. one w

pipelining, would show better speedups, but such an architecture is sub-standard b

rent market driven criteria. Also, any architecture which employs parallelism in the f

of a wider instruction path can also employ pipelining. In other words, pipelining is

type of parallelism, which has already been accepted and is in wide use in the com

industry.

In a pipelined scalar architecture, instructions are divided into several sta

where each stage performs one simple operation and requires one machine cycle

cute. One instruction is issued every cycle and the execution of the stages of diff

instructions is overlapped in time. A typical set of stages is: fetch, decode, issue,



23

in

o

pera-

tion

essor

super-

each

to be

ecture

in the

for
cute, and write. A functional block diagram of a pipelined processor is shown

Figure 2.

FIGURE 2. Block diagram of a pipelined scalar processor

A Very Long Instruction Word (VLIW) architecture looks functionally similar t

a scalar processor. The difference is that each instruction can specify multiple o

tions. The stages of a VLIW processor operate in lock-step, including the execu

stages in the function units. This means that if any of the stages stall, the entire proc

stalls. A block diagram of a VLIW processor is shown in Figure 3.

FIGURE 3. Block diagram of a VLIW processor

Superscalar architectures can also issue several operations each cycle. A

scalar architecture fetches and issues multiple instructions each cycle, where

instruction contains one operation, as in the scalar architecture. The instructions

issued are selected from an instruction window and each cycle a superscalar archit

can examine at least as many instructions as can be issued. Every instruction

instruction window is compared with every other instruction in the window to search

Decode Issue Execute WriteFetch

Decode Issue

Execute Write

Fetch

Execute Write



24

which

the

LIW

nstruc-

this,

ut-of-

ctures

178],

block

ency

rela-

sen-

son,
dependencies. The set of instructions which do not have dependencies and for

there are resources available are issued.

The functional diagram for a superscalar architecture looks very similar to

diagram of a VLIW architecture. The major difference between superscalar and V

architectures is that superscalar architectures check for dependencies between i

tions in the instruction window and can issue instructions out of static order. To do

superscalar architectures must provide some mechanism to track and control the o

order execution so that static semantics are maintained. A number of data stru

have been used to maintain dependency information, include ordering matrices [

register scoreboarding [174], and reservation stations [179]. Figure 4, shows the

diagram of a superscalar processor.

FIGURE 4. BLock diagram of a superscalar architecture

Ordering matrices are the most general mechanism for maintaining depend

information. Ordering matrices are hardware structures encoding the dependency

tionship between all executing and pending instructions.This is a very explicit repre

tation of dependency information, but it is also costly to implement. For this rea

more compact representations have been designed.

Decode Issue

Execute Write

Fetch

Execute Write

Dependency

Control



25

r set.

tion

g to

d effi-

ions.

unit.

cies

wever,

ation

ction

ding

s may

r main-

may

tall.

im-

me-

avior

tiple

rate

truc-
Register scoreboarding associates dependency information with the registe

The target register for each instruction is marked busy from the time the instruc

issues until the result has been written to the register file. Instructions attemptin

access a register are blocked while the register is busy. This is a very compact an

cient way to represent dependency information.

Another dependency representation is implicit in the use of reservation stat

Reservation stations are pending instruction queues placed in front of each function

An instruction enters a reservation station after its instruction window dependen

have been resolved. There are still register dependencies, as in scoreboarding. Ho

in a system with reservation stations, results can be directly forwarded to the reserv

stations, rather than going through the register file.

A superscalar architecture may keep a larger set of instructions in the instru

window than it can simultaneously issue. This is done so that the probably of fin

instructions to execute in parallel is increased. Dependencies between instruction

be resolved at the decode and issue stages, or there may be some mechanism fo

taining dependency information within the execution stages.

VLIW processors can track dependency information too. Pipeline hazards

be checked in a VLIW processor. If a hazard is found, the entire pipeline would s

However, VLIW processors do not allow out of order issue so the control logic is s

pler.

Decoupled Access/Execute or just decoupled (DAE), architectures fall so

where between VLIW and superscalar architectures in terms of their dynamic beh

and complexity. Like superscalar architectures, DAE architectures fetch mul

instructions each cycle. The difference is that DAE instructions are split into sepa

instruction streams and the static execution order is maintained only within each ins



26

hard-

ified by

e. This

nding

ecking

ture

there

pro-

mory

ecute

cute

with

hitec-

IW

and

ecture

ween
tion stream. The processors can only communicate with each other through a set of

ware queues. Dependency relationships between the instruction streams are spec

the queue operations encoded in the streams and enforced by the queue hardwar

logic is less complex than the superscalar implementation because all the pe

instructions do not have to be checked for dependencies. The only dependency ch

required is whether the queues are full or empty. A block diagram of a DAE architec

is shown in Figure 5.

The idea behind the DAE architecture and the reason for its name, is that

will be two instruction streams: the Access stream and the Execute stream. The A

cessor (Access) will perform address calculations to deliver addresses to the me

system. The E processor (Execute) will use the data from the memory system to ex

the program. Hopefully, the Access processor will run far enough ahead of the Exe

processor so that the memory latency is hidden.

FIGURE 5. Block diagram of a DAE architecture

A range of architectures and features is available to the systems designer

respect to instruction issue and dependency control. One extreme is the VLIW arc

ture where little or no dependency checking and control is performed. With a VL

architecture the onus is on the compiler to discover instruction level parallelism

schedule the instructions accordingly. The other extreme is the superscalar archit

where the hardware actively searches for parallelism between instructions. In bet

Decode Issue Execute WriteFetch

Execute WriteDecode IssueFetch

Queues



27

made

n

rally

. In a

point

ontal

cture

two

paths

pro-

as

each

low

n set

LIW

rchi-

ntly

ning

pro-

itec-

m by
these extremes is a continuum of architectures, each reflecting different choices

about what the compiler should do and what hardware should do.

2.1  VLIW Architectures.

VLIW (Very Long Instruction Word) architectures grew out of work done o

horizontally microcoded processors. In a microcoded architecture there is gene

more parallelism available at the microcode level than there is in the instruction set

desire to gain access to this additional parallelism, some machines, such as floating

systems AP-120b and FPS-164, were designed to be programmed directly in horiz

microcode [26]. This leads to greater performance but at the cost of an archite

which is more difficult to program.

The difficulty of programming horizontal architectures has been attacked on

fronts. On the hardware side, the instruction set was made more regular. Extra data

were proposed to remove arbitrary constraints and hardware idiosyncracies. This

duced the first VLIW architectures [52][142]. VLIW machines are characterized

being able to execute multiple operations each cycle from one instruction, where

operation is similar to what would be found in a scalar processor. In other words, the

level hardware details, such as register file bypass, are hidden from the instructio

architecture, just as they would be in a scalar architecture. As the same time, a V

architecture is still able to issue multiple operations per cycle, as in a microcoded a

tecture.

On the software side, algorithms were proposed to allow code to be efficie

compiled for horizontal architectures. Trace scheduling [52] and software pipeli

[142] were developed for these architectures. The small block size found in typical

grams is an even more severe problem for VLIW architectures than for scalar arch

tures. Both trace scheduling and software pipelining attempt to alleviate this proble



28

key to

er III.

ial

r a

dic-

Dog

al.

r on a

67].

ddi-

per-

a

times

ns per

s per

. A

cycle

int

ment

imes

ver,
scheduling operations across block boundaries. These scheduling techniques are

achieving performance in a wide architecture. They are discussed further in Chapt

How well do VLIW architectures perform? Early work indicated great potent

for VLIW architectures. In [126], Nicolau and Fisher found available parallelism fo

VLIW from 3 to 988 times scalar. However, this study assumed perfect branch pre

tion, which leads to optimistic performance predictions.

On more realistic models, Ellis finds speedups up to 7.4 on using the Bull

trace scheduling compiler on a simulated VLIW, the ELI-512 [46]. In [35], Colwell et

find speedups between 1.0 and 4.4 times scalar using a trace scheduling compile

single node Warp with a perfect cache.

Sohi and Vajapeyam provide an extensive study of VLIW architectures in [1

They start with the assumption of 5 function units, integer alu, integer multiply, fp a

tion, fp multiply and memory, and vary the instruction width between one and four o

ations. They perform this experiment for both “modest” and “deep” pipelining.

They compile the first 14 Livermore Loops using loop unrolling. They find

good speedups for an architecture which can issue two operations per cycle: 1.57

scalar for modest pipelines and 1.38 times scalar for deep pipelines. More operatio

cycle are found to be not as useful. Performance in a system with two operation

instruction is found to be only 15% below the maximum obtainable performance

third operation per cycle only adds 10% to the performance of a two operation per

system.

A constrained instruction format allowing one integer and one floating po

operation, but not two operations of the same type, has less performance improve

than allowing arbitrary operations: 1.2 times scalar for modest pipelining and 1.13 t

scalar for deep pipelining. This is a fairly modest performance improvement. Howe



29

mat,

o

piled

ould

ague.

vide

ject

over-

rscalar

the

et of

truc-

1.4 to

om-

cally

ere

more

tion

d and

se of
the constrained instruction format allows a much simpler register file and bus for

which would be less costly to implement.

A study by Love, comparing a VLIW and a DAE architecture, found the tw

comparable in performance [105]. The benchmarks were a mix of small, hand com

programs and this study begs the question of what effect the compilation process w

have on performance.

The line between a VLIW and a superscalar architecture can be somewhat v

To reduce the code size, the actual implementation of VLIW architectures can pro

instruction formats to allow unused operation slots (NOPs) to be left out of the ob

code [167][36][35]. This decreases the size of the object code, but adds decoding

head. The next step, somewhere between VLIW and superscalar, is the static supe

Torch architecture, described Smith et al. in [162]. Torch executes instructions in

static order determined by the compiler. The architecture allows access to a s

shadow registers and buffers, allowing the compiler to speculatively schedule ins

tions across conditionals. Simulations of the architecture show performance in the

1.6 times scalar, even with a limited scheduling algorithm in the compiler. This c

pares favorably with perhaps 1.5 to 1.9 times scalar performance for a dynami

scheduled superscalar.

2.2  DAE Architectures

Decoupled Access/Execute (DAE) Architectures lie in complexity somewh

between VLIW and superscalar architectures. DAE architectures execute two or

instruction streams in a loosely coupled or decoupled fashion. The two instruc

streams are independently executed and dependencies are only explicitly checke

enforced within an instruction stream. The streams are synchronized by the u

queues, which provide communications between the sub-processors.



30

ute

nd the

cute

ecur-

stream

ough

ction

moved

the

nch

ran

ssor.

that

[157].

sitive

, the
The intent behind the DAE design is that one instruction stream will comp

addresses which are delivered to the memory system (the Access processor) a

other instruction stream will use the data delivered from the memory system to exe

the program (the Execute processor). Given a nicely behaved program with no r

rences or other dependencies between the two streams, the Access instruction

will execute ahead of the Execute instruction stream. If the Access stream is far en

ahead of the Execute stream, the memory latency is entirely hidden. The two instru

streams can each execute at their own maximum rate and memory delays are re

from the schedule. According to James Smith in [156]:

“The [DAE] architectures discussed in this paper permit
improved scalar performance in two important ways. First, the
Flynn bottleneck is sidestepped by using two instruction streams.
This effectively doubles the maximum available instruction band-
width. Second, because hardware queues are used for communi-
cation between the instruction streams, the streams can “slip”
with respect to each other. This leads to what is essentially
dynamic scheduling of instructions, previously provided only by
the sophisticated issue methods used in the CDC 6600 and IBM
360/91. Moreover, the instruction issue logic used in each instruc-
tion stream remains simple.”

The DAE architecture in [156] used the scalar part of the Cray instruction set as

starting point for the definition and modified it by adding queues and queue bra

instructions [154][155][156]. Using the Cray instruction set allowed the Cray Fort

compiler to be used to generate code with only minor modifications.

A DAE architecture does provide improved performance over a scalar proce

In simulations comparing a DAE with a scalar Cray architecture, Smith et al. find

the DAE architecture shows a 1.5 mean speedup over a scalar Cray processor

They also find, by increasing the memory latency, that the DAE machine is less sen

to memory latency than the Cray-1. In a simulation of some of the Livermore Loops



31

mory

S-1

E

ntly

to hide

truc-

par-

tion

s with

he I-

o pos-

S-1

-1.

n the

ce is

with

lip”

ted.

two

ns per
vectorizable loops show no memory effects. The non-vectorizable loops show me

effects equivalent to the Cray.

Smith’s DAE architecture was eventually implemented as the Astronautics Z

[158][159]. An interesting note is found in [160]. A cache was not part of the DA

architecture, but was added to the Astronautics “late in the design cycle.” Appare

even though the access processor can execution in front of the execute processor

the memory latency, there was still a bandwidth problem of supplying enough ins

tions and data from memory to support a dual issue processor.

Smith and Kaminski discuss some other architectural trade-offs in [155]. In

ticular this paper discusses DAE machines with both combined or split instruc

streams. They address the question of how early the streams are to be split. Design

an early instruction split can have separate instruction streams all the way from t

cache. The implementation in [155] uses separate caches and I-fetch units. It is als

sible to divide the instruction streams later, after the I-fetch unit. The Astronautics Z

was implemented with combined, i.e. late split, instruction streams.

In [109], Mangione-Smith, et al. study the performance of the Astronautics ZS

They develop an ideal performance model for vector and scalar loops, based o

available machine resources. They find that the Astronautics ZS-1 performan

between 60% and 80% of the ideal for vector loops and 90% of the ideal for loops

linear recurrences. They show the effects of memory latency and how allowing “s

between the instruction streams can mitigate the effects of memory latency.

The Astronautics ZS-1 was not the only DAE architecture to be implemen

The MAP-200, by CSPI was an earlier DAE machine [34]. The MAP-200 contained

decoupled, wide processors. Each of its two processors could execute two operatio



32

und

ia-

same

sing

ined

d as

tions

e was

r, the

LIW

ction

lemen-

of 4

n

chi-

on the

They

ing a

in
cycle, so an ideal speedup would be a factor of 4. In [34], Cohler and Storer fo

speedups between 1.9 and 2.9 on a small set of benchmarks.

Another DAE architecture is the PIPE [62][48][49]. This is an interesting var

tion because this is a symmetric architecture, i.e. both processors implement the

instruction set.

The PIPE was specifically intended to be implemented on a single chip u

VLSI technology. Like the Berkeley RISC, the implementation was severely constra

by the technology of VLSI at the time of its implementation. PIPE was implemente

a 16 bit machine, with 16 registers and a 16 word I-cache. Floating point opera

were performed by an off-chip co-processor.

Only a single processor version has been implemented. Since the DAE mod

not implemented, no performance results for DAE execution are available. Howeve

PIPE studies did show an interesting result which is applicable to pipelined and V

architectures. In [48], Farrens found that padding shorter operations so that all fun

units had the same latency produced shorter schedules than a variable latency imp

tation, because of contention for the result bus. This result was valid up to a latency

cycles.

DAE architectures can be usefully extended to more than two processors. I

[13], Benitez and Davidson propose adding a “vector execution unit” to the WM ar

tecture. They identify linear access expressions and execute these expressions

vector execution unit, which is a third execution unit separate from the access unit.

report performance improvements of 1% to 43% for a small set of benchmarks.

In a more ambitious use, decoupling is used on the Warp to make programm

systolic array easier [11][98][35]. This is a little different from the DAE architectures



33

2 lan-

er

issue

ntains

ajor

rfor-

is an

manu-

rs.

tiple

ltiple

win-

ycle,

the

rmine

essor

exe-

t asso-

le

tra

ly the
that the queues between the processors are directly accessible to the user in the W

guage implemented for Warp.

2.3  Superscalar Architectures

The termsuperscalaris commonly used by the architecture community to ref

to dynamically scheduled architectures which maintain scalar semantics and can

more than one scalar instruction per cycle [80]. That a superscalar architecture mai

scalar semantics while issuing multiple instructions every cycle is probably the m

reason for their popularity: A superscalar version of an architecture can improve pe

mance of that architecture, while allowing existing programs to be runwithout modifica-

tion. For a hardware company with an established customer/software base, this

insurmountable argument to develope a superscalar architecture. Most computer

facturers are producing, or will produce a superscalar machine in the next few yea

The defining feature of a superscalar architecture is the ability to issue mul

instructions each cycle. The processor must be able to fetch and examine mu

instructions for possible issue each cycle. This is accomplished via an instruction

dow and a wide path, to carry multiple instructions to the instruction cache. Each c

instructions are fetched into the instruction window. Each cycle the instructions in

instruction window are examined for dependencies and resource conflicts to dete

which instructions can be issued.

To maintain an issue rate of greater than one instruction per cycle, the proc

must also be able to execute and complete multiple instructions per cycle. Multiple

cution units are generally present in scalar processors, so there is no additional cos

ciated with executing multiple function units. However, the ability to write multip

results to the register file isnot usually present in scalar architectures and adding ex

ports to the register file can be expensive. Extra read ports are also required to supp



34

stion

pro-

reg-

ult

ngle

f a

duce

and

g. the

has

plex

ruc-

per-

scalar

ll the

ential

ction

as a

dware

is to

This

mple-

esti-
execution units with the extra operands required each cycle. The register file conge

can be reduced by splitting the register file, at the cost of some performance, or by

viding a buffer to accept results from the function units and funnel the results to the

ister file. As reported by Upton, et al. in [185], not every instruction will require a res

to be written to the register file, and a result buffer can allow a register file with a si

write port to keep up with a multiple issue architecture.

The problem of routing multiple results to the register file is one example o

general problem in multi-issue architectures. Because multiple instructions can pro

multiple results going to multiple destinations, routing the data between sources

sinks is also a complex problem. Every place where multiple results can appear, e.

writeback port to the register file, requires a multiplexor to determine which source

produced a result and direct it to its proper destination. This is a much more com

operation than just moving the data. In addition, multiplexors are relatively costly st

tures in terms of area.

The required dependency checking is another fundamental problem with su

scalar architectures, one which requires complex hardware to resolve. Because

semantics must be maintained, all the instructions currently being executed and a

instructions being considered for execution must be compared to determine pot

conflicts. This means that all the instructions in the execution units and in the instru

window must be checked for dependencies. The complexity of this operation grows

quadratic function of the number of instructions to be checked. The amount of har

required to perform this check in a single cycle quickly becomes unwieldy.

A general approach for expressing and resolving instruction dependencies

use ordering matrices. Tjaden investigates the use of ordering matrices in [178].

data structure succinctly captures the relationships between instructions, but the i

mentation of ordering matrices requires a large amount of hardware. In [182], Uht



35

” size

regis-

imu-

st” of

ge is

this

at in

win-

the

ctions

g the

epen-

more

with

cur-

ters

core-

ency

ser-

360/

sys-

wait-

re
mates a cost of one million gates to implement an issue stage with a “reasonable

window, e.g. 32 long by 8 issue ports. These types of issue mechanisms, i.e. large

ter widows with arbitrary dependency checking, have so far only been studied via s

lations and have not been implemented, because of the hardware cost. The “co

dependency resolution hardware is not just in terms of chip area. The issue sta

likely to be in the critical path of the processor and large amounts of hardware at

point will also slow down the cycle time.

The high cost of the dependency checking has been mitigated somewh

recent superscalar designs by reducing the number of instructions in the instruction

dow and/or only performing a partial dependency check. The instruction window in

next round of superscalar designs seems to be on the order of four or eight instru

[76][97][102].

The dependency checking complexity has also been reduced by restrictin

type and number of dependency checks performed. One example of a simpler d

dency structure is a register scoreboard, first used in the CDC-6600 [175], and

recently in the Motorola 88000 processor [117]. In a scoreboard, a bit is associated

each register. A register is marked “busy” if it is the target register for an instruction

rently being executed. Instructions are blocked from execution if any of their regis

are marked busy. Execution of other instructions is allowed to proceed. A register s

board is a relatively simple structure to implement and effectively maintains depend

information.

One well known method of supporting dynamic instruction scheduling are re

vation stations with register renaming. This architecture was first used in the IBM

91 [9]. More recent proposals for this type of system are found in [79] and [70]. In a

tem with reservation stations, each function unit maintains a queue of instructions

ing to execute (reservation stations). The instructions in the reservation stations a



36

rived.

ow

nal-

acked

llows

rand

ting

r file,

n is

into

teger

ially.

n the

reg-

per-

lexity

ake
ays

per-
ready to execute when the execution unit is free and all of their operands have ar

Moving the instructions which are ready to execute out of the instruction wind

removes some of the congestion at the instruction window and simplifies its functio

ity.

In a Tomasulo architecture, dependencies between the instructions are tr

through a register renaming and forwarding mechanism [179]. Register renaming a

instructions with output (write-write) dependencies to execute simultaneously. Ope

forwarding sends results from completing instructions directly to instructions wai

for the operands in the reservation stations. This relieves congestion at the registe

but requires a bus which can broadcast results to the reservation stations.

Another method of simplifying the task of instruction dependency resolutio

to introduce instruction categories [187]. In this method instructions are grouped

sets (categories) which cannot interfere with each other during execution, e.g. in

and floating point instructions. Instructions within a category execute sequent

Dependency resolution only requires checking the categories of the instructions i

instruction window, which requires less decoding than finding and checking all the

isters on all the instructions in the window.

While the more aggressive superscalar architectures purport to provide large

formance gains, they do so at the cost of additional hardware. The increased comp

of the hardware has several problems:

1. It becomes more difficult to design and implement the architecture.

2. The amount of hardware required by a superscalar implementation can m
the design too large to be implemented on a single chip, introducing del
due to chip boundary crossings.

3. Testing becomes more difficult.

4. More complex hardware may slow down the clock cycle, mitigating any 
formance gains due to increased parallelism.



37

for

n sta-

have

ovided

t a 1.2

t al.

tion

ems

r by

uper-

e has

ance

at a

just

roces-

ds a

ve a

n per

ould

ts per

]. In

us a

es on
Because of the difficulties of implementing the complex hardware required

large superscalars, i.e. superscalars with large instruction windows, large reservatio

tions, and complete dependency checking and resolution; actual implementations

been considerably scaled back. Depending on the implementation, the speedup pr

by a realistic superscalar architecture may become quite modest: Smith et al. repor

speedup over scalar in [164], Mahlke, et al. report 1.6 times scalar in [108], Lee e

report 2.2 times scalar for a 4 instruction window and 1.7 times scalar for a 2 instruc

window in [102]. Given these comparatively modest performance results, it se

important to ask whether a simpler architecture would not perform as well or bette

allowing the clock cycle to be pushed further than is possible in a corresponding s

scalar architecture.

2.4  Memory System Support

Some recent work on a memory system for a MIPS superscalar architectur

highlighted the problem produced from combined increasing processor perform

with realtively decreasing memory performance. In [168], Sohi and Franklin show th

traditional blocking memory system with a 10% miss rate delivers a throughput of

0.4 references per cycle. This throughput is enough to supply a scalar load-store p

sor, which would have a one instruction per cycle issue rate, and typically nee

throughput of 0.25 to 0.4 requests per cycle. However, this throughput will star

superscalar processor, which will be attempting to issue more than one instructio

cycle. If a 1 IPC issue rate requires 0.4 requests per cycle, a 2 IPC issue rate w

require 0.8 requests per cycle. If the memory system can only service 0.4 reques

cycle, the sustained issue rate drops to 1.67 IPC.

A similar result is shown in a study of superscalar SPARC architectures [102

this study, the performance improvement of a 4-scalar (a 4 instruction window) vers

scalar architecture drop from 2.0 times on a system with an infinite cache to 1.3 tim



38

with

tem

ays.

s and

sult

gned

th a

ule

truc-

nt in

. The

ruc-

elayed

esult

[36]

ood

ss the

orse

e data

in the

wever,

not fit
a system with a finite cache. This result was with a 128K byte direct-mapped cache

a 32 byte block. Given the drop in performance improvement, the memory sys

appears to be a major factor limiting performance in this system.

This problem of limited memory throughput has been attacked in several w

Recently there has been interest in non-blocking loads, speculatively executed load

prefetch instructions. Non-blocking loads allow multiple loads to execute until the re

of an undelivered item is required. An early version of this type of system was desi

for CDC Canada [89]. In [168], a non-block cache memory system of this type wi

maximum of 4 pending loads and 8 ports was able to remove most cache stalls.

Non-blocking loads help, but they are limited in how far back in the sched

they can be moved by the small block size found in most programs. Loads are ins

tions which can raise exceptions. Attempting to load from a page which is not reside

memory, or out of the programs memory space will cause an exception to be raised

conditional instruction which the load would cross is often a guard for the load inst

tion, i.e. the conditional determines whether the loadshouldbe executed. Generally, to

be able to move loads past block boundaries, speculative capabilities such as d

exceptions are required. Delaying the exception from the load until the use of the r

of the load allows specious exceptions to be squashed. The MultiFlow architecture

had this feature. Details of it effectiveness are not available.

A study [151] adding speculative loads to the MIPS architecture shows g

results for benchmarks with large data sets. In this study, speculative loads bypa

cache, going directly to memory. Executions with small data sets perform slightly w

with this system than if speculative loads were not used. This is because when th

sets fit entirely in the cache, some performance is gained due to reuse of data

cache. Since the cache is entirely bypassed, the data is not available for reuse. Ho

performance improvements were reported for benchmarks where the data set does



39

pecu-

pro-

et al.

pro-

ified

de. A

nce

ble.

head

go-

the

cha-

edic-

uired.

could

etch

aral-

load

dition,

lways

d store
in the cache. One advantage of speculative loads over prefetch instructions is that s

lative loads do not consume additional instruction bandwidth.

Prefetch instructions are non-blocking, non-exceptional instructions which

vide a hint to the memory system that a data item will be used soon. Callahan,

implement prefetch instructions in [23]. In this study, prefetch load instruction were

vided along with standard loads. Both load instructions put data into a single un

cache. A compiler prepass was used to add prefetch instructions to the source co

prefetch load was added for the following loop iteration to every simple array refere

in an inner loop, i.e. references which make direct use of the loop induction varia

They report a 20% improvement for a 50 cycle memory, but with an estimated over

of 28% for executing prefetch instructions and address calculation.

In [85], Klaiber and Levy add prefetch instructions to loops using a simple al

rithm. Their prefetch instruction loads into a prefetch cache, which is separate from

normal load cache. This prevents the prefetch from interfering with normal load.

In [28], Chen and Baer study a system which includes both a prefetch me

nism and non-blocking loads. In this case the prefetch is provided via a hardware pr

tion mechanism. This has the advantage that extra instructions are not req

However, the prediction is not as accurate or general as a software mechanism

provide. They note that both prefetch and non-blocking loads are useful: “Pref

instructions exploit pre-miss parallelism and non-blocking loads exploit post-miss p

lelism.” They show that a combined approach has the highest performance.

In [27], Chen et al. use a combined software/hardware strategy handle

latency. Speculative loads are used to remove as much latency as possible. In ad

code is added to the schedule to allow loads to migrate past stores. The load is a

performed and the value of the bypassed store is saved. The address of the load an



40

odes

ode

res

blem-

ding

ith

good

s, the

.

also

esting

hitec-

here

hitec-
are checked and the proper datum is loaded. This strategy works well for certain c

on systems with long memory latencies. The difficulty is that the amount of c

required to correctly implement this grows exponentially with the number of sto

bypassed. Also, the conditional code required to select the correct result can be pro

atic on architectures with a large branch penalty. This can be mitigated by provi

additional instructions such as conditional moves.

[118] examines compiler generated prefetching in detail. Loop pipelining w

locality analysis is used to generate as few prefetches as possible. This gives very

results, removing 50 to 90% of the cache misses in their benchmarks. In all case

selective prefetching algorithm showed improved performance over no prefetching

Memory latency hiding via prefetch and speculative load instructions has

been done in the context of superscalar architectures. This work raises some inter

questions about DAE architectures. One of the major advantages cited for DAE arc

tures is that they hide memory latency [157]:

“Another important characteristic of decoupled architectures is a
reduced sensitivity to memory access delays. This results from
the ability of the access instructions to run ahead and fetch data in
advance of when they are needed.”

It is not always possible to build a DAE schedule which does this, for instance w

there are recurrence relations in a loop. In this case the performance of a DAE arc

ture is greatly reduced [34]:

“An interesting commentary on the architecture is to note that
once one has become used to the decoupling of the APS and the
APU, the need to synchronize, as in the examples above, becomes
quite disturbing. For example, one can see in the process above
how the APS must wait for the APU to catch up; then, after
SET(WI), the APU will in most cases be waiting until the APS
gets the first address out and the IQ has data. Clearly, both of
these waits represent idle hardware--and resulting inefficiency.”



41

a bet-

by

uce

erfor-

tions

t al.

scalar

n sta-

ture

e for

fer-

struc-

p of

f only

cula-
Perhaps a combination of prefetch and speculative load instructions would provide

ter means of hiding memory latency than a DAE architecture.

The possibility of adding prefetch instruction to a VLIW architecture is raised

Callahan and Kennedy in [23]. They speculate that a VLIW implementation may red

the overhead, making prefetch instructions profitable:

“Software prefetching should be particularly useful on high-per-
formance systems that can issue more than one instruction per
cycles -- if the costs of issuing the prefetch instruction and com-
puting the prefetch address can be completely hidden under other
instructions, the reduction in execution time can be substantial.”

Prefetch and speculative load instructions have been shown to give substantial p

mance improvements on scalar machines. It is likely that these type of instruc

would be even more useful on a VLIW architecture.

3  Similar Studies

One study which is closely related to our work is a comparison by Smith, e

between a dynamically scheduled superscalar processor and a “static” super

[162][164]. In these studies, the dynamic superscalar architecture has a reservatio

tion style execution mechanism. The static superscalar is a VLIW type architec

where instructions execution in-order. Support is included in the static architectur

speculative execution by providing delayed-exception instructions and explicitly re

enced shadow registers and buffers. Both architectures have been simulated with in

tion widows of size 2 and 4.

With an instruction window of size 4, the static superscalar shows a speedu

1.6 over scalar as compared to a dynamic speedup of 1.9 over scalar, a difference o

20% [162]. A 1.2 times speedup was available on the static architecture without spe



42

ecu-

itec-

ters,

ters is

zation.

tter

ISQ

cula-

of a

ro-

ture.

rams

ance

pro-

com-

ation.

ng a

e for

led.
tive execution support. Most of the performance improvement with speculative ex

tions was found with moving instructions across only one branch [164].

A performance improvement midway between that shown by the static arch

ture with and without speculative execution was found with a system with 64 regis

versus 32 registers and 32 shadow registers. The fact that more non-shadow regis

useful seems to suggest that the shadow register file may not be the correct organi

It is not clear that a full set of shadow registers will be effectively used and a be

implementation of speculative results may be the reorder buffer found in the W

project [137]. Perhaps a reorder buffer would allow both a large register set and spe

tive execution.

Static versus dynamic instruction scheduling is studied in a comparison

VLIW with a DAE architecture by Love [107]. In this study, a set of benchmark p

grams was hand compiled and hand optimized for both a VLIW and a DAE architec

Simulations of the architectures showed little performance difference. The prog

were equally split as to which architecture had better performance. The perform

variation between the two architectures was also similar.

There were some problems with this study. One important area was that the

grams were hand compiled and optimized for each of the architectures. How well a

piler can generate code for an architecture is a key part of the performance equ

Compiling the benchmarks by hand fails to answer this important question. Buildi

compiler to answer this question is time consuming, but it eventually must be don

the results to have validity on a system where most of the executed code is compi



are

ues

unt of

rfor-

rchi-

uling

y of

part of

is a

ich

ard

ed by

ard

espe-

d of

imi-

tain-
CHAPTER III
LOOP OPTIMIZATIONS

When evaluating an architecture, which compiler “optimization” techniques

applied when generating code is critically important. Using no optimization techniq

or only machine independent techniques can lead to an over-estimate of the amo

parallelism being exploited by the architecture [80] and an under-estimate of the pe

mance of the architecture [102][167].

The question of compiler capabilities becomes paramount when exploring a

tectures with varying scheduling policies, because architectures with static sched

rely heavily on the compiler for performance. Generating code by hand for a stud

architecture performance begs the question of compiler behavior because a large

how well the system performs is embodied in the algorithms in the compiler. This

flaw in a previous study of static versus dynamic scheduling by Love [107].

Given the importance of compiler optimizations, we still have to decide wh

compiler techniques should be included in our investigation. All of the stand

machine-independent optimizations should be performed, such as those describ

Aho, et al. in [4]. Failure to perform these optimizations would skew the results tow

showing larger amounts of simple address calculations, as shown in [80]. This is

cially true in the benchmarks we will use, the Livermore Loops, which are compose

DO-loops containing array operations. For this type of code, traditional compiler opt

zations are very effective. The common and important optimizations for loops con
43



44

ard

and

r stati-

ining

tically

. Loop

used

ave

ode

block.

larger

ich

iter-

ance

cache

roll-
ing array references are loop induction variable detection and reduction, forw

substitution, code hosting, and dead code elimination.

In addition to generic optimizations, some machine dependent optimization

code generation techniques are available, which have been specifically targeted fo

cally scheduled architectures. Loop unrolling, trace scheduling, and software pipel

are scheduling techniques which have been used to improve performance on sta

scheduled architectures. These techniques could be combined in a single compiler

unrolling is generally used with trace scheduling [46], and loop unrolling has been

with software pipelining [149]. However, trace scheduling and software pipelining h

not been combined, probably because of the complexity of these techniques.

1  Loop Unrolling

Loop unrolling works by replicating the body of a loop some (machine and c

dependent) number of times and scheduling the resulting code as a single basic

Replicating the loop body has a couple of performance advantages: Producing a

loop body provides a larger block of instructions for the scheduler to work with, wh

gives the scheduler more options when positioning operations; Combining multiple

ations allows induction variable computations to be combined. These perform

improvements are traded against the potential penalty caused by increased I-

misses on the larger loop body.

1.1  An Example of Loop Unrolling

A schedule for a short vector loop provides a good demonstration of loop un

ing. This loop is shown in Figure 6.



45

lica-

e

not

.

re 8.

body

t its
Do I = 1, N
X[i] = A * (Y[i] + Z[i])

end

FIGURE 6. Source for a vector loop

Assume we are scheduling for a scalar architecture with addition and multip

tion function units, each with a 3 cycle latency. The loads, stores and loop control will b

ignored and only the addition and multiplication will be scheduled. NOPs are also

shown. A simple schedule for the loop body, without unrolling is shown in Figure 7

1: t1 = Y[i] + Z[i]
2:
3:
4:  X[i] = A * t1

FIGURE 7. The loop body without unrolling

A schedule where the loop has been unrolled three times is shown in Figu

There are no dependencies between iterations in this case, and unrolling the loop

produces very efficient code.

1: t1 = Y[i] + Z[i]
2: t2 = Y[i+1] + Z[i+1]
3: t3 = Y[i+2] + Z[i+2]
4:  X[i] = A * t1
5:  X[i+1] = A * t2
6:  X[i+2] = A * t3

FIGURE 8. The loop body with unrolling

1.2  Loop Unrolling Performance Benefits

Loop unrolling can be consideredthe standard optimization technique: It is in

use in most commercial compilers, and loop unrolling is pervasive enough tha

absence from a compiler’s repertoire is cause for comment [111].



46

dy

the

ody

new

the

iter-

ed to

in the

lled

l to

ed to

ed by

al

addi-

ess

itial

ntly
Loop unrolling works by concatenating multiple copies of the original loop bo

to form a new, larger loop body. The number of copies made of the loop body is

unroll count. The loop bounds checking is not included in the copies of the loop b

and the bounds checking on the new loop is modified to reflect the behavior of the

loop. For instance, if unrolling the loop in shown in Figure 6 four times would yield

loop shown in Figure 9.

Do I = 1, N/4, 4
X[i] = A * (Y[i] + Z[i])
X[i+1] = A * (Y[i+1] + Z[i+1])
X[i+2] = A * (Y[i+2] + Z[i+2])
X[i+3] = A * (Y[i+3] + Z[i+3])

End

FIGURE 9. Unrolled Loop

There is some overhead associated with loop unrolling. The number of loop

ations may not be an integral number of unroll count, so code must be generat

check for this case and execute any remaining iterations which cannot be executed

unrolled loop body. The cleanup code will generally be less optimal than the unro

code; if the loop typically executes few iterations, loop unrolling can be detrimenta

performance. One way to overcome this problem is to add code specially design

execute the loop a constant few iterations (Hwu calls this type of structure asuperblock

in [75]). There is also a secondary cost of loop unrolling in some architectures caus

the additional cache misses due to the increased code size [115][116][40][171].

The efficiency of loop unrolling quickly drops in relation to the size of origin

loop inefficiency and the unroll count. It is easy to see why this is the case. Each

tional time the loop is unrolled, the idle portion of one iteration is removed. The idlen

reduces at the rate 1-(unroll_count_idle_fraction). For short loops with a small in

efficiency, the loop may have to be unrolled a large number of times to significa



47

ffi-

sin-

lly

7%

t 50%

rting

that

ally

nnot

nroll

zed

exe-
increase the efficiency. This makes loop unrolling not very effective at improving e

ciency on a short loop with high initial overhead, e.g. unrolling a loop containing a

gle high latency operation.

FIGURE 10. Loop Efficiency vs. Number of Iterations Unrolled

The top curve shown in Figure 10, is the efficiency curve for a loop with initia

a 50% efficiency, e.g. 1 busy cycle and 1 idle cycle. The bottom curve is an initial 1

efficiency, e.g. 1 busy cycle and 5 idle cycles. As can be seen here a loop starting a

efficiency must be unrolled 9 times before the efficiency reaches 90% and a loop sta

at 17% efficiency must be unrolled 45 times before reaching 90%.

The disadvantage of having to unroll the loop a large number of times is

more time is likely to be spent in unoptimized code sections. An unrolled loop is usu

constructed with an unoptimized version of the loop to execute iterations which ca

be executed in the unrolled version. If the loop executes fewer iterations than the u

count or the number of iterations is not a multiple of the unroll count, the unoptimi

version is executed to handle these iterations. If loops are unrolled many times and

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Number of Iterations in Body

17%

50%



48

time

. In

no

edup

2],

ith an

op

to

olling

ted to

h the

the

o hor-

od

blems.

trace

The

asis
cuted few iterations, loop unrolling will provide no advantage because most of the

will be spent in the unoptimized version of the loop.

In spite of its drawbacks, loop unrolling is an effective optimization technique

a study of parallelism on a VLIW architecture [167], Sohi and Vajapeyam find

speedup is provided by the architecture without loop unrolling. They do find a spe

of up to 1.6x scalar on a four operation VLIW architecture with loop unrolling. In [10

Lee, et al. find speedups between 1.5x and 9.0x scalar on a superscalar SPARC w

instruction window of four. This study also includes software pipelining. They find lo

unrolling provides better performance than software pipelining, due to its ability

remove branches and index computations. However, they also note that loop unr

can be combined with software pipelining to get the benefits of both techniques.

2  Trace Scheduling

Trace scheduling attempts to increase the size of the block of code presen

the scheduler by scheduling the blocks from one commonly executed path throug

program (atrace). This was first proposed by Fisher in [52] as a way to increase

available parallelism at the microcode level. The technique has also been applied t

izontally microcoded architectures [96][104].

In [46], Ellis applies trace scheduling to an “8-cluster ELI” and finds go

speedups. He was able to get speedups of up to 7.4 times scalar on some pro

Unfortunately, he does not determine how much of the improvement was due to

scheduling and how much was due to other optimizations, namely loop unrolling.

trace scheduling compiler and ideas from the ELI project ultimately became the b

for the MultiFlow VLIW architecture of [123].



49

nal

basic

atever

ed to

have

t code

n the

oved

n the

this

e an

g: an

wise

in a

o be
Trace scheduling works by allowing operations to migrate across conditio

operations, which normally block code motion. The entire trace is treated as one

block for scheduling purposes and operations in the trace can be scheduled in wh

order is most beneficial, limited only by data dependencies.

After the operations in the trace have been scheduled, clean-up code is add

the off-trace branch of every conditional to compensate for any operations which

made a block crossing. This is one of the main ideas behind trace scheduling: Tha

could be added to undo the effects of speculative execution of an operation whe

guarding condition fails. For instance, suppose that a simple increment is to be m

above a conditional. This transformation is illustrated in Figure 11.

FIGURE 11. Trace Scheduling Example.

In this case, the effect of the increment instruction can be can be undone o

off-trace branch of the conditional by adding a decrement instruction. However,

assumes that moving the increment instruction above the conditional will not caus

extraneous overflow exception. This is one potential problem with trace schedulin

instruction executed earlier than normal may raise an exception which it other

would not. For instance, loads are often advantageous instructions to move up

schedule and they can normally produce exceptions. MultiFlow allowed loads t

trace scheduled by adding a non-exception raising load instruction [36].

IF X > 0

i = i + 1

i = i - 1

IF X > 0

i = i + 1

BA



50

ther

that

addi-

ences

e long

te to

e a

Fisher

t these

hed-

llis

He

rove-

02]

olling

].

ed

e than
Another problem with trace scheduling was that at first it was not clear whe

the trace scheduling algorithm would always terminate. In [127], Nicolau showed

trace scheduling will terminate, but that there could be an exponential number of

tional operations produced, which is practically the same as not terminating. Sequ

of conditional constructs can cause this phenomenon. This is unfortunate becaus

sequences of conditional code are exactly where it would seem to be appropria

apply trace scheduling. It seems this is not the case, as noted by Ellis in [46]:

“But as discussed in chapter 8, even with the automatic profiler
these programs had little available parallelism. This had many
branches with probabilities close to half (branches that went each
way about the same number of times). Trace scheduling will
never do very well on such programs, because the core assump-
tion of trace scheduling is that branches mostly go one way or the
other.”

Trace scheduling is also limited in its ability to handle loops. A trace must b

linear sequence of operations with no cycles, so back edges of loops are excluded.

speculates on some possibilities for extending trace scheduling to handle loops, bu

were not implemented [52].

It is also not clear how much of a performance benefit is provided by trace sc

uling when this technique is used on a VLIW architecture. In the Bulldog compiler, E

used trace scheduling with loop unrolling to improve the performance of loops.

reports good results, but leaves open the question of how much performance imp

ment came from trace scheduling and how much came from loop unrolling. [1

reports speedups of up to 9 times scalar for a superscalar SPARC using loop unr

alone, so this is a real question.

Colwell reports the performance of the MultiFlow VLIW machine in [36

Unlike the work in [46], which was a simulated architecture, the MultiFlow contain

all the idiosyncracies of a real machine and the results are much more conservativ



51

ieves

eedup

s with

ross

oire.

for a

idea.

n be

t pur-

hich

o be

ystem

ating

cies.

even

ctions

ated

ross

ecu-

eter-

nce

ugh
the results from the earlier ideal machine. The 14 operations wide system only ach

a speedup of 1.5 over the 7 operations wide system. While this is a respectable sp

on a real machine, this type of performance increase has been shown on system

less resources, specifically less instruction width, e.g. in [162].

Trace scheduling is an interesting idea. Allowing operations to migrate ac

block boundaries can be a powerful technique for a compiler to have in its repert

And Ellis has demonstrated that a trace scheduling compiler can be constructed

complicated architecture.

Trace scheduling long blocks of operations may be an overuse of a good

Allowing operations to migrate across block boundaries during static scheduling ca

beneficial for performance. This idea has shown up in other systems which do no

port to be trace scheduling. In [162], Smith, et al. describe the Torch processor, w

uses delayed exception instructions and shadow buffers to allow instructions t

scheduled across block boundaries. They report good results, even though their s

only allows a single conditional to be crossed. In [27], Chen, et al. add compens

code to allow loads to migrate across stores in order to handle long memory laten

They show good results for intermediate latency memory (20 cycle latency),

though only one store can be crossed. Systems employing memory prefetch instru

provide a non-blocking, non-exceptional load instruction to allow loads to be migr

to earlier than normal positions [85][23].

One of the ideas central to trace scheduling, allowing code to migrate ac

block boundaries with support to compensate for the effects of early instruction ex

tion, has been incorporated into at least academic thought. Execution profiling to d

mine the most likely branch direction is also popular due to the performa

improvement available by correctly predicting branches [72][103][112]. Even tho



52

re still

as a

42]

g and

by

linear

lining

rate

per-

dary

etion

llus-

tion

ion of
trace scheduling compilers are uncommon, the ideas used in trace scheduling a

actively pursued.

3  Software Pipelining

Software pipelining first appeared in microcode [87] and was developed

compiler scheduling technique by Rau, et al., along with VLIW architectures [1

[143] [144]. Software pipelining developed for the same reasons as trace schedulin

has the same effect, i.e. software pipelining looks for larger amounts of parallelism

scheduling operations across basic blocks. However, trace scheduling selects

sequences of blocks without back arcs and specifically avoids loops. Software pipe

works specifically on loops. In trace scheduling, operations are allowed to mig

throughout the trace, potentially crossing block boundaries. In software pipelining o

ations are allowed to migrate between iterations, potentially crossing the block boun

at the end of the loop.

In sequential loop execution, each iteration begins execution after the compl

of the previous iteration. The sequential execution of three iterations of a loop is i

trated in Figure 12.

FIGURE 12. Sequential loop execution

In a software pipeline, successive iterations are allowed to begin execu

before all the preceding iterations have completed execution. The pipelined execut

Ite
ra

tio
n

Time

i

i+1

i+2



53

pro-

pipe-

era-

of the

s of

efore

r per-

eral

nt of

on-

traint

next

of

tages.
three iterations of a software pipeline is illustrated in Figure 13. Software pipelining

vides a form of execution for the iterations which behaves like a standard hardware

line.

FIGURE 13. Pipelined Loop Execution

In software pipelining, a loop is treated as the basic unit of scheduling. Op

tions are allowed to migrate across the block boundary at the beginning and end

loop, into previous iterations or out of the loop into prolog or epilog code. Iteration

the loop migrate into each other with subsequent iterations beginning execution b

previous iterations have completed. This compresses the schedule, allowing highe

formance than can be achieved by scheduling only within the body of the loop.

At any given time a software pipeline can be executing instructions from sev

iterations. This potentially provides parallelism not otherwise available. The amou

parallelism available is still dependent on the particular program being compiled. C

trol and data dependencies must still be honored. However, the artificial cons

imposed by block scheduling that each block/iteration must complete before the

block/iteration is entered, has been relaxed.

A software pipeline is constructed by dividing each iteration into a series

equal size blocks of instructions. These blocks of instructions are the schedule s

Ite
ra

tio
n

Time

i

i+1

i+2



54

tions

tes.

e-

en ini-

ase.

gain

three

erent

via

itional

rrent
Instructions are scheduled within each stage such that stages from different itera

can be executed simultaneously. New iterations are initiated as each stage comple

There are three distinct phases to pipelined loop execution:Prolog, Kernel, and

Epilog. On the first few iterations of the loop, the pipeline is not full and not all the pip

line stages are executing. This is the prolog phase. Once enough iterations have be

tiated, the pipeline will be full and all stages will be executing. This is the kernel ph

Once the final iteration has begun execution the pipeline will begin to empty and a

not all stages will be executing. This phase is the epilog. The execution phases of a

stage loop is shown in Figure 14.

FIGURE 14. Phases of pipelined loop execution

Some mechanism is necessary to insure correct behavior in these diff

phases of software pipeline execution. Software pipelining can be implemented

either: 1) code segments constructed to execute each of the stages, or 2) cond

instructions with hardware support to execute only instructions applicable to the cu

execution phase, as in the Cydra 5 [144].

Iteration

T
im

e

i

i+1

i+2

i+3

Prolog

Kernel

Epilog



55

rnel,

ferent

ucces-

be as

ough

eeper

rate

oop

r this

nd

con-

are

uld
The key part of constructing a software pipeline is finding a steady state ke

i.e. a schedule for the kernel must be found which can execute the stages from dif

iterations of the pipeline simultaneously. The same code must be used to execute s

sive iterations of the loop, thus the steady state requirement. The kernel should

short as possible as this will generally reduce the time to execute the loop, even th

the number of stages will tend to increase. This is analogous to constructing d

hardware pipelines.

3.1  An Example of Software Pipelining

A schedule for a short loop on a VLIW architecture will be used to demonst

the construction of a software pipeline. We will reuse the vector loop from the l

unrolling discussion for our example (Section 1.1 on page 44). The source code fo

loop is shown again in Figure 15.

Do I = 1, N
X[i] = A * (Y[i] + Z[i])

End

FIGURE 15. Source for a vector loop.

We will develop a schedule for a VLIW architecture with pipelined addition a

multiplication function units, each with a 3 cycle latency. The loads, stores and loop

trol will be ignored and only the addition and multiplication will be scheduled. NOPs

not shown. A simple schedule for the loop body is shown in Figure 16.

1: t1 = Y[i] + Z[i]
2:
3:
4: X[i] = A * t1

FIGURE 16. The loop body without unrolling.

Execution of this schedule, starting with i = 1 and executing for two iterations wo

execute the stream of instructions shown in Figure 17.



56

ions.

struc-

uch as

as is

exe-

ase,

e is

ore
1: t1 = Y[1] + Z[1]
2:
3:
4: X[1] = A * t1
5: t1 = Y[2] + Z[2]
6:
7:
8: X[2] = A * t1
9: ...

FIGURE 17. Execution of a few iterations of a loop without unrolling.

This loop is a DOALL type loop - there are no dependencies between loop iterat

Because there are no inter-loop dependencies, the execution of this stream of in

tions can be compressed. If we first look at the execution stream, compressed as m

possible and executed for six iterations, the execution will be much more efficient,

shown in Figure 18.

1: t1 = Y[1] + Z[1]
2: t2 = Y[2] + Z[2]
3: t3 = Y[3] + Z[3]
4:  t4 = Y[4] + Z[4]; X[1] = A * t1
5:  t5 = Y[5] + Z[5]; X[2] = A * t2
6: t6 = Y[6] + Z[6]; X[3] = A * t3
7: X[4] = A * t4
8: X[5] = A * t5
9: X[6] = A * t6

FIGURE 18. Compressed execution of a few iterations of the loop.

There are a number of interesting features in the execution of this loop. It is

cuting in a pipelined fashion. There is a period of time, cycles 1 to 3 is the prolog ph

where the pipeline is filling up. The kernel phase is cycles 4 to 6, where the pipelin

full and running at maximum efficiency. Cycles 7 to 9 are the epilog. There are no m

additions to do and the pipeline is draining.



57

the

ipe-

must

n the

t be

l ways

am-

ware

soft-

ker-

pera-
With one small caveat, the instruction shown in cycle 4 of Figure 18 forms

kernel of this loop, which can be coded in one instruction in this case. A software p

line schedule for this loop is shown in Figure 19.

Prolog 1: t1 = Y[1] + Z[1]
2: t2 = Y[2] + Z[2]
3: t3 = Y[3] + Z[3]
---------------------

Kernel 4: ti%3 = Y[i] + Z[i]; X[i-3] = A * t(i-3)%3
---------------------

Epilog 5: X[N-2] = A * t1
6: X[N-1] = A * t2
7: X[N] = A * t3

FIGURE 19. A Software Pipeline version of the loop body.

The caveat to this schedule is that the temporary values produced by the addition

all have separate locations which are accessible by the multiplication, 3 cycles i

future. In other words, there are 3 simultaneously live values of t and this mus

accounted for in the schedule. As is discussed in more detail later, there are severa

to handle this, by either providing hardware support, or unrolling the kernel and ren

ing each of the instances.

The details of how this schedule is coded also depend heavily on the hard

support available in the machine. If the machine has explicit hardware support for

ware pipeline execution, the schedule would be coded by just giving the kernel. The

nel is shown in Figure 20.

ti%3 = Y[i] + Z[i]; X[i-3] = A * t(i-3)%3

FIGURE 20. The Kernel of the loop body.

The hardware would execute the prolog and epilog by executing the appropriate o

tions and squashing the remaining operations.



58

er-

added

sation

e, for

regis-

code

its to

tions

olling,

le-

into

shown.
If pipelined loop control is not available in hardware, the prolog, epilog, and k

nel must be expanded into separate sections of code and the control code must be

which determines when to enter and exit these sections. In addition, some compen

code may be necessary on exits to put the program in a known state. This is tru

instance, where the kernel has been unrolled to map temporary values to different

ters. Depending on when the loop exits, the register mapping may not match the

following the loop, or the epilog. Compensation code must be added at these ex

align the registers.

Because of the unrolling, a pipelined loop may also require that some itera

be executed outside of the pipelined code. This is the same as in standard loop unr

when the iteration count is not a multiple of the unroll count. A pipelined loop, imp

mented without hardware support, might have the structure shown in Figure 21.

Prolog 1: t1 = Y[1] + Z[1]
2: t2 = Y[2] + Z[2]
3: t3 = Y[3] + Z[3]
---------------------

Kernel 4: t1 = Y[i] + Z[i-3]; X[i] = A * t1
5: t2 = Y[i+1] + Z[i-2]; X[i+1] = A * t2
6: t3 = Y[i+2] + Z[i-1]; X[i+2] = A * t3
---------------------

Epilog 7: X[i] = A * t1
8: X[i+1] = A * t2
9: X[i+2] = A * t3
---------------------

Compensation Code
---------------------

Exit

FIGURE 21. A Software Pipelined loop body with register expansion.

In this example, the kernel has been unrolled to map the 3 live temporary values

separate registers. The control instructions and compensation code have not been



59

nroll-

ck. In

n of

the

is to

Lam

IV,

at the

that

These

ecute

cute the

fail

le to

his is

ecute

usly

tion to

s this

prob-
In contrast to a pipeline schedule, a schedule produced by standard loop u

ing looks much the same except that the code is packed together into a single blo

standard loop unrolling, the pipeline would have to be filled and drained each iteratio

the unrolled loop, so the efficiency is not as high as with the pipelined loop, where

kernel executes at maximum efficiency for most of the iterations.

3.2  Software Pipelining Scheduling Methods

There are several methods for constructing a software pipeline. One method

construct the software pipeline directly in the scheduler. This is the method used by

and Rau [99][144] and is also used by Tortoise (for more detail see Chapter

Section 4 on page 94). As each operation is scheduled, it is subject to constraints th

operation complete before its result is required by subsequent iterations and

resources are available to execute the operation at its relative position in all stages.

constraints are in addition to the normal constraints that an operation can only ex

once it operands have been computed and that there are enough resources to exe

operation with respect to one iteration.

A problem with this type of scheduling is that the scheduling algorithm may

to find a schedule. On attempting to schedule an operation, it may not be possib

have the operation complete before its result is required in subsequent iterations. T

because scheduling each operation in the kernel implies that the operation will ex

at the same relative time in all iterations, including future iterations. Another previo

scheduled operation may have been scheduled too early to allow the current opera

complete. If there were only resource constraints or only dependency constraint

could not happen, but trying to satisfy both types of constraints at once causes this

lem.



60

mber

truc-

rk as

trarily

r as in

g may

tems

ems

ent

dra 5,

aints

This

, thus

g is

n usu-

arp

[99].

ine.

the

rate

con-

por-

uling
It is possible that the schedule could be repaired by increasing the size or nu

of the stages, thus moving future operations later in time, and repairing the data s

tures to reflect the new operation times. However, this may require as much wo

rebuilding the schedule. This method also implies that dependencies can be arbi

delayed. This is generally true only if each dependency is associated with a registe

most GPs. In microcode, where a data path must be an exact length, this reorderin

not be possible.

Some of the more difficult scheduling issues were avoided in the early sys

by only using software pipelining in restricted situations. In the Floating Point Syst

compilers [181][26], software pipelining was restricted to a single fortran statem

which contained no recurrences. Later work by Rau et al., on what became the Cy

tried to minimize the problem of scheduling by removing as many resource constr

as possible [142][144]. This was provided in the form a large crossbar register file.

provided a register file with a large number of registers and a large number of ports

eliminating contention for registers and access.

While sufficiently complex loops could still require rescheduling, reschedulin

generally not a major problem. The stage size necessary to find a valid schedule ca

ally be estimated fairly accurately. Lam, when working on the compiler for the W

project, reported that a schedule was usually produced after only one or two tries

Lam also found a method for dealing with conditional code within a software pipel

This was not possible with earlier software pipeline schedulers, which restricted

body of the loop to be a basic block [26][142][181].

Some scheduling algorithms which attempt to reduce the scheduling failure

have been developed for microcode schedulers. Microcode tends to have more

straints than higher level instructions, so reducing the failure rate becomes more im

tant. One method, discussed by Allen et al. in [7], is to use a two step sched



61

ncies.

duce

close

tier

tenta-

ady

ched-

ment

s the

ssed.

well

e a

d also

tarts

to the

ptimi-

z in

ard-

were

e of

tec-

le is
process. The operations are first scheduled using forward (inter-iteration) depende

The sorted operations are then scheduled for software pipelining. This tends to re

the failure rate because critical operations can be found, i.e. operations are already

to their final order and critical operations will have a higher probability of being fron

nodes. Also, operations later in the schedule can be moved because they are only

tively scheduled.

Another method for constructing a software pipeline is to compress an alre

complete schedule. In this method, scheduling starts with a standard basic block s

ule for the loop. The loop is unrolled and then examined to find a steady-state seg

which becomes the kernel. The remaining portion of the unrolled schedule become

prolog and epilog. This process is repeated until the kernel can no longer be compre

This iterative method has the advantage that a schedule will be found in a

bounded amount of time [6]. Unfortunately, the time actually required to produc

schedule may be larger than that required by the construction method. This metho

tends to produce less compact schedules than the construction method [7].

Another advantage of the compaction method is that, since the method s

with a complete schedule, resource constraints are more readily incorporated in

algorithm, and the algorithm can be more easily applied as a post-pass assembler o

zation [77].

An interesting aside is the work on digital signal processors by Schwart

[152]. In this work the goal was to find an optimal schedule and then construct the h

ware to execute the schedule. Optimal schedules could be found because there

effectively no hardware constraints. This work also used a slightly more general typ

execution than is usually in most systems. Generally, in a VLIW or horizontal archi

ture, the function unit executing a particular operation at a given point in the schedu



62

n unit

com-

other-

rse

tware

[98].

arks.

ment

rfor-

the

et al.

egis-

orter

2].

ior to

ple-

pipe-

ng

Loop

mes
fixed, because the schedule is static. In the processor used by Schwartz, the functio

executing the operation could be shifted each iteration. This allows certain types of

munication patterns to be optimized, producing more compact schedules than are

wise possible.

3.3  The Performance of Software Pipelining

Software pipelining has been shown to work quite well in on a number of dive

architectures. On the Warp systolic array, Lam found loops scheduled using sof

pipelining to have an average 3 times performance increase over block scheduling

Optimal performance was achieved for the majority of the loops in these benchm

Software pipelining has demonstrated to provide significant performance improve

on the Cray, over the Cray Fortran compiler [173][45]. These studies showed the pe

mance of software pipelining on the Cray architecture was sometimes limited by

small number of registers available on the Cray. In a later study, Mangione-Smith

found that performance could be improved on the Cray architecture if the vector r

ters were reformatted to complement software pipelining by providing more and sh

vector registers [110].

A discouraging note on performance of software pipelining is found in [10

Lee et al. study scheduling on a superscalar SPARC and find loop unrolling super

loop pipelining:

“This result is from the advantage loop unrolling has in reducing
the loop control overhead and indices increment operations.”

However, the authors do note that loop unrolling and software pipelining are com

mentary techniques and their best results are from a combined use of unrolling and

lining. A similar result is found by Weiss and Smith [191]. In this study, loop unrolli

and a simple software pipelining algorithm is used to schedule code for a Cray-1S.

unrolling provides a speedup of 1.8, while software pipelining provides only a 1.3 ti



63

and,

llow

oth-

ese

soft-

e par-

cle

ate

f its

pen-

ben-

ng

5, it is

ling

ule

nce,

cture

ddi-

not

at the

and

f the
speedup. However, a very simple software pipelining algorithm is used in the study

as noted in other studies [173][45][110] the Cray has too few vector registers to a

the most effective use of software pipelining.

Since some studies have reported good results with software pipelining and

ers have reported better results with loop unrolling, it is worth wondering if one of th

techniques is better than the other and if so, which technique. The performance of

ware pipelining is very dependent on the target architecture and the structure of th

ticular loop being scheduled. In the limit, a scalar architecture with one cy

instructions will not benefit from software pipelining. An architecture with intermedi

latencies and parallelism may find loop unrolling to be more beneficial because o

ability to remove loop dependent computations. On the other hand, a loop with a de

dency structure which does not allow instructions to be moved or removed will not

efit from loop unrolling either.

Software pipelining will have maximum benefit on a architecture with lo

latencies and a large amount of parallelism. As discussed in Section 1.2 on page 4

more difficult to increase the efficiency on such an architecture with loop unrol

alone. Another factor which can favor software pipelining is difficult to sched

resource constraints, which makes it difficult to compact unrolled loops. For insta

suppose that our example loop in Figure 6 is to be scheduled for a target archite

which allows an addition and multiplication to be started each cycle, but not two a

tions or two multiplications. A schedule for this loop created using loop unrolling can

be made 100% efficient because multiple additions cannot be issued together

beginning of the loop body and multiple multiplications cannot be issued together

the end of the loop body (see Figure 8). Software pipelining allows these parts o

schedule to be migrated out of the loop body, providing better efficiency.



64

ing is

hese

ations

ugh

gen-

hich

ise is

ularly
Perhaps the best characterization of a good architecture for software pipelin

provided by the microarchitectures on which software pipelining was developed. T

architectures tend to have wide instructions with constrained resources and oper

with long latencies. Software pipelining fits these architectures quite well, altho

hardware support for software pipelining does help [87]. This idea is expanded and

eralized by Rau et al. in [141][142][144][149].

Software pipelining appears to be a successful scheduling technique, one w

needs to be at least be considered in an optimizing compiler. However, its prom

tempered by that fact that it places heavy demands on machine resources, partic

instruction cache and registers.



hen

good

u-

flow

ction

pro-

pti-

of

paral-

llel-

nce

the

on to

ture,

test

avail-

mpiler

ctural

limita-
CHAPTER IV
THE STRUCTURE OF THE OPTIMIZING

COMPILER TORTOISE

There are two important reasons for using a tailored optimizing compiler w

studying scheduling techniques. First, aggressive scheduling techniques require

data flow information, which is normally only found in optimizing compilers. In partic

lar, the performance of aggressive scheduling techniques is highly dependent on

analysis to drive program transformations such as induction variable strength redu

and promoting inter-loop operands into registers. In addition, the instruction mix

duced by an optimizing compiler can be different from the mix produced by a non-o

mizing compiler. For instance, in [80], Jouppi and Wall find that various types

optimizations and register allocation strategies can vary the measured amount of

lelism by a factor of almost 2. The same study found a significant difference in para

ism in the Livermore Loops when CSE detection was added for array refere

computations. The difference instruction mix seen by the architecture can bias

results of performance related experiments. As we shall see in Chapter V, in additi

just being an optimizing compiler, the compiler must also be tailored to the architec

to avoid bias from the scheduling techniques employed within the compiler.

An alternate approach to using a tailored optimizing compiler would be to

the performance characteristics of various architectures using a standard, widely

able compiler such as the Gnu C compiler. This approach has the appeal that a co

is more easily obtained and much less compiler work is necessary. Many archite

studies take just this approach (see Chapter II). This approach does have some
65



66

ues

icular

rchi-

e on

piler

are

r or

post

, or to

era-

f the

for a

piler

hat it

piler

urce

u C

er-

ow

was

if we

ify-
tions, however. In particular, it ignores the issue of how different compilation techniq

interact with the architecture being studied. The assumptions inherent in the part

compilation algorithms and techniques used in the compiler will benefit computer a

tectures which match those assumptions and will be detrimental to performanc

architectures where those assumptions do not hold. In particular, keeping the com

invariant in our study would not allow us to explore trade-offs at the compiler/hardw

boundary, e.g. “Is it better to have good register allocation algorithms in the compile

register renaming in the architecture?”

Another widely used technique is to use a standard compiler, but apply a

pass after code generation to adapt the code produced to a particular architecture

apply optimization techniques. While more flexible than just changing the code gen

tor, this limits the types of compilation techniques which can be studied because o

limited information available after code generation.

We would like to have the option of using aggressive scheduling techniques

range of architectures. This requires that we have available an optimizing com

which we can modify as necessary to implement our algorithms. Having decided t

is important to have such a compiler, the questions remain of where to obtain a com

and what techniques to employ within the compiler.

Compilers are valuable commodities and are not readily available in so

form, especially high quality optimizing compilers. The one exception is the Gn

compiler, which is widely available. The problem with using Gnu C, at least in the v

sion available at the time (1.37), was that it did not do much in the way of collecting fl

analytic information and thus was weak in the area of loop optimizations. Since this

exactly the area which we wanted to study, this deficiency needed to be corrected

were going go use the Gnu compiler. This left us with the options of extensively mod

ing the Gnu compiler or writing our own compiler.



67

ls of

fluent

c-

uter

f the

diate

and

asic

re of

uling

e of

rans-

eing

deco-

odes.

erful

time

red for

d and

ment

pres-

our

ttern

struc-
We decided to write our own compiler for a number of reasons. The interna

the Gnu compiler seemed arcane and we did not want to spend our time becoming

in them. In addition, writing our own compiler would give us full control over the stru

ture of the compiler and allow us to build a flexible basis for compiler and comp

architecture studies. However, we are not particularly interested in the front end o

compiler, so we use the Gnu C front end to parse the source and build an interme

representation (IR). Our compiler starts from this IR, runs flow analytic routines

produces assembler for the target architecture.

We are still left with some major issues to resolve: What should be the b

structure of the compiler and what language should we write it in? The basic structu

Tortoise derives from the desire to drive much of our transformations and sched

from flow analytic information. The compilation process was developed on a them

repeating passes of: 1) produce and gather some flow information followed by; 2) t

form the IR based on the flow information. To support this process, the program b

compiled is represented as directed graph where the nodes represent operations

rated with flow information, and the edges represent dependencies between the n

For the implementation language we wanted to use something more pow

than C, which would aid us in exploring algorithms, perhaps at the cost of some run

efficiency. Lisp has been used in research projects for this reason and was conside

this project. However, at the time this project began, Mathematica had just appeare

seemed to provide some interesting capabilities, so we decided to use it to imple

our compiler. In particular, Mathematica provides extensive pattern matching on ex

sions which allowed us to quickly implement and test some of our algorithms.

We did run into two problems with using Mathematica. The first was that

data structures quickly deviated from the domain on which the Mathematica pa

matching worked. The Mathematica data structure is an expression tree. Our data



68

rep-

lable to

ted a

hich

attern

en in

sers

tem is

began

pro-

s how

ame

. We

ter-

, 2)

ipe-

so it

ple-

from

cution

this
tures quickly became general directed graphs with cycles, which cannot be directly

resented as Mathematica expressions, and thus the pattern matching was not avai

us. We could still use pattern matching where we either maintained or reconstruc

Mathematica expression, but we could not use it to match portions of our graph, w

would have been a good way to drive code generation. We had to implement the p

matching on the graph by hand, just as we would have to have to do if we had writt

C or Pascal.

The other problem we encountered using Mathematica will be familiar to u

of Lisp and other interpreted systems. The execution speed of an interpreted sys

acceptable when implementing small programs and test cases. However, once we

to run our compiler with full data flow analysis and code generation on complete

grams, the execution speed became unbearably slow. By the time it became obviou

slow the compilation speed was going to be, we were committed. We derived the n

for our compiler, Tortoise, from it execution speed.

In Chapter III, we examined a number of aggressive scheduling techniques

choose to implement loop unrolling and software pipelining. We are particularly in

ested in: 1) “scientific code”, which means loop optimizations are important and

static architectures. The literature indicated that both loop unrolling and software p

lining are effective techniques for scheduling code for static architectures, and

seemed that Tortoise should employ loop unrolling and software pipelining.

We choose not to implement trace scheduling. First of all, it seemed that im

menting trace scheduling would require an additional large amount of effort, and

the literature, trace scheduling seems to require some types of speculative exe

capabilities to be effective. This was outside the realm we wished to explore in

study, so we choose not to implement this technique.



69

flow

. And,

ns-

his

ssion

ainder

rga-

la-

opti-

piler

isting

or

mple

sible,

cure

ture

gram

lysis

and

ed by

Tor-

ration
In addition to the scheduling techniques, we needed to implement the data

analysis necessary to allow us to support the transforms required by the techniques

to fulfill the intent to be a highly optimizing compiler, we needed to implement the tra

formations which would normally be employed in such an optimizing compiler. T

includes induction variable detection and strength reduction, common sub-expre

detection and reuse, load/store and extraneous assignment removal, etc. The rem

of this chapter will examine the particular techniques employed in Tortoise and its o

nization.

1  The Organization of Tortoise

The overall organization of Tortoise will be familiar to any student of compi

tion. There are three major sections: 1) the front end; 2) the data flow analysis and

mization section; and 3) the code generator and scheduling section. The Gnu C com

(gcc) is used as the front end. It produces an intermediate representation (IR) cons

of lists ofRTL expressions[170]. The RTL expressions are composed of simple unary

binary operations which are close to machine level, i.e. they generally have a si

translation into machine instructions. The IR is dumped from gcc as early as pos

before register allocation or optimizations such as loop unrolling, which tend obs

the structure of the program. Symbol table information and the initial block struc

graph are also saved from gcc. The IR from gcc is parsed and used to form a Pro

Dependence Graph (PDG), which is analyzed and optimized in the data flow ana

and optimizations section of Tortoise. The PDG is used by the code generation

scheduling section to produce assembly code. Assembly source code is produc

Tortoise to avoid having to produce machine code directly. The overall structure of

toise is shown in Figure 22. More detailed diagrams of the analysis and code gene

sections are shown in Figure 23, on page 73 and Figure 35, on page 94.



70

with

ns and

plica-

oise:

extra

. Hav-

ing a
FIGURE 22. Organization of Tortoise

The front end of gcc performs some transformations normally associated

loop optimizations. Gcc rewrites array reference expressions as address expressio

also performs some other optimizations, such as strength reducing integer multi

tions to shifts. These optimizations tend to be detrimental to the operation of Tort

The transformed expressions are often removed by later transformations and the

operations add cases to routines which search for patterns in induction expressions

ing to deal with these types of optimizations is an unfortunate consequence of us

preexisting front-end.

Front End
(gcc)

RTL code
symbol table

block structure

Data Flow Analysis
and Optimizations

Program Dependence Graph
flow information

Instruction Selection
Scheduling

Code Generation

Machine Instructions



71

t the

lysis

ced in

these

tions

ause it

e the

pen-

pen-

e of a

ency

how-

ions.

of

ti-flow,

, we

of a

know

are.

ever

aly-

and

r.
2  Data Flow Analysis and Transformations

As stated previously, data flow analysis is necessary to allow us to suppor

program transformations we wish to make with Tortoise. The goal of data flow ana

is to discover the data flow dependencies between the memory locations referen

the source program. We need to know which operations will share data through

locations so that we can reorder the operations properly. For instance, if two opera

are linked via flow dependency, the dependent operation must execute second bec

needs the data produced by the independent operation.

An anti-flow dependency, also called a write-after-read dependency, is wher

second operation writes to a location following a previous reference. An output de

dency is where two operations write to the same location. Anti-flow and output de

dencies also impose an ordering on operators, because they indicate the reus

location and thus destruction of data, rather than sharing of data. An input depend

indicates multiple references to a location and does not impose an ordering. It does

ever, indicate sharing of data, and this knowledge can be used for some optimizat

Traditional data flow only collects this much information, i.e. for every pair

dependent locations in a program, the dependency is categorized as a flow, an an

or an output dependency. However, in both software pipelining and loop unrolling

can and do make use of some additional information: theiteration distance. Since soft-

ware pipelining, and to some extent loop unrolling, schedules multiple iterations

loop to execute simultaneously, we can produce more compact schedules if we

exactly how far apart, in terms of loop iterations, the operations in the dependency

This information is not traditionally useful because traditional schedulers would n

simultaneously consider the operations from multiple iterations. In our data flow an

sis routines, we will collect the dependency type (flow, anti-flow, output, and input),

the iteration distance, where it can be determined to be a constant, integral numbe



72

ined

pre-

tables

deco-

d by

m is

steps

at a

lated

n the

dency

e of

sec-

dis-

ty just

flow

ma-

elds

mation

ng of

es or
As the dependency information is gathered, it must be recorded and mainta

in a form which will be usable by the compiler. There are two commons forms for re

senting dependency information. Dependency information can be maintained as

encoding dependency relations between lists of pseudo instructions (quads). In this for-

mat the lists of quads are the primary data structure and the dependency tables are

ration. Or, the program operations can be linked together via the graph forme

dependency relations between the operations. The later structure is call aprogram

dependence graph (PDG) and is the representation used throughout Tortoise [51].

While straightforward to describe, the dependency information for a progra

not simple to discover and collect. Tortoise goes through a number of intermediate

to discover the flow information in the source program. To describe this process

gross level, there are three phases in collecting the data flow information: 1) The re

definitions and references in each block are linked together; 2) A set of equations o

linked references are solved iteratively to find the dependencies; 3) The depen

information is used to construct the PDG; 4) The PDG is refined using knowledg

loop variables to find the full data flow graph.

The general approach taken in the data flow analysis and loop optimization

tion of Tortoise is to proceed in cycles where some property of the program graph is

covered and recorded, and then a transformation is made based on the proper

recorded. A number of transformations on the program are intermixed with the data

analysis. The transformations tend to simplify the graph, which provides more infor

tion for data flow analysis. Intermixing the data flow analysis and transformation yi

a better result than if these passes were run sequentially. The analysis and transfor

phases used in Tortoise are shown in Figure 23.

The speed of Tortoise was not considered an important issue at the beginni

this project, so no attempt is made to optimize this section by either combining phas



73

some

un-

the

re.

ture

m is

anch

m to

sure
making incremental changes. If, for instance, a graph transformation invalidates

flow information which is needed later, the flow information is reconstructed by rer

ning the flow analysis routines. This slows compiling speed but greatly simplifies

organization and function of Tortoise.

FIGURE 23. Tortoise Analysis and Transformation Phases

2.1  Canonical Loop Formatting

A few transformations are made directly on gcc’s IR, which is a list structu

The structure of loops is more easily recognized and modified in gcc’s RTL list struc

form, so the detection of loop nesting and transformation to a canonical loop for

done with gcc’s IR. The canonical loop format used has a tail comparison and br

and is shown in Figure 24. This eliminates an unconditional branch from the botto

the top of the loop, but requires an additional check before entering the loop to in

that the loop body will be executed at least once.

Canonical Loop Formatting

DDG Construction

Extraneous Assignment Removal

Load CSE Detection

Constant Propagation

Loop Invariant Detection

Induction Variable Detection

Iteration Distance Computation

Induction Strength Reduction

Induction CSE Detection

Loop Invariant Migration

Dead Code Elimination



74

tion

exits

h is

, e.g.

ode

ll be

ture

ncies

e the

e data

the
if (index < 1) goto exit
loop:

loop body
if (index++ <= N) goto loop

exit:

FIGURE 24. Canonical Loop Format

A loop header and tail block is also added to each loop to allow for later code migra

out of the loop. All paths into the loops pass through the loop header block and all

from the loop pass through the loop tail block.1

2.2  Block Flow Graph Reconstruction

After the loop header and tail blocks have been added, the block flow grap

modified to include the new blocks (an early version was constructed by gcc). Theblock

dominators are then found. The definition of block dominators from [65] is:

“If x and y are two (not necessarily distinct) nodes in a flow graph
G, then xdominatesy iff every path in G from its initial node to y
contains x.”

The dominators are used when moving code out of loops. Certain code motions

loop invariant code motion out of a loop, requires a dominating block to move the c

into. The addition of loop header and tail blocks assure that dominating blocks wi

available when hoisting code.

2.3  Initial Program Dependence Graph Construction

The program dependence graph is constructed from the gcc RTL list struc

and the block flow graph. The PDG encodes the known data and control depende

between operations in the program. At this point, the operations in the graph ar

same operations as those defined in gcc’s IR, e.g. add, multiply, load, store, etc. Th

1.   These are well formed loops, without branches into the middle of the loop, or exits from inside 
loop to arbitrary locations, so this transformation is always possible.



75

ssions

will be

res at

st of

ruc-

r.

such

tion-

es of

e are

ure --

eous

is-

the

lysis.

ari-

s com-

nt is

that

r vari-

tion-
dependencies encoded in the PDG consist of the dependencies found within expre

in gcc’s IR. Data dependencies between expressions and control dependencies

discovered and added to the graph in following analysis phases. The data structu

this point is still a graph of basic blocks, where each block contains an ordered li

trees. The analysis and transformations which follow will gradually transform this st

ture into a PDG, which is the structure passed to the code generator and schedule

2.4  Initial Data Flow Analysis

The first step in the analysis phase is to perform standard data flow analysis,

as that described by Aho and Ullman in [2]. This determines the dependency rela

ship between every pair of memory locations in the program. The standard four typ

dependencies are discovered at this point: flow, anti-flow, input and output. Thes

first recorded in def-use, use-def, use-use and def-def chains. An additional struct

“forward assignment use-use chains” is also constructed for use in removing extran

assignments (see “Data Dependency Graph Optimization” on page 76)

During the first data flow analysis there is not enough information to reliably d

ambiguate individual array element references. This is because of a circularity in

analysis algorithms. Distinguishing array elements requires induction variable ana

Induction variable analysis requires complete flow information on the induction v

ables, which has not been discovered yet. For these reasons, arrays are treated a

posite entities and individual array elements are not identified. If an array eleme

modified, the entire array is considered to be modified. Another way to view this is

the first data flow analysis is a scalar analysis and all variables are treated as scala

ables. Another data flow analysis will be performed to discover the dependency rela

ship between array elements.



76

nd

seful

ister

hitec-

isters

These

regis-

ths,

ecome

gister

ency

tions

den-

both

s. For

ween 2

m

tate-

tion is
One of the major functions of the first data flow analysis is to discover a

remove temporary “registers” created by gcc. The temporaries are generally not u

to Tortoise as the form of the graph will change substantially before we perform reg

allocation. Gcc’s operations do not exactly match the operations on the target arc

tures and the graph transformations performed will remove the need for some reg

and create others. The registers from gcc generally indicate flow dependencies.

will be encoded as a dependency link between two (other) nodes. In this case, the

ter node is discarded. If the register node is a merging point for two or more flow pa

the register node cannot be discarded. The node is retained in this case and may b

an executable register copy operation. This is discovered later. In either case, the re

assigned by gcc is used only as a label, not as an actual register.

2.5  Data Dependency Graph Optimization

The initial data flow analysis just performed allows a second data depend

graph to be constructed, which is more accurate than the first. A first set of optimiza

is performed during the reconstruction: redundant nodes from flow and input depen

cies are removed. Although flow and input dependencies are slightly different,

transformations remove extraneous nodes and produce new flow dependency link

instance, in Figure 25, there is a dependency between statements 3 and 2, and bet

and 1, caused by the assignment,d = a. If neither a or d is used elsewhere, this progra

fragment is equivalent to the single statemente = (b+c) * g.

1) a = b + c
2) d = a
3) e = d * g

FIGURE 25. An extraneous flow dependency

We effect this transformation in Tortoise by replacing the dependency between s

ments 3 and 2 with a dependency between statements 3 and 1. This transforma



77

dis-

her-

ation

e can

ecu-

ment

ow

The

ect this

y may

ts. For
illustrated in Figure 26. Later, statement 2 will be found to be unused and will be

carded during dead code elimination.

FIGURE 26. Dependency Graph Reconstruction - Flow Dependency

This transformation simplifies the graph and removes nodes which might ot

wise have to be computed at run time. There are restrictions on when this transform

can be applied. Flow dependencies though either a register or scalar memory nod

be removed and the nodes directly linked whenever there is a singlereaching definition,

i.e. whenever there is a single definition which will arrive at the reference during ex

tion of the program. However, there are some further restrictions on when assign

nodes can be removed.

The transformations resulting from flow dependencies collapse multiple fl

dependency links into a single link, removing intervening nodes in the process.

node removed can be register nodes, memory nodes and assignment nodes. In eff

transformation can promote memory nodes into registers (since a flow dependenc

become a register during code generation) and remove redundant assignmen

instance, the graph encodinga = b+c; d = a; e = a*g will be transformed into the graph

for e = (b+c)*g. This transformation is shown in Figure 26.

=

a +

b c

=

e *

d g

=

d a

+

b c

=

e *

g

(A) (B)



78

ed to

le flow

urbing

re is a

s defi-

wo

is an

wn in

es the

e is an

value

ndency

d a

 defi-
2.5.1  Extraneous Assignment Removal

Before an assignment can be removed the graph structure must be check

insure that removal of the assignment does not change the semantics. In the simp

dependency case shown in Figure 26, the assignment can be removed without dist

the program semantics. However, because of the way the graph is organized, the

potential problem when the assignment has an anti-flow dependency on a previou

nition. The links made in the graph to the earlier definition will effectively merge the t

definitions, which is not correct in all cases. The typical case where this occurs

assignment at the top of a loop. The definitions and dependencies formed are sho

Figure 27.

FIGURE 27. Dependencies Involved in Removing Assignment

A check must be made that the use on the right hand side of the assignment reach

node where the definition created by the assignment is used. It is possible that ther

intervening write to one of the locations used in the expression which changes the

of the expression. In this case the expression would not read the use and the depe

cannot be rewritten. In Figure 27, links (a) and (b) will be replaced by a link (c) an

check must be made to insure that the definitionr i is valid to replace the use ofr j in

the last statement. This is a “forward reaching assignment use,”1 which is an additional

flow analytic function which must be computed during data flow analysis.2

1.  The standard “reaching use” definition flows backward in execution time, i.e. from the use to the
nition.

ri =...

do...

rj = ri

... =... rj...

a

b

c



79

on is

d dur-

this

. All

on is

) are

. gcc

ction,

The
on
add the
2.5.2  Load CSEs

The other optimization made during the data dependency graph constructi

the sharing of load common subexpressions (CSEs). The input dependencies foun

ing data flow analysis indicate multiple uses of a single variable. In the case where

variable is loaded from memory, all but one of the loads is replaced by a single load

uses of the variable are replaced by flow links to the single load. This transformati

shown in Figure 28. In this example, the disjoint graphs for expressions (1) and (2

replaced by a graph in which the result of loading the variableb is shared.

FIGURE 28. Input CSE Dependency Transformation

This “load CSE” detection and replacement also works for other scalar CSEs, i.e

register nodes. These other CSEs are found and linked at this point also.

2.6  Constant Propagation

Once direct data dependency links have been established, constant dete

propagation, and folding are straightforward.Constant detectionis the process of dis-

2. This information is actually present in the other data flow information but not in a convenient form.
reaching definitions (coming into the assignments) are available at the block level but this informati
must be gathered together at the use of the assignment definition. The easiest way to do this is to 
extra flow analytic function “reaching use” and compute this during flow analysis.

+

a ld

b

(A) (B)

*

c ld

b

+

a ld

b

*

c

(1) (2)(1) (2)



80

is is

tants.

stant

stant

e

nd by

top”

n com-

y for

ro-

stant

chine

dur-

ever

ation,

he

ions

iants

t of
covering which operations produce invariant results over the entire execution. Th

trivial to determine for leaf nodes. Constant literals and variable addresses are cons

For interior nodes in the graph, the determination of whether an operation is con

must be derived from the structure of the graph. Starting at leaves containing con

values, constant information issynthesized, i.e. propagated “up” the graph, until a nod

is encountered which is not computable at compile time. This isconstant propagation.

Once an interior node has been determined to be a constant, its value can be fou

applying its operation to the values of it children. This isconstant folding.

For an subgraph of constant nodes in a program, there will be a set of “

nodes which are referenced by non-constant nodes. Since their values have bee

puted during constant folding, the top nodes contain all the information necessar

further compilation. Only the top nodes will be used in remainder of compilation p

cess, specifically in induction variable detection and code generation. The other con

nodes in the program are ignored and thus effectively discarded.

The decision to compute the values for constant nodes with separate ma

instructions or to encode them in immediate fields within instructions is determined

ing code generation. Most of the constants found, even the “top” constants, will n

appear as code because they will be removed during some later program transform

such as induction variable reduction.

2.7  Loop Invariant Detection

A loop invariant is a variable whose value is constant for the duration of t

loop. Loop invariant detection requires knowledge of which variables and express

are constants, so loop invariant detection follows constant propagation. Loop invar

are only marked at this point. Graph transformations to move loop invariants ou



81

d with

of

ilt up

vi-

each

ction

tion

used

ns of

ion

. The

duc-
loops are made at a later pass, which also makes the transformations associate

other optimizations.

A node isloop invariant iff it is:

1) a constant,
2) a use with no reaching definitions within the loop,
3) an operator with operands which are loop invariant.

2.8  Induction Variable Detection

An induction variableis a loop based variable which takes a linear sequence

values. Because the expressions for induction variable computations can be bu

from other induction variables, induction variable information is not immediately ob

ous to the compiler and must be discovered.Induction variable detectionis the process

of finding the induction variables in the program. This is an iterative process, where

iteration may find more induction variables based on the current known set. Indu

variable detection is complete when no additional induction variables are found.

Induction variable detection relies on the information from constant propaga

and loop invariant detection, and is also synthesized information. The algorithm

here was initially taken from [4]. A variable is aninduction variableiff it is computed by

one of the following expression patterns:

1) i = {i+c, i-c}, wherec is a constant or loop invariant,
2) j = {i*b, b*i, i /b, i+b, b+i, i-b, b-i, or i+i}, where i is an induc-
tion variable andb is a constant or loop invariant.

Induction variable detection searches for linear recurrences, i.e. computatio

the formj = c*i+d, which can be rewritten as a simple additions within a loop. Induct

variables can defined in terms ofbasic induction variables, which are those variables

whose calculation is a linear expression involving only themselves and a constant

other derived induction variables can be grouped infamilies, i.e. sets of induction vari-

ables whose values will be linearly related to each other. Knowledge of the basic in



82

be

tes

with

oop

ad to

ularly

with

on-

uter

ion.

m

third

ent

vari-
tion variable and the family of each induction variable allows strength reduction to

performed on the induction variable computations.

The original loop induction detection algorithm described in [4] only compu

the family, i.e. the constant offset added each iteration, and does not directly deal

either: 1) the initial value of the induction variable or, 2) recurrences formed from l

invariants which are also induction variables in an outer loop. These omissions le

retaining induction expressions which are more complicated than necessary, partic

in outer loops.

The algorithm described here has been modified to incorporate patterns

loop invariants and to record the initial value of the induction variable when it is a c

stant or when it is a loop invariant expression formed from induction variable in an o

loop. This modification leads to a nested definition of induction variable informat

For instance, in the program fragment shown in Figure 29, the expression forj in the

inner loop involves both the induction onj in the inner loop and the induction oni in the

outer loop. Collecting this information together as {j, 1, {i, 3, 1}+2}, where the first ter

of each tuple is the basic variable, the second term is the loop increment and the

term is the initial value expression, allows induction variable information at differ

loop levels to be manipulated together. The discovery and use of nested induction

ables has also been reported by Padua and Wolfe in [134].

Do
i = i+1
j=i*3
Do

j = j+2
y = x[i,j]

End
End

FIGURE 29. Program fragment with nested induction variables.



83

l flat

rma-

duc-

ess

ction

st, or

ually

con-

ath-

itial

n a

ill be

.

To see how the use of nested induction variables differs from the traditiona

induction variables requires a look at the intended use of the induction variable info

tion. Induction variable information is used to make induction variable strength re

tions. A strength reductionis the replacement of an operator or computation by a l

expensive operation which computes the same function. The goal of strength redu

on induction expressions is to transform the induction expressions into the simple

least costly, expressions possible. The ideal form of an induction expression is us

an initial assignment to a constant value in the loop header with an increment by a

stant value on each loop iteration. If initial value and nested information are not g

ered, the only information available to the compiler is that a node supplies the in

value for the induction. The original initial value node will often be more complex tha

simple assignment or an increment by a constant. This complex initial value node w

retained in the induction expression, although it will often be moved out of the loop

FIGURE 30. A Nested Induction Transformation.

f(i)

f(i,j)

initial(j)

initial(i)

(a)

ij = c1

ij = ij + c2

ij = ij + c3

(c)

f(i) initial(ij)

initial(i)

(b)

ij = ij + c



84

ted

pro-

ute

pres-

o be

else-

n for

e

The difference between multi-level and single-level transformations is illustra

in Figure 30. Figure 30(a) shows the original graph of an expressionf(i,j) constructed

from induction variables in nested loops. This program graph could, for instance, be

duced by thex[i,j] reference in the inner loop in Figure 29. The expression to comp

the address required to referencex[i,j] would be:

((j-lower_bound2)*dim2+(i-lower_bound1)*dimension1). (4)

The triangles in Figure 30 are meant to represent subgraphs of complex ex

sions such as (4). A strength reduction on the induction variablej, which does not use

information about its initial value or dependence oni will result in the transformation

shown in Figure 30(b). The original complex expressions involvingi, which are needed

to compute the initial value for the induction onf(i,j) will be retained. The equivalent

program fragment is shown in Figure 31.

Do
i = i+1
j=i*3
j’ = @x + ((j-lb2)*dim2 + (i-lb1)*dim1)
Do

j’ = j’ + dim2
y = *j’

End
End

FIGURE 31. Program fragment with rewritten inner induction.

Nested induction information allows the chain of expressions show in Figure 30(c) t

constructed directly. The original expressions will be discarded if they are not used

where. The final version of the loop is shown in Figure 32. The complex expressio

x[i,j] has been moved out of both loop and is left as the initial value ofi’. However, as the

initial values ofi andj (i_init andj_init), and the array dimensions (dim1 anddim2) are

likely to be constants, the initial value ofi’ is likely to be a constant, and the entir

expression could be replaced byi’ = c.



85

s a

ial

r the

on,

rded:

rn of

to

n of

the

and
i’ = @x + ((j_init-lb2)*dim2 + (i_init-lb1)*dim1
Do

i’ = i’ + dim1
j’ = i’
Do

j’ = j’ + dim2
y = *j’

End
End

FIGURE 32. Program fragment with rewritten nested inductions.

Collecting nested induction information is straightforward and only require

few simple modifications to the original algorithm. In the original algorithm, the init

value of the inductions were not collected and only constants were considered fo

family information. The algorithm used here also collects initial value informati

where possible. For each induction variable detected, a tuple of information is reco

the induction triple is <base_induction_node, family, initial_value>. Each of these

pieces of information is computed from a function which is dependent on the patte

the expression forming the induction.

Thebase induction nodeis the original node with pattern i = i {+-} b from which

the current node is derived. A base induction node is:

1) node(i), for i = i {+-} b,
2) base_node(i) for the patterns j = i {+-*} b.

The family of the induction node is the value which will ultimately be used

construct the induction increment once the induction is rewritten. The computatio

the family is the same as in the original algorithm. The increment value, from which

family is derived, must be either a constant or the original node must be retained

used. The patterns for determining the family of an expression are:

1) c, for i = i {+-} c,
2) c, for i = j + c,



86

the

, the

h is

ll be

ue.

oop

me

with

ray is

on

ent

ally

2}}.

osi-

hen

ld

tion.

um-
3) -c, for i = j - c,
4) c {*/} family(j), for i = j {*/} c, where c is constant,
5) the original node must be used, otherwise.

The initial value of the induction node is used, as its name implies, to give

induction expression its initial value. If there is a single constant reaching definition

value of the constant is the initial value. If there is a single reaching definition, whic

an induction expression from an outer loop, a nested induction expression wi

formed. Otherwise the reaching definition nodes must be retained as the initial val

The restrictions of a single reaching definition, which is a constant or outer l

induction, seems to limit the utility of this modification to a few special cases. To so

extent this is true. However, this is a fairly common special case and it is often seen

multiple dimension array references. For languages like Fortran or C, where the ar

one of the primary data structures, this case is quite common.

The initial value information is derived from the value of the reaching definiti

for the pattern i = i {+-} c, and the value of c and the initial value of the independ

induction variable in the pattern j = i {op} c. The function for initial values is:

1) value(r), for i = i{+-}c, with a constant reaching definition r,
2) reaching(i), for i = i {+-} c, otherwise,
3) initial_value(j) {op} value(b), for i = j {op} b.

The result of these rules is a definition of induction variables which is potenti

nested. The initial value of an induction triple can be another triple, e.g. {85,8,{45,1,

As discussed earlier, and illustrated in Figure 30, a nested triple in the initial value p

tion will indicate that an outer loop induction expression should be constructed w

induction strength reduction is performed.

Given that this is a fairly simple modification to the original algorithm, it wou

be nice to be able to report a large performance benefit from using this modifica

However, the primary performance benefit seems to be in Tortoise itself. Without n



87

com-

piled

ow

er 12

ifica-

e low

lgo-

per-

tware

ar-

g of

r the

eter-

d

ese

mon

a loop

en the
bers to support this claim, the graph is greatly simplified in a single pass because

plex outer induction expressions are discarded. The performance results on the com

code are mixed. Of the first 14 Livermore Loops, only Loop 12 and Loop 14 sh

noticeable effects of 10% and 5% performance improvement, respectively. The oth

Loops show a performance improvements of less than 1%. Again, without quant

tion, the additional cost of finding and exploiting nested induction nodes seems to b

(or negative given the graph simplification), so this modification to the induction a

rithm is probably worth using.

2.9  Iteration Distance Computation

The dependency information typically gathered for array references on high

formance machines, i.e. vector and parallel architectures, is inadequate for sof

pipelining. Typically, only the direction (flow, anti-flow) and the special case of loop c

ried (flow in the current iteration) are considered [134]. Because of the overlappin

iterations which occurs in software pipelining, it is useful to have precise values fo

number of iterations crossed on a flow or anti-flow dependency, when this can be d

mined. A loop with a recurrence is shown in Figure 33.

Do i =...
X[i+1] = X[i] + X[i-1]

End

FIGURE 33. A loop containing a recurrence.

If it is known that X[i+1] forms a flow dependency with X[i] in the next iteration an

X[i-1] in the following iteration, the value can be retained in a register for use in th

iterations. This information is call theiteration distance. Like the induction variable ini-

tial value, the iteration distance can only be determined precisely in special, but com

cases. The iteration distance can be found between array reference expressions in

where the expressions share the same family (see Section 2.8 on page 81). Wh



88

tance

e is to

sions

rcial

en-

n dis-

at the

ored in

n be

e func-

t,

er of

ates

s are

ted is

ing

nce is

g. For

s in a

loop.

num-

puted

Tor-
expressions share a family, it is possible to determine a precise, constant dis

between the references. The method used in Tortoise to derive the iteration distanc

perform a symbolic arithmetic substraction between the array reference expres

using Mathematica’s built in algebraic rules. This is more powerful than a comme

implementation, which would handle only a few predefined patterns, put not trem

dously. If the result of the substraction is a constant, this is encoded as the iteratio

tance. If the subtracted expressions cannot be reduced to a constant, the fact th

references are dependent is retained. Symbolic data dependence testing is expl

[134].

The iteration distance is determined for every pair of array references. It ca

thought of as a decoration on the dependency graph, but is encoded in a separat

tion -- iteration_distance: node× node→ distance. The distance (d) is one of {constan

unknown, not_related}. Constants indicate that the references hit in a fixed numb

iterations, in either direction: previous or subsequent iterations. A value of zero indic

that the references hit in the same iteration. Unknown indicates that the reference

dependent, but the number of iterations at which they hit is not a constant. Not_rela

the default case for references which are unrelated.

The iteration distance is used in two slightly different contexts and its mean

changes to match the context. As with the dependency graph, the iteration dista

used to determine and represent both data movement and operation schedulin

operation scheduling, the distance between operations, in terms of cycles or slot

schedule, is important and this distance is computed with respect to the top of the

When the iteration distance is used to determine a distance for data movement, the

ber of locations required becomes the important metric, and the distance is recom

to be with respect to the definition points. These two functions are distinguished in

toise as thenode iteration distance and theoperand iteration distance, respectively.



89

3 on

lable.

n dis-

can be

s and

ces.

e new

for-

uch

mod-

sing

data

om

n 2.5

sfor-

ween

dis-

modi-

tween

infor-

s and

e.
2.10  Array Reference Refinement

When the data dependency graph is first constructed (see Section 2.

page 74), the information to distinguish between array references is not yet avai

Once the induction variable information has been found and encoded in the iteratio

tance between array references, the dependency graph for array references

refined. This requires examining all the dependencies between array reference

modifying the dependency functions to reflect the new information for array referen

This will tend to reduce the number of references which are dependent because th

information allows a finer discrimination.

Once the kill functions have been modified to reflect new array reference in

mation, the data flow equations are re-solved using the new functions. Since it is m

easier to rerun the same algorithms, no attempt is made to retain and incrementally

ify previous data flow information. The definition chains are then reconstructed u

the new data flow information. Once the definition chains have be reconstructed, the

dependency graph can be refined to reflect the new dependency information.

The graph transformations performed at this point are slightly different fr

those performed earlier when only the scalar information was available (see Sectio

on page 76). Array references typically depend on loop induction variables, so tran

mations to array references must retain information describing the relationship bet

the references with respect to the loop behavior. This information is the iteration

tance found earlier (see Section 2.9 on page 87). When the dependency graph is

fied to promote a loop carried dependency to a register, the iteration distance be

the original nodes is retained and added to the new nodes. The iteration distance

mation is used during scheduling to determine the distance between the new node

during register allocation to determine the number of registers required by the nod



90

ecora-

sub-

e orig-

erand

tion

e new

ut the

e par-

not

e used

n the

duces
Suppose for instance, that loads forX[i] andX[i-1] are found and determined to

be sharable as a CSE. The graph transformation, including the iteration distance d

tion is shown in Figure 34.

FIGURE 34. Array Reference Load CSE Transformation

On this transformation (array reference load CSEs), the original array reference

graph is retained and a new intermediate operator is added between the use and th

inal load operator. The iteration distance decoration is added between the new op

marker and the load which is “preferred”. Later, during code generation, the itera

distance is copied to the parent node to mark the distance between the parent of th

operand marker and the preferred load. If it is determined to be advantageous to p

preferred load into a register and use it as a CSE, the iteration distance between th

ent and the preferred load is used for scheduling and register allocation. If it is

advantageous to use a CSE, the original load is still present in the graph and can b

for code generation.

Whether it is advantageous to promote a load CSE into a register depends o

iteration distance and the number of registers available. Each iteration crossed pro

X

[]

ldld

[]

iX -

i 1

(-1)

X

[]

ld

ld

[]

i

X -

i 1

op(-1)

(a) (b)



91

ration

ial to

rily

dent

miza-

tion,

either

ain-

tween

rma-

e pro-

nly

ni-

lock

in a

efini-

where

l exit

vari-
another live value and requires an additional location to store. Because each ite

crossing consumes a register, on a machine with limited registers it is only benefic

make this transformation for a small iteration distance. The limit is currently arbitra

set to 2 iterations.

3  Machine Independent Optimizations

Following the reconstruction of the data flow graph, all the machine indepen

loop optimizations are performed en masse. The machine independent loop opti

tions consist of induction variable strength reduction, induction variable CSE detec

and loop invariant code migration. The nodes involved are marked and processed (

moved or rewritten) in a single pass so that the original order within blocks can be m

tained. This avoids re-sorting the operations to maintain the correct semantics be

passes.

Even though all transformations are performed in a single pass, the transfo

tions are independent of each other. The routine finds all the nodes which need to b

cessed and applies the appropriate action to each node.

3.1  Loop Invariant Hoisting

The loop invariant code migration algorithms are also standard [4]. The o

modification is a restriction on the mobility of loop invariant nodes which contain defi

tions. Loop invariants can always be moved out of a loop, into the loop preheader b

previously defined, if they do not contain a definition. If the loop invariant does conta

definition, e.g. an assignment, then care must be taken to insure that moving the d

tion does not change the semantics of the program. There are a number of cases

definitions can be safely moved, e.g. if the block containing the node dominates al

nodes of the loop. None of these cases are currently exploited by Tortoise. Loop in



92

des

s with

.8 on

ir of

sions

g the

tward,

ader

n of

alue,

e.

are

, but

many

vided

e a

can

dered

ing a

gh to

art of

set is

ust be
ants are only moved if they do not contain a definition. The number of invariant no

containing definitions are few enough in the benchmarks used that the special case

definitions did not seem to be worth implementing.

3.2  Induction Variable Strength Reduction

Induction variable strength reduction was discussed earlier (see Section 2

page 81). For each induction node, the induction triple is used to construct a pa

expressions to compute the initial value and the induction increment. These expres

are constructed directly from the induction triple and the nodes previously encodin

values are discarded, where possible. The algorithm proceeds from inner loops ou

placing nodes for the nested induction information in the appropriate loop prehe

blocks (see Figure 30). If not enough information was available to allow recreatio

the induction values, e.g. a constant value could not be determined for the initial v

the original nodes are moved out of the loop where possible and retained otherwis

Induction variable CSE detection is also performed. Induction variable CSEs

found by grouping all inductions with the same family together. This is a specialized

beneficial case of CSE detection. The reason that this is interesting, is that

machines provide an “indexed” load operation, where a constant offset can be pro

with the index register. All the inductions with the same family will be able to shar

single index register by providing a different constant offset. This transformation

save registers when compiling array expressions within loops. This could be consi

the first machine dependent optimization performed. However, the capability of add

constant offset to an index register on a load is quite common. It is common enou

be lumped together with the other machine independent transformations. The one p

this that is machine dependent is the size allowed for the offset. The size of the off

typically much smaller than the address size of the machine and induction CSEs m



93

con-

t this

ves

nodes

esized

terme-

s. This

or to

pro-

ength

iginal

g dead

ve-

und.

es are

es are
further divided into groups which are within the distance that can be encoded in the

stant offset allowed in a machine instruction.

3.3  Type Propagation

Type information indicating which integers are addresses is synthesized a

point. The type information is only partially available in the original graph: at the lea

and at nodes containing operators which expect addresses, e.g. loads. The leaf

which define addresses are found and marked. Address information is then synth

until a node which consumes and does not generate an address is encountered. In

diate operators such as addition and multiplication are marked as being addresse

information is used during instruction selection to determine which machine operat

use (see Section 4.1.3 on page 96).

3.4  Dead Code Elimination

A dead code elimination pass is performed which removes sections of the

gram graph made obsolete by previous passes. In particular, induction variable str

reduction tends to replace the original induction expressions with new ones. The or

inductions expressions where are no longer used are discovered and marked durin

code elimination.

All memory stores and conditional operations are marked initially as live. Li

ness information is then synthesized up the graph until no addition live nodes are fo

Any nodes not found to contribute to a live node are marked as dead. The dead nod

not removed from the graph, i.e. the graph is not reconstructed, but the dead nod

ignored for the remainder of the compilation.



94

orma-

ith the

ates

ance

unre-

g in

ina-

soft-

ion

cep-

to be

be used

two

l which

tures
3.5  Summary of Machine Independent Transformations

Type propagation completes the analysis and machine independent transf

tion phase of the compiler. The methods and algorithms described are standard, w

exception of the detection of nested induction information, promotion of intermedi

to registers across multiple loop iterations, and determination of the iteration dist

between array references. Constructing nested induction variable information is

lated to a particular computer architecture, or to software pipelining, but is interestin

its own right. Multiple iteration register promotion and the iteration distance determ

tion are not required for software pipelining. However, the techniques required for

ware pipelining directly support multiple iteration register lifetimes, so this optimizat

is natural to use in conjunction with software pipelining.

4  Code Generation

FIGURE 35. Tortoise Code Generation Phases

Although complex in its implementation, the code generation process is con

tually simple. Starting with the program dependency graph, the set of instructions

generated is selected, the selected instructions are scheduled, and the registers to

in each instruction are allocated. In Tortoise, instruction scheduling occurs in

phases. In the first phase a schedule is constructed for an abstract machine mode

supports software pipelining. Then a second phase (realization) unrolls the pipelined

schedule and implements the pipelined schedule in software on target architec

Instruction Selection

Initial Schedule Generation

Schedule Realization

Register Allocation



95

r are

from

of the

uction

rmine

the

ver, it

milar,

dule.

of the

for

odes

ing a

Each

rand.

hare

ted a
which do not support software pipelining. The phases in Tortoise’s code generato

shown in Figure 35.

4.1  Instruction Selection

A series of transformations are made to the program graph to change the IR

Gnu C operators and structure to machine operators and structure. The definition

target machine is partially encoded in tables, e.g. the machine operations and instr

formats, and partially encoded in procedures, e.g. the procedures provided to dete

which values will fit into constant or immediate fields. No attempt to formalize

machine description has been made, as that would be another study by itself. Howe

is assumed that the operations and format of the target architectures will be very si

and the differences between the target architectures will be in the format of the sche

This is reasonable since we are attempting to focus on only the scheduling aspect

target machines and have some freedom in the definitions of the architectures.

4.1.1  Initial Register Allocation

An initial register allocation, from an infinite set, provides a unique location

every potential register definition. Not every node is assigned a unique register. N

which share registers, e.g. during initialization, or when updating a register contain

loop induction variable, are found by merging shared uses in the program graph.

shared use is indicated in the graph by multiple definitions reaching a single ope

These shared definitions are the individual links in a chain joining the nodes which s

a register. A merging operation joins the nodes into a single group which is alloca

register.



96

pera-

trans-

. This

es are

th of

y the

ach

ning

point,

ate no

ld in

does

of the

in the

multi-

ine

ds. A

truc-

con-

sen.

in a
4.1.2  Graph Structure Matching

For instruction selection to occur successfully, there must be a machine o

tion which matches the operator and number of type of operands for each node. A

formation is made to store nodes to copy the target node into one of the operands

removes a special case check for store nodes during instruction selection. Call nod

also modified to remove an extra node between the call node and the target. Bo

these changes are local transformations and they are only performed to simplif

instruction selection routine.

4.1.3  Instruction Selection

Instruction selection determines an appropriate machine instruction for e

node in the graph. This involves checking that there is a instruction format contai

the correct type and number of operands, as well as the correct operator. At this

each node should generate either 0 or 1 machine operations. A node can gener

machine operations because: 1) it provides a value which fits into a immediate fie

another instruction or, 2) it is a node with sequencing or dependency semantics and

not indicate a machine operation (see Section 2.10 on page 89). Reorganization

graph to insure that no nodes require more than one machine operation occurred

previous pass (see Section 4.1.2 on page 96) and finding any nodes which require

ple machine operations at this point indicates a compiler error.

The instruction selection algorithm works from the top down. The mach

instruction for a node is selected, followed by the instructions for the nodes operan

simple heuristic is used to choose between instructions with multiple formats. Ins

tions with immediate fields are checked first to determine if the operands contain

stants which fit the immediate fields. If the operands fit, the instruction is cho

Otherwise, the instruction selection algorithm proceeds to check the next instruction



97

have

ons,

ate the

ncy

nodes

lots.

r will

any

slots.

truc-

duler.

ormat

erands

hine

er of

xecu-

n of

per-

ever,

list

lim-
list which is indexed by node operator and type. Because the target architectures

simple instruction sets with few instruction formats, this heuristic suffices.

When constants are found which do not fit immediate fields of other instructi

they are marked as executable and an appropriate instruction is selected to gener

constant.

4.1.4  Control Dependencies

Block termination nodes are now added to the graph. A control depende

between each node in the block and the block termination node is added to all the

in the graph. The block termination node is added to facilitate filling branch delay s

The delay of the control dependency between the branch and the block terminato

be the number of delay slots. The delay for other operators will be zero. This allows

nodes which are not ancestors of the branch to be scheduled in the branch delay 

The addition of the control dependencies on all the nodes finishes the cons

tion of the program dependency graph. This is the graph which is given to the sche

Every executable node has a machine operation and corresponding instruction f

associated with it. The number of operands on the node matches the number of op

allowed in the instruction format. The scheduler will use this graph to construct mac

schedules. This graph is not modified by the scheduler and is fixed for the remaind

the compilation. Some additional items will be added to decorate the graph, e.g. e

tion times, but the structure of the graph does not change.

For some types of scheduling, such as loop unrolling, creating a new versio

the graph is enticing. The advantage would be that flow analysis, etc. could be

formed again on the graph to obtain additional improvements in the schedule. How

the difficulties in making modifications to a graph structure argue for working with a

of machine instructions, rather than a graph. The scheduler currently implements a



98

n

ist of

rfor-

with

tion of

lloca-

other

rder-

truc-

ssary

This

mbly

and

pro-
 the

pen-
he
ited form of loop unrolling in conjunction with software pipelining. An optimizatio

pass following this loop unrolling is not performed and the data structure used is a l

machine instructions. This simplifies the scheduler at the cost of some additional pe

mance gains.

4.2  Instruction Scheduling

The scheduler accepts the Program Dependence Graph (PDG) along

accompanying tables and produces schedules for the target architecture. The selec

machine operations and instruction formats was performed previously. Register a

tion and encoding the instructions in assembly language format is done later by

routines. The schedulers only function is to find a correct schedule, i.e. a correct o

ing and timing of the operations. The output of the scheduler is an ordered list of ins

tions, organized in blocks, where each “instruction” is a record containing the nece

information to construct an assembly instruction and a pointer back into the PDG.

list of instructions is passed to the register allocation routines, and then to the asse

language code generator.

The scheduler constructs both software pipeline schedules for inner loops

basic block schedules for blocks which are not part of an inner loop.

4.2.1  Basic Block Scheduling

The basic block scheduler uses a list scheduling algorithm:

1) A topological sort is applied to a set of operations and dependencies to 
duce an ordered list such that if there is a dependency between two operations,
independent operation is placed first in the list:

{V,E} → <o1, o2,..., on>, where∀<oi,oj>∈ E => i<j. (5)

2) The ordered list of nodes is assigned an execution time such that the de
dency ordering between operations (5) is still satisfied and, in addition, t
minimum time dependency between dependent operations and machine
resource constraints are also satisfied:



99

o’

ecu-

truc-

ort in

rmed,

e been

eduler

arliest

hedule

this

r com-

ulti-

end

ith-

be

t the

ming

is not

to per-
<o1,o2,...,on> → <o’1,o’2,...,o’n>, ∀<o’i,o’j>∈ E => T(<o’i,o’j>) T(j)-T(i) (6)

In (6), T(<oi,oj>) is the minimum time distance which must be maintained betweeni

and o’j for correct execution and T(i) is the execution time of schedule position i.

The ordering of the two lists need not be the same. The routine assigning ex

tion times may change the order of the operations to fill times left vacant due to ins

tion latencies, provided the original dependencies are honored. The topological s

the first step simplifies the work required in the second. Once the sort has be perfo

the scheduler is assured that the parents of each operation encountered will hav

scheduled and that there are not circularities in the dependence graph. The sch

only checks the execution time and operator on each parent to determine the e

time at which the operation can be scheduled, and then searches for a slot in the sc

with enough resources to execute the operation.

The minimum time and resource constraints are not met is all cases, nor is

necessary. In the R3000, the resource constraints are complex because out-of-orde

pletion is allowed, and there is only one result bus. The resource use for a typical m

cycle instruction only allows execution of one instruction at the beginning and

cycles of the instruction. Finding a minimum schedule with this set of constraints w

out resource conflicts is a NP-complete tiling problem.

Scheduling this processor would be much easier if multiple results could

delivered each cycle, i.e. if there were only function unit resource constraints a

beginning of the instruction. This is the model which is used by the scheduler. Assu

that the processor busses are only taken at the beginning of instruction execution

as accurate, but it is much easier to schedule and does not seem to be detrimental

formance.



100

pen-

ssors,

. As an

ubse-

ning

t pad-

edule

quired

e the

gis-

then

lete so

nt of

on 3

First,

thin a

con-

e the

ctly

om-

ndexed
Because the R3000 has pipeline hazard interlocks, the minimum time de

dency does not have to be met in the schedule either. As with most current proce

the dependency relationship between instructions is encoded in the register usage

instruction enters the function units, the target register is marked busy and any s

quent instructions using the target register will be stalled until execution of the defi

instruction has completed. This allows a correct schedule to be generated withou

ding dependent instructions with NOPs. This tends to decrease the size of the sch

and makes the schedule easier to read, but will increase the number of registers re

in a compact schedule. This is because the target register is reserved during the tim

instruction is proceeding through the function unit. This would not be necessary if re

ters were not being used to maintain dependency information.

The block scheduler produces a schedule which contains NOPs and

removes them as a separate pass. The NOPs are left in until the schedule is comp

that they are available to be filled by other instructions. This reduces the amou

instruction rearranging performed by the scheduler.

4.2.2  Inner Loop Scheduling

Inner loops are scheduled using software pipelining (see Chapter III, Secti

on page 52). The software pipelining method is the same as used by Lam in [98].

an estimate for the length of the schedule is found. Then, instructions are placed wi

schedule of the estimated length while checking for timing violations and resource

straints. If a schedule of the given length is found, the process terminates, otherwis

process is restarted with a longer schedule.

The initial schedule is constructed in a compressed form which could be dire

executed on a machine with hardware support for software pipelining, i.e. the c

pressed schedule assumes the machine supports conditional execution and an i



101

hard-

the

code

sure

xecute

any

e gen-

15].

e tar-

g the

fore

om-

essed

ted.

of the

.

ges

ning

ns of
register file [143]. Before this schedule can be executed on an architecture without

ware support, it must be rewritten so that its execution will correctly implement

intended software pipeline. This involves the construction of separate sections of

for the prolog, kernel and epilog phases of the pipeline, along with checking to in

that there are enough iterations to enter the pipeline and cleanup sections to e

those iterations which do not fit the pipeline. Also, the loop must be unrolled so that

required register indices can be hard-coded directly into the schedule.

Once the schedule has been reconstructed, register allocation and spill cod

eration are performed using an interference graph coloring algorithm [24][33][21][

The completed schedule is then converted into the assembly language format of th

get architecture and written to a file. This file is then assembled and executed usin

target hosts software.

4.2.3  Terminology

Some terminology unique to software pipelining needs to be explained be

delving into the scheduling algorithm. Figure 36 shows a software pipeline in unc

pressed form (Figure 36(a)) and compressed form (Figure 36(b)). The uncompr

form shows the order and timing which would occur if a single iteration were execu

The compressed schedule shows the execution of the schedule when all the blocks

schedule are executing simultaneously, i.e. during the kernel phase of the pipeline

A single iteration of the loop is divided into a number of equal length pipe sta

or blocks, as shown in Figure (a). The length of the block is the time between begin

successive iterations of the loop. The time between the start of successive iteratio

the loop called the initiation interval. It will be referred to here as theblock length. The

block count is the uncompressed schedule length divided by the block length.



102

cies

le. The

cks.

rnel

umber

soft-

es

hard-

ecut-

um-

f the
FIGURE 36. A Three Stage Pipeline Schedule

The block length and the number of blocks is determined by the laten

between operations and the resources required by those operations in the schedu

intent is to make the block length as short as possible, trading off the number of blo

The block length determines the execution efficiency when the full execution or ke

phase of the pipeline is reached. Assuming that the loop executes a reasonable n

of iterations, this will tend to make the loop execute more efficiently.

As shown earlier (see Figure 14), there are three phases to execution of the

ware pipeline:prolog, kernel, andepilog. Correct execution during each of these phas

must be insured. If the compressed schedule is executed on an architecture with

ware support, each operation in the schedule is tagged with ablock numberor other

identification so that the operation is only executed when its associated block is ex

ing. If the software pipeline is to be executed without hardware support, the block n

ber is used to unroll the schedule to produce a purely software implementation o

pipeline.

Block 1

Block 2

Block 3

1

2

3

2

1 3Block
Length

(a) (b)

Schedule
Length



103

, the

ied

is used

are

e of

find-

ntil a

h as

the

opera-

com-

y the

chine

urces

d by a

ssible

ting
As was mentioned during the discussion of the analysis phase of Tortoise

iteration distanceis the number of iterations between references with loop carr

dependencies (see Section 2.9 on page 87). The iteration distance, where known,

to determine the time between operations and the number of live values which

formed by overlapping iterations.

4.2.4  Initial Block Length Estimate

The task of finding a minimum block length for a schedule in the presenc

resource constraints and a pipelined architecture is an NP-complete problem. So is

ing a minium block length. However, because the scheduling algorithm repeats u

schedule of the given block length is found, we wish to estimate the block lengt

accurately as possible.

There are two fundamental limits on the block length of the schedule:

machine resources available to execute the operations and the latency between

tions. Lower limits on the block length due to these factors can be independently

puted and combined to give a good estimate on the block length of the schedule.

The block length for resource use is the number of resources required b

operations in the loop body, divided by the number of resources available each ma

cycle. If the resources were all independent, the block length determined by reso

would be:

Block Length = Max(∀r ∈ R, (∑r[n]) / r) (7)

Where R is the set of machine resources and r[n] is the machine resources require

given node in the program graph.

Machine resources are not always independent. For instance, it may be po

to perform an integer and a floating point addition at the same time, but not two floa



104

the

ra-

stimate.

ngth

om-

und by

we

gth of

com-

ecur-

uting

would

y to

ming

d block

with

ns in

s to

nored,
point operations. Or it may be possible to start another floating point addition in

cycle immediately following a floating point addition, but not following another ope

tion. The resource equation can be elaborated as necessary to achieve a good e

However, if the function becomes too elaborate, the cost of estimating the block le

can become expensive.

The other limitation on the block length is the amount of time necessary to c

pute recurrences, i.e. loop carried dependencies. The set of recurrences can be fo

finding the cycles in the graph using the all-pairs shortest-path algorithm [54]. If

assume that all recurrences are independent, the required block length is the len

the time required to compute the longest recurrence. The block length required to

pute any individual recurrence is the sum of the latencies for each operation in the r

rence, divided by the number of iterations which the recurrence crosses. If comp

the recurrences where independent, the block determined by recurrence lengths

be:

Block Length = Max(∀c ∈ C, t[c] / d[c]) (8)

Where C is the set of recurrences in the loop, t[c] is the execution time or latenc

compute the recurrence, and d[c] is the iteration distance of the recurrence. Assu

independence between resource use and recurrence computation, the estimate

length is the maximum of the two estimates:

Block Length = Max(∀r ∈ R, (∑r[n]) / r, ∀c ∈ C, t[c] / d[c]) (9)

4.2.5  The Scheduling Algorithm

Once an estimate has been found for the block length, an empty schedule

the estimated block length is constructed and an attempt is made to fit the operatio

the PDG into the schedule. Because software pipelining allows multiple iteration

execute concurrently, dependencies between iterations (recurrences) must be ho



105

oduce

is a

con-

d by

ncies,

ched-

t still

so that
as well as the usual inter-block dependencies. The intra-iteration dependencies pr

cycles in the program graph and these must be handled correctly.

FIGURE 37. Formation of Strongly Connected Components

Cycles in the program graph will result in one or morestrongly connected com-

ponentsin the graph. A strongly connected component is a subgraph in which there

path between every pair of nodes. Figure 37 illustrates the formation of strongly

nected components within the program graph. The cycles in the graph are forme

intra-iteration dependencies, labeled in the Figure as (a), (b) and (c).Everycycle in the

graph contains an intra-iteration dependency. The other, inter-iteration depende

form an acyclic graph. This suggests a method for scheduling SCCs, which is to s

ule each SCC using only the inter-iteration dependencies.

However, the execution constraints on the inter-iteration dependencies mus

be honored. As each operation is scheduled it must be scheduled both late enough

(a)

(b)

(c)



106

gh so

possi-

hine

ngth.

per-

will

ssi-

ll the

s into

ents.

n

ngly

g SCCs

s not

nts, a

om-

e of

ck
all of its parents have been scheduled (the normal direction) and also early enou

that it executes before its descendents execute in subsequent iterations. If it is not

ble to find a position in the schedule meeting these criteria with enough mac

resources to execute the operation, scheduling is restarted with a longer block le

The moves the beginning of the next iteration, giving more freedom in placing the o

ation. This algorithm is guaranteed to terminate, because in the limit, the iterations

not overlap and the algorithm will in effect be scheduling a DAG, which is always po

ble.

A strongly connected component in a graph does not necessary cover a

nodes in the graph. There can be nodes not included in the SCC with dependencie

or out of the SCC. The graph may contain one or more strongly connected compon

If each strongly connected component in the graph is replaced by a single node, aacy-

clic condensationof the graph is formed. Because there are no cycles between stro

connected components, they can be scheduled as far apart a necessary. Schedulin

further apart lengthens the total uncompressed length of the schedule, but doe

change the block length.

Also, because there are no cycles between strongly connected compone

topological ordering can be found for the SCCs. This is the final step required to c

plete the scheduling algorithm. The scheduling algorithm is:

1) Estimate the block length of the schedule and initialize an empty schedul
that length.

2) Find the strongly connected components.

3) Produce the directed acyclic graph of strongly connected components.

4) Sort the DAG.

5) Schedule each strongly connected component.

6) If a schedule of the given block length cannot be found, increase the blo
length and start over.



107

nces-

ed or

ns of

ns to

o exe-

and

rial

epi-

times,

con-

oth

are

. The

tions

The

essed

ution
The algorithm for scheduling a strongly connected component is:

1) Form the DAG of only inter-iteration dependencies for the component.

2) Sort the DAG.

3) Schedule each operation checking to insure that dependencies on both a
tors and descendents are honored.

4) Signal failure if the operation cannot honor all dependencies.

4.2.6  Schedule Realization

Once a software pipeline schedule has been found it must be implement

realizedon the target architecture. This involves the construction of separate sectio

code for the prolog, kernel and epilog phases of the pipeline, along with code sectio

insure that there are enough iterations to enter the pipeline and cleanup sections t

cution the iterations which do not fit the pipeline. Also, the loop must be unrolled

any required register indices must be hard-coded into the schedule.

Ignoring for the moment the issue of unrolling the register indices, a picto

view of the sections of code to be generated is shown in Figure 38. The prolog and

log are generated by unrolling the compressed schedule the correct number of

while selecting the instructions from the appropriate set of blocks. The prolog is

structed by selecting instructions from the first block, followed instructions from b

the first and second blocks, etc. This unrolling continues until all the instructions

selected, at which point the prolog section is finished and the kernel section begins

epilog is constructed is a similar manner, except that it starts with all but the instruc

executing and continues until only instructions from the last block are executing.

cleanup loop executes in sequential fashion and is created from the uncompr

schedule. The entire schedule is joined together by conditional code to direct exec

into the appropriate sections of code.



108

to be

reg-

tiple

ra-

ray

s (see
FIGURE 38. Software Pipeline Realization

The schedule is not completely realized yet as the register indices have

rewritten. The scheduling algorithm allows multiple live instances of temporary, i.e.

ister, values to occur. One way this can happen is shown in Figure 39. Allowing mul

iterations to execute concurrently allows the lifetimes of a variable from different ite

tions to overlap, creating multiple live values. Also, the optimization promoting ar

references into registers allows these dependencies to span multiple iteration

Section 2.10 on page 89). This also allows multiple live instances to be created.

if N < bc goto short

block 1

blocks 1...bc-1

prolog

all blocks

repeat if i < N-bc

kernel

blocks 2...bc

block bc

epilog

if i  N goto done

short: repeat if i < N

done:

cleanup

exit

bc = block count



109

ces

ueue

num-

value

, the

ing of

not

ue to

rectly

etri-

ources
FIGURE 39. Multiple Live Register Values in a Software Pipeline

A queue-like mechanism must be implemented to handle multiple live instan

of register values. Conceptually, a new value is pushed onto the top of the register q

at the definition. Each use retrieves a value offset from the top of the queue by the

ber of new definitions which have been pushed. The last use removes the oldest

from the queue.

If the target architecture supports indexed references into the register file

register queues can be created by incrementing the register index at the beginn

each block, which is also the initiation of a new iteration. If hardware support is

available, queues can be implemented either by copying the registers in the que

save the old values, or unrolling the schedule and hardcoding the register indices di

in the schedule.

Copying registers introduces some overhead, which may or may not be d

mental to performance depending on the size of the schedule and the hardware res

Iteration

Time i

i+1

i+2

Definition

Last Use
Multiple
Live Values



110

code

g to

time

e 38,

ister

mber

dis-

le is

ycled

mon

ker-

ueue

n-up

ad of

and

d for

por-

cation

za-

imple-

re not
available to perform the operations. Unrolling the schedule can greatly increase the

size. The algorithm used in Tortoise employes a combination of unrolling and copyin

implement register queues without excessive overhead in terms of either execution

or code size.

The schedule produced by register unrolling is the same as shown in Figur

with some minor modifications. The kernel of the schedule is unrolled and the reg

indices of register with multiple live values are hardcoded in the schedule. The nu

of times the kernel must be unrolled is the least common multiple of the iteration

tances on all uses of registers with multiple live values. The least common multip

required because the set of iteration distances forms a group which must be c

through completely for the register indices to become invariant. If the least com

multiple is so large that unrolling would produce an excessive amount of code, the

nel is not unrolled and the registers are instead copied to implement the register q

behavior.

The register queues are implemented via copying in the epilog and the clea

code. These sections will be executed only a few times, so the execution overhe

copying is not as large as in the kernel. The combination of unrolling the kernel

copying registers in the other sections produces code with low execution overhea

the majority of iterations, i.e. in the kernel, and low code size overhead in the other

tions of the loop.

4.3  Register Allocation

Once the schedule has been realized for the target architecture, register allo

is performed using a priority based graph coloring algorithm [24][33]. During reali

tion, software pipeline specific constructs, such as register queues, have been re-

mented in standard machine operations, so special register allocation techniques a



111

pro-

t an

on

s. An

rma-

ore

per-

a

vari-

duler

ger

duler,

t to fit

hat a

On an

pres-

ode

ocator

mbly

, along

en to a
required [148][149]. Unfortunately, the process of realizing the schedule alters the

gram structure, requiring the flow analytic information to be reconstructed so tha

interference graph of register uses can be constructed.

The first step in the process of register allocation is to perform flow analysis

the registers (an infinite set of pseudo-registers at this point) to determine livenes

interference graph is constructed from the liveness information. The liveness info

tion is constructed on the instruction level, rather than the block level. This is m

expensive than using block level liveness, but gives more precise information.

Once the interference graph is constructed, register allocation and spilling is

formed. The spilling algorithm uses the “spill everywhere” heuristic of [24]. This is

somewhat weak heuristic and the allocator runs into the same problem with global

ables encountered by Briggs et al. in [21]. This problem is exacerbated by the sche

which is optimizing for a short block length, potentially at the expense of a lon

uncompressed schedule length. No weight is given to register resources in the sche

which tends to spread the last operations to be scheduled widely apart in an attemp

those operations into a few remaining schedule slots. In [20], Bradlee et al. report t

better schedule results when the code scheduler knows about register constraints.

architecture with a small number of registers, such as the MIPS architecture, a com

sion type scheduler, which is careful with registers will probably produce better c

than the unconstrained scheduler used here [77]. At the very least, the register all

should give some weighting to register use when scheduling operations.

4.3.1  Finishing Up

To finish the compilation, the completed schedule is reformatted in the asse

language of the target architecture. Subroutine entry and exit sequences are added

with associated register save and restore sequences. The assembly code is writt



112

. Exe-

time
file, which is then assembled and executed using the target architecture’s software

cution analysis is done using a combination of pixie and a modified version of a run

analysis program, xsim, developed by Mike Smith [162][164][125].



et of

s. The

d also

ctural

using

race

and

n sta-

ri-

cution

lock

ine the

f the

imate

cre-

state
CHAPTER V
EXPERIMENTS AND RESULTS

In our experiments we apply a set of static scheduling techniques to a s

benchmarks and then simulate the running of the benchmarks on a set of machine

intention is to determine the effectiveness of the various scheduling techniques an

to examine interactions between compile time scheduling techniques and archite

features.

The cycles executed, and other performance characteristics, are found

trace analysis. In trace analysis, the executable is modified to produce a history or t

of the program’s execution. The trace consists of a list the basic blocks executed

memory references. The trace is analyzed by another program to produce executio

tistics. We use the MIPS utilitypixie to instrument the executable for our R3000 expe

ments, and a modified version of pixie for the Aurora III experiments.

We use several programs to analyze the execution traces and produce exe

statistics. All of the analysis tools employ the same methodology: using the basic b

and memory references recorded in the trace, examine the executable to determ

sequence of instructions executed in the block. With this more complete record o

program’s execution history, emulate enough of the architecture’s behavior to est

the execution time. The emulation can range from a simple version which just in

ments a cycle count for each instruction, to an elaborate simulation of the internal

of the processor, including updating instruction queues and cache lines.
113



114

ams:

ix-

system

3000

ving

ents

tool

of a

ding

sim,

om

he

om-

sors

basic

ions

and

as

vary

nstruc-

le 2.
The analysis tools used in these experiments are derivatives of two progr

pixstatsandxsim. Pixstats is the MIPS utility supplied for program analysis [163]. P

stats gives detailed processor execution statistics, but assumes a perfect memory

and does not give information on cache effects. We use pixstats in our runs on the R

comparing compilers and a modified version of pixstats for the experiments invol

floating point latencies [125].

Pixstats does not collect or report cache performance, so for the experim

where we report cache behavior, we augment pixstats with the cache analysis

CacheUM[125]. Using the address references, CacheUM emulates the behavior

two level cache memory system and can be configured in a number of ways, inclu

setting the total cache size and the line size.

The analysis tool used for the Aurora III based experiments is based on x

developed by Mike Smith [162][164]. Xsim has been substantially modified by T

Huff and Mike Upton to model the behavior of Aurora III [119]. We further modified t

Aurora III integer and floating point models to combine them into one model. The c

bined Aurora III model was then used as the basis for the DAE and VLIW proces

models.

The scheduling techniques used are loop scheduling techniques, including

block scheduling, loop unrolling, and software pipelining. The machine configurat

cover a range of instruction issue methods, including scalar, VLIW, superscalar,

DAE. A scalar architecture with in-order issue with out-of-order completion is used

the base architecture for comparison. In addition, some of the experiments also

other features of the machine model such as cache sizes, memory latencies, and i

tion queue sizes. The full set of machine configurations investigated in shown in Tab



115

ems

stan-

ed to

on in

alar

f our

float-
We are exploring the interactions of the components of highly complex syst

with a large number of parameters. In order to minimize this complexity we use the

dard experimental approach of fixing all put one or two parameters, which are allow

vary during the course of the experiment. In this way we explore along one dimensi

the space defined by our system, and then move to the next dimension.

First we investigate the performance of our scheduling algorithms on a sc

architecture. This gives us a baseline with which to compare the performance o

scheduling algorithms on other machine configurations. Next, the latencies in the

TABLE 1. Machine Configurations

Machine
Name Description

Issue
Rate Memory System

R3000 R3000. Single Perfect - no miss penalty.

R3000 fp R3000 with floating point laten-
cies varied from 5 to 10 cycles,
with and without pipelining.

Single Perfect - no miss penalty.

R3000 pipe R3000 with hardware support
for software pipelining (indexed
register operations and condi-
tional prolog and epilog instruc-
tion execution).

Single Perfect - no miss penalty, 8-64k
word direct-mapped primary I
and D-cache, 256k word second-
ary cache. 2/20, 3/20 and 5/141
memory penalties (2 cycle pen-
alty for first level cache miss, 20
cycle penalty for second level
cache miss, etc.).

R3000 a3 R3000 with Aurora III cache
configuration.

Single 2k byte I-cache, 32k D-cache,
64k byte secondary I and D-
caches. 2/20 memory penalty.

Aurora III Aurora III superscalar architec-
ture.

Dual 2k byte I-cache, 32k D-cache,
64k byte secondary I and D-
caches. 2/20, 5/50, and 10/100
memory systems.

Aurora III scalar Aurora III scalar architecture. Single 2k byte I-cache, 32k D-cache,
64k byte secondary I and D-
caches. 2/20 memory penalty.

Aurora III vliw Aurora III VLIW architecture. Dual 2k byte I-cache, 32k D-cache,
64k byte secondary I and D-
caches. 2/20 memory penalty.

Aurora III dae Aurora III DAE architecture. Dual 2k byte I-cache, 32k D-cache,
64k byte secondary I and D-
caches. 2/20 memory penalty.



116

goal

ling

pt to

scalar

LIW

our

and

ssoci-

goals:

sures

by a

f the

ation

ion,

ment

es.

.10

it is

f the

-O2

lly

roll

nroll
ing point unit are varied while the other parameters of the processor are fixed. The

of this experiment is to investigate the efficacy of our scheduling algorithms in dea

with medium and long latency operations. Then we turn to the Aurora III and attem

determine what factors contribute to its increased performance over the baseline

processor. We then compare the superscalar Aurora III to similar machines with V

and DAE architectures. Finally, we examine the interaction of cache effects with

scheduling policies.

1  Scheduling a Scalar Architecture

Our first set of experiments compares the performance of several compilers

scheduling techniques on a current scalar architecture, the MIPS R3000, whose a

ated compiler is a commercial leader. These compiler experiments have several

We establish that Tortoise is capable of state-of-the-art code generation, which en

that the instruction mixes are representative of those which would be produced

good optimizing compiler. We establish that our compiler is not handicapping any o

scheduling techniques by, for instance, not providing information such as oper

dependencies, which would be available in a good optimizing compiler. In addit

examining the behavior of the scheduling techniques in the simpler scalar environ

yields a baseline for comparison, before proceeding into more complex architectur

The commercial compiler we use for comparison is the MIPS CC Version 2

with -O2 level of optimization. The MIPS compiler is used for comparison because

the vendor’s compiler for the architecture chosen and, as noted above, is one o

industry leaders. Gnu C Version 2.2.2 is also in these experiments with options

(referred to as “gcc”) and -f unroll-all-loops (referred to as “gcc unroll”). Gcc norma

unrolls loops to a fixed body size. A modified version of gcc is constructed to un

loops a specified number of iterations, in this case 4 iterations (referred to as “gcc u



117

in-

roll

nning

lysis

n on

ters

tural
4”). Our compiler is run with block scheduling (referred to as “block”), software pipel

ing (referred to as “software pipeline”), loop unrolling to match standard gcc un

counts (unroll), and loop unrolling 4 iterations (referred to as “unroll 4”).

The cycles executed, and other performance characteristics, are found by ru

pixie and analyzing the trace using pixstats, a MIPS utility supplied for program ana

[163]. Pixstats assumes a perfect memory system and does not give informatio

cache effects. Initially, we will ignore cache effects to simplify the number of parame

in our machine model. Later, we will explore cache effects in some of the architec

experiments.

TABLE 2. Compiler/Technique Performance on a Scalar Architecture

Gnu C Variants Tortoise

Loop
No. gcc

gcc
unroll

unroll
count

gcc
unroll 4 block

software
pipeline unroll unroll 4

1 0.828 0.873 4 0.889 0.728 1.12 1.16 1.1

2 0.884 0.902 1 0.844 0.724 0.897 0.774 0.893

3 0.751 1.07 4 1.09 0.6 0.922 1.12 1.09

4 0.953 0.871 1 0.93 0.801 0.996 0.85 1.08

5 0.889 0.969 4 0.955 0.728 0.999 1.1 1.08

6 0.764 0.843 2 0.824 0.76 0.926 0.847 0.835

7 1.09 1.09 1 0.869 0.967 1.15 0.983 0.674

8 0.833 0.833 1 0.691 0.872 0.884 0.872 0.408

9 1.17 1.17 1 0.84 0.971 1.09 0.971 0.921

10 0.98 0.98 1 0.88 0.947 1.01 0.947 0.391

11 0.847 1.16 4 1.07 0.734 1. 1.19 1.15

12 0.77 1.05 4 0.976 0.715 1.22 1.18 1.08

13 0.917 0.917 1 0.849 1.34 1.43 1.34 0.563

14 0.888 0.911 2 0.826 1.03 1.19 1.09 0.949

High 1.17 1.17 1.09 1.34 1.43 1.34 1.15

Mean 0.884 0.962 0.884 0.819 1.04 1.01 0.77

Low 0.751 0.833 0.691 0.6 0.884 0.774 0.391



118

-

ptimi-

ler, is

also

esults.

hen

4

ade-

mpiler

anal-

nd to

dvan-
The results of these variouscompilersand techniques, applied to the first 14 Liv

ermore Loops are shown in Table 2, on page 117. For each benchmark/compiler o

zation, the speedup, i.e. ration of number of cycles executed over the MIPS compi

shown. The high and low values, and the harmonic mean for the set of 14 Loops is

shown for each compiler/technique in Table 2 and in Figure 40.

Running these techniques on a scalar processor shows some interesting r

First, gcc generally produces slower loop code than the MIPS compiler, although w

loop unrolling is turned on, the performance is within 4% of MIPS. Loop unrolling to

iterations has worse performance than unrolling to a fixed size. Although gcc is not

quately instrumented to show the cause of the decreased performance, in our co

this type of unrolling causes excessive register spilling. Gnu C does not do interval

ysis and has a relatively poor register priority function, so very large basic blocks te

cause the compiler to generate excessive register spills. This quickly negates any a

tage of unrolling a large loop.

FIGURE 40. Compiler/Technique Speedup on Scalar Processor

gcc gu gu4 block unroll unroll 4 pipe
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C il /T h i

Hi

Mean

Low



119

Liv-

n in

sters

con-

ating

oint

he dif-

n these
1.1  Register Use

The registers consumed by each of the scheduling techniques for the first 14

ermore Loops is shown in Table 3 and in Figure 41. The number of registers show

the table is the number of registers which would be allocated if an infinite set of regi

was available.

Figure 41 shows a marked difference in the number of integer registers

sumed by different techniques. There is almost no increase in the number of flo

point registers used, except for unroll 4, where the number of number of floating p

registers used doubles from the other methods. There are a number of causes for t

ferences in register use between the techniques. The integer registers are used i

TABLE 3. Registers Use vs. Scheduling Technique

Loop
No.

Gnu C Variants Tortoise

block
integer
pipeline unroll unroll 4 block

float
pipeline unroll unroll 4

1 8. 11. 13. 13. 5. 8. 11. 11.

2 12. 13. 19. 24. 4. 4. 4. 4.

3 7. 10. 11. 11. 3. 4. 7. 7.

4 12. 15. 15. 16. 4. 4. 4. 4.

5 8. 11. 13. 13. 3. 3. 3. 3.

6 13. 16. 20. 22. 2. 2. 2. 2.

7 9. 12. 15. 19. 7. 9. 7. 20.

8 22. 26. 22. 37. 24. 24. 24. 35.

9 6. 9. 7. 19. 14. 16. 14. 46.

10 7. 10. 8. 22. 9. 10. 9. 42.

11 7. 10. 12. 12. 3. 3. 3. 3.

12 7. 10. 12. 12. 2. 4. 7. 7.

13 20. 22. 21. 67. 6. 8. 6. 29.

14 19. 22. 33. 51. 6. 9. 12. 22.

High 22. 26. 33. 67. 24. 24. 24. 46.

Avg. 11.2 14.1 15.8 24.1 6.57 7.71 8.07 16.8

Low 6. 9. 7. 11. 2. 2. 2. 2.



120

able

o an

too

reg-

ing.

over

.

Soft-

ities

e fac-

first

ling
loops primarily for address calculations and induction variables. The induction vari

analysis and optimization passes of the compiler will assign multiple registers t

induction variable when it is in an unrolled loop if the stride is not constant or is

large to fit in a memory immediate offset field. The stride may also be assigned to a

ister. This will tend to allocate integer registers in proportion to the amount of unroll

The floating point register consumption is probably due to operations migrating

wider ranges as the body becomes larger under the various scheduling techniques

FIGURE 41. Registers Use vs. Scheduling Technique

1.2  Code Size

Code size is another parameter affected by these scheduling techniques.

ware pipelining and loop unrolling trade larger code sizes for optimization opportun

and hopefully better performance. Code size can become an important performanc

tor due to its effect on cache behavior. The number of instructions generated for the

14 Livermore Loops is shown in Figure 42 for each of the compilers and schedu

0

10

20

30

40

50

60

70

Integer                             Float

High

Average

Low



121

% in

matic

ly in

ed by

lining

nroll

ling,

lining

, the

loop

loop
techniques used. While the overall increase in program size is not large (about 20

the largest case), the increase in the size of the working set can be much more dra

and will put pressure on the cache. We will examine this question more thorough

Section 4 on page 147.

FIGURE 42. Code Size vs. Scheduling Technique

Table 4 shows a comparison between the performances of the code produc

each of the scheduling techniques. As expected, loop unrolling and software pipe

produce code which performs better than the code produced by block scheduling. U

4 produces code with inferior performance to the code produced by block schedu

probably due to increased register consumption. The comparison of software pipe

and loop unrolling shows an interesting correlation with the unroll count. Generally

code produced by software pipelining performs better than the code produced by

unrolling where the unroll count is 1 or 2 and worse than the code produced by

0

1000

2000

3000

4000

5000

6000

Scheduling Compiler/Technique

High

Average

Low



122

the

op

g the

his

loop

xecu-

etri-

s. In
unrolling where the loop count is four. This leads to the possibilities that either: 1)

criteria for determining the loop count is incorrect or; 2) software pipelining and lo

unrolling are complementary techniques that could be used together, by selectin

best technique for each circumstance.

The unrolling algorithm used by gcc unrolls loops to fixed maximum size. T

criteria has a number of desirable features: Smaller loops will benefit more from

unrolling since instructions and overhead removed form a larger percentage the e

tion time of the loop (see Section 1.2 on page 45). In addition, there are potential d

mental cache effects from the amount of code produced by unrolling larger loop

TABLE 4. Scheduling Techniques Performance Ratios

Gnu C Variants Tortoise

Loop No.

pipelined
vs.
block

unroll
vs.
block

unroll 4
vs.
block

unroll
count

pipelined
vs.
unrolled

pipelined
vs.
unroll 4

1 1.53 1.59 1.52 4 0.965 1.01

2 1.24 1.07 1.23 1 1.16 1.

3 1.54 1.86 1.82 4 0.826 0.846

4 1.24 1.06 1.34 1 1.17 0.925

5 1.37 1.51 1.49 4 0.908 0.924

6 1.22 1.11 1.1 2 1.09 1.11

7 1.19 1.02 0.698 1 1.17 1.7

8 1.01 1. 0.468 1 1.01 2.16

9 1.12 1. 0.949 1 1.12 1.18

10 1.07 1. 0.413 1 1.07 2.58

11 1.36 1.62 1.57 4 0.843 0.866

12 1.71 1.65 1.51 4 1.04 1.13

13 1.06 1. 0.42 1 1.06 2.53

14 1.15 1.06 0.917 2 1.09 1.26

High 1.71 1.86 1.82 1.17 2.58

Mean 1.24 1.19 0.866 1.02 1.19

Low 1.01 1. 0.413 0.826 0.846



123

large

ary

would

are

itec-

op

and

r the

m to

en-

ara-

more

over-

rs to

uses

n

n the

se less

being
addition, as mentioned earlier and shown in Figure 41, on page 120, unrolling

loops can consume a large number of registers.

The possibility that software pipelining and loop unrolling are complement

techniques has been mentioned in previous studies [77][102]. The best approach

probably be to develop a hybrid algorithm which applies both unrolling and softw

pipelining.

The most surprising result of this set of experiments is that even on an arch

ture with relatively little amounts of parallelism, software pipelining outperforms lo

unrolling. The R3000 has short operation latencies, even in the floating point unit

the units are which are not pipelined, so the execution of operations intended fo

same unit cannot be overlapped. Overall, there is a small amount of parallelis

exploit and it is surprising that removing operations with loop unrolling is not more b

eficial.

In addition, software pipelining uses fewer registers while requiring a comp

ble amount of code space. It would seem that software pipelining should consume

resources, because software pipelining is supposed to be exploiting parallelism by

lapping the execution of more operations, while using more instructions and registe

do so. This seems not to be the case for this architecture, where software pipelining

the same amount of code space and fewer registers.

An advantage of software pipelining is that it “unrolls” only enough to fill ope

latencies and stops when there are no idle operation slots to fill or improvements i

schedule are not possible because of operation dependencies. This will tend to u

resources than an algorithm that is less sensitive to the code and architecture

scheduled.



124

ially

its on

n the

of an

xploit-

ly

chine

om-

ware

ange

e of

ycles),

les).

3000

iver-

ata

hine

hile

point

f the

e and

3000
2  Scheduling for Long Operation Latencies

Software pipelining should schedule operations with long latencies, espec

pipelined operations, better than other scheduling methods. Since the function un

the R3000 are not pipelined and have relatively short latencies, the experiments o

R3000 did not address this issue. In this section we will describe and give results

experiment designed to explore the effectiveness of the scheduling techniques at e

ing parallelism in the form of pipelined function units.

In this experiment, we will vary the latency of the floating point add and multip

units, rescheduling the benchmarks each time to match the latency of the target ma

model. We will use the output of the MIPS C compiler as a base against which to c

pare the other scheduling techniques. Block scheduling, loop unrolling, and soft

pipelining are tested under (double precision) floating point add latencies which r

from 2 to 7 cycles and multiply latencies which range from 5 to 10 cycles. This rang

latencies is chosen because it matches current architectures on the low end (2 c

and what is thought to be probable for new processors on the high end (5 to 7 cyc

A new analysis tool is necessary, as pixstats is configured to match the R

parameters. For that reason fpaUM, which was developed by David Nagle at the Un

sity of Michigan for the Aurora project, is used with pixie to provide performance d

[125]. FpaUM allows the latencies of floating point operations to be set in a mac

configuration file. FpaUM also allows function units to be pipelined, if desired.

Figure 43 shows the results of scheduling the first 14 Livermore Loops w

varying the scheduling technique, floating point latencies and whether the floating

operations are pipelined. The performance metric is the ratio of harmonic means o

number of cycles executed for code produced by each of the scheduling techniqu

machine model with respect to the code produced by the MIPS C compiler an R



125

epre-

ing

dd

not

20%

sed,

r the

ing.

sm,

me
configuration. The number shown is the inverse of speedup, i.e. higher numbers r

sent longer execution times.

FIGURE 43. Execution Time vs. Increasing FPU Latency

The performance of the code produced by loop unrolling, software pipelin

and the MIPS compiler are all fairly close on the R3000 configuration (FPU A

Latency 2). Pipelining the floating point operations on this configuration does

greatly improve performance. Block scheduling produces code which has almost

lower performance on this configuration. As the floating point latencies are increa

the execution times of all runs increases. MIPS (the MIPS compiler scheduling fo

R3000) increases the fastest, followed by loop unrolling and last by software pipelin

We conclude that software pipelining is better at handling this type of paralleli

although the improvement over loop unrolling is only slight until the pipelines beco

moderately deep.

B
B

B
B

B
B

J
J

J
J

J
J

H H
H

H
H

H

F
F F

F
F F

—
—

—
—

—
—

…
…

…
…

…
…

«
« «

«
«

«

2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FPU Add Latency

B mips

J block

H unroll

F pipe

— mips piped

… block piped

« unroll piped

pipe piped



126

how

ilar

ution
FIGURE 44. Execution Time vs. Increasing FPU Latency (FPU not pipelined)

Figure 44 and Figure 45 show the same information as Figure 43, split to s

separate pipelined and non-pipelined runs.

FIGURE 45. Execution Time vs. Increasing FPU Latency (FPU pipelined)

Two sets of runs for pipelined and non-pipelined function units show sim

behaviors. Figure 46 divides the runs by technique, showing the difference in exec

B
B

B
B

B
B

J
J

J
J

J
J

H H
H

H
H

H

F
F F

F
F F

2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FPU Add Latency

B mips

J block

H unroll

F pipe

G
G

G
G

G
G

E
E

E
E

E
E

«
« «

«
«

«

A A A A A A

2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FPU Add Latency

G mips

E block

« unroll

A pipe



127

exe-

runs is

gu-

ating

oces-

ipe

n the

antial
times between pipelined and non-pipelined floating point units. The non-pipelined

cution times increase a little faster and the spread between the slowest and fastest

a little wider. But the difference is relatively small (less than 10%), even on the confi

rations with deep pipelines.

FIGURE 46. Execution Time Pipelined vs. not Pipelined FPU

The graphs presented so far show the results of increasing the latency of flo

point operations given a fixed cycle time. This may be the case when designing a pr

sor, but a more likely scenario is that dividing the floating point units into more p

stages will allow the cycle time to decrease. Figure 47 assumes a fixed latency i

floating point unit and a decreasing cycle time. In this case we would derive a subst

B
B

B
B

B
B

—
—

—
—

—
—

2 3 4 5 6 7

0
0.2
0.4

0.6
0.8

1
1.2

1.4
1.6
1.8

B mips

— mips piped

J J J
J

J
J

…
… …

… …
…

2 3 4 5 6 7

0
0.2
0.4

0.6
0.8

1
1.2

1.4
1.6
1.8

J block

… block piped

H H H
H

H
H

« « « « « «

2 3 4 5 6 7

0
0.2
0.4

0.6
0.8

1
1.2
1.4
1.6
1.8

H unroll

« unroll piped

F F F F F F

A A A A A A

2 3 4 5 6 7

0
0.2
0.4
0.6

0.8
1

1.2

1.4
1.6
1.8

F pipe

A pipe piped

(a) MIPS CC (b) block scheduling

(c) loop unrolling (d) software pipelining



128

tech-

)

ycle

ase.

from

eter-

tware

l be
benefit from increasing the number of pipe stages, even without better scheduling

nology. Better scheduling provides additional performance.

FIGURE 47. Execution Time vs. Increasing FPU Pipe Stages (Constant Latency

Of course, this scenario of a fixed floating point latency and a decreasing c

time is wildly optimistic because it assumes that the latency ofeverything elsegoes

down proportionally, including memory latencies. This is also unlikely to be the c

The truth lies somewhere between these two extremes: Some benefit is derived

increasing pipe stages, along with cost. The point at which two effect balance with d

mine what the optimal number of pipe stages. Aggressive scheduling such as sof

pipelining will push the balance toward more pipe stages, i.e. more benefit wil

derived from each additional pipe stage.

B

B

B

B
B

B

J

J

J

J
J

J

H

H

H

H
H

H

F

F

F

F
F

F

—

—

—

—
—

—

2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP Add Pipe Stages

B mips

J block

H unroll

F pipe

— perfect



129

erac-

iques

soft-

eady

this

will

anal-

mith

at

the

rchi-

d a

per

dow.

tion

dering

ut-of-

ers,

sim-
3  Scheduling and Issue Policies

In this section we describe a set of experiments designed to explore the int

tion between an architecture’s instruction issue policy and the scheduling techn

used by the compiler. Our goal is to compare block scheduling, loop unrolling and

ware pipelining on scalar, VLIW, DAE and superscalar architectures. We have alr

examined the compiler and scheduling techniques in some detail. However, for

experiment we need a more general analysis tool than either pixstats or fpaUM. We

still use trace based simulation and analysis to derive our performance figures. The

ysis tool used is these experiments is based on xsim, developed by Mike S

[162][164].

Xsim has been modified by Tom Huff and Mike Upton for the Aurora project

the University of Michigan [119]. The current version of the Aurora processor,

Aurora III, is a superscalar processor. We will use the Aurora III as the superscalar a

tecture in these experiments and modified versions of the Aurora III for the VLIW an

DAE architectures.

3.1  Aurora III

The Aurora III is a superscalar architecture which can issue two instructions

cycle if there are no data dependencies between instructions in the instruction win

Execution of the integer, floating point and memory units are decoupled. Coordina

between the sub-systems is by a set of instruction, load and store queues. Or

within each sub-system is supported by register score boards. In-order issue with o

order completion is supported by result reorder buffers.

The Aurora III has 32 integer and 32 double precision floating point regist

although most of our experiments use 16 double precision floating point registers to

plify comparison with the R3000.



130

vel,

ed D-

direct

ut the

rally

tion

hese

level

store

add

hs and

result

lud-

a-

ts we

a sin-

each

f the

om-

g on
The Aurora III has a two level cache: In the current simulations, the first le

on-chip caches are a 2k byte direct mapped I-cache and a 32k byte direct mapp

cache. The second level caches is a 64k byte direct mapped I-cache and a 64k byte

mapped D-cache. The final system will probably be 64k byte secondary caches, b

memory latency will probably be 150 to 200 cycles rather than the 20 cycles gene

used for these simulations. In addition there will be branch prediction with instruc

prefetching, which is not currently implemented. The memory latencies used is t

simulations, except where we indicate otherwise, is a 2 cycle penalty for a first

cache miss and 20 cycles for a second level cache miss. There is also a 4 word

write buffer, which is used to collect and optimize writes.

The floating point unit has separate add, multiply and divide units. Both the

and multiply latencies are three cycles. The processor also has 64 bit wide data pat

supports double precision floating point load and store instructions. There are two

busses, a result reorder buffer and a store reorder buffer.

3.1.1  Aurora III Scalar Performance

The Aurora III incorporates a number of improvements over the R3000, inc

ing multiple result busses and 64 bit data paths1. The performance benefits of these fe

tures are worth investigating before looking at dual issue. For this set of experimen

define a scalar Aurora III, where the processor has been constrained to only issue

gle instruction each cycle. Figure 48 shows the speedup of the code produced by

compiler/technique running on a scalar Aurora III, compared to the performance o

code produced by MIPS compiler running on the on the R3000. Generally, we will c

pare our code to the performance of code produced by the MIPS compiler runnin

the R3000 to have a standard for comparison2.

1.  Later MIPS processors, such as the R4000, also implement 64 bit instructions.



131

nge,

piler

his

raise

1.7

be dis-

n-
FIGURE 48. Scalar Aurora III vs. R3000 w. MIPS CC

Most of the compilers produce code with performance speedups in the 1.7 ra

even without dual issue. There is a wider variation in the performance of our com

using software pipelining and loop unrolling and either gcc or the MIPS compiler. T

is due to one or two vector loops hitting the processor just right, but this does not

the harmonic mean by much.

3.1.2  Double Precision Floating Point Loads and Stores

There are a number of features in the Aurora III which contribute to the

speedup over the R3000. Some of these features affect scheduling and need to

cussed before we proceed to examining dual issue.

2. The base processor is an R3000 with a cache configuration matching the Aurora III cache co
figuration.

0

1

2

3

4

5

High

Mean

Low



132

ting

ss of

dou-

mory

tore

codes

truc-

the

era-

t, so

when

oves

d.
The Aurora III has 64 bit wide data paths and provides double precision floa

point load and store instructions. This capability gives performance benefits in exce

just saving a cycle per each load or store, because rewriting two loads with a single

ble precision load removes scheduling constraints caused by the way these me

operations are handled.

The MIPS assembler expands double precision floating point load and s

opcodes into two instructions. Our compiler uses this capability and treats these op

as one long instruction. This has scheduling implications. First, these compound ins

tions will not fit in a branch delay slot. This is one scheduling constraint. In addition,

Aurora III can only issue one memory operation per cycle, or only one memory op

tion per dual issue pair. We are still scheduling for a scalar architecture to this poin

the second constraint does not effect us yet, but this constraint will have an effect

we enable dual issue. Providing double precision load and store instructions rem

these scheduling constraints and allows a more compact schedule to be generate

FIGURE 49. Scalar Aurora III Double vs. Single Load/Stores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

High

Mean

Low



133

iding

ue is

, for

ining.

ilers/

gener-

roll 4

and

uffer

egis-

ueue
Figure 49 shows a mean performance increase of about 1.25 due to prov

double precision load and store instructions. In this figure, each compiler/techniq

compared to itself with and without double precision load and store instructions. So

instance, unroll 4 does not suddenly have better performance than software pipel

However, unroll 4 does benefit more from the new instructions than the other comp

techniques. Because of the large number of registers consumed, unroll 4 tends to

ate a larger number of load and store instructions to spill register contents. So un

derives more benefit from the new instructions than do the other techniques.

3.2  Decoupled Execution

FIGURE 50. Aurora III Cycles vs. I-queue Length

Another feature of the Aurora III which effects scheduling is that the integer

floating point processors are decoupled. The instructions in the current instruction b

in the instruction fetch unit are examined and either: 1) block because one of the r

ters is marked busy. 2) are sent directly to the integer unit. 3) are placed in the I-q

B
B B B B B B B

J

J
J J J J J J

H

H

H
H H

H H H

2 4 6 8 10 12 14 20

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

I Queue Length

B cyclesM20

J cyclesM50

H cyclesM100



134

eue

its.

out a

r tends

delay

d pro-

ver-

f 20,

orted

em-

odel.

s. In
(instruction queue) to be delivered to the floating point unit. 4) are placed in the I-qu

and the L-queue (load queue) to be send to both the floating point and memory un

The queues allow decoupled execution of the sub-processors. In code with

recurrence between the floating point and integer processors, the integer processo

to execute several cycles ahead of the floating point processor. The execution

between the two processors hides much of the memory delay as in other decouple

cessors, e.g. the DAE architecture in [154].

Figure 50 and Figure 51 show the execution time and I-queue stalls for Li

more Loop 2 under increasing I-queue length for memory systems with latencies o

50 and 100 cycles. This execution behavior is similar to the decoupled behavior rep

in [157].

FIGURE 51. Aurora III Stalls vs. I-queue Length

Decoupled execution has scheduling implications because it tends to hide m

ory delays. This tends to decrease the relative performance of a VLIW execution m

In the VLIW model, NOPS are inserted in the schedule to remove pipeline hazard

B

B B B B B B B

J

J

J J J J J J

H

H
H

H

H

H H H

2 4 6 8 10 12 14 20

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

I Queue Length

B iQstallsM20

J iQstallsM50

H iQstallsM100



135

which

pen-

epen-

a true

e the

with

e next

hich

lly

e over

p goes

ases.

erfor-

e ver-

oth

or-

pro-

have
code such as Livermore Loop 4 (see Figure 52), an occasional data dependency,

cannot be resolved at compile time, will require the scheduler to treat the data de

dence as a recurrence. The schedule will be padded with NOPS to satisfy the data d

dency. In code such as this, where the data dependency is only occasionally

dependency, decoupled execution would allow the next loop iteration to begin onc

dependency is resolved. However, the VLIW version, the loop has been padded

NOPS. which must always be executed, even when there is no dependency. Th

iteration must execute the NOPs before the next iteration can begin execution, w

lowers the overall performance of the VLIW schedule. The ability to dynamica

resolve pipeline hazards in the superscalar execution model is a decided advantag

VLIW in this case.

for (j=5; j <= N; j+=5) {
temp = temp - X[lw] * Y[j];
lw = lw+1;
X[k-1] = Y[5] * temp;

}

FIGURE 52. Livermore Loop 4 - Occasional Data Dependency

3.2.1  Dual Issue Performance

When dual issue is enabled (see Figure 53), the mean performance speedu

up to 2.3 time the R3000 and the performance variation of all the schedulers incre

The performance of code which cannot dual issue does not increase, while the p

mance of code which 100% dual issues can double. The performances of all thre

sions of gcc along with the MIPS compiler improve relative to our compiler with b

software pipelining and loop unrolling. Only block scheduling and unroll 4 lag in perf

mance.

At this point we are still running code which has been scheduled for a scalar

cessor. A scheduler which has a more accurate model of the architecture should



136

nge

ent-

ntage

el. As

epre-

chine

calar

ng

ling
better performance. We will still use software pipelining and loop unrolling, but cha

Tortoise’s model of the machine to match the dual issue nature of the Aurora III.

FIGURE 53. Dual Issue Aurora III vs. R3000 w. MIPS CC

3.2.2  Scheduling Models

Since we can gain a factor of two by dual issuing on the Aurora III, the perc

age of dual issued operations will be our primary concern. Table 5 shows the perce

of dual issues which occur randomly when scheduling using a scalar machine mod

can be seen in the table, the percentage of dual issues is fairly low at 44%. This r

sents a speedup of dual versus scalar issue of about 1.3. We will introduce two ma

models to attempt to improve on the percent of dual issues over using a naive s

model.

The first model will treat the Aurora III as a VLIW architecture when scheduli

operations. Because the Aurora III uses a fixed instruction window, a VLIW schedu

0

1

2

3

4

5

High

Mean

Low



137

reg-

ation

se a

as a

ration,

ts. We

lvable

t pads

the
model is a good approximation for scheduling operations. However, the lifetimes of

isters are different in a static superscalar architecture than in a VLIW architecture.

In a static superscalar architecture, the register is live at the end of the oper

even if this is in the middle of the instruction window. So register allocation must u

scalar paradigm. We first construct a VLIW schedule and then treat the operations

linear scalar schedule in the register allocation routines.

Because registers are marked live in the scoreboard at the end of each ope

the machine can resolve pipeline hazards and stall when a data dependency exis

can use this to overcome the problem of padding a schedule when there are unreso

data dependencies (see Section 3.2 on page 133). Our scheduling algorithm firs

instructions to the width of the instruction window to avoid losing synchronism of

TABLE 5. Percent Dual Issue under Different Scheduling Models

Loop

No.
scalar
schedule

VLIW
schedule

Double
Latency

1 39.8 95.6 88.4

2 62.8 91.1 63.5

3 50. 98.2 69.3

4 14.4 72.5 64.5

5 12.5 55.1 32.6

6 58.8 63.8 81.8

7 72.5 96. 85.

8 48.3 84.4 34.

9 53. 75.5 51.6

10 49.8 84.2 31.8

11 15.7 66.1 97.1

12 42.4 97.2 91.6

13 46.6 76.4 56.1

14 51.6 80.6 72.6

High 72.5 98.2 97.1

Average 44.1 81.2 65.7

Low 12.5 55.1 31.8



138

in-

How-

perfor-

of the

54.

necks

our

cture

wn in

ome,

r, the
window and operation pair. Then, any NOPS pairs filling an entire cycle/instruction w

dow are removed.

Table 5 shows that we have almost doubled the percentage of dual issues.

ever, some of the operations measured as dual issue are actually NOPS, and the

mance only increases about 5% over the naive scalar model. The performance

VLIW model compared to the MIPS compiler on the R3000 is shown in Figure

Another problem is that even though we are getting more dual issues, other bottle

are limiting performance, e.g. data dependencies and cache performance.

FIGURE 54. Dual Issue Scheduling (VLIW Model) vs. R3000 w. MIPS CC

We will introduce another scheduling model, to see if we can do better than

VLIW model. A superscalar architecture can also be modeled as a scalar archite

with the operation latencies doubled. The results of this scheduling model are sho

column 3 of Table 5 and Figure 55. The percentage of dual issues drops off s

because we are no longer inserting NOPS to pad the instruction windows. Howeve

performance is close to the performance of the VLIW model.

0

1

2

3

4

5
High

Mean

Low



139

alar

com-

mean

ce in

ional

rent

sters

tently

axi-

cates

ters,

ions
Figure 56 shows the speedup of dual issue (VLIW model scheduling) over sc

execution (scalar model scheduling) on the Aurora III. The performances of each

piler/technique are compared individually and are not scaled to each other. The

improvements are in the range of 1.2 to 1.4. The loops with the worst performan

unroll 4 actually lose performance due to the padded instruction windows and addit

registers allocated.

FIGURE 55. Dual Issue Scheduling (Latency Doubling Model) vs. MIPS CC

Figure 57 shows the registers used by software pipelining under the diffe

machine models. Both the VLIW and double latency models use slightly more regi

than the scalar model. The average number of floating point registers is consis

lower than the number of integer registers, by a margin on the order of 50%. The m

mum numbers of floating point and integer registers is roughly the same. This indi

that a machine with only one half as many floating point registers as integer regis

like the R3000, probably has too few floating point registers for the type of applicat

represented by the Livermore Loops.

0

1

2

3

4

5
High

Mean

Low



140
FIGURE 56. Dual v.s Scalar Issue (VLIW Scheduling Model)

FIGURE 57. Register Use vs. Issue Models with Software Pipelining

0

0.5

1

1.5

2 High

Mean

Low

float integer float integer float integer

0

5

10

15

20

25

30

35

Scalar                        VLIW                      Double

High

Average

Low



141

go-

pare

s.

itec-

f the

ction

f the

they

ycle

truc-

first

next

f the

vail-

avail-

ra-

e a
3.3  Comparisons with VLIW and DAE

Having put all the machinery in place to compile using different scheduling al

rithms, and simulate the programs and analyze the performance, we want to com

architectures with different issue models to our scalar and superscalar architecture

One difference between a VLIW architecture and a static superscalar arch

ture is its use of registers. In a VLIW, the target registers become live at the end o

cycle when the operation exits the function unit, rather than at the end of the instru

which defined the target register. In addition, source registers are live until the end o

cycle in which they are redefined, rather than at the end of the instruction in which

are redefined.

Figure 58 shows an example of a superscalar register lifetime using a two c

add operation. In this example, r1 is used and the destination register in the first ins

tion. In a superscalar machine, r1 would be marked live immediately following the

instruction. If the operation has a two cycle latency, any operations using r1 in the

two cycles would be delayed until the add operation has completed execution. I

result of the add operation is only used once, by the multiply in cycle 4 here, r1 is a

able for reuse. In a superscalar machine, r1 is marked busy in cycles 2 and 3, and

able at cycle 4.

1: r1 = add r2, r3 -
2: ... r1 live
3: ... r1 live
4: r4 = mult r1, r5 r1 available

FIGURE 58. Superscalar Register Definitions

Figure 59 shows the register lifetime on a VLIW architecture two cycle ope

tion. R1 is available in the two cycles following the add instruction, but would hav



142

OPs

ica-

s to

r per-

ows a

and
previous value, not the result of the add operation. It is the compiler’s job to insert N

to insure that any pipeline hazards are removed.

1: r1 = add r2, r3 -
2: ... -
3: ... -
4: r4 = mult r1, r5 r1 live and available

FIGURE 59. VLIW Register Definitions

This difference in the definition of register liveness has performance impl

tions. The first is that the VLIW architecture must insert NOPs between instruction

remove pipeline hazards. As mentioned in Section 3.2.2 on page 136, this can lowe

formance in certain situations because the schedule is less compact. Figure 60 sh

performance drop of about 20% for VLIW vs. superscalar using software pipelining,

a larger drop in performance for the other scheduling techniques.

FIGURE 60. VLIW vs. Static Superscalar vs. Scheduling Technique

block pipeline unroll unroll 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
High

Mean

Low



143

ough

each

ch-

and

ution.

via

t reg-

used in

teger

ting

mem-
The register savings of VLIW are small, on the average, and are not large en

to make up for the additional padding required. Figure 61 shows the register use on

of the architectures.

FIGURE 61. Register Use vs. Issue Policy with Software Pipelining

DAE is another interesting architecture on which to try our scheduling te

niques. As mentioned in Section 3.2 on page 133, the Aurora III already has load

instruction queues and exhibits some of the characteristics of decoupled exec

However, in a DAE architecture, the communication with the memory unit is strictly

a set of queues. One register is removed from each of the integer and floating poin

ister sets and the register ids are used to represent queues. The register ids are

conjunction with load and store operators to select one of four data queues, i.e. in

data to memory, integer data to memory, floating point data to memory and floa

point data from memory. There is also an address queue to send addresses to the

ory system.

float integer float integer float integer

0

5

10

15

20

25

30

35

Superscalar                   VLIW                         DAE

High

Average

Low



144

ushes

ss push,

queue.

of an

as a

ith

e Exe-

ctions

fixed

for

tions

ur
For each memory operation, either a load or store, the Access processor p

an address onto the address queue. With each access processor memory addre

there is a corresponding reference in the Execute processor to a load or store data

A push to the store queue is indicated by using the store queue id as the target

operation. A pop from the load queue is indicted by the use of the load queue id

source operand.

The two DAE subprocessors usually implement different instruction sets, w

the Access processor only being able to execute integer/address operations and th

cute processor implementing a more complete set of operations. The proper instru

must be routed to each subprocessor. This routing can be facilitated by defining a

instruction format where each half of the instruction is restricted to hold instructions

one fixed subprocessor. For simplicity, we will not split our processors; the opera

will be allowed to execute from either side of the instruction window. This will make o

results slightly optimistic over a more restricted format.

FIGURE 62. DAE vs. Static Superscalar vs. Scheduling Technique

block pipeline unroll unroll 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
High

Mean

Low



145

del:

a load

opied to

e load

one

data

ure 62

lar for

ther

, the
However, we will adhere to the restrictions imposed by the DAE memory mo

Each store data must go into the store queue and each load data from come from

queue. Each reference to a load queue pops the queue, so the operand must be c

another register if it is used as a CSE. Only one store queue reference and on

queue reference are allowed per instruction. If an instruction would use more than

load queue, one of the operands must be copied into a register.

The restrictions on queue use require additional move instructions to copy

to/from the queues and registers. This causes some performance degradation. Fig

shows performance of the DAE architecture as compared to the static supersca

each of the scheduling techniques.

FIGURE 63. Aurora III, VLIW, and DAE vs. Scheduling Technique

Figure 63 shows the performances for all three multi-issue machines toge

with the scheduling technique employed, compared to the R3000. As expected

0

1

2

3

4

5

block           unroll            unroll 4             pipeline

High

Mean

Low



146

and

see

f the

time

he I-

of the

large

does

s fast
superscalar architecture comes out on top. The relative performance of the VLIW

DAE architectures changes, depending on the scheduling technique used.

3.4  Aurora III Cache Behavior

FIGURE 64. Percent Time Spent in D-Cache Stalls

We will consider cache behavior more thoroughly in the next section (

Section 4 on page 147). Here we will take a quick look at the cache behavior o

Aurora III with the current parameters. Figure 64 shows the percent of execution

spent in D-cache stalls. The D-cache performance looks fairly normal. However, t

cache stalls, shown in Figure 65 show degenerate performance behavior for a few

technique/benchmarks. This is because the 8k byte (2k instructions) I-cache is not

enough to hold the body of some of the larger schedules. Also, since the Aurora III

not have instruction prefetching and the memory system cannot stream instruction

1413121110987654321

unroll 4
unroll

pipeline
block

gcc unroll 4
gcc unrollgcc

mips

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

loop schedule



147

ng on

nse

f this

tions.

what

sity

of the
enough to keep up with the processor, the processor spends much of its time waiti

I-cache stalls.

FIGURE 65. Percent Time Spent in I-Cache Stalls

4  Cache Effects

Both loop unrolling and software pipelining improve performance at the expe

of increased code size. To this point we have not really investigated the effects o

increased code size, except to incorporate a realistic cache model into our simula

We will now take a closer look at the effect these techniques have on code size and

this does with respect to cache behavior.

4.1  Previous Work

Previous studies [171][40][57][115] have found that differences in code den

can affect performance. The size of the effect is found to decrease as the size

1413121110987654321

unroll 4
unroll

pipeline
block

gcc unroll 4
gcc unrollgcc

mips

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

loop schedule



148

xcept

for

We

inner

ot

in per-

elin-

ram-

che

y, we

nning

elin-

lable,

nted

rt for
cache is increased. Our experiment is similar to the experiments in earlier studies e

for the uniformity condition. Uniformity assumes that code density changes equally

all parts of the program. Uniformity is intentionally avoided in our experiments.

wish to increase the code density in heavily used portions of the program, i.e.

loops, and generate less compact code in less executed portions.

As the results here will show, our deviation from the uniformity condition is n

enough to change nature of the effect. An increase in code size causes a decrease

formance and this effect disappears with larger caches.

First we will explore the effects of increased code sizes due to software pip

ing in the context of the scalar R3000 architecture, with varying memory system pa

eters and software pipelining techniques. Then we will return to the Aurora III ca

model and look at the cache behavior for our scheduling techniques there. Finall

will look at the cache behavior on some larger programs, the Spec benchmarks, ru

on the R3000 again.

4.2  Cache Performance Effects from Software Pipelining

The increase in code size will depend on the implementation of software pip

ing, as well as whether hardware support is available. If hardware support is avai

the code size increase may be much less than if software pipelining is impleme

entirely in the code. We examine the behavior of three types of hardware suppo

software pipelining:

1. Hardware support for both conditional instruction execution and register
indexing (full support).

2.  Hardware support for just register indexing (indexed support).

3. No hardware support (no support).



149

erfor-

ache

will

ency

The

cy of

tic for

er-

ber of

ired to

ed to

gue,

g to
In these experiments, the R3000 is used as the base architecture. Two p

mance analysis tools, fpa_UM with CacheUM [131][125], are used to model the c

configurations and collect performance statistics.

In the first experiment, a code generator which employs software pipelining

be used to generate pipelined loops for the first fourteen Livermore loops. A high lat

memory system with a two level cache organization is chosen for this experiment.

organization and latencies are taken from [131]. A first level cache miss has a laten

5 cycles. A secondary miss has a latency of 141 cycles. These latencies are realis

the current generation of processor and memory speeds.

In the architecture with full support, only the kernel stage of the loop is gen

ated. This code is executed N+pipestages-1 times, where pipestages is the num

pipe stages in the loop. The extra pipestages-1 executions of the kernel are requ

execute the epilogue portion of the loop.

FIGURE 66. Code Sizes for the First Fourteen Livermore Loops

In the architecture with indexed register file support, separate code is produc

implement the various phases of pipelined loop execution: prologue, kernel, epilo

etc. However, only one copy of each phase is produced and there is no unrollin

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

500

1000

1500

2000

2500

3000

3500

4000

Livermore Loop

full

indexed

none



150

code

is

ount

hitec-

port

nge

s.

nce

d for

rd-

o dif-

ewer

port.

gue.

d by
rename registers. This implementation produces an intermediate amount of

between architectures with full software pipeline support and no support.

In the architecture with no software pipeline support, additional unrolling

required to statically rename registers. This implementation requires the largest am

of code. As shown in Figure 66, the code size can increase dramatically on an arc

ture with no pipeline support. In this case, the code for loop 10 with no pipeline sup

is approximately ten times the size the code with full support. The other loops ra

from two to three times the size, between the largest and smallest implementation

FIGURE 67. Execution Times for the First Fourteen Livermore Loops

If the effect of the increase in code size is not considered, there is little differe

in execution time between the various implementations. The total cycles execute

each of the first 14 Livermore Loops is shown in Figure 67 with full, partial, no ha

ware support for software pipelining. As can be seen in the figure, there is almost n

ference in the number of cycles executed between the implementation. Slightly f

instructions are executed for implementations with indexed and no pipeline sup

This is primarily due to fewer instructions being executed in the prologue and epilo

Loop 12 shows the largest effect, of about 10%, mainly due the branches remove

unrolling a very small loop.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

200000

400000

600000

Livermore Loop

full

indexed

none



151

nges.

loop.

8, a

e and

of the

ore

via

tice-

tative

ents,

ortu-

, we

r to

loop
However, when cache effects are added, the performance picture cha

Figure 68 shows the total cycles executed for three versions of the first Livermore

The primary cache size is varied from 8 words to 1k words. As shown in Figure 6

small cache can greatly degrade performance. Depending on the size of the cach

the code size, there can be a large performance penalty for the larger code size

implementations without full hardware support. At a cache size of 16 words, Liverm

loop 1 has almost a 40% performance penalty for implementing software pipelining

software. However, this effect diminishes very quickly and the effect is almost unno

able for caches of 32 words and larger.

FIGURE 68. Execution Times for LL 1 vs. Primary Cache Size

4.3  Cache Behavior with Loop Unrolling

Because the Livermore Loops are so small, it is questionable how represen

they are of “real” programs. It would be interesting to run the same set of experim

generating code for various types of hardware support, on larger programs. Unf

nately, the current version of the compiler is unable to perform this task. However

can study this problem by using another technique.

The structure of the code produced to implement software pipelining is simila

the code produced to implement standard loop unrolling. The effects of standard

B

B

B B B B B B

J

J J J J J J J

H H

H H H H H H

8 16 32 64 128 256 512 1k

0

500000

1000000

1500000

Primary Cache Size - words

B full

J indexed

H none



152

test

ept a

ore

s the

loop

nder

ze of

ms to

t for

od-

ops.

Four

xper-

ling.

other

r the
unrolling with respect to program size and I-cache effects should be very similar. To

this hypothesis, Version 2.2.2 of the Gnu-C compiler has been modified to acc

parameter controlling the amount of loop unrolling and the first fourteen Liverm

Loops have been compiled and with various amounts of unrolling. Figure 69 show

total number of cycles executed by the first Livermore Loop when the size of the

body is allowed to increase to 10, 50 and 100 instructions. The execution behavior u

these conditions looks very similar to the behavior shown in Figure 67, where the si

the loop varied in response to changes in the hardware model. This similarity see

indicate that a significant portion of the performance gain from hardware suppor

software pipelining is due to reduced code size.

FIGURE 69. Execution Times for the First Livermore Loop using Gnu-C

Given these encouraging results, we will go one step further, and apply the m

ified Gnu-C compiler to larger and more realistic programs than the Livermore Lo

The SPEC suite is a collection of “real” programs currently in use as benchmarks.

of the programs in the SPEC suite are provided in C and are thus available for this e

iment (eqntott, espresso, gcc, and xlisp).

We compile eqntott, espresso, and xlisp with an increasing amount of unrol

Figure 70 shows the code sizes produced when compiling xlisp. The results for the

benchmarks, which are not shown, are similar. The range of values executed fo

B
B

B B B B B B

J J

J
J J J J J

H H H

H H H H H

8 16 32 64 128 256 512 1k

0

500000

1000000

1500000

2000000

Primary Cache Size - words

B 10

J 50

H 100



153

the

ance

ced,
unrolling parameter varies the size of the code produced by approximately 25% from

least to the most unrolling.

FIGURE 70. Code Size for xlisp

The move to a larger, more realistic program has two effects on the perform

curves: 1) The of performance for different amounts of unrolling is not as pronoun

and 2) An effect on performance is present up to a 32k word primary I-cache.

FIGURE 71. xlisp: Cycles vs. Primary Cache Size (Long Latency Mem.)

B B B
B B B B B B B

0 10 50 100 110 120 130 140 150 200

0

50000

100000

150000

200000

250000

Unroll Size - maximum insns

B
B

B
B

B B B B B B

J
J

J
J

J J J J J J

H

H

H
H

H H H H H H

F

F

F
F

F F F F F F

—

—

—
—

—
—

— — — —

…

…

…

…
…

…
… … … …

«

«

«
«

« «
« « « «

M

M

M
M

M M M M M M

‚

‚

‚

‚
‚

‚ ‚ ‚ ‚ ‚

0

10000000

20000000

30000000

40000000

50000000

Primary Cache Size - words

B unroll 0

J 10

H 50

F 100

— 110

… 120

« 130

140

M 150

‚ 200



154

exe-

as a

ache

a 141

size

nta-

e in

ncy

stem,

f the

g is

ache

y cache
Performance statistics are shown in Figure 71 and Figure 72 for xlisp with

cuted with low and high latency memory configurations. The low latency memory h

3 cycle penalty for a primary cache miss and a 20 cycle penalty for a secondary c

miss. The high latency memory has 5 cycle penalty for a primary cache miss and

cycle penalty for a secondary cache miss.

Figure 71 and Figure 72 show the total cycles executed as a function of the

of the primary cache. In the range of a realistic primary cache on today’s impleme

tions, i.e. 1k-64k words, the effect of loop unrolling is small but noticeable. The rang

performance is approximately 5% on the high end of this region for the high late

memory system. The performance range is smaller for the low latency memory sy

but still noticeable.

FIGURE 72. xlisp: Cycles vs. Primary Cache Size (Short Latency Mem.)

Figure 73 and Figure 74 show the number of cycles executed as a function o

amount of unrolling. A slight rising trend can be seen as the amount of unrollin

increased. This rising trend almost, but not quite disappears for the larger primary c

sizes. The trend does not disappear entirely because there are still some secondar

B
B

B
B

B B B B B B

J
J

J
J

J J J J J J

H
H

H
H

H H H H H H

F
F

F
F

F F F F F F

—

—
—

—
— — — — — —

…
…

…

…
… … … … … …

«
«

«
«

« «
« « « «

M
M

M
M

M M M M M M

‚
‚

‚
‚

‚
‚ ‚ ‚ ‚ ‚

0

10000000

20000000

30000000

40000000

50000000

Primary Cache Size - words

B unroll 0

J 10

H 50

F 100

— 110

… 120

« 130

140

M 150

‚ 200



155

rams
misses which result in an approximately 1% performance loss over the set of prog

shown here.

FIGURE 73. Cycles Executed for xlisp vs. Unroll Size (Long Latency Mem.)

FIGURE 74. Cycles Executed for xlisp vs. Unroll Size (Short Latency Mem.)

B B B
B B B B B B B

J J J
J J J J J J J

H H H
H H

H H H
H

H

F F F
F F F

F
F F F

— — — — — —
—

— — —
… … … … … …

…
… … …« « « « « « « « « «M M M M M M M M M M‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

0 10 50 100 110 120 130 140 150 200

0

10000000

20000000

30000000

40000000

50000000

Unroll Size - maximum insns

B 128w

J 256w

H 512w

F 1k

— 2k

… 4k

« 8k

16k

M 32k

‚ 64k

B B B B B B B B B B

J J J
J J J J J J J

H H H H H
H H H

H H

F F F
F F F

F
F F F

— — — — — —
—

— — —
… … … … … …

…
… … …« « « « « « « « « «M M M M M M M M M M‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

0 10 50 100 110 120 130 140 150 200

0

10000000

20000000

30000000

40000000

50000000

Unroll Size - maximum insns

B 128w

J 256w

H 512w

F 1k

— 2k

… 4k

« 8k

16k

M 32k

‚ 64k



156

tch-

and

size

7%

ems.

gram

ware

and

III in

result

sched-
4.4  Context Switch Effects

In [116] Mogul and Borg find a performance degradation due to context swi

ing of 1% to 7% depending on the program mix and cache design. This study,

another by Steenkiste [171], show that the additional effect of having a larger code

when context switching might be 10% of cost of context switching, or 0.1% to 0.

overall. This effect is small enough that it would be difficult to discern on most syst

4.5  Summary of Cache Effects

The results shown here do support a small, but noticeable decrease in pro

performance when unrolling loops using standard loop unrolling techniques or soft

pipelining. While generally the effect is not large, it is large enough to be noticeable

under certain conditions can become quite large, e.g. as shown on the Aurora

Section 3.4 on page 146. Because of the sharp decrease in performance which can

when the worst case arise, cache effects must be considered when implementing

uling algorithms which can increase code size.



for-

r each

d are

speed-

repre-

ora

has

re is

able

rence

tatic

tween

ed-

rsca-

cute

each

ecute
CHAPTER VI
CONCLUSIONS

1  Research Contributions

The data produced in this study shows a relatively small difference in per

mance between the architectures investigated. In Figure 63, the mean speedup fo

of the three architectures investigated and four scheduling techniques implemente

shown together with the best and worst speedups for each of the benchmarks. The

ups shown are with respect to a scalar processor. Superscalar architectures are

sented by the Aurora III. The VLIW and DAE architectures are versions of the Aur

III, modified to match the salient characteristics of these architectures.

Taking the best mean result for each the architectures, the VLIW architecture

performance within 15% of the superscalar architecture and the DAE architectu

within 10% of the VLIW. These relatively minor performance differences are reason

considering the differences between these architectures. The fundamental diffe

between VLIW architecture and superscalar architecture is that a more rigid s

schedule is used in the VLIW architecture. There is no dependence checking be

instructions with an instruction window in VLIW and the use of a result must be sch

uled after the result exits the function unit pipeline.

The DAE architecture has an issue policy, intermediate between that of supe

lar and VLIW. Each sub-processor in a DAE architecture, the Address and Exe

units, can issue independently of the other, but in-order issue is enforced within

sub-processor. This allows some dynamic behavior between the Address and Ex
157



158

m-

-

amic

rfor-

DAE

h sub-

ched-

dule is

n the

ched-

lock

ior of

pipe-

any

set of

with

ever,

the

gen-

ctor-

IW

odel,
uction/
t the
units. However, this additional flexibility is offset by the necessity of scheduling co

munication between the two sub-processors.1 This communication scheduling may con

sume additional instructions which can reduce the total performance. The dyn

scheduling allowed by the DAE paradigm is often not enough to recover this pe

mance loss. Another potential performance loss is due to the limitation that the

architecture cannot issue to multiple instructions to a single sub-processor, i.e. eac

processor is restricted to single issue. There is no performance penalty when the s

ule is balanced between access and execute type operations. However, if the sche

unbalanced with one sub-processor having more operations to performance tha

other, one sub-processor must stall to maintain synchronization between the two s

ules.

The DAE architecture does fare better than the VLIW architecture under b

scheduling or loop unrolling, probably because the decoupled and dynamic behav

DAE is more of an advantage under these scheduling algorithms. Under software

lining, the performance ranking of DAE versus VLIW is reversed.

Of course, caveat emptor applies to the generality of this study as it does to

other study replying on a set of benchmarks which are not actual applications. The

benchmarks chosen, the Livermore Loops, is reported to provide good correlation

the performance of actual application loads consisting of scientific programs. How

the Livermore Loops tend to have largely static behavior. One of the criticisms of

original set of 14 Livermore Loops was that they overestimated the performance of

eral scientific applications because they contained too high a proportion of easily ve

izable loops. In our study, this may tend to bias the results in favor of VL

1.  If the production/consumption behavior of the code being scheduled matches the DAE queue m
no additional instructions are required. However, when there is a mismatch between the code prod
consumption behavior and the DAE queue model, additional instructions are required to implemen
code semantics.



159

er to

hi-

than

rove

mean

tore

rks for

ance

ent

itec-

y sim-

uire

model

with

ining

large

ies in

per-

crit-

nits

spe-
architectures and software pipelining techniques, both of which reply on the compil

provide good schedules and performance.

A corollary to the relatively small difference in performance between the arc

tectures is that other features of the processor are more indicative of performance

the issue policy. The Aurora III incorporates a number of features designed to imp

performance over the baseline MIPS R3000 processor. Figure 49 shows the high,

and low speedups for the Aurora III with double precision floating point load and s

operations, and without these operations. The mean speedup for these benchma

this single feature ranges from 1.2 to 1.5. This difference is larger than the perform

for any of the architecture pairs.

While we have no direct data to support a claim that it is less costly to implem

64 bit wide data paths, than to implement a multi-issue superscalar or VLIW arch

ture, we can speculate that it should be, just because the problem is conceptuall

pler. Implementing double precision load and store operations would still req

changes to the compiler to generate the correct instructions and the processor

would need to be modified and verified, but these changes seem minor compared

changing the issue policy of a processor.

Of the other processor features investigated, the performance gain for pipel

the function units seems anomalous. Pipelining the function units did not have a

impact on performance, even for medium latency operations. Apparently, for latenc

the range we examine, the mix of instructions is such that delays can be filled with o

ations on different function units and the ability to pipeline a single operation is not

ical. Of course, particular cases can benefit from pipelining one or more function u

and the expense of adding pipelining to a function unit may be justified for just such

cial cases.



160

ting

itec-

ance

ich

ance

op

issed

ident

re is

ithm.

dul-

cture

gh a

ightly

ance

hould

piler,

con-

elimi-

rally,

r, the

or-

stan-

1 to

lgo-
The second conclusion to draw form this work is the importance of incorpora

compiler scheduling techniques when studying the performance of computer arch

tures. In the performance data shown in Figure 63, we find substantial perform

improvements for loop unrolling and software pipelining over block scheduling, wh

is to be expected. However, a more interesting result is that the relative perform

ranking of VLIW versus DAE changes with software pipelining versus the other lo

scheduling techniques. This relative performance difference is too large to be dism

easily. If the difference was 1% or 2% this could be considered to be a random acc

of instruction scheduling. However, a relative performance difference of 10% or mo

indicative of a real interaction between these architectures and the scheduling algor

Software pipelining was developed with VLIW architectures and static sche

ing in mind, so it is reasonable to expect a performance improvement on this archite

with this scheduling technique. We also get a performance improvement, althou

very small one, on the superscalar architecture. This seems to be due to a sl

decreased register consumption by the software pipelining algorithm. This perform

difference is small enough to be in the noise level of scheduling, so perhaps we s

not read too much into this.

There are a number of techniques and algorithms employed in the com

other than the loop scheduling algorithms. Code optimization techniques such as

stant propagation, induction variable detection and strength reduction, dead code

nation, register promotion and others all contribute to improved performance. Gene

no single technique used alone will give much performance improvement. Howeve

set of techniques collectively called “loop optimizations” will yield a substantial perf

mance improvement for the type of codes used in this study. These techniques are

dard in optimizing compilers and give performance improvements in the range of

2x. This outweighs the possible performance gain from switching loop scheduling a



161

ng is

t in

our

r, we

rent

ped

tion

ession.

d in

nipu-

ce

sions

ruc-

able.

it is

ited

ftware

nits

the

ling is

its

soft-
rithms, which explains why these techniques are “standard” and software pipelini

not.

One good result of this study is that we have a fairly “low noise” environmen

which to compare hardware features and compiler algorithms. By incorporating

scheduling techniques and machines models into a single base optimizing compile

can compare the results without having to allow for differences caused by using diffe

compilers and methodologies.

In looking at the standard loop optimization techniques, we have develo

some new induction variable manipulations. These manipulations allow induc

expressions formed by nested loops to be treated and manipulated as a single expr

This simplifies the work in the compiler to manipulate nested induction variables an

some cases also yields performance improvements. However, while this type of ma

lation is intellectually interesting, it only rarely yields a significant performan

improvement. Also, the pattern detection necessary to identify induction expres

which can be manipulated tends to be brittle and it is easy to write control flow st

tures which produce induction expressions which are not recognized as manipulat

While software pipelining is not a standard technique in current compilers,

demonstrated in this study to work well, even on an architecture not particularly su

to its particular strengths. The experiments run on the scalar architecture, show so

pipelining slightly outperforming other scheduling techniques, even with function u

with no pipelining and relatively low latency. This advantage is magnified when

latency of the operations being scheduling is increased or static instruction schedu

used, as in the VLIW architecture.

The primary reason for software pipelining’s performance improvement is

ability to merge loop iterations and thus hide instruction latencies. However, the



162

urce

con-

elin-

. The

, both

oftware

y a

ield a

uling

icular

And,

uc-

ing

when

ache

ry and

erfor-

ound

ause

large

wer

care-
ware pipelining algorithm used in this study also seems to be more frugal in its reso

use than other scheduling techniques. In particular, software pipelining tends to

sume fewer registers than loop unrolling. This is an unexpected result. Software pip

ing is supposed to be good at intermixing instructions to hide operation latencies

assumption is that this would be at the expense of consuming additional resources

instruction space and registers. The improved resource use may be because the s

pipelining algorithm used in this work is self limiting. The schedules expand not b

fixed amount, but enough to fill the unused delay slots. This feedback seems to y

balance between resource use and parallelism exploitation.

This does not negate the necessity of exploring other techniques. Sched

techniques such as loop unrolling and trace scheduling each have their own part

benefits and a good compiler will have a repertoire of such techniques available.

while software pipelining works well on loops, it is not extendable to other control str

tures one might to optimize, such as long runs of branching code.

In this study we briefly explore the interaction with the compiler schedul

techniques and the instruction cache. Degenerative cache behavior is possible

using optimization techniques which affect code size and placement. At current c

sizes, i.e. small to moderate size caches, the increasing disparity between memo

processor speeds can magnify this effect to where it can overwhelm any other p

mance improvements.

The effect of the scheduling techniques on cache behavior was generally f

to be small. However, by employing a technique in a careless way, it is possible to c

performance to decrease. This can happen, for example, by unrolling a loop with a

body to the point where it overflows the instruction cache. This can give much lo

performance than no unrolling at all. These optimization techniques do need to be

fully employed to yield good results.



163

etric

mod-

at is

not

ecture

ld be

cture

t this

y and

algo-

d be

n has

builds

type

other

of

rying

be

ated.

first

read

adi-

lable
2  Future Directions

There are a number of directions in which this research can continue. One m

which needs to be explored is the cost function for different architectures/machine

els. The question: “Given a choice between architecture A and architecture B, wh

the cost of these two architectures in terms of cycle time, die area or complexity,” is

easily answered. It is the assumption of this research that if a superscalar archit

and a VLIW architecture have the same performance in term of cycles, then it wou

better to build the VLIW architecture because the reduced complexity of the archite

will lead to a smaller die area and a faster cycle time. It would be interesting to tes

hypothesis by designing a set of architectures using the same process technolog

then measuring the complexity of the design and determining the least cycle time.

There continues to be a need for accurate comparisons between compiler

rithms. There are several competing versions of software pipelining which shoul

examined and compared. The software pipelining algorithm used in this dissertatio

several deficiencies. The algorithm used here is expensive because it iteratively re

the entire schedule until all the scheduling constraints are satisfied. The unrolling

algorithms avoid rebuilding the entire schedule, although they may be expensive in

ways.

The algorithm used here is trying to simultaneously satisfy conflicting sets

constraints. Both resource and timing constraints are checked during scheduling. T

to simultaneously satisfy conflicting constraints is always difficult and should

avoided. It would be much better if scheduling for timing and resources were separ

Also, timing constraints are not well modeled by the rigid schedule used here. The

pass of the software pipelining algorithm should just reorder the loop, trying to sp

operations and fill delays. This is the software pipelining part. After that, a more tr

tional scheduler could place the instructions in a schedule according to avai



164

e that

how

mon

con-

d of

es to

d to

the

ssity

ything

t be

agni-

at are

for

an-

dd-

with

control

slots

uld
resources. This is the approach taken by Jain in [77] and it has the major advantag

it keeps most of parts of a standard compiler intact. It would be interesting to see

these different versions of software pipelining would compare when used in a com

system.

Another area that this research touches on briefly is providing explicit cache

trol. There are two ways in which this relates to the work done here. First, any kin

cache control will inherently be a long latency operation. This means that techniqu

handle operations with long latencies, such as software pipelining, will be neede

effectively schedule cache control.

Multi-issue architectures will both produce the necessity for, and provide

opportunity for explicit cache control. Multi-issue architectures produce the nece

for cache control because they put higher demands on the memory system. Ever

else being equal, multi-issue multiplies the bandwidth at which instructions mus

delivered to the processor. Also, the effect of any delay, including cache stalls, is m

fied in a multi-issue architecture because there are that many more instructions th

not being executed during the delay.

At the same time, multi-issue architectures will provide an opportunity

explicitly controlling the cache because there will be more instruction slots which c

not be filled with other types of operations. Making a wider instruction window or a

ing more branch delay slots means that a lower fraction of these slots can be filled

useful operations. These unusable slots could be used to execute some cache

operations. This would avoid slowing the execution rate, because these would be

which could not be otherwise filled and the explicit cache control instructions wo

potentially speed execution by reducing cache stalls.



165

ed

rtu-

to be

piler

e fea-

d test

here

k good
Part of the idea of building this compiler system is that it would form a test b

in which optimization algorithms could be quickly implemented and tested. Unfo

nately this did not turn out to be the case. Coding the compiler algorithms proved

the most time consuming and difficult part of this research. Implementing the com

algorithms proved to be much harder than designing and debugging the hardwar

tures and analysis tools. We need to construct tools which allow us to describe an

compiler algorithms, particularly in the intermediate and late compilation phases, w

the program objects being manipulated tend to be represented as graphs. We lac

tools for describing graph manipulations and transformations.



166

line

imum

an

er of

hed-

here

tion
APPENDIX

The maximum number of blocks which might be required by a software pipe

schedule on an architecture is an important parameter of the architecture. The max

number of blocks affects the width of the block count field (or conditional bits) in

architecture with hardware supported software pipelining, and indirectly, the numb

registers used during scheduling.

The maximum number of blocks required to construct a software pipeline sc

ule is a function of the amount of parallelism available in the architecture. We show

that the maximum number of blocks for multi-issue, pipelined architectures is a func

of the number of pipe stages in the architecture.

The maximum number of blocks for an architecture with a single function unit:

mii = The Minimum Initiation Interval - minimum time interval before next con-

current loop iteration can be started.

| stages | = The number of pipe stages to do an operation.

| opers | = The number of operations to be executed on the function unit.

length = The length of the loop body in machine cycles.

| blocks | = The length of the loop body in units of MII machine cycles.

mii = | opers |

| blocks | = length / MII

length ≤ | opers | * | stages |

| blocks |≤ [| opers | * | stages |] / mii

≤ [| opers | * | stages |] / | opers |

≤ | stages |



167

chi-

ction
The maximum number of blocks for an architecture with multiple function units:

Assume a VLIW type architecture with a set of N function units: fu1, fu2,..., fun, where

one operation can be issued to each function unit per cycle.

| fu | = The number of function units.

| opersi | = The number of operations in the schedule for function unit i.

| stagesi | =The number of pipe stages in function unit i.

length = The length of the loop body in machine cycles.

| blocks | = The length of the loop body in units of MII machine cycles.

| opers | = The total number of operations to be executed in the loop body.

N = | fu |

| stages | = max | stagesi |,∀i ∈N

mii = max | opersi |,∀i ∈N

mii  1/N

| blocks |≤ [| opers | * | stages |] / mii

≤ [| opers | * | stages |] / max | opersi |

≤ [| opers | * | stages |] / 1/N | opers |

≤ | fu | * | stages |

Conclusion:

The maximum number of blocks which can concurrently execute on this ar

tecture is | fu | * | stages |, where | fu | = number of function units and | stages | = the max-

imum number of pipe stages required to perform an operation on any of the fun

units.



168

ith

,

nta-

er

or

:

360

d

s,
itec-

Exe-
BIBLIOGRAPHY

[1] R. D. Acosta, J. Kjelstrup, H. C. Torng, An Instruction Issuing Approach to
Enhancing Performance in Multiple Functional Unit Processors,IEEE Transac-
tions on ComputersC-35(9), 1986, pp. 815-828.

[2] A. V. Aho, J. D. Ullman,Principles of Compiler Design, Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1977.

[3] A. V. Aho, S. C. Johnson, J. D. Ullman, Code Generation for Expressions w
Common Subexpressions,JACM24(1), 1977, pp. 146-160.

[4] A. V. Aho, R. Sethi, J. D. Ullman,Compilers: Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, 1986.

[5] A. Aiken, A. Nicolau, A Development Environment for Horizontal Microcode
IEEE Transactions on Software Engineering14(5), 1988, pp. 584-594.

[6] A. Aiken, A. Nicolau, Optimal Loop Parallelization,Proceedings of the ACM
SIGPLAN '88 Conference on Programming Language Design and Impleme
tion, 1988, pp. 308-317.

[7] V. H. Allan, B. Su, P. Wijaya, J. Wang, Foresighted Instruction Scheduling Und
Timing Constraints,IEEE Transactions on Computers41(9), 1992, pp. 1169-
1172.

[8] R. Allen, K. Kennedy, Automatic Translation of FORTRAN Programs to Vect
Form,ACM Transactions on Programming Languages and Systems9(4), 1987,
pp. 491-542.

[9] D. W. Anderson, F. J. Sparacio, R. M. Tomasulo, IBM System/360 Model 91
Machine Philosophy and Instruction Handling,IBM Journal of Research and
Development, 1967, pp. 8-24.

[10] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, D. M. Powers, IBM System/
Model 91: Floating-Point Execution Unit,IBM Journal of Research and Devel-
opment, 1967, pp. 34-53.

[11] M. Annaratone, et al., The Warp Computer: Architecture, Implementation an
Performance,IEEE Transactions on ComputersC-36, 1987, pp. 1523-1537.

[12] T. M. Austin, G. S. Sohi, Dynamic Dependency Analysis of Ordinary Program
Proceedings of the 19th Annual International Symposium on Computer Arch
ture, 1992, vol. 20, pp. 342-351.

[13] M. E. Benitez, J. W. Davidson, Code Generation for Streaming: an Access/



169

i-

ith a

il-
n-

ess
er

of

d
-
g

gis-
-

,
itec-

ng
cute Mechanism,Proceedings of the Fourth International Conference on Arch
tectural Support for Programming Languages and Operating Systems,1991, vol.
19, pp. 132-141.

[14] D. Bernstein, I. Gartner, Scheduling Expressions on a Pipelined Processor w
Maximal Delay of One Cycle,JACM11(1), 1989, pp. 57-66.

[15] D. Bernstein, et al., Spill code minimization techniques for optimizing comp
ers,Proceedings of the ACM SIGPLAN '89 Conference on Programming La
guage Design and Implementation, 1989, pp. 258-263.

[16] F. Boeri, M. Auguin, OPSILA: A Vector and Parallel Processor,IEEE Transac-
tions on Computers42(1), 1993, pp. 76-82.

[17] L. J. Boland, G. D. Granito, A. U. Marcotte, B. U. Messina, J. W. Smith, IBM
System/360 Model 91: Storage System,IBM Journal of Research and Develop-
ment, 1967, pp. 54-68.

[18] A. Borg, R. E. Kessler, D. W. Wall, Generation and analysis of very long addr
traces,Proceedings of the 17th Annual International Symposium on Comput
Architecture, 1990, pp. 270-279.

[19] D. G. Bradlee, S. J. Eggers, R. R. Henry, The Effect on RISC Performance 
Register Set Size and Structure Versus Code Generation Strategy,Proceedings of
the 18th Annual International Symposium on Computer Architecture, 1991, vol.
19, pp. 330-339.

[20] D. G. Bradlee, S. J. Eggers, R. R. Henry, Integrating Register Allocation an
Instruction Scheduling for RISCs,Proceedings of the Fourth International Con
ference on Architectural Support for Programming Languages and Operatin
Systems, 1991, vol. 19, pp. 122-131.

[21] P. Briggs, K. D. Cooper, K. Kennedy, L. Torczon, Coloring Heuristics for Re
ter Allocation,Proceedings of the ACM SIGPLAN '89 Conference on Program
ming Language Design and Implementation, 1989, pp. 275-284.

[22] M. Butler, et al., Single Instructions Stream Parallelism Is Greater than Two
Proceedings of the 18th Annual International Symposium on Computer Arch
ture, 1991, vol. 19, pp. 276-286.

[23] D. Callahan, K. Kennedy, A. Porterfield, Software Prefetching,Proceedings of
the Fourth International Conference on Architectural Support for Programmi
Languages and Operating Systems, 1991, vol. 19, pp. 40-52.

[24] G. J. Chaitin, Register Allocation and Spilling Via Graph Coloring,ACM SIG-
PLAN Notice17(6), 1982, pp. .



170

T:

,

ec-

-

hi-

e-
n

ure,

g

ter

s-

ffs
[25] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, W.-M. W. Hwu, IMPAC
An Architectural Framework for Multiple-Instruction-Issue Processors,Proceed-
ings of the 18th Annual International Symposium on Computer Architecture
1991, vol. 19, pp. 266-275.

[26] A. E. Charlesworth, "An Approach to Scientific Array Processing: The Archit
tural Design of the AP-120B/FPS-164 Family,"IEEE Computer, September
1981, pp. 18-27.

[27] W. Y. Chen, S. A. Mahlke, W.-m. W. Hwu, Tolerating First Level Memory
Access Latency in High-Performance Systems,Proceedings of the 1992 Interna
tional Conference on Parallel Processing, 1992, vol. II, pp. I-37-II-43.

[28] T.-F. Chen, J.-L. Baer, Reducing Memory Latency via Non-blocking and
Prefetching Caches,Proceedings of the Fifth International Conference on Arc
tectural Support for Programming Languages and Operating Systems,1992, vol.
20, pp. 51-61.

[29] C.-H. Chi, H. Dietz, Unified Management of Registers and Cache Using Liv
ness and Cache Bypass,Proceedings of the ACM SIGPLAN '89 Conference o
Programming Language Design and Implementation,1989, vol. 21, pp. 344-355.

[30] T.-c. Chiueh, Multi-Threaded Vectorization,Proceedings of the 18th Annual
International Symposium on Computer Architecture, 1991, vol. 19, pp. 352-361.

[31] P. Chow, M. Horowitz, Architectural Tradeoffs in the Design of MIPS-X,Pro-
ceedings of the 14th Annual International Symposium on Computer Architect
1987, pp. 300-308.

[32] F. Chow, S. Correll, M. Himelstein, E. Killian, L. Weber, How Many Addressin
Modes are Enough?,Proceedings of the Second International Conference on
Architectural Support for Programming Languages and Operating Systems,
1987, pp. 117-121.

[33] F. C. Chow, J. L. Hennessy, The Priority-Based Coloring Approach to Regis
Allocation,ACM Transactions on Programming Languages and Systems12(4),
1990, pp. 501-536.

[34] E. U. Cohler, J. E. Storer, "Functionally Parallel Architecture for Array Proce
sors,"IEEE Computer, September 1981, pp. 28-36.

[35] R. Cohn, T. Gross, M. Lam, P. S. Tseng, Architecture and Compiler Tradeo
for a Long Instruction Word Microprocessor,Proceedings of the Third Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, 1989, vol. 17, pp. 2-14.



171

-
nd

or

-

am
-
g

a 5,
for

ck
ing

ets,
itec-

ut
[36] R. P. Colwell, R. P. Nix, J. J. O'Donnel, D. B. Papworth, P. K. Rodman, A VLIW
Architecture for a Trace Scheduling Compiler,Proceedings of the Second Inter
national Conference on Architectural Support for Programming Languages a
Operating Systems, 1987, pp. 180-192.

[37] R. P. Colwell, R. P. Nix, J. J. O'Donnel, D. B. Papworth, P. K. Rodman, A VLIW
Architecture for a Trace Scheduling Compiler,IEEE Transactions on Computers
37(8), 1988, pp. 967-979.

[38] R. P. Cook, M. Donde, An Experiment to Improve Operand Addressing,Pro-
ceedings of the Second International Conference on Architectural Support f
Programming Languages and Operating Systems, 1987, pp. 87-91.

[39] G. Cybenko, L. Kipp, L. Pointer, D. Kuck,Supercomputer Performance Evalua
tion and the Perfect Benchmarks,University of Illinois, CSRD Report No. 965,
March 1990.

[40] J. Davidson, R. Vaughan, The Effect of Instruction Set Complexity on Progr
Size and Memory Performance.,Proceedings of the Second International Con
ference on Architectural Support for Programming Languages and Operatin
Systems, 1987, pp. 60-64.

[41] J. W. Davidson, J. R. Rabung, D. B. Whalley, Relating Static and Dynamic
Machine Code Measurements,IEEE Transactions on Computers41(4), 1992,
pp. 444-454.

[42] J. C. Dehnert, P. Y.-T. Hsu, J. P. Bratt, Overlapped Loop Support in the Cydr
Proceedings of the Third International Conference on Architectural Support 
Programming Languages and Operating Systems, 1989, vol. 17, pp. 26-38.

[43] D. R. Ditzel, H. R. McLellan, Register allocation for free: The C machine sta
cache,Proceedings of the Symposium on Architectural Support for Programm
Languages and Operating Systems, 1982, vol. 10, pp. 48-56.

[44] R. J. Eickemeyer, J. H. Patel, Performance Evaluation of Multiple Register S
Proceedings of the 14th Annual International Symposium on Computer Arch
ture, 1987, pp. 264-271.

[45] C. Eisenbeis, W. Jalby, A. Lichnewsky, Squeezing More Cpu Performance O
of a Cray-2 by Vector Block Scheduling,Proceedings of Supercomputing '88,
1988, pp. 237-246.

[46] J. R. Ellis,Bulldog: A Compiler for VLIW Architectures, ACM Doctoral Disser-
tation Award, The MIT Press, 1985.

[47] M. K. Farrens, A. R. Pleszkun, Implementation of the PIPE processor,Proceed-



172

,

or-

h and

n,

m

x

hing

g

d
r

ings of the 16th Annual International Symposium on Computer Architecture
1989, vol. 17, pp. 65-70.

[48] M. K. Farrens,The Design and Analysis of a High-Performance Single-Chip
Processor, PhD Thesis, University of Wisconsin at Madison, 1989.

[49] M. K. Farrens, A. R. Pleszkun, "Implementation of the PIPE processor,"IEEE
Computer, January 1991, pp. 65-70.

[50] E. S. T. Fernandes, F. M. B. Barbosa, Effects of Building Blocks on the Perf
mance of Super-Scalar Architectures,Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture, 1992, vol. 20, pp. 36-45.

[51] J. Ferrante, K. J. Ottenstein, J. D. Warren, The Program Dependence Grap
Its Use in Optimization,ACM Transactions on Programming Languages and
Systems9(3), 1987, pp. 319-349.

[52] J. A. Fisher, Trace scheduling: A technique for global microcode compactio
IEEE Transactions on ComputersC-30(7), 1981, pp. 478-490.

[53] J. A. Fisher, The VLIW Machine: A Multiprocessor for Compiling Scientific
Code,IEEE Computer17(7), 1984, pp. 45-53.

[54] R. W. Floyd, Algorithm 97: Shortest Path,Communications of the ACM5(6),
1962, pp. 345.

[55] M. J. Flynn, P. R. Low, IBM System/360 Model 91: Some Remarks on Syste
Development,IBM Journal of Research and Development, 1967, pp. 2-7.

[56] M. J. Flynn, Some Computer Organizations and Their Effectiveness,IEEE
Transactions on ComputersC-21(9), 1972, pp. 948-960.

[57] M. J. Flynn, C. L. Mitchell, J. M. Mulder, "And now a Case for More Comple
Instruction Sets,"IEEE Computer, September 1987, pp. 71-83.

[58] C. C. Foster, E. M. Riseman, Percolation of code to enhance parallel dispatc
and execution,IEEE Transactions on ComputersC-21(12), 1972, pp. 1411-
1415.

[59] M. Franklin, G. S. Sohi, The Expandable Split Window Paradigm for Exploitin
Find-Grain Parallelism,Proceedings of the 19th Annual International Sympo-
sium on Computer Architecture, 1992, vol. 20, pp. 58-67.

[60] P. B. Gibbons, S. S. Muchnick, Efficient Instruction Scheduling for a pipeline
architecture,Proceedings of the ACM SIGPLAN '86 Symposium on Compile
Construction, 1986, pp. 11-16.

[61] J. R. Goodman, W.-C. Hsu, On the Use of Registers vs. Cache to Minimize



173

,
art-

hi-

c-
-

re
Memory Traffic,Proceedings of the 13th Annual International Symposium on
Computer Architecture, 1986, pp. 375-383.

[62] G. L. Graig, et al.,PIPE: A High Performance VLSI Processor Implementation
Computer Sciences Department, Electrical and Computer Engineering Dep
ment, University of Wisconsin-Madison,  Technical Report 1984.

[63] T. Gross, M. S. Lam, Compilation for a High-Performance Systolic Array,Pro-
ceedings of the ACM SIGPLAN '86 Symposium on Compiler Construction,1986,
pp. 27-38.

[64] R. Gupta, M. L. Soffa, T. Steele, Register Allocation Via Clique Separators,Pro-
ceedings of the ACM SIGPLAN '89 Conference on Programming Language
Design and Implementation, 1989, pp. 264-274.

[65] M. S. Hecht,Flow Analysis of Computer Programs, T. E. Cheatham (Ed.), Pro-
gramming Languages Series, Elsevier North-Holland, New York, New York,
1977.

[66] J. Hennessy, N. Jouppi, F. Baskett, T. Gross, J. Gill, Hardware/Software
Tradeoffs for Increased Performance,Proceedings of the Symposium on Archi-
tectural Support for Programming Languages and Operating Systems,1982, vol.
10, pp. 2-11.

[67] J. L. Hennessy, D. A. Patterson,Computer Architecture A Quantitative
Approach, Morgan Kaufman Publishers, Inc., San Mateo, California, 1990.

[68] J. L. Hennessy, N. P. Jouppi, "Computer Technology and Architecture: An
Evolving Interaction,"IEEE Computer, September 1991, pp. 18-29.

[69] M. D. Hill, A Case for Direct-Mapped Caches,IEEE Computer21(12), 1988,
pp. 25-40.

[70] W.-m. Hwu, Y. N. Patt, HPSm, a High Performance Restricted Data Flow Arc
tecture Having Minimal Functionality,Proceedings of the 13th Annual Interna-
tional Symposium on Computer Architecture, 1986, pp. 297-306.

[71] W.-m. W. Hwu, P. P. Chang, Exploiting Parallel Microprocessor Microarchite
tures with a Compiler Code Generator,Proceedings of the 15th Annual Interna
tional Symposium on Computer Architecture, 1988, pp. 45-53.

[72] W.-M. W. Hwu, T. M. Conte, P. P. Chang, Comparing Software and Hardwa
Schemes For Reducing the Cost of Branches,Proceedings of the 16th Annual
International Symposium on Computer Architecture, 1989, vol. 17, pp. 224-233.

[73] W.-m. W. Hwu, P. P. Chang, Achieving High Instruction Cache Performance
with an Optimizing Compiler,Proceedings of the 16th Annual International



174

tic
-

et

, R.
o-

lar

ys-

f a

I

m-
Symposium on Computer Architecture, 1989, vol. 17, .

[74] W.-m. W. Hwu, P. P. Chang, Inline Function Expansion for Compiling Realis
C Programs,Proceedings of the ACM SIGPLAN '89 Conference on Program
ming Language Design and Implementation, 1989, pp. 246-257.

[75] W.-m. W. Hwu, P. P. Chang, Efficient Instruction Sequencing with Inline Targ
Insertion, 41(12), 1992, pp. 1537-1551.

[76] IBM, IBM RISC System/6000 Technology,  IBM Corporation,  Technical Report
SA23-2619, 1990.

[77] S. Jain, Circular scheduling: A new technique to perform software pipelining.
L. Wexelblats (Ed.),Proceedings of the ACM SIGPLAN '91 Conference on Pr
gramming Language Design and Implementation, 1991, vol. 26, pp. 219-228.

[78] M. S. Johnson, T. C. Miller, Effectiveness of a Machine-Level, Global Opti-
mizer,Proceedings of the ACM SIGPLAN '86 Symposium on Compiler Con-
struction, 1986, pp. 99-108.

[79] W. M. Johnson,Superscalar Microprocessor Design, Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1991.

[80] N. P. Jouppi, D. W. Wall, Available Instruction-Level Parallelism for Supersca
and Superpipelined Machines,Proceedings of the Third International Confer-
ence on Architectural Support for Programming Languages and Operating S
tems, 1989, vol. 17, pp. 272-282.

[81] N. P. Jouppi, The Nonuniform Distribution of Instruction-Level and Machine
Parallelism and Its Effect on Performance,IEEE Transactions on Computers
38(12), 1989, pp. 1645-1658.

[82] N. P. Jouppi, Improving Direct-Mapped Cache Performance by the Addition o
Small Fully-Associative Cache and Prefetch BUffers,Proceedings of the 17th
Annual International Symposium on Computer Architecture, 1990, vol. 18, pp.
364-373.

[83] G. Kane,MIPS RISC Architecture, Prentice-Hall, Inc., Englewood Cliffs, 1988.

[84] M. G. H. Katevenis,Reduced Instruction Set Computer Architectures for VLS,
ACM Doctoral Dissertation Award, The MIT Press, 1984.

[85] A. C. Klaiber, H. M. Levy, An Architecture for Software-Controlled Data
Prefetching,Proceedings of the 18th Annual International Symposium on Co
puter Architecture, 1991, vol. 19, pp. 43-53.

[86] D. E. Knuth, An Empirical Study of Fortran Programs,Software Practice and
Exterience 1, 1971, pp. 105-133.



175

,

-

er-

-

[87] P. M. Kogge, The Microprogramming of Pipelined Processors,Proceedings of
the 4th Annual Symposium on Computer Architecture, 1977, pp. 63-69.

[88] R. F. Krick, A. Dollas, "The Evolution of Instruction Sequencing,"IEEE Com-
puter, April 1991, pp. 5-15.

[89] D. Kroft, Lockup-free instruction fetch/prefetch cache organization,Proceedings
of the 8th Annual Symposium on Computer Architecture, 1981, vol. 9, pp. 81-97.

[90] D. J. Kuck, Y. Muraoka, S.-C. Chen, On the Number of Operations Simulta-
neously Executable in Fortran-Like Programs and Their Resulting Speedup
IEEE Transactions on ComputersC-21(12), 1972, pp. 1293-1310.

[91] D. J. Kuck, et al., "Measurements of Parallelism in Ordinary FORTRAN Pro
grams,"IEEE Computer, January 1974, pp. 37-46.

[92] M. Kumar, Measuring Parallelism in Computation-Intensive Scientific/Engine
ing Applications,IEEE Transactions on ComputersC-37(9), 1988, pp. 1088-
1098.

[93] S. R. Kunkel, J. E. Smith, Optimal Pipelining in Supercomputers,Proceedings of
the 13th Annual International Symposium on Computer Architecture, 1986, pp.
404-411.

[94] L. Kurian, P. T. Hulina, L. D. Coraor, D. N. Mannai, Classification and Perfor
mance Evaluation of Instruction Buffering Techniques,Proceedings of the 18th
Annual International Symposium on Computer Architecture, 1991, vol. 19, pp.
150-159.

[95] L. Kurian, P. T. Hulina, L. D. Coraor, Memory Latency Effects in Decoupled
Architectures with a Single Data Memory Module,Proceedings of the 19th
Annual International Symposium on Computer Architecture, 1992, vol. 20, pp.
236-245.

[96] J. Lah, D. E. Atkins, Tree compaction of microprograms,Proceedings of the
16th Annual Workshop on Microprogramming, 1983, pp. 22-33.

[97] M. Laird, A Comparison of Three Current Superscalar Designs,Computer
Architecture News20(3), 1992, pp. 14-21.

[98] M. S.-L. Lam,A Systolic Array Optimizing Compiler, Ph. D., Carnegie Mellon
University, 1987.

[99] M. Lam, Software Pipelining: An Effective Scheduling Technique for VLIW
Machines, R. L. Wexelblats (Ed.),Proceedings of the ACM SIGPLAN '88 Con-
ference on Programming Language Design and Implementation, 1988, vol. 23,
pp. 318-328.



176

-

er-
n

ase
p

-4,

ng,
itec-

el

es

y

for

ys-
[100] M. S. Lam, R. P. Wilson, Limits of Control Flow on Parallelism,Proceedings of
the 19th Annual International Symposium on Computer Architecture, 1992, vol.
20, pp. 46-57.

[101] B. W. Lampson, Fast Procedure Calls,Proceedings of the Symposium on Archi
tectural Support for Programming Languages and Operating Systems,1982, vol.
10, pp. 66-76.

[102] R. L. Lee, A. Y. Kwok, F. A. Briggs, The Floating Point Performance of a Sup
scalar SPARC Processor,Proceedings of the Fourth International Conference o
Architectural Support for Programming Languages and Operating Systems,
1991, vol. 19, pp. 28-37.

[103] D. J. Lilja, "Reducing the Branch Penalty in Pipelined Processors,"IEEE Com-
puter, July 1988, pp. 47-55.

[104] J. L. Linn, SRDAG compaction: A generalization of trace scheduling to incre
the use of global context information,Proceedings of the 16th Annual Worksho
on Microprogramming, 1983, pp. 11-22.

[105] C. E. Love,An Investigation of Static Versus Dynamic Scheduling,Master's The-
sis, University of Colorado at Boulder, 1989.

[106] C. E. Love,The Decoupled And VLIW Architecture Simulator Code,Department
of Electrical Engineering, University of Colorado,  Internal Report CSDG 89
May 1989.

[107] C. E. Love, H. F. Jordan, An Investigation of Static Versus Dynamic Scheduli
Proceedings of the 17th Annual International Symposium on Computer Arch
ture, 1990, vol. 18, pp. 192-201.

[108] S. A. Mahlke, W. Y. Chen, W.-M. W. Hwu, B. R. Rau, M. S. Schlansker, Sentin
Scheduling for VLIW and Superscalar Processors,Proceedings of the Fifth
International Conference on Architectural Support for Programming Languag
and Operating Systems, 1992, vol. 20, pp. 238-247.

[109] W. Mangione-Smith, S. G. Abraham, E. S. Davidson, The Effects of Memor
Latency and Fine-Grain Parallelism on Astronautics ZS-1 Performance,Pro-
ceedings of the 23rd Hawaii International Conference on System Sciences,1990,
pp. 288-296.

[110] W. Mangione-Smith, S. G. Abraham, E. S. Davidson, Vector Register Design
Polycyclic Vector Scheduling,Proceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating S
tems, 1991, vol. 19, pp. 154-163.



177

m-

er-
l

ion
-

e,
for

o-
[111] W. M. Mangione-Smith, S. G. Abraham, E. S. Davidson, "A performance co
parison of the IBM RS/6000 and the Astronautics ZS-1,"IEEE Computer, Janu-
ary 1991, pp. 39-46.

[112] S. McFarling, J. Hennessy, Reducing the Cost of Branches,Proceedings of the
13th Annual International Symposium on Computer Architecture, 1986, pp. 396-
403.

[113] F. H. McMahon,The Livermore Fortran Kernels: A Computer Test of the Num
ical Performance Range,  Lawrence Livermore National Laboratory,  Technica
UCRL-53745, December 1986.

[114] S. Melvin, Y. Patt, Exploiting Fine-Grained Parallelism Through a Combinat
of Hardware and Software Techniques,Proceedings of the 18th Annual Interna
tional Symposium on Computer Architecture, 1991, vol. 19, pp. 287-296.

[115] C. L. Mitchell,Processor Architecture and Cache Performance, PhD, Stanford
University, 1986.

[116] J. C. Mogul, A. Borg, The Effect of Context Switches on Cache Performanc
Proceedings of the Fourth International Conference on Architectural Support
Programming Languages and Operating Systems, 1991, vol. 19, pp. 75-84.

[117] Motorola,MC 88100 RISC Microprocessor User's Manual, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1989.

[118] T. C. Mowry, M. S. Lam, A. Gupta, Design and Evaluation of a Compiler Alg
rithm for Prefetching,Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems,
1992, vol. 20, pp. 62-75.

[119] T. N. Mudge, et al., "The Design of a Microsupercomputer,"IEEE Computer,
January 1991, pp. 57-64.

[120] T. N. Mudge, et al., The Design of a GaAs Micro-Supercomputer,Proceedings
of the Hawaii International Conference on System Sciences, 1991, vol. 1, pp.
421-432.

[121] H. Mulder, Data Buffering: Run-time versus Compile-time Support,SIGPLAN
Notices24(5), 1989, pp. 144-151.

[122] H. Mulder, M. J. Flynn, Processor Architecture and Data Buffering,IEEE Trans-
actions on Computers41(10), 1992, pp. 1211-1222.

[123] MultiFlow, Technical Summary,  MULTIFLOW Computer, Inc.,  Technical
Report June 1987.

[124] K. Murakami, N. Irie, M. Kuga, S. Tomita, SIMP (Single Instruction Stream/



178

i-
ter

ure,

for

lti-
er,

h-

es,
on

rs,

a-
on

ion
re,
Multiple Instruction Pipelining): A Novel High-Speed Single-Processor Arch
tecture,Proceedings of the 16th Annual International Symposium on Compu
Architecture, 1989, vol. 17, pp. 78-85.

[125] D. Nagle,Floating Point Simulation for the GaAs Micro-Supercomputer,  The
University of Michigan,  Internal Research Report September 1990.

[126] A. Nicolau, J. A. Fisher, Measuring the Parallelism Available for Very Long
Instruction Word Architectures,IEEE Transactions on ComputersC-33(11),
1984, pp. 968-976.

[127] A. Nicolau,Parallelism, Memory Anti-aliasing and Correctness Issues for a
Trace-Scheduling Compiler, PhD, Yale University, 1984.

[128] R. S. Nikhil, Arvind, Can Dataflow Subsume von Neumann Computing,Pro-
ceedings of the 16th Annual International Symposium on Computer Architect
1989, vol. 17, pp. 262-272.

[129] S. Novack, A. Nicolau, An Efficient Global Resource Constrained Technique
Exploiting Instruction Level Parallelism,Proceedings of the 1992 International
Conference on Parallel Processing, 1992, vol. II, pp. II-297-II-301.

[130] O. A. Olukotun, R. B. Brown, R. J. Lomax, T. N. Mudge, K. A. Sakallah, Mu
level Optimization in the Design of a High-Performance GaAs Microcomput
IEEE Journal of Solid-State Circuits26(5), 1990, pp. 763-767.

[131] O. A. Olukotun,Technology-Organization Tradeoffs in the Architecture of a
High Performance Processor, PhD, The University of Michigan, 1991.

[132] O. A. Olukotun, T. N. Mudge, R. B. Brown, Implementing a Cache for a Hig
Performance GaAs Microprocessor, Z. Vranesics (Ed.),Proceedings of the 18th
Annual International Symposium on Computer Architecture, 1991, vol. 19, pp.
138-147.

[133] K. Olukotun, T. Mudge, Performance Optimization of Pipelined Primary Cach
A. Gottliebs (Ed.),Proceedings of the 19th Annual International Symposium 
Computer Architecture, 1992, vol. 20, pp. 181-190.

[134] D. A. Padua, M. J. Wolfe, Advanced compiler optimizations for supercompute
Communications of the ACM29(12), 1986, pp. 1184-1201.

[135] G. M. Papadopoulos, K. R. Traub, Multithreading: A Revisionist View of Dat
flow Architectures,Proceedings of the 18th Annual International Symposium
Computer Architecture, 1991, vol. 19, pp. 342-351.

[136] J. H. Patel, E. S. Davidson, Improving the Throughput of a Pipeline by Insert
of Delays,Proceedings of the 3rd Annual Symposium on Computer Architectu



179

al

ro-
ter

edula-

tal

ner-

sm,
llel

,

nd
,

1976, pp. 159-164.

[137] A. Pleszkun, et al., WISQ: A restartable architecture using queues,Proceedings
of the 14th Annual International Symposium on Computer Architecture, 1987,
pp. 290-299.

[138] A. R. Pleszkun, G. S. Sohi, The Performance Potential of Multiple Function
Unit Processors,Proceedings of the 15th Annual International Symposium on
Computer Architecture, 1988, pp. 37-44.

[139] D. J. Quammen, D. R. Miller, Flexible Register Management for Sequential P
grams,Proceedings of the 18th Annual International Symposium on Compu
Architecture, 1991, vol. 19, pp. 320-329.

[140] G. Radin, The 801 Minicomputer,Proceedings of the Symposium on Architec-
tural Support for Programming Languages and Operating Systems, 1982, vol.
10, pp. 39-47.

[141] B. R. Rau, C. D. Glaeser, Some Scheduling Techniques and an Easily Sch
ble Horizontal Architecture for High Performance Scientific Computing,Pro-
ceedings of the 14th Annual Workshop on Microprogramming, 1981, pp. 183-
198.

[142] B. R. Rau, C. D. Glaeser, R. L. Picard, Efficient Code Generation for Horizon
Architectures: Compiler Techniques and Architectural Support,Proceedings of
the 9th Annual Symposium on Computer Architecture, 1982, vol. 10, pp. 131-
139.

[143] B. Rau, D. Glaeser, E. Greenwalt, Architectural Support for the Efficient Ge
ation of Code for Horizontal Architectures,Proceedings of the Symposium on
Architectural Support for Programming Languages and Operating Systems,
1982, vol. 10, pp. 96-99.

[144] B. R. Rau, D. W. L. Yen, W. Yen, R. A. Towle, "The Cydra 5 Departmental
Supercomputer,"IEEE Computer, 1989, pp. 12-35.

[145] B. R. Rau, Data flow and Dependence analysis for instruction level paralleli
Proceedings of the Fourth Workshop on Languages and Compilers for Para
Computing, 1991, .

[146] R. B. Rau, Pseudo-Randomly Interleaved Memory, Z. Vranesics (Ed.),Proceed-
ings of the 18th Annual International Symposium on Computer Architecture
1991, vol. 19, pp. 74-83.

[147] B. R. Rau, e. al.,Code Generation Schema for Modulo Scheduled DO-Loops a
WHILE-Loops,  Hewlett-Packard Laboratories,  Technical Report HPL-92-47



180

i-

n-

r

ure

-
nd

s-

,
for
1992.

[148] B. R. Rau, M. Lee, P. P. Tirumalai, M. S. Schlansker,Register Allocation for
Modulo Scheduled Loops: Strategies, Algorithms and Heuristics,  Hewlett-Pack-
ard Laboratories,  Technical Report HPL-92-48, April 1992.

[149] B. R. Rau, M. Lee, P. P. Tirumalai, M. S. Schlansker, Register Allocation for
Software Pipelined Loops, R. L. Wexelblats (Ed.),Proceedings of the SIGPLAN
'92 Conference on Programming Language Design and Implementation, 1992,
vol. 27, pp. 283-299.

[150] E. M. Riseman, C. C. Foster, The Inhibition of Potential Parallelism by Cond
tion Jumps,IEEE Transactions on ComputersC-21(12), 1972, pp. 1405-1411.

[151] A. Rogers, K. Li, Software Support for Speculative Loads,Proceedings of the
Fifth International Conference on Architectural Support for Programming La
guages and Operating Systems, 1992, vol. 20, pp. 38-50.

[152] D. A. Schwartz,Synchronous Multiprocessor Realizations of Shift-Invariant
Flow Graphs, PhD, Georgia Institute of Technology, 1985.

[153] A. J. Smith, Cache Memories,ACM Computing Surverys4(3), 1982, pp. 473-
530.

[154] J. E. Smith, Decoupled Access/Execute Computer Architectures,Proceedings of
the 9th Annual Symposium on Computer Architecture, 1982, pp. 112-119.

[155] J. E. Smith, T. J. Kaminski, Varieties of decoupled access/execute compute
architectures,Proceedings of the 20th Allerton Conference, 1982, pp. 577-586.

[156] J. E. Smith, Decoupled Access/Execute Computer Architectures,ACM Transac-
tions on Computer Systems2(4), 1984, pp. 289-308.

[157] J. E. Smith, S. Weiss, H. Y. Pang, A Simulation Study of Decoupled Architect
Computers,IEEE Transactions on ComputersC-35(8), 1986, pp. 692-702.

[158] J. E. Smith, et al., The ZS-1 Central Processor,Proceedings of the Second Inter
national Conference on Architectural Support for Programming Languages a
Operating Systems, 1987, pp. 199-204.

[159] J. E. Smith, S. D. Klinger,Performance of the Astronautics ZS-1 Central Proce
sor,  Astronautics Corporation of America,  Internal Report March 1988.

[160] J. E. Smith, "Dynamic Instruction Scheduling and the Astronautics ZS-1,"IEEE
Computer, July 1989, pp. 21-35.

[161] M. D. Smith, M. Johnson, M. A. Horowitz, Limits on Multiple Instruction Issue
Proceedings of the Third International Conference on Architectural Support 



181

in
-

i-

er-

tal
-

lar
al

0.

ce,
itec-

 on
Programming Languages and Operating Systems, 1989, vol. 17, pp. 290-302.

[162] M. D. Smith, M. S. Lam, M. A. Horowitz, Boosting Beyond Static Scheduling
a Superscalar Processor,Proceedings of the 17th Annual International Sympo
sium on Computer Architecture, 1990, vol. 18, pp. 345-353.

[163] M. D. Smith,Tracing with pixie,  Stanford University,  Technical April 4 1991.

[164] M. D. Smith, M. Horowitz, M. S. Lam, Efficient Superscalar Performance
Through Boosting,Proceedings of the Fifth International Conference on Arch
tectural Support for Programming Languages and Operating Systems,1992, vol.
20, pp. 248-261.

[165] K. So, V. Zecca, Cache Performance of Vector Processors,Proceedings of the
15th Annual International Symposium on Computer Architecture, 1988, pp. 261-
268.

[166] G. S. Sohi, S. Vajapeyam, Instruction Issue Logic for High-Performance Int
ruptible Pipelined Processors,Proceedings of the 14th Annual International
Symposium on Computer Architecture, 1987, pp. 27-34.

[167] G. S. Sohi, S. Vajapeyam, Tradeoffs in Instruction Format Design for Horizon
Architectures,Proceedings of the Third International Conference on Architec
tural Support for Programming Languages and Operating Systems, 1989, vol.
17, pp. 15-25.

[168] G. S. Sohi, M. Franklin, High-Bandwidth Data Memory Systems for Supersca
Processors,Proceedings of the Fourth International Conference on Architectur
Support for Programming Languages and Operating Systems,1991, vol. 19, pp.
53-62.

[169] G. S. Sohi, High-Bandwidth Interleaved Memories for Vector Processors--A
Simulation Study,IEEE Transactions on Computers42(1), 1993, pp. 76-82.

[170] R. Stallman,Using and Porting GNU CC, Free Software Foundation, Inc., 199

[171] P. Steenkiste, The Impact of Code Density on Instruction Cache Performan
Proceedings of the 16th Annual International Symposium on Computer Arch
ture, 1989, vol. 17, pp. 252-259.

[172] H. S. Stone, J. Cocke, "Computer Architecture in the 1990s,"IEEE Computer,
September 1991, pp. 30-38.

[173] J.-h. Tang, E. Davidson, J. Tong, Polycyclic Vector Scheduling vs. Chaining
1-Port Vector Supercomputers,Proceedings of the 1988 International Confer-
ence on Supercomputing, 1988, pp. 122-129.

[174] Thornton, Parallel Operation in the Control Data 6600,AFIPS Proceedings



182

tri-

rs,

tic

s-

P

n-
n-
g

FJCC, part 2, 1964, vol. 26, pp. 33-40.

[175] J. E. Thornton,Design of a Computer -- The Control Data 6600, Scott, Fores-
mann and Co., Glenview, Ill., 1970.

[176] P. Tirumalai, M. Lee, M. S. Schlansker, Parallelization of loops with exits on
pipelined architectures,Proceedings of the 1990 International Conference on
Supercomputing, 1990, pp. 200-212.

[177] G. S. Tjaden, M. J. Flynn, Detection and Parallel Execution of Independent
Instructions,IEEE Transactions on ComputersC-19(10), 1970, pp. 889-895.

[178] G. S. Tjaden, M. J. Flynn, Representation of Concurrency with Ordering Ma
ces,IEEE Transactions on ComputersC-22(8), 1973, pp. 752-761.

[179] R. M. Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic
Units, IBM Journal of Research and Development11(1), 1967, pp. 25-33.

[180] H. C. Torng, M. Day, Interrupt Handling for Out-or-Order Execution Processo
IEEE Transactions on Computers42(1), 1993, pp. 122-127.

[181] R. F. Touzeau, A Fortran Compiler for the FPS-164 Scientific Computer,Pro-
ceedings of the ACM SIGPLAN '84 Conference on Programming Language
Design and Implementation, 1984, pp. 48-57.

[182] A. K. Uht, Concurrency Extraction via Hardware Methods Executing the Sta
Instruction Stream,IEEE Transactions on Computers41(7), 1992, pp. 826-841.

[183] A. K. Uht, Requirements for Optimal Execution of Loops with Tests,IEEE
Transactions on Parallel and Distributed Systems3(3), 1992, pp. 573-581.

[184] J. Uniejewski, SPEC Benchmark Suite: Designed for Today's Advanced Sy
tems,SPEC Newsletter(Fall), 1989

[185] M. Upton, T. Huff, T. Mudge, R. Brown, Resource Allocation in a High Clock
Rate Microprocessor, preprint.

[186] S. Vajapeyam, G. S. Sohi, W.-C. Hsu, An Empirical Study of the CRAY Y-M
Processor using the PERFECT Club Benchmarks,Proceedings of the 18th
Annual International Symposium on Computer Architecture, 1991, vol. 19, pp.
170-179.

[187] S. Vassiliadis, B. Blaner, R. J. Eickemeyer, On the Attributes of the SCISM
Organization,Computer Architecture News20(4), 1992, pp. 44-53.

[188] D. W. Wall, M. L. Powell, The Mahler Experience: Using an Intermediate La
guage as the Machine Description,Proceedings of the Second International Co
ference on Architectural Support for Programming Languages and Operatin



183

es

ed
hi-

xe-
-

Systems, 1987, pp. 100-104.

[189] D. W. Wall, Limits of Instructional-Level Parallelism,Proceedings of the Fourth
International Conference on Architectural Support for Programming Languag
and Operating Systems, 1991, vol. 19, pp. 176-188.

[190] S. Weiss, J. E. Smith, Instruction Issue Logic in Pipelined Supercomputers,IEEE
Transactions on ComputersC-33, 1984, pp. 1013-1022.

[191] S. Weiss, J. E. Smith, A Study of Scalar Compilation Techniques for Pipelin
Supercomputers,Proceedings of the Second International Conference on Arc
tectural Support for Programming Languages and Operating Systems,1987, pp.
105-111.

[192] S. Weiss, Optimizing a Superscalar Machine to Run Vector Code,IEEE Parallel
and Distributed Technology1(2), 1993, pp. 73-83.

[193] C. A. Wiecek, A Case Study of VAX-11 Instruction Set Usage for Compiler E
cution,Proceedings of the Symposium on Architectural Support for Program
ming Languages and Operating Systems, 1982, vol. 10, pp. 177-184.

[194] M. Wolfe, Beyond Induction Variables,Proceedings of the ACM SIGPLAN '92
Conference on Programming Language Design and Implementation, 1992, vol.
27, pp. 162-174.

[195] W. A. Wulf, "Compilers and Computer Architecture,"IEEE Computer, July
1981, pp. 41-47.

[196] Q. Yang, L. W. Yang, A Novel Cache Design for Vector Processing,Proceedings
of the 19th Annual International Symposium on Computer Architecture, 1992,
vol. 20, pp. 362-371.



ABSTRACT

LOOP OPTIMIZATION TECHNIQUES
ON

MULTI-ISSUE ARCHITECTURES

by
Dan Richard Kaiser

Chair: Trevor Mudge

This work examines the interaction of compiler scheduling techniques with pro-

cessor features such as the instruction issue policy. Scheduling techniques designed to

exploit instruction level parallelism are employed to schedule instructions for a set of

multi-issue architectures. A compiler is developed which supports block scheduling,

loop unrolling, and software pipelining for a range of target architectures. The compiler

supports aggressive loop optimizations such as induction variable detection and strength

reduction, and code hoisting. A set of machine configurations based on the MIPS R3000

ISA are simulated, allowing the performance of the combined compiler-processor to be

studied. The Aurora III, a prototype superscalar processor, is used as a case study for the

interaction of compiler scheduling techniques with processor architecture.

Our results show that the scheduling technique chosen for the compiler has a sig-

nificant impact on the overall system performance and can even change the rank order-

ing when comparing the performance of VLIW, DAE and superscalar architectures. Our

results further show that, while significant, the performance effects of the instruction

issue policy may not be as large as the effects of other processor features, which may be

less costly to implement, such as 64 bit wide data paths or store buffers.


	LOOP OPTIMIZATION TECHNIQUES ON MULTI-ISSUE ARCHITECTURES
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	CHAPTER II INSTRUCTION LEVEL PARALLELISM
	CHAPTER III LOOP OPTIMIZATIONS
	CHAPTER IV THE STRUCTURE OF THE OPTIMIZING COMPILER TORTOISE
	CHAPTER V EXPERIMENTS AND RESULTS
	CHAPTER VI CONCLUSIONS
	APPENDIX
	BIBLIOGRAPHY
	ABSTRACT

