LOOP OPTIMIZATION TECHNIQUES
ON
MULTI-ISSUE ARCHITECTURES

by

Dan Richard Kaiser

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer and Communication Sciences)
in The University of Michigan
1994

Doctoral Committee:

Professor Trevor N. Mudge, Chair
Associate Professor Richard B. Brown
Professor Edward S. Davidson
Professor Ronald J. Lomax

Associate Professor Karem A. Sakallah

© Dan Richard Kaiser 1994
All Rights Reserved

Dedicated to the memory of
Francis Marie Kaiser,
1911-1994.

ACKNOWLEDGMENTS

First and foremost, | would like to thank my advisor Trevor Mudge for his con-
tinued support and encouragement. | would also like to thank my committee for their
comments and suggestions. Thank you to the students and faculty of the Computer and
Communication Sciences Department, where | began my graduate work, and to the stu-
dents and faculty of the Aurora project. Thanks to my parents for their support during
my school years. A special thanks to my family, Pam, Seth and Tadd, for their support
and encouragement, and for bearing with me through the long process of finishing my

dissertation.

This work was partially supported by the Defense Advanced Research Projects
Agency under DARPA/ARO Contract Number DAAL03-90-C-0028, and by Cadence

Design Systems, Inc.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt e s s annsnnnnenennees iii
LIST OF TABLES ...ttt ettt ettt e e e e e e e e e e e e e e e e e e e nnebbbeeeees Vi
LIST OF FIGURESoottttiiiiiiiiiiieee ettt e e e e e e e e e e e e e e e e e s e s s e eaneseeeees Vii
CHAPTER |
INTRODUGCTION ...eiiiiiiiiiiiitieee ettt ettt et e e e e e e e e e e e e s s s s s s e sbbbb b bbb seeeeeeeeeaeeeas 1
1 SCREAUIING.....cciieieee e 2
2 1Y/ F=1 { T (o] [o |/ 5
3 Research ContribUtIONS ..o 12
4 Thesis Organizationuuuuuuiiiiiiiie e e e e e e e eeeeaanens 13
CHAPTER Il
INSTRUCTION LEVEL PARALLELISMcooiiiiii ettt 15
1 Available Parallelism ANalysis ... 15
2 Maching ArChItECIUIESccoee e e 22
2.1 VLIW ArChItECIUIES. ... 27
2.2 DAE ArChItECIUIESutiiiiiiiiiiiiiiieee e 29
2.3 Superscalar ArChItECIUIESuuueiiiiiiee e 33
24 Memory SyStem SUPPOITun e 37
3 SIMIAr STUAIES ... e e e e e e eaeenaeee 41
CHAPTER 1lI
LOOP OPTIMIZATIONS.....etttttttttettieteee e e ettt ettt e e e e e e e e aaeaaeeeeaaaaannnnnnebeenees 43
1 LOOP UNFOIING.....ccciiiiiieeeeeee et e e e e e e e e e e e e e eeeaaanees 44
1.1 An Example of Loop UNrolling ... 44
1.2 Loop Unrolling Performance Benefits...........cooovviiiiiiiiiiniinneeeeeen, 45
2 Trace SCheduling.........ooo i 48
3 Software PIPeliNiNg.......ooooo oo 52
3.1 An Example of Software Pipeliningccccceeeeviviiiiiiiiiiiiiceeeen, 55
3.2 Software Pipelining Scheduling Methods............ccccvvvviiiiininnnnn. 59
3.3 The Performance of Software Pipelining...........cccccoeeeeeiiiiiiiiinninnn, 62
CHAPTER IV
THE STRUCTURE OF THE OPTIMIZING COMPILER TORTOISEccceeeeeeiiiinnnn 65
1 The Organization Of TOMOISEcuuuuiiiiiiiiiie e 69
2 Data Flow Analysis and Transformations...........ccccceeeviiiiieeieieieieeceiiiiis 71
2.1 Canonical Loop FOrmMattinguueeeieiiiieeeeeeeeeeeeeeeeeiiieiinnne e 73
2.2 Block Flow Graph ReCoNStruCtion.........ccoooveeeeeiiiiiiiieiiiiiiiceeeeeenn 74
2.3 Initial Program Dependence Graph Construction..............cc.......... 74
2.4 Initial Data FIOW ANAIYSIScccoiiiiiiiiiiiiiiieeeeeee e 75

2.5 Data Dependency Graph Optimization............cccccevviiieeeeinnnininnnns 76

2.6 Constant Propagationoooeeeiiiiiiiiiiiiiiiiease e eeeeeeeeeeeaeaens 79
2.7 Loop Invariant Detectionouuvuiuiiiiiiiiie e 80
2.8 Induction Variable Detectionccoovvviiiiiieieiiicieie e 81
2.9 Iteration Distance Computationcoooiiiiiiiiiiiiiiiiiiei e 87
2.10 Array Reference Refinement.............ccccceeeiiiiiiiiieeceiiieceeeen 89
3 Machine Independent OptimizationSeuviiiiiieiiee e 91
3.1 Loop Invariant HOIStINGcoovviiiiiiiiiiiiiiiiiee e 91
3.2 Induction Variable Strength Reduction...............cccovviiiiiiiiiiiinnnnn. 92
3.3 Type Propagationcccooiiiiiiiiiiiiiiiicsse e 93
3.4 Dead Code ElMIiNation...........ccovviiiiiiiiiiiiiiiisiee e eeeeee e 93
3.5 Summary of Machine Independent Transformations..................... 94
4 (Of0 o [CT=T a1 =11 (0] o [PPSR 94
4.1 INSErUCLION SEIECHIONcevviiiiee e 95
4.2 INStruction SChedUIINGoeviviiiiiiiii e 98
4.3 Register AlIOCAtIONooooiiiiiii e 110
CHAPTER V
EXPERIMENTS AND RESULTS ..ottt 113
1 Scheduling a Scalar ArchiteCture.............ooovvviiviiiiiiiiieee e 116
1.1 REQISIEI USE ..ottt 119
1.2 COAE SIZE ... 120
2 Scheduling for Long Operation LatenCiesueeiiieeeeeeeeeeeeeeeeeiiiieinnens 124
3 Scheduling and 1SSue POlICIESoooiiiiiiiiiie e 129
3.1 AUIOra I e 129
3.2 Decoupled EXECULION ..ot 133
3.3 Comparisons with VLIW and DAE ... 141
3.4 Aurora lll Cache Behavior..........ccccuviiiiiiiiiiiiiiis 146
4 (OF= 11 g TSI (=11 £ 147
4.1 Previous WOTK.........uuieeiiiei e e e e e eeeeeneees 147
4.2 Cache Performance Effects from Software Pipelining 148
4.3 Cache Behavior with Loop Unrolling.............ccccoovvvvviiiiiiiiiiinnn. 151
4.4 Context SWItCh EffeCtS.......uuuiiiiiieii e 156
45 Summary of Cache Effectsoooviiiiiiiiiiiii e 156
CHAPTER VI
CONCLUSIONS . ..ottt ettt e e e e e e e e e e e e s s s bbb bt bbbt et e et e e e aeaaaaeeeaeaeeanaanns 157
1 Research ContribULIONScoooiiiiiiiiii s 157
2 FULUIE DIFECHIONS ..eeeeiiiiiiiiiiie ettt 163
APPENDIX .ot e ettt e e e e e aaaaaaaaaaaaaanaand 66.......1
2] 1 2] I @ €T AN = = 2SR 168

TABLE

g b~ wWwN

LIST OF TABLES

Machine ConfigUIratioNS..........cooiiiiiiiiiiiii e e 115
Compiler/Technique Performance on a Scalar Architecturecccceeeeee. 117
Registers Use vs. Scheduling TEChNIQUEoevviiiiiiiiiiiiii 119
Scheduling Techniques Performance RatioS...........ccooovvviiiiiiiiiiiiiiiiii e 122
Percent Dual Issue under Different Scheduling Models..............ccccevvvvviiinnnnns 137

Vi

LIST OF FIGURES

FIGURE

1 SOUrCe fOr @ VECION 00D ...ttt 2
2 Block diagram of a pipelined scalar proCeSSOrcccuuvuiiiieiiiiiiiiie e 23
3 Block diagram of @ VLIW PrOCESSOIcccevuuiiuiiiiiiiiiieeeeeeeeeeeeeeeeessnannnnnn e e eeeeas 23
4 BLock diagram of a superscalar architeCture.............cccceeeeiiiiiiiiieiieeeee 24
5 Block diagram of a DAE arChiteCture...........ccooeeiiiiiiiiii e 26
6 SOUICE fOr @ VECIOI 00D ..ot 45
7 The loop body Without UNrOIlINGccooviviiieeee e 45
8 The loop body With UNFOIINGiiiii e, 45
B U] {011 [=To I o o] o H TP PPPPPPPPPP 46
10 Loop Efficiency vs. Number of Iterations Unrolledccoovviiiiiiiiiiiiinnnnn, 47
11 Trace Scheduling EXamPIle.uuuuiiiiiiiii e e e e e e e 49
12 Sequential 00P EXECULIONuuiiiiiiiiiiiiie e e e e e e e e e 52
13 Pipelined LOOP EXECULION.......cccuitiiiiieeeiiiie et e et e e e e e e e eennes 53
14 Phases of pipelined l00p €XECULIONuuuiiiiiieie e eeeeeeee et e e e e e e e eees 54
15 Source for @ VECION 00D, ... iiieeiiie e e 55
16 The loop body without UNrolling.cooooiiiiiiiiii e 55
17 Execution of a few iterations of a loop without unrolling.cccceevviiieennnnnn.. 56
18 Compressed execution of a few iterations of the 100p.cccccceeiiiiiiiiiin s 56
19 A Software Pipeline version of the loop body.oooiiiiiiii 57
20 The Kernel of the 100p DOAY.vuveiiiiiieii e 57
21 A Software Pipelined loop body with register expansion...............cccccvvvvvvinnnnee. 58
22 Organization Of TOMOISEc.uuuiiiiiiiiie e 70
23 Tortoise Analysis and Transformation Phases.............cuuvviviiiiiiiiiieeeeeeeeeeeeeeeinnns 73
24 Canonical LOOP FOIMALcccuuuiiiiiiieiii e e e 74
25 An extraneous floOW dePENUENCYuuiiiiiiiiiiiiii e 76
26 Dependency Graph Reconstruction - Flow Dependency.........ccccccvvvvviiiiieveeennnnn. 77
27 Dependencies Involved in Removing ASSIgNMENTcovvvvvviiiiiiiiiiieneeeeeeeeen 78
28 Input CSE Dependency Transformationoooooiiiiiriiiiiiieiiieeieeee e 79
29 Program fragment with nested induction variables.ccccceeeiiiiiiiiiiiiiiiinnns 82
30 A Nested Induction Transformation.cccoooeeeereeiiiiiiieeeier e 83
31 Program fragment with rewritten inner induction.cccccoeeeiiiiieeiiiniieeeeiiinn, 84
32 Program fragment with rewritten nested iNnductions.ccvvvvviiiiiiiciinneennn. 85
33 A l00Op CONtAINING @ FECUIMTEINCE. .. eiieeeeeeeeeeeeeeeeeete s e e e e e e e e e e e e e e e e eeeeeaenesnn s 87
34 Array Reference Load CSE Transformation.............ccccuvvviiiiiiiiiiiieiieeeeeee e 90

vii

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52

53
54
55
56

57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Tortoise Code Generation PRASESceiiiiiiiiiiiiiiii e 94
A Three Stage Pipeline Schedule...........ccoooiiiiiiiiii e 102
Formation of Strongly Connected COmMpOoNENtscccevvvivviiiiiiiiiieeeeeeeeeeee, 105
Software Pipeline RealiZatioNuuuieiiiiiiiiiiiieeeeeee s 108
Multiple Live Register Values in a Software Pipelineccccoeviiiiiiiiiinnnns 109
Compiler/Technique Speedup on Scalar ProCessoruvvvvcciiiiiiieeeeeeeeeennn, 118
Registers Use vs. Scheduling TEChNIQUEoevviiiiiiiiiiiiiie 120
Code Size vs. Scheduling TeChNIqQUEecoiiiiiiiiiiii s 121
Execution Time vs. Increasing FPU LatenCy..........cccovvvvviviiiiiiiiiiiiieee e 125
Execution Time vs. Increasing FPU Latency (FPU not pipelined)................... 126
Execution Time vs. Increasing FPU Latency (FPU pipelined)............ccceeeee. 126
Execution Time Pipelined vs. not Pipelined FPU..............ccoorriiicicieiee . 127
Execution Time vs. Increasing FPU Pipe Stages (Constant Latency) 128
Scalar Aurora Il vs. R3000 W. MIPS CC.......oooiiiiiiiiiiiiiiiiie e 131
Scalar Aurora Il Double vs. Single Load/Storescccooevvvvvvvveeviiiiiicceeen, 132
Aurora lll Cycles vs. I-queue Length ... 133
Aurora Il Stalls vs. I-queue LeNgthoouiuuiiiiiiiiieee e 134
Livermore Loop 4 - Occasional Data Dependency............ccccccuvvvvviiiiiieeeeeeneenn. 135
Dual Issue Aurora Il vs. R3000 W. MIPS CC.......ouuviiiiiiiiiiieeeeeeeeeeceeeeeeeiiiiiees 136
Dual Issue Scheduling (VLIW Model) vs. R3000 w. MIPS CCuueeee. 138
Dual Issue Scheduling (Latency Doubling Model) vs. MIPS CC 139
Dual v.s Scalar Issue (VLIW Scheduling Model)..........cccoooiiiiiiiiiiiiiiiiiiiiiiiinnnns 140
Register Use vs. Issue Models with Software Pipeliningcccoevvvvvvviiinn. 140
Superscalar Register DefinitioNS.........cooiiiiiiiiiiiiii e 141
VLIW Register DefiNitiONS........cooooiiiiiiiiiiiiie et 142
VLIW vs. Static Superscalar vs. Scheduling Technique............ccccevviiiiiiiinnnn. 142
Register Use vs. Issue Policy with Software Pipelining..........ccoovvvvvviciennnnn. 143
DAE vs. Static Superscalar vs. Scheduling Technique ..., 144
Aurora lll, VLIW, and DAE vs. Scheduling Technique...............ccccceeiiiiiininnnnn. 145
Percent Time Spent in D-Cache Stalls.............ooovvveiiiiiiiii e, 146
Percent Time Spentin I-Cache Stalls ..., 147
Code Sizes for the First Fourteen Livermore LOOPS.........cccvveeeviiiiiiieeeeeeiiinnn, 149
Execution Times for the First Fourteen Livermore LOOPS..........ceceeeevevvevveennnns 150
Execution Times for LL 1 vs. Primary Cache Size...........cccccviiiiiiiieiiiiiiinnennnn. 151
Execution Times for the First Livermore Loop using Gnu-C...............cceevvnnnn.. 152
(O70To [T r4= I (o] g0 1] o SRS 153
xlisp: Cycles vs. Primary Cache Size (Long Latency Mem.)ccccccceeeeiiinnnn 153
xlisp: Cycles vs. Primary Cache Size (Short Latency Mem.).........cccccceeeeeeenns 154
Cycles Executed for xlisp vs. Unroll Size (Long Latency Mem.).................... 155
Cycles Executed for xlisp vs. Unroll Size (Short Latency Mem.).................... 155

viii

CHAPTER |
INTRODUCTION

Considerable effort has been put into designing computer architectures which
exploit instruction level parallelism in an attempt to achieve execution rates of greater
than one instruction per cycle. A wide variety of architectures and accompanying com-
piler algorithms have been proposed and developed. The best examples have shown
good performance improvements relative to scalar architectures constructed in similar

technologies.

Much of the experimental work on new architectures has focused on just the
hardware architecture, with perhaps one scheduling algorithm designed for the architec-
ture. A new architecture is generally compared to a similar scalar architecture as a refer-
ence point. Few experiments have compared different architectures to each other or
investigated compiler scheduling algorithms across architectures, because of the diffi-

culty of retargeting the compiler.

This work is a first step towards a direct comparison of different architectures in
conjunction with different scheduling algorithms. We compare loop scheduling tech-
niques on several architectures, together with accompanying compiler optimization
techniques. In particular, loop optimizations as performed by an optimizing compiler are
implemented on a set of multi-issue architectures, allowing the interactions between the

loop optimizations and the architectures to be studied.

1 Scheduling

Instruction schedulings the process of determining an execution order for a set
of operations. The instruction scheduler accepts a directed graph {V,E} of operatjons (o
[V) and dependencies between the operationg¢=a! E), and produces an ordered
list of operatios L = <oy, 0,,..., ¢>. The ordered list L maintains the dependencies E of
the original graph, i.e. if the graph contained a dependengg=0l E, q appears in the

list before @ The function computed by the scheduler is shown in (1).

s{V.E} - <oy, 0y,..., @ Wherell<g;,0>0 E => i <]. (1)
After the ordered list of operations is produced, the code generator will trans-
form the list of operations into a list of instructions which can be executed on a particu-

lar architecture.

Instruction scheduling must be correct: the order placed on the set of instructions
must maintain the semantics of the original list of instructions. The semantics of the
original list is called thgrogram orderor in-order semanticsThe in-order semantics is
dictated by the programming language. The ordering between instructions is determined
by the control and data dependencies between the instructions and is encoded as the set
of dependencies E in the program graph. This is generally a partial ordering, which
allows some leeway for the scheduler to reorder the instructions to improve execution
efficiency. For instance, in the program segment shown in Figure 1, statement 3 is
dependent on statement 1 and statement 1 must be scheduled prior to statement 3. State-
ments 1 and 2 are independent and can be scheduled in any order. The relationship

between statements 2 and 3 depends on the values of i and j and may be dependent.

1. a=5
2. X[i] =10 * x[j]
3. d=x[j]*a

FIGURE 1. Source for a vector loop

Control dependencieare dependencies between conditional instructions and any
other instructions whose execution depends on the conditional instructions. In-order
semantics does not allow dependent instructions to execute until the conditional instruc-
tion has been executed and the result of the condition is known. Since control dependen-
cies are often a significant performance limiting factor, some execution models relax the
requirement that the result of the condition be known before the dependent instruction
begins execution. This is usually referred tospeculative executioif speculative exe-
cution is allowed, some method must be provided to undo the effects of executing the
dependent instructions if the eventual resolution of the condition determines that they

should not have been executed.

Data dependencieare formed by the sharing of data and memory locations
between instructions. There are four types of dependencies. If A and B are two instruc-
tions with A preceding B in program order, then the input and output locations of the
two instructions can be denoted by the sets\{I@uty, Ing, and Oug}, respectively.
Furthermore, the possible dependencies between A and B can be defined as follows:
Flow dependencieare the locations in fin Out,.

Anti-flow dependencieme the locations in jpn Outg.
Output dependenciese the locations in Oytn Outg.

H w b

Input dependenciemre the locations in jpn Ing.

In some sense, flow dependencies are the only true dependencies because they
express the sharing of data between instructions. Flow dependencies must be honored to
obtain correct execution semantics. Anti-flow and output dependencies arise due to shar-
ing memory locations between different instructions. These dependencies can some-
times be removed by renaming memory locations. Input dependencies come from the
sharing of memory locations between instructions. The discovery of input dependencies
is not important for correctness, they do not impose an execution ordering, but they can

be used to improve execution efficiency.

There is one other set of constraints that may be imposed on the instruction exe-
cution order: exceptions produced by the execution of instructions shoplebise i.e.
the machine state following the handling of an exception should appear as though any
instructions following the exceptional instruction had not executed. This requirement
can be quite restrictive. Precise exceptions in effect introduce a control dependency
between every instruction which can produce an exception and any following instruc-
tions. Implementing this in an aggressively scheduled machine requires hardware sup-

port to maintain and restore the correct machine state when an exception is encountered.

Implementing precise exceptions efficiently is a difficult problem. In the interest
of providing performance, some architectures do not provide precise exceptions. Other
architectures make precise exceptions optional, so that users only incur a performance
penalty if they require precise exceptions. Allowing reordering while providing precise
exceptions is a form of speculative execution, and processors designed with speculative
execution in mind can usually provide precise exceptions with little extra overhead, hav-

ing already incurred the hardware cost of implementing out-of-order execution.

If only correct execution were required, or the target architecture had no parallel-
ism, the instruction scheduler would have nothing to do. There would be no performance
advantage in reordering the instructions. The in-order semantics would be the final word
on instruction ordering and the instruction list produced by the code generator would not
need to be scheduled. However, most current high-performance commercial machines
have some form of parallelism, usually in the form of multiple function units or pipelin-
ing, and we can expect that machines issuing 4 to 8 instructions per cycle will become
much more common. On machines with the hardware to support even modest amounts
of parallelism, exploiting the hardware to improve performance requires intelligent

instruction scheduling.

Instruction scheduling can take place either in the compiler or the processor.
Instruction scheduling at compile-time is callsthtic instruction schedulingDynamic
instruction schedule occurs at run-time, and is performed by the processor itself. There
are advantages and disadvantageous to each type of scheduling. Static instruction sched-
uling has the advantage that the compiler can use a much wider scope to gather schedul-
ing information. The disadvantage is that some information that can affect performance
is not available until run-time. Dynamic schedulers have access to run-time information,
but the scope of available information is typically much more limited than is available in
the compiler. Dynamic instruction scheduling also requires more complex hardware,

which can adversely affect performance.

We will investigate a set of scheduling algorithms by using them to schedule
loops for a set of machine architectures and then comparing the relative performance of
the code produced by each algorithm. As part of this investigation, we will examine sev-
eral instruction issue policies and their interactions with the scheduling algorithms

employed in the compiler.

2 Methodology.

The goal of this work is to compare the performance of different architecture-
compilersystemsi.e., a computer architecture in conjunction with compiler scheduling
algorithms. In particular we want to explore the interaction of various scheduling algo-
rithms with different processor features such as instruction issue policies. To explore this
design space requires a compiler in which the scheduling and other related algorithms

can be modified, as well as simulators for the range of architectures under study.

A compiler which allows access to its scheduling algorithms is a difficult item to
obtain. Few compilers are available which are well documented and allow access to their

compilation process. In addition, some of the scheduling and other optimizations require

support early in the compilation process. This means that modifying the code generator
without access to the analysis portions of the compiler precludes important scheduling
and transformation opportunities. GNU C is publicly available and it is well docu-
mented. Unfortunately it does not readily allow the user to experiment with optimiza-

tions prior to code generation.

Because of the difficulty of obtaining and modifying a compiler in conjunction
with the other necessary work, much of the research into computer architecture is done
without accompanying work on the compiler. This greatly reduces the amount of work

involved an investigation, but it creates a tendency toward hardware based solutions.

Failing to investigate compiler algorithms along with architectural variations can
lead to incorrect conclusions. Even though the architectural changes seem entirely hard-
ware based, there is a strong software interaction which must be considered. For
instance, superscalar machines seem like a good idea because they can provide perfor-
mance improvement with an existing instruction set architecture (ISA), without new
compiler support. However, this expectation of performance improvements without
compiler support may prove to be optimistic. In a study of a SPARC superscalar archi-

tecture [102], Lee et al. write:

“Unfortunately, an optimal scheduling policy is very hardware
dependent. The base compiler we use was not targeted for super-
scalar hardware, and most of the optimizations must be applied
manually. Our results confirm that superscalar hardware alone
would gain little without support from an optimizing compiler.”

Another possible method of investigation is to manually schedule the instruc-
tions for a new architecture. This is possible for small benchmarks and can quickly yield
performance numbers for an architecture. The are two potential pitfalls with this
approach: Manual coding is tedious and error prone, and thus hard to do consistently for

even medium size benchmarks. The other more important problem is that it is impossi-

ble to assure ourselves that we are faithfully employing techniques available to a com-
piler. By building a compiler and insisting on using it to generate all the code schedules,

we avoid these problems.

Because of its key role in providing computer performance, a central part of this
investigation will involve compiler’s optimization algorithms and scheduling techniques.
The particular optimizations employed, and the analysis necessary to support the optimi-
zations are presented and discussed in Chapter IV. The scheduling techniques used in

the compiler are discussed in Chapter Il and Chapter IV.

The choice to build an optimizing compiler is not without its own problems,
however. Building an optimizing compiler is a huge undertaking. To mitigate this prob-
lem we have reduced the effort by limiting the benchmarks we execute to a limited set
and also by allowing the compiler, referred to herein as Tortoise, to execute slowly. Nar-
rowing the set of benchmarks reduces the magnitude of the programming task because
we do not have to handle all the constructs in a rich language such as C or FORTRAN.
Allowing the compiler to run slowly frees us to use a more powerful, interpreted lan-
guage to construct the compiler in, and relieves us of the tuning and careful program-

ming required to make a compiler run efficiently.

As with all computer performance studies, we would like to measure execution

time. In [67], Hennessy and Patterson give equation (2) for the execution time:

T=IxCPIxTc (2)
where T is the execution time, | is the number of instructions executed, CPI is the num-
ber of cycles per instruction (for the set of instructions executed), and Tc is the cycle
time of the processor. The number of instructions, I, is a function of the benchmarks
chosen, and the compilation process. CPI is a function of the processor implementation

and the instruction mix. The instruction mix is also a function of the benchmarks and the

compilation process. The work reported in this thesis will concentrate on | and CPI in

(2) and will assume a fixed Tc.

Tc is largely a function of the physical process used to implement the processor.
However, Tc is not a completely independent variable and we should be aware of the
dependencies here, even though we will not be able to measure them. Tc can be

expressed as:

Tc=Tcp + Tcc (3)
where Tcp is the portion of the cycle time which can be attributed to the physical charac-
teristics of the logic devices used to implement the architecture, and Tcc is the portion of
the cycle time arising from the complexity of the architecture. In general, a more com-
plex function, or architecture, will have a longer cycle time due to longer logic paths and

larger fan outs.

Tcp can be reduced by improvements in process technology. This effect is out-
side the scope of this work; accordingly we will assume that it is fixed. We will assume,
however, that increasing the functionality of the architecture, as in more dynamic depen-
dency checking and instruction scheduling, will result in greater complexity in the hard-
ware implementation. This additional complexity will necessarily increase Tcc, adding
to the cycle time and slowing down the system. Some of these effects are discussed in
[130], [131], [132] and [185]. For this investigation we limit ourselves to noting that Tc,
as shown in (3), increases with increasing architecture complexity without attempting to

guantify the increase.

In terms of effort involved it would be beneficial to fix the instruction stream by
selecting a set of benchmarks and a compiler. With the set of instructions fixed, this
would leave only CPI to be measured to determine performance. However, when com-

paring architectures in conjunction with compiler algorithms, CPI is not an accurate per-

formance metric. This is because the instruction mix is changing as well as the
instruction cycles. For instance, replacing low latency instructions with fewer high
latency instructions can raise the CPI, even though the total cycles executed may be
reduced. For this reason, the total cycles to execute a given program will be used, which

is the | x CPI part of (2).

The instruction mix is also effected by the set of benchmarks chosen for the per-
formance evaluation. A wide variety of benchmark suites have been used to study per-
formance. Ad hoc collections of programs have been used, more typically in early
studies, as well as groups of programs explicitly designed as benchmarks. The most
widely used benchmarks for processor performance are: the SPEC suite [184], the Liver-
more Loops [113], and for scientific machines: the Linpack Kernels. More recently the

use of the PERFECT Club benchmarks [39] is also starting to appear.

This work uses the Livermore Loops for primarily two reasons: 1) The Liver-
more Loops have been widely reported in the literature and many of the machine archi-
tecture studies have been done using some or all of the Livermore Loops; and 2) The

compiler scheduling techniques used here focus on loop optimization techniques.

In addition, the Livermore Loops are a small to medium size, relatively simple
set of benchmarks to compile. This reduces some of the effort involved in getting an
optimizing compiler debugged and running correctly. Focusing on a narrow set of opera-
tions and language constructs relieves us of the burden of handling every language con-
struct in the source language and becoming distracted with the implementation details of

writing a compiler.

Restricting ourselves to a narrow set of benchmarks also limits the set of applica-
ble optimizations. On one hand this is unfortunate. It would be interesting to make a

broad study of compiler algorithms and computer architectures on all types of language

10

constructs. However, by limiting our range somewhat we can examine much more

closely the interactions of a particular set of algorithms and computer architectures.

Selecting the Livermore Loops as our benchmark suite is contrary to the current
trend of running larger benchmark suites such as the SPEC benchmark suite, the PER-
FECT Club benchmark suite, or even larger benchmarks. There are certainly some good
reasons for running larger benchmarks. Capacity effects such as cache misses and some
program behaviors will only show up when running very large benchmarks for very long
times [18]. However, our focus is not memory system performance, and for exploring
the performance of loop scheduling techniques and system performance, the Livermore

Loops are still a viable benchmark suite.

The Livermore suite was developed in the 1970’s to study the code produced by
the FORTRAN compilers for the CDC-6600 and CDC-7600 computers. The Livermore
suite has since been widely used to compare the performance of numerous computer
architectures, particularly high performance architectures. In addition, the Livermore
Loops have been used to study and track the performance of different compilers and

compiler versions for a single architecture.

A specific goal of the development of the Livermore Loops was to provide a
small benchmark suite which would cover the range of commonly used Fortran con-
structs and provide accurate predictions of computer system performance under actual
application loads. The developers of the Livermore Loops realized that the size of a
benchmark is a trade-off. A very short benchmark, such as a dot-product function or
even the Linpack Loops is not an accurate performance predictor because it does not
cover the full range of computer system behaviors. On the other hand, very large bench-
marks have problems, especially on new systems where their size makes them unwieldy
to analyze, characterize and adapt to a new system. In addition, a large benchmark may

not provide any additional performance information because it may spend most of its

11

time in a small part of the code, as Knuth noted in an early paper [86]. For instance, the
SPEC benchmark suite typically only exercises about 4000 lines of codes, even though it

is much larger in total source lines.

The Livermore benchmark suite is composed of a set of floating-point computa-
tions taken from scientific applications. They are intended to cover the range of common
Fortran program constructs found in these types of applications. The Livermore Loops
have in general shown good correlation between their performance and the performance

of the scientific codes they were designed to mimic [113].

The original 14 Loops were criticized because they were found to be more
heavily weighted toward vectorizable codes than a typical scientific application.
Because supercomputers tend to be vector architectures and have vastly superior perfor-
mance on vector codes, this would tend to over-predict performance. An additional 10
larger loops were added to the suite to balance the scalar/vector ratio and to “challenge
the vectorization capability of Fortran compilers.” Since we are not exploring vector
architectures in this study and the original 14 loops were reported to be accurate predic-

tors of scalar architecture performance, we use the original 14 kernels in this study.

Another important question that arises when beginning with this type of investi-
gation is the type of machine to study. We wish to base our study on realistic machines.
By this we mean architectures that might be commercially available in the next four-to-
five years. Accordingly we have based our studies on multi-issue implementations of the
MIPS R3000 ISA. In particular, we have used the Aurora lll for a case study. The
Aurora lll is a prototype superscalar processor being developed in the Advanced Com-
puter Architecture Laboratory at The University of Michigan [119][120][130][131]
[132][133][185]. The Aurora lll is a superscalar version of the MIPS R3000 ISA imple-

mented in GaAs technology, and is scheduled for tape-out in the Fall of 1994.

12

We investigate the performance characteristics of a number of hardware features
in the Aurora 11, only some of which have been included in the final version. In order to
investigate the performance of processors with different instruction issue policies, we
construct several modified models of the Aurora Ill. Using the Aurora Ill as a base archi-
tecture, we build scalar, superscalar, VLIW, ad DAE processors, schedule code tailored
to each architecture, and examine the performance of the combined compiler-processor

system.

3 Research Contributions

We explore the performance of a set of scheduling algorithms applied to a set of
machine architectures. We compile a set of benchmarks using block scheduling, loop
unrolling, and software pipelining and evaluate their performance on scalar, VLIW,

DAE and superscalar architectures.

In addition to evaluating the performance of different scheduling techniques, we
look at the analysis and compiler support required to implement the scheduling tech-
nigues effectively. We also explore the machine independent optimizations required to
obtain a good optimizing compiler. Some new algorithms for induction variable analysis

and corresponding optimizations are presented.

We examine the interaction between operation latency and the scheduling tech-
nique employed. We also look at the effect of pipelining function units on performance

and scheduling.

We look at the effects on scheduling and overall performance of some hardware
features proposed for the Aurora lll, a superscalar prototype being implemented in
GaAs technology at The University of Michigan. The Aurora lll incorporates internal 64

bit wide data paths, double precision floating point load and store instructions, dual

13

instruction issue, decoupled integer and floating point units, fully pipelined function
units, load queues, store queues and result reordering. We look at each of these features

in turn and the effect of each feature on performance and scheduling.

We also examine instruction issue policies in the context of the Aurora Ill. Using
a fixed set of function units and architectural components, we vary the instruction issue
policy to model scalar, VLIW, DAE and superscalar architectures. The issue policy
affects register naming and use, which in turn affects the compiler scheduling and regis-
ter allocation algorithms. We examine the relationship between these features and algo-

rithms and discuss some of the implications.

Different schedules use machine resources different ways. Registers and function
units are obvious resources. Instruction and data cache are also resources and may be
allocated by a compiler. We briefly investigate the effects caused by interaction of the

scheduling algorithms with the cache and memory systems.

4 Thesis Organization

Chapter 2 presents previous work pertinent to this investigation. This includes
studies on the amount of parallelism available in typical programs and an overview of a

number of computer architectures designed to exploit instruction level parallelism.

Chapter 3 examines several scheduling technigues that have been used in high

performance systems. Particular emphasis is given to loop scheduling techniques.

Chapter 4 discusses the internal workings of the Tortoise compiler developed for
this investigation. The specific techniques employed and the justification for the tech-

nigues are also given.

14

Chapter 5 describes the experiments performed for this investigation and dis-

cusses their results.

Chapter 6 gives concluding remarks and suggestions for future work.

CHAPTER I
INSTRUCTION LEVEL PARALLELISM

1 Available Parallelism Analysis

Determining the amount of parallelism available in typical programs is one
important aspect of the work on instruction level parallelism. The amount of parallelism
available in a program is important to systems designers because it determines how
much parallelism we should be attempting to achieve when designing a machine to
exploit instruction level parallelism. If programs generally provide parallelism on the
order of 10,000 operations per cycle, we would design a very different machine than if

the available parallelism was closer to 10 operations per cycle.

Estimates of available parallelism range vary widely, depending on many factors,
and the terminology used to describe parallelism also varies widely. Parallelism can be
expressed as operations per cycle, instructions per cycle, FORTRAN or other high level
language (HLL) statements per cycle. Some studies invert the this relation and express
results in cycles per instruction (CPI). Other studies avoid the problem of defining an
abstract metric and use speedup with respect to a base architecture. For small bench-
marks, where the absolute best performance is known or can be fetffaency
expressed as a percentage of the ideal performance, may be used. There is no standard
metric for parallelism, the terminology used is determined by the goals and methodol-

ogy being used by each research group.

We will not attempt to reconcile the terminology used in reporting the results of

the studies examined here. We will report the results of each study using the author’s ter-

15

16

minology. Our intention is not to find a definitive value for the amount of parallelism
present in general programs, but rather to show the general range of what other people

have found when studying this issue.

There are some major tends in the study of available parallelism: The first is to
study available parallelism given a particular model or device designed to exploit it.
These studies tend to find relatively small amounts of available parallelism, with speed-
ups on the order of 1.1 times to 10 times sequential machines. The second type of study
is to examine the parallelism inherent in the execution of a program, without regard to an
implementation which could exploit this parallelism. A third approach is to find the larg-
est amount of parallelism available in any program. As could be expected, the last two
types of studies tend to find much larger amounts of parallelism than the studies of par-

allelism on a particular machine.

The experiments which are not tied to an architectural model generally execute a
program and save a trace of the instructions executed. A directed acyclic dependency
graph (DAG) is then constructed from the trace. The DAG is examined to find its height
and width. The height of this DAG divided by the number of operations in the sequential
program is the speedup. The width of the DAG divided by the height is the average par-

allelism, and the maximum width of the DAG is the maximum amount of parallelism.

Studies using this methodology conclude that programs contain a large amount
of parallelism. An early study by Kuck [91], finds a minimum of 16 processors useful

and,

“As the programs become more complex, 128 or more processors
would be effective in executing our programs.”

However, this was an early study which ignored the problems presented by conditional
code. The benchmarks used are very small by today’s standards, most “less than 200

cards,” and many “do not even contain DO-loops.”

17

In a study of very large benchmarks using parallelism-time profiles for programs
[92], Kumar shows that the amount of parallelism varies widely during the course of
execution. Both the ideal case of full knowledge of control and data dependencies, and
the case where control and data knowledge is restricted, show approximately the same
amounts of parallelism. Average parallelism was shown for the particular benchmarks
studied, to be on the order of “500-3500 FORTRAN statements executing concurrently
in each clock cycle.” In an experiment with restricted knowledge, the amount of parallel-
ism was reduced by a factor of 10, but was still as much as 1000 FORTRAN statements

per cycle.

The abstract studies on parallelism are encouraging because they indicate that
common programs do have large amounts of parallelism. The problem is that it is not
practical to exploit a large part of this parallelism. In a study by Wall [189], an execution
trace was produced and used to find the amount of parallelism available under various
machine models and software techniques. This study finds a large gap in performance

between “perfect” and “good” techniques:

“Our study shows a striking difference between assuming that the
techniques we use are perfect and merely assuming that they are
impossibly good. Even with impossibly good techniques, average
parallelism rarely exceeds 7, with 5 more common”

Riseman and Foster found the same results [150]:

“In fact, our results seem to indicate that even very large amounts
of hardware applied to programs at run time do not generate
hemibel [a factor of 3] improvements in execution speed. We are
left, then, with three alternatives: extensive preprocessing of pro-
grams as suggested by Kuck et al; recasting algorithms to take
advantage of machine parallelism as, for example, in the Good-
year STARAN or the llliac IV; or just plain speeding up a conven-
tional monoprocessor so it gets the job done faster.”

So while the abstract studies showing large amounts of parallelism are encouraging, it

seems that the speedups which can actually be achieved will be modest.

18

In another similar study [12], Austin and Sohi use the MIPS program pixie to
produce a trace, then the trace is fed into a dependency analysis tool. The dependency
graph of an entire trace can then be used to investigate critical path length and parallel-
ism profile. The average parallelism is found to be between 13 and 23,000 operations per
cycle for the SPEC suite. Much of this parallelism is available only after renaming regis-
ters, and with an instruction window of almost the entire program. A small window with

approximately 100 instructions only finds 10 to 20 operations per cycle.

The most aggressive experiments tied to architectural models provide for specu-
lative execution with out-of-order issue and completion, register renaming and memory
by-pass subsystems. In [59] Franklin and Sohi examine an architecture providing all
these features and predict a 2 to 7 times speedup. Other studies of this type of system

[114][124][182] indicate similar speedups.

The problem with these architectures is that they are large and complicated to
implement. In [182], Uht estimates over a million gates just to implement the instruction
window and ordering matrices. This brute force approach to exploiting instruction paral-
lelism may not be the best means of providing performance. More complexity means a
longer design and test cycle, and a potentially slower cycle time. These conflicting

issues must be traded off against the gains from parallelism.

This is not to say that dynamically scheduled architectures are impractical. More
modest designs using either instruction windows or Tomasulo style reservation stations
[179] have been quite successful. Notable examples are the IBM 360/91 [10] and the
RS/6000 [76]. The studies on this type of machine generally show that it is possible to
achieve modest speedups with a small instruction window. Flynn reports to find most of

the available parallelism with a window size of 2 or 4 instructions in [56]:

“Under the constraint that instructions are not dispatched until all
preceding conditional branches are resolved, staides as smalll

19

as 2 or 4 achieve most of the parallelism that a hypothetically infi-
nite stack would.”

If control dependencies are strictly enforced, so that speculative execution is not

allowed, speedups over scalar machines are modest. Without speculative execution,
speedups tend to be a sub-linear function of the window size and performance benefits
disappear for general benchmarks at window sizes in the range of 4 instructions. The
average parallelism is limited to something on the order of 2 operations per cycle. Foster

also reports the same modest amount of parallelism in [58]:

“The limit on the parallelism that is achieved with an infinitely
large stack was found to be slightly more that 1.72;...”

In [177], Tjaden and Flynn explored the parallelism provided if an instruction
window was added to an IBM 7094. They found speedups between 1.2 and 3.2 times
scalar on their benchmarks. In [178], Tjaden and Flynn try several versions of ordering
matrices to encode instruction dependencies, including one with shadow buffers to pro-
vide some speculative execution. They find parallelism between 1.36 and 1.98 instruc-

tions per cycle (IPC).

In [138], Pleszkun and Sohi start with a set of Cray function units and study the
effects of adding register renaming and multiple issue. Control dependencies were
required to be resolved before dependent instructions could execute. They found that the
best issue rates that could be achieved with the given set of function units were in the

range 0.79 to 3.15 IPC.

In [80], Jouppi and Wall use a compiler and a machine simulator for the “Multi-
Titan,” to explore superscalar and super-pipelined execution. The compiler and simula-
tion system allowed the machine’s function units and operation latencies to specified.

The compiler provided basic block scheduling and loop unrolling. The authors found lit-

1. They used the term instruction stack to refer to the buffer we are calling an instruction window.

20

tle difference between superscalar and super-pipelining, and an IPC limit of approxi-
mately 2. Furthermore, they show that for these types of machines, more parallelism in
the form of additional function units is not useful. They also show a decrease in avail-
able parallelism when compiler optimizations are applied. They make an interesting
comment: Cache misses impose a larger penalty for multi-issue and other parallel
machines. This is because the number of instructions lost is magnified by the width of

the instruction window.

Smith, Johnson and Horowitz study the available parallelism for a superscalar
MIPS architecture in [161]. In this study, trace driven simulations were used to find the
parallelism for variations of the MIPS architecture, including superscalar versions. The
benchmarks used were non-scientific code, i.e. avoiding the Livermore Loops. They
start with code optimized for the R2000 in this study. Pixie is used to generate instruc-
tion traces and a simulator is used to analyze the traces for the different machine config-
urations. A number of machine features are tried, along with superscalar execution:
Register renaming, perfect branch prediction, 2 instruction or 4 instruction wide fetch
and decode units, infinite instruction windows and fixed size instruction windows of up
to 32 instructions were tried. Tomasulo style execution units with reservation stations

are also used.

With an unlimited prefetch buffer, and an instruction window size of up to 32
instructions, they find speedups of 2.3 to 4.1 for prefect branch prediction and register
renaming. This drops to a mean speedup of 2.0 with a branch prediction accuracy of

85%, with a prefetch buffer of 4 instructions.

The instruction window architecture requires a large number of busses and regis-
ter ports. This can be mitigated by using Tomasulo style execution units and reservation
stations. With reservation stations and prefect branch prediction, the speedup falls to 1.2.

A 1 cycle delay for taken branches and a fetch decode width of 2 or 4 instructions, puts

21

the speedup at approximately 1.3 for a 2 instruction window or 1.9 for a 4 instruction
window. With branch prediction, the speedup is in the range of 1.6 for a 2 instruction

window and 2.6 for a 4 instruction window.

As has been shown in these studies, the problem with superscalar architectures is
not that they are impractical or that they fail to provide speedups. However, there is a
potential problem with superscalar architectures: their complexity. The question is
whether the additional complexity of a superscalar architecture outweighs the potential

parallelism exploitable by these architectures.

In addition, there is a question of how well superscalar architectures work “off
the shelf.” One reason these architectures are so popular is that they promise perfor-
mance improvements running existing software anthout compiler supportSuper-
scalar architectures typically implement the same instruction set as some existing scalar
architecture. Parallelism is detected and exploited by the hardware. This is a major
advantage in the commercial world because a company producing a new superscalar

processor would not have to also provide new compilers or other software.

However, while it is true that existing code will run on the new architecture,
compiler support may be necessary to achieve enhanced performance. In a study of

superscalar SPARC architectures [102], Lee et al. report:

“Unfortunately, an optimal scheduling policy is very hardware
dependent. The base compiler we use was not targeted for super-
scalar hardware, and most of the optimizations must be applied
manually. Our results confirm that superscalar hardware alone
would gain little without support from an optimizing compiler.”

Given that compiler support will be required to achieve maximum performance from an
architecture, the natural question is whether better performance can be achieved using a

less complicated architecture with compiler support.

22

2 Machine Architectures

Many varieties of machine architectures have been designed to exploit instruc-
tion level parallelism. The architectures presented here are designed to execute a few,
e.g. less than ten, operations concurrently. The primary difference between these archi-
tectures is in how the operations to be executed each cycle are specified and/or discov-
ered. One end of the spectrum is the superscalar machines like the IBM 360/91 and the
RS/6000 [9][76] where the dependencies between instructions are resolved by the hard-
ware. On the other end of the spectrum are the VLIW architectures [36][144] where par-
allelism between instructions must be discovered and specified by the compiler.
Somewhere in between are the DAE architectures [156] where compiler support is used

to provide the hardware with dependency information.

The basic architecture against which the other, more parallel architectures are
compared, is the pipelined scalar architecture. This architecture is chosen as the basis for
comparison because it is typical of today’s general purpose commercial computers.
Instances of this architecture, such as the MIPS R3000, are readily available for use in
these experiments. Comparison against a strictly scalar architecture, i.e. one without
pipelining, would show better speedups, but such an architecture is sub-standard by cur-
rent market driven criteria. Also, any architecture which employs parallelism in the form
of a wider instruction path can also employ pipelining. In other words, pipelining is one
type of parallelism, which has already been accepted and is in wide use in the computer

industry.

In a pipelined scalar architecture, instructions are divided into several stages,
where each stage performs one simple operation and requires one machine cycle to exe-
cute. One instruction is issued every cycle and the execution of the stages of different

instructions is overlapped in time. A typical set of stages is: fetch, decode, issue, exe-

23

cute, and write. A functional block diagram of a pipelined processor is shown in

Figure 2.

D

Fetch — Decode Issue» Execu}&o Writ

FIGURE 2. Block diagram of a pipelined scalar processor

A Very Long Instruction Word (VLIW) architecture looks functionally similar to
a scalar processor. The difference is that each instruction can specify multiple opera-
tions. The stages of a VLIW processor operate in lock-step, including the execution
stages in the function units. This means that if any of the stages stall, the entire processor

stalls. A block diagram of a VLIW processor is shown in Figure 3.

Executg®{ Write

Fetch H» Decode—® Issue

Execute® Write

FIGURE 3. Block diagram of a VLIW processor

Superscalar architectures can also issue several operations each cycle. A super-
scalar architecture fetches and issues multiple instructions each cycle, where each
instruction contains one operation, as in the scalar architecture. The instructions to be
issued are selected from an instruction window and each cycle a superscalar architecture
can examine at least as many instructions as can be issued. Every instruction in the

instruction window is compared with every other instruction in the window to search for

24

dependencies. The set of instructions which do not have dependencies and for which

there are resources available are issued.

The functional diagram for a superscalar architecture looks very similar to the
diagram of a VLIW architecture. The major difference between superscalar and VLIW
architectures is that superscalar architectures check for dependencies between instruc-
tions in the instruction window and can issue instructions out of static order. To do this,
superscalar architectures must provide some mechanism to track and control the out-of-
order execution so that static semantics are maintained. A number of data structures
have been used to maintain dependency information, include ordering matrices [178],
register scoreboarding [174], and reservation stations [179]. Figure 4, shows the block

diagram of a superscalar processor.

Executeg®» Write

Fetch | ! Decode| Issue ' '
Execute®» \Write

Dependency
Control

FIGURE 4. BLock diagram of a superscalar architecture

Ordering matrices are the most general mechanism for maintaining dependency
information. Ordering matrices are hardware structures encoding the dependency rela-
tionship between all executing and pending instructions.This is a very explicit represen-
tation of dependency information, but it is also costly to implement. For this reason,

more compact representations have been designed.

25

Register scoreboarding associates dependency information with the register set.
The target register for each instruction is marked busy from the time the instruction
issues until the result has been written to the register file. Instructions attempting to
access a register are blocked while the register is busy. This is a very compact and effi-

cient way to represent dependency information.

Another dependency representation is implicit in the use of reservation stations.
Reservation stations are pending instruction queues placed in front of each function unit.
An instruction enters a reservation station after its instruction window dependencies
have been resolved. There are still register dependencies, as in scoreboarding. However,
in a system with reservation stations, results can be directly forwarded to the reservation

stations, rather than going through the register file.

A superscalar architecture may keep a larger set of instructions in the instruction
window than it can simultaneously issue. This is done so that the probably of finding
instructions to execute in parallel is increased. Dependencies between instructions may
be resolved at the decode and issue stages, or there may be some mechanism for main-

taining dependency information within the execution stages.

VLIW processors can track dependency information too. Pipeline hazards may
be checked in a VLIW processor. If a hazard is found, the entire pipeline would stall.
However, VLIW processors do not allow out of order issue so the control logic is sim-

pler.

Decoupled Access/Execute or just decoupled (DAE), architectures fall some-
where between VLIW and superscalar architectures in terms of their dynamic behavior
and complexity. Like superscalar architectures, DAE architectures fetch multiple
instructions each cycle. The difference is that DAE instructions are split into separate

instruction streams and the static execution order is maintained only within each instruc-

26

tion stream. The processors can only communicate with each other through a set of hard-
ware queues. Dependency relationships between the instruction streams are specified by
the queue operations encoded in the streams and enforced by the queue hardware. This
logic is less complex than the superscalar implementation because all the pending
instructions do not have to be checked for dependencies. The only dependency checking
required is whether the queues are full or empty. A block diagram of a DAE architecture

is shown in Figure 5.

The idea behind the DAE architecture and the reason for its name, is that there
will be two instruction streams: the Access stream and the Execute stream. The A pro-
cessor (Access) will perform address calculations to deliver addresses to the memory
system. The E processor (Execute) will use the data from the memory system to execute
the program. Hopefully, the Access processor will run far enough ahead of the Execute

processor so that the memory latency is hidden.

D

Fetch — Decode— Issuer» Execu}w Writ

Queues{j m

Fetch (| Decode» Issuef® Execute®» Write

FIGURE 5. Block diagram of a DAE architecture

A range of architectures and features is available to the systems designer with
respect to instruction issue and dependency control. One extreme is the VLIW architec-
ture where little or no dependency checking and control is performed. With a VLIW
architecture the onus is on the compiler to discover instruction level parallelism and
schedule the instructions accordingly. The other extreme is the superscalar architecture

where the hardware actively searches for parallelism between instructions. In between

27

these extremes is a continuum of architectures, each reflecting different choices made

about what the compiler should do and what hardware should do.

2.1 VLIW Architectures.

VLIW (Very Long Instruction Word) architectures grew out of work done on
horizontally microcoded processors. In a microcoded architecture there is generally
more parallelism available at the microcode level than there is in the instruction set. In a
desire to gain access to this additional parallelism, some machines, such as floating point
systems AP-120b and FPS-164, were designed to be programmed directly in horizontal
microcode [26]. This leads to greater performance but at the cost of an architecture

which is more difficult to program.

The difficulty of programming horizontal architectures has been attacked on two
fronts. On the hardware side, the instruction set was made more regular. Extra data paths
were proposed to remove arbitrary constraints and hardware idiosyncracies. This pro-
duced the first VLIW architectures [52][142]. VLIW machines are characterized as
being able to execute multiple operations each cycle from one instruction, where each
operation is similar to what would be found in a scalar processor. In other words, the low
level hardware details, such as register file bypass, are hidden from the instruction set
architecture, just as they would be in a scalar architecture. As the same time, a VLIW
architecture is still able to issue multiple operations per cycle, as in a microcoded archi-

tecture.

On the software side, algorithms were proposed to allow code to be efficiently
compiled for horizontal architectures. Trace scheduling [52] and software pipelining
[142] were developed for these architectures. The small block size found in typical pro-
grams is an even more severe problem for VLIW architectures than for scalar architec-

tures. Both trace scheduling and software pipelining attempt to alleviate this problem by

28

scheduling operations across block boundaries. These scheduling techniques are key to

achieving performance in a wide architecture. They are discussed further in Chapter IIl.

How well do VLIW architectures perform? Early work indicated great potential
for VLIW architectures. In [126], Nicolau and Fisher found available parallelism for a
VLIW from 3 to 988 times scalar. However, this study assumed perfect branch predic-

tion, which leads to optimistic performance predictions.

On more realistic models, Ellis finds speedups up to 7.4 on using the BullDog
trace scheduling compiler on a simulated VLIW, the ELI-512 [46]. In [35], Colwell et al.
find speedups between 1.0 and 4.4 times scalar using a trace scheduling compiler on a

single node Warp with a perfect cache.

Sohi and Vajapeyam provide an extensive study of VLIW architectures in [167].
They start with the assumption of 5 function units, integer alu, integer multiply, fp addi-
tion, fp multiply and memory, and vary the instruction width between one and four oper-

ations. They perform this experiment for both “modest” and “deep” pipelining.

They compile the first 14 Livermore Loops using loop unrolling. They find a
good speedups for an architecture which can issue two operations per cycle: 1.57 times
scalar for modest pipelines and 1.38 times scalar for deep pipelines. More operations per
cycle are found to be not as useful. Performance in a system with two operations per
instruction is found to be only 15% below the maximum obtainable performance. A
third operation per cycle only adds 10% to the performance of a two operation per cycle

system.

A constrained instruction format allowing one integer and one floating point
operation, but not two operations of the same type, has less performance improvement
than allowing arbitrary operations: 1.2 times scalar for modest pipelining and 1.13 times

scalar for deep pipelining. This is a fairly modest performance improvement. However,

29

the constrained instruction format allows a much simpler register file and bus format,

which would be less costly to implement.

A study by Love, comparing a VLIW and a DAE architecture, found the two
comparable in performance [105]. The benchmarks were a mix of small, hand compiled
programs and this study begs the question of what effect the compilation process would

have on performance.

The line between a VLIW and a superscalar architecture can be somewhat vague.
To reduce the code size, the actual implementation of VLIW architectures can provide
instruction formats to allow unused operation slots (NOPSs) to be left out of the object
code [167][36][35]. This decreases the size of the object code, but adds decoding over-
head. The next step, somewhere between VLIW and superscalar, is the static superscalar
Torch architecture, described Smith et al. in [162]. Torch executes instructions in the
static order determined by the compiler. The architecture allows access to a set of
shadow registers and buffers, allowing the compiler to speculatively schedule instruc-
tions across conditionals. Simulations of the architecture show performance in the 1.4 to
1.6 times scalar, even with a limited scheduling algorithm in the compiler. This com-
pares favorably with perhaps 1.5 to 1.9 times scalar performance for a dynamically

scheduled superscalar.

2.2 DAE Architectures

Decoupled Access/Execute (DAE) Architectures lie in complexity somewhere
between VLIW and superscalar architectures. DAE architectures execute two or more
instruction streams in a loosely coupled or decoupled fashion. The two instruction
streams are independently executed and dependencies are only explicitly checked and
enforced within an instruction stream. The streams are synchronized by the use of

gueues, which provide communications between the sub-processors.

30

The intent behind the DAE design is that one instruction stream will compute
addresses which are delivered to the memory system (the Access processor) and the
other instruction stream will use the data delivered from the memory system to execute
the program (the Execute processor). Given a nicely behaved program with no recur-
rences or other dependencies between the two streams, the Access instruction stream
will execute ahead of the Execute instruction stream. If the Access stream is far enough
ahead of the Execute stream, the memory latency is entirely hidden. The two instruction
streams can each execute at their own maximum rate and memory delays are removed

from the schedule. According to James Smith in [156]:

“The [DAE] architectures discussed in this paper permit
improved scalar performance in two important ways. First, the
Flynn bottleneck is sidestepped by using two instruction streams.
This effectively doubles the maximum available instruction band-
width. Second, because hardware queues are used for communi-
cation between the instruction streams, the streams can “slip”
with respect to each other. This leads to what is essentially
dynamic scheduling of instructions, previously provided only by
the sophisticated issue methods used in the CDC 6600 and IBM
360/91. Moreover, the instruction issue logic used in each instruc-
tion stream remains simple.”

The DAE architecture in [156] used the scalar part of the Cray instruction set as the
starting point for the definition and modified it by adding queues and queue branch
instructions [154][155][156]. Using the Cray instruction set allowed the Cray Fortran

compiler to be used to generate code with only minor modifications.

A DAE architecture does provide improved performance over a scalar processor.
In simulations comparing a DAE with a scalar Cray architecture, Smith et al. find that
the DAE architecture shows a 1.5 mean speedup over a scalar Cray processor [157].
They also find, by increasing the memory latency, that the DAE machine is less sensitive

to memory latency than the Cray-1. In a simulation of some of the Livermore Loops, the

31

vectorizable loops show no memory effects. The non-vectorizable loops show memory

effects equivalent to the Cray.

Smith’s DAE architecture was eventually implemented as the Astronautics ZS-1
[158][159]. An interesting note is found in [160]. A cache was not part of the DAE
architecture, but was added to the Astronautics “late in the design cycle.” Apparently
even though the access processor can execution in front of the execute processor to hide
the memory latency, there was still a bandwidth problem of supplying enough instruc-

tions and data from memory to support a dual issue processor.

Smith and Kaminski discuss some other architectural trade-offs in [155]. In par-
ticular this paper discusses DAE machines with both combined or split instruction
streams. They address the question of how early the streams are to be split. Designs with
an early instruction split can have separate instruction streams all the way from the I-
cache. The implementation in [155] uses separate caches and I-fetch units. It is also pos-
sible to divide the instruction streams later, after the I-fetch unit. The Astronautics ZS-1

was implemented with combined, i.e. late split, instruction streams.

In [109], Mangione-Smith, et al. study the performance of the Astronautics ZS-1.
They develop an ideal performance model for vector and scalar loops, based on the
available machine resources. They find that the Astronautics ZS-1 performance is
between 60% and 80% of the ideal for vector loops and 90% of the ideal for loops with
linear recurrences. They show the effects of memory latency and how allowing “slip”

between the instruction streams can mitigate the effects of memory latency.

The Astronautics ZS-1 was not the only DAE architecture to be implemented.
The MAP-200, by CSPI was an earlier DAE machine [34]. The MAP-200 contained two

decoupled, wide processors. Each of its two processors could execute two operations per

32

cycle, so an ideal speedup would be a factor of 4. In [34], Cohler and Storer found

speedups between 1.9 and 2.9 on a small set of benchmarks.

Another DAE architecture is the PIPE [62][48][49]. This is an interesting varia-
tion because this is a symmetric architecture, i.e. both processors implement the same

instruction set.

The PIPE was specifically intended to be implemented on a single chip using
VLSI technology. Like the Berkeley RISC, the implementation was severely constrained
by the technology of VLSI at the time of its implementation. PIPE was implemented as
a 16 bit machine, with 16 registers and a 16 word I-cache. Floating point operations

were performed by an off-chip co-processor.

Only a single processor version has been implemented. Since the DAE mode was
not implemented, no performance results for DAE execution are available. However, the
PIPE studies did show an interesting result which is applicable to pipelined and VLIW
architectures. In [48], Farrens found that padding shorter operations so that all function
units had the same latency produced shorter schedules than a variable latency implemen-
tation, because of contention for the result bus. This result was valid up to a latency of 4

cycles.

DAE architectures can be usefully extended to more than two processors. In
[13], Benitez and Davidson propose adding a “vector execution unit” to the WM archi-
tecture. They identify linear access expressions and execute these expressions on the
vector execution unit, which is a third execution unit separate from the access unit. They

report performance improvements of 1% to 43% for a small set of benchmarks.

In a more ambitious use, decoupling is used on the Warp to make programming a

systolic array easier [11][98][35]. This is a little different from the DAE architectures in

33

that the queues between the processors are directly accessible to the user in the W2 lan-

guage implemented for Warp.

2.3 Superscalar Architectures

The termsuperscalais commonly used by the architecture community to refer

to dynamically scheduled architectures which maintain scalar semantics and can issue
more than one scalar instruction per cycle [80]. That a superscalar architecture maintains
scalar semantics while issuing multiple instructions every cycle is probably the major
reason for their popularity: A superscalar version of an architecture can improve perfor-
mance of that architecture, while allowing existing programs to bevithout modifica-

tion. For a hardware company with an established customer/software base, this is an
insurmountable argument to develope a superscalar architecture. Most computer manu-

facturers are producing, or will produce a superscalar machine in the next few years.

The defining feature of a superscalar architecture is the ability to issue multiple
instructions each cycle. The processor must be able to fetch and examine multiple
instructions for possible issue each cycle. This is accomplished via an instruction win-
dow and a wide path, to carry multiple instructions to the instruction cache. Each cycle,
instructions are fetched into the instruction window. Each cycle the instructions in the
instruction window are examined for dependencies and resource conflicts to determine

which instructions can be issued.

To maintain an issue rate of greater than one instruction per cycle, the processor
must also be able to execute and complete multiple instructions per cycle. Multiple exe-
cution units are generally present in scalar processors, so there is no additional cost asso-
ciated with executing multiple function units. However, the ability to write multiple
results to the register file 3ot usually present in scalar architectures and adding extra

ports to the register file can be expensive. Extra read ports are also required to supply the

34

execution units with the extra operands required each cycle. The register file congestion
can be reduced by splitting the register file, at the cost of some performance, or by pro-
viding a buffer to accept results from the function units and funnel the results to the reg-
ister file. As reported by Upton, et al. in [185], not every instruction will require a result
to be written to the register file, and a result buffer can allow a register file with a single

write port to keep up with a multiple issue architecture.

The problem of routing multiple results to the register file is one example of a
general problem in multi-issue architectures. Because multiple instructions can produce
multiple results going to multiple destinations, routing the data between sources and
sinks is also a complex problem. Every place where multiple results can appear, e.g. the
writeback port to the register file, requires a multiplexor to determine which source has
produced a result and direct it to its proper destination. This is a much more complex
operation than just moving the data. In addition, multiplexors are relatively costly struc-

tures in terms of area.

The required dependency checking is another fundamental problem with super-
scalar architectures, one which requires complex hardware to resolve. Because scalar
semantics must be maintained, all the instructions currently being executed and all the
instructions being considered for execution must be compared to determine potential
conflicts. This means that all the instructions in the execution units and in the instruction
window must be checked for dependencies. The complexity of this operation grows as a
guadratic function of the number of instructions to be checked. The amount of hardware

required to perform this check in a single cycle quickly becomes unwieldy.

A general approach for expressing and resolving instruction dependencies is to
use ordering matrices. Tjaden investigates the use of ordering matrices in [178]. This
data structure succinctly captures the relationships between instructions, but the imple-

mentation of ordering matrices requires a large amount of hardware. In [182], Uht esti-

35

mates a cost of one million gates to implement an issue stage with a “reasonable” size
window, e.g. 32 long by 8 issue ports. These types of issue mechanisms, i.e. large regis-
ter widows with arbitrary dependency checking, have so far only been studied via simu-
lations and have not been implemented, because of the hardware cost. The “cost” of
dependency resolution hardware is not just in terms of chip area. The issue stage is
likely to be in the critical path of the processor and large amounts of hardware at this

point will also slow down the cycle time.

The high cost of the dependency checking has been mitigated somewhat in
recent superscalar designs by reducing the number of instructions in the instruction win-
dow and/or only performing a partial dependency check. The instruction window in the
next round of superscalar designs seems to be on the order of four or eight instructions

[76][97][102].

The dependency checking complexity has also been reduced by restricting the
type and number of dependency checks performed. One example of a simpler depen-
dency structure is a register scoreboard, first used in the CDC-6600 [175], and more
recently in the Motorola 88000 processor [117]. In a scoreboard, a bit is associated with
each register. A register is marked “busy” if it is the target register for an instruction cur-
rently being executed. Instructions are blocked from execution if any of their registers
are marked busy. Execution of other instructions is allowed to proceed. A register score-
board is a relatively simple structure to implement and effectively maintains dependency

information.

One well known method of supporting dynamic instruction scheduling are reser-
vation stations with register renaming. This architecture was first used in the IBM 360/
91 [9]. More recent proposals for this type of system are found in [79] and [70]. In a sys-
tem with reservation stations, each function unit maintains a queue of instructions wait-

ing to execute réservation statiorJs The instructions in the reservation stations are

36

ready to execute when the execution unit is free and all of their operands have arrived.
Moving the instructions which are ready to execute out of the instruction window

removes some of the congestion at the instruction window and simplifies its functional-

ity.

In a Tomasulo architecture, dependencies between the instructions are tracked
through a register renaming and forwarding mechanism [179]. Register renaming allows
instructions with output (write-write) dependencies to execute simultaneously. Operand
forwarding sends results from completing instructions directly to instructions waiting
for the operands in the reservation stations. This relieves congestion at the register file,

but requires a bus which can broadcast results to the reservation stations.

Another method of simplifying the task of instruction dependency resolution is
to introduce instruction categories [187]. In this method instructions are grouped into
sets (categories) which cannot interfere with each other during execution, e.g. integer
and floating point instructions. Instructions within a category execute sequentially.
Dependency resolution only requires checking the categories of the instructions in the
instruction window, which requires less decoding than finding and checking all the reg-

isters on all the instructions in the window.

While the more aggressive superscalar architectures purport to provide large per-
formance gains, they do so at the cost of additional hardware. The increased complexity

of the hardware has several problems:

1. It becomes more difficult to design and implement the architecture.

2. The amount of hardware required by a superscalar implementation can make
the design too large to be implemented on a single chip, introducing delays
due to chip boundary crossings.

Testing becomes more difficult.

More complex hardware may slow down the clock cycle, mitigating any per-
formance gains due to increased parallelism.

37

Because of the difficulties of implementing the complex hardware required for
large superscalars, i.e. superscalars with large instruction windows, large reservation sta-
tions, and complete dependency checking and resolution; actual implementations have
been considerably scaled back. Depending on the implementation, the speedup provided
by a realistic superscalar architecture may become quite modest: Smith et al. reporta 1.2
speedup over scalar in [164], Mahlke, et al. report 1.6 times scalar in [108], Lee et al.
report 2.2 times scalar for a 4 instruction window and 1.7 times scalar for a 2 instruction
window in [102]. Given these comparatively modest performance results, it seems
important to ask whether a simpler architecture would not perform as well or better by
allowing the clock cycle to be pushed further than is possible in a corresponding super-

scalar architecture.

2.4 Memory System Support

Some recent work on a memory system for a MIPS superscalar architecture has
highlighted the problem produced from combined increasing processor performance
with realtively decreasing memory performance. In [168], Sohi and Franklin show that a
traditional blocking memory system with a 10% miss rate delivers a throughput of just
0.4 references per cycle. This throughput is enough to supply a scalar load-store proces-
sor, which would have a one instruction per cycle issue rate, and typically needs a
throughput of 0.25 to 0.4 requests per cycle. However, this throughput will starve a
superscalar processor, which will be attempting to issue more than one instruction per
cycle. If a 1 IPC issue rate requires 0.4 requests per cycle, a 2 IPC issue rate would
require 0.8 requests per cycle. If the memory system can only service 0.4 requests per

cycle, the sustained issue rate drops to 1.67 IPC.

A similar result is shown in a study of superscalar SPARC architectures [102]. In
this study, the performance improvement of a 4-scalar (a 4 instruction window) versus a

scalar architecture drop from 2.0 times on a system with an infinite cache to 1.3 times on

38

a system with a finite cache. This result was with a 128K byte direct-mapped cache with
a 32 byte block. Given the drop in performance improvement, the memory system

appears to be a major factor limiting performance in this system.

This problem of limited memory throughput has been attacked in several ways.
Recently there has been interest in non-blocking loads, speculatively executed loads and
prefetch instructions. Non-blocking loads allow multiple loads to execute until the result
of an undelivered item is required. An early version of this type of system was designed
for CDC Canada [89]. In [168], a hon-block cache memory system of this type with a

maximum of 4 pending loads and 8 ports was able to remove most cache stalls.

Non-blocking loads help, but they are limited in how far back in the schedule
they can be moved by the small block size found in most programs. Loads are instruc-
tions which can raise exceptions. Attempting to load from a page which is not resident in
memory, or out of the programs memory space will cause an exception to be raised. The
conditional instruction which the load would cross is often a guard for the load instruc-
tion, i.e. the conditional determines whether the Ishduldbe executed. Generally, to
be able to move loads past block boundaries, speculative capabilities such as delayed
exceptions are required. Delaying the exception from the load until the use of the result
of the load allows specious exceptions to be squashed. The MultiFlow architecture [36]

had this feature. Details of it effectiveness are not available.

A study [151] adding speculative loads to the MIPS architecture shows good
results for benchmarks with large data sets. In this study, speculative loads bypass the
cache, going directly to memory. Executions with small data sets perform slightly worse
with this system than if speculative loads were not used. This is because when the data
sets fit entirely in the cache, some performance is gained due to reuse of data in the
cache. Since the cache is entirely bypassed, the data is not available for reuse. However,

performance improvements were reported for benchmarks where the data set does not fit

39

in the cache. One advantage of speculative loads over prefetch instructions is that specu-

lative loads do not consume additional instruction bandwidth.

Prefetch instructions are non-blocking, non-exceptional instructions which pro-
vide a hint to the memory system that a data item will be used soon. Callahan, et al.
implement prefetch instructions in [23]. In this study, prefetch load instruction were pro-
vided along with standard loads. Both load instructions put data into a single unified
cache. A compiler prepass was used to add prefetch instructions to the source code. A
prefetch load was added for the following loop iteration to every simple array reference
in an inner loop, i.e. references which make direct use of the loop induction variable.
They report a 20% improvement for a 50 cycle memory, but with an estimated overhead

of 28% for executing prefetch instructions and address calculation.

In [85], Klaiber and Levy add prefetch instructions to loops using a simple algo-
rithm. Their prefetch instruction loads into a prefetch cache, which is separate from the

normal load cache. This prevents the prefetch from interfering with normal load.

In [28], Chen and Baer study a system which includes both a prefetch mecha-
nism and non-blocking loads. In this case the prefetch is provided via a hardware predic-
tion mechanism. This has the advantage that extra instructions are not required.
However, the prediction is not as accurate or general as a software mechanism could
provide. They note that both prefetch and non-blocking loads are useful: “Prefetch
instructions exploit pre-miss parallelism and non-blocking loads exploit post-miss paral-

lelism.” They show that a combined approach has the highest performance.

In [27], Chen et al. use a combined software/hardware strategy handle load
latency. Speculative loads are used to remove as much latency as possible. In addition,
code is added to the schedule to allow loads to migrate past stores. The load is always

performed and the value of the bypassed store is saved. The address of the load and store

40

are checked and the proper datum is loaded. This strategy works well for certain codes
on systems with long memory latencies. The difficulty is that the amount of code
required to correctly implement this grows exponentially with the number of stores
bypassed. Also, the conditional code required to select the correct result can be problem-
atic on architectures with a large branch penalty. This can be mitigated by providing

additional instructions such as conditional moves.

[118] examines compiler generated prefetching in detail. Loop pipelining with
locality analysis is used to generate as few prefetches as possible. This gives very good
results, removing 50 to 90% of the cache misses in their benchmarks. In all cases, the

selective prefetching algorithm showed improved performance over no prefetching.

Memory latency hiding via prefetch and speculative load instructions has also
been done in the context of superscalar architectures. This work raises some interesting
guestions about DAE architectures. One of the major advantages cited for DAE architec-

tures is that they hide memory latency [157]:

“Another important characteristic of decoupled architectures is a
reduced sensitivity to memory access delays. This results from
the ability of the access instructions to run ahead and fetch data in
advance of when they are needed.”

It is not always possible to build a DAE schedule which does this, for instance where
there are recurrence relations in a loop. In this case the performance of a DAE architec-

ture is greatly reduced [34]:

“An interesting commentary on the architecture is to note that
once one has become used to the decoupling of the APS and the
APU, the need to synchronize, as in the examples above, becomes
quite disturbing. For example, one can see in the process above
how the APS must wait for the APU to catch up; then, after
SET(WI), the APU will in most cases be waiting until the APS
gets the first address out and the 1Q has data. Clearly, both of
these waits represent idle hardware--and resulting inefficiency.”

41

Perhaps a combination of prefetch and speculative load instructions would provide a bet-

ter means of hiding memory latency than a DAE architecture.

The possibility of adding prefetch instruction to a VLIW architecture is raised by
Callahan and Kennedy in [23]. They speculate that a VLIW implementation may reduce

the overhead, making prefetch instructions profitable:

“Software prefetching should be particularly useful on high-per-
formance systems that can issue more than one instruction per
cycles -- if the costs of issuing the prefetch instruction and com-
puting the prefetch address can be completely hidden under other
instructions, the reduction in execution time can be substantial.”

Prefetch and speculative load instructions have been shown to give substantial perfor-
mance improvements on scalar machines. It is likely that these type of instructions

would be even more useful on a VLIW architecture.

3 Similar Studies

One study which is closely related to our work is a comparison by Smith, et al.
between a dynamically scheduled superscalar processor and a “static” superscalar
[162][164]. In these studies, the dynamic superscalar architecture has a reservation sta-
tion style execution mechanism. The static superscalar is a VLIW type architecture
where instructions execution in-order. Support is included in the static architecture for
speculative execution by providing delayed-exception instructions and explicitly refer-
enced shadow registers and buffers. Both architectures have been simulated with instruc-

tion widows of size 2 and 4.

With an instruction window of size 4, the static superscalar shows a speedup of
1.6 over scalar as compared to a dynamic speedup of 1.9 over scalar, a difference of only

20% [162]. A 1.2 times speedup was available on the static architecture without specula-

42

tive execution support. Most of the performance improvement with speculative execu-

tions was found with moving instructions across only one branch [164].

A performance improvement midway between that shown by the static architec-
ture with and without speculative execution was found with a system with 64 registers,
versus 32 registers and 32 shadow registers. The fact that more non-shadow registers is
useful seems to suggest that the shadow register file may not be the correct organization.
It is not clear that a full set of shadow registers will be effectively used and a better
implementation of speculative results may be the reorder buffer found in the WISQ
project [137]. Perhaps a reorder buffer would allow both a large register set and specula-

tive execution.

Static versus dynamic instruction scheduling is studied in a comparison of a
VLIW with a DAE architecture by Love [107]. In this study, a set of benchmark pro-
grams was hand compiled and hand optimized for both a VLIW and a DAE architecture.
Simulations of the architectures showed little performance difference. The programs
were equally split as to which architecture had better performance. The performance

variation between the two architectures was also similar.

There were some problems with this study. One important area was that the pro-
grams were hand compiled and optimized for each of the architectures. How well a com-
piler can generate code for an architecture is a key part of the performance equation.
Compiling the benchmarks by hand fails to answer this important question. Building a
compiler to answer this question is time consuming, but it eventually must be done for

the results to have validity on a system where most of the executed code is compiled.

CHAPTER I
LOOP OPTIMIZATIONS

When evaluating an architecture, which compiler “optimization” techniques are
applied when generating code is critically important. Using no optimization techniques
or only machine independent techniques can lead to an over-estimate of the amount of
parallelism being exploited by the architecture [80] and an under-estimate of the perfor-

mance of the architecture [102][167].

The question of compiler capabilities becomes paramount when exploring archi-
tectures with varying scheduling policies, because architectures with static scheduling
rely heavily on the compiler for performance. Generating code by hand for a study of
architecture performance begs the question of compiler behavior because a large part of
how well the system performs is embodied in the algorithms in the compiler. This is a

flaw in a previous study of static versus dynamic scheduling by Love [107].

Given the importance of compiler optimizations, we still have to decide which
compiler techniques should be included in our investigation. All of the standard
machine-independent optimizations should be performed, such as those described by
Aho, et al. in [4]. Failure to perform these optimizations would skew the results toward
showing larger amounts of simple address calculations, as shown in [80]. This is espe-
cially true in the benchmarks we will use, the Livermore Loops, which are composed of
DO-loops containing array operations. For this type of code, traditional compiler optimi-

zations are very effective. The common and important optimizations for loops contain-

43

44

ing array references are loop induction variable detection and reduction, forward

substitution, code hosting, and dead code elimination.

In addition to generic optimizations, some machine dependent optimization and
code generation techniques are available, which have been specifically targeted for stati-
cally scheduled architectures. Loop unrolling, trace scheduling, and software pipelining
are scheduling techniques which have been used to improve performance on statically
scheduled architectures. These techniques could be combined in a single compiler. Loop
unrolling is generally used with trace scheduling [46], and loop unrolling has been used
with software pipelining [149]. However, trace scheduling and software pipelining have

not been combined, probably because of the complexity of these techniques.

1 Loop Unrolling

Loop unrolling works by replicating the body of a loop some (machine and code
dependent) number of times and scheduling the resulting code as a single basic block.
Replicating the loop body has a couple of performance advantages: Producing a larger
loop body provides a larger block of instructions for the scheduler to work with, which
gives the scheduler more options when positioning operations; Combining multiple iter-
ations allows induction variable computations to be combined. These performance
improvements are traded against the potential penalty caused by increased I-cache

misses on the larger loop body.

1.1 An Example of Loop Unrolling

A schedule for a short vector loop provides a good demonstration of loop unroll-

ing. This loop is shown in Figure 6.

45

Dol=1,N
X[i]=A*(Y[i] + Z[i])
end

FIGURE 6. Source for a vector loop

Assume we are scheduling for a scalar architecture with addition and multiplica-
tion function units, each whta 3 g/cle latency. The loads, stores and loop control will be
ignored and only the addition and multiplication will be scheduled. NOPs are also not
shown. A simple schedule for the loop body, without unrolling is shown in Figure 7.
1:t1 = Y[i] + Z[i]

2:

3:

4: X[il=A*tl
FIGURE 7. The loop body without unrolling

A schedule where the loop has been unrolled three times is shown in Figure 8.

There are no dependencies between iterations in this case, and unrolling the loop body
produces very efficient code.

1:t1 = Y[i] + Z[i]

2:12 = Y[i+1] + Z[i+1]

3:t3 = Y[i+2] + Z[i+2]

4: X[i]=A*t1

5. X[i+1]=A*t2

6: X[+2]=A*t3

FIGURE 8. The loop body with unrolling

1.2 Loop Unrolling Performance Benefits

Loop unrolling can be considerdte standard optimization technique: It is in
use in most commercial compilers, and loop unrolling is pervasive enough that its

absence from a compiler’s repertoire is cause for comment [111].

46

Loop unrolling works by concatenating multiple copies of the original loop body
to form a new, larger loop body. The number of copies made of the loop body is the
unroll count The loop bounds checking is not included in the copies of the loop body
and the bounds checking on the new loop is modified to reflect the behavior of the new
loop. For instance, if unrolling the loop in shown in Figure 6 four times would yield the
loop shown in Figure 9.

Dol=1,N/4,4
X[l =A* (Y[i] + Z[i])
X[i+1] = A* (Y[i+1] + Z[i+1])
X[i+2] = A* (Y[i+2] + Z[i+2])

X[i+3] = A * (Y[i+3] + Z[i+3])
End

FIGURE 9. Unrolled Loop

There is some overhead associated with loop unrolling. The number of loop iter-
ations may not be an integral number of unroll count, so code must be generated to
check for this case and execute any remaining iterations which cannot be executed in the
unrolled loop body. The cleanup code will generally be less optimal than the unrolled
code; if the loop typically executes few iterations, loop unrolling can be detrimental to
performance. One way to overcome this problem is to add code specially designed to
execute the loop a constant few iterations (Hwu calls this type of structsupexrblock
in [75]). There is also a secondary cost of loop unrolling in some architectures caused by

the additional cache misses due to the increased code size [115][116][40][171].

The efficiency of loop unrolling quickly drops in relation to the size of original
loop inefficiency and the unroll count. It is easy to see why this is the case. Each addi-
tional time the loop is unrolled, the idle portion of one iteration is removed. The idleness
reduces at the rate 1-(unroll_count_idle_fraction). For short loops with a small initial

efficiency, the loop may have to be unrolled a large number of times to significantly

a7

increase the efficiency. This makes loop unrolling not very effective at improving effi-
ciency on a short loop with high initial overhead, e.g. unrolling a loop containing a sin-

gle high latency operation.

] | —

0.5 e ———
o 5/ 50%—
2 0.6 FHALEL
) 1/ //V,
E -
o 0.4
5 —317%

0.2 4

O:

5 10 15 20 25 30 35 40 45 50
Number of Iterations in Body

FIGURE 10. Loop Efficiency vs. Number of Iterations Unrolled

The top curve shown in Figure 10, is the efficiency curve for a loop with initially
a 50% efficiency, e.g. 1 busy cycle and 1 idle cycle. The bottom curve is an initial 17%
efficiency, e.g. 1 busy cycle and 5 idle cycles. As can be seen here a loop starting at 50%
efficiency must be unrolled 9 times before the efficiency reaches 90% and a loop starting

at 17% efficiency must be unrolled 45 times before reaching 90%.

The disadvantage of having to unroll the loop a large number of times is that
more time is likely to be spent in unoptimized code sections. An unrolled loop is usually
constructed with an unoptimized version of the loop to execute iterations which cannot
be executed in the unrolled version. If the loop executes fewer iterations than the unroll
count or the number of iterations is not a multiple of the unroll count, the unoptimized

version is executed to handle these iterations. If loops are unrolled many times and exe-

48

cuted few iterations, loop unrolling will provide no advantage because most of the time

will be spent in the unoptimized version of the loop.

In spite of its drawbacks, loop unrolling is an effective optimization technique. In
a study of parallelism on a VLIW architecture [167], Sohi and Vajapeyam find no
speedup is provided by the architecture without loop unrolling. They do find a speedup
of up to 1.6x scalar on a four operation VLIW architecture with loop unrolling. In [102],
Lee, et al. find speedups between 1.5x and 9.0x scalar on a superscalar SPARC with an
instruction window of four. This study also includes software pipelining. They find loop
unrolling provides better performance than software pipelining, due to its ability to
remove branches and index computations. However, they also note that loop unrolling

can be combined with software pipelining to get the benefits of both techniques.

2 Trace Scheduling

Trace scheduling attempts to increase the size of the block of code presented to
the scheduler by scheduling the blocks from one commonly executed path through the
program (atrace). This was first proposed by Fisher in [52] as a way to increase the
available parallelism at the microcode level. The technique has also been applied to hor-

izontally microcoded architectures [96][104].

In [46], Ellis applies trace scheduling to an “8-cluster ELI” and finds good
speedups. He was able to get speedups of up to 7.4 times scalar on some problems.
Unfortunately, he does not determine how much of the improvement was due to trace
scheduling and how much was due to other optimizations, namely loop unrolling. The
trace scheduling compiler and ideas from the ELI project ultimately became the basis

for the MultiFlow VLIW architecture of [123].

49

Trace scheduling works by allowing operations to migrate across conditional
operations, which normally block code motion. The entire trace is treated as one basic
block for scheduling purposes and operations in the trace can be scheduled in whatever

order is most beneficial, limited only by data dependencies.

After the operations in the trace have been scheduled, clean-up code is added to
the off-trace branch of every conditional to compensate for any operations which have
made a block crossing. This is one of the main ideas behind trace scheduling: That code
could be added to undo the effects of speculative execution of an operation when the
guarding condition fails. For instance, suppose that a simple increment is to be moved

above a conditional. This transformation is illustrated in Figure 11.

|FX>O—‘ i=i+1
i=i+1 IFX>0 i=i-1

FIGURE 11. Trace Scheduling Example.

In this case, the effect of the increment instruction can be can be undone on the
off-trace branch of the conditional by adding a decrement instruction. However, this
assumes that moving the increment instruction above the conditional will not cause an
extraneous overflow exception. This is one potential problem with trace scheduling: an
instruction executed earlier than normal may raise an exception which it otherwise
would not. For instance, loads are often advantageous instructions to move up in a
schedule and they can normally produce exceptions. MultiFlow allowed loads to be

trace scheduled by adding a non-exception raising load instruction [36].

50

Another problem with trace scheduling was that at first it was not clear whether
the trace scheduling algorithm would always terminate. In [127], Nicolau showed that
trace scheduling will terminate, but that there could be an exponential number of addi-
tional operations produced, which is practically the same as not terminating. Sequences
of conditional constructs can cause this phenomenon. This is unfortunate because long
sequences of conditional code are exactly where it would seem to be appropriate to

apply trace scheduling. It seems this is not the case, as noted by Ellis in [46]:

“But as discussed in chapter 8, even with the automatic profiler
these programs had little available parallelism. This had many
branches with probabilities close to half (branches that went each
way about the same number of times). Trace scheduling will
never do very well on such programs, because the core assump-
tion of trace scheduling is that branches mostly go one way or the
other.”

Trace scheduling is also limited in its ability to handle loops. A trace must be a
linear sequence of operations with no cycles, so back edges of loops are excluded. Fisher
speculates on some possibilities for extending trace scheduling to handle loops, but these

were not implemented [52].

It is also not clear how much of a performance benefit is provided by trace sched-
uling when this technique is used on a VLIW architecture. In the Bulldog compiler, Ellis
used trace scheduling with loop unrolling to improve the performance of loops. He
reports good results, but leaves open the question of how much performance improve-
ment came from trace scheduling and how much came from loop unrolling. [102]
reports speedups of up to 9 times scalar for a superscalar SPARC using loop unrolling

alone, so this is a real question.

Colwell reports the performance of the MultiFlow VLIW machine in [36].
Unlike the work in [46], which was a simulated architecture, the MultiFlow contained

all the idiosyncracies of a real machine and the results are much more conservative than

51

the results from the earlier ideal machine. The 14 operations wide system only achieves
a speedup of 1.5 over the 7 operations wide system. While this is a respectable speedup
on a real machine, this type of performance increase has been shown on systems with

less resources, specifically less instruction width, e.g. in [162].

Trace scheduling is an interesting idea. Allowing operations to migrate across
block boundaries can be a powerful technique for a compiler to have in its repertoire.
And Ellis has demonstrated that a trace scheduling compiler can be constructed for a

complicated architecture.

Trace scheduling long blocks of operations may be an overuse of a good idea.
Allowing operations to migrate across block boundaries during static scheduling can be
beneficial for performance. This idea has shown up in other systems which do not pur-
port to be trace scheduling. In [162], Smith, et al. describe the Torch processor, which
uses delayed exception instructions and shadow buffers to allow instructions to be
scheduled across block boundaries. They report good results, even though their system
only allows a single conditional to be crossed. In [27], Chen, et al. add compensating
code to allow loads to migrate across stores in order to handle long memory latencies.
They show good results for intermediate latency memory (20 cycle latency), even
though only one store can be crossed. Systems employing memory prefetch instructions
provide a non-blocking, non-exceptional load instruction to allow loads to be migrated

to earlier than normal positions [85][23].

One of the ideas central to trace scheduling, allowing code to migrate across
block boundaries with support to compensate for the effects of early instruction execu-
tion, has been incorporated into at least academic thought. Execution profiling to deter-
mine the most likely branch direction is also popular due to the performance

improvement available by correctly predicting branches [72][103][112]. Even though

52

trace scheduling compilers are uncommon, the ideas used in trace scheduling are still

actively pursued.

3 Software Pipelining

Software pipelining first appeared in microcode [87] and was developed as a
compiler scheduling technique by Rau, et al., along with VLIW architectures [142]
[143] [144]. Software pipelining developed for the same reasons as trace scheduling and
has the same effect, i.e. software pipelining looks for larger amounts of parallelism by
scheduling operations across basic blocks. However, trace scheduling selects linear
sequences of blocks without back arcs and specifically avoids loops. Software pipelining
works specifically on loops. In trace scheduling, operations are allowed to migrate
throughout the trace, potentially crossing block boundaries. In software pipelining oper-
ations are allowed to migrate between iterations, potentially crossing the block boundary

at the end of the loop.

In sequential loop execution, each iteration begins execution after the completion
of the previous iteration. The sequential execution of three iterations of a loop is illus-
trated in Figure 12.

Time—»

i+1

-«—— lteration

I+2

FIGURE 12. Sequential loop execution

In a software pipeline, successive iterations are allowed to begin execution

before all the preceding iterations have completed execution. The pipelined execution of

53

three iterations of a software pipeline is illustrated in Figure 13. Software pipelining pro-
vides a form of execution for the iterations which behaves like a standard hardware pipe-

line.

Time—p

i+1

-«—— lteration

i+2

FIGURE 13. Pipelined Loop Execution

In software pipelining, a loop is treated as the basic unit of scheduling. Opera-
tions are allowed to migrate across the block boundary at the beginning and end of the
loop, into previous iterations or out of the loop into prolog or epilog code. Iterations of
the loop migrate into each other with subsequent iterations beginning execution before
previous iterations have completed. This compresses the schedule, allowing higher per-

formance than can be achieved by scheduling only within the body of the loop.

At any given time a software pipeline can be executing instructions from several
iterations. This potentially provides parallelism not otherwise available. The amount of
parallelism available is still dependent on the particular program being compiled. Con-
trol and data dependencies must still be honored. However, the artificial constraint
imposed by block scheduling that each block/iteration must complete before the next

block/iteration is entered, has been relaxed.

A software pipeline is constructed by dividing each iteration into a series of

equal size blocks of instructions. These blocks of instructions are the schedule stages.

54

Instructions are scheduled within each stage such that stages from different iterations

can be executed simultaneously. New iterations are initiated as each stage completes.

There are three distinct phases to pipelined loop execuBimiog, Kernel, and
Epilog. On the first few iterations of the loop, the pipeline is not full and not all the pipe-
line stages are executing. This is the prolog phase. Once enough iterations have been ini-
tiated, the pipeline will be full and all stages will be executing. This is the kernel phase.
Once the final iteration has begun execution the pipeline will begin to empty and again
not all stages will be executing. This phase is the epilog. The execution phases of a three
stage loop is shown in Figure 14.

Ilteration——»

«+—Time
o
N

FIGURE 14. Phases of pipelined loop execution

Some mechanism is necessary to insure correct behavior in these different
phases of software pipeline execution. Software pipelining can be implemented via
either: 1) code segments constructed to execute each of the stages, or 2) conditional
instructions with hardware support to execute only instructions applicable to the current

execution phase, as in the Cydra 5 [144].

55

The key part of constructing a software pipeline is finding a steady state kernel,
i.e. a schedule for the kernel must be found which can execute the stages from different
iterations of the pipeline simultaneously. The same code must be used to execute succes-
sive iterations of the loop, thus the steady state requirement. The kernel should be as
short as possible as this will generally reduce the time to execute the loop, even though
the number of stages will tend to increase. This is analogous to constructing deeper

hardware pipelines.

3.1 An Example of Software Pipelining

A schedule for a short loop on a VLIW architecture will be used to demonstrate
the construction of a software pipeline. We will reuse the vector loop from the loop
unrolling discussion for our example (Section 1.1 on page 44). The source code for this

loop is shown again in Figure 15.

Dol=1,N
X[i] = A (Y[i] + Z[i])
End

FIGURE 15. Source for a vector loop.

We will develop a schedule for a VLIW architecture with pipelined addition and
multiplication function units, each with a 3 cycle latency. The loads, stores and loop con-
trol will be ignored and only the addition and multiplication will be scheduled. NOPs are
not shown. A simple schedule for the loop body is shown in Figure 16.
1:t1 = Y[i] + Z[i]

2:
3:
4: X[[=A*tl

FIGURE 16. The loop body without unrolling.

Execution of this schedule, starting with i = 1 and executing for two iterations would

execute the stream of instructions shown in Figure 17.

56

St1 = Y[1] + Z[1]

1

2

3:

4: X[1]=A*tl
5:11 = Y[2] + Z[2]
6:

7

8

9

X[2]=A*tl

FIGURE 17. Execution of a few iterations of a loop without unrolling.

This loop is a DOALL type loop - there are no dependencies between loop iterations.
Because there are no inter-loop dependencies, the execution of this stream of instruc-
tions can be compressed. If we first look at the execution stream, compressed as much as
possible and executed for six iterations, the execution will be much more efficient, as is

shown in Figure 18.

1:t1 = VY[1] + Z[1]

2:12 =Y|[2] + Z|2]

3:t3 =Y[3] + Z[3]

4: t4=Y[4] +Z[4]; X[1]]=A*t1
5. t5=YI[5] + Z[5]; X[2] = A *t2
6: 16 = Y[6] + Z[6]; X[3] = A *13
7:X[4]=A*t4

8: X[5] =A*t5

9: X[6] =A*t6

FIGURE 18. Compressed execution of a few iterations of the loop.

There are a number of interesting features in the execution of this loop. It is exe-
cuting in a pipelined fashion. There is a period of time, cycles 1 to 3 is the prolog phase,
where the pipeline is filling up. The kernel phase is cycles 4 to 6, where the pipeline is
full and running at maximum efficiency. Cycles 7 to 9 are the epilog. There are no more

additions to do and the pipeline is draining.

57

With one small caveat, the instruction shown in cycle 4 of Figure 18 forms the
kernel of this loop, which can be coded in one instruction in this case. A software pipe-

line schedule for this loop is shown in Figure 19.

Prolog Tt = Y[1] + Z[1]

1
2:t, = Y[2] + Z[2]
3: t3 = Y[3] + Z[3]

Kernel 4: tipz = Y[i] + Z[i]; X[i-3] = A * t.3)03

Epilog 5: X[N-2]=A*t;
6: X[N-1] =A*t,
7:XIN] = A*tg
FIGURE 19. A Software Pipeline version of the loop body.

The caveat to this schedule is that the temporary values produced by the addition must
all have separate locations which are accessible by the multiplication, 3 cycles in the
future. In other words, there are 3 simultaneously live values of t and this must be
accounted for in the schedule. As is discussed in more detail later, there are several ways
to handle this, by either providing hardware support, or unrolling the kernel and renam-

ing each of the instances.

The details of how this schedule is coded also depend heavily on the hardware
support available in the machine. If the machine has explicit hardware support for soft-
ware pipeline execution, the schedule would be coded by just giving the kernel. The ker-

nel is shown in Figure 20.
tiez = Y[I] + Z[i]; X[i-3] = A * t(i-3)03
FIGURE 20. The Kernel of the loop body.

The hardware would execute the prolog and epilog by executing the appropriate opera-

tions and squashing the remaining operations.

58

If pipelined loop control is not available in hardware, the prolog, epilog, and ker-
nel must be expanded into separate sections of code and the control code must be added
which determines when to enter and exit these sections. In addition, some compensation
code may be necessary on exits to put the program in a known state. This is true, for
instance, where the kernel has been unrolled to map temporary values to different regis-
ters. Depending on when the loop exits, the register mapping may not match the code
following the loop, or the epilog. Compensation code must be added at these exits to

align the registers.

Because of the unrolling, a pipelined loop may also require that some iterations
be executed outside of the pipelined code. This is the same as in standard loop unrolling,
when the iteration count is not a multiple of the unroll count. A pipelined loop, imple-

mented without hardware support, might have the structure shown in Figure 21.

Prolog 1:t1 = Y[1] + Z[1]
2:12 = Y[2] + Z[2]
3:t3 = Y[3] + Z[3]
Kernel 4:t1 = Y[+ Z[i-3]; X[= A* 11
5:12 = Y[i+1] + Z[i-2]; X[i+1] = A *t2
6: t3 = Y[i+2] + Z[i-1]; X[i+2] = A* 3
Epilog X[=A*
8: X[i+1] = A*t2
9: X[i+2] = A*t3

Compensation Code

Exit
FIGURE 21. A Software Pipelined loop body with register expansion.

In this example, the kernel has been unrolled to map the 3 live temporary values into

separate registers. The control instructions and compensation code have not been shown.

59

In contrast to a pipeline schedule, a schedule produced by standard loop unroll-
ing looks much the same except that the code is packed together into a single block. In
standard loop unrolling, the pipeline would have to be filled and drained each iteration of
the unrolled loop, so the efficiency is not as high as with the pipelined loop, where the

kernel executes at maximum efficiency for most of the iterations.

3.2 Software Pipelining Scheduling Methods

There are several methods for constructing a software pipeline. One method is to
construct the software pipeline directly in the scheduler. This is the method used by Lam
and Rau [99][144] and is also used by Tortoise (for more detail see Chapter IV,
Section 4 on page 94). As each operation is scheduled, it is subject to constraints that the
operation complete before its result is required by subsequent iterations and that
resources are available to execute the operation at its relative position in all stages. These
constraints are in addition to the normal constraints that an operation can only execute
once it operands have been computed and that there are enough resources to execute the

operation with respect to one iteration.

A problem with this type of scheduling is that the scheduling algorithm may fail

to find a schedule. On attempting to schedule an operation, it may not be possible to
have the operation complete before its result is required in subsequent iterations. This is
because scheduling each operation in the kernel implies that the operation will execute
at the same relative time in all iterations, including future iterations. Another previously

scheduled operation may have been scheduled too early to allow the current operation to
complete. If there were only resource constraints or only dependency constraints this
could not happen, but trying to satisfy both types of constraints at once causes this prob-

lem.

60

It is possible that the schedule could be repaired by increasing the size or number
of the stages, thus moving future operations later in time, and repairing the data struc-
tures to reflect the new operation times. However, this may require as much work as
rebuilding the schedule. This method also implies that dependencies can be arbitrarily
delayed. This is generally true only if each dependency is associated with a register as in
most GPs. In microcode, where a data path must be an exact length, this reordering may

not be possible.

Some of the more difficult scheduling issues were avoided in the early systems
by only using software pipelining in restricted situations. In the Floating Point Systems
compilers [181][26], software pipelining was restricted to a single fortran statement
which contained no recurrences. Later work by Rau et al., on what became the Cydra 5,
tried to minimize the problem of scheduling by removing as many resource constraints
as possible [142][144]. This was provided in the form a large crossbar register file. This
provided a register file with a large number of registers and a large number of ports, thus

eliminating contention for registers and access.

While sufficiently complex loops could still require rescheduling, rescheduling is
generally not a major problem. The stage size necessary to find a valid schedule can usu-
ally be estimated fairly accurately. Lam, when working on the compiler for the Warp
project, reported that a schedule was usually produced after only one or two tries [99].
Lam also found a method for dealing with conditional code within a software pipeline.
This was not possible with earlier software pipeline schedulers, which restricted the

body of the loop to be a basic block [26][142][181].

Some scheduling algorithms which attempt to reduce the scheduling failure rate
have been developed for microcode schedulers. Microcode tends to have more con-
straints than higher level instructions, so reducing the failure rate becomes more impor-

tant. One method, discussed by Allen et al. in [7], is to use a two step scheduling

61

process. The operations are first scheduled using forward (inter-iteration) dependencies.
The sorted operations are then scheduled for software pipelining. This tends to reduce
the failure rate because critical operations can be found, i.e. operations are already close
to their final order and critical operations will have a higher probability of being frontier
nodes. Also, operations later in the schedule can be moved because they are only tenta-

tively scheduled.

Another method for constructing a software pipeline is to compress an already
complete schedule. In this method, scheduling starts with a standard basic block sched-
ule for the loop. The loop is unrolled and then examined to find a steady-state segment
which becomes the kernel. The remaining portion of the unrolled schedule becomes the

prolog and epilog. This process is repeated until the kernel can no longer be compressed.

This iterative method has the advantage that a schedule will be found in a well
bounded amount of time [6]. Unfortunately, the time actually required to produce a
schedule may be larger than that required by the construction method. This method also

tends to produce less compact schedules than the construction method [7].

Another advantage of the compaction method is that, since the method starts
with a complete schedule, resource constraints are more readily incorporated into the
algorithm, and the algorithm can be more easily applied as a post-pass assembler optimi-

zation [77].

An interesting aside is the work on digital signal processors by Schwartz in
[152]. In this work the goal was to find an optimal schedule and then construct the hard-
ware to execute the schedule. Optimal schedules could be found because there were
effectively no hardware constraints. This work also used a slightly more general type of
execution than is usually in most systems. Generally, in a VLIW or horizontal architec-

ture, the function unit executing a particular operation at a given point in the schedule is

62

fixed, because the schedule is static. In the processor used by Schwartz, the function unit
executing the operation could be shifted each iteration. This allows certain types of com-
munication patterns to be optimized, producing more compact schedules than are other-

wise possible.

3.3 The Performance of Software Pipelining

Software pipelining has been shown to work quite well in on a number of diverse
architectures. On the Warp systolic array, Lam found loops scheduled using software
pipelining to have an average 3 times performance increase over block scheduling [98].
Optimal performance was achieved for the majority of the loops in these benchmarks.
Software pipelining has demonstrated to provide significant performance improvement
on the Cray, over the Cray Fortran compiler [173][45]. These studies showed the perfor-
mance of software pipelining on the Cray architecture was sometimes limited by the
small number of registers available on the Cray. In a later study, Mangione-Smith et al.
found that performance could be improved on the Cray architecture if the vector regis-
ters were reformatted to complement software pipelining by providing more and shorter

vector registers [110].

A discouraging note on performance of software pipelining is found in [102].
Lee et al. study scheduling on a superscalar SPARC and find loop unrolling superior to

loop pipelining:

“This result is from the advantage loop unrolling has in reducing
the loop control overhead and indices increment operations.”

However, the authors do note that loop unrolling and software pipelining are comple-
mentary techniques and their best results are from a combined use of unrolling and pipe-
lining. A similar result is found by Weiss and Smith [191]. In this study, loop unrolling
and a simple software pipelining algorithm is used to schedule code for a Cray-1S. Loop

unrolling provides a speedup of 1.8, while software pipelining provides only a 1.3 times

63

speedup. However, a very simple software pipelining algorithm is used in the study and,
as noted in other studies [173][45][110] the Cray has too few vector registers to allow

the most effective use of software pipelining.

Since some studies have reported good results with software pipelining and oth-
ers have reported better results with loop unrolling, it is worth wondering if one of these
techniques is better than the other and if so, which technique. The performance of soft-
ware pipelining is very dependent on the target architecture and the structure of the par-
ticular loop being scheduled. In the limit, a scalar architecture with one cycle
instructions will not benefit from software pipelining. An architecture with intermediate
latencies and parallelism may find loop unrolling to be more beneficial because of its
ability to remove loop dependent computations. On the other hand, a loop with a depen-
dency structure which does not allow instructions to be moved or removed will not ben-

efit from loop unrolling either.

Software pipelining will have maximum benefit on a architecture with long
latencies and a large amount of parallelism. As discussed in Section 1.2 on page 45, itis
more difficult to increase the efficiency on such an architecture with loop unrolling
alone. Another factor which can favor software pipelining is difficult to schedule
resource constraints, which makes it difficult to compact unrolled loops. For instance,
suppose that our example loop in Figure 6 is to be scheduled for a target architecture
which allows an addition and multiplication to be started each cycle, but not two addi-
tions or two multiplications. A schedule for this loop created using loop unrolling cannot
be made 100% efficient because multiple additions cannot be issued together at the
beginning of the loop body and multiple multiplications cannot be issued together and
the end of the loop body (see Figure 8). Software pipelining allows these parts of the

schedule to be migrated out of the loop body, providing better efficiency.

64

Perhaps the best characterization of a good architecture for software pipelining is
provided by the microarchitectures on which software pipelining was developed. These
architectures tend to have wide instructions with constrained resources and operations
with long latencies. Software pipelining fits these architectures quite well, although
hardware support for software pipelining does help [87]. This idea is expanded and gen-

eralized by Rau et al. in [141][142][144][149].

Software pipelining appears to be a successful scheduling technique, one which
needs to be at least be considered in an optimizing compiler. However, its promise is
tempered by that fact that it places heavy demands on machine resources, particularly

instruction cache and registers.

CHAPTER IV
THE STRUCTURE OF THE OPTIMIZING
COMPILER TORTOISE

There are two important reasons for using a tailored optimizing compiler when
studying scheduling techniques. First, aggressive scheduling techniques require good
data flow information, which is normally only found in optimizing compilers. In particu-
lar, the performance of aggressive scheduling techniques is highly dependent on flow
analysis to drive program transformations such as induction variable strength reduction
and promoting inter-loop operands into registers. In addition, the instruction mix pro-
duced by an optimizing compiler can be different from the mix produced by a non-opti-
mizing compiler. For instance, in [80], Jouppi and Wall find that various types of
optimizations and register allocation strategies can vary the measured amount of paral-
lelism by a factor of almost 2. The same study found a significant difference in parallel-
ism in the Livermore Loops when CSE detection was added for array reference
computations. The difference instruction mix seen by the architecture can bias the
results of performance related experiments. As we shall see in Chapter V, in addition to
just being an optimizing compiler, the compiler must also be tailored to the architecture,

to avoid bias from the scheduling techniques employed within the compiler.

An alternate approach to using a tailored optimizing compiler would be to test
the performance characteristics of various architectures using a standard, widely avail-
able compiler such as the Gnu C compiler. This approach has the appeal that a compiler
is more easily obtained and much less compiler work is necessary. Many architectural

studies take just this approach (see Chapter Il). This approach does have some limita-

65

66

tions, however. In particular, it ignores the issue of how different compilation techniques
interact with the architecture being studied. The assumptions inherent in the particular
compilation algorithms and techniques used in the compiler will benefit computer archi-
tectures which match those assumptions and will be detrimental to performance on
architectures where those assumptions do not hold. In particular, keeping the compiler
invariant in our study would not allow us to explore trade-offs at the compiler/hardware
boundary, e.g. “Is it better to have good register allocation algorithms in the compiler or

register renaming in the architecture?”

Another widely used technique is to use a standard compiler, but apply a post
pass after code generation to adapt the code produced to a particular architecture, or to
apply optimization techniques. While more flexible than just changing the code genera-
tor, this limits the types of compilation techniques which can be studied because of the

limited information available after code generation.

We would like to have the option of using aggressive scheduling techniques for a
range of architectures. This requires that we have available an optimizing compiler
which we can modify as necessary to implement our algorithms. Having decided that it
is important to have such a compiler, the questions remain of where to obtain a compiler

and what techniques to employ within the compiler.

Compilers are valuable commodities and are not readily available in source
form, especially high quality optimizing compilers. The one exception is the Gnu C
compiler, which is widely available. The problem with using Gnu C, at least in the ver-
sion available at the time (1.37), was that it did not do much in the way of collecting flow
analytic information and thus was weak in the area of loop optimizations. Since this was
exactly the area which we wanted to study, this deficiency needed to be corrected if we
were going go use the Gnu compiler. This left us with the options of extensively modify-

ing the Gnu compiler or writing our own compiler.

67

We decided to write our own compiler for a number of reasons. The internals of
the Gnu compiler seemed arcane and we did not want to spend our time becoming fluent
in them. In addition, writing our own compiler would give us full control over the struc-
ture of the compiler and allow us to build a flexible basis for compiler and computer
architecture studies. However, we are not particularly interested in the front end of the
compiler, so we use the Gnu C front end to parse the source and build an intermediate
representation (IR). Our compiler starts from this IR, runs flow analytic routines and

produces assembler for the target architecture.

We are still left with some major issues to resolve: What should be the basic
structure of the compiler and what language should we write it in? The basic structure of
Tortoise derives from the desire to drive much of our transformations and scheduling
from flow analytic information. The compilation process was developed on a theme of
repeating passes of: 1) produce and gather some flow information followed by; 2) trans-
form the IR based on the flow information. To support this process, the program being
compiled is represented as directed graph where the nodes represent operations deco-

rated with flow information, and the edges represent dependencies between the nodes.

For the implementation language we wanted to use something more powerful
than C, which would aid us in exploring algorithms, perhaps at the cost of some runtime
efficiency. Lisp has been used in research projects for this reason and was considered for
this project. However, at the time this project began, Mathematica had just appeared and
seemed to provide some interesting capabilities, so we decided to use it to implement
our compiler. In particular, Mathematica provides extensive pattern matching on expres-

sions which allowed us to quickly implement and test some of our algorithms.

We did run into two problems with using Mathematica. The first was that our
data structures quickly deviated from the domain on which the Mathematica pattern

matching worked. The Mathematica data structure is an expression tree. Our data struc-

68

tures quickly became general directed graphs with cycles, which cannot be directly rep-
resented as Mathematica expressions, and thus the pattern matching was not available to
us. We could still use pattern matching where we either maintained or reconstructed a
Mathematica expression, but we could not use it to match portions of our graph, which
would have been a good way to drive code generation. We had to implement the pattern
matching on the graph by hand, just as we would have to have to do if we had written in

C or Pascal.

The other problem we encountered using Mathematica will be familiar to users
of Lisp and other interpreted systems. The execution speed of an interpreted system is
acceptable when implementing small programs and test cases. However, once we began
to run our compiler with full data flow analysis and code generation on complete pro-
grams, the execution speed became unbearably slow. By the time it became obvious how
slow the compilation speed was going to be, we were committed. We derived the name

for our compiler, Tortoise, from it execution speed.

In Chapter Ill, we examined a number of aggressive scheduling techniques. We
choose to implement loop unrolling and software pipelining. We are particularly inter-
ested in: 1) “scientific code”, which means loop optimizations are important and, 2)
static architectures. The literature indicated that both loop unrolling and software pipe-
lining are effective techniques for scheduling code for static architectures, and so it

seemed that Tortoise should employ loop unrolling and software pipelining.

We choose not to implement trace scheduling. First of all, it seemed that imple-
menting trace scheduling would require an additional large amount of effort, and from
the literature, trace scheduling seems to require some types of speculative execution
capabilities to be effective. This was outside the realm we wished to explore in this

study, so we choose not to implement this technique.

69

In addition to the scheduling techniques, we needed to implement the data flow
analysis necessary to allow us to support the transforms required by the techniques. And,
to fulfill the intent to be a highly optimizing compiler, we needed to implement the trans-
formations which would normally be employed in such an optimizing compiler. This
includes induction variable detection and strength reduction, common sub-expression
detection and reuse, load/store and extraneous assignment removal, etc. The remainder
of this chapter will examine the particular techniques employed in Tortoise and its orga-

nization.

1 The Organization of Tortoise

The overall organization of Tortoise will be familiar to any student of compila-
tion. There are three major sections: 1) the front end; 2) the data flow analysis and opti-
mization section; and 3) the code generator and scheduling section. The Gnu C compiler
(gcc) is used as the front end. It produces an intermediate representation (IR) consisting
of lists of RTL expressiond70]. The RTL expressions are composed of simple unary or
binary operations which are close to machine level, i.e. they generally have a simple
translation into machine instructions. The IR is dumped from gcc as early as possible,
before register allocation or optimizations such as loop unrolling, which tend obscure
the structure of the program. Symbol table information and the initial block structure
graph are also saved from gcc. The IR from gcc is parsed and used to form a Program
Dependence Graph (PDG), which is analyzed and optimized in the data flow analysis
and optimizations section of Tortoise. The PDG is used by the code generation and
scheduling section to produce assembly code. Assembly source code is produced by
Tortoise to avoid having to produce machine code directly. The overall structure of Tor-
toise is shown in Figure 22. More detailed diagrams of the analysis and code generation

sections are shown in Figure 23, on page 73 and Figure 35, on page 94.

70

Front End
(gcc)

|
RTL code
symbol table
block structure

Data Flow Analysis
and Optimizations

Program Dependence Graph
flow information

Instruction Selection
Scheduling
Code Generation

Machine Instructions

FIGURE 22. Organization of Tortoise

The front end of gcc performs some transformations normally associated with
loop optimizations. Gcc rewrites array reference expressions as address expressions and
also performs some other optimizations, such as strength reducing integer multiplica-
tions to shifts. These optimizations tend to be detrimental to the operation of Tortoise:
The transformed expressions are often removed by later transformations and the extra
operations add cases to routines which search for patterns in induction expressions. Hav-
ing to deal with these types of optimizations is an unfortunate consequence of using a

preexisting front-end.

71

2 Data Flow Analysis and Transformations

As stated previously, data flow analysis is necessary to allow us to support the
program transformations we wish to make with Tortoise. The goal of data flow analysis
is to discover the data flow dependencies between the memory locations referenced in
the source program. We need to know which operations will share data through these
locations so that we can reorder the operations properly. For instance, if two operations
are linked via flow dependency, the dependent operation must execute second because it

needs the data produced by the independent operation.

An anti-flow dependency, also called a write-after-read dependency, is where the
second operation writes to a location following a previous reference. An output depen-
dency is where two operations write to the same location. Anti-flow and output depen-
dencies also impose an ordering on operators, because they indicate the reuse of a
location and thus destruction of data, rather than sharing of data. An input dependency
indicates multiple references to a location and does not impose an ordering. It does how-

ever, indicate sharing of data, and this knowledge can be used for some optimizations.

Traditional data flow only collects this much information, i.e. for every pair of
dependent locations in a program, the dependency is categorized as a flow, an anti-flow,
or an output dependency. However, in both software pipelining and loop unrolling, we
can and do make use of some additional informationitdration distance Since soft-
ware pipelining, and to some extent loop unrolling, schedules multiple iterations of a
loop to execute simultaneously, we can produce more compact schedules if we know
exactly how far apart, in terms of loop iterations, the operations in the dependency are.
This information is not traditionally useful because traditional schedulers would never
simultaneously consider the operations from multiple iterations. In our data flow analy-
sis routines, we will collect the dependency type (flow, anti-flow, output, and input), and

the iteration distance, where it can be determined to be a constant, integral number.

72

As the dependency information is gathered, it must be recorded and maintained
in a form which will be usable by the compiler. There are two commons forms for repre-
senting dependency information. Dependency information can be maintained as tables
encoding dependency relations between lists of pseudo instructjoadq. In this for-
mat the lists of quads are the primary data structure and the dependency tables are deco-
ration. Or, the program operations can be linked together via the graph formed by
dependency relations between the operations. The later structure is pai@m

dependence grapfiPDG) and is the representation used throughout Tortoise [51].

While straightforward to describe, the dependency information for a program is
not simple to discover and collect. Tortoise goes through a number of intermediate steps
to discover the flow information in the source program. To describe this process at a
gross level, there are three phases in collecting the data flow information: 1) The related
definitions and references in each block are linked together; 2) A set of equations on the
linked references are solved iteratively to find the dependencies; 3) The dependency
information is used to construct the PDG; 4) The PDG is refined using knowledge of

loop variables to find the full data flow graph.

The general approach taken in the data flow analysis and loop optimization sec-
tion of Tortoise is to proceed in cycles where some property of the program graph is dis-
covered and recorded, and then a transformation is made based on the property just
recorded. A number of transformations on the program are intermixed with the data flow
analysis. The transformations tend to simplify the graph, which provides more informa-
tion for data flow analysis. Intermixing the data flow analysis and transformation yields
a better result than if these passes were run sequentially. The analysis and transformation

phases used in Tortoise are shown in Figure 23.

The speed of Tortoise was not considered an important issue at the beginning of

this project, so no attempt is made to optimize this section by either combining phases or

73

making incremental changes. If, for instance, a graph transformation invalidates some
flow information which is needed later, the flow information is reconstructed by rerun-
ning the flow analysis routines. This slows compiling speed but greatly simplifies the

organization and function of Tortoise.

Canonical Loop Formatting
DDG Colnstructior
Extraneous Aslsignment Removal
Load CSIIE Detectio
Constant IPropagatio
Loop Invari;nt Migration
Induction Varliable Detectign
Iteration Distalnce Computatign
Induction Stréngth Reductio|n
Induction CISE Detectign
Loop Invari;ant Detection

Dead Code Elimination

-

=)

FIGURE 23. Tortoise Analysis and Transformation Phases

2.1 Canonical Loop Formatting

A few transformations are made directly on gcc’s IR, which is a list structure.
The structure of loops is more easily recognized and modified in gcc’s RTL list structure
form, so the detection of loop nesting and transformation to a canonical loop form is
done with gcc’s IR. The canonical loop format used has a tail comparison and branch
and is shown in Figure 24. This eliminates an unconditional branch from the bottom to
the top of the loop, but requires an additional check before entering the loop to insure

that the loop body will be executed at least once.

74

if (index < 1) goto exit
loop:

loop body

if (index++ <= N) goto loop
exit:

FIGURE 24. Canonical Loop Format

A loop header and tail block is also added to each loop to allow for later code migration
out of the loop. All paths into the loops pass through the loop header block and all exits

from the loop pass through the loop tail bldck.

2.2 Block Flow Graph Reconstruction

After the loop header and tail blocks have been added, the block flow graph is
modified to include the new blocks (an early version was constructed by gcchlddie

dominatorsare then found. The definition of block dominators from [65] is:

“If x and y are two (not necessarily distinct) nodes in a flow graph
G, then xdominatey iff every path in G from its initial node to y
contains x.”

The dominators are used when moving code out of loops. Certain code motions, e.g.
loop invariant code motion out of a loop, requires a dominating block to move the code
into. The addition of loop header and tail blocks assure that dominating blocks will be

available when hoisting code.

2.3 Initial Program Dependence Graph Construction

The program dependence graph is constructed from the gcc RTL list structure
and the block flow graph. The PDG encodes the known data and control dependencies
between operations in the program. At this point, the operations in the graph are the

same operations as those defined in gcc’s IR, e.g. add, multiply, load, store, etc. The data

1. These are well formed loops, without branches into the middle of the loop, or exits from inside the
loop to arbitrary locations, so this transformation is always possible.

75

dependencies encoded in the PDG consist of the dependencies found within expressions
in gcc’s IR. Data dependencies between expressions and control dependencies will be
discovered and added to the graph in following analysis phases. The data structures at
this point is still a graph of basic blocks, where each block contains an ordered list of
trees. The analysis and transformations which follow will gradually transform this struc-

ture into a PDG, which is the structure passed to the code generator and scheduler.

2.4 Initial Data Flow Analysis

The first step in the analysis phase is to perform standard data flow analysis, such
as that described by Aho and Ullman in [2]. This determines the dependency relation-
ship between every pair of memory locations in the program. The standard four types of
dependencies are discovered at this point: flow, anti-flow, input and output. These are
first recorded in def-use, use-def, use-use and def-def chains. An additional structure --
“forward assignment use-use chains” is also constructed for use in removing extraneous

assignments (see “Data Dependency Graph Optimization” on page 76)

During the first data flow analysis there is not enough information to reliably dis-
ambiguate individual array element references. This is because of a circularity in the
analysis algorithms. Distinguishing array elements requires induction variable analysis.
Induction variable analysis requires complete flow information on the induction vari-
ables, which has not been discovered yet. For these reasons, arrays are treated as com-
posite entities and individual array elements are not identified. If an array element is
modified, the entire array is considered to be modified. Another way to view this is that
the first data flow analysis is a scalar analysis and all variables are treated as scalar vari-
ables. Another data flow analysis will be performed to discover the dependency relation-

ship between array elements.

76

One of the major functions of the first data flow analysis is to discover and
remove temporary “registers” created by gcc. The temporaries are generally not useful
to Tortoise as the form of the graph will change substantially before we perform register
allocation. Gcece's operations do not exactly match the operations on the target architec-
tures and the graph transformations performed will remove the need for some registers
and create others. The registers from gcc generally indicate flow dependencies. These
will be encoded as a dependency link between two (other) nodes. In this case, the regis-
ter node is discarded. If the register node is a merging point for two or more flow paths,
the register node cannot be discarded. The node is retained in this case and may become
an executable register copy operation. This is discovered later. In either case, the register

assigned by gcc is used only as a label, not as an actual register.

2.5 Data Dependency Graph Optimization

The initial data flow analysis just performed allows a second data dependency
graph to be constructed, which is more accurate than the first. A first set of optimizations
is performed during the reconstruction: redundant nodes from flow and input dependen-
cies are removed. Although flow and input dependencies are slightly different, both
transformations remove extraneous nodes and produce new flow dependency links. For
instance, in Figure 25, there is a dependency between statements 3 and 2, and between 2
and 1, caused by the assignmeht; a. If neither a or d is used elsewhere, this program

fragment is equivalent to the single stateneent(b+c) * g.

l)a=b+c
2)d=a
3)e=d*g

FIGURE 25. An extraneous flow dependency

We effect this transformation in Tortoise by replacing the dependency between state-

ments 3 and 2 with a dependency between statements 3 and 1. This transformation is

77

illustrated in Figure 26. Later, statement 2 will be found to be unused and will be dis-

carded during dead code elimination.

(A) (B)

FIGURE 26. Dependency Graph Reconstruction - Flow Dependency

This transformation simplifies the graph and removes nodes which might other-
wise have to be computed at run time. There are restrictions on when this transformation
can be applied. Flow dependencies though either a register or scalar memory node can
be removed and the nodes directly linked whenever there is a seaghing definition
i.e. whenever there is a single definition which will arrive at the reference during execu-
tion of the program. However, there are some further restrictions on when assignment

nodes can be removed.

The transformations resulting from flow dependencies collapse multiple flow
dependency links into a single link, removing intervening nodes in the process. The
node removed can be register nodes, memory nodes and assignment nodes. In effect this
transformation can promote memory nodes into registers (since a flow dependency may
become a register during code generation) and remove redundant assignments. For
instance, the graph encodiag= b+c; d = a; e = a*g will be transformed into the graph

for e = (b+c)*g. This transformation is shown in Figure 26.

78

2.5.1 Extraneous Assignment Removal

Before an assignment can be removed the graph structure must be checked to
insure that removal of the assignment does not change the semantics. In the simple flow
dependency case shown in Figure 26, the assignment can be removed without disturbing
the program semantics. However, because of the way the graph is organized, there is a
potential problem when the assignment has an anti-flow dependency on a previous defi-
nition. The links made in the graph to the earlier definition will effectively merge the two
definitions, which is not correct in all cases. The typical case where this occurs is an
assignment at the top of a loop. The definitions and dependencies formed are shown in

Figure 27.

FIGURE 27. Dependencies Involved in Removing Assignment

A check must be made that the use on the right hand side of the assignment reaches the
node where the definition created by the assignment is used. It is possible that there is an
intervening write to one of the locations used in the expression which changes the value
of the expression. In this case the expression would not read the use and the dependency
cannot be rewritten. In Figure 27, links (a) and (b) will be replaced by a link (c) and a
check must be made to insure that the definitigris valid to replace the use of, in

the last statement. This is a “forward reaching assignment'uséjch is an additional

flow analytic function which must be computed during data flow andlysis.

1. The standard “reaching use” definition flows backward in execution time, i.e. from the use to the defi-
nition.

79

2.5.2 Load CSEs

The other optimization made during the data dependency graph construction is
the sharing of load common subexpressions (CSEs). The input dependencies found dur-
ing data flow analysis indicate multiple uses of a single variable. In the case where this
variable is loaded from memory, all but one of the loads is replaced by a single load. All
uses of the variable are replaced by flow links to the single load. This transformation is
shown in Figure 28. In this example, the disjoint graphs for expressions (1) and (2) are

replaced by a graph in which the result of loading the varlaldeshared.

(1) (2) (1) (2)

\
@0@@@
® ® ®

(A) (B)

FIGURE 28. Input CSE Dependency Transformation

This “load CSE” detection and replacement also works for other scalar CSEs, i.e. gcc

register nodes. These other CSEs are found and linked at this point also.

2.6 Constant Propagation

Once direct data dependency links have been established, constant detection,

propagation, and folding are straightforwaf@bonstant detectiois the process of dis-

2. This information is actually present in the other data flow information but not in a convenient form. The
reaching definitions (coming into the assignments) are available at the block level but this information
must be gathered together at the use of the assignment definition. The easiest way to do this is to add the
extra flow analytic function “reaching use” and compute this during flow analysis.

80

covering which operations produce invariant results over the entire execution. This is
trivial to determine for leaf nodes. Constant literals and variable addresses are constants.
For interior nodes in the graph, the determination of whether an operation is constant
must be derived from the structure of the graph. Starting at leaves containing constant
values, constant information synthesized.e. propagated “up” the graph, until a node

is encountered which is not computable at compile time. Theorstant propagation

Once an interior node has been determined to be a constant, its value can be found by

applying its operation to the values of it children. Thisasstant folding

For an subgraph of constant nodes in a program, there will be a set of “top”
nodes which are referenced by non-constant nodes. Since their values have been com-
puted during constant folding, the top nodes contain all the information necessary for
further compilation. Only the top nodes will be used in remainder of compilation pro-
cess, specifically in induction variable detection and code generation. The other constant

nodes in the program are ignored and thus effectively discarded.

The decision to compute the values for constant nodes with separate machine
instructions or to encode them in immediate fields within instructions is determined dur-
ing code generation. Most of the constants found, even the “top” constants, will never
appear as code because they will be removed during some later program transformation,

such as induction variable reduction.

2.7 Loop Invariant Detection

A loop invariantis a variable whose value is constant for the duration of the
loop. Loop invariant detection requires knowledge of which variables and expressions
are constants, so loop invariant detection follows constant propagation. Loop invariants

are only marked at this point. Graph transformations to move loop invariants out of

81

loops are made at a later pass, which also makes the transformations associated with

other optimizations.

A node isloop invariantiff it is:

1) a constant,
2) a use with no reaching definitions within the loop,
3) an operator with operands which are loop invariant.

2.8 Induction Variable Detection

An induction variableis a loop based variable which takes a linear sequence of
values. Because the expressions for induction variable computations can be built up
from other induction variables, induction variable information is not immediately obvi-
ous to the compiler and must be discoverediuction variable detectiors the process
of finding the induction variables in the program. This is an iterative process, where each
iteration may find more induction variables based on the current known set. Induction

variable detection is complete when no additional induction variables are found.

Induction variable detection relies on the information from constant propagation
and loop invariant detection, and is also synthesized information. The algorithm used
here was initially taken from [4]. A variable is amduction variableff it is computed by

one of the following expression patterns:

1) i = {i+c, i-c}, wherec is a constant or loop invariant,
2)j = {i*b, b*i, i /b, i+b, b+i, i-b, b-i, or i+i}, wherei is an induc-
tion variable and is a constant or loop invariant.

Induction variable detection searches for linear recurrences, i.e. computations of
the formj = c*i+d, which can be rewritten as a simple additions within a loop. Induction
variables can defined in terms bésic induction variableswhich are those variables
whose calculation is a linear expression involving only themselves and a constant. The
other derived induction variables can be groupethmilies i.e. sets of induction vari-

ables whose values will be linearly related to each other. Knowledge of the basic induc-

82

tion variable and the family of each induction variable allows strength reduction to be

performed on the induction variable computations.

The original loop induction detection algorithm described in [4] only computes
the family, i.e. the constant offset added each iteration, and does not directly deal with
either: 1) the initial value of the induction variable or, 2) recurrences formed from loop
invariants which are also induction variables in an outer loop. These omissions lead to
retaining induction expressions which are more complicated than necessary, particularly

in outer loops.

The algorithm described here has been modified to incorporate patterns with
loop invariants and to record the initial value of the induction variable when it is a con-
stant or when it is a loop invariant expression formed from induction variable in an outer
loop. This modification leads to a nested definition of induction variable information.
For instance, in the program fragment shown in Figure 29, the expressignnfoine
inner loop involves both the induction ¢m the inner loop and the induction @m the
outer loop. Collecting this information together as {j, 1, {i, 3, 1}+2}, where the first term
of each tuple is the basic variable, the second term is the loop increment and the third
term is the initial value expression, allows induction variable information at different
loop levels to be manipulated together. The discovery and use of nested induction vari-

ables has also been reported by Padua and Wolfe in [134].

Do
=i+l
j=1*3
Do
j=i+2
y = X[i,]]
End
End

FIGURE 29. Program fragment with nested induction variables.

83

To see how the use of nested induction variables differs from the traditional flat
induction variables requires a look at the intended use of the induction variable informa-
tion. Induction variable information is used to make induction variable strength reduc-
tions. A strength reductions the replacement of an operator or computation by a less
expensive operation which computes the same function. The goal of strength reduction
on induction expressions is to transform the induction expressions into the simplest, or
least costly, expressions possible. The ideal form of an induction expression is usually
an initial assignment to a constant value in the loop header with an increment by a con-
stant value on each loop iteration. If initial value and nested information are not gath-
ered, the only information available to the compiler is that a node supplies the initial
value for the induction. The original initial value node will often be more complex than a
simple assignment or an increment by a constant. This complex initial value node will be

retained in the induction expression, although it will often be moved out of the loop.

initial(i) nital() i =cy

...............

fG) initial() U Ut C2

initial(j)

ij=ij+c lj=1j +c3

(@) (b) (€)

FIGURE 30. A Nested Induction Transformation.

84

The difference between multi-level and single-level transformations is illustrated
in Figure 30. Figure 30(a) shows the original graph of an expredgignconstructed
from induction variables in nested loops. This program graph could, for instance, be pro-
duced by the[i,j] reference in the inner loop in Figure 29. The expression to compute

the address required to referenfig] would be:

((j-lower_bound2)*dim2+(i-lower_boundl)*dimensionl). (4)

The triangles in Figure 30 are meant to represent subgraphs of complex expres-
sions such as (4). A strength reduction on the induction varigllhich does not use
information about its initial value or dependenceionill result in the transformation
shown in Figure 30(b). The original complex expressions involvimghich are needed
to compute the initial value for the induction df,j) will be retained. The equivalent

program fragment is shown in Figure 31.

Do
=i+l
j=i*3
j = @x + ((j-Ib2)*dim2 + (i-lb1)*dim1)
Do
j =] +dim2
y=%
End
End

FIGURE 31. Program fragment with rewritten inner induction.

Nested induction information allows the chain of expressions show in Figure 30(c) to be
constructed directly. The original expressions will be discarded if they are not used else-
where. The final version of the loop is shown in Figure 32. The complex expression for
X[i,j] has been moved out of both loop and is left as the initial value Ebwever, as the
initial values ofi andj (i_init andj_init), and the array dimensiondi(nl anddim?2) are

likely to be constants, the initial value @fis likely to be a constant, and the entire

expression could be replacediby c.

85

i = @x + ((_init-Ib2)*dim2 + (i_init-lb1)*dim1

Do
=i +diml
j=i
Do
j =] +dim2
y="%
End
End

FIGURE 32. Program fragment with rewritten nested inductions.

Collecting nested induction information is straightforward and only requires a
few simple modifications to the original algorithm. In the original algorithm, the initial
value of the inductions were not collected and only constants were considered for the
family information. The algorithm used here also collects initial value information,
where possible. For each induction variable detected, a tuple of information is recorded:
the induction triple is <base_induction_node, family, initial_valueXach of these
pieces of information is computed from a function which is dependent on the pattern of

the expression forming the induction.

Thebase induction nodis the original node with pattaen =i {+-} b from which

the current node is derived. A base induction node is:
1) node(i), fori=i{+-} b,
2) base _node(i) for the patterns j =i {+-*} b.

The family of the induction node is the value which will ultimately be used to
construct the induction increment once the induction is rewritten. The computation of
the family is the same as in the original algorithm. The increment value, from which the
family is derived, must be either a constant or the original node must be retained and
used. The patterns for determining the family of an expression are:

1)c, fori=i{+}c,
2)c, fori=j+c,

86

3)-c, fori=j-c,
4) c {*/} family(j), for i = j {*/} c, where c is constant,
5) the original node must be used, otherwise.

Theinitial value of the induction node is used, as its name implies, to give the
induction expression its initial value. If there is a single constant reaching definition, the
value of the constant is the initial value. If there is a single reaching definition, which is
an induction expression from an outer loop, a nested induction expression will be

formed. Otherwise the reaching definition nodes must be retained as the initial value.

The restrictions of a single reaching definition, which is a constant or outer loop
induction, seems to limit the utility of this modification to a few special cases. To some
extent this is true. However, this is a fairly common special case and it is often seen with
multiple dimension array references. For languages like Fortran or C, where the array is

one of the primary data structures, this case is quite common.

The initial value information is derived from the value of the reaching definition
for the pattern i =i {+-} ¢, and the value of ¢ and the initial value of the independent

induction variable in the pattern j =i {op} c. The function for initial values is:

1) value(r), for i = i{+-}c, with a constant reaching definition r,
2) reaching(i), for i =i {+-} c, otherwise,
3) initial_value(j) {op} value(b), for i = j {op} b.

The result of these rules is a definition of induction variables which is potentially
nested. The initial value of an induction triple can be another triple, e.g. {85,8,{45,1,2}}.
As discussed earlier, and illustrated in Figure 30, a nested triple in the initial value posi-
tion will indicate that an outer loop induction expression should be constructed when

induction strength reduction is performed.

Given that this is a fairly simple modification to the original algorithm, it would
be nice to be able to report a large performance benefit from using this modification.

However, the primary performance benefit seems to be in Tortoise itself. Without num-

87

bers to support this claim, the graph is greatly simplified in a single pass because com-
plex outer induction expressions are discarded. The performance results on the compiled
code are mixed. Of the first 14 Livermore Loops, only Loop 12 and Loop 14 show
noticeable effects of 10% and 5% performance improvement, respectively. The other 12
Loops show a performance improvements of less than 1%. Again, without quantifica-
tion, the additional cost of finding and exploiting nested induction nodes seems to be low
(or negative given the graph simplification), so this modification to the induction algo-

rithm is probably worth using.

2.9 lteration Distance Computation

The dependency information typically gathered for array references on high per-
formance machines, i.e. vector and parallel architectures, is inadequate for software
pipelining. Typically, only the direction (flow, anti-flow) and the special case of loop car-
ried (flow in the current iteration) are considered [134]. Because of the overlapping of
iterations which occurs in software pipelining, it is useful to have precise values for the
number of iterations crossed on a flow or anti-flow dependency, when this can be deter-

mined. A loop with a recurrence is shown in Figure 33.

Doi-=...
X[i+1] = X[i] + X[i-1]
End

FIGURE 33. A loop containing a recurrence.

If it is known that X[i+1] forms a flow dependency with X[i] in the next iteration and
X[i-1] in the following iteration, the value can be retained in a register for use in these
iterations. This information is call thieeration distanceLike the induction variable ini-

tial value, the iteration distance can only be determined precisely in special, but common
cases. The iteration distance can be found between array reference expressions in a loop

where the expressions share the same family (see Section 2.8 on page 81). When the

88

expressions share a family, it is possible to determine a precise, constant distance
between the references. The method used in Tortoise to derive the iteration distance is to
perform a symbolic arithmetic substraction between the array reference expressions
using Mathematica’s built in algebraic rules. This is more powerful than a commercial
implementation, which would handle only a few predefined patterns, put not tremen-
dously. If the result of the substraction is a constant, this is encoded as the iteration dis-
tance. If the subtracted expressions cannot be reduced to a constant, the fact that the
references are dependent is retained. Symbolic data dependence testing is explored in

[134].

The iteration distance is determined for every pair of array references. It can be
thought of as a decoration on the dependency graph, but is encoded in a separate func-
tion -- iteration_distance: nodenode - distance. The distance (d) is one of {constant,
unknown, not_related}. Constants indicate that the references hit in a fixed number of
iterations, in either direction: previous or subsequent iterations. A value of zero indicates
that the references hit in the same iteration. Unknown indicates that the references are
dependent, but the number of iterations at which they hit is not a constant. Not_related is

the default case for references which are unrelated.

The iteration distance is used in two slightly different contexts and its meaning
changes to match the context. As with the dependency graph, the iteration distance is
used to determine and represent both data movement and operation scheduling. For
operation scheduling, the distance between operations, in terms of cycles or slots in a
schedule, is important and this distance is computed with respect to the top of the loop.
When the iteration distance is used to determine a distance for data movement, the num-
ber of locations required becomes the important metric, and the distance is recomputed
to be with respect to the definition points. These two functions are distinguished in Tor-

toise as th@odeiteration distance and tloperanditeration distance, respectively.

89

2.10 Array Reference Refinement

When the data dependency graph is first constructed (see Section 2.3 on
page 74), the information to distinguish between array references is not yet available.
Once the induction variable information has been found and encoded in the iteration dis-
tance between array references, the dependency graph for array references can be
refined. This requires examining all the dependencies between array references and
modifying the dependency functions to reflect the new information for array references.
This will tend to reduce the number of references which are dependent because the new

information allows a finer discrimination.

Once the kill functions have been modified to reflect new array reference infor-
mation, the data flow equations are re-solved using the new functions. Since it is much
easier to rerun the same algorithms, no attempt is made to retain and incrementally mod-
ify previous data flow information. The definition chains are then reconstructed using
the new data flow information. Once the definition chains have be reconstructed, the data

dependency graph can be refined to reflect the new dependency information.

The graph transformations performed at this point are slightly different from

those performed earlier when only the scalar information was available (see Section 2.5
on page 76). Array references typically depend on loop induction variables, so transfor-
mations to array references must retain information describing the relationship between
the references with respect to the loop behavior. This information is the iteration dis-
tance found earlier (see Section 2.9 on page 87). When the dependency graph is modi-
fied to promote a loop carried dependency to a register, the iteration distance between
the original nodes is retained and added to the new nodes. The iteration distance infor-
mation is used during scheduling to determine the distance between the new nodes and

during register allocation to determine the number of registers required by the node.

90

Suppose for instance, that loads ¥]i] and X[i-1] are found and determined to
be sharable as a CSE. The graph transformation, including the iteration distance decora-

tion is shown in Figure 34.

FIGURE 34. Array Reference Load CSE Transformation

On this transformation (array reference load CSES), the original array reference sub-
graph is retained and a new intermediate operator is added between the use and the orig-
inal load operator. The iteration distance decoration is added between the new operand
marker and the load which is “preferred”. Later, during code generation, the iteration
distance is copied to the parent node to mark the distance between the parent of the new
operand marker and the preferred load. If it is determined to be advantageous to put the
preferred load into a register and use it as a CSE, the iteration distance between the par-
ent and the preferred load is used for scheduling and register allocation. If it is not
advantageous to use a CSE, the original load is still present in the graph and can be used

for code generation.

Whether it is advantageous to promote a load CSE into a register depends on the

iteration distance and the number of registers available. Each iteration crossed produces

91

another live value and requires an additional location to store. Because each iteration
crossing consumes a register, on a machine with limited registers it is only beneficial to
make this transformation for a small iteration distance. The limit is currently arbitrarily

set to 2 iterations.

3 Machine Independent Optimizations

Following the reconstruction of the data flow graph, all the machine independent
loop optimizations are performed en masse. The machine independent loop optimiza-
tions consist of induction variable strength reduction, induction variable CSE detection,
and loop invariant code migration. The nodes involved are marked and processed (either
moved or rewritten) in a single pass so that the original order within blocks can be main-
tained. This avoids re-sorting the operations to maintain the correct semantics between

passes.

Even though all transformations are performed in a single pass, the transforma-
tions are independent of each other. The routine finds all the nodes which need to be pro-

cessed and applies the appropriate action to each node.

3.1 Loop Invariant Hoisting

The loop invariant code migration algorithms are also standard [4]. The only
modification is a restriction on the mobility of loop invariant nodes which contain defini-
tions. Loop invariants can always be moved out of a loop, into the loop preheader block
previously defined, if they do not contain a definition. If the loop invariant does contain a
definition, e.g. an assignment, then care must be taken to insure that moving the defini-
tion does not change the semantics of the program. There are a number of cases where
definitions can be safely moved, e.qg. if the block containing the node dominates all exit

nodes of the loop. None of these cases are currently exploited by Tortoise. Loop invari-

92

ants are only moved if they do not contain a definition. The number of invariant nodes
containing definitions are few enough in the benchmarks used that the special cases with

definitions did not seem to be worth implementing.

3.2 Induction Variable Strength Reduction

Induction variable strength reduction was discussed earlier (see Section 2.8 on
page 81). For each induction node, the induction triple is used to construct a pair of
expressions to compute the initial value and the induction increment. These expressions
are constructed directly from the induction triple and the nodes previously encoding the
values are discarded, where possible. The algorithm proceeds from inner loops outward,
placing nodes for the nested induction information in the appropriate loop preheader
blocks (see Figure 30). If not enough information was available to allow recreation of
the induction values, e.g. a constant value could not be determined for the initial value,

the original nodes are moved out of the loop where possible and retained otherwise.

Induction variable CSE detection is also performed. Induction variable CSEs are
found by grouping all inductions with the same family together. This is a specialized, but
beneficial case of CSE detection. The reason that this is interesting, is that many
machines provide an “indexed” load operation, where a constant offset can be provided
with the index register. All the inductions with the same family will be able to share a
single index register by providing a different constant offset. This transformation can
save registers when compiling array expressions within loops. This could be considered
the first machine dependent optimization performed. However, the capability of adding a
constant offset to an index register on a load is quite common. It is common enough to
be lumped together with the other machine independent transformations. The one part of
this that is machine dependent is the size allowed for the offset. The size of the offset is

typically much smaller than the address size of the machine and induction CSEs must be

93

further divided into groups which are within the distance that can be encoded in the con-

stant offset allowed in a machine instruction.

3.3 Type Propagation

Type information indicating which integers are addresses is synthesized at this
point. The type information is only partially available in the original graph: at the leaves
and at nodes containing operators which expect addresses, e.g. loads. The leaf nodes
which define addresses are found and marked. Address information is then synthesized
until a node which consumes and does not generate an address is encountered. Interme-
diate operators such as addition and multiplication are marked as being addresses. This
information is used during instruction selection to determine which machine operator to

use (see Section 4.1.3 on page 96).

3.4 Dead Code Elimination

A dead code elimination pass is performed which removes sections of the pro-
gram graph made obsolete by previous passes. In particular, induction variable strength
reduction tends to replace the original induction expressions with new ones. The original
inductions expressions where are no longer used are discovered and marked during dead

code elimination.

All memory stores and conditional operations are marked initially as live. Live-
ness information is then synthesized up the graph until no addition live nodes are found.
Any nodes not found to contribute to a live node are marked as dead. The dead nodes are
not removed from the graph, i.e. the graph is not reconstructed, but the dead nodes are

ignored for the remainder of the compilation.

94

3.5 Summary of Machine Independent Transformations

Type propagation completes the analysis and machine independent transforma-
tion phase of the compiler. The methods and algorithms described are standard, with the
exception of the detection of nested induction information, promotion of intermediates
to registers across multiple loop iterations, and determination of the iteration distance
between array references. Constructing nested induction variable information is unre-
lated to a particular computer architecture, or to software pipelining, but is interesting in
its own right. Multiple iteration register promotion and the iteration distance determina-
tion are not required for software pipelining. However, the techniques required for soft-
ware pipelining directly support multiple iteration register lifetimes, so this optimization

is natural to use in conjunction with software pipelining.

4 Code Generation

Instruction Selection

Initial Schedule Generatioh

Schedule Realizatign

Register Allocation

FIGURE 35. Tortoise Code Generation Phases

Although complex in its implementation, the code generation process is concep-
tually simple. Starting with the program dependency graph, the set of instructions to be
generated is selected, the selected instructions are scheduled, and the registers to be used
in each instruction are allocated. In Tortoise, instruction scheduling occurs in two
phases. In the first phase a schedule is constructed for an abstract machine model which
supports software pipelining. Then a second phasali¢zation) unrolls the pipelined

schedule and implements the pipelined schedule in software on target architectures

95

which do not support software pipelining. The phases in Tortoise’s code generator are

shown in Figure 35.

4.1 Instruction Selection

A series of transformations are made to the program graph to change the IR from
Gnu C operators and structure to machine operators and structure. The definition of the
target machine is partially encoded in tables, e.g. the machine operations and instruction
formats, and partially encoded in procedures, e.g. the procedures provided to determine
which values will fit into constant or immediate fields. No attempt to formalize the
machine description has been made, as that would be another study by itself. However, it
is assumed that the operations and format of the target architectures will be very similar,
and the differences between the target architectures will be in the format of the schedule.
This is reasonable since we are attempting to focus on only the scheduling aspect of the

target machines and have some freedom in the definitions of the architectures.

4.1.1 Initial Register Allocation
An initial register allocation, from an infinite set, provides a unique location for

every potential register definition. Not every node is assigned a unique register. Nodes
which share registers, e.g. during initialization, or when updating a register containing a
loop induction variable, are found by merging shared uses in the program graph. Each
shared use is indicated in the graph by multiple definitions reaching a single operand.
These shared definitions are the individual links in a chain joining the nodes which share
a register. A merging operation joins the nodes into a single group which is allocated a

register.

96

4.1.2 Graph Structure Matching

For instruction selection to occur successfully, there must be a machine opera-
tion which matches the operator and number of type of operands for each node. A trans-
formation is made to store nodes to copy the target node into one of the operands. This
removes a special case check for store nodes during instruction selection. Call nodes are
also modified to remove an extra node between the call node and the target. Both of
these changes are local transformations and they are only performed to simplify the

instruction selection routine.

4.1.3 Instruction Selection

Instruction selection determines an appropriate machine instruction for each
node in the graph. This involves checking that there is a instruction format containing
the correct type and number of operands, as well as the correct operator. At this point,
each node should generate either 0 or 1 machine operations. A node can generate no
machine operations because: 1) it provides a value which fits into a immediate field in
another instruction or, 2) it is a node with sequencing or dependency semantics and does
not indicate a machine operation (see Section 2.10 on page 89). Reorganization of the
graph to insure that no nodes require more than one machine operation occurred in the
previous pass (see Section 4.1.2 on page 96) and finding any nodes which require multi-

ple machine operations at this point indicates a compiler error.

The instruction selection algorithm works from the top down. The machine
instruction for a node is selected, followed by the instructions for the nodes operands. A
simple heuristic is used to choose between instructions with multiple formats. Instruc-
tions with immediate fields are checked first to determine if the operands contain con-
stants which fit the immediate fields. If the operands fit, the instruction is chosen.

Otherwise, the instruction selection algorithm proceeds to check the next instruction in a

97

list which is indexed by node operator and type. Because the target architectures have

simple instruction sets with few instruction formats, this heuristic suffices.

When constants are found which do not fitimmediate fields of other instructions,
they are marked as executable and an appropriate instruction is selected to generate the

constant.

4.1.4 Control Dependencies

Block termination nodes are now added to the graph. A control dependency
between each node in the block and the block termination node is added to all the nodes
in the graph. The block termination node is added to facilitate filling branch delay slots.
The delay of the control dependency between the branch and the block terminator will
be the number of delay slots. The delay for other operators will be zero. This allows any

nodes which are not ancestors of the branch to be scheduled in the branch delay slots.

The addition of the control dependencies on all the nodes finishes the construc-
tion of the program dependency graph. This is the graph which is given to the scheduler.
Every executable node has a machine operation and corresponding instruction format
associated with it. The number of operands on the node matches the number of operands
allowed in the instruction format. The scheduler will use this graph to construct machine
schedules. This graph is not modified by the scheduler and is fixed for the remainder of
the compilation. Some additional items will be added to decorate the graph, e.g. execu-

tion times, but the structure of the graph does not change.

For some types of scheduling, such as loop unrolling, creating a new version of
the graph is enticing. The advantage would be that flow analysis, etc. could be per-
formed again on the graph to obtain additional improvements in the schedule. However,
the difficulties in making modifications to a graph structure argue for working with a list

of machine instructions, rather than a graph. The scheduler currently implements a lim-

98

ited form of loop unrolling in conjunction with software pipelining. An optimization
pass following this loop unrolling is not performed and the data structure used is a list of
machine instructions. This simplifies the scheduler at the cost of some additional perfor-

mance gains.

4.2 Instruction Scheduling

The scheduler accepts the Program Dependence Graph (PDG) along with
accompanying tables and produces schedules for the target architecture. The selection of
machine operations and instruction formats was performed previously. Register alloca-
tion and encoding the instructions in assembly language format is done later by other
routines. The schedulers only function is to find a correct schedule, i.e. a correct order-
ing and timing of the operations. The output of the scheduler is an ordered list of instruc-
tions, organized in blocks, where each “instruction” is a record containing the necessary
information to construct an assembly instruction and a pointer back into the PDG. This
list of instructions is passed to the register allocation routines, and then to the assembly

language code generator.

The scheduler constructs both software pipeline schedules for inner loops and

basic block schedules for blocks which are not part of an inner loop.

4.2.1 Basic Block Scheduling

The basic block scheduler uses a list scheduling algorithm:

1) A topological sort is applied to a set of operations and dependencies to pro-
duce an ordered list such that if there is a dependency between two operations, the
independent operation is placed first in the list:

{V.E} - <oy, 0y,..., @, wherell<g;, 0> E => i<]. 5)

2) The ordered list of nodes is assigned an execution time such that the depen-
dency ordering between operations (5) is still satisfied and, in addition, the
minimum time dependency between dependent operations and machine
resource constraints are also satisfied:

99

<04p,0y,...,Q4> - <0'1,0'5,...,07>, D<o’i,o’j>D E=> T(<o’i,o’j>) T(@)-T() (6)
In (6), T(<q,0>) is the minimum time distance which must be maintained between o’

and o; for correct execution and T(i) is the execution time of schedule position i.

The ordering of the two lists need not be the same. The routine assigning execu-
tion times may change the order of the operations to fill times left vacant due to instruc-
tion latencies, provided the original dependencies are honored. The topological sort in
the first step simplifies the work required in the second. Once the sort has be performed,
the scheduler is assured that the parents of each operation encountered will have been
scheduled and that there are not circularities in the dependence graph. The scheduler
only checks the execution time and operator on each parent to determine the earliest
time at which the operation can be scheduled, and then searches for a slot in the schedule

with enough resources to execute the operation.

The minimum time and resource constraints are not met is all cases, nor is this
necessary. In the R3000, the resource constraints are complex because out-of-order com-
pletion is allowed, and there is only one result bus. The resource use for a typical multi-
cycle instruction only allows execution of one instruction at the beginning and end
cycles of the instruction. Finding a minimum schedule with this set of constraints with-

out resource conflicts is a NP-complete tiling problem.

Scheduling this processor would be much easier if multiple results could be
delivered each cycle, i.e. if there were only function unit resource constraints at the
beginning of the instruction. This is the model which is used by the scheduler. Assuming
that the processor busses are only taken at the beginning of instruction execution is not
as accurate, but it is much easier to schedule and does not seem to be detrimental to per-

formance.

100

Because the R3000 has pipeline hazard interlocks, the minimum time depen-
dency does not have to be met in the schedule either. As with most current processors,
the dependency relationship between instructions is encoded in the register usage. As an
instruction enters the function units, the target register is marked busy and any subse-
guent instructions using the target register will be stalled until execution of the defining
instruction has completed. This allows a correct schedule to be generated without pad-
ding dependent instructions with NOPs. This tends to decrease the size of the schedule
and makes the schedule easier to read, but will increase the number of registers required
in a compact schedule. This is because the target register is reserved during the time the
instruction is proceeding through the function unit. This would not be necessary if regis-

ters were not being used to maintain dependency information.

The block scheduler produces a schedule which contains NOPs and then
removes them as a separate pass. The NOPs are left in until the schedule is complete so
that they are available to be filled by other instructions. This reduces the amount of

instruction rearranging performed by the scheduler.

4.2.2 Inner Loop Scheduling

Inner loops are scheduled using software pipelining (see Chapter I, Section 3
on page 52). The software pipelining method is the same as used by Lam in [98]. First,
an estimate for the length of the schedule is found. Then, instructions are placed within a
schedule of the estimated length while checking for timing violations and resource con-
straints. If a schedule of the given length is found, the process terminates, otherwise the

process is restarted with a longer schedule.

The initial schedule is constructed in a compressed form which could be directly
executed on a machine with hardware support for software pipelining, i.e. the com-

pressed schedule assumes the machine supports conditional execution and an indexed

101

register file [143]. Before this schedule can be executed on an architecture without hard-
ware support, it must be rewritten so that its execution will correctly implement the
intended software pipeline. This involves the construction of separate sections of code
for the prolog, kernel and epilog phases of the pipeline, along with checking to insure
that there are enough iterations to enter the pipeline and cleanup sections to execute
those iterations which do not fit the pipeline. Also, the loop must be unrolled so that any

required register indices can be hard-coded directly into the schedule.

Once the schedule has been reconstructed, register allocation and spill code gen-
eration are performed using an interference graph coloring algorithm [24][33][21][15].
The completed schedule is then converted into the assembly language format of the tar-
get architecture and written to a file. This file is then assembled and executed using the

target hosts software.

4.2.3 Terminology

Some terminology unique to software pipelining needs to be explained before
delving into the scheduling algorithm. Figure 36 shows a software pipeline in uncom-
pressed form (Figure 36(a)) and compressed form (Figure 36(b)). The uncompressed
form shows the order and timing which would occur if a single iteration were executed.
The compressed schedule shows the execution of the schedule when all the blocks of the

schedule are executing simultaneously, i.e. during the kernel phase of the pipeline.

A single iteration of the loop is divided into a number of equal length pipe stages
or blocks as shown in Figure (a). The length of the block is the time between beginning
successive iterations of the loop. The time between the start of successive iterations of
the loop called the initiation interval. It will be referred to here aslitoek length The

block counts the uncompressed schedule length divided by the block length.

102

A
Block 1 1
Schedule 2 2
Block 1 3
Length Bjock 2 L;ength
Block 3 3
Y
(a) (b)

FIGURE 36. A Three Stage Pipeline Schedule

The block length and the number of blocks is determined by the latencies
between operations and the resources required by those operations in the schedule. The
intent is to make the block length as short as possible, trading off the number of blocks.
The block length determines the execution efficiency when the full execution or kernel
phase of the pipeline is reached. Assuming that the loop executes a reasonable number

of iterations, this will tend to make the loop execute more efficiently.

As shown earlier (see Figure 14), there are three phases to execution of the soft-
ware pipelineprolog, kernel andepilog Correct execution during each of these phases
must be insured. If the compressed schedule is executed on an architecture with hard-
ware support, each operation in the schedule is tagged whitllock numberor other
identification so that the operation is only executed when its associated block is execut-
ing. If the software pipeline is to be executed without hardware support, the block num-
ber is used to unroll the schedule to produce a purely software implementation of the

pipeline.

103

As was mentioned during the discussion of the analysis phase of Tortoise, the
iteration distanceis the number of iterations between references with loop carried
dependencies (see Section 2.9 on page 87). The iteration distance, where known, is used
to determine the time between operations and the number of live values which are

formed by overlapping iterations.

4.2.4 Initial Block Length Estimate

The task of finding a minimum block length for a schedule in the presence of
resource constraints and a pipelined architecture is an NP-complete problem. So is find-
ing a minium block length. However, because the scheduling algorithm repeats until a
schedule of the given block length is found, we wish to estimate the block length as

accurately as possible.

There are two fundamental limits on the block length of the schedule: the
machine resources available to execute the operations and the latency between opera-
tions. Lower limits on the block length due to these factors can be independently com-

puted and combined to give a good estimate on the block length of the schedule.

The block length for resource use is the number of resources required by the
operations in the loop body, divided by the number of resources available each machine
cycle. If the resources were all independent, the block length determined by resources

would be:

Block Length = Max(Ur O R, [{3>r[n]) / rD) (7
Where R is the set of machine resources and r[n] is the machine resources required by a

given node in the program graph.

Machine resources are not always independent. For instance, it may be possible

to perform an integer and a floating point addition at the same time, but not two floating

104

point operations. Or it may be possible to start another floating point addition in the
cycle immediately following a floating point addition, but not following another opera-
tion. The resource equation can be elaborated as necessary to achieve a good estimate.
However, if the function becomes too elaborate, the cost of estimating the block length

can become expensive.

The other limitation on the block length is the amount of time necessary to com-
pute recurrences, i.e. loop carried dependencies. The set of recurrences can be found by
finding the cycles in the graph using the all-pairs shortest-path algorithm [54]. If we
assume that all recurrences are independent, the required block length is the length of
the time required to compute the longest recurrence. The block length required to com-
pute any individual recurrence is the sum of the latencies for each operation in the recur-
rence, divided by the number of iterations which the recurrence crosses. If computing
the recurrences where independent, the block determined by recurrence lengths would

be:

Block Length = Maxic [0 C, [[c] / d[c]O (8)
Where C is the set of recurrences in the loop, t[c] is the execution time or latency to
compute the recurrence, and d[c] is the iteration distance of the recurrence. Assuming
independence between resource use and recurrence computation, the estimated block

length is the maximum of the two estimates:

Block Length = Max(Ur O R, [{>r[n]) / rJ Oc O C, [c] / d[c]D (9)

4.2.5 The Scheduling Algorithm

Once an estimate has been found for the block length, an empty schedule with
the estimated block length is constructed and an attempt is made to fit the operations in
the PDG into the schedule. Because software pipelining allows multiple iterations to

execute concurrently, dependencies between iterations (recurrences) must be honored,

105

as well as the usual inter-block dependencies. The intra-iteration dependencies produce

cycles in the program graph and these must be handled correctly.

Y t)j(a)

FIGURE 37. Formation of Strongly Connected Components

Cycles in the program graph will result in one or mstengly connected com-
ponentdn the graph. A strongly connected component is a subgraph in which there is a
path between every pair of nodes. Figure 37 illustrates the formation of strongly con-
nected components within the program graph. The cycles in the graph are formed by
intra-iteration dependencies, labeled in the Figure as (a), (b) anB\Jejycycle in the
graph contains an intra-iteration dependency. The other, inter-iteration dependencies,
form an acyclic graph. This suggests a method for scheduling SCCs, which is to sched-

ule each SCC using only the inter-iteration dependencies.

However, the execution constraints on the inter-iteration dependencies must still

be honored. As each operation is scheduled it must be scheduled both late enough so that

106

all of its parents have been scheduled (the normal direction) and also early enough so
that it executes before its descendents execute in subsequent iterations. If it is not possi-
ble to find a position in the schedule meeting these criteria with enough machine
resources to execute the operation, scheduling is restarted with a longer block length.
The moves the beginning of the next iteration, giving more freedom in placing the oper-
ation. This algorithm is guaranteed to terminate, because in the limit, the iterations will
not overlap and the algorithm will in effect be scheduling a DAG, which is always possi-

ble.

A strongly connected component in a graph does not necessary cover all the
nodes in the graph. There can be nodes not included in the SCC with dependencies into
or out of the SCC. The graph may contain one or more strongly connected components.

If each strongly connected component in the graph is replaced by a single nagy-an

clic condensatiorof the graph is formed. Because there are no cycles between strongly
connected components, they can be scheduled as far apart a necessary. Scheduling SCCs
further apart lengthens the total uncompressed length of the schedule, but does not

change the block length.

Also, because there are no cycles between strongly connected components, a
topological ordering can be found for the SCCs. This is the final step required to com-

plete the scheduling algorithm. The scheduling algorithm is:

1) Estimate the block length of the schedule and initialize an empty schedule of
that length.

2) Find the strongly connected components.

3) Produce the directed acyclic graph of strongly connected components.
4) Sort the DAG.

5) Schedule each strongly connected component.

6) If a schedule of the given block length cannot be found, increase the block
length and start over.

107

The algorithm for scheduling a strongly connected component is:

1) Form the DAG of only inter-iteration dependencies for the component.
2) Sort the DAG.

3) Schedule each operation checking to insure that dependencies on both ances-
tors and descendents are honored.

4) Signal failure if the operation cannot honor all dependencies.

4.2.6 Schedule Realization

Once a software pipeline schedule has been found it must be implemented or
realizedon the target architecture. This involves the construction of separate sections of
code for the prolog, kernel and epilog phases of the pipeline, along with code sections to
insure that there are enough iterations to enter the pipeline and cleanup sections to exe-
cution the iterations which do not fit the pipeline. Also, the loop must be unrolled and

any required register indices must be hard-coded into the schedule.

Ignoring for the moment the issue of unrolling the register indices, a pictorial
view of the sections of code to be generated is shown in Figure 38. The prolog and epi-
log are generated by unrolling the compressed schedule the correct number of times,
while selecting the instructions from the appropriate set of blocks. The prolog is con-
structed by selecting instructions from the first block, followed instructions from both
the first and second blocks, etc. This unrolling continues until all the instructions are
selected, at which point the prolog section is finished and the kernel section begins. The
epilog is constructed is a similar manner, except that it starts with all but the instructions
executing and continues until only instructions from the last block are executing. The
cleanup loop executes in sequential fashion and is created from the uncompressed
schedule. The entire schedule is joined together by conditional code to direct execution

into the appropriate sections of code.

108

if N < bc goto short bc = block count

prolog | block 1

blocks 1...bc-1

kernel all blocks

repeat if i < N-bc

epilog blocks 2...bc

block bc

if i N goto done

P

cleanup| short: repeat if i <

exit
done;:

FIGURE 38. Software Pipeline Realization

The schedule is not completely realized yet as the register indices have to be
rewritten. The scheduling algorithm allows multiple live instances of temporary, i.e. reg-
ister, values to occur. One way this can happen is shown in Figure 39. Allowing multiple
iterations to execute concurrently allows the lifetimes of a variable from different itera-
tions to overlap, creating multiple live values. Also, the optimization promoting array
references into registers allows these dependencies to span multiple iterations (see

Section 2.10 on page 89). This also allows multiple live instances to be created.

109

Iteration
Time i

Definition
i+1

i+2 +
Multiple
Last Use— Live Values

FIGURE 39. Multiple Live Register Values in a Software Pipeline

A gueue-like mechanism must be implemented to handle multiple live instances
of register values. Conceptually, a new value is pushed onto the top of the register queue
at the definition. Each use retrieves a value offset from the top of the queue by the num-
ber of new definitions which have been pushed. The last use removes the oldest value

from the queue.

If the target architecture supports indexed references into the register file, the
register queues can be created by incrementing the register index at the beginning of
each block, which is also the initiation of a new iteration. If hardware support is not
available, queues can be implemented either by copying the registers in the queue to
save the old values, or unrolling the schedule and hardcoding the register indices directly

in the schedule.

Copying registers introduces some overhead, which may or may not be detri-

mental to performance depending on the size of the schedule and the hardware resources

110

available to perform the operations. Unrolling the schedule can greatly increase the code
size. The algorithm used in Tortoise employes a combination of unrolling and copying to
implement register queues without excessive overhead in terms of either execution time

or code size.

The schedule produced by register unrolling is the same as shown in Figure 38,
with some minor modifications. The kernel of the schedule is unrolled and the register
indices of register with multiple live values are hardcoded in the schedule. The number
of times the kernel must be unrolled is the least common multiple of the iteration dis-
tances on all uses of registers with multiple live values. The least common multiple is
required because the set of iteration distances forms a group which must be cycled
through completely for the register indices to become invariant. If the least common
multiple is so large that unrolling would produce an excessive amount of code, the ker-
nel is not unrolled and the registers are instead copied to implement the register queue

behavior.

The register queues are implemented via copying in the epilog and the clean-up
code. These sections will be executed only a few times, so the execution overhead of
copying is not as large as in the kernel. The combination of unrolling the kernel and
copying registers in the other sections produces code with low execution overhead for
the majority of iterations, i.e. in the kernel, and low code size overhead in the other por-

tions of the loop.

4.3 Register Allocation

Once the schedule has been realized for the target architecture, register allocation
is performed using a priority based graph coloring algorithm [24][33]. During realiza-
tion, software pipeline specific constructs, such as register queues, have been re-imple-

mented in standard machine operations, so special register allocation techniques are not

111

required [148][149]. Unfortunately, the process of realizing the schedule alters the pro-
gram structure, requiring the flow analytic information to be reconstructed so that an

interference graph of register uses can be constructed.

The first step in the process of register allocation is to perform flow analysis on
the registers (an infinite set of pseudo-registers at this point) to determine liveness. An
interference graph is constructed from the liveness information. The liveness informa-
tion is constructed on the instruction level, rather than the block level. This is more

expensive than using block level liveness, but gives more precise information.

Once the interference graph is constructed, register allocation and spilling is per-
formed. The spilling algorithm uses the “spill everywhere” heuristic of [24]. This is a
somewhat weak heuristic and the allocator runs into the same problem with global vari-
ables encountered by Briggs et al. in [21]. This problem is exacerbated by the scheduler
which is optimizing for a short block length, potentially at the expense of a longer
uncompressed schedule length. No weight is given to register resources in the scheduler,
which tends to spread the last operations to be scheduled widely apart in an attempt to fit
those operations into a few remaining schedule slots. In [20], Bradlee et al. report that a
better schedule results when the code scheduler knows about register constraints. On an
architecture with a small number of registers, such as the MIPS architecture, a compres-
sion type scheduler, which is careful with registers will probably produce better code
than the unconstrained scheduler used here [77]. At the very least, the register allocator

should give some weighting to register use when scheduling operations.

4.3.1 Finishing Up
To finish the compilation, the completed schedule is reformatted in the assembly
language of the target architecture. Subroutine entry and exit sequences are added, along

with associated register save and restore sequences. The assembly code is written to a

112

file, which is then assembled and executed using the target architecture’s software. Exe-
cution analysis is done using a combination of pixie and a modified version of a runtime

analysis program, xsim, developed by Mike Smith [162][164][125].

CHAPTER V
EXPERIMENTS AND RESULTS

In our experiments we apply a set of static scheduling techniques to a set of
benchmarks and then simulate the running of the benchmarks on a set of machines. The
intention is to determine the effectiveness of the various scheduling techniques and also
to examine interactions between compile time scheduling techniques and architectural

features.

The cycles executed, and other performance characteristics, are found using
trace analysisin trace analysis, the executable is modified to produce a history or trace
of the program’s execution. The trace consists of a list the basic blocks executed and
memory references. The trace is analyzed by another program to produce execution sta-
tistics. We use the MIPS utilitpixie to instrument the executable for our R3000 experi-

ments, and a modified version of pixie for the Aurora Il experiments.

We use several programs to analyze the execution traces and produce execution
statistics. All of the analysis tools employ the same methodology: using the basic block
and memory references recorded in the trace, examine the executable to determine the
sequence of instructions executed in the block. With this more complete record of the
program’s execution history, emulate enough of the architecture’s behavior to estimate
the execution time. The emulation can range from a simple version which just incre-
ments a cycle count for each instruction, to an elaborate simulation of the internal state

of the processor, including updating instruction queues and cache lines.

113

114

The analysis tools used in these experiments are derivatives of two programs:
pixstatsandxsim Pixstats is the MIPS utility supplied for program analysis [163]. Pix-
stats gives detailed processor execution statistics, but assumes a perfect memory system
and does not give information on cache effects. We use pixstats in our runs on the R3000
comparing compilers and a modified version of pixstats for the experiments involving

floating point latencies [125].

Pixstats does not collect or report cache performance, so for the experiments
where we report cache behavior, we augment pixstats with the cache analysis tool
CacheUM[125]. Using the address references, CacheUM emulates the behavior of a
two level cache memory system and can be configured in a number of ways, including

setting the total cache size and the line size.

The analysis tool used for the Aurora Il based experiments is based on xsim,
developed by Mike Smith [162][164]. Xsim has been substantially modified by Tom
Huff and Mike Upton to model the behavior of Aurora Il [119]. We further modified the
Aurora lll integer and floating point models to combine them into one model. The com-
bined Aurora Ill model was then used as the basis for the DAE and VLIW processors

models.

The scheduling techniques used are loop scheduling techniques, including basic
block scheduling, loop unrolling, and software pipelining. The machine configurations
cover a range of instruction issue methods, including scalar, VLIW, superscalar, and
DAE. A scalar architecture with in-order issue with out-of-order completion is used as
the base architecture for comparison. In addition, some of the experiments also vary
other features of the machine model such as cache sizes, memory latencies, and instruc-

tion queue sizes. The full set of machine configurations investigated in shown in Table 2.

115

We are exploring the interactions of the components of highly complex systems
with a large number of parameters. In order to minimize this complexity we use the stan-
dard experimental approach of fixing all put one or two parameters, which are allowed to
vary during the course of the experiment. In this way we explore along one dimension in
the space defined by our system, and then move to the next dimension.

TABLE 1. Machine Configurations

Machine Issue

Name Description Rate Memory System

R3000 R3000. Single Perfect - no miss penalty.
R3000 fp R3000 with floating point latent Single Perfect - no miss penalty.

cies varied from 5 to 10 cycles,
with and without pipelining.

R3000 pipe R3000 with hardware support| Single Perfect - no miss penalty, 8-64k
for software pipelining (indexed word direct-mapped primary |
register operations and condi- and D-cache, 256k word second-
tional prolog and epilog instruc ary cache. 2/20, 3/20 and 5/141
tion execution). memory penalties (2 cycle pen-

alty for first level cache miss, 2(
cycle penalty for second level
cache miss, etc.).

R3000 a3 R3000 with Aurora lll cache | Single 2k byte I-cache, 32k D-cache,
configuration. 64k byte secondary | and D-

caches. 2/20 memory penalty.

Aurora Ill Aurora Il superscalar architec-| Dual 2k byte I-cache, 32k D-cache,
ture. 64k byte secondary | and D-

caches. 2/20, 5/50, and 10/100
memory systems.

Aurora lll scalar| Aurora lll scalar architecture. Single 2k byte I-cache, 32k D-cache,
64k byte secondary | and D-
caches. 2/20 memory penalty.

Aurora lll viiw | Aurora Ill VLIW architecture. Dual 2k byte |-cache, 32k D-cache,
64k byte secondary | and D-
caches. 2/20 memory penalty.

Aurora lll dae Aurora Il DAE architecture. Dual 2k byte I-cache, 32k D-cache,
64k byte secondary | and D-
caches. 2/20 memory penalty.

First we investigate the performance of our scheduling algorithms on a scalar
architecture. This gives us a baseline with which to compare the performance of our

scheduling algorithms on other machine configurations. Next, the latencies in the float-

116

ing point unit are varied while the other parameters of the processor are fixed. The goal
of this experiment is to investigate the efficacy of our scheduling algorithms in dealing
with medium and long latency operations. Then we turn to the Aurora Il and attempt to
determine what factors contribute to its increased performance over the baseline scalar
processor. We then compare the superscalar Aurora Ill to similar machines with VLIW
and DAE architectures. Finally, we examine the interaction of cache effects with our

scheduling policies.

1 Scheduling a Scalar Architecture

Our first set of experiments compares the performance of several compilers and
scheduling techniques on a current scalar architecture, the MIPS R3000, whose associ-
ated compiler is a commercial leader. These compiler experiments have several goals:
We establish that Tortoise is capable of state-of-the-art code generation, which ensures
that the instruction mixes are representative of those which would be produced by a
good optimizing compiler. We establish that our compiler is not handicapping any of the
scheduling techniques by, for instance, not providing information such as operation
dependencies, which would be available in a good optimizing compiler. In addition,
examining the behavior of the scheduling techniques in the simpler scalar environment

yields a baseline for comparison, before proceeding into more complex architectures.

The commercial compiler we use for comparison is the MIPS CC Version 2.10
with -O2 level of optimization. The MIPS compiler is used for comparison because it is
the vendor's compiler for the architecture chosen and, as noted above, is one of the
industry leaders. Gnu C Version 2.2.2 is also in these experiments with options -O2
(referred to as “gcc”) and -f unroll-all-loops (referred to as “gcc unroll”). Gee normally
unrolls loops to a fixed body size. A modified version of gcc is constructed to unroll

loops a specified number of iterations, in this case 4 iterations (referred to as “gcc unroll

117

4™). Our compiler is run with block scheduling (referred to as “block”), software pipelin-
ing (referred to as “software pipeline”), loop unrolling to match standard gcc unroll
counts (unroll), and loop unrolling 4 iterations (referred to as “unroll 47).

TABLE 2. Compiler/Technique Performance on a Scalar Architecture

Gnu C Variants Tortoise
Loop gcc unroll gcc software
No. gcc unroll count unroll 4 | block pipeline unroll unroll 4
1 0.828 0.873 4 0.889 0.728 1.12 1.16 1.1
2 0.884 0.902 1 0.844 0.724 0.897 0.774 0.893
3 0.751 1.07 4 1.09 0.6 0.922 1.12 1.09
4 0.953 0.871 1 0.93 0.801 0.996 0.85 1.08
5 0.889 0.969 4 0.955 0.728 0.999 11 1.08
6 0.764 0.843 2 0.824 0.76 0.926 0.847 0.835
7 1.09 1.09 1 0.869 0.967 1.15 0.983 0.674
8 0.833 0.833 1 0.691 0.872 0.884 0.872 0.408
9 1.17 1.17 1 0.84 0.971 1.09 0.971 0.921
10 0.98 0.98 1 0.88 0.947 1.01 0.947 0.391
11 0.847 1.16 4 1.07 0.734 1. 1.19 1.15
12 0.77 1.05 4 0.976 0.715 1.22 1.18 1.08
13 0.917 0.917 1 0.849 1.34 1.43 1.34 0.563
14 0.888 0.911 2 0.826 1.03 1.19 1.09 0.949
High | 1.17 1.17 1.09 1.34 1.43 1.34 1.15
Mean | 0.884 0.962 0.884 0.819 1.04 1.01 0.77
Low | 0.751 0.833 0.691 0.6 0.884 0.774 0.391

The cycles executed, and other performance characteristics, are found by running
pixie and analyzing the trace using pixstats, a MIPS utility supplied for program analysis
[163]. Pixstats assumes a perfect memory system and does not give information on
cache effects. Initially, we will ignore cache effects to simplify the number of parameters
in our machine model. Later, we will explore cache effects in some of the architectural

experiments.

118

The results of these variogempilersand techniques, applied to the first 14 Liv-
ermore Loops are shown in Table 2, on page 117. For each benchmark/compiler optimi-
zation, the speedup, i.e. ration of number of cycles executed over the MIPS compiler, is
shown. The high and low values, and the harmonic mean for the set of 14 Loops is also

shown for each compiler/technique in Table 2 and in Figure 40.

Running these techniques on a scalar processor shows some interesting results.
First, gcc generally produces slower loop code than the MIPS compiler, although when
loop unrolling is turned on, the performance is within 4% of MIPS. Loop unrolling to 4
iterations has worse performance than unrolling to a fixed size. Although gcc is not ade-
guately instrumented to show the cause of the decreased performance, in our compiler
this type of unrolling causes excessive register spilling. Gnu C does not do interval anal-
ysis and has a relatively poor register priority function, so very large basic blocks tend to
cause the compiler to generate excessive register spills. This quickly negates any advan-

tage of unrolling a large loop.

=
o

=
N

=
N

=Y

o
o

.Hi

Speedup wit MIPS CC
(@]
(00}

o
IN

o
N

. Low

o

gcc gu gu4 block unroll unroll 4 pipe

FIGURE 40. Compiler/Technique Speedup on Scalar Processor

119

1.1 Register Use

The registers consumed by each of the scheduling techniques for the first 14 Liv-
ermore Loops is shown in Table 3 and in Figure 41. The number of registers shown in
the table is the number of registers which would be allocated if an infinite set of registers

was available.

TABLE 3. Registers Use vs. Scheduling Technique

Gnu C Variants Tortoise

Loop integer float

No. block pipeline unroll unroll 4 | block pipeline unroll unroll 4
1 8. 11. 13. 13. 5. 8. 11. 11.
2 12. 13. 19. 24, 4. 4. 4. 4.
3 7. 10. 11. 11. 3. 4, 7. 7.
4 12. 15. 15. 16. 4, 4. 4. 4.
5 8. 11. 13. 13. 3. 3. 3. 3.
6 13. 16. 20. 22. 2. 2. 2. 2.
7 9. 12. 15. 19. 7. 9. 7. 20.
8 22. 26. 22. 37. 24. 24, 24, 35.
9 9. 19. 14. 16. 14. 46.
10 10. . 22. 9. 10. 9. 42.
11 10. 12. 12. 3. 3. 3 3.
12 . 10. 12. 12. 2. 4. 7.
13 20. 22. 21. 67. 6. 8. . 29.
14 19. 22. 33. 51. 6. 9. 12. 22.

High | 22. 26. 33. 67. 24, 24, 24, 46.

Avg. | 11.2 141 15.8 24.1 6.57 7.71 8.07 16.8
Low | 6. 9. 7. 11. 2. 2. 2. 2.

Figure 41 shows a marked difference in the number of integer registers con-
sumed by different techniques. There is almost no increase in the number of floating
point registers used, except for unroll 4, where the number of number of floating point
registers used doubles from the other methods. There are a number of causes for the dif-

ferences in register use between the techniques. The integer registers are used in these

120

loops primarily for address calculations and induction variables. The induction variable
analysis and optimization passes of the compiler will assign multiple registers to an
induction variable when it is in an unrolled loop if the stride is not constant or is too
large to fit in a memory immediate offset field. The stride may also be assigned to a reg-
ister. This will tend to allocate integer registers in proportion to the amount of unrolling.
The floating point register consumption is probably due to operations migrating over

wider ranges as the body becomes larger under the various scheduling techniques.

703 T 1
] High
60 l Hig
. [Average
£ 50
[iF] -
&] B Low
T 40 3 [
o . Integer Floelit
= 20]
T]
-‘5]
= 20—:
10
04
5 2 7 I 5 2 07 I
= 5 = o L T = o
e T = = e T = =
o = o =

FIGURE 41. Registers Use vs. Scheduling Technique

1.2 Code Size

Code size is another parameter affected by these scheduling techniques. Soft-
ware pipelining and loop unrolling trade larger code sizes for optimization opportunities
and hopefully better performance. Code size can become an important performance fac-
tor due to its effect on cache behavior. The number of instructions generated for the first

14 Livermore Loops is shown in Figure 42 for each of the compilers and scheduling

121

techniques used. While the overall increase in program size is not large (about 20% in
the largest case), the increase in the size of the working set can be much more dramatic
and will put pressure on the cache. We will examine this question more thoroughly in

Section 4 on page 147.

Humbet of [retrctions

2000 - Il Hioh

]] Average
1000

. B Low

rmips

Qo

oG urroll
courroll 4
Erbck
PReline
urroll
urrol 4

=)
Scheduling Compiler/Technique

FIGURE 42. Code Size vs. Scheduling Technique

Table 4 shows a comparison between the performances of the code produced by
each of the scheduling techniques. As expected, loop unrolling and software pipelining
produce code which performs better than the code produced by block scheduling. Unroll
4 produces code with inferior performance to the code produced by block scheduling,
probably due to increased register consumption. The comparison of software pipelining
and loop unrolling shows an interesting correlation with the unroll count. Generally, the
code produced by software pipelining performs better than the code produced by loop

unrolling where the unroll count is 1 or 2 and worse than the code produced by loop

122

unrolling where the loop count is four. This leads to the possibilities that either: 1) the

criteria for determining the loop count is incorrect or; 2) software pipelining and loop

unrolling are complementary techniques that could be used together, by selecting the

best technique for each circumstance.

TABLE 4. Scheduling Techniques Performance Ratios

Gnu C Variants Tortoise
pipelined unroll unroll 4 pipelined pipelined
VS. VS. VS. unroll VS. VS.
Loop No. | block block block count unrolled unroll 4
1 1.53 1.59 1.52 4 0.965 1.01
2 1.24 1.07 1.23 1 1.16 1.
3 1.54 1.86 1.82 4 0.826 0.846
4 1.24 1.06 1.34 1 1.17 0.925
5 1.37 151 1.49 4 0.908 0.924
6 1.22 1.11 1.1 2 1.09 1.11
7 1.19 1.02 0.698 1 1.17 1.7
8 1.01 1. 0.468 1 1.01 2.16
9 1.12 1. 0.949 1 1.12 1.18
10 1.07 1. 0.413 1 1.07 2.58
11 1.36 1.62 1.57 4 0.843 0.866
12 1.71 1.65 151 4 1.04 1.13
13 1.06 1. 0.42 1 1.06 2.53
14 1.15 1.06 0.917 2 1.09 1.26
High 1.71 1.86 1.82 1.17 2.58
Mean 1.24 1.19 0.866 1.02 1.19
Low 1.01 1. 0.413 0.826 0.846

The unrolling algorithm used by gcc unrolls loops to fixed maximum size. This

criteria has a number of desirable features: Smaller loops will benefit more from loop

unrolling since instructions and overhead removed form a larger percentage the execu-

tion time of the loop (see Section 1.2 on page 45). In addition, there are potential detri-

mental cache effects from the amount of code produced by unrolling larger loops. In

123

addition, as mentioned earlier and shown in Figure 41, on page 120, unrolling large

loops can consume a large number of registers.

The possibility that software pipelining and loop unrolling are complementary
techniques has been mentioned in previous studies [77][102]. The best approach would

probably be to develop a hybrid algorithm which applies both unrolling and software

pipelining.

The most surprising result of this set of experiments is that even on an architec-
ture with relatively little amounts of parallelism, software pipelining outperforms loop
unrolling. The R3000 has short operation latencies, even in the floating point unit and
the units are which are not pipelined, so the execution of operations intended for the
same unit cannot be overlapped. Overall, there is a small amount of parallelism to
exploit and it is surprising that removing operations with loop unrolling is not more ben-

eficial.

In addition, software pipelining uses fewer registers while requiring a compara-
ble amount of code space. It would seem that software pipelining should consume more
resources, because software pipelining is supposed to be exploiting parallelism by over-
lapping the execution of more operations, while using more instructions and registers to
do so. This seems not to be the case for this architecture, where software pipelining uses

the same amount of code space and fewer registers.

An advantage of software pipelining is that it “unrolls” only enough to fill open
latencies and stops when there are no idle operation slots to fill or improvements in the
schedule are not possible because of operation dependencies. This will tend to use less
resources than an algorithm that is less sensitive to the code and architecture being

scheduled.

124

2 Scheduling for Long Operation Latencies

Software pipelining should schedule operations with long latencies, especially
pipelined operations, better than other scheduling methods. Since the function units on
the R3000 are not pipelined and have relatively short latencies, the experiments on the
R3000 did not address this issue. In this section we will describe and give results of an
experiment designed to explore the effectiveness of the scheduling techniques at exploit-

ing parallelism in the form of pipelined function units.

In this experiment, we will vary the latency of the floating point add and multiply
units, rescheduling the benchmarks each time to match the latency of the target machine
model. We will use the output of the MIPS C compiler as a base against which to com-
pare the other scheduling techniques. Block scheduling, loop unrolling, and software
pipelining are tested under (double precision) floating point add latencies which range
from 2 to 7 cycles and multiply latencies which range from 5 to 10 cycles. This range of
latencies is chosen because it matches current architectures on the low end (2 cycles),

and what is thought to be probable for new processors on the high end (5 to 7 cycles).

A new analysis tool is necessary, as pixstats is configured to match the R3000
parameters. For that reason fpaUM, which was developed by David Nagle at the Univer-
sity of Michigan for the Aurora project, is used with pixie to provide performance data
[125]. FpaUM allows the latencies of floating point operations to be set in a machine

configuration file. FpaUM also allows function units to be pipelined, if desired.

Figure 43 shows the results of scheduling the first 14 Livermore Loops while
varying the scheduling technique, floating point latencies and whether the floating point
operations are pipelined. The performance metric is the ratio of harmonic means of the
number of cycles executed for code produced by each of the scheduling technique and

machine model with respect to the code produced by the MIPS C compiler an R3000

125

configuration. The number shown is the inverse of speedup, i.e. higher numbers repre-

sent longer execution times.

E 1.8

= 16 . 3 —B— mips
B a_

E‘ 143 ,a/%/H —3— block

% 1.2 %y/'ﬂé —H— unroll

= i - | =1 1 — T _

E 1 F pipe

o 08 . — mips piped
=]

é 0.6 e —— block piped
& 0.4

= 0 . —— unroll piped
£ 0.2 -

B : — pipe piped
=0

]

2 3 4 5 6 7
FPU Add Latency

FIGURE 43. Execution Time vs. Increasing FPU Latency

The performance of the code produced by loop unrolling, software pipelining
and the MIPS compiler are all fairly close on the R3000 configuration (FPU Add
Latency 2). Pipelining the floating point operations on this configuration does not
greatly improve performance. Block scheduling produces code which has almost 20%
lower performance on this configuration. As the floating point latencies are increased,
the execution times of all runs increases. MIPS (the MIPS compiler scheduling for the
R3000) increases the fastest, followed by loop unrolling and last by software pipelining.
We conclude that software pipelining is better at handling this type of parallelism,
although the improvement over loop unrolling is only slight until the pipelines become

moderately deep.

126

=~ 1.8
i)
S 3
£ 1.6 —E—
B 144 —— B
ca 0] [—o—] /H//H
B 12d—3— — - —

] —B— mips
5 0.8 B
=]
= 0.6 —3— block ||
E 0.4 3 —+— unroll H
ERNE |
§ 0.2] f pipe B
& 0 !

2 3 4 5 6 7

FPU Add Latency

FIGURE 44. Execution Time vs. Increasing FPU Latency (FPU not pipelined)

Figure 44 and Figure 45 show the same information as Figure 43, split to show

separate pipelined and non-pipelined runs.

1.8
T 1.6
3 ——
S 1.4 —c—
2,3 . ——] I
=]] o—] a A e
7 A 7x

E 1d—a=t—=
E=] 3] .
= 0.8 —6&— mips | |
ax -
E 0.6 —&=— block L]
g 0.4 —— unroll |4
= :
§ 0.2 —A— pipe m
3]] T

o 1

2 3 4 5 6 7

FPU Add Latency

FIGURE 45. Execution Time vs. Increasing FPU Latency (FPU pipelined)

Two sets of runs for pipelined and non-pipelined function units show similar

behaviors. Figure 46 divides the runs by technique, showing the difference in execution

127

times between pipelined and non-pipelined floating point units. The non-pipelined exe-
cution times increase a little faster and the spread between the slowest and fastest runs is
a little wider. But the difference is relatively small (less than 10%), even on the configu-

rations with deep pipelines.

1.8 1.8
1.6 1.6 —
1.4 = 1.4 e
1.2 1.2ttt
) B_/’B‘/’B(;
0.8 —B— mips 0.8 —3— block]
0.6 0.6 —
0.4 —— mips piped 0.4 — block piped }|—
0.2 0.2
0 0
2 3 4 5 6 7 2 3 4 5 6 7
(a) MIPS CC (b) block scheduling
1.8 1.8
1.6 1.6
1.4 e 1.4
_ —< S
1.2 et 1.2 e
1——?"% 1——F$=i
0.8 - 0.8 _ —
0.6 —H— unroll | | 0.6 —— pipe
0.4 —— unrolipiped [| 94 —A— pipe piped
0.2 | | | | B 0.2 —
0]]]] 0
2 3 4 5 6 7 2 3 4 5 6 7
(c) loop unrolling (d) software pipelining

FIGURE 46. Execution Time Pipelined vs. not Pipelined FPU

The graphs presented so far show the results of increasing the latency of floating
point operations given a fixed cycle time. This may be the case when designing a proces-
sor, but a more likely scenario is that dividing the floating point units into more pipe
stages will allow the cycle time to decrease. Figure 47 assumes a fixed latency in the

floating point unit and a decreasing cycle time. In this case we would derive a substantial

128

benefit from increasing the number of pipe stages, even without better scheduling tech-

nology. Better scheduling provides additional performance.

1 :’I\ —B— mips
0.9 \ I block
0.8 N
. —H— unroll
0.7

—— pipe
0.6
— perfect

©
n

©
w

©
N

o
=

Relative Execnton Time (wit 2 stages)
(@]
al

o

2 3 4 5 6 7
FP Add Pipe Stages

FIGURE 47. Execution Time vs. Increasing FPU Pipe Stages (Constant Latency)

Of course, this scenario of a fixed floating point latency and a decreasing cycle
time is wildly optimistic because it assumes that the latencewarything elsegoes
down proportionally, including memory latencies. This is also unlikely to be the case.
The truth lies somewhere between these two extremes: Some benefit is derived from
increasing pipe stages, along with cost. The point at which two effect balance with deter-
mine what the optimal number of pipe stages. Aggressive scheduling such as software
pipelining will push the balance toward more pipe stages, i.e. more benefit will be

derived from each additional pipe stage.

129

3 Scheduling and Issue Policies

In this section we describe a set of experiments designed to explore the interac-
tion between an architecture’s instruction issue policy and the scheduling techniques
used by the compiler. Our goal is to compare block scheduling, loop unrolling and soft-
ware pipelining on scalar, VLIW, DAE and superscalar architectures. We have already
examined the compiler and scheduling techniques in some detail. However, for this
experiment we need a more general analysis tool than either pixstats or fpaUM. We will
still use trace based simulation and analysis to derive our performance figures. The anal-
ysis tool used is these experiments is based on xsim, developed by Mike Smith

[162][164].

Xsim has been modified by Tom Huff and Mike Upton for the Aurora project at
the University of Michigan [119]. The current version of the Aurora processor, the
Aurora lll, is a superscalar processor. We will use the Aurora lll as the superscalar archi-
tecture in these experiments and modified versions of the Aurora 11l for the VLIW and a

DAE architectures.

3.1 Aurora lll

The Aurora lll is a superscalar architecture which can issue two instructions per
cycle if there are no data dependencies between instructions in the instruction window.
Execution of the integer, floating point and memory units are decoupled. Coordination
between the sub-systems is by a set of instruction, load and store queues. Ordering
within each sub-system is supported by register score boards. In-order issue with out-of-

order completion is supported by result reorder buffers.

The Aurora Ill has 32 integer and 32 double precision floating point registers,
although most of our experiments use 16 double precision floating point registers to sim-

plify comparison with the R3000.

130

The Aurora Ill has a two level cache: In the current simulations, the first level,
on-chip caches are a 2k byte direct mapped I-cache and a 32k byte direct mapped D-
cache. The second level caches is a 64k byte direct mapped I-cache and a 64k byte direct
mapped D-cache. The final system will probably be 64k byte secondary caches, but the
memory latency will probably be 150 to 200 cycles rather than the 20 cycles generally
used for these simulations. In addition there will be branch prediction with instruction
prefetching, which is not currently implemented. The memory latencies used is these
simulations, except where we indicate otherwise, is a 2 cycle penalty for a first level
cache miss and 20 cycles for a second level cache miss. There is also a 4 word store

write buffer, which is used to collect and optimize writes.

The floating point unit has separate add, multiply and divide units. Both the add
and multiply latencies are three cycles. The processor also has 64 bit wide data paths and
supports double precision floating point load and store instructions. There are two result

busses, a result reorder buffer and a store reorder buffer.

3.1.1 Aurora lll Scalar Performance

The Aurora lll incorporates a number of improvements over the R3000, includ-
ing multiple result busses and 64 bit data patfisie performance benefits of these fea-
tures are worth investigating before looking at dual issue. For this set of experiments we
define a scalar Aurora lll, where the processor has been constrained to only issue a sin-
gle instruction each cycle. Figure 48 shows the speedup of the code produced by each
compiler/technique running on a scalar Aurora Ill, compared to the performance of the
code produced by MIPS compiler running on the on the R3000. Generally, we will com-
pare our code to the performance of code produced by the MIPS compiler running on

the R3000 to have a standard for compafison

1. Later MIPS processors, such as the R4000, also implement 64 bit instructions.

131

5 B =
2 = 5
(]
L)
ol

gor o]l 4
hlock
pipeline
unroll
1ol 4

FIGURE 48. Scalar Aurora Il vs. R3000 w. MIPS CC

Most of the compilers produce code with performance speedups in the 1.7 range,
even without dual issue. There is a wider variation in the performance of our compiler
using software pipelining and loop unrolling and either gcc or the MIPS compiler. This

is due to one or two vector loops hitting the processor just right, but this does not raise

the harmonic mean by much.

3.1.2 Double Precision Floating Point Loads and Stores

There are a number of features in the Aurora Il which contribute to the 1.7
speedup over the R3000. Some of these features affect scheduling and need to be dis-

cussed before we proceed to examining dual issue.

2. The base processor is an R3000 with a cache configuration matching the Aurora Ill cache con-
figuration.

132

The Aurora lll has 64 bit wide data paths and provides double precision floating
point load and store instructions. This capability gives performance benefits in excess of
just saving a cycle per each load or store, because rewriting two loads with a single dou-

ble precision load removes scheduling constraints caused by the way these memory

operations are handled.

The MIPS assembler expands double precision floating point load and store
opcodes into two instructions. Our compiler uses this capability and treats these opcodes
as one long instruction. This has scheduling implications. First, these compound instruc-
tions will not fit in a branch delay slot. This is one scheduling constraint. In addition, the
Aurora lIl can only issue one memory operation per cycle, or only one memory opera-
tion per dual issue pair. We are still scheduling for a scalar architecture to this point, so
the second constraint does not effect us yet, but this constraint will have an effect when
we enable dual issue. Providing double precision load and store instructions removes

these scheduling constraints and allows a more compact schedule to be generated.

[mean

mips
o

goe ol
gre o]l 4
block
pipeline
ol
umoll 4

FIGURE 49. Scalar Aurora Il Double vs. Single Load/Stores

133

Figure 49 shows a mean performance increase of about 1.25 due to providing
double precision load and store instructions. In this figure, each compiler/technique is
compared to itself with and without double precision load and store instructions. So, for
instance, unroll 4 does not suddenly have better performance than software pipelining.
However, unroll 4 does benefit more from the new instructions than the other compilers/
techniques. Because of the large number of registers consumed, unroll 4 tends to gener-
ate a larger number of load and store instructions to spill register contents. So unroll 4

derives more benefit from the new instructions than do the other techniques.

3.2 Decoupled Execution

1000000 1 1 |
900000
800000
700000
600000
500000
400000
300000
200000
100000

0]

—B— cyclesM20

—3— cyclesM50

—H— cyclesM100

Execution Cweles

P

N
N
~
AN
I~

VAR
7.

Y
il
vis
il
O,

Liialonnntennnnnnninnnninn e oo nton et nnnnttinl
/]

2 4 6 8 10 12 14 20
| Queue Length

FIGURE 50. Aurora Ill Cycles vs. I-queue Length

Another feature of the Aurora Ill which effects scheduling is that the integer and
floating point processors are decoupled. The instructions in the current instruction buffer
in the instruction fetch unit are examined and either: 1) block because one of the regis-

ters is marked busy. 2) are sent directly to the integer unit. 3) are placed in the I-queue

134

(instruction queue) to be delivered to the floating point unit. 4) are placed in the I-queue

and the L-queue (load queue) to be send to both the floating point and memory units.

The queues allow decoupled execution of the sub-processors. In code without a
recurrence between the floating point and integer processors, the integer processor tends
to execute several cycles ahead of the floating point processor. The execution delay
between the two processors hides much of the memory delay as in other decoupled pro-

cessors, e.g. the DAE architecture in [154].

Figure 50 and Figure 51 show the execution time and I-queue stalls for Liver-
more Loop 2 under increasing I-queue length for memory systems with latencies of 20,
50 and 100 cycles. This execution behavior is similar to the decoupled behavior reported

in [157].

90000 I 1 1 | |
80000 —— iOstallsM20

70000
60000

—— iOstallsM50

pabi
f
J

AN —_——— iOstallsM100
s0000 N N <

30000

20000 %#mﬁ—

U

FIGURE 51. Aurora Il Stalls vs. I-queue Length

Decoupled execution has scheduling implications because it tends to hide mem-
ory delays. This tends to decrease the relative performance of a VLIW execution model.

In the VLIW model, NOPS are inserted in the schedule to remove pipeline hazards. In

135

code such as Livermore Loop 4 (see Figure 52), an occasional data dependency, which
cannot be resolved at compile time, will require the scheduler to treat the data depen-
dence as arecurrence. The schedule will be padded with NOPS to satisfy the data depen-
dency. In code such as this, where the data dependency is only occasionally a true
dependency, decoupled execution would allow the next loop iteration to begin once the
dependency is resolved. However, the VLIW version, the loop has been padded with
NOPS. which must always be executed, even when there is no dependency. The next
iteration must execute the NOPs before the next iteration can begin execution, which
lowers the overall performance of the VLIW schedule. The ability to dynamically
resolve pipeline hazards in the superscalar execution model is a decided advantage over
VLIW in this case.
for (j=5; j <= N; j+=5) {
temp =temp - X[lw] * Y[j];
Iw = Iw+1;

X[k-1] = Y[5] * temp;
}

FIGURE 52. Livermore Loop 4 - Occasional Data Dependency

3.2.1 Dual Issue Performance

When dual issue is enabled (see Figure 53), the mean performance speedup goes
up to 2.3 time the R3000 and the performance variation of all the schedulers increases.
The performance of code which cannot dual issue does not increase, while the perfor-
mance of code which 100% dual issues can double. The performances of all three ver-
sions of gcc along with the MIPS compiler improve relative to our compiler with both
software pipelining and loop unrolling. Only block scheduling and unroll 4 lag in perfor-

mance.

At this point we are still running code which has been scheduled for a scalar pro-

cessor. A scheduler which has a more accurate model of the architecture should have

136

better performance. We will still use software pipelining and loop unrolling, but change

Tortoise’s model of the machine to match the dual issue nature of the Aurora lll.

apeedup

Z 8
2 = 5
[
L)
ol

goe wiroll 4
block
pipeline
ol
ol 4

FIGURE 53. Dual Issue Aurora lll vs. R3000 w. MIPS CC

3.2.2 Scheduling Models

Since we can gain a factor of two by dual issuing on the Aurora lll, the percent-
age of dual issued operations will be our primary concern. Table 5 shows the percentage
of dual issues which occur randomly when scheduling using a scalar machine model. As
can be seen in the table, the percentage of dual issues is fairly low at 44%. This repre-
sents a speedup of dual versus scalar issue of about 1.3. We will introduce two machine
models to attempt to improve on the percent of dual issues over using a naive scalar

model.

The first model will treat the Aurora Ill as a VLIW architecture when scheduling

operations. Because the Aurora lll uses a fixed instruction window, a VLIW scheduling

137

model is a good approximation for scheduling operations. However, the lifetimes of reg-
isters are different in a static superscalar architecture than in a VLIW architecture.

TABLE 5. Percent Dual Issue under Different Scheduling Models

Loop scalar VLIW Double
No. schedule schedule Latency
1 39.8 95.6 88.4
2 62.8 91.1 63.5
3 50. 98.2 69.3
4 14.4 72.5 64.5
5 12.5 55.1 32.6
6 58.8 63.8 81.8
7 72.5 96. 85.
8 48.3 84.4 34,
9 53. 75.5 51.6
10 49.8 84.2 318
11 15.7 66.1 97.1
12 42.4 97.2 91.6
13 46.6 76.4 56.1
14 51.6 80.6 72.6
High 72.5 98.2 97.1
Average 441 81.2 65.7
Low 12.5 55.1 31.8

In a static superscalar architecture, the register is live at the end of the operation
even if this is in the middle of the instruction window. So register allocation must use a
scalar paradigm. We first construct a VLIW schedule and then treat the operations as a

linear scalar schedule in the register allocation routines.

Because registers are marked live in the scoreboard at the end of each operation,
the machine can resolve pipeline hazards and stall when a data dependency exists. We
can use this to overcome the problem of padding a schedule when there are unresolvable
data dependencies (see Section 3.2 on page 133). Our scheduling algorithm first pads

instructions to the width of the instruction window to avoid losing synchronism of the

138

window and operation pair. Then, any NOPS pairs filling an entire cycle/instruction win-

dow are removed.

Table 5 shows that we have almost doubled the percentage of dual issues. How-
ever, some of the operations measured as dual issue are actually NOPS, and the perfor-
mance only increases about 5% over the naive scalar model. The performance of the
VLIW model compared to the MIPS compiler on the R3000 is shown in Figure 54.
Another problem is that even though we are getting more dual issues, other bottlenecks

are limiting performance, e.g. data dependencies and cache performance.

a

Bl +ioh

IN

w

Apeedup

N

=Y

o

mips
gor
grc unroll

-T e — =T
= a ﬁ % =
= o
: & :
="
o)
(=]
o

FIGURE 54. Dual Issue Scheduling (VLIW Model) vs. R3000 w. MIPS CC

We will introduce another scheduling model, to see if we can do better than our
VLIW model. A superscalar architecture can also be modeled as a scalar architecture
with the operation latencies doubled. The results of this scheduling model are shown in
column 3 of Table 5 and Figure 55. The percentage of dual issues drops off some,
because we are no longer inserting NOPS to pad the instruction windows. However, the

performance is close to the performance of the VLIW model.

139

Figure 56 shows the speedup of dual issue (VLIW model scheduling) over scalar
execution (scalar model scheduling) on the Aurora Ill. The performances of each com-
piler/technique are compared individually and are not scaled to each other. The mean
improvements are in the range of 1.2 to 1.4. The loops with the worst performance in
unroll 4 actually lose performance due to the padded instruction windows and additional

registers allocated.

a

Bl +ioh
[Mean

IN

3

="
=

—
LR
[
="

2

N

(=Y

o

mips
gee

goo nnroll
gre mwoll 4
block
pipeline
uivinal i}
ol 4

FIGURE 55. Dual Issue Scheduling (Latency Doubling Model) vs. MIPS CC

Figure 57 shows the registers used by software pipelining under the different
machine models. Both the VLIW and double latency models use slightly more registers
than the scalar model. The average number of floating point registers is consistently
lower than the number of integer registers, by a margin on the order of 50%. The maxi-
mum numbers of floating point and integer registers is roughly the same. This indicates
that a machine with only one half as many floating point registers as integer registers,
like the R3000, probably has too few floating point registers for the type of applications

represented by the Livermore Loops.

140

Bl High
. Mean
B Low

mipa
goe

goc vl
goc noll 4
block

pipe line
il
unroll 4

FIGURE 56. Dual v.s Scalar Issue (VLIW Scheduling Model)

w
(§]

B Hioh
[Average

. Low

W
o

N
(6]

N
o

[
al
[FTETI TR FRERARARTI RN FRERE ARRT)

Mumber of Registers
=
(@]

(6

o

float integer float integer float integer
Scalar VLIW Double

FIGURE 57. Register Use vs. Issue Models with Software Pipelining

141

3.3 Comparisons with VLIW and DAE

Having put all the machinery in place to compile using different scheduling algo-
rithms, and simulate the programs and analyze the performance, we want to compare

architectures with different issue models to our scalar and superscalar architectures.

One difference between a VLIW architecture and a static superscalar architec-
ture is its use of registers. In a VLIW, the target registers become live at the end of the
cycle when the operation exits the function unit, rather than at the end of the instruction
which defined the target register. In addition, source registers are live until the end of the
cycle in which they are redefined, rather than at the end of the instruction in which they

are redefined.

Figure 58 shows an example of a superscalar register lifetime using a two cycle
add operation. In this example, rl is used and the destination register in the first instruc-
tion. In a superscalar machine, rl would be marked live immediately following the first
instruction. If the operation has a two cycle latency, any operations using rl in the next
two cycles would be delayed until the add operation has completed execution. If the
result of the add operation is only used once, by the multiply in cycle 4 here, rl is avail-
able for reuse. In a superscalar machine, rl is marked busy in cycles 2 and 3, and avail-

able at cycle 4.

1. rl=addr2,r3 -

2. .. rl live

3 .. rl live

4: r4 =multrl, r5 rl available

FIGURE 58. Superscalar Register Definitions

Figure 59 shows the register lifetime on a VLIW architecture two cycle opera-

tion. R1 is available in the two cycles following the add instruction, but would have a

142

previous value, not the result of the add operation. It is the compiler’s job to insert NOPs

to insure that any pipeline hazards are removed.

s rl=addr2,r3 -

1
2. .. -
3 .. -
4: r4 =multrl, r5 rl live and available

FIGURE 59. VLIW Register Definitions

This difference in the definition of register liveness has performance implica-
tions. The first is that the VLIW architecture must insert NOPs between instructions to
remove pipeline hazards. As mentioned in Section 3.2.2 on page 136, this can lower per-
formance in certain situations because the schedule is less compact. Figure 60 shows a
performance drop of about 20% for VLIW vs. superscalar using software pipelining, and

a larger drop in performance for the other scheduling techniques.

Il ~ion
B ™mean
- Low

speedup

block pipeline unroll unroll 4

FIGURE 60. VLIW vs. Static Superscalar vs. Scheduling Technique

143

The register savings of VLIW are small, on the average, and are not large enough
to make up for the additional padding required. Figure 61 shows the register use on each

of the architectures.

35 Bl ~ioh
30 [Average

B Low

Registers

float integer float integer float integer
Superscalar VLIW DAE

FIGURE 61. Register Use vs. Issue Policy with Software Pipelining

DAE is another interesting architecture on which to try our scheduling tech-
niques. As mentioned in Section 3.2 on page 133, the Aurora Il already has load and
instruction queues and exhibits some of the characteristics of decoupled execution.
However, in a DAE architecture, the communication with the memory unit is strictly via
a set of queues. One register is removed from each of the integer and floating point reg-
ister sets and the register ids are used to represent queues. The register ids are used in
conjunction with load and store operators to select one of four data queues, i.e. integer
data to memory, integer data to memory, floating point data to memory and floating
point data from memory. There is also an address queue to send addresses to the mem-

ory system.

144

For each memory operation, either a load or store, the Access processor pushes
an address onto the address queue. With each access processor memory address push,
there is a corresponding reference in the Execute processor to a load or store data queue.
A push to the store queue is indicated by using the store queue id as the target of an
operation. A pop from the load queue is indicted by the use of the load queue id as a

source operand.

The two DAE subprocessors usually implement different instruction sets, with
the Access processor only being able to execute integer/address operations and the Exe-
cute processor implementing a more complete set of operations. The proper instructions
must be routed to each subprocessor. This routing can be facilitated by defining a fixed
instruction format where each half of the instruction is restricted to hold instructions for
one fixed subprocessor. For simplicity, we will not split our processors; the operations
will be allowed to execute from either side of the instruction window. This will make our

results slightly optimistic over a more restricted format.

1.4

=
N

[ERN

o
o<}

o
~

o
(o]
IIIIIIIIIIIIIIIIIIIIIIII

o
[\

o

block pipeline unroll unroll 4

FIGURE 62. DAE vs. Static Superscalar vs. Scheduling Technique

145

However, we will adhere to the restrictions imposed by the DAE memory model:
Each store data must go into the store queue and each load data from come from a load
gueue. Each reference to a load queue pops the queue, so the operand must be copied to
another register if it is used as a CSE. Only one store queue reference and one load
gueue reference are allowed per instruction. If an instruction would use more than one

load queue, one of the operands must be copied into a register.

The restrictions on queue use require additional move instructions to copy data
to/from the queues and registers. This causes some performance degradation. Figure 62
shows performance of the DAE architecture as compared to the static superscalar for

each of the scheduling techniques.

B +ioh
B Mean

Apeedup

YLIW
DAE
YLIW
DAE
YLIW
DAE

Anrora I1T
Ao 1T
Anrors 11T

block unroll unroll 4 pipeline

FIGURE 63. Aurora lll, VLIW, and DAE vs. Scheduling Technique

Figure 63 shows the performances for all three multi-issue machines together

with the scheduling technique employed, compared to the R3000. As expected, the

146

superscalar architecture comes out on top. The relative performance of the VLIW and

DAE architectures changes, depending on the scheduling technique used.

3.4 Aurora lll Cache Behavior

%5 Btall Cwcles

4
- bI(?ck
eline

7 [
unl#oﬁéjll schedule

FIGURE 64. Percent Time Spent in D-Cache Stalls

We will consider cache behavior more thoroughly in the next section (see
Section 4 on page 147). Here we will take a quick look at the cache behavior of the
Aurora Il with the current parameters. Figure 64 shows the percent of execution time
spent in D-cache stalls. The D-cache performance looks fairly normal. However, the |-
cache stalls, shown in Figure 65 show degenerate performance behavior for a few of the
technique/benchmarks. This is because the 8k byte (2k instructions) I-cache is not large
enough to hold the body of some of the larger schedules. Also, since the Aurora lll does

not have instruction prefetching and the memory system cannot stream instructions fast

147

enough to keep up with the processor, the processor spends much of its time waiting on

|-cache stalls.
A T—7T——
// \\\\\
/\\\\ _
e L L T T——1__ —1-0.8
T T T T
2B ZEPd T 0.6
o 0.8 A1 | —~—| |
& A AT T 0.4
radnzdyid BE '
= // //
oyl]
H %

FIGURE 65. Percent Time Spent in I-Cache Stalls

4 Cache Effects

Both loop unrolling and software pipelining improve performance at the expense
of increased code size. To this point we have not really investigated the effects of this
increased code size, except to incorporate a realistic cache model into our simulations.
We will now take a closer look at the effect these techniques have on code size and what

this does with respect to cache behavior.

4.1 Previous Work

Previous studies [171][40][57][115] have found that differences in code density

can affect performance. The size of the effect is found to decrease as the size of the

148

cache is increased. Our experiment is similar to the experiments in earlier studies except
for the uniformity condition. Uniformity assumes that code density changes equally for
all parts of the program. Uniformity is intentionally avoided in our experiments. We
wish to increase the code density in heavily used portions of the program, i.e. inner

loops, and generate less compact code in less executed portions.

As the results here will show, our deviation from the uniformity condition is not
enough to change nature of the effect. An increase in code size causes a decrease in per-

formance and this effect disappears with larger caches.

First we will explore the effects of increased code sizes due to software pipelin-
ing in the context of the scalar R3000 architecture, with varying memory system param-
eters and software pipelining techniques. Then we will return to the Aurora Ill cache
model and look at the cache behavior for our scheduling techniques there. Finally, we
will look at the cache behavior on some larger programs, the Spec benchmarks, running

on the R3000 again.

4.2 Cache Performance Effects from Software Pipelining

The increase in code size will depend on the implementation of software pipelin-
ing, as well as whether hardware support is available. If hardware support is available,
the code size increase may be much less than if software pipelining is implemented
entirely in the code. We examine the behavior of three types of hardware support for

software pipelining:

1. Hardware support for both conditional instruction execution and register
indexing (full support).

2. Hardware support for just register indexing (indexed support).
3. No hardware support (no support).

149

In these experiments, the R3000 is used as the base architecture. Two perfor-
mance analysis tools, fpa_UM with CacheUM [131][125], are used to model the cache

configurations and collect performance statistics.

In the first experiment, a code generator which employs software pipelining will
be used to generate pipelined loops for the first fourteen Livermore loops. A high latency
memory system with a two level cache organization is chosen for this experiment. The
organization and latencies are taken from [131]. A first level cache miss has a latency of
5 cycles. A secondary miss has a latency of 141 cycles. These latencies are realistic for

the current generation of processor and memory speeds.

In the architecture with full support, only the kernel stage of the loop is gener-
ated. This code is executed N+pipestages-1 times, where pipestages is the number of
pipe stages in the loop. The extra pipestages-1 executions of the kernel are required to

execute the epilogue portion of the loop.

4000
full

3500 -
':!; 3000 O indexed
== 2500 - none
é 2000
% 1500
5 1000

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Livermore Loop

FIGURE 66. Code Sizes for the First Fourteen Livermore Loops

In the architecture with indexed register file support, separate code is produced to
implement the various phases of pipelined loop execution: prologue, kernel, epilogue,

etc. However, only one copy of each phase is produced and there is no unrolling to

150

rename registers. This implementation produces an intermediate amount of code

between architectures with full software pipeline support and no support.

In the architecture with no software pipeline support, additional unrolling is
required to statically rename registers. This implementation requires the largest amount
of code. As shown in Figure 66, the code size can increase dramatically on an architec-
ture with no pipeline support. In this case, the code for loop 10 with no pipeline support
is approximately ten times the size the code with full support. The other loops range

from two to three times the size, between the largest and smallest implementations.

600000

Il

[indexed

B nrone

Exeeution Time -oyeles

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Livermore Loop

FIGURE 67. Execution Times for the First Fourteen Livermore Loops

If the effect of the increase in code size is not considered, there is little difference
in execution time between the various implementations. The total cycles executed for
each of the first 14 Livermore Loops is shown in Figure 67 with full, partial, no hard-
ware support for software pipelining. As can be seen in the figure, there is almost no dif-
ference in the number of cycles executed between the implementation. Slightly fewer
instructions are executed for implementations with indexed and no pipeline support.
This is primarily due to fewer instructions being executed in the prologue and epilogue.
Loop 12 shows the largest effect, of about 10%, mainly due the branches removed by

unrolling a very small loop.

151

However, when cache effects are added, the performance picture changes.
Figure 68 shows the total cycles executed for three versions of the first Livermore loop.
The primary cache size is varied from 8 words to 1k words. As shown in Figure 68, a
small cache can greatly degrade performance. Depending on the size of the cache and
the code size, there can be a large performance penalty for the larger code size of the
implementations without full hardware support. At a cache size of 16 words, Livermore
loop 1 has almost a 40% performance penalty for implementing software pipelining via
software. However, this effect diminishes very quickly and the effect is almost unnotice-

able for caches of 32 words and larger.

1500000
b —8B— full

] —3— indexed
100000C Ny

7 —H— none

b =St

500000+

Cpeles

8 16 32 64 128 256 512 1k
Primary Cache Size - words

FIGURE 68. Execution Times for LL 1 vs. Primary Cache Size

4.3 Cache Behavior with Loop Unrolling

Because the Livermore Loops are so small, it is questionable how representative
they are of “real” programs. It would be interesting to run the same set of experiments,
generating code for various types of hardware support, on larger programs. Unfortu-
nately, the current version of the compiler is unable to perform this task. However, we

can study this problem by using another technique.

The structure of the code produced to implement software pipelining is similar to

the code produced to implement standard loop unrolling. The effects of standard loop

152

unrolling with respect to program size and I-cache effects should be very similar. To test
this hypothesis, Version 2.2.2 of the Gnu-C compiler has been modified to accept a
parameter controlling the amount of loop unrolling and the first fourteen Livermore
Loops have been compiled and with various amounts of unrolling. Figure 69 shows the
total number of cycles executed by the first Livermore Loop when the size of the loop
body is allowed to increase to 10, 50 and 100 instructions. The execution behavior under
these conditions looks very similar to the behavior shown in Figure 67, where the size of
the loop varied in response to changes in the hardware model. This similarity seems to
indicate that a significant portion of the performance gain from hardware support for

software pipelining is due to reduced code size.

2000000

B~ —B8— 10
H—

R

1500000

BB W = R —+— 100

]
= 1000000
&

500000

[0}

8 16 32 64 128 256 512 1k
Primary Cache Size - words

FIGURE 69. Execution Times for the First Livermore Loop using Gnu-C

Given these encouraging results, we will go one step further, and apply the mod-
ified Gnu-C compiler to larger and more realistic programs than the Livermore Loops.
The SPEC suite is a collection of “real” programs currently in use as benchmarks. Four
of the programs in the SPEC suite are provided in C and are thus available for this exper-

iment (egntott, espresso, gcc, and xlisp).

We compile eqgntott, espresso, and xlisp with an increasing amount of unrolling.
Figure 70 shows the code sizes produced when compiling xlisp. The results for the other

benchmarks, which are not shown, are similar. The range of values executed for the

153

unrolling parameter varies the size of the code produced by approximately 25% from the

least to the most unrolling.

250000
200000

@
v9]

150000

100000
50000

Execurable ize -lotes

(0]
0] 10 50 100 110 120 130 140 150 200
Unroll Size - maximum insns

FIGURE 70. Code Size for xlisp

The move to a larger, more realistic program has two effects on the performance
curves: 1) The of performance for different amounts of unrolling is not as pronounced,

and 2) An effect on performance is present up to a 32k word primary I-cache.

50000000
E —B— unroll 0
400000004 3 10
] —+— 50
30000000 : —— 100
A n
.f;‘] — 110
20000000
i — 120
10000000 —~— 130
] — 140
0 —— 150
EE FE % 8 ¥ 5 5 5 % oo
— Lo] >
P

rimary Cache Size - words

FIGURE 71. xlisp: Cycles vs. Primary Cache Size (Long Latency Mem.)

154

Performance statistics are shown in Figure 71 and Figure 72 for xlisp with exe-
cuted with low and high latency memory configurations. The low latency memory has a
3 cycle penalty for a primary cache miss and a 20 cycle penalty for a secondary cache
miss. The high latency memory has 5 cycle penalty for a primary cache miss and a 141

cycle penalty for a secondary cache miss.

Figure 71 and Figure 72 show the total cycles executed as a function of the size
of the primary cache. In the range of a realistic primary cache on today’s implementa-
tions, i.e. 1k-64k words, the effect of loop unrolling is small but noticeable. The range in
performance is approximately 5% on the high end of this region for the high latency
memory system. The performance range is smaller for the low latency memory system,

but still noticeable.

50000000 unroll O

10

40000000
50

30000000 100

=
L) 110

20000000

i1zo0

10000000 130

140

o
150

T

{2y
fi
i
f
}
b

zoo

FIGURE 72. xlisp: Cycles vs. Primary Cache Size (Short Latency Mem.)

Figure 73 and Figure 74 show the number of cycles executed as a function of the
amount of unrolling. A slight rising trend can be seen as the amount of unrolling is
increased. This rising trend almost, but not quite disappears for the larger primary cache

sizes. The trend does not disappear entirely because there are still some secondary cache

155

misses which result in an approximately 1% performance loss over the set of programs

shown here.

50000000

1=28w

256w

40000000

s5312w

EN

20000000

2K

Cpls

20000000

ak

sk
1000000

1

16k

32k

6ak

T

FIGURE 73. Cycles Executed for xlisp vs. Unroll Size (Long Latency Mem.)

50000000+ 128w
] —3— 256w
40000000
7 = n —B—B— - B —HH— 512w
1—t+B+81T°" 1" 33— 3
30000000 - e 3 —— 1k
n] —F ! H
= . —H T+ Py Bag
1 H - L~ —_ 2k
& 1 12 1" Tt
20000000——— ——
. ———————— . — 4k
o TV STV ™vT NI LAAl
] —<— 8k
10000000
3 — 16k
fo —A— 32k
o 10 50 100 110 120 130 140 150 200 64K
Unroll Size - maximum insns !

FIGURE 74. Cycles Executed for xlisp vs. Unroll Size (Short Latency Mem.)

156

4.4 Context Switch Effects

In [116] Mogul and Borg find a performance degradation due to context switch-
ing of 1% to 7% depending on the program mix and cache design. This study, and
another by Steenkiste [171], show that the additional effect of having a larger code size
when context switching might be 10% of cost of context switching, or 0.1% to 0.7%

overall. This effect is small enough that it would be difficult to discern on most systems.

4.5 Summary of Cache Effects

The results shown here do support a small, but noticeable decrease in program
performance when unrolling loops using standard loop unrolling techniques or software
pipelining. While generally the effect is not large, it is large enough to be noticeable and
under certain conditions can become quite large, e.g. as shown on the Aurora Il in
Section 3.4 on page 146. Because of the sharp decrease in performance which can result
when the worst case arise, cache effects must be considered when implementing sched-

uling algorithms which can increase code size.

CHAPTER VI
CONCLUSIONS

1 Research Contributions

The data produced in this study shows a relatively small difference in perfor-
mance between the architectures investigated. In Figure 63, the mean speedup for each
of the three architectures investigated and four scheduling techniques implemented are
shown together with the best and worst speedups for each of the benchmarks. The speed-
ups shown are with respect to a scalar processor. Superscalar architectures are repre-
sented by the Aurora Ill. The VLIW and DAE architectures are versions of the Aurora

[1l, modified to match the salient characteristics of these architectures.

Taking the best mean result for each the architectures, the VLIW architecture has
performance within 15% of the superscalar architecture and the DAE architecture is
within 10% of the VLIW. These relatively minor performance differences are reasonable
considering the differences between these architectures. The fundamental difference
between VLIW architecture and superscalar architecture is that a more rigid static
schedule is used in the VLIW architecture. There is no dependence checking between
instructions with an instruction window in VLIW and the use of a result must be sched-

uled after the result exits the function unit pipeline.

The DAE architecture has an issue policy, intermediate between that of supersca-
lar and VLIW. Each sub-processor in a DAE architecture, the Address and Execute
units, can issue independently of the other, but in-order issue is enforced within each

sub-processor. This allows some dynamic behavior between the Address and Execute

157

158

units. However, this additional flexibility is offset by the necessity of scheduling com-
munication between the two sub-processofliis communication scheduling may con-
sume additional instructions which can reduce the total performance. The dynamic
scheduling allowed by the DAE paradigm is often not enough to recover this perfor-
mance loss. Another potential performance loss is due to the limitation that the DAE
architecture cannot issue to multiple instructions to a single sub-processor, i.e. each sub-
processor is restricted to single issue. There is no performance penalty when the sched-
ule is balanced between access and execute type operations. However, if the schedule is
unbalanced with one sub-processor having more operations to performance than the
other, one sub-processor must stall to maintain synchronization between the two sched-

ules.

The DAE architecture does fare better than the VLIW architecture under block
scheduling or loop unrolling, probably because the decoupled and dynamic behavior of
DAE is more of an advantage under these scheduling algorithms. Under software pipe-

lining, the performance ranking of DAE versus VLIW is reversed.

Of course, caveat emptor applies to the generality of this study as it does to any
other study replying on a set of benchmarks which are not actual applications. The set of
benchmarks chosen, the Livermore Loops, is reported to provide good correlation with
the performance of actual application loads consisting of scientific programs. However,
the Livermore Loops tend to have largely static behavior. One of the criticisms of the
original set of 14 Livermore Loops was that they overestimated the performance of gen-
eral scientific applications because they contained too high a proportion of easily vector-

izable loops. In our study, this may tend to bias the results in favor of VLIW

1. If the production/consumption behavior of the code being scheduled matches the DAE queue model,
no additional instructions are required. However, when there is a mismatch between the code production/
consumption behavior and the DAE queue model, additional instructions are required to implement the
code semantics.

159

architectures and software pipelining techniques, both of which reply on the compiler to

provide good schedules and performance.

A corollary to the relatively small difference in performance between the archi-
tectures is that other features of the processor are more indicative of performance than
the issue policy. The Aurora Il incorporates a number of features designed to improve
performance over the baseline MIPS R3000 processor. Figure 49 shows the high, mean
and low speedups for the Aurora Il with double precision floating point load and store
operations, and without these operations. The mean speedup for these benchmarks for
this single feature ranges from 1.2 to 1.5. This difference is larger than the performance

for any of the architecture pairs.

While we have no direct data to support a claim that it is less costly to implement
64 bit wide data paths, than to implement a multi-issue superscalar or VLIW architec-
ture, we can speculate that it should be, just because the problem is conceptually sim-
pler. Implementing double precision load and store operations would still require
changes to the compiler to generate the correct instructions and the processor model
would need to be modified and verified, but these changes seem minor compared with

changing the issue policy of a processor.

Of the other processor features investigated, the performance gain for pipelining
the function units seems anomalous. Pipelining the function units did not have a large
impact on performance, even for medium latency operations. Apparently, for latencies in
the range we examine, the mix of instructions is such that delays can be filled with oper-
ations on different function units and the ability to pipeline a single operation is not crit-
ical. Of course, particular cases can benefit from pipelining one or more function units
and the expense of adding pipelining to a function unit may be justified for just such spe-

cial cases.

160

The second conclusion to draw form this work is the importance of incorporating
compiler scheduling techniques when studying the performance of computer architec-
tures. In the performance data shown in Figure 63, we find substantial performance
improvements for loop unrolling and software pipelining over block scheduling, which
is to be expected. However, a more interesting result is that the relative performance
ranking of VLIW versus DAE changes with software pipelining versus the other loop
scheduling techniques. This relative performance difference is too large to be dismissed
easily. If the difference was 1% or 2% this could be considered to be a random accident
of instruction scheduling. However, a relative performance difference of 10% or more is

indicative of a real interaction between these architectures and the scheduling algorithm.

Software pipelining was developed with VLIW architectures and static schedul-
ing in mind, so it is reasonable to expect a performance improvement on this architecture
with this scheduling technique. We also get a performance improvement, although a
very small one, on the superscalar architecture. This seems to be due to a slightly
decreased register consumption by the software pipelining algorithm. This performance
difference is small enough to be in the noise level of scheduling, so perhaps we should

not read too much into this.

There are a number of techniques and algorithms employed in the compiler,
other than the loop scheduling algorithms. Code optimization techniques such as con-
stant propagation, induction variable detection and strength reduction, dead code elimi-
nation, register promotion and others all contribute to improved performance. Generally,
no single technique used alone will give much performance improvement. However, the
set of techniques collectively called “loop optimizations” will yield a substantial perfor-
mance improvement for the type of codes used in this study. These techniques are stan-
dard in optimizing compilers and give performance improvements in the range of 1 to

2x. This outweighs the possible performance gain from switching loop scheduling algo-

161

rithms, which explains why these techniques are “standard” and software pipelining is

not.

One good result of this study is that we have a fairly “low noise” environment in
which to compare hardware features and compiler algorithms. By incorporating our
scheduling techniques and machines models into a single base optimizing compiler, we
can compare the results without having to allow for differences caused by using different

compilers and methodologies.

In looking at the standard loop optimization techniques, we have developed
some new induction variable manipulations. These manipulations allow induction
expressions formed by nested loops to be treated and manipulated as a single expression.
This simplifies the work in the compiler to manipulate nested induction variables and in
some cases also yields performance improvements. However, while this type of manipu-
lation is intellectually interesting, it only rarely yields a significant performance
improvement. Also, the pattern detection necessary to identify induction expressions
which can be manipulated tends to be brittle and it is easy to write control flow struc-

tures which produce induction expressions which are not recognized as manipulatable.

While software pipelining is not a standard technique in current compilers, it is
demonstrated in this study to work well, even on an architecture not particularly suited
to its particular strengths. The experiments run on the scalar architecture, show software
pipelining slightly outperforming other scheduling techniques, even with function units
with no pipelining and relatively low latency. This advantage is magnified when the
latency of the operations being scheduling is increased or static instruction scheduling is

used, as in the VLIW architecture.

The primary reason for software pipelining’s performance improvement is its

ability to merge loop iterations and thus hide instruction latencies. However, the soft-

162

ware pipelining algorithm used in this study also seems to be more frugal in its resource
use than other scheduling techniques. In particular, software pipelining tends to con-
sume fewer registers than loop unrolling. This is an unexpected result. Software pipelin-
ing is supposed to be good at intermixing instructions to hide operation latencies. The
assumption is that this would be at the expense of consuming additional resources, both
instruction space and registers. The improved resource use may be because the software
pipelining algorithm used in this work is self limiting. The schedules expand not by a
fixed amount, but enough to fill the unused delay slots. This feedback seems to yield a

balance between resource use and parallelism exploitation.

This does not negate the necessity of exploring other techniques. Scheduling
techniques such as loop unrolling and trace scheduling each have their own particular
benefits and a good compiler will have a repertoire of such techniques available. And,
while software pipelining works well on loops, it is not extendable to other control struc-

tures one might to optimize, such as long runs of branching code.

In this study we briefly explore the interaction with the compiler scheduling
techniques and the instruction cache. Degenerative cache behavior is possible when
using optimization techniques which affect code size and placement. At current cache
sizes, i.e. small to moderate size caches, the increasing disparity between memory and
processor speeds can magnify this effect to where it can overwhelm any other perfor-

mance improvements.

The effect of the scheduling techniques on cache behavior was generally found
to be small. However, by employing a technique in a careless way, it is possible to cause
performance to decrease. This can happen, for example, by unrolling a loop with a large
body to the point where it overflows the instruction cache. This can give much lower
performance than no unrolling at all. These optimization techniques do need to be care-

fully employed to yield good results.

163

2 Future Directions

There are a number of directions in which this research can continue. One metric
which needs to be explored is the cost function for different architectures/machine mod-
els. The question: “Given a choice between architecture A and architecture B, what is
the cost of these two architectures in terms of cycle time, die area or complexity,” is not
easily answered. It is the assumption of this research that if a superscalar architecture
and a VLIW architecture have the same performance in term of cycles, then it would be
better to build the VLIW architecture because the reduced complexity of the architecture
will lead to a smaller die area and a faster cycle time. It would be interesting to test this
hypothesis by designing a set of architectures using the same process technology and

then measuring the complexity of the design and determining the least cycle time.

There continues to be a need for accurate comparisons between compiler algo-
rithms. There are several competing versions of software pipelining which should be
examined and compared. The software pipelining algorithm used in this dissertation has
several deficiencies. The algorithm used here is expensive because it iteratively rebuilds
the entire schedule until all the scheduling constraints are satisfied. The unrolling type
algorithms avoid rebuilding the entire schedule, although they may be expensive in other

ways.

The algorithm used here is trying to simultaneously satisfy conflicting sets of
constraints. Both resource and timing constraints are checked during scheduling. Trying
to simultaneously satisfy conflicting constraints is always difficult and should be
avoided. It would be much better if scheduling for timing and resources were separated.
Also, timing constraints are not well modeled by the rigid schedule used here. The first
pass of the software pipelining algorithm should just reorder the loop, trying to spread
operations and fill delays. This is the software pipelining part. After that, a more tradi-

tional scheduler could place the instructions in a schedule according to available

164

resources. This is the approach taken by Jain in [77] and it has the major advantage that
it keeps most of parts of a standard compiler intact. It would be interesting to see how
these different versions of software pipelining would compare when used in a common

system.

Another area that this research touches on briefly is providing explicit cache con-
trol. There are two ways in which this relates to the work done here. First, any kind of
cache control will inherently be a long latency operation. This means that techniques to
handle operations with long latencies, such as software pipelining, will be needed to

effectively schedule cache control.

Multi-issue architectures will both produce the necessity for, and provide the
opportunity for explicit cache control. Multi-issue architectures produce the necessity
for cache control because they put higher demands on the memory system. Everything
else being equal, multi-issue multiplies the bandwidth at which instructions must be
delivered to the processor. Also, the effect of any delay, including cache stalls, is magni-
fied in a multi-issue architecture because there are that many more instructions that are

not being executed during the delay.

At the same time, multi-issue architectures will provide an opportunity for
explicitly controlling the cache because there will be more instruction slots which can-
not be filled with other types of operations. Making a wider instruction window or add-
ing more branch delay slots means that a lower fraction of these slots can be filled with
useful operations. These unusable slots could be used to execute some cache control
operations. This would avoid slowing the execution rate, because these would be slots
which could not be otherwise filled and the explicit cache control instructions would

potentially speed execution by reducing cache stalls.

165

Part of the idea of building this compiler system is that it would form a test bed
in which optimization algorithms could be quickly implemented and tested. Unfortu-
nately this did not turn out to be the case. Coding the compiler algorithms proved to be
the most time consuming and difficult part of this research. Implementing the compiler
algorithms proved to be much harder than designing and debugging the hardware fea-
tures and analysis tools. We need to construct tools which allow us to describe and test
compiler algorithms, particularly in the intermediate and late compilation phases, where
the program objects being manipulated tend to be represented as graphs. We lack good

tools for describing graph manipulations and transformations.

166

APPENDIX

The maximum number of blocks which might be required by a software pipeline
schedule on an architecture is an important parameter of the architecture. The maximum
number of blocks affects the width of the block count field (or conditional bits) in an
architecture with hardware supported software pipelining, and indirectly, the number of

registers used during scheduling.

The maximum number of blocks required to construct a software pipeline sched-
ule is a function of the amount of parallelism available in the architecture. We show here
that the maximum number of blocks for multi-issue, pipelined architectures is a function

of the number of pipe stages in the architecture.

The maximum number of blocks for an architecture with a single function unit:

mii = The Minimum Initiation Interval - minimum time interval before next con-
current loop iteration can be started.

| stages | = The number of pipe stages to do an operation.

| opers | = The number of operations to be executed on the function unit.

length = The length of the loop body in machine cycles.

| blocks | = The length of the loop body in units of MIl machine cycles.

mii = | opers |
| blocks | = length / Ml
length < | opers | * | stages |
| blocks k [| opers | * | stages [] / mii
<[| opers | * | stages |] / | opers |

< | stages |

167
The maximum number of blocks for an architecture with multiple function units:

Assume a VLIW type architecture with a set of N function unitg:fiw,..., fu,, where

one operation can be issued to each function unit per cycle.

[fu| = The number of function units.

| operg| = The number of operations in the schedule for function unit i.
| stages| = The number of pipe stages in function unit i.

length = The length of the loop body in machine cycles.

| blocks | = The length of the loop body in units of MIl machine cycles.

| opers | = The total number of operations to be executed in the loop body.

N=|fu|

| stages | = max | staggsli LIN

mii = max | operg, LJi LIN

mii 1/N

| blocks k [| opers | * | stages |] / mii
< [| opers | * | stages |] / max | opérs
< [| opers | * | stages || / 1/N | opers |

<|fu]|*|stages |

Conclusion:

The maximum number of blocks which can concurrently execute on this archi-
tectureis |@ | * | stages |, where (iff = number of function units and | stage= the max-
imum number of pipe stages required to perform an operation on any of the function

units.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

168

BIBLIOGRAPHY

R. D. Acosta, J. Kjelstrup, H. C. Torng, An Instruction Issuing Approach to
Enhancing Performance in Multiple Functional Unit Proces$BE: Transac-
tions on Computer€-35(9), 1986, pp. 815-828.

A. V. Aho, J. D. UllmanpPrinciples of Compiler DesigrAddison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1977.

A. V. Aho, S. C. Johnson, J. D. Ullman, Code Generation for Expressions with
Common SubexpressiontACM 24(1), 1977, pp. 146-160.

A. V. Aho, R. Sethi, J. D. UllmanCompilers: Principles, Techniques, and Tqols
Addison-Wesley Publishing Company, 1986.

A. Aiken, A. Nicolau, A Development Environment for Horizontal Microcode,
IEEE Transactions on Software Engineeri(5), 1988, pp. 584-594.

A. Aiken, A. Nicolau, Optimal Loop ParallelizatioRroceedings of the ACM
SIGPLAN '88 Conference on Programming Language Design and Implementa-
tion, 1988, pp. 308-317.

V. H. Allan, B. Su, P. Wijaya, J. Wang, Foresighted Instruction Scheduling Under
Timing ConstraintslEEE Transactions on Computet&(9), 1992, pp. 1169-
1172.

R. Allen, K. Kennedy, Automatic Translation of FORTRAN Programs to Vector
Form,ACM Transactions on Programming Languages and Sy<9éts1987,
pp. 491-542.

D. W. Anderson, F. J. Sparacio, R. M. Tomasulo, IBM System/360 Model 91.:
Machine Philosophy and Instruction HandlitgM Journal of Research and
Development 1967, pp. 8-24.

S. F. Anderson, J. G. Earle, R. E. Goldschmidt, D. M. Powers, IBM System/360
Model 91: Floating-Point Execution UniBM Journal of Research and Devel-
opment 1967, pp. 34-53.

M. Annaratone, et al., The Warp Computer: Architecture, Implementation and
PerformancelEEE Transactions on Computefs36, 1987, pp. 1523-1537.

T. M. Austin, G. S. Sohi, Dynamic Dependency Analysis of Ordinary Programs,
Proceedings of the 19th Annual International Symposium on Computer Architec-
ture, 1992, vol. 20, pp. 342-351.

M. E. Benitez, J. W. Davidson, Code Generation for Streaming: an Access/Exe-

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

169

cute MechanismProceedings of the Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Syste984, vol.
19, pp. 132-141.

D. Bernstein, I. Gartner, Scheduling Expressions on a Pipelined Processor with a
Maximal Delay of One Cycle]ACM11(1), 1989, pp. 57-66.

D. Bernstein, et al., Spill code minimization techniques for optimizing compil-
ers,Proceedings of the ACM SIGPLAN '89 Conference on Programming Lan-
guage Design and Implementatid§89, pp. 258-263.

F. Boeri, M. Auguin, OPSILA: A Vector and Parallel ProcesHfiEE Transac-
tions on Computerd2(1), 1993, pp. 76-82.

L. J. Boland, G. D. Granito, A. U. Marcotte, B. U. Messina, J. W. Smith, IBM
System/360 Model 91: Storage SystéBiM Journal of Research and Develop-
ment, 1967, pp. 54-68.

A. Borg, R. E. Kessler, D. W. Wall, Generation and analysis of very long address
tracesProceedings of the 17th Annual International Symposium on Computer
Architecture,1990, pp. 270-279.

D. G. Bradlee, S. J. Eggers, R. R. Henry, The Effect on RISC Performance of
Register Set Size and Structure Versus Code Generation Striateggedings of
the 18th Annual International Symposium on Computer Architect@gd,, vol.

19, pp. 330-339.

D. G. Bradlee, S. J. Eggers, R. R. Henry, Integrating Register Allocation and
Instruction Scheduling for RISCByoceedings of the Fourth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems]1991, vol. 19, pp. 122-131.

P. Briggs, K. D. Cooper, K. Kennedy, L. Torczon, Coloring Heuristics for Regis-
ter Allocation,Proceedings of the ACM SIGPLAN '89 Conference on Program-
ming Language Design and Implementatid®89, pp. 275-284.

M. Bultler, et al., Single Instructions Stream Parallelism Is Greater than Two,
Proceedings of the 18th Annual International Symposium on Computer Architec-
ture, 1991, vol. 19, pp. 276-286.

D. Callahan, K. Kennedy, A. Porterfield, Software PrefetcHinggceedings of
the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systerd@91, vol. 19, pp. 40-52.

G. J. Chaitin, Register Allocation and Spilling Via Graph Color&@QM SIG-
PLAN Noticel7(6), 1982, pp. .

170

[25] P.P.Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, W.-M. W. Hwu, IMPACT:
An Architectural Framework for Multiple-Instruction-lssue Process@raceed-
ings of the 18th Annual International Symposium on Computer Architecture,
1991, vol. 19, pp. 266-275.

[26] A. E. Charlesworth, "An Approach to Scientific Array Processing: The Architec-
tural Design of the AP-120B/FPS-164 FamilgEE ComputerSeptember
1981, pp. 18-27.

[27] W.Y. Chen, S. A. Mahlke, W.-m. W. Hwu, Tolerating First Level Memory
Access Latency in High-Performance SysteRm®ceedings of the 1992 Interna-
tional Conference on Parallel Processid@92, vol. II, pp. 1-37-11-43.

[28] T.-F. Chen, J.-L. Baer, Reducing Memory Latency via Non-blocking and
Prefetching Cache®roceedings of the Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Syste982, vol.

20, pp. 51-61.

[29] C.-H. Chi, H. Dietz, Unified Management of Registers and Cache Using Live-
ness and Cache Bypa®spceedings of the ACM SIGPLAN '89 Conference on
Programming Language Design and Implementati®d89, vol. 21, pp. 344-355.

[30] T.-c. Chiueh, Multi-Threaded VectorizatidAtoceedings of the 18th Annual
International Symposium on Computer Architectd@91, vol. 19, pp. 352-361.

[31] P. Chow, M. Horowitz, Architectural Tradeoffs in the Design of MIP3RX-
ceedings of the 14th Annual International Symposium on Computer Architecture,
1987, pp. 300-308.

[32] F.Chow, S. Correll, M. Himelstein, E. Killian, L. Weber, How Many Addressing
Modes are Enough®Proceedings of the Second International Conference on
Architectural Support for Programming Languages and Operating Systems,
1987, pp. 117-121.

[33] F. C. Chow, J. L. Hennessy, The Priority-Based Coloring Approach to Register
Allocation, ACM Transactions on Programming Languages and Systa(d3,
1990, pp. 501-536.

[34] E. U. Cohler, J. E. Storer, "Functionally Parallel Architecture for Array Proces-
sors,|EEE ComputerSeptember 1981, pp. 28-36.

[35] R. Cohn, T. Gross, M. Lam, P. S. Tseng, Architecture and Compiler Tradeoffs
for a Long Instruction Word Microprocesséroceedings of the Third Interna-
tional Conference on Architectural Support for Programming Languages and
Operating System4989, vol. 17, pp. 2-14.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

171

R. P. Colwell, R. P. Nix, J. J. O'Donnel, D. B. Papworth, P. K. Rodman, A VLIW
Architecture for a Trace Scheduling Compiroceedings of the Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating System4987, pp. 180-192.

R. P. Colwell, R. P. Nix, J. J. O'Donnel, D. B. Papworth, P. K. Rodman, A VLIW
Architecture for a Trace Scheduling CompiltEE Transactions on Computers
37(8), 1988, pp. 967-979.

R. P. Cook, M. Donde, An Experiment to Improve Operand Addred3ing,
ceedings of the Second International Conference on Architectural Support for
Programming Languages and Operating Systel@87, pp. 87-91.

G. Cybenko, L. Kipp, L. Pointer, D. KucBupercomputer Performance Evalua-
tion and the Perfect Benchmarksniversity of lllinois, CSRD Report No. 965,
March 1990.

J. Davidson, R. Vaughan, The Effect of Instruction Set Complexity on Program
Size and Memory PerformancBroceedings of the Second International Con-
ference on Architectural Support for Programming Languages and Operating
Systems]987, pp. 60-64.

J. W. Davidson, J. R. Rabung, D. B. Whalley, Relating Static and Dynamic
Machine Code MeasurementiSEE Transactions on Computet$(4), 1992,
pp. 444-454.

J. C. Dehnert, P. Y.-T. Hsu, J. P. Bratt, Overlapped Loop Support in the Cydra 5,
Proceedings of the Third International Conference on Architectural Support for
Programming Languages and Operating Systei89, vol. 17, pp. 26-38.

D. R. Ditzel, H. R. McLellan, Register allocation for free: The C machine stack
cacheProceedings of the Symposium on Architectural Support for Programming
Languages and Operating Systert@32, vol. 10, pp. 48-56.

R. J. Eickemeyer, J. H. Patel, Performance Evaluation of Multiple Register Sets,
Proceedings of the 14th Annual International Symposium on Computer Architec-
ture, 1987, pp. 264-271.

C. Eisenbeis, W. Jalby, A. Lichnewsky, Squeezing More Cpu Performance Out
of a Cray-2 by Vector Block Schedulingroceedings of Supercomputing '88,
1988, pp. 237-246.

J. R. Ellis,Bulldog: A Compiler for VLIW ArchitectureACM Doctoral Disser-
tation Award, The MIT Press, 1985.

M. K. Farrens, A. R. Pleszkun, Implementation of the PIPE procéasaeed-

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

172

ings of the 16th Annual International Symposium on Computer Architecture,
1989, vol. 17, pp. 65-70.

M. K. Farrens;The Design and Analysis of a High-Performance Single-Chip
ProcessorPhD Thesis, University of Wisconsin at Madison, 1989.

M. K. Farrens, A. R. Pleszkun, "Implementation of the PIPE proceSeE"
ComputerJanuary 1991, pp. 65-70.

E. S. T. Fernandes, F. M. B. Barbosa, Effects of Building Blocks on the Perfor-
mance of Super-Scalar ArchitecturBspceedings of the 19th Annual Interna-
tional Symposium on Computer Architectur892, vol. 20, pp. 36-45.

J. Ferrante, K. J. Ottenstein, J. D. Warren, The Program Dependence Graph and
Its Use in OptimizationACM Transactions on Programming Languages and
System$(3), 1987, pp. 319-349.

J. A. Fisher, Trace scheduling: A technique for global microcode compaction,
IEEE Transactions on Computets30(7), 1981, pp. 478-490.

J. A. Fisher, The VLIW Machine: A Multiprocessor for Compiling Scientific
Code,|EEE Computed 7(7), 1984, pp. 45-53.

R. W. Floyd, Algorithm 97: Shortest Patbpmmunications of the ACBH(6),
1962, pp. 345.

M. J. Flynn, P. R. Low, IBM System/360 Model 91: Some Remarks on System
Development|BM Journal of Research and Developmeh®67, pp. 2-7.

M. J. Flynn, Some Computer Organizations and Their Effectivel€sE,
Transactions on Compute@21(9), 1972, pp. 948-960.

M. J. Flynn, C. L. Mitchell, J. M. Mulder, "And now a Case for More Complex
Instruction Sets|[EEE ComputerSeptember 1987, pp. 71-83.

C. C. Foster, E. M. Riseman, Percolation of code to enhance parallel dispatching
and executionlEEE Transactions on Computes21(12), 1972, pp. 1411-
1415.

M. Franklin, G. S. Sohi, The Expandable Split Window Paradigm for Exploiting
Find-Grain ParallelismProceedings of the 19th Annual International Sympo-
sium on Computer Architecturg992, vol. 20, pp. 58-67.

P. B. Gibbons, S. S. Muchnick, Efficient Instruction Scheduling for a pipelined
architectureProceedings of the ACM SIGPLAN '86 Symposium on Compiler
Construction, 1986, pp. 11-16.

J. R. Goodman, W.-C. Hsu, On the Use of Registers vs. Cache to Minimize

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

173

Memory Traffic,Proceedings of the 13th Annual International Symposium on
Computer Architecturel 986, pp. 375-383.

G. L. Graig, et al.PIPE: A High Performance VLSI Processor Implementation,
Computer Sciences Department, Electrical and Computer Engineering Depart-
ment, University of Wisconsin-Madison, Technical Report 1984.

T. Gross, M. S. Lam, Compilation for a High-Performance Systolic ARy,
ceedings of the ACM SIGPLAN '86 Symposium on Compiler Construt886,
pp. 27-38.

R. Gupta, M. L. Soffa, T. Steele, Register Allocation Via Clique SeparaRuos,
ceedings of the ACM SIGPLAN '89 Conference on Programming Language
Design and Implementatio989, pp. 264-274.

M. S. HechtFlow Analysis of Computer Programk E. Cheatham (Ed.), Pro-
gramming Languages Series, Elsevier North-Holland, New York, New York,
1977.

J. Hennessy, N. Jouppi, F. Baskett, T. Gross, J. Gill, Hardware/Software
Tradeoffs for Increased PerformanBegceedings of the Symposium on Archi-
tectural Support for Programming Languages and Operating Syste982, vol.
10, pp. 2-11.

J. L. Hennessy, D. A. Patters@pmputer Architecture A Quantitative
Approach Morgan Kaufman Publishers, Inc., San Mateo, California, 1990.

J. L. Hennessy, N. P. Jouppi, "Computer Technology and Architecture: An
Evolving Interaction,JEEE ComputerSeptember 1991, pp. 18-29.

M. D. Hill, A Case for Direct-Mapped CachéEEE Computef1(12), 1988,
pp. 25-40.

W.-m. Hwu, Y. N. Patt, HPSm, a High Performance Restricted Data Flow Archi-
tecture Having Minimal Functionalitiroceedings of the 13th Annual Interna-
tional Symposium on Computer Architectur886, pp. 297-306.

W.-m. W. Hwu, P. P. Chang, Exploiting Parallel Microprocessor Microarchitec-
tures with a Compiler Code Generatérpceedings of the 15th Annual Interna-
tional Symposium on Computer Architectur888, pp. 45-53.

W.-M. W. Hwu, T. M. Conte, P. P. Chang, Comparing Software and Hardware
Schemes For Reducing the Cost of BrancRes;eedings of the 16th Annual
International Symposium on Computer Architectd@89, vol. 17, pp. 224-233.

W.-m. W. Hwu, P. P. Chang, Achieving High Instruction Cache Performance
with an Optimizing CompileRroceedings of the 16th Annual International

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]
[84]

[85]

[86]

174

Symposium on Computer Architectut®39, vol. 17, .

W.-m. W. Hwu, P. P. Chang, Inline Function Expansion for Compiling Realistic
C ProgramsProceedings of the ACM SIGPLAN '89 Conference on Program-
ming Language Design and Implementatid®89, pp. 246-257.

W.-m. W. Hwu, P. P. Chang, Efficient Instruction Sequencing with Inline Target
Insertion, 41(12), 1992, pp. 1537-1551.

IBM, IBM RISC System/6000 TechnolodgBM Corporation, Technical Report
SA23-2619, 1990.

S. Jain, Circular scheduling: A new technique to perform software pipelining., R.
L. Wexelblats (Ed.)Proceedings of the ACM SIGPLAN '91 Conference on Pro-
gramming Language Design and Implementatik®91, vol. 26, pp. 219-228.

M. S. Johnson, T. C. Miller, Effectiveness of a Machine-Level, Global Opti-
mizer,Proceedings of the ACM SIGPLAN '86 Symposium on Compiler Con-
struction, 1986, pp. 99-108.

W. M. JohnsonSuperscalar Microprocessor Desigarentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1991.

N. P. Jouppi, D. W. Wall, Available Instruction-Level Parallelism for Superscalar
and Superpipelined Machind®ioceedings of the Third International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems,1989, vol. 17, pp. 272-282.

N. P. Jouppi, The Nonuniform Distribution of Instruction-Level and Machine
Parallelism and Its Effect on Performanitei.E Transactions on Computers
38(12), 1989, pp. 1645-1658.

N. P. Jouppi, Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch BUfféigceedings of the 17th
Annual International Symposium on Computer ArchitectL®80, vol. 18, pp.
364-373.

G. Kane MIPS RISC ArchitecturéPrentice-Hall, Inc., Englewood Cliffs, 1988.

M. G. H. KatevenisReduced Instruction Set Computer Architectures for VLSI
ACM Doctoral Dissertation Award, The MIT Press, 1984.

A. C. Klaiber, H. M. Levy, An Architecture for Software-Controlled Data
PrefetchingProceedings of the 18th Annual International Symposium on Com-
puter Architecture1991, vol. 19, pp. 43-53.

D. E. Knuth, An Empirical Study of Fortran Prograr8sftware Practice and
Exteriencel, 1971, pp. 105-133.

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

175

P. M. Kogge, The Microprogramming of Pipelined Processtmx;eedings of
the 4th Annual Symposium on Computer Architectif&7, pp. 63-69.

R. F. Krick, A. Dollas, "The Evolution of Instruction SequencitigEE Com-
puter, April 1991, pp. 5-15.

D. Kroft, Lockup-free instruction fetch/prefetch cache organizaftvaceedings
of the 8th Annual Symposium on Computer Architecli@®], vol. 9, pp. 81-97.

D. J. Kuck, Y. Muraoka, S.-C. Chen, On the Number of Operations Simulta-
neously Executable in Fortran-Like Programs and Their Resulting Speedup,
IEEE Transactions on Computefs21(12), 1972, pp. 1293-1310.

D. J. Kuck, et al., "Measurements of Parallelism in Ordinary FORTRAN Pro-
grams,TEEE ComputerJanuary 1974, pp. 37-46.

M. Kumar, Measuring Parallelism in Computation-Intensive Scientific/Engineer-
ing Applications JEEE Transactions on Compute€s37(9), 1988, pp. 1088-
1098.

S. R. Kunkel, J. E. Smith, Optimal Pipelining in Supercomputersceedings of
the 13th Annual International Symposium on Computer Architedt@8s, pp.
404-411.

L. Kurian, P. T. Hulina, L. D. Coraor, D. N. Mannai, Classification and Perfor-
mance Evaluation of Instruction Buffering Technigu@®ceedings of the 18th
Annual International Symposium on Computer Architectl®81, vol. 19, pp.
150-159.

L. Kurian, P. T. Hulina, L. D. Coraor, Memory Latency Effects in Decoupled
Architectures with a Single Data Memory ModuRepceedings of the 19th
Annual International Symposium on Computer Architectl®82, vol. 20, pp.
236-245.

J. Lah, D. E. Atkins, Tree compaction of microprograRreceedings of the
16th Annual Workshop on Microprogrammid@83, pp. 22-33.

M. Laird, A Comparison of Three Current Superscalar Des@as)puter
Architecture New20(3), 1992, pp. 14-21.

M. S.-L. Lam,A Systolic Array Optimizing Compild?h. D., Carnegie Mellon
University, 1987.

M. Lam, Software Pipelining: An Effective Scheduling Technique for VLIW
Machines, R. L. Wexelblats (EdBroceedings of the ACM SIGPLAN '88 Con-
ference on Programming Language Design and Implementdi@@8, vol. 23,
pp. 318-328.

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

176

M. S. Lam, R. P. Wilson, Limits of Control Flow on Paralleli$hgceedings of
the 19th Annual International Symposium on Computer Architect@82, vol.
20, pp. 46-57.

B. W. Lampson, Fast Procedure Cdiismyceedings of the Symposium on Archi-
tectural Support for Programming Languages and Operating Syste988, vol.
10, pp. 66-76.

R. L. Lee, A. Y. Kwok, F. A. Briggs, The Floating Point Performance of a Super-
scalar SPARC Processéttoceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
1991, vol. 19, pp. 28-37.

D. J. Lilja, "Reducing the Branch Penalty in Pipelined ProcesHoEE"Com-
puter, July 1988, pp. 47-55.

J. L. Linn, SRDAG compaction: A generalization of trace scheduling to increase
the use of global context informatioRroceedings of the 16th Annual Workshop
on Microprogramming1983, pp. 11-22.

C. E. Love An Investigation of Static Versus Dynamic Schedulgster's The-
sis, University of Colorado at Boulder, 1989.

C. E. Love,The Decoupled And VLIW Architecture Simulator CoBepartment
of Electrical Engineering, University of Colorado, Internal Report CSDG 89-4,
May 1989.

C. E. Love, H. F. Jordan, An Investigation of Static Versus Dynamic Scheduling,
Proceedings of the 17th Annual International Symposium on Computer Architec-
ture, 1990, vol. 18, pp. 192-201.

S. A. Mahlke, W. Y. Chen, W.-M. W. Hwu, B. R. Rau, M. S. Schlansker, Sentinel
Scheduling for VLIW and Superscalar Procesd@rsceedings of the Fifth
International Conference on Architectural Support for Programming Languages
and Operating System992, vol. 20, pp. 238-247.

W. Mangione-Smith, S. G. Abraham, E. S. Davidson, The Effects of Memory
Latency and Fine-Grain Parallelism on Astronautics ZS-1 PerformBre,
ceedings of the 23rd Hawaii International Conference on System Scid9S$,
pp. 288-296.

W. Mangione-Smith, S. G. Abraham, E. S. Davidson, Vector Register Design for
Polycyclic Vector Schedulindglroceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, 1991, vol. 19, pp. 154-163.

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

177

W. M. Mangione-Smith, S. G. Abraham, E. S. Davidson, "A performance com-
parison of the IBM RS/6000 and the Astronautics Z8&=EE ComputerJanu-
ary 1991, pp. 39-46.

S. McFarling, J. Hennessy, Reducing the Cost of BranBhesgedings of the
13th Annual International Symposium on Computer Architecli®®6, pp. 396-
403.

F. H. McMahon The Livermore Fortran Kernels: A Computer Test of the Numer-
ical Performance Range,.awrence Livermore National Laboratory, Technical
UCRL-53745, December 1986.

S. Melvin, Y. Patt, Exploiting Fine-Grained Parallelism Through a Combination
of Hardware and Software TechniquBsyceedings of the 18th Annual Interna-
tional Symposium on Computer Architectur891, vol. 19, pp. 287-296.

C. L. Mitchell,Processor Architecture and Cache Performari®ial), Stanford
University, 1986.

J. C. Mogul, A. Borg, The Effect of Context Switches on Cache Performance,
Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systei@9]1, vol. 19, pp. 75-84.

Motorola,MC 88100 RISC Microprocessor User's ManuRitentice Hall, Engle-
wood Cliffs, New Jersey, 1989.

T. C. Mowry, M. S. Lam, A. Gupta, Design and Evaluation of a Compiler Algo-
rithm for PrefetchingProceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems,
1992, vol. 20, pp. 62-75.

T. N. Mudge, et al., "The Design of a MicrosupercomputeEE Computer
January 1991, pp. 57-64.

T. N. Mudge, et al., The Design of a GaAs Micro-Supercomprteceedings
of the Hawaii International Conference on System Scied®&,, vol. 1, pp.
421-432.

H. Mulder, Data Buffering: Run-time versus Compile-time SupGPLAN
Notices24(5), 1989, pp. 144-151.

H. Mulder, M. J. Flynn, Processor Architecture and Data BuffeldB&E Trans-
actions on Computer®l1(10), 1992, pp. 1211-1222.

MultiFlow, Technical SummaryMULTIFLOW Computer, Inc., Technical
Report June 1987.

K. Murakami, N. Irie, M. Kuga, S. Tomita, SIMP (Single Instruction Stream/

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

178

Multiple Instruction Pipelining): A Novel High-Speed Single-Processor Archi-
tecture,Proceedings of the 16th Annual International Symposium on Computer
Architecture, 1989, vol. 17, pp. 78-85.

D. Nagle Floating Point Simulation for the GaAs Micro-Supercompuidre
University of Michigan, Internal Research Report September 1990.

A. Nicolau, J. A. Fisher, Measuring the Parallelism Available for Very Long
Instruction Word Architecture$iEE Transactions on Computes33(11),
1984, pp. 968-976.

A. Nicolau,Parallelism, Memory Anti-aliasing and Correctness Issues for a
Trace-Scheduling Compile?hD, Yale University, 1984.

R. S. Nikhil, Arvind, Can Dataflow Subsume von Neumann CompRirag,
ceedings of the 16th Annual International Symposium on Computer Architecture,
1989, vol. 17, pp. 262-272.

S. Novack, A. Nicolau, An Efficient Global Resource Constrained Technique for
Exploiting Instruction Level ParallelisrRroceedings of the 1992 International
Conference on Parallel Processirtf92, vol. I, pp. 11-297-11-301.

O. A. Olukotun, R. B. Brown, R. J. Lomax, T. N. Mudge, K. A. Sakallah, Multi-
level Optimization in the Design of a High-Performance GaAs Microcomputer,
IEEE Journal of Solid-State Circui6(5), 1990, pp. 763-767.

O. A. Olukotun,Technology-Organization Tradeoffs in the Architecture of a
High Performance ProcessdthD, The University of Michigan, 1991.

O. A. Olukotun, T. N. Mudge, R. B. Brown, Implementing a Cache for a High-
Performance GaAs Microprocessor, Z. Vranesics ([Pdogeedings of the 18th
Annual International Symposium on Computer Architectl®81, vol. 19, pp.
138-147.

K. Olukotun, T. Mudge, Performance Optimization of Pipelined Primary Caches,
A. Gottliebs (Ed.)Proceedings of the 19th Annual International Symposium on
Computer Architecture] 992, vol. 20, pp. 181-190.

D. A. Padua, M. J. Wolfe, Advanced compiler optimizations for supercomputers,
Communications of the ACRD(12), 1986, pp. 1184-1201.

G. M. Papadopoulos, K. R. Traub, Multithreading: A Revisionist View of Data-
flow ArchitecturesProceedings of the 18th Annual International Symposium on
Computer Architecture]} 991, vol. 19, pp. 342-351.

J. H. Patel, E. S. Davidson, Improving the Throughput of a Pipeline by Insertion
of Delays,Proceedings of the 3rd Annual Symposium on Computer Architecture,

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

179

1976, pp. 159-164.

A. Pleszkun, et al., WISQ: A restartable architecture using querteegedings
of the 14th Annual International Symposium on Computer Architedi9éa,
pp. 290-299.

A. R. Pleszkun, G. S. Sohi, The Performance Potential of Multiple Functional
Unit Processord2roceedings of the 15th Annual International Symposium on
Computer Architecturel 988, pp. 37-44.

D. J. Quammen, D. R. Miller, Flexible Register Management for Sequential Pro-
grams,Proceedings of the 18th Annual International Symposium on Computer
Architecture, 1991, vol. 19, pp. 320-329.

G. Radin, The 801 Minicomputd?roceedings of the Symposium on Architec-
tural Support for Programming Languages and Operating Syste98&, vol.
10, pp. 39-47.

B. R. Rau, C. D. Glaeser, Some Scheduling Techniques and an Easily Schedula-
ble Horizontal Architecture for High Performance Scientific Compuing;

ceedings of the 14th Annual Workshop on Microprogramnii@gl, pp. 183-

198.

B. R. Rau, C. D. Glaeser, R. L. Picard, Efficient Code Generation for Horizontal
Architectures: Compiler Techniques and Architectural Suppoogeedings of

the 9th Annual Symposium on Computer Architectif82, vol. 10, pp. 131-

139.

B. Rau, D. Glaeser, E. Greenwalt, Architectural Support for the Efficient Gener-
ation of Code for Horizontal Architecturd3roceedings of the Symposium on
Architectural Support for Programming Languages and Operating Systems,
1982, vol. 10, pp. 96-99.

B. R. Rau, D. W. L. Yen, W. Yen, R. A. Towle, "The Cydra 5 Departmental
SupercomputedEEE Computer1989, pp. 12-35.

B. R. Rau, Data flow and Dependence analysis for instruction level parallelism,
Proceedings of the Fourth Workshop on Languages and Compilers for Parallel
Computing,1991, .

R. B. Rau, Pseudo-Randomly Interleaved Memory, Z. Vranesics Ffocged-
ings of the 18th Annual International Symposium on Computer Architecture,
1991, vol. 19, pp. 74-83.

B. R. Rau, e. alCode Generation Schema for Modulo Scheduled DO-Loops and
WHILE-Loops, Hewlett-Packard Laboratories, Technical Report HPL-92-47,

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

180

1992.

B. R. Rau, M. Lee, P. P. Tirumalai, M. S. SchlandRegister Allocation for
Modulo Scheduled Loops: Strategies, Algorithms and Heuristesylett-Pack-
ard Laboratories, Technical Report HPL-92-48, April 1992.

B. R. Rau, M. Lee, P. P. Tirumalai, M. S. Schlansker, Register Allocation for
Software Pipelined Loops, R. L. Wexelblats (EdP)pceedings of the SIGPLAN
'92 Conference on Programming Language Design and Implementh$98,
vol. 27, pp. 283-299.

E. M. Riseman, C. C. Foster, The Inhibition of Potential Parallelism by Condi-
tion JumpsJEEE Transactions on Computefs21(12), 1972, pp. 1405-1411.

A. Rogers, K. Li, Software Support for Speculative Lo&ulsceedings of the
Fifth International Conference on Architectural Support for Programming Lan-
guages and Operating Systerfi892, vol. 20, pp. 38-50.

D. A. SchwartzSynchronous Multiprocessor Realizations of Shift-Invariant
Flow Graphs,PhD, Georgia Institute of Technology, 1985.

A. J. Smith, Cache Memorie&CM Computing Surveryq3), 1982, pp. 473-
530.

J. E. Smith, Decoupled Access/Execute Computer Architectireseedings of
the 9th Annual Symposium on Computer Architeci82, pp. 112-119.

J. E. Smith, T. J. Kaminski, Varieties of decoupled access/execute computer
architecturesProceedings of the 20th Allerton Conferent@82, pp. 577-586.

J. E. Smith, Decoupled Access/Execute Computer ArchitecA@d, Transac-
tions on Computer Systera@l), 1984, pp. 289-308.

J. E. Smith, S. Weiss, H. Y. Pang, A Simulation Study of Decoupled Architecture
Computers|EEE Transactions on Computefs35(8), 1986, pp. 692-702.

J. E. Smith, et al., The ZS-1 Central Procesdmceedings of the Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating System4987, pp. 199-204.

J. E. Smith, S. D. KlingeRerformance of the Astronautics ZS-1 Central Proces-
sor, Astronautics Corporation of America, Internal Report March 1988.

J. E. Smith, "Dynamic Instruction Scheduling and the Astronautics ZISEE"
ComputerJuly 1989, pp. 21-35.

M. D. Smith, M. Johnson, M. A. Horowitz, Limits on Multiple Instruction Issue,
Proceedings of the Third International Conference on Architectural Support for

[162]

[163]
[164]

[165]

[166]

[167]

[168]

[169]

[170]
[171]

[172]

[173]

[174]

181

Programming Languages and Operating Systei®89, vol. 17, pp. 290-302.

M. D. Smith, M. S. Lam, M. A. Horowitz, Boosting Beyond Static Scheduling in
a Superscalar ProcessBrpceedings of the 17th Annual International Sympo-
sium on Computer Architecturg990, vol. 18, pp. 345-353.

M. D. Smith,Tracing with pixie, Stanford University, Technical April 4 1991.

M. D. Smith, M. Horowitz, M. S. Lam, Efficient Superscalar Performance
Through BoostingProceedings of the Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Syste988, vol.
20, pp. 248-261.

K. So, V. Zecca, Cache Performance of Vector Procesamsgedings of the
15th Annual International Symposium on Computer Architech®@8, pp. 261-
268.

G. S. Sohi, S. Vajapeyam, Instruction Issue Logic for High-Performance Inter-
ruptible Pipelined Processoiioceedings of the 14th Annual International
Symposium on Computer Architectut®87, pp. 27-34.

G. S. Sohi, S. Vajapeyam, Tradeoffs in Instruction Format Design for Horizontal
ArchitecturesProceedings of the Third International Conference on Architec-
tural Support for Programming Languages and Operating Syste988, vol.

17, pp. 15-25.

G. S. Sohi, M. Franklin, High-Bandwidth Data Memory Systems for Superscalar
Processor$roceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Syst&é#l, vol. 19, pp.
53-62.

G. S. Sohi, High-Bandwidth Interleaved Memories for Vector Processors--A
Simulation StudylEEE Transactions on Computet&(1), 1993, pp. 76-82.

R. Stallmanlsing and Porting GNU C(Free Software Foundation, Inc., 1990.

P. Steenkiste, The Impact of Code Density on Instruction Cache Performance,
Proceedings of the 16th Annual International Symposium on Computer Architec-
ture, 1989, vol. 17, pp. 252-259.

H. S. Stone, J. Cocke, "Computer Architecture in the 198BS Computer
September 1991, pp. 30-38.

J.-h. Tang, E. Davidson, J. Tong, Polycyclic Vector Scheduling vs. Chaining on
1-Port Vector Supercomputeroceedings of the 1988 International Confer-
ence on Supercomputin988, pp. 122-129.

Thornton, Parallel Operation in the Control Data 6@®PS Proceedings

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

182

FJCC, part 2,1964, vol. 26, pp. 33-40.

J. E. ThorntonDesign of a Computer -- The Control Data 6668@ott, Fores-
mann and Co., Glenview, lll., 1970.

P. Tirumalai, M. Lee, M. S. Schlansker, Parallelization of loops with exits on
pipelined architecture®roceedings of the 1990 International Conference on
Supercomputingl 990, pp. 200-212.

G. S. Tjaden, M. J. Flynn, Detection and Parallel Execution of Independent
InstructionsJEEE Transactions on Compute®s19(10), 1970, pp. 889-895.

G. S. Tjaden, M. J. Flynn, Representation of Concurrency with Ordering Matri-
ces,|IEEE Transactions on Computets22(8), 1973, pp. 752-761.

R. M. Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic
Units, IBM Journal of Research and Developmgh(1), 1967, pp. 25-33.

H. C. Torng, M. Day, Interrupt Handling for Out-or-Order Execution Processors,
IEEE Transactions on Computet2(1), 1993, pp. 122-127.

R. F. Touzeau, A Fortran Compiler for the FPS-164 Scientific Compuiter,
ceedings of the ACM SIGPLAN '84 Conference on Programming Language
Design and Implementatio©984, pp. 48-57.

A. K. Uht, Concurrency Extraction via Hardware Methods Executing the Static
Instruction StreamEEE Transactions on Computet&(7), 1992, pp. 826-841.

A. K. Uht, Requirements for Optimal Execution of Loops with TeéEiSE
Transactions on Parallel and Distributed Systed(®), 1992, pp. 573-581.

J. Uniejewski, SPEC Benchmark Suite: Designed for Today's Advanced Sys-
tems,SPEC NewslettgiFall), 1989

M. Upton, T. Huff, T. Mudge, R. Brown, Resource Allocation in a High Clock
Rate Microprocessor, preprint.

S. Vajapeyam, G. S. Sohi, W.-C. Hsu, An Empirical Study of the CRAY Y-MP
Processor using the PERFECT Club Benchmdks;eedings of the 18th
Annual International Symposium on Computer Architectl®81, vol. 19, pp.
170-179.

S. Vassiliadis, B. Blaner, R. J. Eickemeyer, On the Attributes of the SCISM
OrganizationComputer Architecture Nev20(4), 1992, pp. 44-53.

D. W. Wall, M. L. Powell, The Mahler Experience: Using an Intermediate Lan-
guage as the Machine Descriptidtrpceedings of the Second International Con-
ference on Architectural Support for Programming Languages and Operating

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

183

Systems]987, pp. 100-104.

D. W. Wall, Limits of Instructional-Level Parallelisi?roceedings of the Fourth
International Conference on Architectural Support for Programming Languages
and Operating System$991, vol. 19, pp. 176-188.

S. Weiss, J. E. Smith, Instruction Issue Logic in Pipelined SupercomplE&is,
Transactions on Compute@33, 1984, pp. 1013-1022.

S. Weiss, J. E. Smith, A Study of Scalar Compilation Techniques for Pipelined
Supercomputerfroceedings of the Second International Conference on Archi-
tectural Support for Programming Languages and Operating Syste983, pp.
105-111.

S. Weiss, Optimizing a Superscalar Machine to Run Vector Q&dt; Parallel
and Distributed Technologi(2), 1993, pp. 73-83.

C. A. Wiecek, A Case Study of VAX-11 Instruction Set Usage for Compiler Exe-
cution,Proceedings of the Symposium on Architectural Support for Program-
ming Languages and Operating Systeh®82, vol. 10, pp. 177-184.

M. Wolfe, Beyond Induction VariableByoceedings of the ACM SIGPLAN '92
Conference on Programming Language Design and Implementaf6g, vol.
27, pp. 162-174.

W. A. Wulf, "Compilers and Computer Architectul&EE ComputerJuly
1981, pp. 41-47.

Q. Yang, L. W. Yang, A Novel Cache Design for Vector Procesdfigceedings
of the 19th Annual International Symposium on Computer Architedt9e2,
vol. 20, pp. 362-371.

ABSTRACT

LOOP OPTIMIZATION TECHNIQUES
ON
MULTI-ISSUE ARCHITECTURES

by
Dan Richard Kaiser

Chair: Trevor Mudge

This work examines the interaction of compiler scheduling techniques with pro-
cessor features such as the instruction issue policy. Scheduling techniques designed to
exploit instruction level parallelism are employed to schedule instructions for a set of
multi-issue architectures. A compiler is developed which supports block scheduling,
loop unrolling, and software pipelining for a range of target architectures. The compiler
supports aggressive loop optimizations such as induction variable detection and strength
reduction, and code hoisting. A set of machine configurations based on the MIPS R3000
ISA are simulated, allowing the performance of the combined compiler-processor to be
studied. The Aurora lll, a prototype superscalar processor, is used as a case study for the

interaction of compiler scheduling techniques with processor architecture.

Our results show that the scheduling technique chosen for the compiler has a sig-
nificant impact on the overall system performance and can even change the rank order-
ing when comparing the performance of VLIW, DAE and superscalar architectures. Our
results further show that, while significant, the performance effects of the instruction
issue policy may not be as large as the effects of other processor features, which may be

less costly to implement, such as 64 bit wide data paths or store buffers.

	LOOP OPTIMIZATION TECHNIQUES ON MULTI-ISSUE ARCHITECTURES
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	CHAPTER II INSTRUCTION LEVEL PARALLELISM
	CHAPTER III LOOP OPTIMIZATIONS
	CHAPTER IV THE STRUCTURE OF THE OPTIMIZING COMPILER TORTOISE
	CHAPTER V EXPERIMENTS AND RESULTS
	CHAPTER VI CONCLUSIONS
	APPENDIX
	BIBLIOGRAPHY
	ABSTRACT

