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CHAPTER 1

Introduction

The importance of accurate branch prediction to future processors has been widely
noted. The correct prediction of conditional branch outcomes can help avoid pipeline
bubbles and the attendant loss in performance. As more instruction level parallelism is
exploited in high-performance microprocessors, the requirement of very accurate branch
prediction has taken on a central importance.

This dissertation addresses the branch prediction problem by providing a study of
high-performance dynamic branch prediction schemes. In particular, two classes of high-
performance dynamic branch predictors are studied. They are distinguished by the type of
information about previous branch outcomes that they employ: global outcome history
and per-address outcome history. The purpose of this dissertation is to identify the design
decisions that can improve performance for these two kinds of dynamic branch predictors,
given that they will operate in a realistic computing environment. The contributions of this

dissertation are as follows,

1. A general performance picture is provided of the branch prediction schemes
that exploit global history information. It can be used to select the optimal
design for these dynamic branch predictors (Chapter 4). The advantages and

disadvantages of using global history information are also fully studied. Based
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on the study, two design criteria for global history predictors are proposed.
They are used to highlight a performance bottleneck common among global

history schemes.

2. A new predictor, the bi-mode scheme, is proposed (Chapter 5). The bi-mode
scheme meets both the design criteria referred to above, allowing it to provide
significant performance improvement over existing schemes at modest cost. A
detailed comparison between the bi-mode scheme and several variations of the

global history schemes is also presented.

3. Branch prediction schemes that exploit per-address outcome history
information are examined (Chapter 6). A general performance picture is
provided to select the optimal design for these dynamic branch predictors. The
pros and cons of these predictors and the role of adaptivity are studied. Based
on this study, a simple but competitive per-address history scheme that uses
algorithm-derived static-trained predictors is presented. This static-trained

predictor is a cost-effective alternative to the dynamic branch predictors.

In all the studies mentioned above, a diverse set of fifteen popular benchmarks are
used to represent a wide range of programs. These are fairly large programs, and they
allow us to rectify some earlier misunderstandings about dynamic branch prediction that
was based on small programs. They also illustrate the impact of growing program sizes on
the dynamic branch predictor design [52].

We conclude this chapter with an introduction to the branch problem and a brief

review of current high-performance dynamic branch predictors.



1.1 The branch problem

The sequential programming paradigm has been the predominant model of
program execution. It requires that each instruction execute one at a time in sequential
order. This paradigm places too stringent a constraint on computation because many
instructions are actually independent of each other. There has been extensive research into
architectures that relax this constraint, because such relaxation allows concurrent
execution of independent instructions and hence faster compute times. The limits to this
parallelism are set by the obvious requirement that their execution results must agree with
the results of the sequential version.

In the sequential programming paradigm, branch instructions play an important
role. The purpose of the branch is to redirect the instruction stream based on the current
state of the computation — it is this feature that distinguishes computers from mere
calculators and gives them their “universal computing” capability.

Unfortunately, branches can become a severe performance problem for the
machine designer when instruction level parallelism (ILP) is also being employed to speed
execution. This is because instructions following a branch may be started before the
branch is resolved, and may have to be discarded depending on the branch outcome. This
period before the branch is resolved may cause significant performance loss if no useful
work is carried out.

In very simple machines, where only one instruction is fetched and executed at a
time, branches are not a problem because the machine examines branches and makes any
necessary instruction stream change within the time allotted to the instruction. However,

the performance of such a machine is inherently slow because only one of the main CPU
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components is busy at any time. To improve performance, techniques were invented, such
as pipelining, to keep every unit in the microprocessor busy. Ideally, in a single pipeline
machine, during each cycle there is always one instruction being fetched, one instruction
being executed and one instruction being completed. However, pipelining, like other types
of ILP, can result in wasted work during branch resolution. These pipeline bubbles are a
source of inefficiency.

As VLSI technology advances, more transistors can be integrated onto the chip,
allowing microarchitectural designs with higher levels of ILP. The trend is thus to increase
branch resolution time, resulting in the potential for even greater losses from branches. A
key ingredient to realizing the full benefit of higher levels of VLSI integration and speed
is being able to handle branches successfully. Consequently, there have been quite a few
proposals, many of which will be reviewed in Chapter 2. Among these proposals, the most
widely used are those that employ a dynamic branch prediction to select the path for
execution before a branch is resolved. They are popular because dynamic branch
prediction requires little, if any, modification to the instruction set, which is critical if
binary compatibility is a concern. Furthermore, dynamic branch prediction achieves better
performance than most other approaches [28]. However, there is still room for
improvement as we will show.

Dynamic branch prediction is not the only way to predict branch outcomes, but it
has out-performed most other prediction schemes, such as static prediction, e.g., compiler
hints. Dynamic branch prediction can be better because it captures branch behavior at run
time. In the early 1980’s, a set of two-bit saturating counters, each assigned to a branch

instruction, was shown to achieve good prediction accuracy for many programs [29, 46].



Recently, as processors are more aggressively exploiting ILP, interest in the design of
branch prediction hardware has intensified. Many of the latest designs have sought to
exploit information from multiple distinct branches for the prediction of each new branch
instance. One of these techniques that has shown great promise is two-level dynamic

branch prediction.

1.2 Two-level dynamic branch predictors

Branch outcomes are not merely random results; the behavior of a branch depends
heavily on its own past behavior or the behavior of its neighboring branches. Exploiting
this correlation between branches can improve prediction accuracy. There has been
rescarch work proposed to utilize this correlation [29, 46], with, perhaps, the most
significant development being the invention of the two-level dynamic branch predictors.
The earliest reference to two-level schemes appears to be a DEC patent first filed in 1990
[4]. Its second-level table was fixed. This idea was taken much further in the work of Yeh
and Patt [56, 57), where adaptivity was added to the second level and a per-address
version was proposed.

Theoretically, the two-level schemes approximate a set of Markov predictors [15].
These have been used successfully in the field of data compression, where accurate
prediction of future characters in the data stream is an integral part of the compression
algorithms. A Markov predictor estimates the likelihood of a particular character
occurring by counting the frequency of each character that follows various character
patterns. It then predicts the next character that follows a particular pattern as the most

frequent character that has been observed to follow that pattern [2]. Predicting branch



outcomes is actually a simplified version of predicting characters, where there are only
two characters, “taken” and “not-taken.” Therefore, the techniques developed in Markov
predictors, or other prediction methods for that matter, are applicable to branch prediction.

The implementation of dynamic branch predictors has stringent restrictions with
respect to on-chip area and access time. In microprocessors, the branch prediction unit
needs to be located close to the CPU because it is accessed and updated very frequently.
Clearly it must be on the same chip as the CPU. In the past, the cost of the on-chip area
was an obstacle. This obstacle is disappearing as more and more transistors are integrated
on to chips; however, the predictor access time is still a major limitation. In a high
performance microprocessor, branch prediction must be completed in just one or two CPU
cycles so that instruction fetching will not be stalled. Consequently, algorithms with the
complexity of Markov predictors are generally not practical for branch prediction.

The two-level branch predictor, however, provides a simplified but effective form
of the Markov predictor. The two-level predictor records the branch outcome history in
registers, counts the number of taken branches for each possible history pattern with a
simple two-bit saturating counter, and then makes prediction based on the state of the
counter.

Figure 1.1 presents a model of a generic two-level predictor. It consists of two
major data structures, one at each level. The first-level table contains shift registers to
record the branch outcome history. This table is referred to as the branch history table
(BHT) and the shift registers as branch history registers (BHRs) in Yeh and Patt [57]. The
second-level consists of a number of finite state machines, typically two-bit saturating

counters; each of the counters is used to count the number of taken branches for a
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Figure 1.1: A model for a generic two-level dynamic branch predictor

particular history pattern. It is also possible for the second-level table to have more than
one column. For multiple-column configurations, each column is referred to as a pattern
history table (PHT).

As shown in the figure, to make a prediction, a state machine is first selected by
column and row indices. The column index is usually the branch address from a program
counter (PC), and the row index is formed in the first-level table, which implements a
function of the branch address and branch outcome history. As mentioned above, this
first-level table contains BHRs to record the branch outcome history. When a branch is
resolved, the branch outcome will be shifted into a BHR. If the there is only one BHR, all
branch outcomes will be shifted in this BHR, and a global history is obtained. On the other
hand, if there are enough BHRs in the table, separate BHRs can be kept for each static
branch and a per-address history, or self-history, is obtained.

When a state machine is selected, the state of this machine determines the

prediction, while the actual branch outcome determines the next state for the selected state



machine. If two-bit saturating counters are employed, the value of the selected counter
will be increased by one when the outcome is taken and the value will be decreased by one
when the outcome is not-taken. Since each two-bit counter can have only four values, the
counter will not be increased if its value is already a maximum or will not be decreased if
it is a minimum. This saturation is an important simplification to the Markov predictor,
which predictions based on saturating counters emphasize the most recent outcomes rather
than examining the entire history of the pattern.

If there is no limitation on area and access time, it is possible to build a two-level
predictor with a very large table of counters. Each distinct conditional branch would be
given a separate column in the table, with the rows representing conditions under which
that branch’s outcome is likely to vary. For example, separate counters may be kept for the
various combinations of outcomes of past executions of the branch, or the outcomes of
correlated branches. It would be the responsibility of the BHT to record this history and
from it to determine the appropriate row for each branch instance. The cost of the BHT
could vary considerably, depending upon the selection scheme that we chose to
implement.

In practice, resource constraints make it necessary to determine a cost-effective
combination of row-selection strategy and predictor table organization. Many possibilities
have been suggested. Yeh and Patt [59] introduced a taxonomy for such two-level
schemes, coding them with three letters. In the context of the model shown in Figure 1.1,
the first letter states whether the row selection is based upon history kept globally (G),
kept for a set of addresses (S), or kept for individual addresses (P). The second letter

indicates whether the predictor table contains an adaptive state machine, such as a two-bit



saturating counter (A), or a fixed prediction (S). The third letter indicates whether the
table has a single (global) column used for all addresses (g), a set of columns indexed by
bits extracted from the address (s), or a separate column for every address (p). Strictly
speaking, schemes with coding letters, P or p, are not possible to implement in the real
world, because there are usually many more static branches in a program than the
maximum number of columns which can be realistically implemented in the BHT.
Nevertheless, by convention we will ignore this subtle difference, and still use P and p to
refer to per-address schemes, even though overlaps between branches do exist. Typically,
only the low order bits of the address are used, so there is a possibility of several addresses
mapping to one BHR even in “per-address” schemes. We will refer to this as aliasing later
on.

In this dissertation, the schemes that exploit global and per-address history
information are studied. The global and per-address history schemes represent two
extreme ends of the configuration spectrum of two-level schemes, and are ideal points to
contrast and compare. The per-set history scheme falls in the middle of the spectrum, and
previous study has shown that the per-set history scheme is no better than the other two-

level schemes [59].
1.3 Impact of software development on the branch predictors

The size of programs has continually increased, as observed by Uhlig ez al. [52). In
their study, they showed that code bloat can degrade the performance of instruction cache
significantly. While this is not a concern for small programs, such as SPEC benchmarks,

larger programs may also have more static branches to exercise, causing degradation of
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the performance of the branch predictor. In the past, there have been quite a few ideas and
designs for branch prediction schemes using correlation. Unfortunately, they primarily
used small benchmarks, such as SPEC89 and SPEC92 for performance evaluation.
Because most of these benchmarks have tiny numbers of static branches to exercise, these
studies were unable to indicate the appropriate design for a more realistic and larger
workload space.

This dissertation includes more realistic programs to evaluate the performance for
the dynamic branch predictor. We conduct our experiments for dynamic branch predictors
under a wide range of benchmarks. Our results explains the sensitivity of predictors to
variations in resources allocated, design, and workload. We evaluate the predictors using
programs from SPEC CINT95, the latest version of SPEC integer benchmarks, IBS-
Ultrix, a set of widely used system workload traces, and sql/95, a database system
workload trace distributed by Digital Equipment Corp. By exhaustively searching the
design space and including more benchmarks, our results can present a “global picture” of
the design space and describe the trade-offs of using branch outcome history for the

branch predictors.
1.4 Dissertation organization

The dissertation is organized as follows. Chapter 2 discusses previous research
work. Chapter 3 describes the methodology and discusses intrinsic differences between
benchmarks used in this work and earlier stﬁdies. Chapter 4 examines the global history
branch prediction schemes and analyzes the effects of correlation. Chapter S proposes a

new scheme, the bi-mode scheme, that improves upon the global history schemes,
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comparing it favorably with other more recent variants of global history schemes. Chapter
6 presents the study for the per-address history schemes. Chapter 7 concludes with a

summary of our work and proposes some future directions.



CHAPTER 2

Related Work

The branch problem has been known for a long time. As early as the 1970’s,
researchers identified the severe performance degradation that could occur with branches.
In particular, Flynn estimated performance degradation due to branches for single-
instruction-stream machines [20]. Research work by Tjaden ef al. and Riseman et al.
showed that if there is no branch problem, it is possible to execute fifty instructions per
cycle in scientific codes, but if instruction fetch stops due to branches, as few as two
instructions may be that can be executed at a time [51, 42). More recently, Butler er al.
have examined the instruction level parallelism (ILP) for the SPEC89 benchmarks, and
showed that there exists potentially high ILP in the benchmarks, but branches can be a
serious bottleneck to achieving that potential [S]). As machines more aggressively exploit
ILP, the branch problem grows, consequently, it is receiving more attention. In this
chapter, some popular and interesting approaches to solving the problem are discussed.
Since branch prediction dominates the methods of handling branches, it will be the focus

of this chapter.

2.1 Handling branch problems

Currently, the most popular method to reduce performance loss due to branches is

speculation with branch prediction. Branch prediction refers to the technique of predicting

12
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which one of the alternative execution paths following a branch will be executed before
the branch is resolved. This speculation aﬂéws machines to continue fetching instructions
along the predicted path, instead of waiting for branch results. The branch prediction,
however, needs to be accurate, or all the speculated instructions after the mispredicted
branch must be discarded.

For most of current instruction set architectures (ISAs), there are two kinds of
branches, conditional and unconditional. A conditional branch usually has two paths to
take, either the fall-through path or the target path. The path taken depends on the branch
outcome, not-taken or taken, respectively. Because the target address is usually specified
in the branch instruction and can be computed early, the major problem with conditional
branches is to determine the outcome of the condition they test. Conditional branches
occur frequently, usually accounting for about 15% of total dynamic instructions, so most
branch prediction methods are used to predict outcomes for conditional branches.
Unconditional branches always redirect the instruction stream, i.e., their outcomes are
always taken, so machines need to jump to a target whenever such a branch is executed.
Predicting their outcomes is not an issue, but predicting their targets can be problematic if
the targets are not explicit in the instructions.

Unconditional branches fall into two groups: direct and indirect branches. A direct
unconditional branch specifies its target in the branch instruction and therefore has only
one target to jump to. Direct unconditional branches can be effectively predicted by its
last-time target, or easily resolved in an early pipeline stage. An indirect unconditional
branch specifies its target in a register which may not be accessed until a later pipeline

stage, such as the execution stage. Therefore, indirect unconditional branches need their
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targets predicting. This can be difficult because their targets can be modified during
execution. Fortunately, indirect unconditional branches appear quite infrequently (less
than 1% in the SPEC CINT95 benchmarks [12]), and thus are not the primary concern
compared to the conditional branches. A branch target buffer (BTB) [29] combined with a
return-address stack [27] is a popular way to predict targets for unconditional branches.
The BTB predicts targets for unconditional branches by their last-time targets and the
return-address stack predicts for return-from-subroutine branches by their caller’s
addresses pushed on the stack. Chang er al. has recently proposed a target prediction
method based on the history of branches to improve the prediction accuracy [12].

Branches construct control flows for programs; in other words, the execution of
the instructions following a branch is determined by the branch outcome. However,
analyses on control dependency have shown that not all instructions after a branch need to
wait for the branch execution result [28, 53]. These studies examine some possible ways
of identifying the frue control dependency so that the unnecessary stalls due to unresolved
branches can be removed. This is similar to the distinction between the true data
dependency (read-éfter-write) and false dependencies (write-after-write and write-after-
read) in data dependency analysis. In that area, researchers have realized that the false
dependencies can and should be removed in order to speed up the computation, while true
dependencies pose inherent performance limitations.

However, it is also shown by Lam er al. [28] that performance gained by
eliminating false control dependency alone is small. This is because, without other
supporting techniques, such as branch prediction, the parallelism is primarily limited by

the constraint that branches must be executed in order. Since conditional branches occur
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so frequently in most of the programs, executing one branch at a time is a serious
bottleneck. The same study has suggested that if minimizing control dependency is
combined with other techniques, such as branch prediction, it can enhance the
performance significantly.

When microprocessors aggressively speculate along the instruction stream, with
many branches being predicted but yet unresolved, the probability of wrong speculation
rises. For example, assume the averaged prediction accuracy of a predictor is 80%, then
the accuracy for the speculated path is roughly (80%)", where n is the number of
outstanding branches in a machine. If n is 5, the likelihood that the speculated path is the
correct one falls to 33% by the time the sixth branch is encountered. Therefore, rather than
continuing to fetch instructions along the very deep speculative execution path,
researchers have proposed multiple-path instruction execution, or dual-path execution
after a conditional branch, which will fetch along both paths after a branch. Because the
compute engine normally cannot resolve branches more quickly than it can fetch new
instructions, it is possible that dual-path fetching can overload the machine and memory
bandwidth. Therefore, some simplified methods have been proposed; these include
disjoint eager execution and limited dual path execution (54, 31].

The disjoint eager execution assigns a cumulative prediction accuracy for each
path after an unresolved branch, sorts paths of all unresolved branches by their cumulative
accuracies, and then fetches the path that has the highest cumulative accuracy. For
example, if the averaged prediction accuracy of a branch predictor is 80%, after 8
branches along the speculative path have been predicted but not yet resolved, the

cumulative prediction accuracy for the 9th branch can be no more than 16.7%. This
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cumulative prediction accuracy is lower than the one for the un-taken path of the first
unresolved branch, which is 20%. In this case, the disjoint eager execution scheme will
fetch the path that has 20% prediction accuracy, instead of speculating on the 9th branch.

Theoretically, this disjoint eager execution can deliver the optimal performance,
but practically it has several problems. First, it needs a fast way to determine the
curnulative prediction accuracy, usually one computation per CPU cycle. The example
above requires multiplication of prediction accuracy, which is prohibitive in high speed
microprocessors. Second, the prediction accuracy is not equal for all the branches; some
branches are easy to predict, while others are not. For those branches that are easy to
predict, there is no reason to fetch the un-predicted paths, because the branch predictor has
strong confidence on its prediction. On the other hand, for those hard-to-predict branches,
both paths need to be fetched because of the higher chance of misprediction. Therefore, a
feasible scheme, limited dual path execution, has been proposed, which examines the
confidence of prediction accuracy, and fetches both paths for those branches that have low
confidence on prediction. Nevertheless, this scheme may waste instruction fetch
bandwidth if it encounters many highly confident branches, because the extra fetch unit
for the other path is idle.

There have been numerous approaches proposed to solve the branch problem
through code transformation by compilers. These proposals usually achieve goals by
eliminating branches, or enlarging basic blocks. This kind of techniques may provide
significant improvement, but they also require some degrees of modification to the ISAs,
which can complicate the matter of backward code compatibility. A typical example of

such techniques is guarded instructions, or predicated instructions [16, 25, 41, 40]. This
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technique is designed to eliminate branches by conditionally executing or committing
instructions dynamically. Instructions to be guarded are associated with a boolean valued
expression, or a guard expression. Guarded instructions will always be fetched when the
instruction pointer reaches them. However, if the guard expression evaluates to false, the
results of guarded instructions will not be committed; in other words, the guarded
instructions are converted to useless instructions dynamically when the guarding
condition is not true. By conditionally executing (or committing) instructions based on
conditional values, compilers can eliminate a branch by combining instructions from
alternative paths after the branch. With this branch elimination, compilers can form a
larger basic block to enhance its code scheduling capability. However, guarding can
adversely impact on instruction fetch bandwidth because some instructions are eventually
discarded after being fetched. Moreover, if a branch is easy to predict, the guarded
instructions on the wrong-path may waste the computing resources most of time. Recent
studies have examined combining guarded instructions and branch prediction to achieve
better performance [50, 32, 13]. A key idea in these studies is to use guards to eliminate
branches that are difficult to predict, while predicting other branches with dynamic branch
predictors.

Loop unrolling is another technique to eliminate branches through code
transformations. Loop unrolling may combine several successive iterations of a loop to
form a larger loop, thus reducing the number of dynamic branches. Like the guarded
instructions, loop unrolling can form larger basic blocks to enhance compilers’ scheduling
capability. This technique is useful for the scientific codes where there are many loops

with a fixed (compile-time) number of iterations, but the advantages of loop unrolling are
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limited for integer programs because integer programs usually have more if-then-else
constructs and few loops with fixed iteration counts.

In addition to branch prediction and elimination, the branch problem can be
alleviated by reducing the penalty of resuming correct execution due to branch
misprediction. Bondi et al. proposed a misprediction recovery cache (MRC) to cache the
instructions on the mispredicted path that have been fetched and decoded due to a wrong
speculation [3]. If the same branch is mispredicted again and the mispredicted path is
stored in the MRC, this MRC may help resuming the correct execution more quickly

because it can supply the decoded instructions on the correct path to the execution engine.

2.2 Predicting for branch outcomes

Predicting for branch outcomes can be done statically or dynamically. A static
branch prediction is usually made at compiling time. The compiler can employ some
heuristics or profiling to determine the most likely direction that a static branch will take,
and then use the most likely direction as the prediction for the branch and encode it into
the branch instruction. When the branch is fetched at run time, machines will predict the
branch outcome based on the compiler’s hint.

Static prediction has proved to be quite effective [19, 1], it has been frequently
employed in assisting code scheduling and optimization for compilers, such as trace
scheduling [18]. However, its prediction accuracy is lower than the dynamic approaches
[46, 29, 56, 55]. One major reason is that dynamic approaches can adapt to the run-time
behavior of branches due to different phases of program execution, while static branch

prediction has to fix a prediction value for each static branch that is time invariant. To
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moderate this problem, Young et al. have proposed a static prediction method that exploits
branch correlation [60]. They examined the branches behaviors for various history
patterns at compile time. If a branch behaves differently under different history patterns,
the basic block containing the branch will be replicated in the program and each copy of
the branch will be assigned a different prediction value based on the history pattern. This
technique can improve the static branch prediction, but is still inferior to the dynamic
approaches. Besides, a shortcoming of this technique is that it may increase the program
size significantly.

Dynamic branch prediction schemes make prediction based on the information
collected at run time. An early scheme is the two-bit saturating counter proposed by Smith
[46], which, in an ideal situation, assigns a unique counter to each static branch to record
the recent behavior of that branch. The use of a two-bit saturating counter means that the
prediction is based only on recent branch behaviors. Nevertheless, performance is quite
good and the two-bit scheme provides an adequate amount of damping against false
predictions, best typified by loop exits. Moreover, Nair has presented empirical results to
show that the two-bit saturating counter is the best among finite state machines of two bits
[36].

Smith’s two-bit saturating counter scheme classifies branch outcome information
only according to the addresses of static branches, which can limit the prediction accuracy
because much of the correlation information between successive executions of a branch is
not captured. To account for this auto-correlation, Yeh and Patt proposed their first two-
level dynamic prediction scheme, known as the per-address history scheme in 1991 [56].

The per-address history scheme associates a two-bit counter to each possible per-address
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outcome history pattern instead of each static branch site in order to exploit auto-
correlation information. This pushed prediction accuracy above 90% for some SPEC89
benchmarks.

Shortly after the per-address proposal, another form of two-level dynamic
prediction schemes was proposed [38, 57]. Although, an earlier proposal by DEC
employees was first filed in 1990 [4]. It was designed to exploit inter-branch correlation,
ie. history from branches in the vicinity of the branch. These correlated prediction
schemes rely on the global history of branch behavior rather than the self (per-address)
history, and thus are referred to as global history schemes. These global history schemes
are simple and can achieve similar performance to the per-address two-level schemes.
However, these global history schemes show some performance limitation due to
interference in the second-level table. Some variations of the global history scheme have
also been suggested, such as gshare and path-based correlation schemes [34, 37]. In
particular, the gshare scheme xors global history bits with branch address bits to
randomize global history patterns in order to evenly distribute counter usage and hence to
lessen the interference for the second-level table that can occur with the standard
correlated prediction scheme. The path-based scheme employs partial address bits of
previous dynamic branches to represent the execution path leading up to a particular
branch and uses this, instead of the global history outcomes, to index into the second-level
table. The path-based scheme attempts to distinguish the static branches that produce the
same global history pattern, in a manner suggested by the static correlated prediction work
by Young et al. [60]. Both the gshare and path-based schemes have been shown to

perform slightly better than the standard global history schemes for SPEC benchmarks
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[45].

All of the studies mentioned above have a common shortcoming: they only used
small benchmarks, such as SPEC89 and SPEC92, when they evaluated predictor
performance. Because of the sizes of the benchmarks, meaningful conclusions about the
effects of large footprint programs cannot be evaluated. In particular, appropriate resource
allocation for prediction schemes in large footprint programs cannot be determined. One
of our points is that the large footprint programs that we use for benchmarks are more
representative of actual workloads that present-day systems experience.

To examine global history prediction schemes, Young, et al. propose a framework
that categorizes branch prediction schemes by the way in which they partition dynamic
branches and by the kind of predictor that they use. With their framework, they also
introduced several concepts, such as aliasing (or interference) and biasing, that are
important for discussing performance analysis. Their work focuses on distinguishing their
proposed static correlation scheme from dynamic prediction schemes. However, their
results are deduced from SPEC92, thus suffering from the shortcomings inherent in small
benchmarks. In this dissertation work, we will extend their ideas of aliasing and bias to
examine dynamic branch predictors.

The work by Talcott et al. also studied the effect of aliasing in the second-level
table for the global history schemes [49]. They found that interference in the second-level
table degrades performance. However, they only examined schemes with 1,024 counters
in the second-level table, which is not sufficient to reveal performance trends for the
global history schemes they studied. Most of their conclusions only apply to small

benchmarks, although they did note that the sole large footprint program in their
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benchmarks, gcc, shows characteristics distinctive from the rest.

As it became clear that global history schemes suffer from interference, several
schemes have been proposed recently to overcome the interference problem, including
filtering schemes, skewed predictors, and agree predictors [11, 35, 48]. The filtering
scheme makes use of self-history information to identify easy-to-predict branches
dynamically. For these branches, the filter scheme does not update the counters of its
global history scheme in order to reduce interference. The skewed predictors reduce
interference by having multiple second-level tables, each using a different hashing
function for the index into the table, and by partially updating these second-level tables
according to the prediction results. The agree predictor changes the usage of counters in
the second-level table. In an agree predictor, each static branch is assigned a bias bit,
indicating the most likely direction the static branch normally takes. The bias bit can be
dynamically determined or set at compile time. The counters in the second-level table are
then used to see if they agree with the bias bit when a branch is predicted. Predictions can
be based on the result. These three schemes will be examined and compared with our
proposed bi-mode scheme in Chapter 5.

Yeh and Patt [59] found that the per-address history scheme predicts better for
floating-point scientific programs than the global history scheme. Branches for loops
constitute most of the dynamic branch execution in this class of programs and the per-
address history (self-history) can quickly capture the loop behavior. On the hand, global
history schemes are better for integer programs. In integer programs, there are many if-
then-else constructs, which are better predicted by exploiting the correlation of a branch

with its neighboring branches. To achieve the overall best prediction accuracy, researchers
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have proposed to combine these two kinds of branch predictors into hybrid predictors [34,
10]. A processor has a dynamic selector to keep tracks of the performance of these
component branch predictors for each branch at run time. The selector “learns” to select
the best component predictor for each branch.

Another technique to improve branch prediction is the branch classification of
Chang et al. [9]. At compile time, a compiler can use profiling to classify each static
branch into different groups according to the probability of being taken. For each group, it
assigns a different predictor to make predictions. Static classification (compiler’s
selection) offers an opportunity to examine program semantics, but it is usually not as
accurate as dynamic classification (dynamic selectors in the hybrid scheme), because
branches may behave differently in various phases of program execution. In the same
study, Chang et al. have also examined combining the static classification and dynamic
selector to achieve better predication accuracy. In this combination, the compiler first
identifies a group of static branches that can be better predicted with fixed values. These
branches are usually strongly biased branches. Then, a hybrid scheme using a dynamic
selector is used to predict for the remaining branches, which are less strongly biased and
typically harder to predict.

Hybrid schemes have been reported to achieve a better prediction accuracy than
single two-level dynamic predictors, but they are built upon the two-level dynamic
predictors. Therefore, improving single two-level predictors remains important for

improving branch prediction techniques.



CHAPTER 3

Experimental Methodology and Benchmarks Descriptions

This chapter describes the experimental methodology employed in this
dissertation. The benchmarks used in the dissertation are also presented, and statistical

profiles are developed to illustrate their differences.
3.1 Experimental Methodology

Trace-driven simulation is employed to conduct experiments in this dissertation.
The simulator assumes one branch is fetched and resolved before another branch is
fetched. Our simulator has the advantage of being simple and flexible enough to allow the
examination of a wide range of dynamic branch predictor organizations; furthermore, the
results are independent of underlying machine design parameters, such as branch
resolution time. However, this flexibility comes at the expense of some accuracy. For
example, in real machines a branch will not be resolved immediately after it is fetched,
requiring the branch predictors to be updated speculatively, which may degrade the
prediction accuracy slightly from that reported here. The issues of updating branch
predictors speculatively has been examined in [23, 26].

The traces used in the experiments were collected from the benchmarks described
below. The traces contain among other things, instructions, their addresses, opcodes,

address space identifiers, and in the case of branches, their outcomes.
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3.2 Benchmarks

One major purpose of this dissertation is to examine the performance of dynamic
branch predictors under programs that are representative of general-purposed computing
environments. Integer programs and operating system functions are two of the most
frequently executed programs in such a computing environment. Scientific programs, that
makes heavy use of floating-point operations, are frequently used in some high-
performance computing environments, but they are much less representative of present-
day general purposed workloads. Moreover, loop branches constitute most of the branches
in the floating-point programs, which are much easier to predict than the branches found
in integer programs because of their more regular behavior [57).

In this dissertation work a total of fifteen integer program traces are used: six of
them are from SPEC CINT9S, eight from the Instruction Benchmark Suite (IBS), and one
from the DEC PatchWrk suite, sq/95. Table 3.1 lists characteristics of the benchmarks.

SPEC CINT95 [47] programs were compiled on an Alpha 21064-based
workstation with the OSF/1 C compiler using the -O optimization flag and were traced
while executing the input files listed in Table 3.2. We employed DEC’s ATOM
instrumentation tool [17] to capture all user-level instructions for the CINT95 traces,
including shared libraries.

The IBS and PatchWrk benchmarks spend more of their execution time in the
operating system. The IBS-Ultrix benchmarks are a set of applications running under
Ultrix 3.1. The traces were collected through hardware monitoring of a MIPS R2000-
based workstation by Uhlig et al. [52). These traces include both instructions executed

from the user applications and the operating system, as well as instructions executed by



26

Portion of Static branches
Dynamic dynamic Static constituting X% of
Benchmarks conditional | conditional | conditional total dynamic
branches branches branches | conditional branches
from OS X=90 X=99
compress | 10,114,353 - 482 25 38
i xlisp 25,008,567 — 636 50 125
= per 39,714,684 - 1,974 156 311
§ vortex 27,792,020 - 6,599 354 1,452
& go 17,873,772 — 5112 1,021 2,443
gee 26,520,618 — 16,035 3,244 7,890
nroff 22,574,884 6.53% 5,249 228 966
groff 11,901,481 11.37% 6,333 459 1,658
sdet 5,514,439 98.46% 5,310 508 1,920
§ mpeg_play | 9,566,290 28.51% 5,598 532 1,899
z video_play | 5,759,231 68.35% 4,606 757 1,736
verilog 6,212,381 13.57% 4,636 850 2,387
gs 16,308,247 10.33% 12,852 1,160 3,665
real_gcc 14,309,867 9.99% 17,361 3214 8,698
8ql95 2,599,046 17.82% 8,748 1,653 3,830

Table 3.1: Benchmarks characteristics

auxiliary processes such as the X-server.

The sql95 trace is distributed in the PatchWrk suite by DEC [39]. The distributed
version of sql95 is a single-CPU trace of the Microsoft SQL server running on an Alpha
under NT 3.5, while executing the TPC-B benchmark. §ql95 is interesting to us because,
in addition to its being representative of database application programs, it exhibits a higher

percentage of static branches exercised than any benchmarks in SPEC CINT95 and IBS-

Ultrix.
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Benchmarks input data set

compress reduced version of bigtest.in (reference data), reduced to 30,000
elements (instead of 14,000,000)

xlisp train.Isp (training data)

peri reduced version of scrabbl.in (reference data), reduced to the first 5
items (instead of 7) .

vortex reduced version of training data, vortex.trair; the iteration counts
and data were reduced to the first 10 items (instead of 250)

go 2stoneY.in (training data), the game_level was reduced to 19
(instead of 50)

gce jump.i (one of the reference data sets)

Table 3.2: The input data set for SPEC CINT95

The input data set to the SPEC CINT95 benchmarks was a reduced set; each benchmark
was run to completion.

Considered statically, the SPEC CINT95 benchmarks seem like a reasonable set of
programs with which to study branch prediction. All contain a fairly large number of
conditional branch instructions, with five containing over a thousand. However, when the
dynamic frequency of these branches is examined, potential problems with the
benchmarks can be seen. In three out of the six benchmarks, a small number of distinct
branches contribute the overwhelming majority of the branch instances. The small number
of branches is related to the small instruction cache footprints for these programs. This
characteristic was noted for SPEC CINT92, the previous version of SPEC CIN9S, and
rendered them unsuitable for evaluating the instruction caches for high performance
microprocessors [52].

The IBS-Ultrix benchmarks and PatchWrk sql95 all exercise substantially more
static branches than the SPEC CINT95 benchmarks. The IBS-Ultrix benchmarks include a
run of the GNU C compiler, real_gcc, which, though run on different inputs than the

SPEC CINT95 gcc benchmark, is quite comparable to it. The remaining programs of IBS-
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Figure 3.1: Classification of dynamic branches by probability taken

For each benchmark we first calculated the proportion of the time that each static branch was
taken. We then determined the proportion of the corresponding dynamic branches that fell into
each of five ranges. Five ranges are specified: never-taken (0%), between 0% and 10%,
between 10% and 80%, between 90% and 100%, and always-taken (100%). This figure shows
the average size of the ranges for the programs within each benchmark suite.

Ultrix are somewhat smaller than either version of gcc. It will be shown in this dissertation
that the inclusion of operating system references does not strongly affect the predictability
of branches in these programs, aside from the consequences of trying to predict a greater
number of branches. The operating system branch behavior actually falls within the range
covered by the IBS and sq/95 application programs.

A higher number of branches does not necessarily lead directly to greater difficulty
for prediction as far as the predictability is concemed. In Figure 3.1 we classify dynamic
branches by their probability of being taken for three benchmarks sets, according to the
following formula [9],

Though the IBS and sq/95 benchmarks have substantially more static branches
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Figure 3.2: Classification of dynamic branches by probability taken

For each IBS-Ultrix benchmarks and sql/95, we first caiculated the proportion of the time that
each static branch of the kernel (OS) was taken. We then determined the proportion of the total
dynamic branches of the kemel that were to static branches that fell into each of five ranges.
Five ranges are specified: never-taken (0%), between 0% and 10%, between 10% and 90%,
between 90% and 100%, and always-taken (100%). This figure shows the average size of the
ranges for the kernel part of the programs within two of the benchmark suites.

. . _ dynamic count of the branch class
normalized dynamic count of a branch class = fotal dynamic branches ,

where a branch class is a group of static branches whose probability of being taken falls in
a specific range. Five ranges are specified: never-taken, between 0% and 10%, between
10% and 90%, between 90% and 100%, and always-taken.

than CINT95, most of these additional branches are highly biased compared to CINT9S.
They are either almost always or almost never taken, and mainly consist of loops, or error
and bounds checks. Moreover, this highly biased feature is true for both applications and
the operating system. In Figure 3.2, we collect the statistics of Figure 3.1 for IBS and
5q195 kernel branches only, and found that the kernel branches exhibit similar
characteristics. Other studies have noted the frequency of highly biased branches is

strongly related to the capability of achieving high prediction accuracy [9, 19, 61].
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To summarize, the benchmarks that we collected to represent more realistic
computing environments. For example, the IBS benchmarks and 5ql95 have on average
many more static branches than the SPEC CINT95 benchmarks. These extra branches are
not harder to predict by nature, but they may pose more problems for predictor design than
SPEC CINT9S. The problems arise from the severe interference at the predictors, which

will be fully discussed in the remaining of this dissertation.

3.3 Performance metrics

In the study that follows we use misprediction rate for conditional branches as the
performance metric. Changes in misprediction rate do not translate directly into changes
in performance, i.e., execution time. The execution time is also determined by the
performance penalty due to each misprediction. The performance penalty, however,
depends upon the size of instruction window allowed within the computing engine, the
depth of pipelines, and the availability of the branch target instructions. Sometimes, the
branch penalty can be hidden because processors may also stall and wait for imperfect
memory systems. All of the factors mentioned above are machine dependent; different
microarchitectural designs have different values. We restrict ourselves in this study to the
misprediction rate in order to examine wider ranges of design spaces and to reveal the
machine-independent global performance trends for branch predictors. A number of
studies have made careful assessment of the link between changes in the misprediction

rate and changes in performance (6, 7, 19, 33, 58].



CHAPTER 4

Global History Schemes

This chapter is concerned with the optimal design of two-level dynamic branch
predictors that use global history information. A model for such a predictor is first
presented. A study that shows how to search the optimal design for such schemes then
follows. This chapter also provides a general picture of global history schemes that shows
their performance trends.

The major design issue for the global history scheme is how the second-level table,
the table containing two-bit counters, should be organized to achieve optimal
performance. Specifically, an answer is needed to the trade-off between the number of
branch address bits, and the number of branch outcome history bits, that are required for
an optimal predictor.

However, the answer to this design question is highly dependent on the
applications to be predicted: the different footprint sizes (the number of static branches) of
applications can shift the optimal design point. To help with this, the set of benchmarks,
discussed in Chapter 3, is used in an attempt to provide a more complete answer.

As will be seen from the general performance pictures, there is a key design
problem existing in the global history schemes. It is the destructive interference in the
second-level table that is particularly prevalent when global history is heavily employed.

A detailed analysis on the dynamic behavior of predictors is conducted to explain why

31
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destructive interference exists in this class of predictors and how it degrades the
performance. Finally, based on the analysis, two criteria will be proposed for designing a

good global history two-level branch predictor.

4.1 The global history scheme model

In this section, a thorough performance evaluation and optimal design
configuration search for the global history two-level predictor is presented.

As described in Chapter 1, there are three variations of the global history scheme,
GAg, GAs and GAp. The GAg scheme actually is a special case of the GAs scheme when
the second-level table has only one column. GAp, the scheme allocating one column for
each static branch, is an ideal scheme which cannot be implemented due to hardware
resource restriction. Accordingly, we focus our study the GAs scheme (including the
GAg) in this section.

A GAs model is shown in Figure 4.1. With a fixed number, 2", of two-bit counters
in the second-level table, a GAs scheme may have a variety of possible second-level table
configurations. One extreme is to merge together all the rows (all possible history patterns
for a given branch) to a single row and simply use an n-bit branch address to select a
counter from the row. This is exactly the form of the two-bit counter scheme proposed by
Smith [46], which we will refer to as the “address-indexed predictor.” At the other
extreme, one can reduce the table to a single column, and the selection of a counter is then
solely determined by the n-bit output of the first-level table, which is simply the outcomes
of the most recent n dynamic branches executed. Yeh and Patt encode this single-column

scheme as a GAg scheme, and we will follow this convention in this chapter. In addition
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Figure 4.1: The model for the global history two-level
dynamic branch predictor

to the two extreme configurations for the second-level table, there are many other
configurations each of which has a pair-wise combination of r-bit global history and c-bit
branch address that form an n-bit index into the table (n = r+c, r and c are non-negative

integers).
4.1.1 Performance comparison between the address-indexed and GAg schemes

Figure 4.2 compares the misprediction rates for all of our benchmarks using
address-indexed and GAg predictors for various sizes of the second-level table. The rate is
plotted as a function of the number of address or history bits used to index the counters.
The size of the second-level table ranges from 16 (24) to 32,768 (2'5) counters.

For the address-indexed scheme, the optimal performance is achieved when each
static branch of a program is assigned a unique counter for prediction. Therefore, we can

find that the performance of the address-indexed scheme for the small SPEC CINT95
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benchmarks, such as compress and xlisp, is almost saturated; specifically, there is no
performance ifnprovcment after the table contains 512 (2°) counters or more (using 9 or
more address bits) for these benchmarks. Since only a tiny numbers of branches are
exercised, all but the smallest of tables assign a separate counter to each static branch, and
no additional improvement can be found by increasing the table size (by increasing the
address bits). For the large benchmarks, such as real-gcc and sql95, the address-indexed
scheme can still gain some degree of improvement even for the largest tables. This is
simply because there are still some counters shared by static branches in the largest
predictors and with more counters the sharing can be continuously reduced.

Although it is not as good in most cases, the GAg scheme, using the global history
to select from a column of counters, shows continuous improvement as the table size is
increased (more history bits are used). This suggests that employing more global history
bits, or exploiting more correlation between branches, can consistently provide some
benefit over the range of the sizes examined.

However, as McFarling pointed out [34], global histories are usually weaker than
branch addresses at identifying branches, and this is especially true for short histories. In
other words, it is more common to find that different static branches generate the same
short global history patterns than have the same partial branch addresses. For short
histories, the aliasing of different branches to the same history pattern can be so severe
that the benefit of correlation is overwhelmed by the interference. In this case, simply
using the branch address to select counter performs better.

Therefore, as shown in Figure 4.2, for most of the benchmarks except the small

SPEC benchmarks (like compress and xlisp), the address-indexed scheme performs better
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address-indexed and GAg schemes (cont. on next page)



Misprediction Rate (%)

Misprediction Rate (%)

3 45 6 7 8 8 0 zie s
Index Length (bits)

% i

%0

25

20

Misprediction Rate (%)

Misprediction Rate (%)

o e
3 456 78 9
index Length

10 11 12 13 14 15
(bits)

36

Misprediction Rate (%)

Misprediction Rate (%)

Misprediction Rate (%)

Misprediction Rate (%)

[}
3 4 5 6 7

0
3 4 5 6 7 8

AN
s
—
5 N
M

8 9 10 11 12 13 14 15
Index Langth (bits)

I1BS video play

9 10 11 12 13 14 15
Index Length (bits)

iBSgs
(o |

—t

3 4 5 6 7 8 9 10 11 12 13 14 15

Index Length (bits)

I1BS nroft
Addr_fndex —=—
GAg

———

s S |

3 4 5§ 6 7 8 9 10 11 12 13 14 15
Index Length (bits)

Figure 4.2 (continued): Misprediction rates for each individual benchmark
using address-indexed and GAg schemes



37

than the GAg scheme. For small benchmarks where there are few static branches to
exercise, there are enough global history patterns generated, so that, even with short
histories, aliasing is not a concern and the performance of GAg scheme is good. In
contrast, when many static branches are exercised, the aliasing of a short history pattern is
so high that the resulting performance is bad. If a branch prediction study uses only these
small benchmarks, the results will favor the GAg scheme rather than the address-indexed
scheme. Unfortunately, in earlier SPEC benchmark suites, SPEC89 and SPEC92, most of
benchmarks have the same footprint size as compress and xlisp [45].

To summarize, in this section we showed and compared the performance for the
two extreme configurations of the global history scheme, the address-indexed and the
GAg schemes. With relatively few static branches in the small SPEC CINT95
benchmarks, the GAg has little interference for short histories, and thus it can quickly
outperform the address-indexed scheme as the table size is increased. However, for large
programs such as go and gcc of the CINT95, all the IBS benchmarks, and sq/95, the GAg
scheme suffers from the severe interference because of the large numbers of static
branches and hence GAg performs worse most of time. However, the GAg performance
can be improved continuously, though for go and sq/95 the improvement is not significant
until after the second-level table contains more than 1,024 counters. This suggests there
may be a role for global history bits, and as we will see in the next subsection, there is.

We now turn to a more complete performance evaluation for the entire design

space for global history schemes.
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4.1.2 Optimal configurations for the GAs schemes

In this section, an analysis is presented that exhaustively searches the design space
of the GAs schemes to show performance trends and to determine optimal configurations.
A variation of the GAs scheme, referred as gshare, has been proposed as an improvement
by McFarling [34]. It will be included in the next section because of its increasing
popularity in research work [7, 10, 21, 61].

The address-indexed and GAg schemes are the two extreme ends of the spectrum
of predictor table configurations, as explained earlier. GAs schemes generalize the GAg
scheme by allowing the address to be used to select one from a set of columns, while using
global history selects one of the rows. One can arrange 2" state machines in n+l
configurations of 2° columns and 2° rows, where c+r = n. At the extremes, the
configuration with 2" rows is identical to the GAg scheme just described, while the
configuration with 2" columns is identical to the address-indexed scheme.

We can view the performance of all the GAs configurations as forming a surface
that interpolates between the performance curves for the address-indexed and GAg
schemes. Figure 4.3 and Figure 4.4 present the surfaces for the averaged misprediction
rates of CINT9S5, IBS-Ultrix, and sq/95. Each gray or white tier represents a line of having
a constant number of two-bit counters, ranging from 16 (2*) for the rearmost to 32,768
(2'3) for the frontmost. Each tier ranges from the address-index configuration on the left
to the GAg configuration on the right. Within each tier, we have marked in black the bar
that represents the optimal configuration for that size of predictors.

The shapes of GAs performance surface for these three benchmark suites are

similar: when the second-level table is small, the misprediction rates are strikingly high
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Figure 4.3: Averaged misprediction rates of GAs — SPEC CINT95 (top)
and IBS-Ultrix (bottom)

In this figure, the averaged misprediction rates of the GAs scheme for the SPEC CINT95 and IBS-
Uttrix benchmarks are presented. The second-level table of the GAs scheme ranges from 24
counters (the tier in back) to 25 counters (the tier in front). All possible combinations of address
and history bits for each size of the table are examined. Each white and grey ftier represents a
fixed-size table. The optimal configuration within each tier is marked in black. We show that the
configuration that does not use history bits (the address-indexed 2-bit counter scheme) is the best
for small budgets, while the GAs scheme using some address bits becomes the best for large
budgets. GAg, a scheme without using address bits, is always suboptimal. The IBS benchmarks
are on average larger than the SPEC, and for these large benchmarks the address-indexed
scheme is still the best even for a table as large as 2'° counters.



Figure 4.4: Misprediction rates of GAs — sqI95

This figure shows the misprediction rate for the sq/95 bench-
mark. It can be seen that most of the time the address-indexed
2-bit counter scheme is the best configuration.

and the address-index scheme is always the best predictor. As the table becomes larger,
the best configurations, marked in black, move to the middle range of tiers, which
represent multiple-column, multiple-row configurations. One noticeable difference
between these three benchmark suites is that black bars of CINT95 move to the middle
range more quickly than the other two.

The primary determinant for these surface shapes and the optimal points is the
numbers of distinct branches exercised and the resulting interference. The more distinct
branches exercised, the higher chances to have interference. Interference occurs when
branch instances accessing a particular counter are from distinct static branches. If two
static branches tend to have opposite outcomes, destructive interference occurs which can

degrade the performance. This will be clear as each benchmark is examined individually.
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Figure 4.5: Misprediction rates of GAs — CINTSS gcc

The misprediction rates of GAs for the gcc benchmark of CINT9S is shown in
Figure 4.5. The gcc result is representative of most of the benchmarks, except a few small
benchmarks such as compress and xlisp. When the second-level table has fewer than 1,024
counters, the address-indexed scheme is again the best. This is because interference occurs
even in moderate size tables and negatively dominates the performance results. Doubling
the number of columns in the table, at the expense of halving the number of rows, will
help significantly reducing interference, since the address bit is more useful at
distinguishing between branches than is the global history. Besides, because a high
proportion of the branches are strongly biased, the penalty for any additional interference
is so severe that it far outweighs any possible benefit from exploring global history
patterns within a branch. Thus, the best performance available for small- to moderate-size

tables comes from the simple address-indexed scheme. For larger tables, interference will
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be low as long as sufficient address bits are used. For these tables, dividing a column into
additional rows can pay off up to a point.

On the other hand, the results from small benchmarks fail to reveal the complete
performance characteristics discussed above. Figure 4.6 shows the performance surface
for the small CINT95 benchmark, xlisp. The number of branches in xlisp is so small that
for moderate-size tables it is possible to devote several counters to each branch. Under
these circumstances, very little interference occurs, provided even a few address bits are
used. We have also found that other small CINT95 benchmarks as well as most of the
CINT92 benchmarks, such as compress, eqntott (CINT92) and espresso (CINT92),
exhibit the same characteristics as xlisp, i.e., preferring more history bits to address bits in
order to achieve a better performance.

The tilt towards small programs of the SPEC CINT92 benchmark suite, and of the
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SPEC89 integer benchmarks before it, has resulted in widespread misunderstandings
about the performance of global history schemes. The relatively small numbers of the
active branches tend to overstate the benefits of associating multiple state machines with

individual branches, thus overwhelming the advantage of global history bits.

4.1.2.1 Operating systems effects on branches

More than half of the benchmarks used in this dissertation work contain branches
from operating systems (OS): all the IBS benchmarks include branches from Ultrix, and
sql95 contains branches from Window NT. We are interested in the effects of OS branches
on the performance of predictors.

Branches from operating systems are not less predictable than those from
application codes. As we saw in Chapter 3, most operating system branches are easy to
predict because operating system branches are more highly biased. They are either taken
or not-taken most of time, since many of them are for loops that move or copy data, or for
error checking, which is only very rarely invoked.

However, adding operating system branches means adding in more static branches
to the branch predictor which potentially can increase interference. This is the reason why
all the IBS benchmarks require some branch address bits as part of the index into the
second-level table to achieve good prediction accuracy, since the branch addresses are the
best means of reducing interference.

The performance surface of a predictor is strongly determined by the number of
distinct branches involved, rather than the sources of branches, be they applications or

operating systems. Figure 4.7 presents the misprediction rates of GAs schemes for two
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Figure 4.7: Misprediction rates of GAs — real_gcc (top) and mpeg_play
(bottom)

This figure shows that including OS branches in the branch execution stream will not change the
surface we observed for the SPEC benchmarks. OS branches are not hard to predict, but may
increase numbers of static branches, thus worsening the interference problem for branch predic-
tors.
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IBS benchmarks, real_gcc and mpeg_play. The surfaces of these two benchmarks are
similar to that of gcc (see Figure 4.5); all characterize the surface of large footprint
programs. Of particular note is real_gcc. It compiles an application program which is very
similar to the gcc of SPEC CINTYS, except that real _gcc also includes branches from the
Ultrix system calls. By comparing performance surfaces for real _gcc and gec benchmarks
(see Figure 4.5), we can see that including operating system branches does not change the
characteristics observed earlier. Therefore, in a real computing environment where an
operating system is involved, controlling interference is still the key issue to the design of

global history predictors.

4.1.3 The gshare scheme

McFarling [34] proposed a variant to the GAs scheme, referred to as gshare, in
which the global history is xor-ed with bits from the branch address. The idea is to
combine the information from the global history and the address bits more effectively.
McFarling reasoned that in sufficiently large tables this xor-ing can reduce interference
between the global history patterns while retaining the advantages of using long global
history to discover branch correlation. By xor-ing the global history pattern with branch
addresses, the gshare scheme can produce new distinct indexing values for the counters,
each associated with a static branch. As in the GAs, additional address bits can be used to
select one of several columns. Hence, for a fixed table size there is a range of gshare
configurations. McFarling compared the best performance for a given size predictor table
of any GAs configuration with the best performance for any gshare configuration and

found a slight advantage for gshare schemes on the SPEC CINT92 benchmarks. We
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should note in passing that many subsequent studies of gshare have been limited to
configurations with a single column (one PHT).

For the gshare in our experiments, we formed an index of n bits (n = r+c, as before,
r is the number of row index bits and ¢ the column index) to the second-level table by
using the lowest-order ¢ address bits as the column index and xor-ing the next low-order r
address bits with the most recent r global history bits as the row index. Figure 4.8 and
Figure 4.9 show the experimental results of such gshare schemes for the three benchmark
sets. The resulting surfaces are almost identical to those of the GAs scheme, except that as
the table increases the lowest bars, marked in black, tend more to move to the right side,
favoring one or two more history bits than the GAs. Note that the leftmost configurations
within each tier are for the address-indexed schemes and are thus exactly the same as the
leftmost configurations in Figure 4.3 and Figure 4.4.

Figure 4.10 and Figure 4.11 show the difference in averaged prediction rates
between the GAs and gshare schemes with identically configured second-level tables. The
benchmarks are again the CINT9S suite, the IBS-Ultrix suite and sql95. Positive numbers
indicate superior prediction by gshare. We see that the areas of superior performance of
gshare are clustered on the right side of the graph, where the tables have more rows than
columns. For these configurations, xor-ing can be effective because there is a better
chance to randomize the row index.

In Figure 4.12, a detailed examination for three representative benchmarks is
shown, including xlisp, gcc, and sql95. It shows the comparison between gshare and GAs
schemes for three kinds of the second-level table, including 1-, 2-, and 8-column (PHT)

tables. For each of them, a range of history lengths are examined (in other words, a range
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Figure 4.8: Averaged misprediction rates of gshare—SPEC CINT95 (top)
and IBS-Ultrix (bottom)

In this figure, the averaged prediction rates of the gshare scheme for the SPEC CINT95 and IBS-
Ultrix benchmarks are presented. The second-level table of the gshare scheme ranges from 24
counters (the tier in back) to 2'5 counters (the tier in front). All possible pair-wised combinations of
address and history bits for each size of the table are included. Each white and grey tier repre-
sents such possible pair-wised combinations for a fixed-size table. The optimal configuration
within each tier is marked in black. It can be seen that even though the index of the second-level
table is randomized in an attempt to reduce interference, the optimal configurations are still the
same as we observe for the GAs scheme: the address-indexed scheme is the best for small bud-
gets, while the GAs-like scheme using some address bits becomes the best for large budgets.



48

2 i) 1
Tyt

Random; 0123454432 L
Mized Hi 3455 Addﬁss

Figure 4.9: Misprediction rates of gshare — sql95

of column sizes are examined). It can be seen that, the randomizing effect in gshare can be
positive only when predictors have few but long columns. Long columns means many
history bits are used, and the “many” is relative to the numbers of static branches
involved. xlisp has the smallest number of static branches to exercise, so gshare can
outperform the GAs for most of the configurations. However, for the large benchmarks,
gee and sql95, gshare is better only when significantly long history is used.

Nevertheless, these configurations are, in fact, suboptimal for both the GAs and
gshare schemes, so improving their performance is not meaningful. In the area towards the
center of the global performance pictures, where GAs schemes achieve their best
performance, GAs and gshare differ little in performance. In other word, randomizing
global history patterns is less effective at reducing interference when branch address bits

are also directly employed.
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Figure 4.10: Difference in averaged misprediction rates between gshare
and GAs — SPEC CINT95 (top) and IBS-Ultrix (bottom)

In this figure, the difference in averaged prediction rates is measured for the SPEC CINT9S and
IBS-Ultrix benchmarks between the gshare and GAs schemes with identically configured second-
level tables. The positive Z-axis value indicates superior prediction b¥ gshare. For both schemes,
the second-level table ranges from 2* counters (the tier in back) to 215 counters (the tier in front).
The optimal configuration within a tier for the gshare scheme is marked in black. it can be seen
that gshare schemes are superior for those configurations heavily using history bits. Those con-

figurations are suboptimal. For the optimal configurations, the difference between gshare and
GAs schemes is marginal (less than 0.5%).
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Figure 4.11: Difference in misprediction rates between gshare and GAs
— 8ql95

In summary, for the global history schemes, the branch address provides the most
effective way to discriminate between branches and to reduce interference. Adding partial
branch addresses can successfully discriminate these branches for the same global history
patterns and thus improve the performance significantly. Only after enough address bits
are used to reduce interference, can we start to exploit global history patterns to gain more
benefit.

The gshare scheme attempts to reduce interference by randomizing global history
patterns, or the row index. However, this scheme offers limited benefits, because
randomization can only “blindly” separate aliased branches. This process may reduce the
destructive interference by chance. Therefore, gshare works better only when long

columns (long PHTS) are used. With longer columns the chance that aliases are separated
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Figure 4.12: Difference in misprediction rates between gshare and GAs
for xlisp, sql95, and gcc.

These three plots show that gshare is superior to the GAs scheme only when the benchmark is
small or when there are few but large PHTs. There are three benchmarks examined, xlisp, repre-
senting a smail benchmark, and sqi95 and gcc, representing large benchmarks. Three second-
level tables are examined, 1 PHT, 2 PHTs, and 8 PHTs. In each plot, the X-axis values represent
the numbers of history bits; longer history means large PHTs. The positive Y-axis values indicate
gshare is better.
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is larger. Meanwhile, harmless interference may also be reduced, which is not necessary.
In the next chapter, we will show a better variant of the GAs scheme, the bi-mode scheme,
which improves performance by reducing interference more intelligently.

To improve performance for the global history scheme, it is necessary to
understand the pros and cons of using global history bits in more depth. A good design
should preserve the merits of using global history bits and avoid the problems. In the next
section we will present a detailed study that identifies the strong points and weak points of
using global history bits by analyzing the dynamic branch streams that arrive at each

counter in the second-level table.

4.2 The effect of correlation

Many branches have a tendency to be either taken or not-taken most of time.
Common examples are branches for error checking and loops. These kinds of branches are
usually described as being strongly biased in one direction. As might be expected,
strongly biased branches are much easier to predict than weakly biased branches in
dynamic branch predictors, and this was confirmed by Chang et al. [9]. In the same study,
they also measured the distribution of branch biases for SPEC CINT92. Their
measurement showed that on average about 50% of total dynamic branches correspond to
static branches that are biased in either the taken or not-taken direction for more than 90%
of the time.

In this section, we extend the bias measurement to the dynamic branch outcome
streams in predictors that exploit correlation. First, we will show that, if correlation is

employed static branches show stronger biases than if correlation is not used. Second, we
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will show that, in the two-level schemes, a predictor that employs more global history bits
has the potential to achieve better prediction accuracy, but it suffers from destructive
interference between oppositely biased streams. This becomes the major performance

limitation.

4.2.1 Decompoasition of the branch execution stream

We first examine the bias of each static branch when different degrees of
correlation are exploited. We consider the collection of dynamic instances of a static
branch associated with a global history pattern as a distinct branch outcome substream.
For example, when a 4-bit global history is used, there can be 16 substreams from a static
branch because there are 16 (=2%) possible global history patterns.

We then classify each of these substreams to a bias class by the probability of a
branch outcome being taken in the substream. There are five bias classes corresponds to
five ranges of probability: 0%, (0%, 10%], (10%, 90%)1, [90%, 100%), and 100%. For the
following discussion, we define the 0% (never-taken) and (0%- 10%] classes as strongly-
not-taken (SNT), the 100% (always-taken) and (90%-100%)] classes as strongly-taken
(ST), and the (10%-90%) class as weakly-biased (WB).

An entire outcome stream of a static branch i can be decomposed into multiple
substreams; each of them, represented as sjj» is an outcome sequence of the static branch, i,
associated with a particular global history pattern, j. Let t;; of these outcomes be taken.
The term, Is;l, denotes the dynamic count of the instances of the static branch i when the

associated global history pattern is j. We define l¢;/l in a similar way. Substreams of a static

1. (10%, 90%) is the range from 10% to 90%, not inclusive. (0%, 10%)] is the range from 0% to
10%, not including 0%.
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branch can then be classified to one of the five bias classes based on the value of

ltiﬂ

Isd

- This is the bias of a static branch in the presence of correlation.

We consider three different global history lengths, 0, 4, and 15 bits, in this
experiment. Therefore, in the case of 4-bit global history, for example, i runs from 0 up to
the total number of static branches exercised, and j can be any of the 16 patterns.

Table 4.1 illustrates the bias classification for substreams from a static branch b for

lobal histo dynamic count of the count of taken outcomes of
O attem o) | staticbranch bunderthe | the static branch b under bias class
P 24 history pattern j, lsbjl the history pattem j, If,;1
0010, 40 21 (10%-90%)
1010, 80 2 (0%-10%)]
1111, 80 79 [90%-100%)

Table 4.1: An example of the bias classification for a branch b = 0x030.
In this example, we assume the branch b has no dynamic instances for all 4-bit global history pat-

temns except the three shown in the table.

a 4-bit global history. Supposed the branch address is 0x030, and this static branch has
only produced three global history patterns (j = 0010,, 1010,, or 11115) during the
program execution, i.e., there are three substreams from the static branch. These three
substreams fall into different bias classes with respect to each pattern j due to a different
likelihood of being taken (It—;fl[). The dynamic count of the [90%-100%) class, in this
example, is 80, the (0%-10%)] class is 80, and the (10%-90%) class is 40.

We then calculate the normalized count for each bias class in a program by
normalizing the sum of the dynamic counts of all static branches in the same bias class
with the total dynamic branch count of the program.

When no correlation is used, i.e., 0-bit global history, each static branch has only
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Bias Measurement—CINT95 gcc

|m0% 00-10% = 10-80% 090-100% m 100%|

15

Global History Length (bits)
H

T

0% 20% 40% 60% 80% 100%
Normalized Dynamic Counts

Figure 4.13: Bias measurement when different numbers of global history
bits are used — SPEC CINT95 gcc.

This graph shows that dynamic branch streams become more strongly biased when more global
history bits are used. We first measure the bias (probabiiity of being taken) for the outcome stream
of each (address, history) pair. According to its bias, each (address, history) pair is classified into
one of the five bias classes (0%, 0-10%, 10-80%, 90-10%, and 100%). The dynamic count of each
bias class is accumulated and normalized to the total count of dynamic branches in the program.
The stack bars from the top to the bottom represent different giobal history lengths, 0, 4, and 15
bits, respectively. It can be seen that, when more global history bits are used, the WB region (10-
90%) becomes smaller, suggesting a better chance for very accurate branch prediction.

one substream, which is simply the original outcome sequence generated by the static
branch. In this special case, each static branch belongs to one bias class exclusively. The
result of this measurement is, in fact, the one shown in Chapter 3, Figure 3.1, which
corresponds to the definition used by Chang et al. [9].

Figure 4.13 presents the experimental results for the CINT95 gcc benchmark. The
Y axis lists three different degrees of correlation and the X axis represents the normalized
dynamic counts of the bias classes in the program; the 0% and (0%-10%] bars represent
the SNT class, the (10%-90%) bar represents the WB class, and the [90%-100%) and

100% bars represent the ST class.
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It can be seen that, when no global history is used, each of the SNT, ST, and WB
classes contributes about 33% of total dynamic branches individually. However, as
correlation is used, the normalized dynamic counts of the bias classes change. The more
correlation is used, the higher the biases of the substreams become. When a 4-bit global
history is used, 25% of total dynamic branches fall into the WB (10%-90%) class. As the
history length is increased to 15 bits, only 15% of them fall into the WB class. Employing
correlation significantly increases the bias of the substreams.

In general, branches have a tendency to be, either mostly taken or mostly not-
taken. However, under some special conditions, branches may behave differently from
their normal biased directions. The exiting condition for looping branches is a good
example. Fortunately, whenever one of the special conditions occurs, the branch behaves
consistently, though differently from the direction which it usually takes. Our study
suggests that history information is effective at identifying these special conditions, and
whenever the special conditions are identified, the outcomes are easy to predict.

Consequently, increasing history bits can potentially improve prediction accuracy.

4.2.2 Bias measurement for global-history schemes

From the discussion above, it can be seen that correlation makes branches more
biased. This is the reason that two-level dynamic branch predictors may achieve higher
prediction accuracy than the traditional two-bit counter scheme proposed by Smith [46].
However, the performance of the two-level schemes is not always superior. In this
subsection, we will identify the performance limitation.

The index for the second-level table divides the dynamic branch stream into
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substreams that are directed to a saturating two-bit counter. Ideally, the index scheme
should generate highly biased substreams so that the value of the saturating counter
" selected by the index can stay at one of the saturated values most of time. However, if the
indexing method mixes oppositely biased substreams together, then destructive
interference can arise and the assigned counter will perform badly as a predictor, because
it will oscillate between the two saturated values. In this subsection, we extend the
experiments in the previous subsection by examining the bias of branch outcome streams
for practical branch predictors. We will compare using branch addresses with using global
history to separate out oppositely biased substreams, and show how destructive
interference can degrade the performance of two-level schemes that use global history.

To contrast the benefits of address versus global history bits, we consider two
alternative two-level gshare style predictors. Both have the same size second-level tables
but differ in that one employs more history bits, representing history-indexed schemes,
while the other represents address-index schemes. The first scheme xors 8 bits of branch
address with 8 bits of global history to form the index into the second-level table
(“history-indexed”). The second scheme xors 8 bits of branch address with only 2 bits of
global history as the index (“address-indexed”).

We are interested in the stream of branch outcomes, s;j» from a particular static
branch, i, to a particular prediction counter, j (note that the second index, J» now denotes a
counter rather than a global history pattern). This stream belongs to one of the three
previously defined bias classes, i.e., exactly one of the following is true: s;j € ST, s €
SNT, or s;; € WB. A good indexing method will create these streams so that the following

two conditions hold:
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1. The number of streams that are in the WB class are kept small.

2. Most of the streams incident on a particular prediction counter, j = c, belong to
only the ST class, or alternatively, only the SNT class, i.e., S;c € ST for most i,
or s;c € SNT for most i. A counter should not see an even mix of streams from
both classes or its prediction ability will be reduced.

Condition 2 actually states that one of the two strongly biased class should
dominate the other strongly biased class at a counter. When this domination occurs, the
counter will be biased at one saturated value with little destructive interference. We will
refer to the more frequent strongly-biased class at a counter as the dominant class, and the
other less frequent strongly-biased class as the non-dominant class.

To be more precise, we consider streams weighted by their lengths. If Is;l is the
number of outcomes in the stream s;j» we define the normalized count that a branch, i=b,

contributes to a particular prediction counter, j = c, to be:
|s bCI

Z IsiCI

over all static branches i

Nb=

C

Thus the two conditions become:

1. ( Y N;| for those i such that s;. € WB) << (Q_N;.| for those i such that
s,-cie WB) i

2. ()N, | for those i such that 5;. € ST) should differ greatly from (XN | for
th:)se i such that s;. € SNT). In an ideal situation, one of the sums shoiuld be 0.

Table 4.2 illustrates the normalized count resulting from three streams incident on

the same counter c. In this example, there is a total of four static branches (i = 4) whose
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addresses are 0x001, 0x005, Ox100 and 0x150, respectively, that used the two-bit counter
¢ for prediction during the program execution (they may also use other counters too).
These four streams fall into different bias classes with respect to c. The normalized count
of ST class at the counter c is 24%, the SNT class is 60% (40%+20%), and the WB class is
16%. Because the SNT class is more frequent than the ST class, the SNT class is the

dominant class in the counter ¢, while the ST is the non-dominant class. In fact, Table 4.2

dynamic count count of taken .
agc';ar::: i when using outcomes when bias class n;:rgr‘:‘al;f:c:‘c;t_mt
’ counter ¢, Is; | using counter ¢ e
Ox 001 12 1 ST 12/50 = 24%
Ox 005 20 1 SNT 20/50 = 40%
Ox 100 8 3 wsB 8/50 = 16%
Ox 150 10 1 SNT 10/50 = 20%

Table 4.2: An example of calculating the normalized count for a counter ¢

shows an undesirable situation because the indexing method has done a poor job of
separating the bias classes and the SNT class is not overwhelmingly dominant.

Figure 4.14 illustrates the bias classes for all of the prediction counters for the gcc
benchmark. We have performed the same experiments for other SPEC benchmarks, but
for brevity we show only the gcc results because they are the most representative as we
have seen before. The X axis lists all the counters in the second-level table, and the Y axis
represents the normalized counts of the three bias classes in each counter. The counters
listed in the X axis are sorted according to the normalized dynamic frequency of WB
class. It can be seen that the area size of WB region of the history-indexed scheme is

smaller than that of the address-indexed one. This suggests that the scheme employing
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Figure 4.14: Bias breakdown for the gshare scheme for the SPEC
CINTSS gcc

In this experiment, the branch outcome stream arriving at a counter is first separated into sub-
streams according to the branch address. Each substreams is classified into one of the three
bias (SNT, ST and WB) classes based on its probability of being taken. The total dynamic
count of each bias class is accumulated. A nomalized dynamic count of a bias class is then
obtained by normalizing the total count of the bias class to the total number of dynamic
branches predicted by the counter. Between SNT and ST, the class with a higher normalized
count is referred to as the dominant. The other is considered non-dominant. in a good predic-
tor, each counter should see dominant substreams most of the time.

To contrast the address bits and the global history bits, the top plot uses a gshare scheme xor-
ing 8-bit address with 8-bit global history to represent an *history-indexed” scheme, while the
bottom is a gshare scheme xors 8-bit address with 2-bit global history, representing a
“address-indexed” scheme. It can be seen that, the address-indexed scheme suffers from the
large WB class, while the history-indexed scheme suffers from the interference between the
dominant and non-dominant streams.
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more branch history can generate more highly biased substreams for predictors. If there is
no harmful aliasing problem in the history-index scheme, i.e., each counter only needs to
deal with substreams of one bias class, the prediction accuracy will be very high [49, 60].

However, in the usual situation where the harmful aliasing does exist, the
performance of the history based scheme can degrade. As shown in the same figure
(Figure 4.14), the non-dominant class of the history-indexed scheme is larger than the one
in the address-indexed scheme. In other words, although the history-indexed selects the
greater number of highly biased substreams, it does not separate the taken and not-taken
ones as well as the address-indexed scheme.

To summarize the analysis above, an ideal dynamic branch predictor should
generate as few weakly biased substreams as possible; in other words, the area of the
weakly biased region should be as small as possible. At the same time, the resulting
substreams merged at each counter should be as unidirectional as possible; in other words,
the dominant area in Figure 4.14 should be large. Unfortunately, neither the address-
indexed scheme nor the history-indexed scheme can achieve both of these two design

goals simultaneously.

4.2.3 Lengths of dynamic sequence of the three bias classes

In Figure 4.14 we have seen that the dominant and non-dominant classes occupy
roughly equal execution time in the global-history indexed scheme, which suggests a high
degree of interference. In this subsection, we confirm the interference problem by
measuring the length of a consecutive sequence of branch outcomes from a bias class. The

results will show that in the global-history indexed scheme, though there are more
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branches from the SNT and ST classes, they are divided into smaller dynamic sequences,
compared to the address-indexed scheme.

First, we define a dynamic sequence as a consecutive sequence of branch outcomes
arriving at a counter in program execution order that belong to a bias class, either the SNT,
ST, or WB class. For this discussion, we convert the SNT and ST sequences to the
dominant and non-dominant sequences based on their dynamic counts at each counter. A
dynamic sequence will terminate when a new sequence from a different bias class follows
or the program execution stops. Then we measure lengths for all dynamic sequences and
collect cumulative dynamic branch counts contributed by sequences, see Figure 4.15. The
cumulative count is used instead of a histogram of sequence lengths because total numbers
of dynamic branches contributed by sequences also need to be considered.

Two observations can be made from the plots in Figure 4.15. First, the steeper
slope of the history curve in the top graph indicates that the history-indexed scheme has
shorter dominant sequences than the address-indexed scheme. The slope represents the
incremental amount of dynamic branches contributed by sequences whose lengths are
equal to the X value. Second, the position of the history curve above the address curve in
the middle graph indicates that the history-indexed scheme has significantly more non-
dominant branches than the address-indexed scheme. These two observations provide
further support for the case that the history-indexed scheme suffers most from the
interference between oppositely biased branch streams.

Finally, from the lower plot for the WB sequences, we can see that address-
indexed scheme has more, and longer, WB sequences than the history-indexed scheme.

WB sequences should be as few and as short as possible in a good predictor, because they
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Figure 4.15: Cumulative distribution of sequence lengths for the three
bias classes — SPEC CINT95 gcc

In this experiment, the lengths of dynamic sequence of three bias classes, dominant, non-dom-
inant and WB, are measured for gcc. Two schemes, an address-indexed and a history-
indexed, are examined. A dynamic sequence is a consecutive sequence of branch outcomes
arriving at a counter in program order that belong to a bias class. A dynamic sequence will not
terminate until it is interrupted by another new sequence of different bias class or the program
execution stops. The plot on the top is cumulative dynamic branch counts for the dominant, the
middle for the non-dominant, and the bottom for the WB. Each point in a curve of a plot repre-
sents the total dynamic branches (Y-axis value) contributed by all the sequences that are equal
to or smaller than the length specified by the X-axis value. Sequences which are longer than
10,000 dynamic branches are grouped together due to space restriction.

It can be seen that the history-indexed scheme has significantly more non-dominant branches
(see the points of the non-dominant curves at X=1 0,000) and it also has shorter dominant
sequences (see the slops of the curves). Therefore, the history-indexed scheme suffers most
from the interference between oppositely biased streams. On the other hand, the address-
indexed scheme suffers most from the large amount of WB sequences (see the highest point of
the WB curve).



are usually hard to predict.

43 Summary

This chapter provides a thorough investigation into the design of global history
based two-level dynamic branch predictors. A comprehensive performance evaluation is
first conducted with a broad range of benchmarks, SPEC CINT95, IBS, and a database
benchmark, sql95. This is followed by a study into the effects of correlation on the branch
prediction.

The global performance picture that is developed from the extensive simulations
of a variety of configurations shows that the accurate prediction of large programs
depends primarily upon the deployment of sufficient resources to keep track of
information of a large number of branches. Performance results from small footprint
benchmarks usually lead to misleading conclusions.

The global performance picture from our evaluation work can be used by
architects to select the optimal design of global history schemes. On the other hand, the
study also shows the shortcomings of such schemes, which can instruct researchers how to
further improve the prediction accuracy. Correlation’s strength is that it can sort the
branch outcome streams so that multiple highly biased substreams are generated which are
easy to design predictors for. However, in global history schemes, the resulting highly
biased streams are poorly distributed, resulting in the severe interference and attendant
performance degradation. For good global history schemes, controlling interference is a
key to improving prediction accuracy while taking advantage of correlation. A scheme

proposed to reduce interference by randomizing global history patterns, gshare, has been
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studied, and it shows that this randomization is hardly better than using branch address
bits alone. In the next chapter we will examine ways of more effectively reducing
interference for the global history schemes.

As we have seen, it is important to recognize the position of branch prediction
schemes discussed within the larger space of possibilities, lest resources be misapplied. In
their widely-used textbook, Hennessy and Patterson [24] make the statement, regarding
GAs, that “the attraction of this type of correlating branch predictor is that it can yield
higher prediction rates than the two-bit scheme and requires only a trivial amount of
hardware.” We have shown the degree to which this attractive element is limited for large
programs. Past branch prediction results require a more careful interpretation; in
particular, it needs to be recognized that the benefits of correlation can be easily drowned

by destructive interference.



CHAPTER §

Reducing Interference in Global History Schemes:
The Bi-Mode Scheme and Other Designs

As we have seen, there are two design criteria for an optimal dynamic branch
predictor: the predictor should generate as many highly biased branch streams as possible,
and the predictor should separate those highly biased branch streams to minimize the
collision of oppositely biased streams at a counter.

However, as we have also seen, the conventional two-level global history schemes
cannot achieve these two design criteria simultaneously. For example, if a scheme use
more branch address bits than history bits, referred to as an address-indexed scheme in the
previous chapter, it tends not to produce the highly biased streams needed for better
prediction; on the other hand, the history-indexed schemes that use a large number of
history bits, suffer from interference between oppositely biased streams.

In this chapter, we propose a scheme, the bi-mode scheme, which solves this
problem and, as a consequence, improves prediction accuracy. This chapter is devoted to a

detailed discussion of bi-mode dynamic branch predictors.

S.1 The bi-mode scheme

To reduce interference in global history indexed schemes, we propose a new

scheme, the bi-mode branch predictor. This scheme, shown in Figure 5.1, splits the
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Figure 5.1: Proposed branch prediction scheme diagram

This diagram illustrates the bi-mode scheme. The second-level table is divided into two halves,
which are referred to as direction predictors. In addition to the direction predictors, a choice predictor
is also added. To predict a branch, two counters, each from a direction predictor, are accessed. The
choice predictor then determines which of the two counters should be used for the final prediction. In
this illustration, the choice predictor is indexed by the branch address, while the direction predictors
are accessed by xor of the global history and branch address. As a variant of the bi-mode scheme,
the choice predictor can also be indexed by xor of the global history and branch address, which will
be discussed later.

second-level table of a gshare into two halves. Given a history pattern, two counters, one
from each half, are selected. We refer to these as the direction predictors. Another two-bit

counter table, indexed by the branch addresses only, is used to provide a final selection for
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these two counters. We refer to this as the choice predictor. The final prediction is
determined by the state of the counter selected from the direction predictors and, equally
importantly, only the selected counter will be updated with the branch outcome; the status
of the un-selected one, will not be altered. The choice predictor is always updated with the
branch outcome.

As we will show, our proposed scheme can perform better than other existing
global history based branch predictors, because, although the behavior of global history
patterns are still kept in the second level table, they are dynamically classified before
being stored to further reduce distinctive interference. The global history patterns are
classified by a preliminary prediction from the choice predictor which is simply a
conventional two-bit counter scheme, and, as such, typically can provide 80% or better
prediction accuracy with relatively modest cost. Thus, the bi-mode scheme divides
branches into two groups according to the per-address bias of the choice predictor, and
then uses the global history patterns to identify the special conditions for each of two
groups separately. The two groups of direction predictor counters correspond to the
strongly-taken and strongly-not-taken cases. The effect of the choice predictor is to
separate the destructive interference streams while keeping the harmless interference

streams together.

5.1.1 Experiment Results

In this section, we demonstrate that our proposed bi-mode branch predictor
delivers higher prediction accuracy than the conventional two-level predictors by reducing

the interference significantly. One of the best two-level branch predictors, gshare, has



69

been selected to represent the two-level predictors in our comparison. (Refer to Chapter 4
for the detailed analysis of gshare.) To evaluate the improvement, we have conducted
trace-driven simulations. As input for the simulation, we again use the IBS benchmarks
and the SPEC CINT95 benchmark suite, described in Chapter 3.

According to the model in Chapter 4, in gshare the lowest order address bits of a
branch are used as the column index into the second-level table, and the global history is
xor-ed with the next low-order address bits to form the row index. This row index is then
used to select a 2-bit saturating up-down counter from a column of the second level table,
or a pattern history table (PHT). Depending on the sign bit of the selected 2-bit counter,
the branch is either predicted as taken or not taken.

To make a fair comparison with the gshare predictor, the best configuration of
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Table 5.1: The gshare configurations that yield the best average prediction
accuracy (gshare.best).

gshare must be determined and used. This point is often overlooked and the single-column
(1 PHT) gshare configuration is used for comparisons. However, this single-column
gshare configuration is not the optimal configuration as was shown in Chapter 4. To find

the best configuration, we exhaustively simulated all pair-wise combinations of history
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length and address length. In general, the best combination has multiple columns, as listed
in Table 5.1. Since the best configuration is different for each benchmark, we present
results using the configuration that yields the best accuracy for the average of all the
benchmarks studied.

Figure 5.2 shows the misprediction rates for the best gshare and bi-mode
predictors. We label the best configurations of gshare as gshare.best. For comparison with
other published results, we also include the misprediction rates for the single-column (1
PHT) gshare configuration, which is labeled gshare.1PHT. In Figure 5.2, the vertical axis
represents the branch misprediction rate, and the horizontal axis for the size of predictors.
A lower curve indicates that the scheme has better performance for the same cost. Cost is
measured by counting the number of bytes used in the 2-bit counters. Note that the bi-
mode predictors naturally have a cost that is 1.5 times that of the next smaller gshare
scheme. This reflects the additional cost of the choice predictors.

Figure 5.2 shows that the bi-mode predictors outperforms gshare predictors for all
sizes of predictors measured. This is indicated by lower curves. In addition, the bi-mode

predictors are more cost effective, because, for predictors larger than 4K bytes, they need
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only be half the size of gshare predictors to achieve the same misprediction rate.

Bi-mode predictors also outperform gshare on most of the individual benchmark
examined, see Figure 5.3 and Figure 5.4. Moreover, the single-column gshare scheme
(gshare.1PHT) is worse than the multiple-column gshare scheme for all benchmarks
except the compress and xlisp, where it outperforms even the bi-mode scheme. These two
benchmarks, with the fewest static branches, have no interference problems and thus can
enjoy the benefits from correlation in branch histories. The results of these two small
benchmarks correspond to the findings shown in Chapter 4. The case of the go
benchmark, where the bi-mode method is worse than the multiple-column, will be

discussed in more detail later in this chapter.

5.1.2 Bias measurement for the bi-mode scheme

In this subsection, the bias measurement for the bi-mode prediction scheme is
made by following the method developed in Section 4.2.2 of Chapter 4 (see Figure 4.14).
The configuration under examination has a 128-counter choice predictor indexed by the
branch address and two banks of 128 counters in the second-level table, each of which is
indexed by 7 bits of branch address xor-ed with 7 bits of global history.

Figure 5.5 presents the measurement results. As shown in the figure, the weakly
biased class region in the bi-mode scheme is kept as small as the one in the history-
indexed scheme, indicating that the advantage of employing history information is
preserved. On the other hand, the bi-mode scheme has a larger area for the dominant mode
than the history-indexed scheme implying that the destructive interference has been

reduced. This illustrates why our proposed prediction scheme performs better than the
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Figure 5.5: Bias breakdown for the bi-mode scheme for the SPEC
CINT9S gcc

The experiment shown in Figure 4.14 in Chapter 4 is repeated for the bi-mode scheme. in this
experiment, the branch outcome stream arriving at a counter is first separated into substreams
according to the branch address. Each substreams is classified into one of the three bias (SNT,
ST and WB) classes based on its probability of being taken. The total dynamic count of each
bias class is accumulated. A normalized dynamic count of a bias class is then obtained by nor-
malizing the total count of the bias class to the total number of dynamic branches predicted by
the counter. Between SNT and ST, the class with a higher normalized count is referred to as
the dominant. The other is considered as non-dominant. In a good predictor, each counter
should see dominant substreams most of the time. In this experiment, the choice predictor of
the bi-mode scheme has a 128-entry counter table, and the direction predictor is a gshare
scheme that xors 7 address bits with 7 global history bits.

Comparing with Figure 4.14 we can find that in the bi-mode scheme, the dominant mode is
more pronounced in most of the counters, suggesting that counters have much less destructive
interference. This illustrates why the bi-mode scheme can deliver higher prediction accuracy
than conventional global history schemes.

conventional two-level schemes as shown above.

5.1.3 Lengths of dynamic sequence of the three bias classes

In Section 4.2.3, we measured lengths for dynamic sequences of the three bias
classes for the history-indexed and address-indexed schemes. (A dynamic sequence is a

consecutive sequence of branch outcomes arriving at a counter in program execution order
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that belong to one of the bias classes, SNT, ST, or WB, defined in Section 4.2.3.) From
that result, we found that the global history scheme has more but shorter dominant
sequences than the address-indexed scheme. The shorter sequences are due to a higher
degrees of interference. It is important for the dominant sequences to be long to achieve
high prediction accuracy. On the other hand, we found that the address-indexed scheme
has more and longer WB sequences. This is the key weakness of the address-indexed
scheme, since WB sequences are hard to predict.

In Figure 5.6, we compare sequence lengths of the bi-mode scheme and the two
schemes. From the plot for the dominant class, we can see that the bi-mode scheme has the
highest number of dominant sequences and the lowest number of non-dominant and WB
sequences. The dominant sequences in the bi-mode scheme are also on average longer
than the history-indexed scheme (see the slopes of the curves). If we compare with
Figure 4.15, keeping in mind that bi-mode predictors have about 50% more bytes, it can

be seen that interference is further reduced by the bi-mode scheme.

5.1.4 Breakdown of misprediction for the bi-mode schemes

Continuing the analysis, we conducted another experiment to measure the
misprediction contributed by the three biased classes for the gshare and bi-mode schemes.
Again, for the gshare scheme, the configurations using fewer global history bits and more
global history bits are both included for comparison.

Figure 5.7 presents the measurement results for the SPEC CINT95 gcc benchmark.
Three different sizes are studied for the branch predictors: 256, 1024, and 32,768 counters

in the second level table. For each configuration, the misprediction is broken down to
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bias classes — SPEC CINT95 gecc

In this experiment, the lengths of dynamic sequence of three bias classes, dominant, non-dom-
inant and WB (see Figure 5.5), are measured for gcc. Three schemes are examined, an
address-indexed, a history-indexed and a bi-mode scheme. A dynamic sequence is a consecu-
tive sequence of branch outcomes arriving at a counter that belong to a bias class. A dynamic
sequence will not terminate until it is interrupted by another new sequence of different bias
class or the program execution stops. The plot on the top is cumulative dynamic branch counts
for the dominant class, the middle is for the non-dominant, and the bottom is for the WB. Each
pointin a curve of a plot represents the total dynamic branches (Y-axis value) contributed by all
the sequences that are equal to or smaller than the length specified by the X-axis value.
Sequences which are longer than 10,000 dynamic branches are grouped together due to
space restriction.

It can be seen that the bi-mode has the highest number of dynamic branches from the domi-
nant class, and they are in longer sequences too (sleeper slope). The history-indexed scheme
is most impactec by non-dominant sequences while the address-indexed scheme suffers most
from the WB sequences.
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In this figure, misprediction rates are broken down according to the three bias classes for three
schemes. The three schemes include an “address-indexed” scheme, a *history indexed™ scheme
and a bi-mode scheme. For each of the schemes, three different sizes of the second-level table
are examined: 256, 1,024, and 32K counters. The notation, gsh (hm), represents a gshare
scheme that xors m global history bits with branch addresses to form the index. Thus, for two
gshare schemes of the same size, the one with fewer history bits represents the “address-
indexed” scheme while the one with more history bits is the “history-indexed” scheme. The bi-
mode scheme always uses same numbers of counters in the second-level table as the “history-
indexed” scheme; the size of its choice predictor is half of the second-level table. This experiment
attempts to provide qualitative rather than quantitative comparison between these three schemes
because the size of the bi-mode scheme is always 1.5 times of the next smaller gshare scheme.
As shown in the figure, most of the error in the “address-indexed” scheme is due to WB streams,
while error of the “history-indexed” scheme is mostly due to the destructive interference between
ST and SNT streams. The bi-mode scheme can reduce destructive interference between ST and
SNT streams while keeping smaller amounts of error due to WB streams.

three categories according to the bias classes. The sum of misprediction from three classes
is the misprediction rate for the corresponding scheme. For the gshare predictors of the

same size, the one using fewer global history bits always has the least error from the

strongly-biased classes, but it suffers from poor prediction for the weakly-biased
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substream. The bi-mode scheme maintains a reduced error for the weakly biased class,
while successfully reducing the error from strongly-biased classes for global-history based
scheme. This experimental result further supports the observation made in the previous

subsection.

5.1.5 go benchmark

In Section 5.1.1, we noted that the bi-mode scheme was not the best for the go
benchmark. In this section, we provide further analysis.

The go benchmark is intrinsically hard to predict because about half of its dynamic
branches are WB branches. Figure 5.8 illustrates the normalized dynamic counts of three
bias classes. (Compare the measurement results for the gcc benchmark in Figure 4.13.)
From the figure, we can see that the WB region dominates in the go benchmark.
Figure 5.9 shows the misprediction contributed by three bias classes for the go
benchmark. It is clear that for all the schemes and configurations the misprediction for the
WB class dominates—destructive aliasing is not the major concern. Therefore, there is not
much room for the bi-mode scheme to improve performance because its strength is
eliminating destructive interference rather than improving prediction for weakly biased
substreams. As observed in the previous chapter, the normalized dynamic counts of the
weakly biased class is mainly determined by the number of global history bits used. From
Figure 5.9, we see that the error due to the WB class is reduced as more global history bits
are applied. Accordingly, the right approach to improving the prediction accuracy for the
go benchmark is to incorporate more global history information so that more strongly

biased substreams can be generated.
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Figure 5.8: Normalized dynamic counts of three bias classes for the go
benchmark

This graph shows that branches in the go benchmark are intrinsically hard to predict unless an
significant number of global history bits are used. We first measure the bias (probability of being
taken) for the outcome stream of each (address, history) pair. According to its bias, each
(address, history) pair is classified into one of the five bias classes (0%, 0-10%, 10-90%, 90-
10%, and 100%). The dynamic count of each bias class is accumulated and normalized to the
total count of dynamic branches in the program. The stack bars from the top to the bottom repre-
sent different global history lengths, 0, 4, and 15 bits, respectively. When global history bits are
fewer than 4, more than 50% of the dynamic branch streams are weakly biased, illustrating the
difficulty of branch prediction for go.

5.2 Other techniques of controlling interference

The interference problem in the global history schemes has been the subject of
recent research, and there are several proposals, in addition to the bi-mode scheme, to
address the problem. In this subsection, three proposals are reviewed briefly and a

quantitative comparison is made between them and the bi-mode scheme.
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In this figure, misprediction rates are broken down according to the three bias classes for three
schemss. These three schemes include an “address-indexed” scheme, a “history indexed” scheme
and a bi-mode scheme. For each of the schemes, three different sizes of the second-level table
are examined, including 256, 1,024, and 32K counters. The notation, gsh (hm) represents a gshare
scheme that xors m global history bits with branch addresses to form the index. Thus, for two
gshare schemes of the same size, one with fewer history bits represents the “address-indexed”
scheme while the other one with more history bits is for the "history-indexed” scheme. The bi-mode
scheme always uses same numbers of counters in the second-level table as the “history-indexed”
scheme and its choice predictor is half of the second-level table size. This experiment attempts to
provide qualitative rather than quantitative comparison between these three schemes because the
size of the bi-mode scheme is always 1.5 times of the next smaller gshare scheme.

As shown in the figure, the misprediction due to the WB class dominates in all schemes. To
improve prediction accuracy for go, the use of more global history bits is required, because history
can reduce WB streams.

§.2.1 Agree Predictor

The agree predictor reduces interference for the global history predictors by
changing the way of using two-bit counters in the second-level table. It has been reported

by Sprangle et al. [48]. Earlier, Hewlett Packard had implemented a similar branch
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Figure 5.10: Diagram for the agree predictor

predictor in one of its recent microprocessors, the HP8500 [(30]. Both claim to reduce the
interference significantly.

As discussed in previous subsections, a two-bit counter of the second-level table is
used to predict whether a dynamic branch instance is take or not. When the branch
outcome is resolved, the counter value is updated with the true outcome. For example, the
counter can be decreased by one if the outcome is not-taken and be increased by one if it is
taken. The authors of the agree predictors realized that if two oppositely biased branches
are aliased to the same counter, the counter value will bounce back and forth between two
saturated values. Therefore, they proposed the agree predictor, as shown in Figure 5.10, in
which each static branch is assigned a bias bit, possibly stored in the branch target buffer

or in the cache, and, rather than predicting the direction for a branch, the two-bit counters
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predict if the branch will go in the direction indicated by the bias bit. In other words, the
counter in the second-level table has now to agree that the bias bit should be used for
predicting the outcome of the current dynamic branch instance. If two strongly but
oppositely biased branches alias to the same counter they will not cause destructive
interference because, if the bias bit is set correctly, the aliased counter should agree that
both the bias bits associated with the branches are correct.

However, good predictions now depends on setting the bias bits correctly. Ideally,
the bias bit should indicate the direction that the corresponding branch takes most of time
during program execution. To obtain the optimal value for this bias bit requires pre-
running the program. Sprangle et al. have examined a technique in which the bias bit can
be estimated by the first outcome of each static branch. Their results show that an agree
predictor using the first outcome as the bias bit estimator can deliver prediction accuracy
that is only 1% less than that with an optimal bias bit. This first outcome as the bias bit

estimator will be used for the agree predictor examined in this dissertation.

5.2.2 Skewed branch predictor

Another scheme to reduce interference, referred to as the skewed branch predictor,
has been proposed by Michaud et al. [35]. Michaud ez al. have found that the interference
in the second-level table is similar to the conflict miss in a cache system. To reduce
conflicts for the predictor, they proposed a reorganization of the second-level table.
Specifically, the original second-level table is divided into three sub-tables, all three of
which record counts for the histories and make prediction for every branches, as shown in

Figure 5.11. The final prediction of the predictor is then based on the majority vote among
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the three sub-tables. The key ingredient in this predictor is that the three sub-tables use
three different indexing functions so that the chance for two branches to collide in all three
sub-tables at the same time is very small. A potential drawback is that using three sub-
tables to record history for each branch may reduce the effective capacity of the second-
level table in a skewed predictor. To compensate for this capacity loss, Michaud et al.
adopted a partial update policy that will not update the incorrect sub-table when a
prediction is found to be correct. In other words, when a prediction is finally known to be
correct (so at least two of the three sub-tables voted correctly) and there is a sub-table
which made an incorrect vote, the incorrect sub-table will not be updated with the branch
outcome. Michaud et al. realized that when a final prediction is correct, the sub-table

which made an incorrect vote may actually be used for recording history for another
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branch. Therefore, this sub-table should remain unchanged so that it can keep the history
information for the other branch. They showed that this partial update policy can
compensate for the capacity loss and thus improve the prediction accuracy significantly.

The skewed predictor has been shown to be an improvement over the conventional
global history schemes. However, the three indexing functions need to be carefully
selected to achieve the goal of reducing interference. Michaud et al. have found a scheme
that is not costly to implement, but one that may still lengthen the clock cycle because of
the address decoder for the sub-tables. The indexing functions used for the skewed
predictor examined in this dissertation will be the same as proposed by Michaud, which
are described next.

Supposed there is a 2n-bit index vector, V, which is formed by concatenating the
address (c bits) and history bits (r bits, c+r = 2n). This V is decomposed into two n-bit
vectors, VI and V2. V1 is the low-order half of V, while V2 is the upper half, i.e., both V1
and V2 are n-bit vectors and one of them can contain address and history bits if c and r are
not equal to n. V is then equivalent to the concatenated vector (V2, V1). Let ( Yo Ynlr - Y1)
be the bit representation of an n-bit vector. A hash function, H, is defined as follows,

H: (Yo Yn-tr -+ Y1) = (O XOC Y1), Vs Yn-1s - Y3, ¥2),
and its inverse, H/, is defined as:

H': Ve Yt 2 Y1) = Ot Y20 0 Y2, V1o O XOT y1)

Three indexing functions are then defined as follows, using bit-wise xors as
mappings of 2n-bit vectors to n-bit vectors,

f1: (V2, Vi) > H(VI) xot H'(V2) xor V2

12: (V2, VD) = H(V1) xor H'(V2) xor VI
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f3:(V2, VI) > H(VI) xor H(V2) xor V2

In these three indexing functions, some index bits require three xor operations.
This increases the access time to the second-level table.

Though three different hashing functions are important to reduce chances of
interference, the partial updating of the sub-tables is key to the performance of the skewed
predictor. When the branch outcome is resolved and the predictor is correct, only the sub-
tables that make correct predictions are updated. In contrast, when the prediction is not
correct, all sub-tables are updated. This selective update policy is crucial to the prediction

accuracy of the skewed predictor, but it may complicate the logic design.

5.2.3 Filtering

Chang et al. have also proposed a scheme to reduce interference for the two-level
scheme [11]. Their idea is based on the observation that most branches are predicted
accurately by their last outcome. They proposed a scheme, shown in Figure 5.12, that adds
an n-bit counter for each static branch to record the number of times the same outcome is
repeated. If a branch has 2" repeating outcomes that are the same, it is simply predicted by
its last outcome without consulting the global history scheme; otherwise, it is predicted by
the global history scheme. In effect, this scheme uses n-bit counters to separate and filter
out easy-to-predict branches (branches of repeating outcome patterns of length 1) from the
rest, so that the interference in the global history scheme can be significantly reduced.
Chang et al. showed that, usually 3-bit or 4-bit counters can deliver good prediction
accuracy.

One requirement for this design is that it needs to identify the ownership of the n-
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bit counters, because each counter is counting the repeating times of the same outcome for
a particular branch, and thus it should not be polluted by other branches. As a result, the
scheme requires hardware for storing the branch address, or the scheme has to be
implemented in the branch target buffer so it can use the branch address tags for this
purpose. This limits the flexibility of the scheme. In the next subsection, we will present

the experimental results for the filtering scheme and examine the effect of pollution.
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Figure 5.13: Comparison between gshare, agree, skewed, and bi-mode
schemes.

in this comparison, the best results for four prediction schemes are shown. The agree predictor
has a fixed direct-mapped branch target buffer of 4K entries to record the bias bits; the bias bit
is the first outcome of the branch. For the bi-mode scheme, the size of the choice predictor is
always half of the second-level table; the total cost is 1.5 times that of the next smaller gshare
scheme.

524 Comparison

In this section, we provide cost-effective performance comparisons for all the
schemes discussed in this chapter.

Figure 5.13 compares averaged misprediction rates for SPEC CINT95 and IBS
suites among the gshare, agree, skewed, and bi-mode schemes. Figure 5.14 details the
performance comparison for individual benchmarks. As can be seen from the figures, the
bi-mode scheme performs the best for most of the hardware budgets and benchmarks.
However, the second best scheme, the skewed predictor, can outperform the bi-mode
scheme when the total budget is small. In such cases, the bi-mode scheme may suffer from
relatively high interference in the choice predictor. Finally, for many IBS benchmarks, the
skewed predictor performs very close to the bi-mode scheme.

The agree predictor does not perform as well as expected; it even performs worse
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Figure 5.14: Comparison between gshare, agree, skewed, and bi-
mode schemes — SPEC CINT95
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Figure 5.14 (continued): Comparison between gshare, agree, skewed,
and bi-mode schemes — IBS-Ultrix
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Figure 5.15: Comparison between the agree predictor with a perfect
branch target buffer and the bi-mode scheme.

In this comparison, the averaged misprediction rates of three prediction schemes for SPEC
CINTS5 and IBS are presented. Two agree predictors are examined: one has 4K-entry, direct-
mapped branch target buffer (BTB), labeled as agree.4k, and the other has unlimited-entry BTB
(i.e., this BTB has no conflict misses), labeled as agree.inf. Both the agree predictors use the
first outcome of each static branch as the bias bit. (As shown in (48], using the first outcome as
the bias bit is near optimal.) The bi-mode predictor shown in this comparison has a choice pre-
dictor with a fixed size of 4K entries. Both the limited sized agree predictor and the bi-mode pre-
dictor are piotted lo refiect the totai number of bytes used, including costs for the bias bits and
the choice predictor, respectively. As for the agree predictor with unlimited-entry BTB, only the
second-level table is counted. Therefore, the result for the agree.inf is optimistic. As an aside,
we note that agree.inf can be used to approximate a scheme that uses the compiler to encode
the bias bit in branch instructions.

The graph shows agree.infis better than the bi-mode scheme for small budgets. However, we
will see that the bi-mode scheme can be improved for the smail budgets by employing a partial

update policy.

than the best of gshare schemes. The performance of the agree predictor is actually
sensitive to the size of the buffer storing the bias bits. Figure 5.15 examines an agree
predictor with a perfect branch target buffer. From the figure, we observe a performance
gap of about 1% between the agree predictor with a limited BTB and one with an
unlimited BTB. However, even the agree predictor with unlimited resources can only
perform as well as the bi-mode scheme with a 4K-entry choice predictor.

Figure 5.16 compares averaged misprediction rates for SPEC CINT9S and IBS
suites between the filtering and bi-mode schemes. Chang et al. have suggested using 3- or

4-bit counters to count pattern repetition. In our comparison, two filtering schemes, one
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Figure 5.16: Comparison between filtering and bi-mode schemes.

In this comparison, the averaged misprediction rates for SPEC CINT95 and IBS suites are pre-
sented. Three schemes are compared: two filtering schemes and a bi-mode scheme. Both filter-
ing schemes have same size (4K-entry) direct-mapped BTBs. One fitering scheme uses 2-bit
counters as the filter, labeled as filter.2bit, while the other uses 4-bit counters, labeled as fi-
ter.4bit. If there is a BTB miss, the gshare scheme is used for prediction. The update policy foi-
lows Chang's proposal; see [11]. The bi-mode scheme in this comparison has a fixed sized
choice predictor of 4K entries. As shown in the graphs, the bi-mode scheme consistently per-
forms as well as the best performance of the filtering schemes, and the bi-mode scheme does
not require branch address tags.

with a 2-bit counter and the other with a 4-bit counter are shown to illustrate the
performance trend. It can be seen from the figures that the filtering scheme and the bi-
mode scheme are close in performance. The filtering scheme proves to be an effective way
to filter out the strongly-biased branches for global history predictors. However, to
determine the best value of the n for the n-bit counter is difficult because different
benchmarks require different values to achieve the best performance. This is not an issue
with the bi-mode scheme. Moreover, identifying the ownerships of the filtering counter is
crucial to the performance. Figure 5.17 shows that if there are no tags available to identify
the ownership of the counters, the performance of the filtering scheme can be degraded.
Michaud et al. have also proposed an enhanced skewed predictor, in which the 1

hashing function is replaced with partial branch address bits [35]. This enhanced scheme
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Figure 5.17: The filtering schemes with no address tags

The schemes examined in this figure are identical to those in Figure 5.16
except that filtering schemes have no address tags. Without address tags, the
filtering scheme cannot identify the ownerships for its filtering counters. The
counters can be polluted and performance is degraded.

can further increase the prediction accuracy by an average of 0.5% for the skewed
predictor, see Figure 5.18. For the moment, the enhanced skewed predictor is the most
effective scheme for small budgets. Later we will show an improved bi-mode scheme

which performs as well as the enhanced skewed predictor for this range of budgets.
5.3 Further experiments

The bi-mode scheme opens a large unexplored area. In this section, several design
options for the bi-mode scheme are examined. First, the effectiveness of the choice
predictor size is examined. We will show that a 4K-entry choice predictor is a reasonable
design point for the bi-mode scheme. Second, we generalized the bi-mode scheme to a
multi-mode scheme, which, instead of 2 bias groups, divides branches into four groups:
including strongly-taken, strongly-not-taken, weakly-taken, and weakly-not-taken groups.

The idea behind this scheme is to further reduce the interference between the weakly and
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Figure 5.18: Comparison between skewed, enhanced skewed, and bi-
mode schemes.

This figure compares the performance of three prediction schemes: skewed, enhanced skewed
and bi-mode. The enhanced skewed predictors replaces one of the hash-indexing functions in
the skewed with the branch address bits. For the bi-mode scheme, the size of the choice pre-
dictor is always half of the second-level table. As shown in the figure, the enhanced skewed
predictor can outperform the bi-mode scheme for small budgets. However, the bi-mode
scheme can be enhanced for this range of budgets, see Figure 5.26.

strongly biased streams. Another variation we have explored adds a second choice
predictor to the bi-mode scheme. This second choice predictor is indexed by part of the
global history which is older than the one for the second-level table (the direction
predictor). The idea behind this new scheme is to employ more global history bits without
incurring much cost. As has been shown before, more global history can potentially
improve prediction accuracy as long as the interference is under control.

We also study partial updates for the choice predictor. We will show that partial
updates help to improve the bi-mode scheme. Finally, we generalize the bi-mode scheme

by using a gshare-like index system for the choice predictor.
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Figure 5.19: Average misprediction rates for bi-mode schemes with
different sizes of the choice predictor

In this experiment, three different sizes of the choice predictor are examined for the bi-mode
scheme, including 1k-entry, 4K-entry and 16k-entry. The 4K-entry choice predictor delivers the
most cast-effective performance.

$.3.1 Effectiveness of the choice predictor size

The discriminating capability of the choice predictor is crucial to the performance
of bi-mode schemes. Therefore, the size of the choice predictor cannot be too small,
otherwise the interference in the choice predictor becomes noticeable, as was seen in
Figure 5.13, where the bi-mode scheme performance is no longer the best when the total
budget is small. However, the choice predictor does not need to be very large, as long as it
can cover the working set. This is because the choice predictor consists of two-bit counters
which can adapt to different branch behaviors quickly (two instances of a branch can bring
the counter back on the right track), unlike the filtering schemes where a miss in the BTB
will reset the counter, causing it to start counting all over again.

Figure 5.19 shows the results of experiments with three different sizes of the
choice predictor. The choice predictor with 4K entries delivers the best performance under
the budget constraints shown. To further increase the choice predictor size is not cost-

effective. If we refer to Table3.1 in Chapter 3, where the basic statistics of the
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Figure 5.20: Averaged misprediction rates for muiti-mode schemes

In these two figures, a multi-mode scheme and a bi-mode scheme are examined. Both
schemes have the same size (4K) of the choice predictor. In the multi-mode scheme, the
second-level table is divided into four quarters and each quarter is selected by one of the four
states of the choice predictor. As shown in the graphs, the multi-mode offer only marginal
benefit for small budgets.

benchmarks are listed, we see that the largest benchmark, real_gcc, has more than 17,000
static branches, but only about 3,000 of these constitute 90% of the dynamic branches. A
4K choice predictor matches this working set and predictors larger than 4K may only offer

marginal benefits.

5.3.2 Multi-mode branch predictors

The multi-mode branch predictor we examined divides the second-level table into
four equal quarters, and each indexed by the same history bits. To determine which of the
four counters, from each quarter of the table, should be used, the multi-mode predictor
uses the choice predictor, which is indexed by the branch address. Since there are four
possible values for a counter in the choice predictor, each value selects one quarter of the
second-level table in this experiment.

Figure 5.20 compares the performance between the multi-mode scheme and the bi-

mode scheme. These two schemes perform identically except that when the budget is
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small the multi-mode scheme provides marginal benefit. When the budget is small, the
choice predictor is degraded due to interference. When there is interference, the counters
in the choice predictor will bounce back and forth between the taken and not-taken states.
By further classifying them into strongly and weakly, taken and not-taken states, the

performance loss can be slightly reduced.
§.3.3 Using more history bits

As we have seen, the bi-mode scheme can be improved if the strongly biased
branch streams can be separated. However, reducing the number of weakly-biased streams
is more difficult, because, as shown in the previous chapter, the number of weakly-biased
streams incident on a predictor is primarily determined by the number of history bits used.
To reduce the number of weakly biased streams, more history bits must be used. However,
this leads to a doubling of the number of counters in the direction predictors with each
additional history bit. In this section, we propose a new variant on the bi-mode method
that improves prediction accuracies by using more history bits, but that does not lead to an
overwhelming growth in the number of direction counters. The new scheme, called
history+, adds another choice predictor, which is similar to the original choice predictor
but it is indexed by older global history bits, as shown in Figure 5.21. For example, if the
second-level table, the direction predictor, is selected by the most recent m global history
bits, then the newly added choice predictor use the r global history bits that are the next
older group. When a branch outcome is resolved, the second choice predictor will be
updated with the branch outcome. The history+ scheme requires 4x2™ direction counters

rather than 2x2™"), as would be the case if we simply extended the number of history bits
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Figure 5.21: Diagram for the history+ scheme

Final prediction for the branch

n = number of address bits used to
index the direction predictors

m = number of history bits used to
index the direction predictors

s = number of address bits used to
index the 1st choice predictor

r = number of old history bits used to
index the 2nd choice predictor

(m<=n) (s<=n)

88 = 2-bit saturating up-down
counter

in this new bi-mode scheme, a sacond choice predictor is added to exploit more global history
information. As shown in the figure, the second choice predictor is indexed by r global history
bits which are older than the m bits used for the direction predictors. In this figure, the second
choice predictor is implemented as a gshare. It can also be implemented as a bi-mode scheme
if less interference is desired.
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Figure 5.22: Average misprediction rates for the history+ scheme

In this comparison, a bi-mode scheme with a second choice predictor indexed by older global
history bits, calied history+, is compared with the original bi-mode scheme. The second choice
predictor is indexed by 12 global history bits which are immediately oider than the giobal history
bits used for the direction predictors, i.e., r equals 12 in the model shown in Figure 5.21. As
shown in the graphs, the history+ scheme can only offer marginal benefit on average. However,
if individual benchmarks are examined, as we will show next, some benchmarks are improved
significantly.

Misprediction Rate (%)
e~ NWHsBAIN®OD

.5 1 16 32

to m+r. This scheme can improve performance because the r extra history pattern can help
distinguishing some situations that the m-bit history pattern cannot.

Figure 5.22 presents averaged misprediction rates for the SPEC CINT9S and IBS
suites using the history+ scheme. It seems that, on average, the history+ method offers
little advantage. However, if each individual benchmark is examined, as shown in
Figure 5.23, the history+ method can improve performance significantly for some of
benchmarks, such as perl, vortex, nroff, and verilog. The proposed history+ method
reduces the variance of misprediction. This looks promising, but clearly further study is

needed before this can be exploited fully. We leave it for future work.

5.3.4 Partial update

In the original bi-mode scheme, the choice predictor is always updated with

branch outcomes. We refer to this policy as full update. This full update policy may
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potentially increase the number of counters from the direction predictor used by each
static branch. Normally, the choice predictor sticks to the biased direction of a static
branch and chooses counters from the corresponding bank of the direction predictor to
make the final predictions. However, as a result of interference caused by other branches
or exceptional cases of the static branch (e.g., exits from a looping branch), the choice
predictor may change its choice for the next instance of the static branch. In other words,
some counters in the other bank may be chosen and altered. Ideally, these counters should
not be changed because it has the effect of sharing more counters among the static
branches. In small predictors where sharing counters is heavier, restricting the counter
usage by each static branch may help improve performance.

In this subsection we examine an alternative update policy, which is referred to as
partial update. The choice predictor will be updated except when the final prediction is
correct but the choice is different from the final prediction. The idea of this partial update
is to keep the choice predictor stuck on the normal bias of the static branches and be less
influenced by noise or exceptional cases. In this way, the adaptivity of the choice predictor
is sacrificed but each static branch may use fewer counters than it does in the original
scheme. The restriction of counter usage may provide a net performance gain because
interference caused by sharing is reduced. Figure 5.24 presents the experimental results. It
can be seen that the partial update slightly improves performance for the bi-mode scheme
when the predictor sizes are small. This is more pronounced for larger workloads, such as
IBS benchmarks, which have a greater degree of interference. However, this update policy

has less impact for large predictors where sharing is not significant.
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Figure 5.24: Comparison between full update and partial update for the
choice predictor

This figure compares a bi-mode scheme with partial update (p_update) and the original bi-mode
scheme. The partial update is to not update the choice predictor if the choice is opposite to the
outcome but the selected direction predictor can make good prediction.

53.5 gshare-like indexed choice predictors

The choice predictor need not be indexed by the branch address. As long as an
index can separate out oppositely biased branch outcome streams for the second-level
table, i.e., the direction predictors, it is a good index to use for the choice predictor. We
can expect that, to separate oppositely biased branch streams for the direction predictors,
the index employed in the choice predictor should be “orthogonal” to the index for the
direction predictors. For example, if the direction predictors make heavy use of history
bits as an index, the choice predictor should use few history bits, and vice versa. The idea
is to avoid interference simultaneously in both choice and direction predictors for a
branch.

In this subsection, we examine a bi-mode scheme whose choice predictor is
indexed by the xor of equal numbers of branch address bits and global history bits (10 to

15 history bits in our experiments, depending on the predictor sizes). To be “orthogonal,”
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Figure 5.25: Diagram for the enhanced bi-mode predictor

In this enhanced bi-mode predictor, both the choice and direction predictors use an xor of his-
tory and address bits to form the indices. To achieve good performance, the direction predictors
should use fewer history bits than the choice predictor. Two options can also be employed to
optimize performance: the choice predictor can employ a partial update policy and the two
direction predictors can use different indices (for example, using different hash functions, as
shown in the diagram).

predictors but with the addition of a few global history bits (1 to 5 history bits in our
experiments). To optimize the predictor, the partial update policy is also employed.
Figure 5.25 illustrates the enhanced bi-mode predictor.

Figure 5.26 shows the averaged misprediction rates of the enhanced bi-mode, the
normal bi-mode, and the enhanced skew schemes for SPEC CINT95 and IBS-Ultrix.
Figure 5.27 provides a detailed examination for individual benchmarks. As can been seen
from the figures, the enhanced bi-mode scheme performs very closely to the enhanced
skewed predictors; both are effective schemes for smaller budgets. However, each scheme

has its own advantages and disadvantages. The skewed predictor treats all three banks
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Figure 5.26: Comparison between bi-mode, enhanced skewed, and
enhanced bi-mode schemes

In this figure, the enhanced bi-mode scheme is compared with the original bi-mode and the
enhanced skewed schemes. It can be seen that the enhanced bi-mode scheme performs on
average almost identically to the enhanced skewed predictor.
equally; when the address-indexed bank does not do a good job, the predictor will rely on
the other two banks to make the final prediction. In contrast, the bi-mode scheme always
relies on its choice predictor to select a bank for the final prediction. The choice predictor
may not be able to make good selections all the time, thus limiting the overall prediction
accuracy.

The bi-mode scheme, on the other hand, has shorter training periods for new
branches, compared to the skewed predictor. In the bi-mode scheme, one bank of the
second-level table is mostly biased in the not-taken direction, while the other bank is
biased in the take direction. Since most branches in realistic programs are strongly biased,
the bank selected by the choice predictor has typically been trained by some other
similarly biased branches; it is enough for just the choice predictor to capture the bias of a
new branch for the bi-mode predictor to start to make accurate predictions. In contrast, the
skewed predictor requires at least two of the banks to be trained for new branches. This

can be a problem for programs that have numbers of branches that have many global
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Figure 5.27: Comparison between filtering, enhanced skewed, and
enhanced bi-mode schemes — SPEC CINT95
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history patterns, such as real_gcc, gcc and the go benchmarks. Chang has also observed
that gee and go benchmarks have a large percentage of strongly biased branches that are
better predicted with simple two-bit counters in the filtering scheme [13]. In Figure 5.27
we can see that for these three benchmarks, the enhanced bi-mode predictor is better than
the enhanced skewed predictor. For large sizes, the original bi-mode predictor is still the

best predictor.

54 Summary

In this chapter, a new global-history based branch prediction scheme, the bi-mode
predictor, was proposed. It sought to improve prediction by eliminating the destructive
interference in dynamic branch predictors. Its success relies on dynamically determining
the taken or not-taken direction with an accurate but simple choice predictor. This
classification can help remove much of the destructive aliasing incident on the two-bit
counter tables while keeping the harmless aliasing together.

A detailed analysis of the bi-mode scheme’s method for indexing into the two-bit
counter tables was also presented, using the analysis technique developed in Chapter 4. It
was shown that the bi-mode scheme can preserve the benefits gained from using global
history bits as the index into the second-level table, and, by adding a moderate sized
choice predictor to dynamically discriminate branches, the destructive interference caused
by history bits can be significantly reduced. The benefits of using branch addresses and
global history cannot be preserved in current two-level schemes simultaneously, but they
can in the bi-mode scheme.

Other recently proposed techniques to reduce interference are also examined,
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including the agree predictor, skewed predictor, and filtering schemes. A cost-effective
comparison among these schemes and the bi-mode scheme is performed, in which cost is
measured by the amount of storage in bytes that each requires. The result shows that the
bi-mode scheme is better overall because of its simple hardware design and adaptivity.
Five variations of the bi-mode scheme were also examined. First, several different
sizes for the choice predictor are compared, and it is shown that a choice predictor with 4K
entries is the best configuration for the benchmarks examined. Second, a multi-mode
scheme is evaluated, and the results show that the multi-mode offers no improvement.
Third, a variant of the bi-mode predictor, the history+ scheme, that uses extra older global
history bits was also proposed. On average, it does not deliver significantly better results
than the original bi-mode scheme, but it does improve performance significantly for some
of the benchmarks, suggesting a possible direction to further increase prediction accuracy.
Fourth, partial update for the choice predictor was studied and it is shown to improve
performance for the small sized bi-mode scheme. Lastly, an enhanced bi-mode scheme is
proposed and evaluated. This enhanced bi-mode scheme employs a gshare-like index for
the choice predictor and proves to be a very accurate dynamic branch predictor when the

budget is small.



CHAPTER 6
Per-address History Schemes

In previous chapters, the dynamic branch predictors that use global history
information have been investigated. In this chapter, branch predictors that use per-address
history are examined. The pros and cons of per-address schemes are studied. The benefit
of exploiting auto-correlation of a branch with its past outcomes, and the performance
bottlenecks of the per-address scheme are identified. We will see that per-address schemes
preform very well for highly biased branches, but poorly for weakly biased branches.
Furthermore, interference in the second-level table of per-address schemes is found not to
be a significant issue, unlike the first-level table where it can be detrimental. We conclude
that the design of the per-address history scheme should focus on reducing the
interference for the first-level table.

Because interference in the second-level table is not a concern, sharing counters is
possible. We will show that the adaptive counter itself is not critical to the performance
and can be replaced with a static 1-bit scheme that uses algorithm-derived (not by
profiling), static-trained values without compromising the performance too much. This
new static scheme employes a set of fixed prediction values for all programs, so its
prediction values can be implemented with simple fixed logic rather than memory cells or
n-bit counters. This simplified design provides advantages of smaller on-chip area and

shorter access time to the second-level table (accessing simple logic is usually faster than
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accessing memory cells or n-bit counters). We will show that the static scheme compares
quite well with the adaptive scheme.

Finally, a cost-effective comparison including the cost for the first-level table is
examined for the per-address scheme. In this comparison, we assume the first-level table
is direct-mapped instead of associative as was done in [59), because we think the access
time to the branch predictor becomes a serious concern in most of current high-
performance microprocessors. This comparison will identify the optimal configurations
for the per-address history schemes, and also compares the optimal configurations against
the global history schemes. We will show that the per-address scheme with a direct-
mapped first-level table performs worse than the global history scheme for the integer
benchmarks examined. This is because the direct-mapped first-level table of the per-
address scheme requires larger area to mitigate its interference problem. We begin by

reviewing the PAs model.

6.1 The per-address history scheme model

The per-address history scheme differs from the global history scheme in having
more than one history register in the first-level table. With multiple history registers, it is
possible to record outcome history for each static branch, and these histories can then be
used as the index into the second-level table. In such schemes, the per-address history of a
static branch is the key ingredient, and the correlation with its neighboring branches is
ignored. Whether the per-address history is more effective than global history depends on
the type of workload, and we will investigate this point for our workloads later in this

chapter.
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Figure 6.1: The model for the per-address history two-level dynamic
branch predictor

A model for the per-address history dynamic branch predictor is depicted in
Figure 6.1. The second-level table still consists of two-bit saturating counters, but the
first-level table contains more than one branch history register, in contrast to the model for
the global history scheme shown in Figure 4.1. As we noted earlier, this first-level table is
referred to as the branch history table (BHT). The idea is that the BHT has one register for
each static branch so that true per-address branch outcome history can be recorded.
However, with typically thousands of static branches in a program, it is impossible to
implement a per-address scheme without having more than one branch sharing a history
register. Interference then arises because of this restricted first-level table, and this
interference can degrade the performance.

The second-level table, similar to the GAs scheme, can contain multiple columns

of counters, or pattern history tables (PHTs). A per-address history scheme with a
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multiple-column second-level table is generally referred to as a PAs scheme. If the
second-level table contains only single column, it becomes a PAg scheme. Branches that
have same per-address history patterns may be aliased to counters, causing intetference in
the second-level table. However, we will show that the interference in the second-level
table is mostly not destructive and does not degrade the performance significantly.

The following section will provide our detailed performance evaluation for the

various per-address history schemes.

6.2 Performance issues

6.2.1 Interference in the second-level table

In order to not be affected by the interference problem in the first-level table, we
start by assuming the size of the first-level table is unlimited; the BHT can assign one
history register for every static branch without causing aliasing in the table. Figure 6.2
shows the averaged misprediction rates of such a PAs scheme, labeled PAs(inf), for the
SPEC CINT95 and IBS-Ultrix suites. Figure 6.3 is for the sq/95 benchmark. Again, the
optimal configurations are marked in black for each size of the second-level table.

The first noticeable thing is that the surface of PAs(inf) is radically different from
that of the global history schemes shown in previous chapters. The surface of PAs(inf) is
more like a plateau, suggesting that the performance of PAs(inf) is much less sensitive to
the size and configuration of the second-level table than the global history schemes. In
fact, the same figure shows that if the second-level table is expanded a thousand times, the
misprediction rate of the optimal configurations decreases by less than 5%. Therefore,

allocating expensive chip area to the second-level table may not be cost-effective.
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Figure 6.2: Averaged misprediction rates of PAs with an unlimited-size
branch history table — SPEC CINT95 (top) and IBS-Ultrix
(bottom)

In this figure, the averaged misprediction rates of the PAs scheme for the SPEC CINT95 and
IBS-Ultrix benchmarks are presented. The second-level table of the PAs scheme ranges from 2*
counters (the tier in back) to 2'® counters (the tier in front). All possible pair-wised combinations
of columns and rows for each size of the table are included. Each white and grey tier represents
a fixed-size table. The optimal configuration within each tier is marked in black. We can see that
PAg, the configuration that does not use address bits, performs best in most cases. Furthermore,
increasing the second-level table size 1,000 times only provides a small benefit (less than 5%),
suggesting that PAs has no severe interference problem in its second-level table.
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Second, from this figure we can see that the single-column configuration of the
second-level table tends to perform the best—the PAg scheme. (Bear in mind that this
comparison only considers combinations of columns and rows for a fixed size second-
level table, but ignores the first-level table cost.) It suggests that per-address history bits
are more effective than the address bits for achieving good prediction accuracy, assuming
the history bits are not much more expensive than the address bits. Later in this chapter we
will discuss the issue of cost-effectiveness about using per-address history bits.

In the PAg scheme, branch addresses are used to index into the first-level table, or
the BHT, to record histories for each static branch. Thus, the performance of such a
predictor is determined by whether different branches having the same history patterns
behave alike. If they do not behave alike, destructive interference will arise. Since the
single column table (no address information used in the second-level) is not able to
discriminate between branches that have the same per-address history patterns, the good
prediction accuracy of the PAg scheme suggests that branches with same history patterns
will most likely have similar outcomes. Therefore, we conclude that interference in the
second-level table is minor compared to the global history schemes of Chapter 4.

However, when the second-level table becomes very large in Figure 6.2 and
Figure 6.3, the optimal configurations (see black bars in the figures) move to the middle of
the tiers, suggesting that the multiple-column per-address schemes are the best. This
occurs because some of the benchmarks do not generate very long histories, and therefore
the benefit from an additional history bit becomes less than that from an additional address
bit. However, the difference between the optimal and the PAg configurations is

negligible—less than 0.2% in prediction accuracy. The benefit from discriminating
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Figure 6.3: Misprediction rates of PAs with an unlimited-size branch
history table — sq/95

between branches in the second-level table is tiny in per-address schemes.

6.2.2 Interference in the first-level table

We have shown that interference in the second-level table of the per-address
scheme does not affect the performance significantly, assuming an unrealistically large
first-level table. To reflect a real situation, Figure 6.4 and Figure 6.5 present the
misprediction rates of the per-address schemes with a limited first-level table (4K-entry,
direct-mapped) for the SPEC CINT95, IBS-Ultrix and sq/95 benchmarks.

As can be seen in the figures, although the first-level table becomes smaller, the
surfaces are still similar to the ones of the unlimited first-level table, i.e, the plateau-like

surfaces. The plateau, however, is elevated to a higher level as the first-level table
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Figure 6.4: Averaged misprediction rates of PAs with a 4K-entry, direct-
mapped BHT — SPEC CINT95 (top) and IBS-Ultrix (bottom)

In this figure, the averaged prediction rates of the PAs scheme for the SPEC CINT95 and IBS-
Ultrix benchmarks are presented. The second-level table of the PAs scheme ranges from 24
counters (tier in back) to 25 counters (tier in front). All possible pair-wised combinations of
address bits and history bits for each size of the table are included. Each white and grey tier repre-
sents a fixed-size table. The optimal configuration within each tier is marked in black. Comparing

with Figure 6.2 shows that the performance of the PAs scheme is slightly restricted by the limited
size of the first-level table because of the interference in the table.
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Figure 6.5: Misprediction rates of PAs with a 4K-entry, direct-mapped
BHT — sq/95

This figure shows misprediction rates of PAs with a 4K-entry, direct-mapped BHT for the sqi95
benchmark. By comparing with Figure 6.3, we can easily find that the performance surface of
the PAs scheme does not change for sq/95 when the first-level table becomes smaller. How-
ever, the entire surface elevates to a higher position due to the interference in the smaller table.
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Figure 6.6: Difference in misprediction rates for 8q/95 between PAs
schemes with unlimited-size and 4K-entry direct-mapped BHTs

This figure shows that when the first-level table of the PAs scheme is restricted (from unlimited-size
to 4K-entry, direct-mapped), the performance is significantly degraded for the sq/95 benchmark.
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becomes smaller; specifically, there are about 1% and 2% differences in misprediction
rate between the unlimited and 4K-entry BHTs for the SPEC CINT95 and IBS-Ultrix
benchmarks, respectively. For sql95, the difference is even larger, accounting for above
5%, as Figure 6.6 shows. As the first-level table size is restricted, conflicts arise between
branches, and therefore accurate per-address history cannot be maintained. Inaccurate
history will degrade the prediction accuracy. This degradation is observed in almost all
configurations and sizes of the second-level tables examined. The degree of degradation
also corresponds to the footprint size of benchmarks. sql95, for example, shows larger
degradation than the other two benchmark suites because it has more static branches. As
another example, Figure 6.7 shows the difference in misprediction rates for the gcc
benchmark between two BHT sizes: one is unlimited and the other is a 4K-entry, direct-
mapped. Figure 6.8 shows the difference for the xlisp benchmark—it is much less. gcc
represents a large benchmark while xlisp is for the small benchmark. By comparing these
two figures, we can see the impact of different footprint sizes on the design of the first-

level table.

6.2.3 The operating system effects

The operating system (OS) effects on the performance of the per-address history
scheme is similar to the findings for the global history scheme as discussed in Chapter 4:
including OS branches will not make branches less predictable, but OS code may add
more static branches, thus making worse the interference problem in the first-level table.
Figure 6.9 and Figure 6.10 show the difference in misprediction rates for the real_gcc and

mpeg_play benchmarks, respectively. Both benchmarks have shorter dynamic traces than
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Figure 6.7: Difference in misprediction rates for gcc between PAs
schemes with unlimited-size and 4K-entry direct-mapped
BHTs
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Figure 6.8: Difference in misprediction rates for xlisp between PAs
schemes with unlimited-size and 4K-entry direct-mapped
BHTs

Compared to the results for the gcc benchmark shown in Figure 6.7, the performance difference
between PAs schemes of two BHT sizes for the xlisp benchmark is insignificant. This is
because, in xlisp, there are only 125 static branches used in 99% of the dynamic branches.
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Figure 6.9: Difference in misprediction rates for real_gcc between PAs
schemes with unlimited-size and 4K-entry direct-mapped BHTs

SPEC CINT95, but they have relatively more static branches. Therefore, the performance
of the per-address scheme for these two benchmarks is strongly affected by the sizes of the

first-level table.

6.2.4 Predicting for strongly biased branches

We now examine where the most performance is gained from for per-address
schemes. We categorize each dynamic branch into one of sixteen groups according to the
most recent 4-bit per-address self history pattern of the branch, and then measure the
misprediction rate for each class. Figure 6.11 shows the results for two PAg schemes that
have different history lengths: one has a 4-bit history, and the other has a 10-bit history.
For the 10-bit history, we coalesce the 10-bit patterns that share the same four most recent

bits into one class for ease of presentation. If we assume the most significant bit is the
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Figure 6.10: Difference in misprediction rates for mpeg_play between PAs
schemes with unlimited-size and 4K-entry direct-mapped BHTs

Figure 6.9 and Figure 6.10 show that adding OS branches for prediction may cause an interfer-
ence problem to the first-level table design. The degree of the interference depends on the foot-
print size of the program. The real_gcc benchmark is larger than mpeg_play, and therefore
real_gcc suffers more when the table becomes smaller.

most recent branch outcome, 0000, includes all 0000xxxxxx patterns (x means either 1 or
0). In this comparison, we assume an unlimited-size first-level table to avoid interference.
We can see that per-address schemes predict accurately for 0000, and 1111, patterns, but
poorly for other mixed patterns. This is not surprising since the 0000, and 1111, pattemns
are mostly produced by the strongly-biased branches and strongly-biased branches are
easy to be predicted [9]. On the other hand, the mixed patterns may be generated by some
branches which are simply not “predictable” by the dynamic approach.

Fortunately, the mixed patterns occur much less frequently. Most of the dynamic
branches belong to the 0000, and 1111, patterns, as shown in Figure 6.12. In this figure,

normalized dynamic counts for three history pattern groups, 0000,, 1111, and other mixed
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Figure 6.11: Averaged misprediction rates for each per-address history
pattern — SPEC CINT95 (top) and IBS-Ultrix (bottom)

In this experiment, each dynamic branch instance is categorized into 16 groups according to
the most recent 4-bit per-address history pattern of the static branch. Then the averaged
misprediction rates for each pattemn is measured for the two benchmark suites. The X axis
lists all possible 16 4-bit history patterns in decimal and the Y is for the misprediction rate.
Thae size of the first-level tables, or the BHT, is unlimited.
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Figure 6.12: Normalized dynamic counts for three per-address history
pattern groups — SPEC CINT95 (top) and IBS-Ultrix
(bottom)

In this figure, each dynamic branch instance is categorized into 16 groups according to the most
recent 4-bit per-address history of the static branch. Then, except for 0000, and 1111, , all
other patterns are grouped in the mixed group. The normalized dynamic counts for each pat-
terns is obtained by normalizing the dynamic counts with total numbers of dynamic branches of
each of the two benchmark suites. The size of the first-level tables, or the BHTSs, is unlimited.
We see that for the SPEC CINT95 suite, the 0000, and 1111, patterns account for more than
75% of total dynamic branches. In the IBS-Ultrix suite, these two pattems include even more

branches.
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patterns, are presented. We can find that 0000, and 1111, have contributed above 75% of
total dynamic branches. Because of the prevailingly high dynamic counts of strongly-
biased (easy-to-predict) patterns, the per-address scheme can sustain its high prediction
accuracy.

Recall that the measurement in Chapter 3 has shown the IBS-Ultrix benchmarks
have on average more strongly biased static branches than the SPEC CINT95
benchmarks; the statistics in Figure 6.12 agrees with this measurement by showing that
the IBS-Ultrix benchmarks generate a larger fraction of dynamic branches that belong to
the 0000, and 1111, patterns. Therefore, if the first-level table does not have an
interference problem, the per-address scheme can perform very well for the IBS-Ultrix
benchmarks.

As the first-level table size is restricted, the misprediction rates for each history
pattern may vary, but it is still very accurate for the 0000, and 1111, patterns, as shown in

Figure 6.13.
6.2.5 Adaptivity

The per-address scheme gains most of the benefit by accurately predicting for the
strongly-biased static branches. For the weakly-biased branches, or the mixed per-address
history patterns, it predicts poorly.

For the 0000, and 1111, patterns, it is very likely to repeat the last outcome the
next time. Simply fixing the prediction value at 0 and 1 for these two patterns can already
achieve very good prediction accuracy. Actually, we will see that the fixed prediction

method performs better than the adaptive one for these two strongly-biased patterns.
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Figure 6.13: averaged misprediction rates for each per-address history
pattern — SPEC CINT9S5 (top) and IBS-Ultrix (bottom)

In this experiment, each dynamic branch instance is categorized into 16 groups according to the
most recent 4-bit per-address history of the static branch. Then the averaged misprediction
rates for each pattems is obtained for the two benchmark suites. The x axis lists ail possible 16
4-bit per-address history pattems in the decimal. Also, the first-level tables, or the BHTs, is 4K-
entry, direct-mapped. For a miss in the BHT, the corresponding history register is raset to 1100,
for the 4-bit scheme and to 1100001111, for the 10-bit scheme (see later).
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Therefore, for these two patterns, adaptivity is not necessary.

For the mixed patterns, a predictor that can discriminate between branches and
assign a separate adaptive counter to each of them should be able to achieve higher
prediction accuracy. This is because when branches behave differently they need separate
counters to capture their distinct behaviors. However, if the mixed patterns occur
infrequently and if predicting them with fixed values may already provide fair overall
prediction accuracy (and require less hardware), sacrificing adaptivity may be a better
choice as far as the cost-effectiveness is concerned.

With this in mind, we hypothesize that a per-address history scheme using a static-
trained fixed-value second-level table may deliver competitive performance to an adaptive
scheme. In the next section, we will justify the hypothesis by examining the static-trained

scheme, PSg, and identify the conditions when adaptivity is needed.

6.3 PSg— the per-address history scheme using a static-trained
second-level table

The statically trained scheme was first proposed in [4] and has been studied by Lee
and Smith [29). It was also further examined and termed PSg by Yeh and Patt [56, 57].
The PSg scheme in these two studies is similar in structure to the per-address history
adaptive scheme, but its prediction for a per-address history pattern is pre-determined by
profiling. This PSg scheme requires the second-level table to be loaded with a trained data
set every time a new program starts to run, thus incurring a certain amount of overhead.
Early studies showed that the static scheme is worse than the adaptive one. As a result,
researchers concluded PSg is not competitive with the adaptive schemes [56].

However, the comparative study between PAg and PSg mentioned above only
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examined a small benchmark set, SPEC89, which might be biased to the importance of
adaptivity.

The notion that adaptivity may not be that important can be better understood as
follows. The first-level table of both the PAg and PSg schemes divides the branch
outcome stream into substreams based upon the recent history of the individual branches.
Instances of separate branches that happen to have the same history will be combined in a
substream. This mixing of branches in a substream will not occur if only a few branches
are active. A single branch may have a strong characteristic behavior, for example, a
branch may be taken every third execution. For this particular branch, the 0010, per-
address history pattern indicates that the branch is going to be taken the next time. For
most branches, however, this pattern is more likely to indicate that the branch will be not-
taken. If all the instances with the 0010, pattern arise from the branch with the three-cycle
periodical behavior, an adaptive counter will quickly begin predicting 1, thus having
better performance.

Nevertheless, for large footprint programs where there are significant numbers of
branches, instances of the 3-cycle periodical branch can hardly dominate, so the counter
will continue to predict O, resulting in misprediction rates similar to that of a PS g scheme.
If a burst of instances from this branch do cause a change in prediction in an adaptive
scheme, the subsequent instances for other branches are likely to be mispredicted and the
overall result will not be much better than the static method. Therefore, the statically
trained scheme should be re-examined with large footprint programs.

In the following, we will re-examine the performance of the PSg scheme using our

benchmarks. Also, we are interested in a PSg scheme with a second-level table which is
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built up by some heuristics, instead of by profiling [44].
6.3.1 The algorithm-derived static table

The algorithm employed for the static table is based on simple heuristics. We
construct a table for n-bit history patterns by first identifying all of the patterns that can be
produced using cycles of at most n/2 bits. For each of these patterns, we predict the next
branch will continue the pattern. For example, the eight-bit pattern 11101110, is
interpreted as two four-bit pattern 1110,, and thus the next outcome is determined to be
O—the start of a 1110 sequence. If the eight-bit pattern is 11011011,, then we consider it
to represent a repeated three-bit pattern 110,.

If this is not successful, we look for shorter patterns. We then ignore the oldest two
bits and again check if there is any repeating patterns!. This is because we project that
some of patterns may represent a transition between two modes of cyclic behavior. For
example, for the pattern 10101011,, we will ignore the oldest two bits, 11, and treat the
pattern as 101010xx (x for “don’t care™). Then we can find a repeating pattern of 10, and
predict 0 as the next outcome. This process will continues, substituting two additional
don’t care bits with each iteration.

If a pattern cannot be processed by the above two procedures, then the pattern must
differ in their two most significant bits, for example, 10111110,. (This is because the
previous step has already checked repeating patterns for the length of 2.) For this kind of
patterns, we choose the majority voting from all bits in the pattern. If 0 dominates, 0 is

used as the prediction; otherwise, 1 is used. In the example above, the prediction will be 1.

1. If n is an odd number, we first ignore the oldest bit and check the repeating patterns. (Then, we
ignore the next two oldest bits as we do for the case of n being even.)
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If the number of bits is even, then the oldest bit is ignored to get the majority voting result.
For example, for 100110, the prediction is 1.

With this algorithm-derived second-level table, the PSg does not require profiling
and reloading for every program. We refer to it as PSg(algo). The algorithm employed in
this study is by no means optimal, and there is an open area to refine the algorithms based
on different heuristics. However, our algorithms provides quite good performance results,
as we will see.

In addition to avoiding reloading the second-level table, another major advantage
of this PSg(algo) over the original PSg scheme is that the PSg(algo) does not require large
memory cells for the second-level table. (The original PSg requires an array of memory
cells to load a different set of prediction values for a new program.) The fixed prediction

values of the PSg(algo) can be implemented as fixed logic, thus saving hardware cost

significantly.

6.3.2 Performance evaluation

In this subsection, the performance comparison between the PSg(algo) and PAg is
performed. Figure 6.14 presents average misprediction rates for SPEC CINT95 and IBS-
Ultrix benchmarks. In this figure, an unlimited-size BHT is assumed to avoid interference
in the first-level table. As can be seen from the figure, when the history length is short, the
PSg scheme performs very closely to the PAg scheme. When the history length is long,
there is a gap of 2-3% prediction accuracy between the PSg and PAg schemes for the
SPEC CINT9S benchmarks. This is because the likelihood of the instances of branches

with dissimilar behaviors mixing in the stream of a pattern diminishes. Therefore, PAg
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Figure 6.14: Averaged misprediction rates for the PAg and PSg(algo)
schemes with unlimited-size BHTs — SPEC CINT95 (top)
and IBS-Uitrix (bottom)
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can continue to improve but PSg(algo) cannot.

For the IBS benchmarks, the PSg scheme keeps its performance close to the PAg
scheme up to the point when the history length is 8. For short histories, PSg can even
perform better than PAg, and for histories longer than 8 bits, the difference between these
two schemes is only 0.6%. When the stream of a pattern is mixed by many static branches,
the performance can be determined by the majority behavior of these branches: in this
case, the algorithm-derived static table becomes effective.

To evaluate the performance of the PSg(algo) in a real situation, Figure 6.15
presents the averaged misprediction rates for the PSg and PAs schemes with a 4K -entry,
direct-mapped BHT. In this experiment, the history registers in the first-level table are
shared among branches—the per-address history is mixed and, thus, polluted.

As shown in the figure, when the history length is shorter than 8 bits, the PSgcan
still perform well, but when the history length is longer than 8 bits, PSg performs badly.
Actually its performance is degraded after 8-bit history. This is because as history
registers are shared, they cannot provide accurate per-address history information of
branches which is essential to the algorithm used in the PSg(algo) scheme. We will
provide detailed explanation for this degradation shortly. On the other hand, PAg can still
sustain a good performance by being adaptive.

Since PSg(algo) suffers from inaccurate per-address history due to limited size
BHTSs, we proposed a modified PSg scheme which can always extract correct per-address

history from the polluted history table. This proposed PSg scheme will be presented later.
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Misprediction Rates: CINT95.BHT(4k)
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Figure 6.15: Cost-effective comparison between PAg and PSg(aigo) —
SPEC CINT95 (top) and IBS-Ultrix (bottom)

In this figure, a cost-effective comparison is performed. The averaged misprediction rates
versus total numbers of bits used in predictors are plotted for the two benchmarks suites.
Both PAg and PSg(algo) have 4K-entry, direct-mapped BHTs. For each scheme, the per-
address history length ranges from 1 to 12 bits. Branches missing in the BHT are assumed
taken. As shown in the figure, when the BHT is restricted, the performance of the PSg(aigo)
becomes worse, especially for longer history. A restricted BHT cannot record accurate per-
address history all the time, and the accurate history is crucial to the performance of the
PSgq(algo).
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Figure 6.16: Averaged misprediction rates of each history pattern,

compared between PAg and PSg(algo), for SPEC CINT95.

The scatter plot on the left shows the misprediction rates for each of the sixteen possible per-
address history pattems for a 4-bit history. The x and y coordinates of a point are determined by
averaging, respectively, a pattem's PAg and PSg(aigo) misprediction rates across all of the
SPEC CINT95 benchmarks. Thus, points lying close to the diagonal line represent pattems for
which the predictive powers of the two schemes are nearly equivalent. Points lying above this
line represent patterns for which the PAg scheme is superior, and points below the line for the
pattems for which PSg(algo) is superior. in this comparison, both schemes have unlimited-size
branch history tables.

The scatter plot on the right shows the misprediction rates for a 10-bit history. We coalesce the
10-bit pattems sharing the same four most recent bits into single points. For example, 0000 rep-
resents the misprediction rates for all 0000x000xx pattems.

As can be seen in the figure, PSg(algo) does as well as the PAg scheme for the 0000 and 1111
pattems. For the mixed patterns, PSg(algo) is still as good as PAg for shorter history, but it
becomes worse than PAg for longer history. For longer history, fewer static branches contribute
to the branch stream of a history pattern, and therefore adapting to unique behaviors of the few
branches becomes important.

6.3.3 Comparison of the performance of PSg and PAs schemes for each pattern

In this subsection, the misprediction rates and the prediction error for each per-
address history pattern are presented and compared between the PSg(algo) and PAs
schemes.

Figure 6.16 and Figure 6.17 compare the misprediction rates of the two schemes
for each per-address history pattern. Both schemes have an unlimited-size BHT. In these
scatter plots each point represents a comparison of misprediction rates for a pattern
between the two schemes, and there are sixteen points in each plot. There is a diagonal

line; above the line, PAg predicts better than PSg(algo) for the corresponding pattern, and
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Figure 6.17: Averaged misprediction rates of each pattern, compared
between PAg and PSg(algo), for IBS-Ultrix.

The scatter plot on the left shows the misprediction rates for each of the sixteen possible pat-
terns for a 4-bit history. The x and y coordinates of a point are determined by averaging, respec-
tively, a pattem’s PAg and PSg(algo) misprediction rates across all of the IBS-Ultrix
benchmarks. THus, points lying close to the diagonal fine represent pattems for which the pre-
dictive powers of the two schemes are nearly equivalent. Points lying above this line represent
pattems for which the PAg scheme is superior, and points below the line for the patterns for
which PSg(aigo) is superior. In this comparison, both schemes have unlimited-size branch his-
tory iables.

The scatter plot on the right shows the misprediction rates for a 10-bit history. We coalesce the
10-bit pattemns sharing the same four most recent bits into single points. For example, 0000 rep-
resents the misprediction rates for all 00000000 pattemns.

As can be seen in the figure, PSg(algo) does as well as the PAg scheme for the 0000 and 1111
pattemns. For the mixed patterns, PSg(algo) can be better than PAg for shorter history in the IBS
benchmarks. However, it becomes worse than PAg for longer history. For shorter history, more
static branches contribute to the branch stream of a history pattern. In this case, adaptivity can-
not provide benefits because different biased branches may cause interference for the counter.
Fixing prediction value, on the hand, may deliver a better overall prediction accuracy.

vice versa. For both benchmark suites, we can see that there are two groups of the points
in each plot; one group of which has lower misprediction rates than the other. The group
having lower misprediction rates contains only two patterns, 0000, and 11115, while the
other group contains the remaining fourteen mixed patterns. This result implies that both
PAg and PSg(algo) predict very well for all-1’s and all-0’s patterns, but badly for the other
patterns. For the all-1’s and all-0’s pattemns, there is no obvious performance difference
between PSg(algo) and PAg, for either of the history lengths and for either of the
benchmark suites. (Actually, we will see that PSg(algo) is slightly better than PAg for

IBS.) As long as the most recent four instances of a branch were all taken (or not-taken),
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Figure 6.18: Error distribution for the per-address schemes with
unlimited-size BHTs for SPEC CINT95 (4-bit history on the left
and 10-bit on the right).

The scatter plot on the left shows the relative number of error due to each of the 16 possible 4-
bit per-address history patterns. The error is normalized for each benchmark, with the total
number of error made by the PAg scheme on a given benchmark set to 100%. The normalized
numbers were then averaged across the benchmarks. The scatter piot on the right shows the
refative number of error for 10-bit history. As before, we coalesce the pattems with the same
four most recent bits. For example, with 10-bit history, error due to the pattemns 0000xxxxxx is
represanted by the point, 0000. In this compatrison, an uniimited-size BHT is assumed for both
schemes.

As shown in the plots, most of the misprediction error is from the 0000 and 1111 groups. There-
fore, predicting accurately for these two pattems is more critical to the performance than for
other mixed pattems.

predicting the next outcome for the branch with the repeating outcome is always a good
strategy.

On a closer examination of the results for the SPEC CINT95 benchmarks, we find
that for the mixed patterns, PSg(algo) performs as well as or even better than PAg for the
4-bit history, but worse than PAg for the 10-bit history. Adaptivity is important to predict
the outcome for mixed patterns when longer histories are employed. The same trend can
be observed in the IBS benchmarks, but the difference between two schemes becomes
less. When a large number of static branches are involved, the situation that a few
branches with unique behavior dominate the stream of a pattern becomes unlikely.

Although PSg(algo) performs worse for 14 out of 16 per-address history patterns,

this does not imply that the overall performance of PSg(algo) is significantly worse,
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Figure 6.19: Error distribution for the per-address schemes with
unlimited-size BHTs for IBS-Ultrix (4-bit history on the left and
10-bit on the right).

The scatter plot on the left shows the relative number of error due to each of the 16 possible 4-
bit per-address history pattems. The error is normalized for each benchmark, with the total
number of error made by the PAg scheme on a given benchmark set to 100%. The normalized
numbers were then averaged across the benchmarks. The scatter plot on the right shows the
relative number of error for 10-bit history. As before, we coalesce the patterns with the same
four most recent bits. For example, with 10-bit history, error due to the patterns 0000xx00 is
represented by the point, 0000. In this comparison, an unlimited-size BHT is assumed for all the
schemes.

As shown in the plots, PSg(algo) performs better than PAg for the two most frequent pattemns,
0000 and 1111 in the IBS benchmarks. That is the reason why PSg(algo) is competitive to the
PAg for the IBS benchmarks.

because the 14 patterns only account for small portion of the dynamic branch stream.
Figure 6.18 and Figure 6.19 compare the percentages of error due to misprediction for
each history pattern between the two schemes. As shown in the figures, the all-1’s and all-
0’s patterns account for most of the misprediction error. These two patterns have much
more dynamic branches to predict than the other 14 mixed patterns. This is especially true
for the IBS benchmarks. Improving the prediction accuracy for these two patterns is more
critical than for the other mixed patterns. PSg(algo) is designed to predict extremely well
for these two patterns, and gains accordingly.

Figure 6.20 and Figure 6.21 further examine percentages of error for the patterns
when a 4K-entry, direct-mapped BHT is used. In these two figures, the history patterns are

obtained from the contents of the branch history registers, and the contents may include
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Figure 6.20: Error distribution for the per-address schemes with limited-
size BHTs for SPEC CINT95 (4-bit history on the left and 10-bit
on the right).

The scatter plot on the left shows the relative number of error due to each of the 16 possible 4-
bit per-address history pattems. The error is normalized for each benchmark, with the total
number of error made by the PAg scheme on a given benchmark set to 100%. The normalized
numbers were then averaged across the benchmarks. The scatter plot on the right shows the
relative number of error for 10-bit history. As before, we coalesce the pattemns with the same
four most recent bits. For exampie, with 10-bit history, error due to the pattems 00000000 is
represented by the point, 0000. In this comparison, a 4K-entry, direct-mapped BHT is assumed
for all the schemes. PSg(algo) performs badly for the 0110 pattern because of the conflicts in
the BHT. Please see the text for detailed expianation.

outcomes from more than one static branch because the registers are shared.

As shown in the figures, the observation obtained from the unlimited-size BHT
can still hold for the limited-size BHT, except the point for the pattern, 0110,. In our
experiments, the branch history register was reset to 11002l or 1100011111, for the 4-bit
and 10-bit schemes, respectively, when another static branch starts to use the branch
history register. This condition can only be detected if the branch history register have
address tags. The content of the register will then become 01 10, or 0110001111, if the
branch outcome turns out to be not-taken (110, and 110001111, are from the reset
values.). In fact, the only relevant history is the first 0. Based on this, the next branch

should be predicted not-taken. However, PSg(algo) will predict the next outcome as taken,

1. An exhaustive study showed that any pattern, except all-1's and all-0's, was suitable for a reset
value [14].
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Figure 6.21: Error distribution for the per-address schemes with limited-
size BHTs for IBS-Ultrix (4-bit history on the left and 10-bit on
the right).

The scatter plot on the left shows the relative number of error due to each of the 16 possible 4-
bit per-address history pattems. The error is normalized for each benchmark, with the total
number of error made by the PAg scheme on a given benchmark set to 100%. The normalized
numbers were then averaged across the benchmarks. The scatter plot on the right shows the
relative number of error for 10-bit history. As before, we coalesce the patiemns with the same
four most recent bits. With 10-bit history, error due to the patterns 0000000 is represented by
the point, 0000. in this comparison, a 4K-entry, direct-mapped BHT is assumed for all schemes.
As shown in the plots, PSg(aigo) performs better than PAg for the two most frequent pattems,
0000 and 1111 in the IBS benchmarks. That is the reason why PSg(aigo) is competitive to the
PAg for the IBS. Also, PSg(algo) performs badly for the 0110 pattem because of the conflicts in
the BHT. Please see the text for a detailed explanation.

thus the anomaly with the 0110, point. We need a method that recognizes that only part of
the branch history is relevant. Next, we will propose a new PSg(algo) scheme that can
extract the correct per-address history from a polluted history register and thus improve

the performance.

6.3.4 PSg using correct history

A “correct” history means we need to be able to specify three possibilities for a
branch history entry: taken (1), not-taken (0), or not relevant (x). In the previous example
the sequence is Oxxx (4bits). Thus the simple shift register will not work. Instead, for
branch histories of length n we propose a finite state machine witk: n+1 states. The extra

state allows us to encode not only the sequences of length n but also those of length n-1, n-
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2, ... 1, i.e,, sequences where some of the entries are irrelevant. Figure 6.22 shows a 4-bit
encoding for a 3-entry branch history register—the transition logic follows directly. With
such a modified BHT, the PSg(algo) scheme always has the correct per-address history to
make a prediction.

Figure 6.23 compares the performance for such a PSg scheme with the original
PSg(algo) and PAg schemes. For fair comparison, the total cost is considered for each
scheme: the BHT is included for the two PSg schemes, and the tables of both levels for the
PAg scheme.

As can be seen, using correct per-address history can improve performance for the
PSg scheme. The new scheme can even perform better than the PAg scheme for the IBS
benchmarks, where a significant number of branches are involved. It shows that for
smaller BHTs where more interference exists, the scheme that can extract correct per-
address history will be more effective.

To summarize, under realistic workloads such as the IBS benchmarks, PSg(algo)
is a competitive alternative to the PAg scheme. PSg(algo) performs quite close to PAg,
and PSg(algo) can be implemented with faster circuitry because it does not need on-chip
memory for the counter table. A modified BHT that can extract correct history for the PS g
scheme was also proposed to resolve the interference problem in the BHT. This modified

BHT is effective and can further slightly improve the original PSg scheme.

6.4 Cost-effective analysis

A cost-effective performance analysis by Yeh and Patt [59] has shown that per-

address history schemes are more effective for the floating-point benchmarks of SPEC89
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Figure 6.22: An example for the PSg scheme using correct 3-bit per-
address history.

in this example, on the left is the original PSg(algo), which employs 3-bit per-address history
shift registers. Because of sharing the history register, it is possible the register contains out-
come history of the current static branch as well as of other static branches. An enhanced PSg,
shown on the right, uses an extra bit in the register to capture this transition. This new PSg can
always supply a correct per-address history for prediction.
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Figure 6.23: Performance evaluation for the PSg(algo) using correct per-
address history — SPEC CINT95 (top) and IBS-Ultrix (bottom)

In this figure, the averaged misprediction rates for the PSg(algo) using correct per-address his-
tory versus total numbers of bits used in the predictor are plotted for the two benchmarks suites.
For comparison, both PAg and the original PSg(aigo) are also included. All three schemes have
4K-entry, direct-mapped branch history tables. For each scheme, per-address history lengths
ranging from 1 to 12 are examined. Missing branches in the BHTs are always assume taken.
As shown in the figure, the PSg using the corrected history can improve on the original
PSg(algo). For the IBS benchmarks, it is better than the PAg scheme when a short history is
used. For a longer history, however, adaptivity becomes useful and the PAg scheme performs
better.
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suite, while global history schemes tend to perform better for integer programs of SPEC89
when large hardware budgets are available. They explained that per-address history is
good at predicting loop branches which occur frequently in floating-point benchmarks,
while global history is effective at predicting if-then-else branches that appear more
frequently in integer benchmarks.

However, using per-address history information is not free; it can be very
expensive sometimes. As we found before, interference in the first-level table of the per-
address history scheme is significant, so it is usually desirable to have more history
registers. Per-address history becomes expensive when a large BHT is employed, because
the cost of a per-address history bit is equivalent to the number of entries in the branch
history table. In this section, we present the cost-effective analysis results to complete our

study.
6.4.1 Cost-effective comparison for the per-address history schemes

In this experiment, the cost includes the second-level table as well as the BHT. The
cost calculation is described as follows,

Cost p pits = history_length x #_of_entry_in_BHT + 2history_length . 4 ¢ pHTs x 2

The storage for the address tags is ignored because the BHT is assumed to share
tags with the branch target buffer.

In this experiment, all schemes have a 4K-entry, directed mapped BHT. This is
different from the work by Yeh and Patt [59], where a 4-way set-associative BHT was
used. We assume that, as the CPU cycle time becomes very short, the associative table is

too expensive to implement.
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Figure 6.24 provides the cost-effective comparison for the per-address history
schemes for both SPEC CINT95 and IBS-Ultrix suites. From the results we can see that
when the budget is large, the PAg scheme is among the best schemes. However, as the
budget is small, the PAs schemes that have multiple columns in the second-level table, or
PHTs, are the best. It would seem that the per-address history bit is more useful than the
address bit at making accurate predictions, but the per-address history bit is too expensive
to be used in small systems. The extra cost incurred by per-address history bits offsets the

benefit.

64.2 Cost-effective comparison between the per-address schemes and global
history schemes

To set our studies in a broader context, we compare the per-address history scheme
with the global history scheme.

Figure 6.25 presents the comparison for the SPEC CINT95 and IBS-Ultrix
benchmarks. The per-address history schemes examined in this experiment are the same
as the ones in Figure 6.24, except that the PAs(12h), the PAs scheme using 12-bit per-
address history, is excluded, because it is not effective. A gshare scheme is used for
comparison. As shown in the figure, the per-address history scheme is less accurate than
the global history scheme for the integer benchmarks for the range of budgets examined.
This result is similar to the findings by Yeh and Patt [59], except that this result shows that
even for small budgets the per-address scheme is not able to outperform the global history

scheme.
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Figure 6.24: Cost-effective comparison for PAs schemes, including
BHT cost — SPEC CINTS5 (top) and I1BS-Ultrix (bottom)

in this figure, four variations of the PAs schemes are examined. All schemes have a 4K-entry,
direct-mapped branch history table. The PAg scheme has always one pattern history table
(PHT). The PAs(4h) represent the schemes that use 4-bit per-address history but have vari-
ous numbers of PHTs. Similarly, PAs(8h) has 8-bit per-address history and PAs(12h) has 12-
bit per-address history.

As shown in the figure, for large budgets, PAg is among the best schemes. However, for
small budgets, because the history bit is more expensive than the address bit, the PAs with
multiple PHTSs is the most cost-effective scheme.
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Figure 6.25: Cost-effective comparison for gshare and the PAs scheme,

including BHT cost — SPEC CINT95 (top) and IBS-Ultrix
(bottom)

In this figure, three per-address history schemes are compared against the best of the gshare
schemes. All of per-address schemes have a 4K-entry, direct-mapped branch history table. The
PAg scheme has one pattern history table (PHT). The PAs(4h) represents the schemes that
use 4-bit per-address history but have various numbers of PHTs. Similarly, PAs(8h) has 8-bit
per-address history.

As shown in the figure, gshare consistently outperforms the per-address scheme for the bud-

gets examined, suggesting that global history is more effective for predicting integer bench-
marks.
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6.5 Summary

In this section, we have presented our performance studies for dynamic branch
prediction schemes that employ per-address history information. We began by reviewing
the per-address two-level dynamic branch predictors. We have shown and analyzed the
overall performance trends for the per-address schemes, and also examined the impacts of
large footprint programs on the schemes.

We have shown that, the dominant factor for the performance of per-address
schemes is the interference in the first-level table, or the BHT. Increasing the size of BHT
is the most straightforward way to reduce the interference. In contrast, the second-level
table does not have a severe interference problem.

We then examined closely the prediction accuracy of the per-address scheme for
each per-address history pattern. We have shown that the per-address scheme performs
very well for the 0000, and 1111, patterns, the strongly-biased patterns, but poorly for the
other mixed patterns. Fortunately, in the per-address scheme, the strongly-biased patterns,
occur more than 80% of the time, and therefore the per-address scheme still delivers
accurate prediction.

An inexpensive PSg scheme employing an algorithm-derived static-trained
second-level table was then proposed as an alternative to the PAg scheme. This PSg
scheme performs well because it predicts accurately for the large number of strongly-
biased branches that occur in realistic workloads. It is an attractive alternative because it
performs closely to the PAg scheme but requires less hardware, less on-chip area, and
results in a smaller access time.

However, the PSg scheme heavily relies on the correct per-address history
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information to make good prediction. To ensure the PSg scheme can always obtain the
correct per-address history, a modified BHT was proposed which encodes correct histories
shorter than n bits to n-bit values. This modified BHT has been shown effective and can
improve the PSg schemes slightly.

Finally, the cost-effective analysis for the per-address scheme was examined by
including the cost of the first-level table. From the analysis, we found that the PAg scheme
is more cost-effective when large hardware budgets are available, and the PAs scheme
should be used instead for smaller budgets. This is a consequence of address bits being
cheaper than the per-address history bits. We also showed that the global history scheme
performs better than the per-address history scheme for integer programs over the range of
budgets examined. The cost-effectiveness of per-address schemes is limited because of its

requirement for a large BHT.



CHAPTER 7

Conclusions

This dissertation is concened with the optimal designs of high performance
dynamic branch predictors that exploit branch outcome history. Branch outcomes are
usually the result of random activities; most of time they are correlated with the past
behavior of neighboring branches. By keeping track of the history of branch outcomes it is
possible to anticipate with a high degree of certainty which direction branches will take.
However, exploiting branch outcome history is not free, but requires significant hardware
resources to memorize complicated branch states related to history patterns. It is thus
important to understand the advantages and disadvantages of employing history when
designing a branch predictor, or unexpected performance may result. It is especially
important to evaluate predictors by using benchmarks that reflect the environments the
predictors are designed for. In this dissertation, a diverse set of programs were employed
in our studies on predictor performance. As a result we showed that many benchmarks
popularly used in previous branch prediction studies were inadequate and lead to
misleading conclusions.

This dissertation explored and examined various prediction schemes using global
and per-address history. For the global history schemes, this dissertation first provided a
general performance pictures to illustrate the performance trends. It also indicated design

points for the predictors under different sizes of programs. For small programs, using long

148
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histories is the best strategy, while for large programs, such as systems code, shorter
histories with address indexed multi-column second level tables performed better.

Global history was shown to have the potential to achieve very accurate prediction
accuracy because it factored out large numbers of highly biased dynamic branch streams
which are easily predicted. However, the conventional two-level schemes that rely on
global history often cause the intermingling of highly but oppositely biased streams. This
becomes the major source of the interference in predictors. The issue of interference was
thoroughly investigated. We showed that employing branch address bits can help reduce
interference significantly but at the same time their use reduces the bias in the resulting
branch stream outcomes. We thus showed that the requirement of generating highly biased
streams that do not contain a significant fraction of oppositely biased substreams is
impossible with the conventional global history scheme. Some schemes that use some
address bits such as the GAs schemes, can, however, obtain limited improvements.

This dissertation then proposed a new global history scheme, the bi-mode scheme,
to address this problem. By adding a two-bit counter table indexed by the branch address
in the first level, the bi-mode scheme can successfully separate highly but oppositely
biased dynamic branch streams for the second-level table, thus realizing the advantages of
global history without causing interference The bi-mode scheme was shown to outperform
the global history scheme and to be more cost-effective. The bi-mode scheme was then
compared with other recently proposed schemes that also attempt to reduce interference.
These including the gshare scheme, the skewed predictor, the agree predictor, and the
fiitering scheme. Our experimental results show the bi-mode scheme to be the best for

larger predictors (more bytes of memory) and to be better than most for small predictors.
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Furthermore it is simple and fast—it does not lengthen critical paths. A variant of the bi-
mode predictor, the history+ scheme, that uses extra older global history bits was also
proposed and evaluated. This variant can exploit more history information and is to
achieve the highest prediction accuracy for some of the benchmarks examined. In
particular, it increased the accuracy of prediction on the worst case benchmarks. The
history+ scheme is a candidate for future research work.

This dissertation also examined per-address history schemes. General performance
pictures are provided to illustrate the trends and bottlenecks for this class of predictors.
The results show that there is no severe interference problem in the second table, but
interference in the first level table is a major design concern. The first-level table must be
able to record per-address history for branches separately. We showed that, provided
interference in the first-level table is controlled, the performance gain for per-address
history schemes is mostly a result of accurate prediction for strongly taken and strongly
not taken branches.

A cost-effective per-address scheme that uses a fixed algorithm-derived second-
level table, PSg(algo), was then proposed and evaluated. Because this PSg(algo) predicts
very accurately for the strongly taken and strongly not taken branches its performance was
close to the dynamic per-address history schemes. However, the PSg(algo) was even more
sensitive to interference in the first-level table than the dynamic schemes, because the
algorithm employed in PSgéalgo) assumes that correct per-address history is recorded in
the first-level table. To resolve this problem, we modified the first level table so that it can
always provide correct per-address history regardless of interference. This modification

was shown to yield modest improvements to the PSg(algo). Compared to PAg predictors,
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the PSg(algo) schemes were most cost-effective for smaller sized predictors

Finally, we also compared the global history and per-address history schemes.
Comparing same-sized systems, we found that, for the benchmarks examined, global
history schemes are superior. The per-address history scheme is worse because increasing
per-address history bits is a much more expensive way to improve prediction than by
increasing global history bits.

Accurate branches prediction is crucial for wide issue processors if they are to
perform up to their potential. Dynamic branch prediction schemes provide the most
straightforward and effective solution, but require very accurate dynamic branch
predictors. This dissertation has contributed a detailed examination and fuller
understanding about the mechanisms underlying dynamic branch predictors. It also
proposed ways to further improve prediction accuracy. However, the branch problem is
not yet totally resolved. For example, making multiple branch predictions in a single clock
cycle becomes an important issue as the technology allows more than one basic block to
be fetched at a time. A recent study on caches that attempts to increase fetch bandwidth by
exploiting the locality of dynamic instruction streams has attracted much attention [43].
This study has also suggested that very accurate multiple branch prediction per cycle is
important. However, there have been no significant research reported on this topic, and the

optimal design is still unknown.
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