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ABSTRACT

MODERN DRAM ARCHITECTURES

by

Brian Thomas Davis

Co-Chair: Assistant Professor Bruce Jacob

Co-Chair: Professor Trevor Mudge

Dynamic Random Access Memories (DRAM) are the dominant solid-state

memory devices used for primary memories in the ubiquitous microprocessor system

today. In recent years, processor frequencies have grown at a rate of 80% per year,

DRAM latencies have improved at a rate of 7% per year. This growing gap has been

referred to as the “Memory Wall.” DRAM architectures have been going through rap

changes in order to reduce the performance impact attributable to this increasing re

latency of primary memory accesses. This thesis examines a variety of modern DRA

architectures in the context of current desktop workstations. The DRAM examined

include those which are available today, as well as a number of architectures which 

expected to come to market in the near future.

Two simulation methodologies are used in comparing system architectures.

DRAM models common to both methodologies have been developed for these

experiments, and are parameterizable to allow for variation in controller policy and

timing. Detailed statistics about the DRAM activity are maintained for all simulations

Experiments examining the underlying performance enhancing characteristics of ea

architecture are described, with attention to parameters and results.

The choice of DRAM architecture and controller policy are shown to significan

affect the execution of representative benchmarks. A 75% reduction in access latency

Byte L2 line) from a PC100 architecture, and a 34% reduction in execution time from

PC100 architecture result from using a cache enhanced DDR2 architecture. More

significant results examine which aspects of the DRAM contribute to the increase in

performance. Bus utilization, effective cache hit rate, frequency of adjacent accesse

mapping into a common bank, controller policy performance, as well as access latenc

examined with regard to their impact upon execution time. Not only are the highest

performance DRAM determined, the factors contributing to their low latencies and

execution times are also identified.
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Preface

In the timeframe between when I initiated this research, and the completion of

thesis much has changed in the topic area being discussed. Research has been do

investigate the characteristics of microprocessors which are now obsolete. Models h

been developed for architectures which are no longer available. Memory system

architectures and controllers have been designed for fabrication processes which ar

longer in existence. Simulation configurations which were considered optimistic six

months ago are now pessimistic. The sequence of completed tasks which were

subsequently determined to be obsolete or unnecessary has encompassed many ye

In the arena of computer architecture, we are researching a moving target, an

target, as well as the rate at which the target moves are continuously changing. Per

one of the most valuable items which was learned during this course of research is 

perspective from which to examine viable research topics and timelines. While the

dominant architecture and philosophy of the day may change, the ability to plan and

accommodate these changes is a consistently useful skill. “There is nothing perman

except change.“ ~ Heraclitus ~
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Chapter 1

Introduction

Primary memory latencies significantly impact microprocessor system

performance. As processor performance continues to increase, by exploiting the

parallelism in applications or multiple concurrent applications, the demands placed u

the memory system, including primary memory, magnify the impact of memory syste

latencies upon the microprocessor system. This thesis describes the application of pr

memory technologies and mechanisms used to extract performance from commerci

available systems. The examination of primary memory, and specifically DRAM has

attracted significant attention since 1994. At approximately this time it became obvio

that processor speeds had been increasing so rapidly that they were soon going to o

the techniques which had up until that point been used to mitigate the affects of the

increasing relative latency. Subsequent to that, many approaches were examined to

the microprocessor to tolerate the latency of primary memory system accesses. Thi

research follows a different approach and attempts to reduce the latency of DRAM

accesses by modification of the DRAM architecture and controller scheme.

Research contribution

The DRAM technology landscape changes rapidly, and the DRAM industry is

driving most of this change based upon profit, as is inherently the case in a capitalis

market. One role of academia in this market is to provide a foundation of research s

that the varying industry proposals have a framework for comparison. In this thesis, 

present a framework for making comparisons between DRAM implementations, base

a number of perspectives and criteria. These include the bus utilization, average late

and execution time of a DRAM architecture. This framework is then used to make

comparisons between a number of leading DRAM architectures giving special
11
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consideration to those common features of multiple architectures which impact the

DRAM selection criteria.

1.1 Primary Memory

The intent of this thesis is to examine the impact of primary memory architect

and performance upon overall system performance. In application, the primary memo

almost always composed of Dynamic Random Access Memory (DRAM). For this rea

the majority of this thesis is spent examining DRAM architectures and performance.

DRAM is not the only technology applicable for use as the primary memory. Cray us

Static Random Access Memory (SRAM) as the primary memory for his supercompu

systems because of the longer, and non-deterministic latencies of DRAM [Kontoth94

precursor to DRAM technologies, magnetic core memory has also been used for pri

memory. DRAM is a technology which currently fits the requirements of primary mem

better than any other available technology. In the future, other architectures may sur

DRAM as the dominant memory technology used for primary memory. This possibili

for other technologies to overtake DRAM usage in primary memory systems is discu

in Section 3.6.

The primary memory is situated in the memory hierarchy, shown in Figure 1.1

level between high-speed memories, and disk. The constraints at this level in the hier

are what motivates the use of DRAM in this application. These constraints include th

price per bit of the memory, the access latency of the memory, the physical sizes of 

memory structures, the bandwidth of memory interface, among other characteristics.

Figure 1.1: Memory Hierarchy

This pyramid shows the levels of memory present in a typical desktop workstation. Arrows on the left
indicate the relationship between memory types for the shown characteristics.
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hierarchy includes all memory used by the computer system. DRAM is the lowest lev

memory which is classified as volatile, meaning that the contained information is los

when power to the device is removed. Each level has its own set of constraints. At th

highest level, the microprocessor register file, access speed is paramount, with cost p

almost irrelevant. While at the lowest level, disk or backup, the cost for storage (Gigab

or Terabytes) is the determining factor where access speeds are so slow relative to 

processor speed that access speed is secondary.

The memory hierarchy has the intent of providing the image of a single flat

memory space to the processor. Maintaining the facade of this single memory space

task which requires the cooperation of the processor, caches, chipset, and operating

system. Going down the memory hierarchy pyramid, the access size increases. Acce

at the registers is a word, at the cache(s) a line, at the primary memory a DRAM row

page, and at the swap space an operating system page. Similarly, the cost of each b

decreases as you go down the pyramid, and the time for access increases. These

characteristics are what dictate the pyramid structure, as any one technology is logi

sufficient to generate a computer, but with poor performance, or excessive cost depe

upon the single technology chosen.

1.2 Impact of Primary Memory upon Performance

Prior to processors achieving 12Mhz clock cycle operation, there was little inte

in improving the performance of primary memory. At this clock frequency, the cycle ti

of processors and DRAM were approximately the same, and a memory reference cou

serviced by the DRAM every processor clock cycle. This is no longer the case as we

the era of Gigahertz frequency processors. Since 1980, processor speeds have impr

a rate of 80% annually, while DRAM speeds have improved at a rate of 7% annually

[Wulf95]. To be more specific, DRAM row access times have declined at roughly 7%

annually, while DRAM column access times have declined at a rate of approximately

annually [Przbylski96]. In order to reduce the performance impact of this rapidly

increasing gap, multiple levels of caches have been added, processors have been de

to prefetch and tolerate latency, and the DRAM interface and architecture has under
13
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many revisions. These revisions often followed multiple concurrent paths, some

evolutionary, some revolutionary. In most cases, the innovative portion is the interfac

access mechanism, while the DRAM core remains essentially unchanged. The

asynchronous evolution was conventional DRAM, to fast-page-mode (FPM), to exte

data-out (EDO) to burst-EDO (BEDO), each of which provided faster cycle times and

more bandwidth than the predecessor. All modern DRAM architectures are synchro

though Synchronous DRAM (SDRAM) typically refers to a subset of architectures. T

range of synchronous architectures encompasses single-data-rate (SDR) SDRAM, d

data-rate (DDR) SDRAM, DDR2, Rambus DRAM (RDRAM) and Direct Rambus DRA

(DRDRAM), four of which are currently in use, and DDR2 which is in development, a

likely to capture significant market share. Additional core enhancements, which may

applied to many, if not all, of these interface specifications include Virtual Channel (V

caching, Enhanced Memory System (EMS) caching and Fast-Cycle (FC) core pipeli

1980     1985     1990     1995    
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Figure 1.2: Processor and DRAM Speed Improvements

This charts places next to one another the rate of performance improvement for processors, and the rate
of change for two components of DRAM latency, row access latency and column access latency, from

1980 to 1998. The gap between the processor performance improvements and DRAM access time
improvements is commonly characterized as the memory gap or “memory wall”.

[Patterson98] [Przbylski96]
14
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Common improvements in these DRAM devices include some form of caching of re

sense amplifier data, pipelining of the unique bank requests, increased frequency, mu

smaller banks and/or interface changes like DDR signalling where unique data is dr

and received on both the rising and the falling edge of the clock. Even with these

significant redesigns, the cycle time - as measured by end-to-end access latency- h

continued to improve at a rate significantly lower than microprocessor performance. T

redesigns have been successful at improving bandwidth, but latency continues to be

constrained by the area impact and cost pressures on DRAM core architectures.

This is because the latency of these devices has been determined by the ana

characteristics of the DRAM array. While it is possible to impact these latencies, by

increasing the relative capacitance of the capacitors to the bit-lines, or similar mean

doing so requires increased area which drives the DRAM out of the niche it occupie

the memory hierarchy pyramid. The approaches of many of these novel DRAM

architectures attempt to increase the performance of the device, with minimal impact

area or cost, which would place them in competition with other technologies, such a

SRAM.

1.3 Terminology

DRAM architecture can be broken down into a number of component parts. T

interface specification, though a conceptually distinct communication protocol, is oft

bound with the architecture. The specification aspect which is most strictly the

architecture, and which any specification must contain, is the layout of the DRAM

devices, both internally, and how they may be used in conjunction to cover the

communication bus. This is typically represented as a block diagram of functional un

comprising the DRAM memory system. Lastly, the controller policies and protocols h

such an impact upon DRAM performance that they are frequently characterized as p

the architectural specification. These three components: 1) interface, 2) architecture

3) controller policies referred to in some set the DRAM architecture of a device, and

have significant impact upon the performance as well as dependence upon one ano
15
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An example of a communication protocol as part of a DRAM architecture is th

Direct Rambus Channel specification within the Direct Rambus Architecture

specification. There is no reason that this interface protocol could not be used with a

device other than a Direct Rambus device.

The interface communication protocol need not be tied to the architecture. An

example of this are Synchronous DRAM (SDRAM) devices designed such that the s

IC can be used with either a single data rate (SDR) or double data rate (DDR) interf

depending upon the bond-out decisions. Other architectures such as the fast cycle

(FCDRAM) also are available in multiple interface implementations. It may well be th

case that future DRAM device architectures will make less modification to the interfa

specification or policy decisions in an effort to increase re-use of the core layout.

1.4 Organization

The organization of this dissertation is as follows. Chapter 2 reviews previous

work and background information essential for understanding later chapters. Chapte

describes the variety of DRAM architectures proposed and available, some of which

be examined and some of which are described only for reference. Chapter 4 covers

methodologies used for the experiments described in this dissertation. Chapter 5 co

the simulation models for the DRAM architectures in more depth. Chapter 6 describe

results of experiments for a variety of specific DRAM characteristics. The performan

differences between the simulated DRAM architectures can result in a 75% reductio

access latency (128 Byte line) from a PC100 architecture, and a 34% reduction in

execution time from a PC100 architecture. More significant for the designers of futur

DRAM, the characteristics allowing these performance differences are examined in d

Chapter 7 concludes with a summary of the results inferred from the experiments, as

as a discussion of the unique contributions of this thesis. These contributions fall into t

primary categories, the comparison of DRAM architectures, the advancements in

methodology for DRAM architecture studies, and the examination of the characteristic

DRAM design which determine performance. The intent is that all chapters be read 

sequential order, but Chapters 6 and 7 truly contain the bulk of the information not
16
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available elsewhere. If examining this thesis purely for results, a reader can read the

Chapters in 1, 2, 6, 7 order and call upon Chapters 3-5 where required for reference
17
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Chapter 2

Background

A wide variety of novel format DRAM devices are becoming available on toda

market. These DRAM, some of which are backwards compatible with existing DRAM

organizations, encompass a large number of features intended to reduce latency or

increase bandwidth of the DRAM device. It is the aim of this thesis to identify which

enhancements to DRAM are valuable improvements to be integrated into memory

controller chip sets and which can justifiably be allowed to disappear as many other

specifications have, without a great loss to the computer system design community.

What are enhanced DRAM? This is a question which has a different answer 

each new product introduction by the DRAM manufacturers. For example consider t

evolution from conventional DRAM to Fast Page Mode (FPM) DRAM to Extended D

Output (EDO) DRAM to Burst EDO (BEDO) DRAM which was the last high volume

asynchronous DRAM specification. Following this evolution of asynchronous DRAM,

are currently in the midst of an evolution of SDRAM. Synchronous DRAM first becam

available at 50Mhz, then 66Mhz, currently the most common DRAM devices are PC

(100Mhz) SDRAM devices. Competing with this are DRDRAM devices (at 300 and 4

Mhz). The frequencies of SDRAM will continue to increase with almost certainly devic

produce at all of the following architectural specifications: PC133, PC2100(DDR266

PC2400(DDR300), DDR2, and cache enhanced SDRAM devices. What was yesterd

enhanced DRAM becomes tomorrow’s standard. Complete descriptions of each of t

DRAM technologies will be given in Section 3.3. Many of the new features available

enhanced DRAMs are not being utilized in current applications because the interface

sets are treating the enhanced DRAMs as conventional DRAMs. The cost advantag

mass production mean that many of the new enhanced DRAM features may never b
18
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widely utilized because the interface chip sets (i.e., memory controllers) produced wil

make use of the features of each specific DRAM architecture, in order to be compat

with as many DRAM manufacturers and organizations as possible.

The two main parameters that differentiate DRAM devices are the latency an

bandwidth observed when these devices are placed in equivalent systems running the

benchmarks. The two primary parameters of concern therefor are: 1) the number of

cycles that elapse between a processor’s request for data and the arrival of the first 

the requested data at the processor input pins (latency); and 2) the rate at which the

subsequent data lines are returned after the first line arrives (bandwidth). Figure 2.1 s

a rather generic example to illustrate the terminology. For the transaction shown in

Figure 2.1, the bank to be accessed is already precharged (as would be the case if 

controller was using a close-page-autoprecharge policy), and the latency of the acce

the time from the access to the response of the data. Latency can be specified as late

a specific access, or as the average latency of all accesses in a given workload. If w

assume that the above is a 2-2-2 PC100 SDRAM, with each interval being 10nS, the

latency of the device in Figure 2.1 access is 40nS. Bandwidth is typically described in

of two ways, as potential (upper bound) bandwidth or as utilized (effective) bandwidth

exploring utilized bandwidth, we will calculate the bandwidth of the interval below the

bus diagram. The utilized bandwidth of the above interface — assuming the interval

Figure 2.1: Latency vs. Bandwidth Terminology

Latency is measured in time, typically nanoSeconds,
Bandwidth is measured in data per time, typically MBytes/Sec. or GBytes/Sec.

The first two Data packets shown in the above figure are assumed to be from prior request

Row Acc Col AccAddress

Data Data

Latency of THIS access

DataDataData

Bandwidth over this interval = (Bytes transferred / interval of time)
19
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shown on the bottom is 7 time units and the center idle section of the data bus is 3 t

units — is going to be 4/7 of the potential bandwidth. If we again assume each inter

be a cycle in a PC100 DRAM, this would generate a utilized bandwidth, over this inter

of (4 * 8 bytes) / (7 * 10 nS) or 457 MBytes/Sec. Other characteristic parameters affec

performance for specific applications are: the degree that memory accesses can be

pipelined; the frequency with which the dynamic cells need to be refreshed; and can

(or more) bank be refreshed while another bank is being accessed. The extent to wh

these factors affect the system performance or the performance of the memory syst

depends upon the loading of the memory system.

One of the problems encountered when studying enhanced DRAM configura

is that different vendors give similar configurations different names. A prominent exam

of this is that Cache DRAM offered by Mitsubishi is often referred to as an “enhance

DRAM” but is completely different from the Enhanced DRAM being offered by Ramtro

To avoid ambiguity, Chapter 3 describes each of the types of DRAM which we will stu

the name by which we will refer to them, and their configuration or architectural specifi

2.1 Memory Architectures & Controller Schemes

The cores of DRAM devices, typically referred to as the array, are very simila

regardless of the device architecture. The differences in array implementation betwee

devices that we examine are most commonly in the array size, the number of arrays

device, the peripheral circuits extracting data from the array; or the interface betwee

device and the memory controller. In conventional desktop workstation system

architectures, the controller is located on the north bridge of the motherboard chipse

Only one architecture significantly changes the layout of the DRAM array, and this is

Fast Cycle (FCDRAM) which pipelines the array itself by placing latches into bit-line

and the wordlines[Fujitsu99]. This pipelining of the array into multiple segments has

advantageous consequence of reducing the capacitance of the bit lines, enabling fa

sense-amp detection of the bit values on a read. Other core enhancements are focu

upon changing the number of arrays or the size of the arrays, but the array itself rem

relatively unchanged.
20
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The smaller each array in the device is, the smaller the capacitance associated

the word line and the bit lines. The smaller the capacitance associated with each of 

signal paths, the shorter the access time of the array. This is the approach taken in 

embedded applications, such as the Mosys 1T-SRAM approach [Mosys00], or the IB

embedded DRAM architecture [IBM00b].

The unique DRAM architectures are discussed in Chapter 3, however there a

some system-level techniques which are used uniformly across all architectures. A fe

these techniques which require a redesign at the memory system level are presente

Section 2.2. These techniques preceded the development of modern DRAM archite

and were used to build high performance memory systems out of commodity lower

performance asynchronous DRAM devices, when that was the only commercially

available choice.

2.2 System-Level Performance Techniques

Devising new memory architectures is not the only method which can be use

improving memory response. Other techniques exist, both old and new, which attem

increase memory performance. It might be worth noting at this point that memory

performance can be characterized by a number of parameters, and therefor one me

architecture can not always be said to be absolutely superior to another except with re

to a single parameter or application. As we have seen, two of the most critical param

by which a memory can be characterized are latency and bandwidth. As has been

mentioned, when modifications are made to a memory systems in order to improve

performance with respect to an application, care must be taken to insure that the

modification does not degrade performance on other applications. The techniques ou

below have the intent of improving performance, but it is possible that they could hin

performance in certain unusual cases.

One of the motivations for this thesis, is an investigation into how the standar

interface, currently the interface of the SIMM, should be modified for higher memory

performance. Each of these techniques attempts to change the system level DRAM b
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such a way that increased performance is feasible. Each technique can be used

individually, or they may be used in conjunction.

2.2.1 Interleaved Address Space

Interleaving memory is a relatively old technique in computer architecture for

optimizing the use of the bus to memory, and decreasing access latencies. The ess

concept behind this technique is that a large number of banks of memory, operating

independently, can share the same transaction buses.

A multibanked memory structure without interleaving is shown in Figure 2.2.

Interleaving separates control between the many banks which compose the memory

[Ng92]. This allows faster average access times because the bank being accessed 

perform the requested operation, while other banks remain in the precharged state,

awaiting requests. In some cases, where the bus allows split-response transactions (s

modern SDRAM, and Rambus architectures), an interleaved memory system can al

multiple outstanding and concurrent transactions at the same time, to unique banks

using asynchronous memory devices. This combination acts in much the same way

multiple functional units do in a superscalar microprocessor such that each bank, or

functional unit, can perform an independent task during each cycle. Figure 2.3 shows

the interleaving changes the block diagram of the memory banks. This figure assum

Bank 0 Bank 1 Bank N-1 Bank N....................

Control

Address

Data

Figure 2.2: Non-Interleaved Memory Banks

Non-interleaved memory banks share all interface signals, address, data, and control. If devices in this
configuration have a dedicated bus, then the shared system has a bus which is dedicated.
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single address and data buses for all banks. More complex interleaved implementat

could utilize multiple address and data buses for higher theoretical bandwidth.

Interleaving with a split-response bus has many attractive effects, primarily the addr

and data buses can achieves a higher efficiency, which is one of the primary claims 

manufacturers of Section 3.3.11 — Multibanked DRAM (MDRAM), which uses a high

interleaved scheme [Hennesy90][Rau79].

Care must be taken to distinguish between memories which contain multiple ba

and memories which are interleaved. If a memory is interleaved it implies that the mem

contains multiple banks, but the converse is not true. It is possible for a memory with

multiple banks to share control among all banks, and in this case the multiple bank

memory is non-interleaved.

Interleaving is an idea which should certainly be employed in whatever DRAM

technology proves to be the successor for today’s conventional DRAM. Interleaving

allows full usage of the multiple banks of memory. However, because interleaving requ

significantly more control signals on the system level bus, this approach is becoming

common in all but the most expensive of system implementations.

The interleaved or partitioned address space, where all banks are identical a

function independently, has a number of interesting consequences. At runtime or bo

Bank 0 Bank 1 Bank N-1 Bank N....................

Data

Individual

Address

Control
Signals

Figure 2.3: Interleaved Memory Banks

Interleaved memory banks make use of individual control signals to share the address and data bus. In
this way a device which is designed with a dedicated interface can share interface signals
23
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time, if a bank is determined to be defective, the memory system can disable this ba

the memory system. This requires a controller with significant intelligence, but is ena

by a controller which contains the address of each individual bank within a volatile

register which is part of the bank address translation circuitry. This allows for a syste

continue functioning even if a hard error occurs in one of the DRAM devices. Other

possible applications of an interleaved address space involve partitioning the addres

space between a multiple processor system, or between applications. Either of thes

techniques would require significant co-design with the operating system. An interle

or partitioned address space is a more flexible, higher performance, higher cost des

The modern synchronous architectures are able to capture much of the performanc

significantly less cost.

2.2.2 Interleaved Bus Accesses

In addition to interleaving the address space, accesses can be interleaved in 

In Figure 2.3 the data buses prior to the MUX are non-interleaved, however the data

comprising the output of the MUXes is interleaved. Figure 2.4 shows a series of acc

which are interleaved in time. This style of bus is also referred to as a split request/res

bus as opposed to a dedicated bus. This approach does not inherently change the lat

the requests, however it does require that the request and responses be latched at t

devices to which the requests are directed. Interleaved bus accesses are becoming

common within modern DRAM, increasing the bandwidth across the DRAM bus with

placing significant additional costs upon the system level implementation. Beyond m

complex interface logic at the devices (as is the case for SDRAM and RDRAM) the

system level costs are no more than those for a dedicated bus.

ARequest

Data

B

B CA

C D

D

Figure 2.4: Interleaved Bus Accesses

Shown is a communication bus which allows a split request/response protocol. Since three accesses are
in-flight this bus has an interleaving factor of 3.
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Interleaving in older non-synchronous DRAM systems allows for a limited amo

of concurrency, supported by a memory controller that has independent address bu

each bank of DRAM devices, and that controls a MUX to share the data bus betwee

banks. This configuration is costly. It is the intent of synchronous memory systems t

enable a similar level of concurrency through the shared synchronous interface. In ord

achieve the highest amount of concurrency in a memory system, regardless of techn

accesses adjacent in time should be directed to unique banks. In interleaved memo

systems, this involves locating different portions of the memory space in different ba

It is possible to have interleaved bus accesses without interleaved address sp

This is essentially what the transition from asynchronous to synchronous DRAM

interface(s) has enabled. All synchronous DRAM have some level of support for

interleaved bus accesses, or access concurrency. This level of support varies by

architecture and will be described more in Chapter 3.

2.3 Prior Work

Recent interest in the primary memory system was motivated by observations

the memory system was becoming a major hindrance to system performance

[Wulf95][Sites96]. This processor-centric view meant that research has not concentr

upon how to redesign the DRAM architecture for improved performance, but rather h

to make a processor that tolerates increased primary memory access latencies.

There has been significant research on designing the CPU to tolerate long me

latencies. Many techniques have been proposed, and have to varying degrees been

successful. Both instruction and data prefetching, driven by either hardware compon

or explicit software prefetch instructions have increased the lead time of the memory

access, reducing the associated penalty when the load misses in upper level cache

[Callahan91] [Fu91] [Klaiber91] [Mowry92] [Dundas98] [Farkas97] [Roth99]. Out of

order execution allows execution of instruction B to bypass or precede execution of

instruction A, though the ordering of these two instructions is A->B. This allows

functional units to remain busy and work to be completed even when a preceding

instruction is waiting on an outstanding load [Tomasulo67] [Hwu87] [Sohi87]. Making
25
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use of the parallelism available in the memory access stream is a common trait of ma

the techniques for tolerating memory latencies, as well as the new DRAM architecture

order to enable parallelism in the memory stream, a non-blocking memory system

including lock-up free caches is necessary [Kroft81] [Sohi91]. CPUs have attempted

avoid the latency associated with data loads by hoisting loads out of a conditional co

segment to earlier in the execution stream, and executing them speculatively based

the condition of the code segment. This requires the ability to squash incorrect

speculation, and can provide performance advantages, especially in applications wh

have low levels of parallelism and long dependence chains [Rogers92] [Reinman98

Prefetching of memory values reduces the impact of memory access latency upon t

superscalar microprocessor. One method of prefetching requires predicting data add

before the effective address can be resolved, due to data dependencies. This techniq

been shown to be effective in reducing the impact of long memory access latencies

[Cheng98] [Roth98] [Beckerman99]. If the prediction of an address stream is possib

and the microprocessor is capable of recovering from a misprediction, short cutting 

memory access of the prediction results in a technique called data value prediction.

technique, like all prediction techniques, requires recovery methods for misprediction

has again been shown to significantly reduce the effect of long memory access laten

upon the superscalar microprocessor [Lipasti96] [Sazeides97] [Wang97] [Calder99].

technique closer to the DRAM level for reducing the average observed latency is mem

request reordering at the memory-controller level. This technique has proven to be

successful in reducing latency, even within a fixed DRAM architecture [McKee95]

[McKee96] [Swanson98] [Carter99] [Tang99]. Finally, we are beginning to see signific

changes to DRAM architecture in an attempt to address the same issue from the othe

of the “Wall”. Many of the novel DRAM architectures proposed by industry are examin

in depth in Chapter 3. Examples include the novel interface and bank architecture o

Direct Rambus architecture — Section 3.3.9 [Rambus99], the cache enhanced

architectures: Enhanced Memory Systems (EMS) — Section 3.4.2 [EMS00] and Vir

Channel (VC) — Section 3.4.3 [NEC99], and the partitioned DRAM array technology

Fast-Cycle DRAM (FCDRAM) — Section 3.3.10 [Fujitsu99] proposed by Fujitsu. Th

are all evidence that now, in addition to the microprocessor being designed to tolera
26



nce

 of

been

 only

 cache

esigns

p-free

f a

ort

ing

g the

of

 to

ance

pport

97]

has

s

close

ues if

d as

ich

r this
latency, DRAM manufacturers are seeking design changes to increase bandwidth,

decrease latency, or in some way reduce the impact of memory accesses upon

microprocessor performance.

Note that many of these mechanisms exploit concurrency to improve performa

- in the long run, parallelism in the memory system is likely to achieve the same sort

performance gains as parallelism in instruction execution (the benefits of which have

quite clearly demonstrated over the years). Older, non-synchronous DRAM systems

service a single memory request at a time. Because older processors stall on every

miss, this arrangement poses no significant problems. However, modern processor d

have added support for concurrency in the form of split transaction buses and locku

caches [Kroft81] [Sohi91]. As a result, modern systems are capable of performing

multiple operations in parallel as well as performing useful work during the servicing o

cache miss. To fully exploit this feature, modern DRAM memory controllers must supp

some degree of concurrency: that is, they must be able to handle multiple, overlapp

requests, otherwise the processor’s overlapping memory requests will stall, renderin

non-blocking cache useless. Today’s most advanced DRAMs support some degree 

concurrency directly—this is usually on the order of two to three concurrent requests

independent banks which can be pipelined. What is not known is how much perform

this arrangement buys, and what degree of concurrency the DRAM system must su

to obtain reasonable results.

Most work in the area of DRAM has been done by industrial groups who are

involved in the design, manufacture or application of DRAM devices [EMS00] [Farkas

[Fujitsu99] [Mosys94] [Rambus99] [Sites96] [Woo00]. Industry, unfortunately, is often

hesitant to publish results, and thus we may never see much of the research which 

been done in this area. For example, both VIA and IBM use mechanisms for addres

remapping or hashing (see Section 3.5.4) in their memory controllers, but do not dis

the specifics of these mechanisms, nor the comparative performance of the techniq

such results exists. The research of industry, as valuable as it may be, is often burie

proprietary knowledge despite its value to the community as a whole.

Exceptions to this silence from industrial sources are those organizations wh

are trying to effect a change upon the industry, and thus must justify this change. Fo
27
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reason, Rambus, Enhanced Memory Systems, Mosys, and Fujitsu have all publishe

technical, or white papers about their own technologies [Rambus93][EMS00][Mosys

[Fujitsu00]. Some of these include comparative results, but it is not a a surprise that when

this is the case, these results typically favor the architecture of the publishing organiza

Additionally, standards organizations, such as JEDEC or IEEE have published

specifications for their respective standards, some of which encompass the DRAM

domain, such as [JEDEC00] [IEEE1596.4]. Unfortunately, these standards, while

voluminous and highly technical, rarely contain the data used to guide the specificat

process.

2.4 Current Research

Some work has been done on DRAM in academe, but this has only been rec

predominantly since attention was called to the growing gap between processor and

DRAM speeds or “Memory Wall” [Wulf95]. Prior to the public appeal to examine the

problem of memory latency, a significant amount of research was being done upon

microprocessor architectures. Due to the inertia involved in academic research proje

the first examinations of methods for coping with memory latency were microarchitect

techniques for tolerating latency. Much of this work is discussed in Section 2.3. Follow

this, some techniques for decreasing the DRAM latency and addressing this perform

impact in the memory system have been performed.

Some of the work presented in this thesis has been presented in other forum

the past years [Cuppu99] [Davis00a] [Davis00b]. This research on DRAM architectu

has been initiated, and is continuing to be worked upon by Vinodh Cuppu, Brian Dav

Bruce Jacob and Trevor Mudge. This joint work between researchers at multiple camp

will continue. There is no foreseeable end to the problems being generated by a uni

memory system attached to one or more high-bandwidth processors. This will provid

breadth of research problems, as described in Section 7.3, to occupy this research g

for years to come.

The Impulse project at the University of Utah [Carter99] is one of the leading

examples of work being done in the area of primary memory system. The research 
28
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done in this group is focussed upon the memory controller architecture, enhancemen

policies rather than DRAM architectures. This allows the results to be portable acros

rapidly changing DRAM landscape.

Beyond this, industry continues to innovate and propose new DRAM technolo

at a rapid pace [Cataldo00][Dipert00]. Balloting continues on potential changes to the

generation of JEDEC DDR specifications [Peters00]. There is an entire community o

industry and academic personnel committed to generating the best solid-state memo

give their future devices the highest possible memory system performance. There is

reason to believe that the newfound exploration of memory technology architectures

decrease any time in the near future.
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Chapter 3

DRAM Architectures & Controller Policies

The acronym RAM refers to a Random Access Memory. RAM that uses a sin

transistor-capacitor pair for each binary value (bit) stored is referred to as a Dynamic

Random Access Memory or DRAM. This circuit is dynamic because the capacitor m

be periodically refreshed for the information to be maintained. The use of the RAM

acronym in describing DRAM may be misleading, as we will see later, but it was coine

distinguish it from early drum and tape memories. The inherent refresh requirement

DRAM is in contrast to Static RAM (SRAM) which will retain a value so long as the

power rails of the circuit remain active. It is also in contrast to the class of non-volati

memories, drum, tape, eeprom, flash, etc., which maintain values in the absence of 

power supply. An SRAM however requires more transistors for each bit, meaning th

fewer SRAM data bits can be stored per unit area than DRAM bits. For this reason, SR

is typically used only where speed is a premium, and DRAM is used for the larger por

of data storage.

DRAM, as the most cost effective solid-state storage device, is used in a wide

variety of applications, from embedded appliances to the largest of supercomputers. T

“computers” span the spectrum of servers, workstations, desktops, notebooks, inter

appliance, and game boxes. Each has unique set of design requirements for their

respective memory systems. The variance in design requirements becomes even la

when graphics cards, routers and switches, mobile electronics, games and all other

electronic devices using DRAM are included. In 1999 only 67% of DRAM produced w

used by computer systems [Woo00]. DRAM must be targeted at a wide variance of

application, not exclusively at computer systems. Because DRAM is a commodity pa

and the costs are largely based upon volumes, it is attractive to have a single DRAM
30
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solution which applies equally well to all applications. Clearly, whenever a single too

device is crafted for multiple uses, that tool may not perform as well as a domain sp

solution. We intend to examine the application space of DRAM in conjunction with th

current and near-term DRAM architectures, focusing on those elements which favor

architecture with respect to specific applications.

3.1 Memory Controller / DRAM Relationship

The term memory controller is somewhat ambiguous, as there are both hardw

and software functional blocks which serve as controller for some level of the memo

hierarchy. The Memory Management reference [Xanalys00] states that memory

management can be divided into three areas: (1) Memory Management Hardware, (

Operating System memory management and (3) Application memory management. W

we refer to the memory management implemented by the memory controller, a hard

component, we are referring to the first area. The second and third areas are eleme

software systems for managing memory. In most modern desktop machines, the me

controller is a finite state machine located in a companion device to the microproces

This is largely because the number of pins required for the interfaces prohibits the

controller functional block from being placed on the microprocessor, though this

prohibition is being relaxed by modern technologies such as the Direct Rambus Cha

and packages with larger pin-counts.

The memory controller — a functional block, commonly located in the north-

bridge of a motherboard chipset - has many roles. The controller must guarantee tha

row within each DRAM bank is refreshed within each refresh period. For example, th

IBM0364164C PC100 SDRAM must receive 4096 refresh cycles/64ms period. This

corresponds to the number of rows in a bank (the same row in all banks in the devic

refreshed simultaneously) divided by a time period determined by the capacitance a

leakage of each of the capacitors comprising the DRAM array [IBM98]. Fortunately th

devices are designed such that a single refresh command can perform the required r

for all banks concurrently. If this were not the case, the number of refresh cycles wo

increase linearly with the amount of memory in the system and would begin to have
31
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serious impact upon system performance. A second role of the controller is to be a b

between components performing memory requests and the DRAM devices. If there 

many sources of DRAM requests (multiple processors in an SMP, AGP graphics, DM

I/O devices, etc.) the memory controller functions as an arbiter between these devic

allocating a limited resource, the DRAM bus, to the device(s) based upon priority or

policy.

In playing each of these roles, the controller designer commonly has a variety

methods which can be chosen — typically referred to as policies. It is difficult to disc

DRAM architectures in isolation from controller policies. Two dominant controller

policies are the open-page and close-page-autoprecharge controller policies. These t

well as many additional policies, are discussed in Section 6.5. Different DRAM

architectures are best suited to different applications [Davis00b]. The choice of polici

also dependent upon architecture and application. Both DRAM architectures and me

controller policies are examined in this chapter. These two aspects of the memory s

are highly dependent upon one another, in that the choice of controller policy is depen

upon the choice of DRAM architecture. For example, the use of an open-page policy

any of the cached architectures provides no additional performance over the cachin

structures, and eliminates the ability to hide the precharge of a page-miss access.

3.2 Commonalities of DRAM

Dynamic Random Access Memories (DRAM) are based upon circuits which h

a single capacitor-transistor pair for each bit of information stored in the device. With

devices currently available with 256 Mbits, and fabricated in laboratories with 1 Gbits,

capacity and scale of these modern devices is enormous. As noted earlier, these cir

are characterized as dynamic because if they are not periodically refreshed, the data

capacitors will be lost due to transistor leakage.

All DRAM have an array of these single bit cells, which are addressed via the

(or word) lines and from which the data is accessed via the bit lines. This array is com

among all DRAM devices, but the number of arrays which are located in each devic

design/performance trade-off which varies from architecture to architecture. Smaller
32
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arrays are generally lower latency because of the lower capacitance associated with

word and bit lines. A larger number of arrays for a fixed address space will generally y

a higher level of parallelism because of the limitation on pipelining consecutive acce

to the same array or bank. Trying to improve performance either through increasing

number of arrays in the device, or by reducing the size of the arrays in the device wi

increase the amount of die area per bit required for the layout of the device. Increasin

area per bit of the device increases the cost per bit of the device, and thus we have 

situation where cost and performance correlate positively, while it is advantageous t

increase performance and decrease cost.

All DRAM accesses have at least three common phases through which the a

must proceed. These phases are precharge, row access and column access. Figure

shows how these phases appear in the timing diagram for a hypothetical DRAM. In

precharge, all word lines are deactivated, and the bit lines are driven to a median vo

In row access (also known as activate), a single word line is activated, the capacitor

that row are allowed to discharge pulling the bit lines either lower or higher, a chang

which is sensed and amplified by the sense-amps. Finally, in the column access pha

subset of the data required from the entire row (or page) being held in the sense-am

selected by the column decoder. Each of these phases has a characteristic timing

Figure 3.1: DRAM Array - Cell Placement

At the junction of each bit and word line, a cell like the one on the right with a single transistor capacitor
pair is located
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parameter. These phases have different symbolic names depending upon the techn

Typically, however they are described as tRP — precharge time, tRCD —RAS toCAS

delay, and CL —CAS latency or column access time. These are the symbolic names

will use for the remainder of this thesis. All three of these phases must take place for

and every DRAM access which occurs, but it is possible to amortize the precharge a

row access times across multiple accesses, as well as hide the precharge time in ce

architectures. Reducing the average observed latency in a DRAM device focusses u

hiding these access phases when possible.

DRAM have high yield requirements because of the small price margins. For 

reason DRAM devices typically include some redundant bits in the architecture such

if a single cell or line fails, the device can still be configured to have full functionality, a

thus be sold rather than scrapped. One of the reasons that smaller arrays incur area

penalties is that as the arrays are reduced in size, the absolute number of redundan

must be increased, and therefor the percentage of area which is devoted to these red

bits is increased. Additionally small arrays generally result in a larger number of overh

circuits such as sense-amplifiers and buffers per storage cell than do larger arrays w

equivalent capacity.

In discussing DRAM architectures, frequent references will be made to die ar

and the impact upon die area of a specific technique. Device cost is inversely related

area exponentiated to a constant power, thus any technique which increase area inc

cost at a dramatic rate [Patterson98]. The tight price margins on DRAM imply that a

change which increases die area may price the device out of the marketplace. Curre

Figure 3.2: Timing Phases of a DRAM Access

This is a highly simplified diagram for a hypothetical DRAM access used to illustrate the three phases
which must comprise all DRAM accesses.

Precharge Row Acc Col AccAddress

Data Data

tRP tRCD CL
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only speciality DRAM such as graphics specific DRAM are successful at justifying

increased costs for increased device performance.

3.3 Dynamic Random Access Memories (DRAM)

Memory constructed from ferrite cores was first demonstrated in a laboratory

environment in 1948 by An Wang at the Harvard Computer Lab. Following this

demonstration, so called “core memory“ was first used in Project Whirlwind circa 19

53. The single transistor Dynamic Random Access Memory (DRAM) was invented, 

Dr. Robert H. Dennard, a Fellow at the IBM Thomas J. Watson Research Center, in 1

and subsequently patented by Dr. Dennard and IBM in 1968. In 1970 Intel began

production of the 1103, the first commercially available DRAM, a semiconductor dev

using PMOS logic circuits to store 1 Kilobit. By the mid to late 1970s the use of core

memory was limited to unique applications such as the space shuttle where non-vol

was important. DRAM devices are being manufactured today in much the same way

they were in 1970, though with much smaller design rules and much greater densitie

the modern era of computing, DRAM has served as the primary memory technology

choice.

Initially, DRAM devices were designed with a minimum of I/O pins because th

cost of chip manufacture was largely dominated by the number of I/O pins required by

package [Hennesy96]. During this same phase of development DRAM chips quite o

had but a single data I/O pin, requiring eight chips for a Byte-wide bus or sixteen chips

a dual-Byte bus. This packaging model was sufficient when DRAM device sizes wer

Kilobits, however as device sizes have grown, to 64 Mbit with 256 Mbit available in

2Q2000, the number of data designated I/O pins has increased to eight or sixteen p

device.

Given the variety of device capacities and I/O, system designers have sought

means to use a variety of devices transparently within a system. This led to the

development of the expandable primary memory system with sockets, and more rec

slots holding removable carriers containing the DRAM devices. This model was

propagated by the use of standardized Single In-line Memory Modules (SIMMs) whi
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integrated multiple DRAM chips into a standardized package, and subsequently DIM

(Dual In-line Memory Modules) and RIMMs (Rambus In-line Memory Modules). The

initial constraints limiting the number of I/O in DRAM design have some lingering affec

upon the DRAM being produced even today, despite the fact that these constraints m

longer hold true. This consequence can be seen most immediately in the fact that th

address pins for most DRAM are still multiplexed, and the width of the data bus on a

conventional DRAM is only now beginning to exceed a single Byte. Recently, as the

integration levels have increased, it is no longer the case that I/O dominates manufac

costs. As a consequence, pin-out has increased, primarily in the data I/O where up 

data pins are used for some modern DRAM chips. This makes the generation of a w

data bus more feasible at lower memory size configurations, because the number o

required for the bus size does not drive up the smallest possible memory configurati

Bandwidth

Bandwidth alone cannot solve the problem characterized as the memory wal

Some performance loss results from the processor core sitting idle during the DRAM

latency for critical data before it can continue execution [Cuppu99]. Bandwidth can b

increased for any interface or architecture by increasing the bus width or replicating

channel. Thus we see a proposal for the next generation Alpha microprocessor that

contains four DRDRAM channels for a potential primary memory bandwidth of 6.4 GB

[Gwennap98]. However, for a fixed size working set and reasonable latency, an inte

with higher bandwidth is going to be utilized a lower percentage of the time, meanin

access issued during that time is less likely to be queued up waiting for prior requests

serviced. In this way bandwidth can have some effect upon observed processor late

There are applications — primarily streaming applications — that are bandwidth lim

due to access pattern. For these applications, and due to the reduced queuing laten

observed with increased bandwidth, increasing the bandwidth to the primary memor

system will increase performance. The downside to increasing the bandwidth by

expanding bus width is an increase in system cost and the fact that memory must be

in larger quantities. Increasing the bus speed will also increase the bandwidth, withou

width costs, but results in higher complexity and higher power consumption.
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Access Concurrency

One of the questions we seek to answer is how much performance may impr

with support for concurrency in the DRAM system, and what degree of concurrency 

DRAM system must support to obtain reasonable results. There have been no publi

limit studies that determine how much DRAM-level concurrency a modern CPU can

exploit, and there has been no published comparison between DRAM systems with 

systems without support for multiple simultaneous transactions. What has been publ

suggests that there are gains to be had exploiting concurrency at the DRAM level, but

require sophisticated hardware such as MSHRs or some other mechanism for supp

multiple outstanding memory requests, and resolving the associated dependencies

[Cuppu99].

In the following sections, we will discuss 1) architectural level configurations, 

interface specifications, 3) array enhancement techniques, 4) cache enhancement

techniques, and combinations of the above. While each of these approaches to imp

DRAM performance have been referred to as a DRAM architecture enhancement, it

important to differentiate between them, in that some combinations of multiple

approaches are possible. Section 3.3.1 — Conventional Asynchronous DRAM throu

Section 3.3.9 — Direct Rambus (DRDRAM) could be classified as both architecture

interface specifications. Section 3.3.10 — FCDRAM and Section 3.3.11 — Multiban

DRAM (MDRAM) are both core improvement techniques which could be used with m

DRAM implementations. These enhancements require interface modifications for opt

performance. Section 3.4.1 — Cache DRAM (CDRAM) through Section 3.4.3 — Virtu

Channel DRAM (VC DRAM) are proposals for integration of SRAM cache onto the

DRAM device with the intent of increasing the performance of that device. Not all of

these architectures will be simulated, but they will all be discussed with regard to wh

characteristics provide improved performance, and at what cost.

3.3.1 Conventional Asynchronous DRAM

Conventional DRAM follows the description given in Section 3.3, without any 

the enhancements that differentiate the DRAM which will be described in the subseq

sections. It is convenient that the DRAM architecture which is chronologically first is a
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the most basic in function and simplest to understand. Conventional DRAM is no lon

manufactured, but most modern asynchronous DRAM are backwards compatible to

specification. This is because it takes very little die area to add the additional feature

found on updated asynchronous DRAM.

Conventional DRAM use a split addressing mechanism, but with a dedicated

The split addressing mechanism means that row and column address components a

separately at two different times on the bus. This technique, still used in the majority

DRAM in production, is a carryover from the days when chip I/O was the price

determining factor. Nevertheless, this mechanism has worked well with the DRAM

architecture. In standard DRAM addressing, the address bus is multiplexed between

two components, row and column. In order to tell the DRAM chip core which (if either)

these signals is being driven on the address bus, the row and column address strob

signals,RAS andCAS respectively, are asserted, allowing the appropriate values to b

latched by the DRAM core. This addressing scheme matches the DRAM architectur

because in typical DRAM core designs, half of the address (the row value) is require

significant period of time before the other half of the address (the column value). This

consequence of the fact that a DRAM is typically configured as an array as shown in

Figure 3.3, “Conventional DRAM architecture”. In this arrangement, the first step of 

access is to apply the row bits of the address, causing the retrieval of a complete row

the memory array. It is not until these row values from the array have propagated dow

bit lines to the sense amps, and the sense amps have stable output that the column

are selected. The column component of the address is required for the column deco

MUXes, which follow the sense amps, to select the appropriate data and drive it to t

output pins. Therefor, the multiplexed address bus is not necessarily a critical limitatio

the cycle time of DRAM [Ng92].

The primary consequence of the dynamic nature of DRAM is that for a certain

quantum of every unit time, the memory array is not available because the internal cir

must be periodically recharged. With early DRAM circuits, the refresh was executed

set sequence or combination of inputs to the DRAM. This meant that the memory

controller was responsible for refreshing the circuit, or the memory contents could be

This externally generated refresh has the positive attribute that the controller can ex
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refresh cycles when it knows that there are no memory requests pending. More rece

DRAMs have started to integrate internal refresh capability, along with the compatibili

for externally generated refresh onto the DRAM die. This choice allows for external

refresh, with knowledge about pending requests where the controller is intelligent en

to take advantage of this capability, with the convenience of internally managed refres

simplicity in the memory controller.

Figure 3.3, “Conventional DRAM architecture,” on page 39 is a highly simplifie

version of an actual implementation. Signals and circuitry not explicitly shown will

become more apparent as this circuit is compared to various enhanced DRAM.

3.3.2 Fast-Page Mode (FPM) DRAM

Fast-Page mode DRAM was the first enhancement to conventional asynchro

DRAM. The primary difference between a fast-page mode DRAM and a conventiona

asynchronous DRAM is that in a conventional DRAM, even if two sequential access
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Figure 3.3: Conventional DRAM architecture

The block diagram for a conventional DRAM shows buffers or drivers in a number of locations, but the key
item to note is there are no clocked latches or circuits - control is maintained over all internal signals by the

memory controller
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share the same row bits in the address, theRAS signal must be de-asserted and re-asser

providing the same values. A large majority of observed accesses are to the same ro

to sequential data accesses or large cache line fills. In such cases, this extra set of

transitions in theRAS signals adds time to the overall access profile. In the case of a 

page mode DRAM, so long as the row component of the address remains constant,

RAS signal may remain asserted, allowing for a faster access cycle in the case of

subsequent accesses to addresses with identical row component addresses [Ng92]

The change to the DRAM architecture which enables the fast-page mode oper

is a simple modification. The sense amps must hold a value through a change on th

address inputs and column address latch, while the row address latch values remain

This requires modification to clock signals and the row and column decoders. The

modification facilitates accepting and propagating a change in column address after

transition inCAS, without a preceding transition inRAS. There would be no change in the

block diagram from the one shown in Figure 3.3, “Conventional DRAM architecture,”

page 39. The impact of this modification on the die area of a conventional DRAM is

insignificant. Because the area impact is insignificant, DRAM manufacturers can pro

FPM DRAM and market them as either FPM DRAM or conventional DRAM and take

advantage of the cost savings inherent in mass production. This statement is also tru

number of the other modified architectures for DRAM which do not involve placing

significant cache on the DRAM die.

3.3.3 Extended Data Output (EDO) DRAM

EDO DRAM or Extended Data Output DRAM is sometimes referred to as hyp

page mode DRAM. The difference between a conventional DRAM and an EDO DRA

are again very small, but in this case there are circuits to be added to the die to facil

the modification. To create an EDO DRAM, add to the conventional DRAM configurat

an additional latch between the sense-amps and the outputs of the DRAM package.

latch holds output pin state and permits theCAS to return high much more rapidly,

allowing the memory array to begin precharging faster, in preparation for the subseq

access [Bursky95]. In addition to allowing the precharge to begin faster, the latch in 

output path also allows the data on the outputs of the DRAM circuit to remain valid f
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longer into the next clock phase. This makes it easier to meet hold constraints on th

latches. Figure 3.4 shows how the addition of latches following the column decoders i

devices allows EDO DRAM to continue to maintain valid data even after theCAS line has

been deasserted, and the retrieval of subsequent data from the open page has begu

So far as the block diagram of an EDO DRAM is concerned, the only

modifications made from the block diagram for a conventional DRAM are those show

Figure 3.5. These modifications reflect the addition of a latching circuit in the path fr

the column decoder to the data outputs, and an additional signal from the control circ

required to strobe that latch.

3.3.4 Burst EDO DRAM

Burst EDO DRAM are designed similarly to the EDO DRAM shown in Figure 3

but include an internal counter holding the column address. This allows a toggle of t

CAS line to step through the sequence programmed into the burst counter. This in tu

provides for the possibility of higher bandwidth data transfers [Bursky95] without eve

requiring access to the memory array. The outputs of the sense amps are used as a

localized cache of the same width as one row in the memory array.

The modifications which would be required to an EDO DRAM in order to enabl

bursting capability are the addition of a burst counter into the column address path,

changes to the clocking and refresh circuitry to deal with the addition of the burst cou

Figure 3.4: EDO Page-Mode Read Interface Timing

This diagram shows the increased overlap between valid data and the column for the subsequent access

Row ColAddress

Data

CAS

RAS

Col

Data Data

tCAC

tRAC
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and an adder to facilitate toggling through sequential addresses. A block diagram of

Burst EDO Dram architecture is shown in Figure 3.6. This figure shows the addition of

burst counter, as well as the fact that the address going to the column decoder can 

from either the burst counter, or the column buffer. These may be one register comb

both functions. The burst EDO DRAM requires a few additional interface pins as we

differentiate between a standard transaction and a burst transaction. In this configur

and in all burst EDO DRAM currently available, a burst cannot cross a row address

boundary. A change between row addresses requires a transition on theRAS signal, which

effectively forces the circuit to exit the burst mode.

3.3.5 SDR Synchronous DRAM (SDRAM)

Synchronous DRAM, as the name implies, requires a clock for usage, unlike 

DRAM previously discussed which are all asynchronous. They may contain latched

circuitry, however the control signals are derived from interface signals, and only ref
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Figure 3.5: Extended Data Out (EDO) DRAM block diagram

The primary change from a Fast-Page-Mode Asynchronous DRAM to a EDO Asynchronous DRAM is the
addition of latches after the column decoder which allows the data to continue to be driven on the output bus,

even while the array is being precharged, or new data is being selected by the column decoder
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serves as an upper bound on the access timings. One of the disadvantages of movi

synchronous DRAM is that access requests must be presented to the DRAM at a sp

point in the clock cycle. This means that the data is not necessarily available at a sp

latency following the request, as is the case with asynchronous designs. The latency

request is variable and depends when in the DRAM cycle the request arrives at the DR

input pins [Jones92].

The synchronous DRAM does not have any inherent characteristics which m

the core timings (tRP, tRCD, CL) any lower than those of an asynchronous DRAM

equivalent in size and process. SDRAM makes advances in performance by the

concurrency and bandwidth of the interface. In addition, because the control signals

SDRAM functional blocks are internally generated, and based off of an interface clo

the latencies are less than those for asynchronous DRAM which require driving the

control signals across the entire length (and load) of a shared motherboard bus. The
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Figure 3.6: Burst EDO DRAM block diagram

The primary change between an EDO and Burst EDO asynchronous DRAM is the addition of a burst counter
to allow a single CAS command to initiate multiple responses on the data bus.
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diagram for Synchronous DRAM, Figure 3.7. has a number of changes from the pre

block diagrams. The most apparent of these is the relocation of the sense-amps and

drivers to the opposite end of the memory array. Because of the manner in which th

circuits function, essentially just driving or sensing minor charge changes in the wor

lines and amplifying them, it is irrelevant at which end of the circuit they are located. T

block diagrams given in this document are general overviews, each vendor may choo

structure their products in a different layout. The differences which are of interest in

Figure 3.7 are the facts that the control signal generator now has a clock coming int

and that all of the control signals to the decoders, I/O buffers, and circuit componen

shown originate at the control signal generator. The external clock simplifies the

generation of many of these signals, and the regular timing of the control signals mak

design of the memory array less complex [Mitsubishi95a].
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Figure 3.7: Synchronous DRAM block diagram

Synchronous DRAM require the addition of control logic because the off-chip interface can now be
shared between multiple accesses. Buffers are also required to enable pipelined data to be driven onto

the data portion of the interface.
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The SDRAM interface is the first significant divergence from the asynchronou

interface. Figure 3.8 shows the interface to a PC100 SDR SDRAM device. The

immediately apparent difference between an asynchronous DRAM and a synchrono

DRAM is the presence of the clock in the interface. The most significant result of thi

clock is that the interface must no longer be dedicated to a single transaction from

initiation of a request to completion of a request. As is shown in Figure 3.8 a request

be initiated on the address lines, and prior to the response to this request on the data

a subsequent request can be initiated on the address lines. This has the effect of

interleaving the bus accesses to achieve access concurrency as is described in Sec

2.2.2. SDRAM maintains the ability to burst out multiple bus cycles of data, as was

introduced in the BEDO asynchronous DRAM. For example, a PC100 SDRAM devic

must be able to perform accesses of 1, 2, 4, 8, or a full-page data in order to conform

standard [IBM98].

Synchronous DRAM are currently available at clock speeds from 66 MHZ to 1

MHz, implying a clock period on the DRAM bus of between 15nS and 6.67nS

respectively. This initially appears to be a substantial improvement over asynchrono

DRAM, which are available in the range of 50-80 nS. However, synchronous DRAM

require multiple cycles (precise number depending upon the state of the device) to

complete a transaction, and incur additional synchronization penalties if the access 

Clock

SDR SDRAM (PC133: 2-2-2)
R Ca Cb

a0 a1 a2 a3 b0 b1 b2 b3

Address

Data

tRCD CL CL

Figure 3.8: SDR SDRAM Timing Diagram

This diagram shows accesses to two unique columns of a single page. Precharge is assumed to happen
prior to this timing diagram. tRCD, the RAS to CAS delay, is 2 cycles, as well as the CAS-latency.
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not arrive at the interface precisely at the start of a cycle. Thus the advantages of

Synchronous DRAM are overemphasized by these figures.

3.3.6 DDR SDRAM

Double Data Rate (DDR) SDRAM is different from SDR in that unique data is

driven and sampled at both the rising and falling edges of the clock signal. This effecti

doubles the data bandwidth of the bus versus an SDR SDRAM running at the same

frequency. DDR266 devices are very similar to SDR SDRAM in all other characteris

Figure 3.9 shows how DDR allows unique data to be transmitted on both the rising an

falling edges of the interface clock. The interface clock for DDR SDRAM is a different

signal as opposed to the single signal clock of the SDR SDRAM interface. Beyond t

SDR SDRAM and DDR SDRAM use the same signalling technology, the same inter

specification, and similar pinouts on the DIMM carriers. The JEDEC specification for

DDR266 devices provides for a number of “CAS-latency” speed grades. TheCAS latency

(CL) determines the number of clock cycles between the column portion of the addr

being driven onto the address signals of the bus and the data requested being drive

Clock

SDR SDRAM (PC133: 2-2-2)

DDR SDRAM (PC2100: 2-2-2)

R Ca Cb

R Ca Cb

a3a1 a2a0 b3b1 b2b0

a0 a1 a2 a3 b0 b1 b2 b3

Address

Data

Address

Data

tRCD CL

tRCD

CL

CL CL

Figure 3.9: DDR SDRAM Read Timing Diagram

This figure compares the DDR and SDR DRAM interfaces. The potential bandwidth of the DDR interface
is twice that of the SDR interface, but the latencies are very similar.
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the data signal. Chipsets are currently under development for DDR266 SDRAM and

expected to reach the market in 4Q2000. DRAM manufacturers are confident in the

ability to yield on DDR SDRAM parts which will run at 133 MHz, 150 MHz, and 166

MHz. These devices will be referred to as DDR266, DDR300 and DDR333 respectiv

while the DIMMs carrying these devices will be marketed under the bandwidth

designations of PC2100, PC2400 and PC2600 respectively [Peters00].

3.3.7 DDR2

The DDR2 specification under development by the JEDEC 42.3 Future DRAM

Task Group is intended to be the follow-on device specification to DDR SDRAM. Wh

DDR2 will have a new pin-interface, and signalling method (SSTL1), it will leverage

much of the existing engineering behind current SDRAM. The initial speed for DDR2

parts will be 200 MHz in a bused environment, and 300Mhz in a point-to-point

application, with data transitioning on both edges of the clock. Experiments discusse

Chapter 6 will focus upon the bused environment, as that is the structure of the mem

system most commonly used in a general purpose computer. Other significant chan

from past SDRAM architectures are: a fixed burst length of 4 data cycles, a programm

additive latency for enabling posted-CAS transactions, a write latency not equal to one,

differential clock signaling and micro-BGA packaging. These changes will be describ

in more detail further into this section. The DDR2 specification is still subject to revis

as of this writing, but the information contained here is based upon the most recent 

for DDR2 devices and conversations with JEDEC members.

The DDR2 specification is an attempt to provide a common design target for m

DRAM vendors and system architects. It is hoped that early standardization will minim

design fragmentation and thus benefit the consumer through lower prices. While it

contains significant changes, DDR2 utilizes much of the same architecture of the ea

SDRAM. However, there are some notable differences that are not simply derived fr

1. SSTL - Stub Series Terminated Logic: Described in JEDEC standard No. 8 Series, Low Voltage
Interface Standards; JESD8-8 (3.3v) and JESD8-9 (2.5v) available at www.jedec.org
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evolution of existing SDRAM, but are intended to provide better resource utilization 

lower latencies in the DDR2 devices.

DDR2 with a 64 bit wide desktop bus, switching data signals at 400 Mhz, has

potential bandwidth of 3.2 GB/s; this surpasses any current DRAM architecture. Fur

if server bus widths of 256 bits remain constant when DDR2 is introduced to the ser

architecture, potential bandwidths of 12.8 GB/s will force the re-design of the proces

front-side bus to support this throughput.

DDR2 has support for concurrency in the DRAM system, but no more so than

other SDRAM architectures. Additionally, since DDR2 is targeted at large devices

(greater than 256 Mbit) with only four banks, it may be that the amount of attainable

concurrency is less than that of architectures containing more numerous smaller ba

with the same address space. Low latency variants are intended to support for more
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Figure 3.10: 256 Mbit DDR2 Architecture
This figure shows the architecture of the DDR2 core, which includes 4 64Mbit banks, and the

associated interface logic required for the DDR I/O.
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concurrency, as they can service requests out of the cache while longer-latency acc

are serviced by the DRAM core.

Access Granularity of Four

The DDR2 specification, in the most recent draft, sets the access granularity 

reads, and the maximal size write of DDR2 devices to 4 data cycles, or 2 clock cycle

This is in contrast to PC100 parts that allow bursts of 2, 4, 8, or full-page [IBM98] an

Direct Rambus parts that allow bursts of any power-of-2 octcycles (128 bit quantities

to the page size [IBM99]. What impact does this access granularity limitation impose

upon the DDR2 parts? If we examine a 256 Byte transaction which would require 4CAS

requests using a burst size of 8 in a PC100 environment, or a single COL packet in 

DRDRAM environment, the same transaction will require 8CAS requests using the fixed

access size of 4 in the DDR2 environment. Data bus usage (in bytes) is constant in 

example; however the fraction of time that the address bus is utilized increases for DD

It remains to be seen if this additional loading of the address bus will impact performa

It may potentially reduce the ability to perform tasks that do not require the data bus

refresh) in the background while performing reads from independent banks. One

motivation for taking this approach is that the DDR2 interface does not support

interrupting transactions once they have been initiated. In PC100 or DRDRAM syste

bursting a full-page of data, it may be required to terminate the transaction early for

another, higher priority, transaction. Since the DDR2 transactions are smaller, the su

for termination of in-flight accesses need not be present.

Additive Latency (Posted-CAS) and Write Latency

The posted-CAS enhancement of the DDR2 specification hinges upon the addit

of a parameter called Additive Latency (AL). The AL parameter enables theRAS and

CAS packets in a DRAM access to be driven onto the address bus in adjacent clock c

Figure 3.11 shows the impact of a non-zero AL upon the timing diagram of a DDR2 

transaction. In the second portion of the diagram, theCAS packet is driven onto the

address bus in the cycle immediately following the transmission of theRAS packet. The

DDR2 device interface then holds theCAS command for the AL latency prior to issuing it

to the core. This allows for a more logical ordering of the access packets occurring o
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address bus and may allow for a higher address bus utilization than without the pos

CAS enhancement

Write Latency (WL) for a DDR2 device is not a single cycle, as it is for curren

SDRAM, it is instead set to Read Latency (RL) minus 1, i.e. WL = (RL-1). RL is

programmable in bus cycles, providing flexibility for devices with differing core

parameters. Figure 3.12 shows the difference between a DDR266 device and a DDR

device with regard to a write. The relationship between RL and WL added in the DD

specification has the property of eliminating the idle data bus cycles associated with

transitioning from a write to a read command in the current SDRAM bus protocols.

Similar to the posted-CAS enhancement, a WL greater than 1 also has a simplifying eff

upon the access stream timing diagrams, and allows for higher utilization of the data

3.3.8 Conventional RAMBUS (RDRAM)

Rambus is the name of a company as well as a family of DRAM memory sys

products. Rambus is a “fab-less” corporation which designed a new interface for DR

Clock

DDR2 (3-3-3) Posted CAS not used; AL = 0

DDR2 (3-3-3) Posted CAS used; AL = 2

R Ca

R Ca

a3a1 a2a0

Address

Data

Address

Data

tRCD CL

AL

Figure 3.11: DDR2 Posted CAS Addition

The posted CAS addition to the DDR2 specification allows the CAS packet to be transmitted in the next
clock cycle following the RAS packet. This allows two packets which are logically part of a single
transaction to be placed onto the bus together, and may allow for higher address bus utilization.

a3a1 a2a0

tRCD CL
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as well as new circuit configurations. A large number of fabrication houses, some of w

are Intel, Micron, Infineon, Hitachi, LG Semiconductor, NEC, Oki, Samsung, and

Toshiba, have licensed the Rambus architecture from Rambus Inc. and are currently

manufacturing Rambus devices.

The Rambus architecture utilizes a packet based interface, on the physical la

called the Rambus channel. The Rambus channel is at least as innovative as the Ra

architecture itself. There are thirty communication lines which encompass a Rambu

channel. Of these thirty physical connections only 9 are actually used for communica

the other 21 are used for power distribution, reference voltage distribution, clock

distribution, and bus arbitration. These 9 communication signals are very high speed

signals, operating at 500MHz. This speed and bus size gives a single Rambus chan

theoretical peak bandwidth of 500 MBytes per second. This bandwidth can never be

achieved however because some fraction of the data traversing the channel is contr

access information. The bandwidth of an overall system can be increased by increasin

number of Rambus channels in the memory architecture. For instance, since each Ra

Clock

DDR266 (3-3-3) Write

DDR2 (3-3-3) Write (WL = 2)

R Ca

a3a1 a2a0

Address

Data

Address

Data

tRCD

Figure 3.12: DDR2 Non-Zero WL Addition

Each of these architectures would utilize a different frequency clock, but assuming a 133 Mhz clock for
the DDR266, and a 200 Mhz clock for the DDR2 architecture, this figure shows the difference in the

profile of the write transaction. The intent making WL = RL - 1 in the DDR2 architecture is to eliminate the
idle bus cycles associated with the transition from a write to a read transition in the DDR266, and other

SDRAM, architectures.
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channel essentially provides a single Byte each 2 nS, four Rambus channels could 

configured to provide 4 Bytes, or a 32 bit word each 2 nS. [Rambus92] The Silicon

Graphics, Inc. Indigo2 IMPACT system uses six Rambus channels for a theoretical pea

GBytes/sec. bandwidth. The problem with increasing the number of channels in this

manner is that both the cost of the system increases, and the minimal amount of me

for which the system can be designed increases.

The block diagram for the Rambus architecture, as given in the Rambus

Architecture Overview [Rambus93] is shown in Figure 3.13, “4Mbit RDRAM Block

Diagram”. Note that this diagram is for the 4 Mbit RDRAM die, but the 16 and 64 Mb

versions vary significantly from this diagram. For instance, the 64 Mbit version has f

independently operating banks, rather than the two banks accessed in parallel.

Conventional RDRAM is most notable in its use in the Nintendo64 game mach

This design was rapidly foregone in favor of higher bandwidth solutions such as Ramb

follow-up design the Direct Rambus specification.

0 .............. 10230 .............. 1023

0 .............. 1023 0 .............. 1023

Bank 1
256K x 9
DRAM Array

Bank 0
256K x 9
DRAM Array

Row 255

Row 0

...
...

.

1KByte
Sense Amp Latch

1KByte
Sense Amp Latch

Rambus Interface

Clocking Circuitry
Control Circuitry

Control Registers,
Burst Counters,
Status Logic

Rambus Channel
Figure 3.13: 4Mbit RDRAM Block Diagram

The 4Mbit Conventional RDRAM device had 2 256x1KByte banks, and a 9-bit shared address/data
channel. [Rambus93]
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3.3.9 Direct Rambus (DRDRAM)

The Direct Rambus architecture was the third specification to be released by

Rambus Inc. following on Conventional and Concurrent RDRAM. Direct Rambus

DRAMs use a 3-Byte-wide channel (2 for data, 3 bits for row, 5 bits for column) to lim

the number of interconnections required. The total signals required for the interface 

include 4 clock signals (two differential clocks) and 4 signals for serial communicatio

used in initialization. This means only 32 (34 with parity) signals are required to cross

chip boundary on the DRAM device or the controller, whether that controller is located

a bridge-chip, processor or graphics engine. The DRDRAM interface was originally

targeted to operate at 400MHz, however devices have been released to operate at 30

350MHz, 400MHz, and 533MHz. There are many aspects of the DRDRAM architec

which make it different from SDRAM architectures. Primary among these may be the

that each DRDRAM device is intended to service the entire bus width when an acce

maps into the address space covered by that device. This is in contrast to SDRAM wh

single access will retrieve data from 16, 8 or 4 devices concurrently, depending upon

whether the carrier (DIMM) uses x4, x8 or x16 devices. Figure 3.14 shows the

architectural diagram for a 128Mbit DRDRAM device. This figure includes the “core”

the DRAM device with the data storage elements, but does not show how these devic

used together in a primary memory system. Figure 3.15 shows the DRDRAM interfac

a series of read commands followed by a series of write commands. The DRDRAM

Figure 3.15: DRDRAM Interface - Simple Read Operation

This figure shows the interface between the DRDRAM and the controller.
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devices use DDR signalling, for both address and data signals, implying a maximum

bandwidth of 1.6 Gbytes/s. These devices have many banks in relation to SDRAM de

of the same size. Each sense-amp, and thus row buffer, is shared between adjacen

This implies that adjacent banks cannot simultaneously maintain an open-page, or

maintain an open-page while a neighboring bank performs an access. This organiza

has the result of increasing the row-buffer miss rate as compared to having one ope

per bank, but it reduces the cost by reducing the die area occupied by the row buffe

[IBM99].

The DRDRAM specification, even after years of development may still be “un

development” as recent news suggests that the architecture may change such that t

number of banks per device may be reduced in order to decrease the cost premium

associated with producing the current 32 bank per 128Mbit devices [Cataldo00]. Thi

move, referred to as the “4i” initiative, is likely to reduce the concurrency, or paralleli

available to the application, however with address remapping, or similar techniques,

performance impact should be minimal. The DRDRAM specification already has the

inherent advantage that even with a reduced number of banks per device, there are
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Figure 3.14: 128 Mbit DRDRAM Architecture

The DRDRAM architecture allows a single device to cover the entire bus, has many more banks for a
fixed address space, and shares sense-amps between neighboring banks.
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to be more banks mapping a given address space because the bus is not shared am

multiple devices as it is in SDRAM (both SDR and DDR) devices. While the existing

DRDRAM specification has 32 dependent banks (sense-amps are shared) the new

architecture will not share sense-amps. This independence between banks may be 

source of the “i” in the “4i” initiative designation.

3.3.10 FCDRAM

Fast Cycle DRAM (FCRAM) developed by Fujitsu is an enhancement to SDRA

which allows for faster repetitive access to a single bank. This is accomplished by divi

the array not only into multiple banks but also small blocks within a bank. This decrea

each block’s access time due to reduced capacitance, and enables pipelining of requ

the same bank. Multistage pipelining of the core or array hides precharge allowing it

occur simultaneously with input-signal latching and data transfer to the output latch.

Figure 3.16 shows a direct comparison between a DDR SDRAM and a DDR FCRAM

where all reads are directed at the same bank. The FCRAM advantage is in that the

pipelining of the DRAM array allows accesses to the same bank to be pipelined in m

the same way that the synchronous interface of SDRAM allows accesses to unique 

to be pipelined. FCDRAM is currently sampling in 64MBit quantities, utilizing the

JEDEC standard DDR SDRAM interface, but is hampered by a significant price prem

based upon the die area overhead of this technique [Fujitsu00]. Fujitsu is currently

sampling FCDRAM devices which utilize both SDR and DDR SDRAM interfaces,

additionally low-power devices targeted at the notebook design space are available.

The FCDRAM core enhancements could be applied to most DRAM architectu

The controller would have to be aware that it was communicating with FCDRAM devi

in order to utilize the shorter timing parameters and unique access profile. This tech

would most certainly increase the area of the DRAM array, however Fujitsu has not

revealed the extent of this increase in area.
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3.3.11 Multibanked DRAM (MDRAM)

The Multibanked architecture proposed by Mosys in [Mosys94] has never dra

significant acceptance, but it is an interesting study. The fundamentals of this archite

have placed Mosys in the highly specialized graphics specific DRAM design space. T

further architecture proposals, such as the “1T-SRAM” focus on using DRAM structu

in an embedded application with emphasis on minimal latency at the cost of increas

DRAM area[Mosys00].

While the Multibanked architecture has no explicit SRAM caching structures,

has a significant quantity of effective on-chip caching, when using an open-page pol

due to the large number of sense-amps per DRAM bit. The terminology Multibanked

Figure 3.16: FCRAM Timing
This diagram shows how the FCRAM core enhancement decreases cycle times for sequential accesses
to unique rows in the same bank [Fujitsu99]. This is an abstract timing diagram showing no clock signal
because this technique has been applied to devices complying to more than one interface specification.
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DRAM is somewhat misleading in that many existing and new design DRAMs conta

multiple banks, but the Mosys products are actually named Multibanked. Multibanke

DRAM is an architecture built upon the performance advantages of many small ban

which can increase concurrency as well as device cost. One of the largest claims by M

of the Multibanked DRAM architecture is that this architecture has better utilization of

bus between the processing element and the memory array than their competitors.

Most DRAM devices, especially as more bits are placed onto a single DRAM ch

contain multiple banks. This allows the bit lines to be small, and have a low capacita

such that the charge stored in a single bit cell is sufficient to generate an observable c

at the bit line sense amp. Some SDRAM have dual bank accessing, allowing indepe

access to the two individual bank. Rambus DRAM (RDRAM) have either dual bank

accessing, 16Mbit, or quad bank accessing, 64Mbit. [Wilson95] However, MDRAM ta

this even further, to quote their thesis,to gain the real benefit of a multibank architecture

there must be substantially more than two banks in a memory system. [Mosys94] The

Multibanked DRAM architecture is set up so that each bank is 32Kbyte in size, and 

number of banks in the memory system is determined by the size of the memory sy

This generates a highly interleaved address space, with the intent of increasing the

utilizable parallelism. These banks of DRAM memory are connected together intern

in places where on-chip connections are possible, by a high speed bank-to-pin inter

The external memory interface is a synchronous interface, with a 16 bit Data bus, an

transitioning on dual edges of the clock. [Mosys94]

The architecture of the Multibanked DRAM provides for two buses, of identica

configuration, but different speeds, as shown in Figure 3.17. This architecture is relat

flexible, allowing for a variable number of 32 Kilobyte banks per MDRAM die. All of th

MDRAM banks on a single die share a common internal bus, but each of the banks

function as independent memory entities. The internal bus is identical to the externa

in all but speed, where the external bus is slower. The internal bus between the num

banks is self-timed and designed such that it can exceed bandwidths of 800 MBytes

The number of MDRAM die which can be attached to the external bus is also variab

allowing for easy upgrading of a system. The MDRAM interface is specified with an 
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frequency of 166 MHz with a reported net bandwidth of 490 MBytes/s at 74% bus

efficiency. [Mosys94]

Multibanked DRAM, using an open-page policy, has a large effective on-chip

cache because within each bank of the memory system, the most recently accessed

Byte row or page is kept in the sense-amps for quick access. This being the case, th

sense-amps of each individual bank effectively act as a cache. While this is true of a

DRAM operating with an open-page controller policy, MDRAM have a larger numbe

sense-amp bits per DRAM bits than most other architectures because of the large n

of small DRAM banks. With there being 128 bytes of sense amps for each 32 KByte

memory, this amount of cache is reported by Mosys to achieve an approximate 91%

rate.[Mosys94]

3.4 DRAM with On-Chip Cache Capabilities

It seems intuitive given the configuration of DRAM, with a wide memory array

accessed in parallel, that to place a cache on the DRAM chip would help boost

performance given the high locality of reference in data streams. Many vendors hav

realized this, and a number of configurations of DRAM with on-chip cache are becom

available, under a variety of names, each with a different architecture.

Figure 3.17: Mosys Multibanked DRAM Architecture Block Diagram

The multibanked architecture is targeted at exploiting the highest level of concurrency in the memory
system. The large number of banks minimize bank conflict.
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The factors contributing to the convenience of DRAM with on-chip cache are 

in the DRAM memory array, a large number of bits, all in the same row, are all access

once. This access is performed using the row portion of the address (signified by theRAS

signal), but very few of the signals accessed during this cycle are required during th

cycle. Typically a DRAM will have 1, 4, 8 or 16 data I/O pins allowing for this many

signals to be driven off the DRAM die per access cycle. The same access cycle will 

design extract 1024, 2048 or 4096 bits from the memory array into the sense amps.

conventional DRAM using a close-page-autoprecharge policy, the remaining data

elements which have been extracted, but not utilized are lost. Even in the case of D

using an open-page policy, those bits can only be maintained until the next refresh c

In each of the new DRAM with on-chip cache configurations, the method used to red

the latency for the access is to keep these data elements which have been extracted

the array in a localized cache such that subsequent accesses which address the sam

the memory array(s) need not wait the full access time, only the time required to index

the line cache.

In addition to increasing performance of DRAM memory systems these DRAM

with on-chip caches often simplify the design of the system level of a microprocesso

system. Some DRAMs with on-chip cache are intended to be used in memory syste

configurations where previous to the existence of these circuit configurations, a leve

cache would be required in addition to the DRAM. Utilizing the DRAM with on-chip

cache is likely to reduce the need for intermediate cache chips, as well as cache

controllers, and the design tasks associated with a multi-leveled memory system. In

way, the use of DRAM with on-chip cache not only increases system performance, b

quite often simplifies system design.

The architecture used, the size and configuration of the memory array line cac

and how various vendors integrate their solution into a new DRAM architecture are t

primary differences between the following DRAM with in-cache configurations.

Most of the cache enhancements discussed herein can be applied to devices

with a range of interfaces. In some cases, the interface is fully specified (CDRAM) an

others the interface requires some expand ability (VC) — however adding SRAM cach
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the device is a core enhancement, and to some degree the core and the interface a

decoupled implementations.

3.4.1 Cache DRAM (CDRAM)

Mitsubishi chose an unadorned name for their new DRAM with in-cache

capabilities. The chip is a DRAM which has a small SRAM cache on the die in additio

the DRAM core. The SRAM cache, as has been discussed in the general overview f

DRAMs with on-chip capabilities, is able to make use of a very wide bus between th

DRAM core(s) and the SRAM cache(s).[Ng92] In this specific architecture the SRAM

DRAM are integrated with each other using four structures, two read buffers, and tw

write buffers.

The M5M4V4169TP from Mitsubishi is a 4 Mbit Cache DRAM offering. The

DRAM array for this chip is organized as 256K x 16 bits, with the addition of 16Kbits

on chip SRAM cache. The interface of the CDRAM products contains a synchronou

clock, much like synchronous DRAM. The interface of the CDRAM is more complex th

the traditional DRAM interface, including pins for addressing the on-chip cache

independently from the DRAM. Despite these two distinct address buses, all data mu

passed through the SRAM or the read buffer number one structure lines to reach the s

set of data output pins. The block diagram for the Cache DRAM architecture is given

Figure 3.18. [Mitsubishi95b] As can be seen from this diagram, the output (DQ[0-15])

only be provided from the Read Buffer (RB1) and the SRAM. This means that if the 

which is being requested resides in the DRAM block when it is requested that it must

be transferred through the RB2 to the RB1 from which it can be sent to the data out

pins. This increases the access time of the DRAM as it is viewed from the outside o

Cache DRAM package, but automatically promotes the most recent accesses to the S

cache. The access times for this product, again the highest performance four MByte

CDRAM, is a 15 nS cycle on the SRAM, and a 120 nS cycle on the DRAM. This DRA

cycle is significantly longer than the cycle time of even most conventional DRAM be

produced today. The SRAM cycle of 15 nS is hardly the highest performance SRAM

announced, however it is much closer than the DRAM core. The interface logic in th

Cache DRAM architecture appears, from these numbers, to hinder the latency of the
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memory cores. How the architecture performs in actual applications has yet to be

determined.

The separate cache on the DRAM chip does significantly increase die area ove

size of an equivalent size DRAM alone. This means that there is no way to avoid prici

CDRAM higher than an equivalent size DRAM. Regardless, the CDRAM architectur

still worth study as a comparison between DRAM and more non-conventional DRAM

with on-chip cache.[Bursky95]

As of yet, no second sources have been announced for Cache DRAM. This c

negatively impact the demand for CDRAM due to the hesitancy of many manufacture

avoid single source products.

3.4.2 Enhanced DRAM (EDRAM & ESDRAM)

Ramtron has been a proponent of cache-enhanced DRAM for a number of yea

wholly owned subsidiary of Ramtron, Enhanced Memory Systems (EMS) is currentl
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Figure 3.18: M5M4V4169 Cache DRAM Block Diagram

The CDRAM architecture is significantly more complex than other architectures, as it attempts to
integrate what are typically system-level functions onto the DRAM device.
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driving the initiative for one of the more promising cache enhanced DRAM architectu

Unfortunately, the name Enhanced DRAM is somewhat confusing, because it is not

only enhancement possible for DRAM devices, however this terminology has becom

accepted. They have specified and manufacturing cache enhanced DRAM which co

to both asynchronous and synchronous interfaces. All Enhanced DRAM which follow

Ramtron architecture have a single cache line for each bank in the device, located be

the sense-amps and the column decoder. This technique minimizes the area impact

cache enhancement while allowing: 1) accesses to a previously loaded cache line to

only the column access (CL) latency; 2) precharge to take place without disturbing t

contents of the cache; 3) refresh to occur without disturbing the contents of the cache

4) a write to take place through the sense-amps without disturbing the contents of th

cache. Cache enhanced devices using this architecture have been proposed and in

cases produced for a number of interface specifications.

The Enhanced asynchronous DRAM architecture has a single row cache line

each of the memory arrays. The 4Mbit DM2223/2233 EDRAM has four memory arra

each of which has their own, in the terminology of Ramtron, row register. This

architecture is given in the block diagram shown in Figure 3.19. This means that if tw

consecutive accesses map into the same memory array, as determined by bits 8 an

the column address, then the first access will no longer be in the cache following the

second access. The on-chip cache could then be said to be a direct mapped cache,

referred to by the manufacturer as a “row cache” [Ramtron94].

Figure 3.20 shows an architectural diagram for the synchronous version of th

cache enhanced devices. Currently available in 64Mbit devices, ESDRAM devices a

high-performance DRAM which, at this point, have very little market share, most

probably because of their increased price over standard SDRAM. A number of chips

from Intel and VIA technologies, have been produced which will interface to both

100Mhz and 133Mhz SDR ESDRAM. The no-write-transfer ability of the ESDRAM

specification allows a write to bypass the cache, storing into the DRAM array (via th

sense-amps) without affecting the state of the cache. This ability is useful if the contr

is able to identify a write-only stream or page, in these cases, pollution of the cache ca
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avoided. The ESDRAM devices have circuitry to guarantee that if this functionality is

used, the cache never contains stale data.

It has been proposed that this architecture be extended to the DDR2 interfac

JEDEC, and the low-latency DRAM working group, are currently considering this opti

but it seems likely that there will be either an optional or required addition of the enhan

memory caching architecture to this next generation DDR SDRAM [Peters00]. The d

area overhead for the Enhanced DRAM cache enhancement has been estimated at

for a 256 Mbit 4 bank DDR2 device [Peters00].

3.4.3 Virtual Channel DRAM (VC DRAM)

NEC has proposed a cache enhanced SDRAM variant based upon their Virtu

Channel (VC) architecture. The intent of the VC architecture is to reduce the averag

latency of a DRAM access via two mechanisms: (1) to use on-chip SRAM cache to re
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Figure 3.19: Asynchronous Enhanced DRAM Architecture

The Diagram above is for a 4Mbit device, ESDRAM devices are currently available in densities up to 64Mbit
The caches and arrays scale as with a conventional SDRAM
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the number of accesses to the DRAM array; and (2) to organize this SRAM cache in

a manner that it allows for multiple open channels to the same bank, reducing latenc

cases where you have two or more access streams alternating between different rows

same bank [NEC99]. The VC implementation may be unique for each device, many

which have yet to be precisely determined, with the number of banks being 2 or 4, th

number of cache lines 8, 16 or 32, the size of the cache lines almost certainly 1/4 th

DRAM row size, and the associativity of the cache lines being anywhere from fully-

associative through 4-way set associative. The VC architecture refers to each of the

cache lines as a “Virtual Channel” and relies upon the memory controller to manage

allocation, placement, and write-back. This allows the controller to maintain or write-b

Figure 3.20: Synchronous Enhanced DRAM Architecture

The 64Mbit ESDRAM Architecture adds a direct mapped Cache on the DRAM device, with an SRAM row
attached to each set of sense-amps. The no-write transfer ability requires that the data latches be able to

write into the sense-amplifiers without disturbing the cache.
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dirty channels, or allocate the channels based on any policy from an LRU algorithm 

bus-master oriented algorithm. One aspect of the VC architecture which can negativ

impact performance is that if all channels are dirty, and a new channel must be writt

back prior to the device being able service an access, the access must wait until this

writeback occurs. This can as much as double the observed access latency, howeve

appropriate channel writeback controller policies, this penalty due to all channels be

dirty can be almost always avoided.

Figure 3.21: Virtual Channel Architecture

This diagram shows a two-bank implementation of a 128 Mbit VCDRAM device. Accesses to a Virtual
Channel device must go through two logically separate stages, prefetch from array to channel, then read

from channel to interface.

Bank 0
Memory

Array
(8192 x 512 x 16)

Sense Amplifiers

Column Decoder

Bank 0
Memory

Array

Sense Amplifiers

Segment Decoder

R
ow

 A
dd

re
ss

 M
ux

Address Register
Address

Chip Boundary

Virtual Channel(s)
SRAM Cache

Column Decoder

2 Identical Banks

Data

Bank Control

1/4 page bus
65



ble,

ne

cture

rcent

s

s, as

 the

ses.

zed

est

ce

ce

ough

, may

 upon

M),

ing
The Virtual Channel architecture can be applied to devices targeted at any

interface. Currently there are Virtual Channel enhanced SDR SDRAM devices availa

and proposals have been made to produce VC enhanced DDR2 interface devices. O

issue involved in this is that the Virtual Channel architecture requires additional

commands in the interface protocol for channel allocation, restore, and other archite

specific functions. The area impact of adding the Virtual Channel enhancements to a

DRAM device are hard to determine, but has been appraised by NEC at 4.3 to 5.5 pe

depending upon the implementation [Yabu99].

3.5 Controller Policies

In early asynchronous DRAM, the controller policy was simply refresh policy. A

DRAM have added capacity and features, the state contained in the memory device

well as the memory controllers, has become more significant. DRAM have not, since

advent of page-mode DRAM, been truly “random access”. As devices become more

complex with more internal state they continue to exhibit higher variation in access

latency. With the variety of possible states for a modern DRAM device, or bank, the

controllers goal is to manage the devices to minimize the latency observed by acces

The method used is to pick a management strategy, or policy, which has shown to

minimize latency for a given system configuration. Unless the controller has speciali

knowledge about the access stream, this approach is the most likely to provide the b

performance. Controller policies have a significant ability to affect system performan

for modern DRAM devices.The remainder of this section will discuss the variety of

controller policies available.

The memory, or DRAM, controller is located on the North-Bridge chipset devi

in modern desktop system architectures. This location provides a centralized point thr

which all devices that access DRAM, processor, graphics engine and I/O subsystem

access the primary memory space. However, this location also has negative impacts

performance because each access must arbitrate for two buses (front-side and DRA

both of which require a delay for synchronization to a lower clock, as well as travers

the controller and performing the access in the DRAM devices.
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It has been proposed that some of this latency could be removed by placing t

memory controller on the die with a bus separate from the processor front-side bus.

approach is being taken with the Intel Timna [Lammers00] as well as the Alpha 213

[Gwennap98]. This is enabled by the lower signal count of Rambus architectures.

The memory controller is usually responsible for device refresh, as well as

providing an interface between the DRAM an the remainder of the system. In perfor

this function, there is a variety of policies which a memory controller may utilize

dependent upon system parameters and application. These include, but are not limi

maintaining the sense-amps in an open or closed state, address remapping, prefetc

access coalescing, access re-ordering, cache allocation (VC) and cache-bypass (EM

write-transfer). The evaluation of the entirety of policy choices is beyond the scope of

thesis, but these policy decisions can have significant impact upon system performa

[Carter99].

The first DRAM to support any level of controller policy flexibility was Fast-Pag

Mode (FPM) DRAM. Use of the fast access to the page was enabled by an Open-P

policy for the DRAM devices. As DRAM devices became more advanced they enabl

more complex controller policies to manage functionality.

Table 3.1. shows some of the controller policies discussed in the following

sections. The choice of controller policy is one which is application specific. The differ

policies, as shown in Table 3.1 each have advantages for specific circumstances. Cho

a single policy which is going to provide the best performance uniformly across all

applications is typically impossible.

3.5.1 Refresh Policy

Because of the Dynamic nature of DRAM, refresh is essential. Devices typica

specify a refresh period, such as 64mS during which all rows must be refreshed.

Thankfully, most interfaces include a function to refresh a row of ALL banks concurren

Even when using this potential, there are decisions to be made. All N rows in the de

can be refreshed sequentially, making the DRAM system unavailable for a time peri

(N*tRP) once in every 64mS period. Alternatively, one row can be refreshed every 6

N. This time-interspersed refresh policy allows for less average latency than the all-a
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once refresh. In some studies, this simple choice of refresh period shows a 50% me

difference in overall benchmark execution time [Cuppu99].

Other refresh policies exist. If the controller contains a higher complexity stat

machine, it may choose to schedule refresh, and possibly prefetch, when the DRAM b

idle, in anticipation of a stream of requests subsequent in the refresh period - thus red

refresh/access collisions. Other refresh policies include oddities such as graphics

applications where refresh is never explicitly scheduled because it is known that each

will be read each frame update, and the frame update period is less than the refresh p

3.5.2 Close Page Autoprecharge

The Close-Page-Autoprecharge controller policy is the simplest for the contro

to implement, and requires the least amount of state in the controller device. After e

access, the controller closes the page of the bank being accessed, and initiates a pre

on that bank. Whenever an access is initiated, it must perform both a row access orRAS

and a column access orCAS because all pages in the memory system are closed. Thi

Table 3.1: Controller Policy Advantages & Disadvantages

Policy Advantage Disadvantage

Open-Page if the next bank request is
in the same page

Latency = CL

if the next bank request is
in a unique page

Latency = tRP + tRCD +
CL

Close-Page-Autoprecharge if the next bank request is
in a unique page

Latency = tRCD+CL

if the next bank request is
in the same page

Latency = tRCD + CL

Address Remapping Reduces the fraction of
adjacent accesses which
map to the unique rows in
the same bank

Complexity and possibly
additional latency in the
memory controller

No Write Transfer
(EMS cache-enhanced
specific)

Reduces conflict misses in
Direct mapped row caches

Difficult to determine
whether a write should be
cached
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means that for most accesses the latency will be (tRCD + CL). Occasional access wi

see this latency because of the effects of refresh, or because the access in question

followed another access directed at the same bank, in which case that bank may sti

precharging.

In applications where there is a significant amount of cache memory higher in

memory hierarchy, either due to a large cache associated with a single processor, o

multiple caches associated with an SMP, the close-page-autoprecharge policy has b

shown to provide better performance than open-page [Coteus00]. Close-page-

autoprecharge could be viewed as the conservative controller policy, as its latency is

deterministic relative to the other options.

3.5.3 Open Page

The open-page controller policy implies that after an access to a DRAM page,

page is maintained “open” in the sense-amps of the bank. The intent when choosing

policy for the controller is that subsequent requests to the bank will be directed at the

page, eliminating the necessity of a row access orRAS. In this case, the access will only

incur theCAS latency or CL. However, if the subsequent request is directed at anoth

non-open, page within the bank, then prior to performing a row-access to the desired

the bank must be precharged. In this case, the access latency is (tRP + tRCD + CL)

worst case latency. The open-page policy is less deterministic in latency, and the

performance of this controller policy is highly dependent upon the page-hit rate of th

application. This is determined by the amount of cache in the higher levels of the mem

system and the access behavior of the application. In a case where the access beha

strictly linear streaming data or has good locality, the open-page policy does very we

However, in cases where the accesses are essentially random or show a low degree

locality, such as in a transaction-processing application, the average latency for an o

page controller policy can be higher than that of the close-page-autoprecharge polic

[Davis00a].

The open-page policy requires additional state in the memory controller beyo

that required by a close-page-autoprecharge policy. To enable the controller to know

pages are currently open, thus enabling the controller to do a “page-mode” access, 
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controller must have tags associated with each row of sense-amps in the memory s

This means one set of tags per bank. For example, if you have an desktop environm

where each device may have 4 banks, each DIMM may have two sets of devices, an

motherboard has 4 DIMM slots, the controller must hold tags for 32 banks. If any of th

limits are exceeded, such as a new DIMM configuration with more than 4 banks, the

memory controller can not make use of page-mode accesses for those banks beyond

limit. Examine Section 3.5.6 to see how changing the architecture (in this case to a 

implementation) may increase the amount of state required in a controller.

3.5.4 Address Remapping (Hashing)

In a synchronous environment it is useful to re-map the processor address sp

into a DRAM address space with a modified layout. Performing the best re-mapping

dependent upon a number of parameters: the size of the DRAM pages, the number

banks in the system, the number of devices in the system, and the lowest level cach

and mapping policy [Lin99]. The intent of this remapping is to locate banks that are lik

to be accessed in close temporal proximity to independent banks in the DRAM addr

space to enable the highest amount of overlap between the accesses. Remapping o

address space can be accomplished by the DRAM controller [Rambus99]. When

performing comparisons of DRAM architectures, it is important to consider the impac

re-mapping the address space on maximizing concurrency.

3.5.5 Enhanced Memory Systems Specific Controller Issues

The Enhanced Memory System modifications to the conventional DRAM, as

described in Section 3.4.2, impact the controller design significantly less than other

architectural changes. Controllers which are capable of managing devices using an 

page policy already have all of the tags and state required for determining row-cach

status. The difference with an Enhanced device is that these tags need not be invali

upon a refresh to the device.

One potentially significant change to the controller state machine is the possi

support for use of the no-write-transfer mode. Use of this capability requires that the
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controller somehow be able to differentiate between a write which should be done thr

the caches, and a write which should bypass the caches. This bypass should occur 

on whether the write in question is to a stream or location which is write-only, or a stre

or location which services both reads and writes. To make this determination, would

require either a significant state machine in the controller, or use of hint bits by the

compiler. Use of the no-write-transfer is optional in all Enhanced DRAM architecture

but may increase performance.

3.5.6 Virtual Channel Specific Controller Issues

The Virtual Channel architecture enhancements, regardless of the interface t

which they are applied, place additional demands upon the controller. The level of s

required by the controller is larger than that of most competitive architectures. This i

because, in the interest of associativity, the Virtual Channel architecture has a large

number of channels associative over a smaller set of banks, where competitive

architectures have a single row-buffer or row-cache directly mapped to each bank. T

controller must then maintain a larger number of tags (because of the larger numbe

cache lines) and the tags themselves must be larger (because of the higher associa

The associativity provided by virtual channels certainly allows increases in performa

but as with many changes to DRAM architecture, they also increase the cost, in this

of the controller device.

In addition to state concerns, the Virtual Channel specification relies upon the

controller to do the channel allocation and dirty channel writeback, so the state mac

(and possibly LRU tags) to handle allocation and writeback must be on the controlle

device. This adds complexity to the DRAM controller. This additional complexity in th

controller will equate to additional area required for the a finite state machine(s) to

implement these new functions. Despite this additional complexity required by a chip

to interface to Virtual Channel devices, a number of manufactures, ALi, SiS, and VIA

technologies have all produced, or announced chipsets to interface to this specificat

The feature of the Virtual Channel architecture which allows the DRAM control

to manage allocation of channels may impact the area and complexity of the controlle

it allows wide breadth of controller policies, not all of which need be identified at this
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time. One possible allocation policy proposed by Virtual Channel advocates divides

device the channels between possible bus masters, such as distributing sixteen chan

follows: 12 for the processor, 2 for the graphics device, and 2 for I/O systems. This po

may minimize the conflict misses observed by I/O and graphics devices. Because th

allocation decisions are made by the controller, they do not impact the device architec

and may be changed in future controller generations. In addition to the controller be

required to manage allocation, since the cache on Virtual Channel devices is associ

the controller must also manage cache line replacement. Lastly, because dirty chan

can increase the latency when an access does not have an available channel, the co

must manage the writeback of dirty channels into the DRAM array. The Virtual Chan

architecture allows for lightweight writeback of dirty channels such that these writeb

commands should not affect bus utilization, and the case where all channels are dir

causing an access to incur additional latency should be a highly rare occurrence. Th

requirements placed upon the controller by the Virtual Channel architecture allow fo

significantly larger variety of controller policy choices than competing architectures.

3.6 Primary Memory in the Future

DRAM has been the primary memory of choice since its introduction in 1971.

However, there is no fundamental reason another technology could not surpass DR

the price/performance niche of primary memory. Magnetic RAM (MRAM) is currently

being examined by a number of manufacturers, including Motorola. This technology

the advantage of being non-volatile, like core memory, and is being enabled by the

research into micro-mechanical structures [SemiBN00]. At the moment however, MR

remains a research topic in itself. If Magnetic RAM becomes commercially viable, how

integrate this non-volatile, differently organized technology into the memory system 

introduce a variety of challenges. Another memory technology being examined is op

storage in a two or three dimensional array. This technology, enabled by optical

networking research, has potential advantages of allowing people to transport their e

system memory image, containing massive amounts of information in a small three

dimensional carrier [C-3D00]. Primary memory will remain an element of computers
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long as the conventional VonNeumann model persists, however the technology

implementing this primary memory may change in the future, as it has in the past. T

being said, within the near-term (10 years), updated DRAM technologies will remain

technologies of choice for primary memory.
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Chapter 4

Methodology

In examining memory systems and their performance, a number of evaluation

techniques are used. The first approach is a comparison of existing and available har

with regard to execution time, or whatever parameters are the basis for comparison. T

not always an option, most notably when the devices to be investigated are pre-produ

or not available. In this case there remains two approaches. Trace driven simulation,

upon a trace of execution to exercise a simulation of the systems being evaluated.

Execution driven simulation emulates execution of an application binary to simulate 

entire system being evaluated. These two simulation based techniques are discusse

further in Section 4.2 — Trace Driven and Section 4.3 — Execution Driven respectiv

There are a variety of possible methods for performing memory system analy

some of which overcome the excessive time involved in simulating the upper layers o

machine when doing studies on low level memory systems. These methods are pre

as possible alternatives to instruction level tracing. Each of the possible alternatives

associated advantages and disadvantages. The characteristics of three methods are

presented for the reader to draw his or her own conclusions.

4.1 Introduction

Depending upon the context of an investigation and the results being examin

different simulation methodologies may be best suited to the goals. In the simulation

discussed here both trace driven and execution driven were used. Since each of the

approaches has advantages, it is best to make use of both in examining DRAM struc

Traces can be used to debug simulation models - particularly synthetic traces whose

upon the DRAM system can be calculated analytically. Traces are also useful for
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calculating the hit rates on any SRAM structures the DRAM device may hold and fo

determining the upper limit of the DRAMs bandwidth. Subsequently, execution drive

simulations can be done for more focussed studies that require a higher degree of

confidence in the results.

The objective of simulation, regardless of technique is to model the memory

architecture of the computer system being simulated. Figure 4.1 shows a common

configuration for the memory system a desktop computer. This is the system which 

would like to model in both the execution and the trace driven simulations. Not all

computer systems precisely follow this model, some contain all cache on the CPU d

some have multiple microprocessors (or CPUs), a limited few have multiple DRAM

controllers, and as was mentioned in referencing CRAY, some have no DRAM at all.

However, this architecture is fairly common, and is the target for both of our simulati

methodologies.

The two techniques can share some of the source code if the design of the

simulation environment is sufficiently modular. In the simulations described in Chapt

the DRAM simulation models are common to both trace driven and execution driven

simulations. The source of the accesses being provided to those DRAM models is a s

file reader and re-formatting engine in the case of trace driven simulations, while it is

complex microprocessor model in the case of the execution driven simulations.

CPU

Primary
Cache

Secondary
Cache

Backside Bus

North-Bridge
Chipset

DRAM
Controller

Frontside Bus

DRAM
System

DRAM Bus

Other Chipset Devices
I/O Systems

Figure 4.1: Memory System Architecture

This is a conventional memory system model for many desktop computers produced. As such, this is a
target for the simulations to be performed on DRAM performance.
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4.2 Trace Driven

Trace driven simulation is performed by gathering a trace of system activity, at

instruction level, or in the case of DRAM investigations at the memory controller-DRA

interface level; then at some later point that trace is used to exercise a simulation en

modeling the target system. One primary advantage of trace driven simulation is spe

the trace contains strictly DRAM activity, the simulation of the memory system alone

be done very rapidly. The disadvantage of trace driven simulation is that the paramete

the simulation: processor speed, bus speed, bus bandwidth, number of DRAM devic

and so forth, can not be varied without impacting the accuracy of the trace. Another

potential disadvantage is the lack of accurate timing information. The worst case wou

to have no timing information in the trace, the best situation being timestamps based

DRAM system similar to that of the target system. Absence of timestamps during

simulation has the consequence that the DRAM access stream is compacted in time

minimal amount of time required to perform all accesses. However, the presence of

timestamps does not necessarily guarantee great accuracy, even when using many

same system parameters. If the DRAM latency has significantly changed from gather

target systems, the interspatial access timings may be significantly altered, again affe

the accuracy of the DRAM trace.

4.2.1 Instruction Level Tracing

The concept behind instruction level trace driven simulation is that a software

engine can precisely model a complete microprocessor system. The parameters to 

software engine can be more rapidly changed than equivalent changes in hardware

simulation, or actual hardware. The observed changes in performance at the softwa

simulation level can then be used to refine subsequent software designs in a loop o

design cycle, until the system design achieves the required goals of the specification

Instruction level trace driven simulation, including analysis down to the DRAM

level can accurately model microprocessor and memory system activity to the cycle

provided that the simulator is written with that level of precision. In ILTDS the comple

state of the microprocessor, including the contents of all caches and memory structur
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maintained, and the instructions which are executed by the microprocessor are mode

effect changes in this stored state. Instruction level tracing is a slow process, as all

operations which are normally performed in fast hardware, such as dependence che

or determining whether an item is present in a cache, must now be performed with s

software routines in the machine performing the simulation.

The inefficiencies of instruction level trace driven simulation for other types of

architectural analysis has been previously discussed [Noonburg94]. Instruction level

driven simulation varies in accuracy, primarily depending upon the precision of the

simulation engine. However for the application proposed herein, instruction level trac

driven simulation has a variety of problems. The most obvious problem with ILTDS f

investigation of low level memory systems (i.e. DRAM level) is that in order to get a

significant number of DRAM references, an instruction level trace driven simulator wi

complete memory hierarchy must execute for prohibitively long periods of time. This

due to the fact that the vast majority of the CPU time is spent simulating the effects of e

instruction upon the microprocessor and upper levels of the memory hierarchy and r

getting to the level under investigation. When this is compounded with the fact that,

regardless of the model used for simulation, the DRAM level hierarchy must be simul

a large number of times, once for each set of benchmarks and once for each memo

hierarchy configuration, the excessive time required increases dramatically limiting t

number of configurations which can be examined.

One positive side of using instruction level tracing is that the complete machin

state is modeled. Therefor there is no loss of information provided that the simulatio

engine is accurate. If the simulator is written properly, the performance of a

microprocessor to be designed should be identical to the performance characteristic

generated by the simulator. This exact accuracy is not completely possible in those

architectures which have inherent non-deterministic transfer times, such as those w

memory being retrieved across a shared medium, i.e. a shared memory bus,

multiprocessor environment, PCI bus, or Ethernet.

The negative side of using instruction level tracing, if it has not already been

overemphasized, is that simulating a microprocessor of any complexity with comple

cache system state, and running an application of any complexity, takes excessive am
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of time. In cases of simulating microprocessor systems with large caching systems,

instruction level tracing can also require huge amounts of memory on the machine

performing the simulation. If the factors of the operating system (O/S) for multi-taski

and memory paging come into play, then the requirements for both time and memor

become notably larger. It is unfortunately the case that in investigating DRAM system

is exactly these situations requiring larger amounts of both time and memory which a

most interest. When studying DRAM level memory systems it is commonplace, if no

required, that the simulation go to the level of O/S and interactions of multiple applica

running under a multi-tasking environment because the affects of paging and contex

switching have a large impact upon the DRAM access patterns. If it were feasible to

simulate these applications using ILTDS, the amount of compute time required to

investigate each of the multiple possible memory hierarchies via simulation may very

exceed the amount of time required (or scheduled) for the memory system design. T

characteristic makes ILTDS very unattractive for the enhanced DRAM study propose

this thesis.

4.2.2 DRAM Bus Level Tracing

One option for eliminating the excessive amount of time required in doing DRA

level simulations would be to utilize traces from the architected bus directly above th

memory system of interest. This process involves taking the instruction level traces fo

benchmarks to be studied, running these instruction level traces through an engine 

simulates the microprocessor, the upper level memory systems and caches in order

produce traces which contain memory references at the lower, in this case DRAM le

The memory references in these generated traces would be only those references w

escape the lowest level of the memory system encompassed in the simulation engin

that L1, L2 or possibly even L3 cache. This memory reference stream could then be

as the input to a simulator which performs memory system analysis solely below the

upon which the stream is based. There are advantages and disadvantages to this a

for DRAM level memory system analysis.

The DRAM bus level trace approach allows the generation of a single DRAM

reference trace, which then can be used repeatedly in the simulation of a variety of DR
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level configurations. Figure 4.2 shows a conceptual diagram of how the trace driven

simulation operates, and what elements of the system are encoded into the trace. T

higher levels of the memory system, including the microprocessor are either a real sy

from which the trace is being gathered, or only need to be simulated once at the tim

trace generation. The CPU time required to perform these upper level simulations, i

case of a simulation based trace generation, can then be amortized across all of the D

level trace analyses which are performed. The DRAM bus trace allows the DRAM

analysis to execute very rapidly because no CPU time need be expended modeling 

microprocessor and cache, this has all been done ahead of time. The machine perfo

these final DRAM analyses can therefor concentrate solely upon the DRAM modelin

In a microprocessor based system there exists a feedback path from the DRA

through the cache(s) to the microprocessor, whereby both the temporal locality and 

occurrences of DRAM references change when the DRAM level response times cha

This feedback is most obvious when considering a non-lockup implementation of a

superscalar microprocessor with speculative execution. In this configuration, a long

latency load could cause subsequent speculative loads to be initiated by the

microprocessor, or the cache to become polluted with speculative data. Under the s

assumptions, it is conceivable that if the initial load had been handled by a fast acce

cache, these speculative accesses need not have occurred, implying a different state

machine being simulated. This means that the machine state is dependent upon to 

North-Bridge
Chipset

DRAM
Controller

Frontside Bus

DRAM
System

DRAM Bus

Other Chipset Devices
I/O Systems

FrontSide
Bus Level

&
Graphics & I/O

Accesses

Figure 4.2: DRAM Bus level Trace Driven Simulation

The Trace Driven simulation environment models only latency through the controller and DRAM system
for the entire access stream, the dependence between accesses and speculative activity are lost.
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latency of all previously performed DRAM accesses. Unfortunately, this cannot be

emulated in cases where the latency of DRAM references are unknown, such as wh

DRAM level bus trace for use in multiple simulations is used as the model of the upp

level system activity. This DRAM level bus trace necessarily and implicitly encodes a

particular DRAM latency as well as cache and microprocessor configuration. Essen

if the DRAM level approach is used the hope is that the impact of the DRAM

configuration upon the upper level simulation and DRAM trace generation is minima

the point of being “in the noise”.

The most apparent situation where the DRAM model affects the actual content

DRAM trace (not the temporal locality, but content) is where speculative execution,

including speculative prefetch cache structures as stream buffers, is concerned. The

latency at which data is returned from DRAM could affect the DRAM level trace by

allowing, or preventing speculative fetches, as described above. Even without specu

however, the latency of the DRAM can affect the distribution of memory references,

implying that the feedback path from DRAM to the microprocessor is required to be

maintained for accurate simulation.

The cache hierarchy present when a DRAM bus trace is collected or generate

also play a large role in the same manner as the DRAM themselves, since the cache

in the feedback path described above. When generating a DRAM bus trace it is com

to set the cache hierarchy to a fixed configuration and then study the various DRAM

proposals under the presumption of this fixed caching scheme. While it is possible to s

a variety of unique DRAM structures with identical cache hierarchies using a fixed

caching structure, the advent of the enhanced category of DRAM circuits which inclu

on-chip caching make this strategy less attractive.

The summary with regard to static DRAM tracing then is that if it is acceptabl

lose the exact behavior of the system due to the removal of the feedback path wher

DRAM latencies impact higher level structures, then this approach is acceptable. In 

case of the investigation proposed herein it is presumed that it would be preferable t

avoid this loss of accuracy. For this reason it is felt that another method for performi

DRAM memory studies must be developed.
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4.3 Execution Driven

Execution driven simulation is performed by taking a program, typically a

compiled binary, and running that binary through an execution driven simulator such

SimpleScalar [Burger97]. Over the course of simulation: (1) this tool will generate al

the DRAM accesses required for program execution; (2) these DRAM accesses can

processed by a DRAM model; and (3) statistics can be produced by the model. The

execution driven model is preferred for a number of reasons: The parameters to the

simulation can be easily changed, and the DRAM access stream remains accurate.

Hypothetical systems which have not been produced, and from which it would there

be impossible to gather a trace, can be modeled. And, finally while it is not always

possible to gather a trace for a application of interest, it is typically possible to acqui

binary for that application. A significant disadvantage of execution driven simulation 

that this level of simulation requires more system elements be modeled and thus is 

time consuming. One consequence of being dependent upon the execution driven

simulator, is that most of these toolsets model the execution of a single binary on a 

processor, ignoring OS interaction, multiprocess effects, and SMP configurations.

The execution driven model, as shown in Figure 4.3, “Execution Driven

Simulation” takes a compiled application and simulates each instruction. Each instru

accesses memory, but a large fraction are serviced by the level one instruction cach

memory hierarchy, as shown in Figure 1.1 serves as a filter reducing the number of

requests. Only those accesses which miss all levels of the cache escape the Simple

simulation environment to exercise the DRAM controller and device models.

Both of the simulation methodologies used for the studies presented in Chap

are intended to model the memory system architecture given in Figure 4.1. The trac

driven methodology is much faster to execute because of the reduced computational

However, the trace driven methodology is comparatively less accurate, abstracting a

access dependencies and idle time of the DRAM bus. The execution driven method

is slower to execute because it models more elements of the system, including instruc

which generate no memory system activity. The execution driven simulation does no

model the activity of bus masters other than the CPU executing the benchmark. Neith
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these simulation methodologies include the activity of an operating system. These tw

simulation methodologies, together with the available benchmarks and traces, provi

set of methods for examining the variety of possible primary memory system

architectures.

Secondary
Cache

Backside Bus

North-Bridge
Chipset

DRAM
Controller

Frontside Bus

DRAM
System

DRAM Bus

Other Chipset Devices
I/O SystemsCompiled

Binaries

CPU

Primary
Cache

SimpleScalar

Not Modeled

Figure 4.3: Execution Driven Simulation

The Execution Driven simulation models most elements of the computer system, including the
dependence between accesses, only operating system, graphics, and I/O devices are unmodeled.
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Chapter 5

Simulation Models

The DRAM simulation models which have been written are specified in the Ja

programming language. This language was chosen because of the time required for

program development and debug, not because of speed of simulation. It is known th

emulated Java bytecode runs slower (how much depends upon many factors, primar

virtual machine implementation) than equivalent compiled C code [Flanagan97].

However, the time spent in development of the software is less for Java, at least for 

developers of the DRAM models described, motivating the use of Java. Java code c

made to run in comparable time to compiled C code, but this requires compilation to

native code as opposed to execution of emulated bytecode. Because of the hybrid so

of the execution driven methodology, where the application contained both C

(SimpleScalar) and Java (DRAM models) source code, a compilation to native code

not undertaken. Additionally, the Java platform provides for a larger degree of portab

between platforms, but this advantage has yet to be exploited as all simulations have

done on a common platform.

5.1 Compartmentalization

An attractive feature to using the Java programing language is the inherent

compartmentalization which comes from writing (properly organized) object-oriented

code. Within each of the three models discussed in Figure 5.2, there are a number o

classes, each of which correspond to concrete objects in a simulation environment. 

include: controller, bus, device, bank, schedule, access, and other concrete items w

the DRAM architecture, as shown in Figure 5.1. This modular approach makes the lo

understanding of the devices and debug of the models more understandable for a p
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familiar with the hardware implementation. These attributes are certainly possible w

another object-oriented language, however the framework of Java is more conducive

quality software design.

The three DRAM models are currently unique packages, however the work is

underway to unify them under a single abstract interface. This would allow an easier

integration of all DRAM models into a simulation environment. This abstraction is

complete for the most recently developed model (DDR2) however it has not been

completed for the remaining models. This initiative is aimed at making easier the

integration of all DRAM Java models into a simulation environment.

The DDR2 model also is composed of a number of classes, but as it was the

model developed, and was intended to be extensible to other DRAM models, it has a

of interfaces above the model definition to enable easy transitions between the vario

DRAM models. The interfaces specified for this model are dram_ctrl which contains

elements of the interface for initialization of the model, and dram_trans which contai

interface methods for interrogating a specific transaction for schedule, latency, hit/m

status and other transaction information. The ddr2_ctrl class extends the dram_ctrl

interface, and the ddr2_trans class extends the dram_trans interface. Future develo

will allow the DRDRAM and SDRAM models to implement the same abstract interfa

5.2 Model Description

Three unique DRAM models have been written, two of which are somewhat

similar (SDRAM and DDR2), but each of which has unique elements and source. Th

three models are referred to as DRDRAM, SDRAM and DDR2 though their individua

coverage extends beyond a single technology. Three individual packages were writt

because of the complexities involved in scheduling transactions for each of the interf

As will be described, the intent is to encompass these three models behind a single

abstract interface, though this work is not yet complete.

The DRAM models are designed to process a sequence of accesses and pro

accurate timing information for each phase of the access. The DRAM models thems
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are not designed to do any access re-ordering or coalescing, however the controller c

modular enough that these enhancements could be added into the controller.

Conceptually, the DRAM models have a single entry point, as is also the case

the DRAM memory system. A simple block, or object, diagram of the DRAM models

given in Figure 5.1. This figure shows each of the objects which encompass the mod

controller object issues access requests to the bus (or channel) object to which it is

associated. Logically, there are essentially two phases in each access. The first phas

interrogation of the internal data structures of the DRAM devices to determine the typ

read which is required — is a precharge required, is an activate/RAS required, is the bank

busy. After this “type” for the access has been determined, then the models can exa

the current bus/channel schedule and arrange the access with other bus activity for 

lowest possible latency. The latency of the access is based upon the scheduled time

prior accesses, and the availability of the bus.

Controller

Device

Bus

Bank

Schedule

Transaction

Bank

Device

Bank

Bank

Transaction

Transaction

...
.

...
...

..

...
.

...
.

Initialization &

Requests
Access

ABus Vect

DBus Vect
Transaction Transaction

Transaction ....

....

Figure 5.1: Conceptual Diagram of Simulation Models

This diagram is generic in that it is an attempt to show the structure of all three DRAM models in
a single figure. Each of the above balloons represents an object in the model. The models have
a single access point through the controller, and the accesses require two steps, first traversing
the bus to determine access type, then traversing the schedule to determine timing information.
The DRDRAM model has 3 transaction vectors contained within the schedule, corresponding to

its three DRAM bus components.
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The three models will be discussed in the chronological order of their

development. Other models preceded these, such as a conventional (RDRAM) Ram

model, but results for those are not included in this thesis, and thus we will limit our

discussion to the models with results presented.

5.2.1 DRDRAM

The DRDRAM model is specific to the Direct Rambus architecture. This mod

supports 600 MHz, 800 MHz and the recently announced 1066 MHz device speeds

the results shown in Chapter 6 reflect operating speeds of 800MHz. Parameters withi

model are tRCD, tRP, tRAS, RIMM size {64MB_8by64Mb, 128MB_16by64Mb,

128MB_4by128Mb, 256MB_8by128Mb} and controller policy {open-page, close-pag

autoprecharge}. The DRDRAM model was the first developed, and contains the mos

unique code of the models presented here. Because the DRDRAM is fairly unique in

hardware and implementation respects, this requires that the modeling software als

significantly different than the SDRAM models. For instance, the fact that the DRDR

interface has 3 bus components as opposed to the two for the SDRAM devices requ

significant differences in the scheduling algorithms. Additionally, the shared sense-a

of the Direct Rambus architecture make maintaining the state about open pages un

this simulation model.

The classes within the DRDRAM model are drd_ctrl, drd_channel, drd_devic

drd_bank, drd_schedule, drd_trans, and drd_cycle. The Java source code for these c

is included in Appendix A.3, page 189. Each of these classes implements the

corresponding hardware or conceptual object in a DRDRAM memory system

implementation.

5.2.2 SDRAM

The SDRAM model supports simulation of PC100, PC133, DDR266 and

DDR333. It actually will allow a higher level of clock speeds based upon these SDR

DDR SDRAM interface, but the above mentioned interface specifications are those 

likely to be produced which are also supported by this model. Parameters within this
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model are SDR or DDR data signalling, bus frequency, CL, tRCD, tRP, DIMM size o

{64MByte; 128 MByte}, controller policy of open-page or close-page-autoprecharge.

The SDRAM model like the others is composed of a number of classes. The

classes within the SDRAM model are sdram_ctrl, sdram_device, sdram_bank, sdram

schedule and trans. The Java source code for these classes is included in Appendix

page 135. The SDRAM classes together comprise the simplest of these three mode

They model the simplest set of DRAM architectures, with the fewest choices of

parameters. However, this model accurately simulates the devices which currently

comprise the majority of the primary memories for computer systems sold thus far in

2000.

5.2.3 DDR2

The DDR2 models supports simulation of DDR2, DDR2VC and DDR2EMS a

200MHz. This simulation engine has support for address remapping at the controller

parameters allow for the user to set CL, tRCD, tRP, address remapping either on or o

DIMM sizes to 256 MByte or 512MByte, set the controller policy to open-page or clo

page-autoprecharge. Additionally, in the case of a DDR2EMS simulation the control

can be set to do all writes in either no-write-transfer or write-transfer mode(s). And in

case of a DDR2VC simulation, the controller can be set to allocate virtual channels 

Random or true least-recently-used (LRU) policy. The DDR2 model is the most

parameterizable with regard to controller policy, and also includes the ability to enab

controller address remapping.

The DDR2 model also is composed of a number of classes, but as it was the

model developed, and was intended to be extensible to other DRAM models, it has a

of interfaces above the model definition to enable easy transitions between the vario

DRAM models. The interfaces specified for this model are dram_ctrl which contains

elements of the interface for initialization of the model, and dram_trans which contai

interface methods for interrogating a specific transaction for schedule, latency, hit/m

status and other transaction information. The ddr2_ctrl class extends the dram_ctrl

interface, and the ddr2_trans class extends the dram_trans interface. Future develo

will allow the DRDRAM and SDRAM models to be integrated behind a single abstra
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interface, making the integration of all of the simulation models into a single simulation

easier undertaking. The Java source code for these classes, as well as the abstract in

definition is included in Appendix A.2, page 156.

5.3 Statistic Generation

All of the models collect common statistics, typically in the same portion of th

same classes when possible. As discussed in Section 5.2 — Model Description ther

two phases to the access handling. Statistics which are not time dependent — numb

read and writes, number of cache hits, bytes per access, number of temporally adja

accesses to each bank, etc. — are gathered in the first phase where the access “typ

determined. Statistics which are time dependent — access latency, bus utilization, ti

elapsed, etc. — are gathered after completion of the second phase when the acces

processed has been scheduled, prior to the latency being returned to the invoking

controller object.

There are some special case statistics in the three models, such as the Ramb

utilization, which is composed of 3 rather than 2 components, and the cache hit rates

cache-enhanced DDR2 architectures. In these cases, the statistic gathering code fra

are placed where they best fit between the two phases of the access.

The Java language has a common method in all classes used to provide

information about an object. The tostring() method is used for printing object statistic

all cases. At the completion of each simulation, these methods are used to print the

statistics from the DRAM simulations to a text file. Subsequently these text files are

processed by Perl post-processing programs to generate tables of the interesting re

5.4 Validation

Validation of a simulation engine is a critical portion of the design process. W

performing comparisons based upon existing hardware, verification is simply compa

the output of applications to a known good result. In the case of a software simulatio

there are many things which can be coded incorrectly, not all of which would genera

erroneous result. In software, the behavior of the hardware being modeled could be
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incorrectly characterized in a manner that is impossible to fabricate. The validation

process guarantees that the software model accurately reflects the behavior of the

hardware which is being simulated.

Validation of the models was performed using synthetic traces which have a v

regular, known behavior and for which timings can thus be calculated. Table 5.1  sho

Table 5.1: DRAM Model Validation using Synthetic Traces

Trace
DRAM

Architecture
Calculated

Hit Rate

Calculated
Cycles /
access

(sequential)

Calculated
Data Cycles

/ access

Simulated
Hit Rate

Simulated
Cycles /
access

Synthetic
Read only
128 Byte
accesses
256 Byte
stride

PC100 0.875 17 16 0.86580 16.67078

DDR266 0.9375 8.375 8 0.93060 8.27738

DDR2 0.9375 8.5625 8 0.93750 8.47491

DRDRAM 0.75 12 8 0.73710 10.09906

Synthetic
Read-only
128 Byte
accesses
512 Byte
stride

PC100 0.75 18 16 0.74518 17.29153

DDR266 0.875 8.75 8 0.86814 8.52734

DDR2 0.875 9.125 8 0.87500 8.91421

DRDRAM 0.5 16 8 0.50000 11.81772

Synthetic
Read only
128 Byte
accesses
1024 Byte
stride

PC100 0.5 20 16 0.49086 18.54453

DDR266 0.75 9.5 8 0.74307 9.02750

DDR2 0.75 10.25 8 0.75000 9.79285

DRDRAM 0 24 8 0.00000 20.61815

Synthetic
Read only
128 Byte
accesses
2048 Byte
stride

PC100 0 24 16 0.00000 20.99763

DDR266 0.5 11 8 0.49098 10.03562

DDR2 0.5 12.5 8 0.50000 11.55022

DRDRAM 0 24 8 0.00000 20.60199
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the results of a set of simulations and the calculated values for a subset of the synth

traces that were executed. The results in this table have been modified accounting f

fact that the DDR architecture limits the access granularity to 4 bus-widths. This me

that each 128 Byte access results in 4 bus-level accesses. The results have been

compensated to allow comparison between the multiple architectures. The three mid

columns are calculated values for both the row-cache hit rate and cycles per access

two right hand columns are the simulated values for both of the both the row-cache hi

and cycles per access.

The calculated hit rate does not take into account the effects of refresh, and is

an upper bound on the simulated hit rate. In all cases, the simulated hit rate is the sa

slightly below the calculated hit rate. This validates the model’s ability to determine the

or miss status of the accesses in the DRAM device which it simulates.

The calculated cycles / access (sequential) is calculated by taking the end-to

time of each access, from the first precharge, row or column packet to the last data 

transferred, and averaging this value across all accesses. This value can be used a

upper bound of the simulated cycles / access because it is average access time assum

overlap between sequential accesses. The calculated data cycles / access is the av

number of data cycles required by each access. This value can serve as a lower bo

the simulated cycles / access because regardless of the overlap achievable - each a

must occupy the data bus for the number of cycles required to transfer data. The simu

cycles / access is verified by falling between the two of these values. For all of the

synthetic traces, the simulated cycles / access falls between the upper and lower bo

Synthetic
Read only
128 Byte
accesses
4096 Byte
stride

PC100 0 24 16 0.00000 20.99518

DDR266 0 14 8 0.00000 11.99906

DDR2 0 17 8 0.00000 15.05708

DRDRAM 0 24 8 0.00000 20.57135

Table 5.1: DRAM Model Validation using Synthetic Traces

Trace
DRAM

Architecture
Calculated

Hit Rate

Calculated
Cycles /
access

(sequential)

Calculated
Data Cycles

/ access

Simulated
Hit Rate

Simulated
Cycles /
access
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determined by these two calculated values. This validates the model’s ability to corre

schedule the DRAM accesses and determine the access latencies.

5.5 Other Simulation Code

The DRAM models are used in both the trace driven methodology as well as 

execution driven methodology. In order to enable operation of the same models in b

these configurations auxiliary code was required.

In the case of the trace driven methodology, the auxiliary code encompassed

simple front-end to read in the trace elements and provide them to the DRAM models

a simulated access stream. This code was written in Java, and is not included in the

appendixes.

In the case of the execution driven methodology, the auxiliary code encompa

the incorporation of the Java Virtual Machine (JVM) as well as the DRAM models into

SimpleScalar environment. This code was written in C, but relied heavily upon the J

Native Interface (JNI) libraries to enable the invocation of Java methods within a C

environment. This code is contained in Appendix A.4, page 215, and is compiled alo

with the SimpleScalar 2.0-MSHR source to produce the execution driven simulation

engines. These engines rely upon the Java class files produced by compilation of the

in Sections A.1 through A.3, but these classes are not loaded until run-time.

Finally, each simulation run, whether trace or execution driven, produces a log

which contains the data pertaining to the simulated execution of a particular benchm

on a particular DRAM, at a processor speed, with a given cache configuration and us

specific controller policy. There are other parameters, but the output of each of thes

permutations is a single log file. The program which is required for the generation of

meaningful results graphs is a PERL script which can take these hundreds of log files

produce tab delineated tables, in a text format, based upon parameters to the PERL

and intended for import into Excel, StarOffice or an equivalent graph production pack

These auxiliary programs, are as necessary as the DRAM models to the simul

flow, and are part of the framework which generated the results presented in Chapte

is built upon prior research packages such as Dinero, SimpleScalar, and more comm
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applications. This framework will continue to be utilized for ongoing research, after t

thesis is completed and defended.
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Chapter 6

Results

The experiments presented in this chapter are comprised of the simulations o

computer systems, each with a specified configuration, on a known benchmark or DR

access trace. Results have been gathered, for a wide range of configurations, unde

methodologies described in Section 4.2 — Trace Driven, and Section 4.3 — Execut

Driven. Each simulation results in a output file describing the behavior and performanc

the memory system, and in the case of the execution driven simulations, the proces

system and caches. The number of simulations and variety of system architectures 

allow for all information to be shown in a single graph, or as a single result. The sec

of this chapter are intended to each cover either a factor contributing to the performan

the DRAM access stream, or a resulting metric upon which DRAM systems may be

evaluated. The sections in this chapter are intended to be read in order, as they buil

upon each other, but may be examined individually if the reader is only interested in

specific element of the DRAM architecture or performance.

6.1 Introduction

This thesis is based upon a long schedule of research and simulation which b

with comparison of cache behavior in Alpha, x86 and MIPS processors, and followe

course of evolution which has led to the data presented in this chapter comparing D

architecture performance. By no means will all of the simulations or experiments

performed be presented. Only those experiments which form a cohesive investigation

the attributes of DRAM which impact system performance will be presented. Some o

these results therefor have been previously published in [Cuppu99][Davis00a] or oth

venues, and not all are from the same simulation environment.
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Simulations have been performed over a number of generations of the simula

engines and benchmarks. The execution based results presented here are from two d

points in the evolution. The latest change to the simulation environment was made t

accommodate the use of the SPEC2000 benchmark suite.

6.1.1 DRAM Characteristics

Not all of the DRAM discussed in Chapter 3 will be examined in the simulatio

presented in this chapter. Characteristics for those DRAM which are simulated are g

in Table 6.1. For some of these architectures there are multiple possible choices for

parameters, such as the multiple possibleCAS grades (2-3-2, 3-3-2 and 3-3-3) available

for PC100. Similarly, the version of EMS cache enhanced DDR2 proposed for

incorporation into the JEDEC standard specifies a 3-3-3 timing. The results using a 

DDR2EMS timing model were generated prior to release of this ballot. Further work

should include different timings for all architectures. The values used in the simulatio

correspond to those in Table 6.1. As can be seen from the bandwidth values, all of t

DDR2 interface architectures have an advantage in raw or potential bandwidth. The

Table 6.1: Overview of DRAM Characteristics

PC100
DDR266
(PC2100)

DRDRAM DDR2 DDR2EMS DDR2VC

Potential
Bandwidth

0.8 GB/s 2.133 GB/s 1.6 GB/s 3.2 GB/s 3.2 GB/s 3.2 GB/s

Interface Bus
64 Data bits
168 pads on
DIMM
100 Mhz

Bus
64 Data bits
168 pads on
DIMM
133 Mhz

Channel
16 Data Bits
184 pads on
RIMM
400 Mhz

Bus
64 Data bits
184 pads on
DIMM
200 Mhz

Bus
64 Data bits
184 pads on
DIMM
200 Mhz

Bus
64 Data bits
184 pads on
DIMM
200 Mhz

CL - tRCD - tRP
(clock cycles)

3-3-2 2-2-2 8-7-8 3-3-3
AL = 0

2-4-3 2-4-3

Latency
to first 64 bits
(Min. : Max)

(3 : 9) cycles

(22.5 : 66.7)
nS

(2.5 : 6.5)
cycles

(18.8 : 48.8)
nS

(14 : 32)
cycles

(35 : 80) nS

(3.5 : 9.5)
cycles

(17.5 : 47.5)
nS

(2.5 : 9.5)
cycles

(12.5 : 47.5)
nS

(2.5 : 18.5)
cycles

(12.5 : 92.5)
nS

Notes: More Banks
Shared
Sense-Amps

Limited Burst
Size

1.4% Area
Overhead

4.3-5.5%
Area
Overhead
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a number of ways which this could be factored out, either by replicating the bus so tha

bandwidth of all technologies was matched, or by matching the number of pins in th

interface such that each interface used the same number of pins. Previous research

[Cuppu99] has done this, but for the experiments presented in Chapter 6 all of the

interfaces are as specified in Table 6.1.

6.1.2 Benchmarks

The benchmarks simulated are intended to cover all types of applications, an

shown in Table 6.2,. The execution driven benchmarks are drawn from a number of

Table 6.2: Benchmarks & Traces for Simulation Input

Name Source Input Set / Notes

cc1 SPEC95 -quiet -funroll-loops -fforce-mem -fcse-follow-jumps -fcse-skip-blocks -
fexpensive-optimizations -fstrength-reduce -fpeephole -fschedule-insns  -
finline-functions -fschedule-insns2 -O spec95-input/gcc/*.i

compress SPEC95 spec95-input/compress/test.in

go SPEC95 spec95-input/go/null.in

ijpeg SPEC95 -image_file ../spec95-input/jpeg/penguin.ppm -compression.quality 90 -
compression.optimize_coding 0 -compression.smoothing_factor 90 -
difference.image 1 -difference.x_stride 10 -difference.y_stride 10 -verbose 1 -
GO.findoptcomp

li SPEC95 spec95-input/li/boyer.lsp

linear_walk hand-coded

mpeg2dec Mediabench -b mei16v2.m2v -r -f -o0 rec%d

mpeg2enc Mediabench 100M.options.par out.m2v

pegwit Mediabench -e my.pub kennedy.xls pegwit.enc < encryption_junk

perl SPEC95 scrabbl.pl < scrabbl.in

random_walk hand-coded

stream (unrolled) McCalpin

stream_no_unroll McCalpin

oltp1w IBM (trace) 2 GByte address space

oltp8w IBM (trace) 2 GByte address space

xm_access Transmeta (trace)
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sources: the SPEC95 suite [SPEC95], the SPEC 2000 suite [SPEC00], the Mediabe

suite [Lee97], two versions of the McCalpin Stream benchmark [McCalpin00], each

compiled with different optimizations, and finally linear walk and random_walk, hand

coded as bandwidth limited applications with predictable and unpredictable access

patterns respectively. The traces used are drawn from two places. The IBM online-

transaction-processing (OLTP) trace gathered on a one-way and 8-way SMP, and th

Transmeta traces for Access, Cpumark, Gcc and Quake. These are certainly not the

benchmarks applicable to this type of a study, but it is our hope that these selections

encompass enough breadth that all application behavior patterns are represented.

6.1.3 Comparative Framework

We present at least two types of investigation here. The first, and probably m

telling are examinations of how system parameters (processor frequency, cache

configuration, number of MSHRs, and other inputs) change the performance for a spe

DRAM architecture. These provide insights into how the DRAM architecture is able 

cope with a change of system. The second type of comparison is for a given system

configuration, which DRAM architecture (PC100, DDR266, DDR2, DRDRAM, etc.)

provides the best system performance. These latter simulations, while of great inter

xm_cpumark Transmeta (trace)

xm_gcc Transmeta (trace)

xm_quake Transmeta (trace)

apsi SPEC2000 (test input)

applu SPEC2000 (test input) applu.in

fpppp SPEC2000 (test input) natoms.in

hydro2d SPEC2000 (test input) hydro2d.in

mgrid SPEC2000 (test input) mgrid.in

su2cor SPEC2000 (test input) su2cor.in

swim SPEC2000 (test input) swim.in

Table 6.2: Benchmarks & Traces for Simulation Input

Name Source Input Set / Notes
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system designers in the current market context, provide less understanding of the

architectures themselves and more information of a comparative nature. While being

accurate within the current design parameters they are short-sighted with regard to

development of next generation high performance DRAM architectures.

Examinations of how system parameters affect the performance of a fixed DR

architecture are insightful because they provide understanding on how the input

parameters to the system generate improvements or reduction based solely upon th

DRAM performance. In addition, these input parameter studies give us direction for 

future changes which are likely to take place with system designs.

Comparisons between architectures are best made when each DRAM archite

is performing at the best level achievable with a reasonable controller. Previous wor

established a set of reasonable controller policies which yield the lowest average exec

time for each of the DRAM architectures examined. For architectural comparisons

between PC100, DDR266 and DRDRAM an open-page policy will be used, for DDR2

open-page with address-remapping will be used, and for DDR2EMS and DD2VC a c

page-autoprecharge with address-remapping will be used [Davis00a]. Data has bee

collected using other controller policies for each of these architectures, but these po

have typically, though not always, provided the best performance on the benchmark

examined.

In performing simulations of DRAM performance, it is difficult to identify

benchmarks that will exercise the entire memory system as is done with a hardware

system. The execution driven simulations do not include the operating systems activ

a true system. This unfortunately significantly changes the DRAM access pattern, o

aspect of which is a reduction in the memory space utilized in comparison to the sam

benchmark running on a conventional operating system. Additionally, the SPEC suite

known to have a small memory footprint, that frequently allows them to fit entirely in

L2 cache. Stream is a benchmark explicitly added to reflect the memory intensive cla

applications which focus upon streaming media.

The traces also are simulated in a manner which allows them to emulate strea

media applications. The traces used in these simulations are processed in a manner

is very optimistic about the arrival time of accesses. This is because some traces do
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contain timestamps, and other traces contain timestamps which are only accurate w

the context of a specific memory system architecture. Absence of timestamps during

simulation has the consequence that the DRAM access stream is compacted in time

minimal amount of time required to perform all accesses. Both the Transmeta and the

OLTP traces also contain the access stream resulting from the operating system ac

giving them a larger memory footprint than the same application in an execution driv

configuration. This arrangement places significant stress on the memory system, as

traced applications were highly memory intensive.

6.2 Processor Frequency

The frequencies of many components of the computer system affect the

performance of the DRAM system. The bus frequency of the DRAM devices is the m

significant contributor to the performance and this is reflected in the increasing frequ

of DRAM in evolutionary advancements. Secondary to this bus frequency is the proce

frequency which affects the DRAM performance most directly through the inter-acce

timing. Figure 6.1 shows the impact of processor frequency upon the overall benchm

execution time for three different DRAM architectures. For all of these benchmarks, 

execution time has been normalized to the 5Ghz processor execution time such tha

the benchmark execution times can be displayed upon the same graph. As can be se

change in relative execution time is least significantly affected for those benchmarks

which are highly memory intensive, namely the McCalpin Stream benchmark.

This shows that as benchmarks become more memory intensive, they are go

be more dependent upon the performance of the DRAM memory system, and less u

strictly the processor operating frequency, which has served as the major marketing

for computer systems for a number of years. Memory intensive applications are any

applications which have a significant amount of accesses escape from the cache sy

because they are streaming unique data for each access, have a large footprint and

locality in the accesses, similar to database or transaction-processing, or for other rea

As applications with very little data re-use (streaming media) become more common
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memory access behavior of programs will emphasize the performance of the lower l

of the memory hierarchy.

6.3 L2 Cache Interaction

The caches at a higher level in the memory hierarchy not only affect the numbe

accesses which reach the DRAM, but also affect the spatial and temporal locality of

references. Larger caches typically have longer line sizes, and these longer lines ge

larger granularity requests to the lower levels of the memory hierarchy. In addition, la

caches generally result in fewer accesses to the DRAM memory system, except in the

of streaming media applications where the caches are not effective because of the l

data re-use.
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Figure 6.1: Processor Frequency

These graphs all assume an 8-wide superscalar
processor, 256KB L2 cache, 16 MSHRs

Top Left: PC100; Top Right: DDR266;
Bottom Right DDR2
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In cases where the effective cache size is sufficiently large that access locality

the caches does not justify using an open page controller policy, a close page policy

used. This is typical for large SMP configurations [Coteus00]. Because of the relativ

small data footprint of the majority benchmarks used in these studies, i.e. SPEC, we

not generally explored cache sizes large enough to eliminate the effectiveness of an

page controller policy.

6.3.1 Execution Driven Cache differences

Only three cache configurations were examined within the execution driven

framework. These were: 1) 32KB-I/32KB-D L1 caches with 32 Byte linesizes and no

2) 32KB-I/32KB-D L1 caches with 32 Byte linesize and a 256KB unified L2 cache w

128 Byte linesize; and 3) 64KB-I/64KB-D L1 caches with 32 Byte linesizes and a 1M

unified L2. cache with 256 Byte linesize. Configuration number two serves as the bas

for most of the other simulations done, where cache configuration is not the item of

interest.

Figure 6.2 shows the accesses made to the DRAM controller for each of the 

cache configurations described. Since the accesses generated by the application at

processor are the same, and the L2 caches are the same, the accesses which esca

caches are also the very similar. Some small differences come from incorrect specul

or prefetches, but the impact of these non-application generated accesses are relati
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Figure 6.2: Post L2 Cache Accesses

All DRAM architectures have the same number of
accesses to the controller following the same

cache configuration.

Left are the normalized controller accesses which
escape each of the cache configurations, for all

simulated DRAM architectures
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small. Thus, the normalized controller accesses in Figure 6.2 are the accesses whic

escape the L2 for all of the simulated DRAM architectures.

As can be seen, even a 256k unified L2 cache is able to filter out over 75% o

accesses for all benchmarks, and over 90% of the accesses on average. An L2 cac

thus significantly increase the performance of a microprocessor system. It is interesti

examine the relative improvement in execution time in comparison to the improveme

the number of accesses.

Figure 6.3 shows the effects upon the execution time for each of three differe

cache configurations in four simulated memory systems: PC100, DDR266, DDR2 an
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Figure 6.3: L2 Cache Size Impact (execution driven)

Impacts upon benchmark execution time and the number of DRAM accesses
observed with three cache configurations

Top Left: PC100; Top Right DDR266; Bottom Left: DDR2; Bottom Right: DRDRAM
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DRDRAM. In all cases, the execution time is greatly reduced by the addition of an L

cache. This reduction in execution time is on average 70%, with the one megabyte

configuration increasing the average reduction to approximately 75%. The two

benchmarks which have the least reduction in execution time, mpeg2enc and stream

a correspondingly higher number of accesses which escape the L2 cache to becom

DRAM accesses. The number of DRAM accesses is reduced by an even larger perce

over 90% for both the cache sizes on the PC100 and DDR266 memory systems, an

80% for both cache sizes on the DDR2 memory system. The reduction in the numbe

accesses is not surprising, that is the intent of cache. What is surprising is the differ

between these architectures, and the fraction of benchmarks which do not exercise 

DRAM system when run in a system with 1 MByte of cache. The addition of an opera

system, background tasks, or I/O would likely increase the number of L2 cache miss

6.3.2 OLTP Large-Cache Simulations

The two On-Line Transaction Processing (OLTP) traces provided by IBM wer

gathered by IBM, using PowerPC machines. The first trace monitors the activity of a

single processor system (oltp1w), the second trace monitors the activity of an 8-way

(oltp8w). In both cases the activity was monitored at the level of the post-L1 cache

snooped bus. The primary caches are split instruction and data, 128Kbytes each, 4-

set-associative, with 128-Byte lines. Three configurations were simulated for these tr

1) without any additional L2 cache; 2) with an additional 1Mbyte unified L2 cache; and

with an additional 4Mbyte unified L2 cache.

Figure 6.4 shows the number of unique accesses and the trace access fulfillm

time for both OLTP traces, and for each of the three cache configurations described a

These graphs are strongly affected by the linesize of the lowest level of the caching

structure. In those traces where there is no L2 cache, all accesses are of size 128 byt

both the 1Mbyte and 4Mbyte L2 caches, the linesize, and thus access size, is 256 b

This increase in linesize in a transaction processing environment causes the load on

DRAM system, and thereby the execution time, to increase. The number of unique

accesses decreases for the PC100 and DDR266 configurations, as the upper level 

filter out accesses, as caches are intended to do. The number of bytes transferred acr
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DRAM bus by each trace is the same for all architectures, and matches the graph o

number of accesses for the DDR2 architecture, as that architecture has a fixed num

bytes per access. In examining the absolute number of accesses, rather than norma

values, the PC100 and DDR266 values are identical, while the DDR2 executes 4 acc

for each PC100 access in the no L2 (128 Byte line) case, and 8 unique accesses fo

PC100 access in both of the 256 Byte linesize L2 cases. This is because of the burs

which was adopted in the DDR2 specification. The bandwidth of each of these

technologies comes into play when we examine the access fulfillment time. As was

mentioned above the number of bytes transferred for each trace is the same across

DRAM architectures. The bandwidth of the three technologies allows DDR2 to trans

that number of bytes in a shorter period of time. This shows us that for the trace driv

simulations, because of the lack of access dependence, and the fact that we are mea

the time for access fulfillment rather than benchmark completion, the bandwidth of t

interface is the primary characteristic determining fulfillment time.

It would be interesting to perform the same experiments, with L2 linesizes of 

bytes, which would eliminate the increase in the number of bytes transferred as the 
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Figure 6.4: L2 Cache Size (OLTP traces)

These graphs make use of the IBM OLTP Traces. In the case where an L2 is present the Dinero cache
simulator was used to preprocess the trace before processing by the DRAM models
Left: Normalized Number of Accesses; Right: Seconds for DRAM Access fulfillment
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cache is added. This was study was not possible at this time due to the disk space a

compute time available.

6.4 MSHR Effects

For any modern DRAM architecture, whether it be an asynchronous interleav

configuration or a synchronous configuration, one aspect to increasing primary mem

system performance or equivalently reducing system performance degradation due 

memory access latency, is parallelism in the memory system. In order to provide the

memory system with a parallelizable workload or set of accesses, the processor(s)

generating primary memory accesses must be capable of generating multiple outsta

requests. Miss information / Status Holding Registers (MSHRs) are one mechanism

support multiple outstanding memory requests from a single processor [Kroft81]. Th

the mechanism which is supported in the version of SimpleScalar used for all execu

driven simulations presented in this chapter. Doug Burger added support of MSHRs

SimpleScalar version 2.0, and on top of this was added the support for DRAM mode

implemented in Java. The MSHR support in this version of SimpleScalar allowed for

changing the number of MSHRs allocated for the cache, prefetch and targets. We h

explored 5 MSHR configurations within the execution driven simulations. They each

correspond to settings for these three MSHR values of: 16 MSHR - 16 cache, 4 prefet

targets; 8 MSHR - 8 cache, 2 prefetch, 2 targets; 4 MSHR - 4 cache, 2 prefetch, 2 ta

2 MSHR - 2 cache, 1 prefetch, 1 target; 1 MSHR - 1 cache, 1 prefetch, 1 target. It is

possible to specify ZERO MSHRs within this simulation environment. Therefor, even

when the settings are in the 1MSHR configuration, the processor is still able to cont

processing memory accesses which hit in the upper levels of the cache while there 

outstanding DRAM access.

Figure 6.5 shows the reduction in DRAM concurrency for each of the five MS

configurations. DRAM concurrency in this graph is defined as the fraction of time tha

there are simultaneously two accesses utilizing the DRAM interface. This occurs wh

one access is occupying the address signals of the bus, and the other access is occ

the data signals of the bus. The first observation from this figure is that the DDR2
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architecture provides support for higher levels of concurrency than either the PC100

DDR266 architectures. This is due to a number of characteristics. First, the DDR2

architecture, as simulated limits the burst size of accesses to 4 bus widths (see Sec

3.3.7) and this results in a much larger number of accesses, and specifically access

which are sequential and page hits. Second, the DDR2 architecture has changed the

of the access timings such that accesses can be overlapped with fewer “dead” or tran

cycles to reduce the amount of utilized, and concurrent cycles. On average the reduct

concurrency which results from a reduction in MSHRs is small, less than 2%, but thi

partially because the DRAM memory systems investigated only support 3 accesses

flight. If the memory system supported a larger number of accesses, either through 

partitioned memory space, or a higher concurrency architecture, the number of MSH

may impact the performance more significantly.
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Figure 6.5: Impact of MSHRs Upon
Access Concurrency

All simulations assume a 5Ghz, 8-way
superscalar processor with 256KB L2 cache
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Figure 6.6 shows the impact of the same reductions in the number of MSHRs u

the benchmark execution times. The most significant observation from these graphs i

the number of MSHRs only measurably affects those benchmarks which are highly

memory intensive such as the stream benchmark. This is because, to a first order, t

DRAM itself does not significantly affect the execution times of the SPEC2000

benchmarks which dominate these graphs. The observation that the performance ca

actually improve in some cases when the number of MSHRs is reduced can be expl

by the reduction in the number of prefetch MSHRs which increase the load upon the

DRAM bus.

The average increase in execution time when decreasing the number of MSH

1 is lower than might be expected, approximately 2% in these simulations. This indic

that the parallelism available in 16 MSHRs is not being fully exploited by these

simulations. The applications which do have the largest degree of available memory
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Figure 6.6: MSHR Impact on Execution

Cycles

All simulations assume a 5GHz 8-way
superscalar processor, with 256KB L2 cache
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system parallelism, such as pegwit, hydro2d, and stream, show the largest degree o

degradation when the number of MSHRs is decreased. Even for these benchmarks

MSHRs is sufficient to exploit all of the parallelism which is provided by the DRAM

architectures examined.

This result shows that the 16 MSHRs used in the remainder of the simulation

more than sufficient, within the architecture simulated by SimpleScalar, to support a

available memory system parallelism. In order to increase the amount of parallelism

generated by the simulation engine, some of the techniques described in Section 2.3

as speculative data prefetching, or data value prediction where values are used for a

generation, could be implemented in this microprocessor simulation engine.

6.5 Controller Policies

As was discussed in Section 3.5, the policies exercised by the DRAM control

can significantly affect the performance of a DRAM memory system. In some cases, t

is an obvious choice of controller policies based upon the architecture of the device.

example, using an open-page policy with a Virtual Channel device provides no advan

and will always yield lower performance than a close-page-autoprecharge policy.

However for a number of device architectures, policy choices are based upon the ov

memory system architecture (i.e. how much cache precedes the DRAM) and the typ

benchmarks to be run. The fundamental choice between maintaining the most recen

accessed DRAM row as open, or closing that row and precharging the bank is the c

between the close-page-autoprecharge and open-page controller policies.

Figure 6.7 shows the impact of controller policy upon the execution driven

simulations. The performance of the open-page policy in the execution driven simula

is very much dependent upon the page or line size of the DRAM arrays. The archite

which provides the best performance in the open-page configuration is the DRDRAM

architecture which also has the smallest page size and the largest number of banks u

implement a fixed address space. The architecture which provides the worst perform

in the open-page configuration is the DDR2 architecture which has the largest page

and the smallest number of banks used to implement a fixed address space. The PC
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and DDR266 architectures perform between DDR2 and DRDRAM for the open-pag

controller policy, with the PC100 performing slightly better due to the slightly smaller

page and bank sizes. With the small bank/page sizes of current architectures, the o

page controller policy can provide higher performance on applications which have a

significant amount of linear data access or data reuse. As bank/page sizes increase

applications become more random access with a larger data set, the advantages of

the open-page policy decrease.

Figure 6.8 shows the impact of controller policy upon the trace driven simulatio

The trend is similar to that of the execution driven simulations in that the smaller the b
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Figure 6.7: Controller Policy in Execution Driven Simulations

Impact of controller policy upon the normalized execution time of these benchmarks for the close-page-
autoprecharge and open-page controller policies
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and page size, the better the open-page controller policy performs. However, the ab

values are very different. The performance of the trace-driven simulations using the 

page controller policy is comparatively better than that observed for the execution-d

simulations. This is because the trace driven simulations are not sensitive to access la

due to the lack of feedback from an access to the address generation of subsequen

accesses. This is a consequence of the fact that, as shown in Figure 4.2, the execut

the instructions occurred prior to the DRAM access trace generation, and it is impos

to determine the inter-access timings. The time on the Y axis is referred to as acces

fulfillment time, rather than execution time because it illustrates the amount of time
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Figure 6.8: Controller Policy in Trace Driven Simulations

Impact of controller policy upon the normalized access fulfillment time of these DRAM access traces for
the close-page-autoprecharge and open-page controller policies
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required to fulfill all accesses gathered at the time of execution, a lower bound on ac

execution.

The open-page policy performs better on the trace driven simulations than up

the execution driven simulations. This results from a number of factors. First, becaus

traces do not contain any inter-access timings, the access streams is compacted in 

and the data contained in the sense-amps is less likely to be invalidated by a refresh

between two accesses to the same page. Second, there are a number of system-lev

characteristics missing from the execution driven simulations which are likely to incr

the open-page performance. The execution driven simulations do not include operat

system activity such as page swapping, graphics system accesses like a frame buffe

or hard-drive activity. All of these access types are large-granularity accesses from

uncached memory which are likely to improve the open-page performance. Finally, t

traces are inherently bandwidth limited and thus place a higher load upon the memo

system. The fact that open-page accesses can be performed with a shorter latency 

require fewer inter-access refreshes allows more accesses to be serviced in a fixed 

of time. The increase in performance for the trace driven simulation is due to the inc

in effective bandwidth this allows For these reasons, as well as the fact that most mo

small-system DRAM controllers utilize a limited open-page policy, the open-page po

serves as the baseline configuration for all except the cache-enhanced DRAM

configurations for the remainder of these experiments.

6.6 Address Remapping

Address remapping, as discussed in Section 3.5.4 allows the processor and 

DRAM address spaces to differ. This provides an advantage in that addresses which

spatially proximate in the processor address space, and therefor likely to be accesse

with high temporal locality are placed into unique DRAM banks. The goal is that item

likely to be accessed in close temporal proximity, but not in the same page, are more l

to be able be accessed in a pipelined fashion because they reside in unique banks. 

intent of address remapping is to reduce the number of temporally adjacent accesses

to unique rows within the same bank. This situation limits performance because two
110
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accesses which meet those criterion must be serialized in the DRAM array. The add

remapping scheme used in these experiments is a relatively simple one, the addres

above those required to select a DRAM page (or row) are reversed in order. This tech

is simple and would add no latency to the path through the DRAM controller. The add

remapping scheme could certainly be improved from this technique, to be specific to

memory system implementation, or possibly implemented as a hash for significant

redistribution, but the simulations shown use this basic bit inversion technique.

Figure 6.9 shows the effect of address remapping on a DDR2 architecture. T

remapping reduces the average number of a adjacent accesses which map into the

bank by approximately 9.5%. An interesting thing to note is that included in the “adjac

accesses” are the adjacent accesses which hit in the open page. Ideally what we wou

to examine is the reduction in the number of adjacent non-hit accesses only. This is ce
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Figure 6.9: Address Remapping

All simulations of a DDR2 Architecture DRAM
system with and without address remapping,
open-page policy, 5Ghz, 256K L2, 16MSHRs

Top Left: Execution time; Top Right: Adjacent
Accesses mapping to the same bank (including

hits); Lower Right: Open-page hits
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to be significantly larger than 9.5% because with the DDR2 architecture and the 128 c

linesizes used in these experiments, a minimum of 75% of accesses (the last three 3

accesses of each group of four cumulatively accessing 128 bytes) are cache hits. Thu

remapping technique has the potential to reduce the average number of adjacent no

sense-amp-hit accesses on the order of 36%. The end result of address remapping, a

corresponding increase in access concurrency, is that we see on-average, a reducti

execution time of 2.5%, with reductions as high as 13% for stream and hydro2d. Thes

both applications which alternate accesses between multiple streams of data, presu

which were within the same bank without address remapping, and which mapped in

unique banks after the address remapping technique was applied. This technique is

universally applicable to all DRAM technologies, DDR2 interface or otherwise. The o

potential downsides are possible increased latency through the controller for schem

more complex than the one shown here, or an increase in the area of the DRAM cont

state machine.

6.7 Bus Utilization

Bus utilization refers to the fraction of execution time that the bus is occupied b

transaction. It is inappropriate to examine bus utilization for traces because they do 

contain accurate timing information, and thus the bus utilization is invalid. In most DRA

architectures there are two components to the DRAM bus, the address and the data

signals. In the case of a Direct Rambus (DRDRAM) channel, there are three compon

row, column and data. Figure 6.10 shows bus utilizations for the DRAM architectures.

top left figure shows strictly data bus utilization, the top right side figure shows utilizat

of both the address and the data signals on the bus, thus is inclusive of the data on th

The final figure on the bottom right shows the bus utilization for the perl95 benchmark

the PC100, DDR266, DDR2, DDR2EMS and DDR2VC DRAM architectures in that

order. The reason for discrepancy between this figure and the perl results shown in 

above figures is that the perl95 benchmark is run with a larger data set (524278546

instructions) and than the perl (2000) benchmark (73527235 instructions) and the tw

different binaries.
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As can be seen from Figure 6.10, there are two characteristic behaviors.

Benchmarks either utilize all the bandwidth that the memory system makes available

as is the case with linear_walk, random_walk and stream, or the benchmark makes

use of the memory system. For the first class of applications, increasing the bandwi

the memory system can improve performance. For the second class of applications,

increasing the bandwidth will not significantly reduce execution time. Regardless of 

behavior of the application, reducing the latency of the average memory access will

improve performance of any benchmark.

The perl95 graph shows the typical effects of the processor frequency upon b

utilization. As the frequency of the processor is increased, it causes a corresponding

increase in the utilization of the bus. This is due to a number of factors. The reduced

access times required to complete arithmetic, or control instructions between memo
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Figure 6.10: Bus Utilization

For execution driven simulations only.
Top Left: data bus utilization only; Top Right: the
same data, but also includes the address bus
utilization and overlap; Bottom Right: Perl95

long execution run

For both right hand figures the DRAM
architectures are ordered the same as the top

left: PC100, DDR266, DDR2, DDR2EMS,
DDR2VC
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accesses mean that the processor spends less time on non-memory instructions. W

faster processor, a larger number of instructions are able to be processed during the la

of a memory access, and the memory system is more able to find memory parallelis

within this larger instruction window. Together this results in increased bus utilization

transfer a fixed number of bytes, over a shorter period of time.

6.8 Cache Hit Rates

Cache hit means different things in the context of each of the unique architectu

For PC100, DDR266, DDR2 and DRDRAM it means hitting in an open sense-amp p

while a controller is managing the device using an open-page policy. For DDR2EMS

DDR2VC it means hitting in the SRAM cache located on the DRAM die. Each of the

various types of “cache hits” is included on a single set of graphs to allow compariso

between the various DRAM architectures. In all cases, a “cache” hit allows the acce

complete at the CL latency only.

Figure 6.11 shows the cache hit rates for each of the benchmarks, at a 5ghz

processor speed. The cache hit rates are, on average, better for the DDR2 architectu

a number of reasons. Primary among these is the fact that, for the DDR2 interface de
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Figure 6.11: Effective Cache Hit Rates

Left: Execution driven simulations assuming a 5Ghz, 8-way superscalar, 256KB L2, 16MSHRs
configuration; Right: Trace driven simulations
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this data reflects DRAM level accesses, and because of the limited burst size of 4, e

128-Byte controller access results in four 32-Byte DRAM level accesses, implying a lo

bound sense-amp hit-rate of 75%. Secondly, the results for the DDR2 (and DDR2EM

and DDR2VC) simulations utilize the address remapping technique described in Se

6.6. This technique more fully utilizes all of the banks in the device, allowing better ca

hit rates. The results in Figure 6.11 show that the cache-hit rate of an application is h

dependent upon the application behavior. Examine the difference between mpeg2en

which has a highly linear access pattern, and stream, which has a highly associative a

pattern, on the DDR2EMS and DDR2VC architectures. Highly associative in this con

means that the benchmark, while accessing data, streams concurrently from multipl

different arrays. This can lead to significant conflict misses if the streams are mappe

the same bank, and the DRAM architecture is direct mapped in its cache implement

For stream, the DDR2VC architecture has a much higher cache hit-rate than any oth

architectures. For mpeg2enc, the DDR2EMS architecture, which contains only direc

mapped cache lines, has a higher cache hit rate. Overall, the DDR2VC architecture

provides the best cache hit rates, due to the associativity of its cache implementatio

6.9 Access Concurrency

The relationship between a pair of DRAM accesses adjacent in time is signific

Primarily because accesses directed at unique banks can be pipelined to execute

concurrently, while accesses directed at the same bank must be performed sequent

This condition where two sequential accesses map to the same bank requiring that th

performed sequentially is also referred to as bank conflict. Further, there is some lat

involved in “turning the bus around” or transitioning from doing a read to a write. Thi

typically means that the data signals of the bus must idle for one cycle when making

a transition.

One approach to reducing the number of adjacent access pairs mapping to u

rows in a common bank, i.e. bank conflict, is to remap the address bits from the proce

address space to the DRAM address space. This remapping is sometimes impleme

and referred to as hashing, and attempts to combat the locality of reference. Other
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techniques for changing the access stream to improving the bus utilization involve re

ordering the accesses, clustering the reads and writes together, or coalescing neigh

reads. These techniques can significantly increase the complexity of the controller, b

may provide improved performance [Carter 99].

Figure 6.12 shows the fraction of adjacent access pairs which map to a comm

bank. For this figure, the three DDR2 interface architectures are shown both with an

without address remapping to illustrate the effectiveness of this technique. The data

presented in Figure 6.12 reflects controller level accesses. Were this not the case, a

access adjacency rate, both with and without remapping, would be observed due to

size limits. The number of sequential controller level accesses which map into the s

DRAM bank is calculated by taking the number of adjacent DRAM accesses which m

into the same bank, and subtracting from that three times the number of accesses w

are split by the controller (i.e. the number of sequential cache line fill accesses whic

guaranteed to be page-hits) and dividing the result by the number of accesses split 

controller. This calculation results in, the number of temporally adjacent controller le

accesses, which map into the same DRAM page.

The reduction in adjacent access pairs due to address remapping can be eas

observed in Figure 6.12. For the execution driven simulations, the average reduction
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Figure 6.12: Access Adjacency

Both show the fraction of adjacent accesses which map into the same bank for multiple DDR2
architectures both with and without address space remapping

Left: execution driven simulation; Right: trace driven simulations
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adjacent accesses mapping to the same bank is consistently from 95% to 64%, or a

reduction of 31%. For the trace driven simulations the average reduction in adjacent

accesses mapping to the same bank is 69% to 37%, or a reduction of 32%. This valu

consistent across all three DDR2 architectures, as controller address remapping is

orthogonal to the caching technique used within the DRAM devices. Figure 6.12 inclu

as adjacent accesses, those accesses mapping to the same bank those adjacent ac

which the second access is a sense-amp, row-cache, or virtual channel hit, but are n

to cache-line fills. The address remapping scheme does not intend to, and will not re

these addresses, as addresses which are in the same DRAM page in the processor

space should remain in the same page in the remapped DRAM address space. This

reduction in the number of adjacent accesses leads to a corresponding reduction in

execution time due to the increased ability to pipeline the adjacent accesses.

6.10 Average Latency

While bandwidth has been cited as the solution to the “Memory Wall” [Wulf95

the latency of accesses can be even more significant in determining the execution tim

task or program [Cuppu 99][Davis00a]. Bandwidth may be increased by widening the

between the processor and the memory devices, a change which increases the syste

This approach becomes easily implimented when memory and processing core are 

same die. Decreasing latency however requires an architectural - either system or DR

change, until recently this almost always involved increasing the cache size(s). The d

to which latency impacts execution time is dependent upon the level of memory acc

parallelism in the task. The execution time of an application which traverses a linked

or other sequentially accessed data structure is going to be highly dependent upon av

latency, while an application such as stream which has effectively unlimited memory

parallelism is going to be more dependent upon memory bandwidth.

Figure 6.13 shows the average DRAM access latency, in nanoSeconds, on bo

execution and trace driven simulations. Latency in this figure is defined as the time f

the first bus activity, whether it is explicit precharge,RAS orCAS until the final byte of

data has been received at the controller. Thus the latency shown in Figure 6.13 inclu
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the transfer time of all bytes in the access. The execution driven simulations have be

compensated such that all accesses are 128 Byte accesses. The trace driven simulat

split into two groups. For the PC100, DDR266 and DRDRAM accesses, each acces

128 bytes access, and for the DDR2, DDR2EMS and DDR2VC accesses each acce

32 bytes per access. This results from the burst size limit on the DDR2 interface dev

which requires that the memory controller translate a 128 Byte L2 cache line fill into f

discrete DRAM accesses. These two groups are a source of the visible discrepancy

between the DDR2 interface devices and the other DRAM architectures in the trace d

simulation graph. In some cases, the latencies shown in Figure 6.13 are larger than

in the bounds of Table 6.1. This is because the latency in Figure 6.13 includes the tra

time of all bytes in the request, whereas the latencies in Table 6.1 are described to th

32 bit response. As can be seen, the DDR2 architectures consistently have the lowe

average latency. This is without question partially due to the higher potential bandwid

these devices, and the fact that these latencies include the time to transfer 128 byte

cases except DDR2 trace driven, where it includes the time to transfer 32 bytes. Of 

DDR2 architectures, the DDR2EMS architecture has the lowest average latency. Th

average latencies of DRAM accesses for the variety of DRAM architectures are also g

in Table 6.3. Again, for the trace driven simulations the PC100 and DDR266 latencies
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Figure 6.13: Average Latency

On the left is average latency for execution driven, on the right is average latency for trace driven.
Note that access sizes are 128 bytes for PC100, DDR266 and DRDRAM, 32 bytes for DDR2,

DDR2EMS and DDR2VC devices.
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for 128 Byte accesses, while the DDR2, DDR2EMS and DDR2VC latencies are for 

Byte accesses. Table 6.3 shows that the average latency, in the execution driven

methodology, for the DRDRAM architecture is better than the DDR266 architecture, e

though the DDR266 architecture has a higher bandwidth, and is thus able to transfer

128 bytes required faster. Nonetheless, if latency is the determining characteristic fo

DRAM selection, the cache enhanced DDR2 devices, specifically DDR2EMS, provide

best latency of the simulated architectures.

6.11 Execution Time

The final metric for evaluating the performance of any computer system

enhancement is the execution time of the system. This section is comprised of two

different ways of looking at execution time. The first set of graphs, Figure 6.14, comp

the runtime of four benchmarks across the three processor frequencies simulated, a

of the DRAM architectures modeled. Four representative benchmarks were chosen

because they cover the variety of behavior observed in all benchmarks. Data was coll

for all of the benchmarks in Table 6.2, but only four are shown here. The second set

graphs, Figure 6.15 and Figure 6.16 compare the execution time of all benchmarks fo

three processor speeds simulated, 1Ghz, 5Ghz and 10Ghz, for all of the benchmark

simulated. The final table, Table 6.4 provides the averages from the data in both

Figure 6.15 and Figure 6.16.

Figure 6.14 shows the relative execution time holding the benchmark constant

varying the DRAM architecture and processor frequency. The four graphs show exec

time for four benchmarks: cc1, stream, mgrid and pegwit. This figure shows a cross

section of the benchmarks simulated intended to show both those applications whic

Table 6.3: Average Latency

DRAM
Architecture

PC100 DDR266 DRDRAM DDR2 DDR2EMS DDR2VC

Execution Driven
Average

214.47 89.92 72.99 64.65 55.08 59.39

Trace Driven
Average

200.58 86.23 n/a 28.37 21.60 25.81
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bandwidth limited and latency limited. The stream application (top right) is the most

explicitly bandwidth limited. This is shown by the fact that the performance is predicta

based upon the bandwidth of the DRAM technology, and changes relatively little as

processor frequency is increased. The pegwit application (bottom right) is the most

explicitly latency limited. This is evidenced by the flat execution time for all DRAM

architectures with a similar latency. The significant reduction in execution time as the

processor frequency is increased also shows that this benchmark (pegwit) is more co

bound than I/O or memory bound. Another interesting observation from Figure 6.14 is

identification of multiple types of bandwidth limited applications. Mgrid is a bandwidt
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Figure 6.14: Execution time for DRAM Architectures

Each figure shows execution times for a single benchmark over varying processor speeds and DRAM
architectures. The execution times are shown as in seconds.
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limited application with a very linear access stream; stream is a bandwidth limited

application with a highly associative (multiple streams) access pattern. Examining th

performance difference between these two applications, explicitly examining the hig

associative DRAM architectures (DRDRAM and DDR2VC) versus the direct mapped

DRAM architectures (DDR2 and DDR2EMS) we see that for mgrid the direct mappe

architectures supply higher performance, while for stream the associative DRAM

architectures supply higher performance. Each of these dichotomies: bandwidth ver

latency bound; associative versus linear accesses; and compute versus memory bo

serve as an axis in the space which we can locate all applications. Understanding th

behavior of an application is essential when using benchmarks to compare the

performance of any component of a computer system. These three axis are very indic

in the case of primary memory analyses.

Figure 6.15 shows the normalized execution times, as well as average norma

execution time, for a variety of applications at 5Ghz. Figure 6.16 shows the normaliz

execution times for a variety of applications at 10Ghz and 1Ghz. In general, these th
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Figure 6.15: Normalized Benchmark Execution Times at 5Ghz

Simulations assume 5Ghz 8-way superscalar processor; 256 Kilobyte L2; 16 MSHRs for all DRAM
architectures
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graphs show that as the processor speed increases, the DRAM architecture choice 

slightly larger impact upon the execution time. This is especially true in the case of t

latency limited applications, which are able to extract more parallelism from a larger

number of instructions which are executed during the latency of a DRAM access.

Table 6.4 shows the average normalized execution times from the benchmarks show

Figure 6.15 and Figure 6.16. This table shows that the most modern of the DRAMs

examined (DRDRAM, DDR2EMS and DDR2VC) continue to show higher performan

— relative to DDR2 — as the frequency of the processor increases. DDR266 perfor

very well, relative to the other DRAM architectures, but this may be somewhat due t

best-case timing parameters (2-2-2) where DDR2 was simulated with the specified, 

generation timing parameters of (3-3-3). DRDRAM performs equally to DDR2 at 1gh

Table 6.4: Average Normalized Execution Time

DRAM
Architecture

PC100 DDR266 DRDRAM DDR2 DDR2EMS DDR2VC

1g 1.23 1.04 1.00 1.00 0.98 0.98

5g 1.45 1.07 0.98 1.00 0.96 0.95

10g 1.55 1.08 0.96 1.00 0.94 0.94
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Figure 6.16: Normalized Benchmark Execution Times at 1Ghz and 10Ghz

Simulations assume 8-way superscalar processor; 256 KByte L2; 16 MSHRs for all DRAM architectures
Left: 1Ghz processor; Right: 10Ghz processor
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but the performance improves as does the processor speed. @@@ This is somewh

result of the application set used here. Most of the SPEC benchmarks have a relativ

small memory footprint, and high cache hit rates. This, plus the lack of operating sys

activity limits the number of accesses which are directed at the primary memory sys

Understanding these results depends upon an understanding of the benchmarks and

used to generate the values in Table 6.4.
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Chapter 7

Conclusion

Increasing the performance of DRAM architectures is a highly constrained

problem. In a market where price drives consumption, increasing system performan

concurrent with increasing costs is a questionable business strategy. There are know

techniques for making DRAM which will operate in the performance domain of SRA

[Glaskowsky99][IBM00b], however the cost of these techniques price these devices o

the competitive DRAM market. Some of the techniques presented in this thesis for

improving primary memory system performance increase the system cost, but the re

cost increase for performance increase is a critical question.

The dynamic nature of the DRAM market has been demonstrated by the rapi

changes in the dominant technology. This thesis has explored the DRAM technolog

which will dominate the market for the next 2 years. Beyond that, it is difficult to

determine the market conditions which are necessary to provide a DRAM architectu

with the support necessary to achieve acceptance. However, the characteristics of t

devices examined in Chapter 6 which have been determined to be performance

enhancements will continue to allow increased performance beyond this foreseeabl

timeframe.

7.1 DRAM Contributions

Most of the DRAM enhancements discussed represent additional cost in the

memory system. The difficult aspect is to determine the price overhead for the value

added. Where possible the price overhead has been characterized by an estimate o

additional die area required for the enhancement. Area is only one factor in the price

DRAM device. Yield, partially based upon area, and volume are two other significan
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contributors to price. As these factors are beyond our ability to determine from a

specification, we have attempted to provide information which shows the value added

DRAM enhancement, together with the additional area required, such that evaluation

be made based upon these two factors.

There are some approaches common to multiple platforms which provide

additional performance. In order for a technique to be applicable to multiple architectu

it must be outside the boundaries of the DRAM device. Therefor, system or controlle

level approaches are those which can frequently be applied to multiple architectures

system level techniques were described in Section 2.2. Additionally, many technique

the controller, such as access coalescing and reordering, can provide performance

improvements regardless of the DRAM technology used.

Address remapping at the memory controller level is another technique which

shows substantial improvements in memory system performance regardless of the D

architecture. The performance gains achievable are dependent upon the number an

of the banks in the memory system. This technique has cost only at the level of the

memory controller which must contain additional hardware to perform the remapping.

the technique used to generate the results in Section 6.6, there was no additional con

overhead, as the technique simply swapped the order of the address wires. A more

complex higher performance technique, such as hashing addresses, may however r

additional logic on the memory controller. Even with this minimalist approach, Sectio

6.6 shows that significant gains can be made by remapping the processor address sp

a unique DRAM address space. Additionally, as the size of memory devices increase

correspondingly the size of memory banks increase, the impact of memory address

remapping will increase. The results shown in Figure 6.9 suggest that some address

remapping technique should be employed in memory controllers currently under des

Address remapping is currently used in some memory controllers, and has been exa

in the past for interleaved asynchronous DRAM systems. The address remapping re

in this thesis suggest that a productive area of research might be further exploring o

remapping techniques beyond the rather simplistic technique employed here.

As fabrication limits increase, the capacity of the DRAM devices in production

also increase. This drives the costs per bit of successive generations of DRAM devic
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down, providing the consumer with more memory at a reasonable cost. However, the

is then constrained to purchase larger devices. This increases the small end of the fe

systems, as well as increasing the smallest possible incremental system upgrades w

can be made. Further, to keep area and costs small, the number of sense-amp bits 

DRAM bit has gradually decreased as device sizes have increased. This reduces th

performance of the DRAM devices by reducing the amount as well as number of line

effective cache in the primary memory system.

Increasing cache line sizes does not always improve the performance of the

system. This is important when considering how increasing the DRAM page size, a

default in subsequent generations of DRAM, will affect the performance of applicatio

on these larger DRAM devices. The decrease in performance associated with an inc

in linesize is demonstrated in the portion of Figure 6.11 covering the cache hit rates 

trace driven simulations, which shows that the PC100 configuration has a higher ave

cache hit rate than the DDR266 configuration. In the case of applications which hav

highly random access pattern, such as transaction processing workloads, the line in

cache is very rarely reused. This is especially true of direct mapped caches, which

experience significant amounts of conflict misses. In the context of the two cache

enhanced DRAM architectures which were examined, the EMS devices are direct ma

with longer line sizes, and thus provide lower performance on random access applica

The VC caches target specifically these applications, with shorter linesizes — 1/4 pag

and higher associativity. A design superior in performance to either of these might p

four cache lines, of full page size, between the sense amplifiers and the column dec

Unfortunately, such a device would have a significantly higher area overhead and cos

either DDR2EMS or DDR2VC devices. As DRAM sizes continue to increase, genera

a corresponding increase in page size, the issue of cache-hit performance based up

DRAM page size will become more important, potentially motivating a higher numbe

banks per device than would be minimal in area.

The difference between trace driven and execution driven simulations is

significant, especially in regards to the L2 cache simulations. One result of these

experiments is to demonstrate that it is not accurate to attempt to gather timing

information about DRAM memory system changes from trace driven simulations. Tr
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driven simulation is sufficient with regard to measuring the effects upon cache

performance and access adjacency of controller policy (including remapping) change

not upon the timing of the execution. This is due to the limitations discussed in Sect

4.2.2 which involve the lack of accurate inter-access timing once the memory system

configuration has been changed. The fact that trace driven simulations cannot accur

predict the performance impact of primary memory system changes increases the a

of time required for evaluating variations upon DRAM configurations. The alternative

method proposed here, execution driven simulation, is significantly more compute

intensive and requires a longer period of time to complete equivalent simulations tha

using the trace driven methodology.

The limit upon the burst-size for the DDR2 interface increases the loading up

the address bus by increasing the number ofCAS packets which must be transmitted for

fixed number of data bytes. While most current microprocessors (Pentium; Pentium

Celeron; Katmai; Coppermine; K6) utilize a 32-Byte linesize on their lowest level of

cache, some more recent microprocessors (K7) have a 64-Byte linesize on their low

level of cache. The specification on the DDR2 interface which limits the burst-size to o

granularities of four is a shortsighted decision which will increasingly impact the DRA

bus loading as average access granularities increase. In designing an architecture f

future generations of microprocessors, the specification should be flexible such that

increasing capabilities of microprocessors do not cause a degradation in associated a

of the system. The limitation on DDR2 interface devices which requires all accesses

32-Byte accesses will certainly require that in the future some devices perform multi

accesses for each and every cache line-fill. This necessity increases the loading up

address bus. In addition to the loading on the address bus, the increased number ofCAS

packets crossing the bus expends additional, unnecessary power. The impact of this

increased loading is not certain, but Figure 6.10 shows that the pure DDR2 devices h

comparatively lower data bus utilization than equivalent architectures.

An important discovery of this work is the distinction between bandwidth and

latency dependent applications. This difference can be most easily observed by exam

Figure 6.14, which shows the differences between applications, and the relative

dependence upon peak bandwidth or access latency. The bandwidth dependent
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applications have a flat performance for all of the DRAM technologies which have

equivalent interface bandwidth, and drop off rapidly with decreasing bandwidth. The

latency dependent applications have relatively flat performance for all DRAM

technologies with comparable latencies (DDR266, DDR2, DDR2EMS and DDR2VC

with a higher execution time for those technologies (DRDRAM and PC100) with high

access latencies. This dichotomy does not cover all applications, as there is of course

spectrum of applications ranging between the extremes, but this helps explain the diff

conclusions which can be drawn on DRAM performance based upon the benchmark

used for experimentation.

As device sizes and bank sizes increase, the open-page policy becomes less

because the likelihood of an access being in an open-page reduces. This assumes 

workload or application, and the application determines where precisely the perform

of the open-page policy falls behind that of the close-page-autoprecharge policy. Th

downside of the open-page policy, the precharge incurred in a page-miss, is remove

adding SRAM cache to the DRAM die. The importance, and performance advantage

this SRAM cache will become more significant as the device and bank sizes continu

increase. Thankfully, the area impact of this SRAM cache upon the DRAM die will red

as the device and bank sizes increase.

Each of these results, taken individually provides insight into how DRAM

architecture, or benchmark behavior impacts the performance of the microprocesso

based upon the memory system configuration. Taken in conjunction these results ca

guide the designers of future DRAM architectures insuring that they are aware of the

impact of changing the characteristics of the status quo into the next generations.

7.2 Research Contributions

The examination of the underlying characteristics of DRAM architectures whi

determine their performance upon a classification of applications is a primary result o

research. These underlying characteristics allow prediction of the performance of fu

DRAM architectures. Many of the paragraphs in Section 7.1 attempt to address a si
128



on

sults

ory

dent

access

 to

AM

that

y

esses

n

on

n

here is

been

er of

so

shown

ely

 cost

vides
characteristic of DRAM and allow insight into the impact of varying that characteristic

a hypothetical device.

Many aspects of the research conducted are unique and useful beyond the re

presented in this thesis. One such contribution is the identification of the differences

between trace driven and execution driven simulation in the context of primary mem

system analysis. Trace driven simulation can be utilized only to identify time indepen

aspects of the memory system performance, such as cache hit rates, bank conflict, 

adjacency, and the impacts of address remapping. If some method were determined

provide a trace driven methodology with accurate timing feedback to subsequent DR

accesses it could more accurately predict the performance of a redesigned primary

memory system. This might be able to bring the trace driven accuracy into parity with

of the execution driven methodology. Without this, while the trace driven methodolog

can provide some accurate results, it does not simulate the timing behavior of the acc

and is for that reason limited in its application.

The identification of the differences between trace driven and execution drive

simulation with respect to DRAM investigations had not been examined. The asserti

that trace driven simulation is as accurate and effective as execution driven simulatio

within the DRAM design space has been invalidated by the simulations showing the

difference in results between these two approaches. Sections 6.3 and 6.7 show that t

a significant difference between the behaviors of the two methodologies as they have

presented and used.

From the simulations presented in Chapter 6, it is possible to identify a numb

elements, structures or techniques, either at the controller level, or at the DRAM

architecture level which provide performance improvements and will continue to do 

into future generations of DRAM. One goal of this work has been to identify these

elements common to multiple DRAM technologies which provide performance

consistently across architecture. Cache enhancement of the DRAM device has been

to uniformly improve performance. There are no circumstances in which this advers

affects performance. Unfortunately, adding cache to the DRAM device increases the

and area creating a cost versus performance trade-off. Address remapping also pro

universal performance improvement across all the DRAM to which it was applied by
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reducing contention in a single bank for the sense-amps. Identification of aspects su

these which provide improved performance across all DRAM is more important than

performance analysis of specific architectures as these characteristics or techniques

likely to continue to apply even beyond the DRAM which are currently specified.

An important contribution of this work is identification and examination of a set

characteristics which determine the DRAM system performance. These characterist

may be attributes of the interface, of the architecture, of the controller, or of the acce

trace, but their individual impact upon the system performance can be observed.

Researchers, prior to this approach, determined how the DRAM architecture impact

microprocessor performance, but rarely delved into the characteristics determining

DRAM performance. A number of characteristics of this nature, access adjacency, b

utilization, on-DRAM cache hit rates, and controller policy impact have been discuss

with regard to their impact upon the DRAM performance, and consequently upon th

microprocessor performance. It is important when examining the performance of a l

block of the system, such as the DRAM, to examine these underlying performance

determinants. Identification of many characteristics which do impact overall system

performance has been a major contribution of this research.

Lastly, the methodologies used in the simulations are significant in that they a

distinct from prior research. In most simulations of the microprocessor, the lower leve

the memory system are abstracted away, as is the case in the standard version of

SimpleScalar, which presumes a constant latency for all DRAM accesses. The rese

here shows that this lowest level of the memory hierarchy does generate performan

differentials, and abstracting it away damages the integrity of simulation-based rese

We have attempted to explain why the decisions were made to use two unique simu

methodologies, each of which have advantages, intending to establish a precedent 

future research in this domain.

7.3 Future Work

For the majority of current designs, the DRAM controller is currently located o

the north-bridge device of the motherboard chipset. This configuration is in a state o
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change, and future designs ranging from the single-chip solutions like the Intel Timn

high performance processors like the Alpha 21364 are being designed to exploit the

latency reduction associated with bringing the DRAM controller onto the processor d

With the DRAM on the processor die, the set of constraints in examining the primary

memory system architecture change significantly. The bus latencies in both direction

between the microprocessor and the controller are eliminated, as are the bus

synchronization delays. However the number of pins used for the interface becomes

significant. This is one reason that the Direct Rambus architecture is planned to be 

for both the Timna and the 21364. Bringing the DRAM controller onto the processor

opens avenues for increased performance, but requires a novel understanding of th

application to be optimized.

The increase in the number of transistors which can be placed on a single dev

motivating research on embedded DRAM architectures. In much the same way that

microprocessors overcame mainframes when the number of transistors which could

placed onto a single device became sufficient for a full processor core, we now are

entering an era where for many small systems, the entire system, processor core, m

system, and I/O can be placed onto a single device. Initially, this system-on-a-chip (S

approach will only be feasible for the smallest, i.e. embedded systems, but as integr

levels continue to grow, the size of the feasible system-on-a-chip will also continue t

grow. The simulations and experiments which have been presented here assume th

system architecture shown in Figure 4.1. Once the entire memory system, or even a

significant portion thereof, is placed onto a single device, the constraints governing t

layout of the memory system will have radically changed. Communication between 

memory system and the processor core is no longer constrained by a off-chip bus. T

bandwidth can be made arbitrarily large, depending upon the width of busses and thu

the designers are willing to expend upon the processor-memory interconnection. Su

for access parallelism can also be expanded by partitioning the on-chip memory sys

into multiple banks, each with an independent controller. One avenue of future resea

would examine architectural solutions and controller topologies for such a system.

With the continuing increase in the number of transistors available on a single

it is a certainty that multi-core devices, or multiprocessors on a die will be produced.
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motivation for this is similar to the system-on-a-chip approach, in that it answers the

question of what to do with a transistor budget larger than that required for a single

processor core, but it targets a different design space. Where the system-on-a-chip us

available transistors to target a system which is fixed in size and of moderate perform

the Chip Multi Processor (CMP) uses the available transistors to place more than on

processor core on a single die. This motivates some interesting research. The mem

controller(s) of a CMP/SMP system must be able to provide significantly more bandw

than that of a uniprocessor system. The conventional server approach to this problem

increase the width of the DRAM bus. A more expensive, but potentially higher

performance solution is to partition the primary memory into multiple address spaces

controlled by a unique memory controller. This system effectively doubles the numb

accesses which can be supported in parallel, but increases the cost of the system b

replication. Research on how to partition the application memory space has been do

the context of multiprocessor parallel computers. This work is dominated by method

maintaining the data required on a local processor node to eliminate the need to acc

data across a low-latency inter-node interconnection. However, hardware partitioning

unified memory space between partitions with similar if not equal latencies is a nove

technique which can support significantly more memory parallelism than available fr

even current single wide server bus memory systems.

As was shown in Section 6.6, address remapping can significantly improve

performance with very little impact upon system architecture. The address remappin

scheme used for those experiments was very simplistic, inverting the order of the bi

above the page index. Additional performance improvements are certainly possible,

have been shown for the Direct Rambus architecture [Lin99]. This motivates

investigations of other address remapping implementations which generalize to a va

of architectures. Most modern DRAM controllers are designed to interface to multipl

DRAM architectures, and multiple DIMM sizes. For this type of application a genera

purpose address remapping scheme which adapts, dynamically allowing multiple siz

of DIMMs in a single address space is required. Further considerations in developin

address remapping schemes are the added latency through the logic (if any), and th

required on the DRAM controller die for the remapping logic.
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The Virtual Channel architecture places a significant burden upon the memor

controller, as discussed in Section 3.4.3 and Section 3.5.6. The many possibilities fo

memory controller policies, in both channel allocation and dirty channel writeback pre

a open opportunity for research. The same substantial set of allocation and writebac

policies which have been examined for L1 and L2 caches could be explored for the V

DRAM cache. The only publicly discussed work that has been undertaken in this fie

until this point has varied the channel allocation policies between random and LRU

[Davis00a]. This is only a small set of the controller choices available with a Virtual

Channel Device. Similarly, the EMS caching architecture, while it does not have as m

functions controlled by the memory controller as the Virtual Channel architecture, it 

allows two types of write, by enabling or disabling the write to the cache line upon a w

to any DRAM page. The controller policies for determining which write is applicable h

yet to be explored. Determination of a strictly write stream or page by instruction or

address and is an open research problem.

From this section, the observation can be made that there is a significant amou

research yet to be explored within this design space. The models and methodologie

developed as part of this work will continue to be utilized in this future research.

7.4 Epilogue

Novel DRAM technologies are being proposed on a rapid basis. Many of them

never be more than a conceptual design exercise. The key is to identify those which

the elements likely to deliver performance superior to their competitors, at minimal p

premium. Some new DRAM technologies seek an evolutionary approach, by changi

only a few of the characteristics, and relying upon the DRAM consumers leveraging t

existing knowledge base and engineering to maintain their marketshare. Other new

technologies choose a revolutionary approach in the hopes that these techniques w

provide performance that evolutionary devices can not match, and rely upon the

consumers to be drawn to the performance. The fundamental characteristics of the D

array typically remain unchanged, regardless of approach, and the consumption of D

is determined as much by prices, thus volume, as it is by performance. The DRAM
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research which is most likely to yield improvements in performance to future consume

the identification of performance enhancing characteristics without association with 

specific interface or architecture.
134



s.
Appendix A

Program Listings

Appendix

This appendix provides source code for the programs used in the experiment

A.1 SDRAM Model

// package sdram_sim

/*
  File : sdram_ctrl

  Author : Brian Davis

  */

public class sdram_ctrl {

    //
    // Constants
    //
    static final boolean DEBUG = false;
    static final boolean debug_split = false;
    static final String PC100_SDRAM = “PC100 SDRAM”;
    static final String DDR133_SDRAM = “DDR133 SDRAM”;
    static final String DDR133_CAS3_SDRAM = “DDR133 cas3 SDRAM”;
    static final String CLOSEAUTOPRE = “Close-Page-Autoprecharge”;
    static final String OPENPAGE = “Open-Page”;
    static final int DIMM_64MB = (1<<26);
    static final int DIMM_256MB = (1<<28);

    private static final int PC100 = 0x1;
    private static final int DDR133 = 0x2;
    private static final int DDR133C3 = 0x4;
    private static final int CPA = 0x10;
    private static final int OP = 0x20;

    static final int PC100_CPA = PC100 | CPA;
    static final int PC100_OP = PC100 | OP;
    static final int DDR133_CPA = DDR133 | CPA;
    static final int DDR133_OP = DDR133 | OP;
    static final int DDR133_CAS3_CPA = DDR133C3 | CPA;
    static final int DDR133_CAS3_OP = DDR133C3 | OP;

    static final int TRANS_READ = (1<<0);
    static final int TRANS_WRITE = (1<<1);
    static final int TRANS_REFRESH = (1<<2);

    //
    // Controller Parameters
    //

    boolean policy_closeautoprecharge;
    boolean policy_openpage;

    //
    // Controller Constants
    //
    String type_string;
    String policy_string;
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    long refresh_rate;
    long refresh_cycles;
    long cas_lat;
    long Tras;
    long Trcd;
    long Trp;
    long BusWidth;
    double clock_period;
    long ctrler_accesses = 0;
    long multi_trans_accesses = 0;
    double total_bytes = 0;

    // Class Variable
    // Instance Variable(s)
    int display_mode = 0;
    sdram_bus the_bus;
    schedule the_schedule;
    long row_shift;

    //
    // Constructor
    //
    sdram_ctrl() {

this(PC100_SDRAM, CLOSEAUTOPRE);
    }

    sdram_ctrl(int type_int) {
this((((type_int & DDR133) != 0) ?
      DDR133_SDRAM :
      ((type_int & DDR133C3) != 0) ?
      DDR133_CAS3_SDRAM :
      PC100_SDRAM),
     (((type_int & OP) != 0) ?
      OPENPAGE :
      CLOSEAUTOPRE));

    }

    sdram_ctrl(String type) {
this(type, CLOSEAUTOPRE);

    }

    sdram_ctrl(String type, String policy) {

if (type == PC100_SDRAM) {
    type_string = PC100_SDRAM;
    /* dram_cycles per refresh */
    /* 4096 refresh cycles / 64mS */
    refresh_rate = 1562;
    refresh_cycles = 3;
    Tras = 5;
    Trcd = 3;
    Trp = 2;
    cas_lat = 3;
    BusWidth = 8;
    clock_period = 10E-9;
    row_shift = 11;
}
else if ((type == DDR133_SDRAM)  ||
 (type == “ddr133_cas2_sdram”)) {
    type_string = DDR133_SDRAM;
    /* dram_cycles per refresh */
    /* 8096 refresh cycles / 64mS */
    refresh_rate =1054;
    refresh_cycles = 3;
    cas_lat = 2;
    Tras = 5;
    Trcd = 2;
    Trp = 2;
    BusWidth = 16;
    clock_period = 7.5E-9;
    row_shift = 12;
}
else if (type == DDR133_CAS3_SDRAM) {
    type_string = DDR133_CAS3_SDRAM;
    /* dram_cycles per refresh */
    /* 8096 refresh cycles / 64mS */
    refresh_rate = 1054;
    refresh_cycles = 3;
    cas_lat = 3;
    Tras = 5;
    Trcd = 2;
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    Trp = 2;
    BusWidth = 16;
    clock_period = 7.5E-9;
    row_shift = 12;
}
else {
    System.out.println(“ERROR : Illegal type parameters to sdram_ctrl() constructor\n”);
    System.exit(1);
}

if (policy == CLOSEAUTOPRE) {
    policy_string = CLOSEAUTOPRE;
    policy_closeautoprecharge = true;
    policy_openpage = false;
} else if (policy == OPENPAGE) {
    policy_string = OPENPAGE;
    policy_closeautoprecharge = false;
    policy_openpage = true;
} else {
    System.out.println(“ERROR : Illegal policy parameter to sdram_ctrl() constructor\n”);
    System.exit(1);
}

the_bus = new sdram_bus(this);
the_schedule = new schedule(this);

// End constructor
    }

    public boolean addDevice(int dev_size) {
String str = null;
if (dev_size == DIMM_64MB) {
    str = sdram_device.DIMM_64MB;
} else if (dev_size == DIMM_256MB) {
    str = sdram_device.DIMM_256MB;
} else {
    System.out.println(“ERROR : SDRAM device of size “+ dev_size +
       “could not be created in “ + type_string +
       “ Environment\n”);
    return false;
}
return addDevice(str);

    }

    public boolean addDevice(String dev_type) {
if ((dev_type == sdram_device.DIMM_64MB) &&
    (type_string == PC100_SDRAM)) {
    the_bus.addDevice(dev_type);
} else if ((dev_type == sdram_device.DIMM_256MB) &&
   ((type_string == DDR133_SDRAM) ||
    (type_string == DDR133_CAS3_SDRAM))) {
    the_bus.addDevice(dev_type);
} else {
    System.out.println(“ERROR : SDRAM device “+ dev_type +
       “could not be created in “ + type_string +
       “Environment\n”);
    return false;
}
return true;

    }

    public trans access(long time, int trans_type, long addr, int num_bytes) {
//
// Verify valid input
//
if ((num_bytes <= 0) ||
    ((trans_type != TRANS_READ) && (trans_type != TRANS_WRITE))) {
    System.out.println(“ERROR : Illegal parameters to access()”+
       “ in controller”);
    System.exit(1);
}
if (!the_bus.addrMapped(addr)) {
    System.out.println(“ERROR : Address “+Long.toHexString(addr)+
       “ not contained within Memory System”);
    return null;
}

// Update time
if (time > the_schedule.currentTime()) {
    the_schedule.advanceCurrentTime(time);
}
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ctrler_accesses++;
total_bytes += num_bytes;

//
// Verify that this transaction only spans a single device/bank
//

trans this_trans = null;
long last_addr = addr + (num_bytes - 1);
if ((addr >> row_shift) == (last_addr >> row_shift)) {

    // Create Transaction
    this_trans = new trans(trans_type, addr, num_bytes);

    // Initiate Access on channel
    the_bus.access(this_trans);

    // Schedule Transaction
    the_schedule.schedTrans(this_trans);

    // Update bus Timings
    // the_bus.updateBusTimings(this_trans);
} else {
    multi_trans_accesses++;

    this_trans = split_access(trans_type, addr, num_bytes);

    // return null;
}

return this_trans;
    }

    private trans split_access(int type, long start_addr,
   int num_bytes) {
trans this_trans = null;
long last_addr = start_addr + (num_bytes - 1);

if (debug_split) {
    String str = “DEBUG(drd_ctrl) : Source of Split Access\n”;
    str += “addr = “+Long.toHexString(start_addr)+”\n”;
    str += “loc_bytes = “+num_bytes+”\n”;
    System.out.println(str);
}

long local_addr = start_addr;
while (local_addr < last_addr) {
    sdram_device local_dev = the_bus.devForAddr(local_addr);
    sdram_bank local_bank = local_dev.whichBank(local_addr);
    int local_row = local_bank.rowIndex(local_addr);
    long row_end_addr = local_bank.rowEndAddr(local_row);
    long to_end_of_row = (row_end_addr - local_addr) + 1;
    long to_end_of_trans = (last_addr - local_addr) + 1;
    int loc_bytes = (int) java.lang.Math.min(to_end_of_row,
     to_end_of_trans);

    if (debug_split) {
String str = “DEBUG(drd_ctrl) : Split Access\n”;
str += “row = “+local_row+”\n”;
str += “addr = “+Long.toHexString(local_addr)+”\n”;
str += “loc_bytes = “+loc_bytes+”\n”;
System.out.println(str);
    }

    // Create Transaction
    this_trans = new trans(type, local_addr,
   loc_bytes);

    // Initiate Access on channel
    the_bus.access(this_trans);

    // Schedule Transaction
    the_schedule.schedTrans(this_trans);

    local_addr += loc_bytes;
}
return this_trans;

    }

    public long maxAddr() {
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return the_bus.maxAddr();
    }

    public boolean endSimulation() {
return the_schedule.endSimulation();

    }

    //
    // toString
    //
    public void printYourself() {

System.err.println(this.toString(0xFFFFFFFF));
    }

    public String toString() {
return this.toString(display_mode);

    }

    public String toString(int dm) {
String str = new String();

str += “sdram_ctrl [“+super.toString()+”]\n”;
str += “\tDRAM Type\t\t: “+type_string+”\n”;
str += “\tCtrler Policy\t\t: “;
if (policy_closeautoprecharge) {
    str += “Close-Page-Autoprecharge\n”;
} else if (policy_openpage) {
    str += “Open-Page\n”;
} else {
    str += “UNKNOWN\n”;
}

str += “\tCAS Latency\t\t: “+cas_lat+”\n”;
str += “\ttRAS\t\t: “+Tras+”\n”;
str += “\ttRCD\t\t: “+Trcd+”\n”;
str += “\ttRP\t\t: “+Trp+”\n”;
// str += “\ttWR\t\t: “+Twr+”\n”;

str += “\tCtrler Nominal row size : “+(1 << row_shift)+”\n”;
str += “\tTime Elapsed\t\t: “+
    ((double)the_schedule.currentTime()) * clock_period+” (sec)\n”;

str += “\tController Accesses\t: “+ctrler_accesses+”\n”;
str += “\tTotal Bytes Transfered\t: “+total_bytes+”\n”;
str += “\tAvg Request size\t: “+
    (total_bytes / ctrler_accesses) + “\n”;
str += “\tMultiTrans Accesses\t: “+multi_trans_accesses+”\n”;

str += the_schedule.toString(schedule.STATS);
str += the_bus.toString(sdram_bus.STATS);
return str;

    }

} // sdram_ctrl

======================================================================================================

// package drdram_sim

/*
  File : SDRAM_BUS

  Author : Brian Davis

  */

import java.util.Vector;

public class sdram_bus {

    //
    // Constants
    //
    static final boolean debug = false;
    static final int DEBUG = (1<<0);
    static final int STATS = (1<<1);
    static final String SPACES8 = “        “;
    static java.text.NumberFormat nf;

    //
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    // Variables
    //
    Vector device_list;
    sdram_ctrl the_ctrler;
    // Refresh
    private long access_calls = 0;
    private double access_bytes = 0;
    private long read_hits = 0;
    private long read_misses = 0;
    private long write_hits = 0;
    private long write_misses = 0;
    private long refresh_calls = 0;
    // Display
    int display_type = 0;

    //
    // Constructors
    //
    sdram_bus(sdram_ctrl ctrl_host) {

the_ctrler = ctrl_host;
device_list = new Vector();

    }

    public sdram_device addDevice(String dev_type) {
long new_start;
if (device_list.isEmpty()) {
    new_start = 0;
} else {
    new_start = ((sdram_device)(device_list.lastElement())).addr_end + 1;
}
sdram_device newDevice = new sdram_device(the_ctrler, dev_type, new_start);
if (newDevice instanceof sdram_device) {
    // Add to Vector
    device_list.addElement(newDevice);
}
return newDevice;

    }

    public boolean addrMapped(long addr) {
if (device_list.isEmpty()) {
    if (debug) {
System.out.println(“sdram_bus device_list is Empty”);
    }
    return false;
}

long first_start =
    ((sdram_device)(device_list.firstElement())).addr_start;

long last_end = ((sdram_device)(device_list.lastElement())).addr_end;

boolean ret_val = ((first_start <= addr) &&
   (addr <= last_end));

if (debug && (!ret_val)) {
    System.out.println(“first_start = “+first_start+
       “\nlast_end = “+last_end);
}

return ret_val;
    }

    long maxAddr() {
long last_end = ((sdram_device)(device_list.lastElement())).addr_end;
return last_end;

    }

    sdram_device devForAddr(long addr) {
for (int j = 0 ; j < device_list.size() ; j++) {
    sdram_device dev = ((sdram_device)device_list.elementAt(j));
    if ((dev.addr_start <= addr) &&
(dev.addr_end >= addr)) {
return dev;
    }
} // for
return null;

    }

    public boolean access(trans this_trans) {
//
// Advance time
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//
access_calls++;
access_bytes += this_trans.num_bytes;

//
// Perform Transaction
//
sdram_device dev_for_trans;

dev_for_trans = devForAddr(this_trans.address);

//
// Perform Access
//
if (dev_for_trans instanceof sdram_device) {
    dev_for_trans.access(this_trans);
} else {
    System.out.println(“ERROR : no device found for Transaction :\n”+
       this_trans);
    return false;
}

if (this_trans.read) {
    if (this_trans.SAHit)
read_hits++;
    else
read_misses++;
} else if (this_trans.write) {
    if (this_trans.SAHit)
write_hits++;
    else
write_misses++;
}

return true;
    }

    int refreshAllDevices() {
int ret_row = 0;
refresh_calls ++;
for (int j = 0 ; j < device_list.size() ; j++) {
    sdram_device dimm = (sdram_device) device_list.elementAt(j);
    ret_row = dimm.refreshAllBanks();
}
return ret_row;

    }

    //
    // toString
    //
    public String toString(int dt) {

display_type = dt;
return this.toString();

    }

    public String toString() {
String str = new String();
str += “sdram_bus [“+super.toString()+”]\n”;
str += “\tSpans Addresses\t\t: (“;
str += “0x”+java.lang.Long.toHexString(((sdram_device)(device_list.firstEle-

ment())).addr_start);
str += “ : “;
str += “0x”+java.lang.Long.toHexString(((sdram_device)(device_list.lastElement())).addr_end);
str += “)\n”;
str += “\tNumber of Devices\t: “+device_list.size()+”\n”;
str += “\tAccesses crossing bus\t: “+access_calls+”\n”;
str += “\tBus Access Hits\t\t: “+(read_hits + write_hits)+”\t\t”;
str += percent8Str((read_hits + write_hits)/((double)access_calls))+
    “\n”;
if (access_calls != 0) {

    long reads = (read_hits + read_misses);
    str += “\tBus Reads\t\t: “+reads+”\t\t”;
    str += percent8Str(reads/((double)access_calls))+”\n”;
    if (reads != 0) {
str += “\tBus Read Hits\t\t: “+read_hits+”\t\t”;
str += percent8Str(read_hits/((double)access_calls))+”\t\t”;
str += percent8Str(read_hits/((double)reads))+”\n”;
str += “\tBus Read Misses\t: “+read_misses+”\t\t”;
str += percent8Str(read_misses/((double)access_calls))+”\t\t”;
str += percent8Str(read_misses/((double)reads))+”\n”;
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} // reads

    long writes = (write_hits + write_misses);
    str += “\tBus Writes\t\t\t: “+writes+”\t\t”;
    str += percent8Str(writes/((double)access_calls))+”\n”;
    if (writes != 0) {
str += “\tBus Write Hits\t\t: “+write_hits+”\t\t”;
str += percent8Str(write_hits/((double)access_calls))+”\t\t”;
str += percent8Str(write_hits/((double)writes))+”\n”;
str += “\tBus Write Misses\t\t: “+write_misses+”\t\t”;
str += percent8Str(write_misses/((double)access_calls))+”\t\t”;
str += percent8Str(write_misses/((double)writes))+”\n”;
    } // Writes

} // If Accesses

str += “\tBytes crossing bus\t: “+access_bytes+”\n”;
str += “\tAvg Bytes / access\t: “+
    (access_bytes / access_calls)+”\n”;
if ((display_type & STATS) != 0) {
    // str += “\tRefresh Transactions\t: “+refresh_calls+”\n”;

    for (int j = 0 ; j < device_list.size() ; j++) {
sdram_device dimm = (sdram_device) device_list.elementAt(j);
str += dimm.toString(sdram_device.STATS);
    }
}

if ((display_type & DEBUG) != 0) {
}

return str;
    }

    private String percent8Str(double in) {
        if (!(nf instanceof java.text.NumberFormat)) {
            nf = java.text.NumberFormat.getPercentInstance();
            nf.setMinimumFractionDigits(2);
        }
        String ret_str;
        ret_str = SPACES8 + nf.format(in);
        return ret_str.substring(ret_str.length() - 8);
    }

} // class sdram_bus

======================================================================================================
// package drdram_sim

/*
  File : SDRAM_BUS

  Author : Brian Davis

  */

import java.util.Vector;

public class schedule {

    //
    // Constants
    //
    static final boolean debug = false;
    static final boolean debug_shutdown = false;
    static final int MAX_LIST_SIZE = 10;
    static final int ERROR_LIST_SIZE = 250;

    static final int DEBUG = (1<<0);
    static final int STATS = (1<<1);
    static final String SPACES8 = “        “;

    //
    // Variables
    //
    sdram_ctrl the_ctrler;
    Vector addrTrans;
    Vector dataTrans;
    long reads_sched = 0;
    long writes_sched = 0;
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    long refr_sched = 0;
    long total_sched = 0;
    double total_latency = 0.0;
    long adj_bank_accesses = 0;
    // time variables
    long current_cycle = -1;
    long last_retired = 0;
    long used_cycles = 0;
    long addr_used_cycles = 0;
    long data_used_cycles = 0;
    long olap_used_cycles = 0;
    // Refresh
    private long last_refresh_time = 0;
    private long last_refresh_iter = 0;
    // display variables
    int display_type = 0;
    static java.text.NumberFormat nf;
    trans lastTrans;

    //
    // Constructor
    //
    schedule(sdram_ctrl host_ctrler) {

the_ctrler = host_ctrler;
addrTrans = new Vector();
dataTrans = new Vector();

    }

    long schedTrans(trans new_trans) {

long l_pre_start = -1;
long l_row_start = -1;
long l_col_start = -1;
long l_addr_start = -1;
long l_addr_end = -1;
long l_data_start = -1;
long l_data_end = -1;

if ((lastTrans instanceof trans) &&
    (current_cycle < lastTrans.start_cycle)) {
    advanceCurrentTime(lastTrans.start_cycle);
}

long earliest_possible = (current_cycle > 0 ) ? current_cycle : 0;

boolean occupies_data = false;

/*
** Prior transaction(s) on bus
*/
trans prev_a_trans = null;
try {
    prev_a_trans = (trans)addrTrans.lastElement();
} catch (java.util.NoSuchElementException e) {
    // Do nothing it remains
    // prev_a_trans = null;
}

trans prev_d_trans = null;
try {
    prev_d_trans = (trans)dataTrans.lastElement();
} catch (java.util.NoSuchElementException e) {
    // Do nothing it remains
    // prev_d_trans = null;
}

/*
** check to see if there is already a transaction CURRNTLY using
** the addr portion of the DRAM bus
*/
if ((prev_a_trans instanceof trans) &&
    (prev_a_trans.addrEnd > earliest_possible)) {

    earliest_possible = prev_a_trans.addrEnd;
}

/*
** Determine # of data cycles which will be required
*/
long data_cycles = (long)
    (java.lang.Math.ceil(((double)new_trans.num_bytes)/the_ctrler.BusWidth));
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/*
** Assume we can schedule starting at earliest_possible
*/
if (new_trans.read) {
    occupies_data = true;
    reads_sched++;
    /*
    ** Read transaction timings
    */
    if ((!new_trans.SAHit) &&
(!new_trans.BankPrecharged)) {
/*
** Must do precharge
*/
l_pre_start = earliest_possible;
l_row_start = l_pre_start + the_ctrler.Trp;
l_col_start = l_row_start + the_ctrler.Trcd;
l_addr_start = l_pre_start;
l_addr_end = l_col_start;
l_data_start = l_col_start + the_ctrler.cas_lat;
l_data_end = l_data_start + data_cycles;
    } else if ((!new_trans.SAHit) &&
       (new_trans.BankPrecharged)) {
/*
** already precharged, but must access row
*/
l_pre_start = -1;
l_row_start = earliest_possible;
l_col_start = l_row_start + the_ctrler.Trcd;
l_addr_start = l_row_start;
l_addr_end = l_col_start;
l_data_start = l_col_start + the_ctrler.cas_lat;
l_data_end = l_data_start + data_cycles;
    } else if (new_trans.SAHit) {
/*
** requested row already in open page! YEAH!
*/
l_pre_start = -1;
l_row_start = -1;
l_col_start = earliest_possible;
l_addr_start = l_col_start;
l_addr_end = l_col_start;
l_data_start = l_col_start + the_ctrler.cas_lat;
l_data_end = l_data_start + data_cycles;
    } else {
System.out.println(“ERROR : Logical impossibility”);
System.exit(1);
    }
} else if (new_trans.write) {
    /*
    ** Write transaction timings
    */
    occupies_data = true;
    writes_sched++;
    if ((!new_trans.SAHit) &&
(!new_trans.BankPrecharged)) {
/*
** Must do precharge
*/
l_pre_start = earliest_possible;
l_row_start = l_pre_start + the_ctrler.Trp;
l_col_start = l_row_start + the_ctrler.Trcd;
l_addr_start = l_pre_start;
l_addr_end = l_col_start;
l_data_start = l_col_start;
l_data_end = l_data_start + data_cycles;
    } else if ((!new_trans.SAHit) &&
       (new_trans.BankPrecharged)) {
/*
** already precharged, but must access row
*/
l_pre_start = -1;
l_row_start = earliest_possible;
l_col_start = l_row_start + the_ctrler.Trcd;
l_addr_start = l_row_start;
l_addr_end = l_col_start;
l_data_start = l_col_start;
l_data_end = l_data_start + data_cycles;
    } else if (new_trans.SAHit) {
/*
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** requested row already in open page! YEAH!
*/
l_pre_start = -1;
l_row_start = -1;
l_col_start = earliest_possible;
l_addr_start = l_col_start;
l_addr_end = l_col_start;
l_data_start = l_col_start;
l_data_end = l_data_start + data_cycles;
    } else {
System.out.println(“ERROR : Logical impossibility”);
System.exit(1);
    }
} else {
    System.out.println(“ERROR : Access neither read nor write”+
       “ in schedTrans()”);
    System.exit(1);
}

if (false && debug) {
    System.out.println(“local variables scheduled”);
}

/*
** Check for conflicts with prior accesses
** (prev_a_trans & prev_d_trans) and advance ALL l_* vars
** if conflict exists
*/

long addr_spacing = 0;
long data_spacing = 0;
long conflict_delta = 0;

/*
** Determine addr spacing from adjacency, bank & access type
*/
if ((prev_a_trans instanceof trans) &&
    (prev_a_trans.access_bank == new_trans.access_bank)) {
    // verify adjacent access spacing
    if (prev_a_trans.dataBusReqd() && new_trans.dataBusReqd()) {
adj_bank_accesses++;
    }
    addr_spacing = the_ctrler.Trp;
}

if ((prev_d_trans instanceof trans) &&
    (prev_d_trans.access_bank == new_trans.access_bank)) {
    // verify adjacent access spacing
    data_spacing = 0;
}

// Must check for time conflicts between adjacent accesses
if ((prev_a_trans instanceof trans) &&
    (l_addr_start < (prev_a_trans.addrEnd + addr_spacing))) {
    conflict_delta = (prev_a_trans.addrEnd + addr_spacing) -
l_addr_start;
}

if ((prev_d_trans instanceof trans) &&
    (l_data_start < (prev_d_trans.dataEnd + data_spacing))) {
    long data_delta = (prev_d_trans.dataEnd + data_spacing) -
l_data_start;

    if (data_delta > conflict_delta) {
conflict_delta = data_delta;
    }
}

// Case where two adjacent requests go to different rows of the
// same bank : Pg 23 IBM 256Mb DDR SDRAM datasheet
if ((prev_d_trans instanceof trans) &&
    (prev_d_trans.access_bank == new_trans.access_bank) &&
    (new_trans.SAHit == false)) {
    long adj_samebank_delta = 0;
    long pre_happens = (l_pre_start >= 0) ? l_pre_start :
(l_row_start - the_ctrler.Trp);
    if ((pre_happens >= 0) &&
((pre_happens + the_ctrler.cas_lat) < prev_d_trans.dataEnd)) {
adj_samebank_delta = prev_d_trans.dataEnd -
    (pre_happens + the_ctrler.cas_lat);
    }
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    if (adj_samebank_delta > conflict_delta) {
conflict_delta = adj_samebank_delta;
    }
}

if (debug) {
    System.out.println(“conflict delta (“+conflict_delta+
       “) determined”);
}

if (conflict_delta > 0) {
    if (l_pre_start >= 0)
l_pre_start += conflict_delta;
    if (l_row_start >= 0)
l_row_start += conflict_delta;

    l_col_start += conflict_delta;
    l_addr_start += conflict_delta;
    l_addr_end += conflict_delta;

    if (l_data_start >= 0)
l_data_start += conflict_delta;
    if (l_data_end >= 0)
l_data_end += conflict_delta;
}

new_trans.preStart = l_pre_start;
new_trans.rowStart = l_row_start;
new_trans.colStart = l_col_start;
new_trans.addrStart = l_addr_start;
new_trans.addrEnd = l_addr_end;
new_trans.dataStart = l_data_start;
new_trans.dataEnd = l_data_end;
new_trans.start_cycle = l_addr_start;
new_trans.end_cycle = (l_data_end >= 0) ? l_data_end : l_addr_end;

//
// by here must have set (in trans):
// long start_cycle;
// long end_cycle;
// long rowStart;
// long colStart;
// long dataStart, dataEnd;
//

//
// Update Latency metric values
//
total_sched++;
long this_latency = (new_trans.end_cycle - new_trans.start_cycle);
total_latency += this_latency;
if (this_latency > 999) {
    System.out.println(“ERROR (arbitrary) : this_latency > 999 in “+
       “schedule.schedTrans()”);
}

if (debug) {
    System.out.println(“SCHEDULING:\n”+
       new_trans.toString(0xFFF));
}

while(addrTrans.size() >= MAX_LIST_SIZE) {
    if (removeFromAddrTrans(addrTrans.elementAt(0)) == false) {
break;
    }
}

addrTrans.addElement(new_trans);
if (occupies_data) {
    while(dataTrans.size() >= MAX_LIST_SIZE) {
dataTrans.removeElementAt(0);
    }
    dataTrans.addElement(new_trans);
}
lastTrans = new_trans;
return l_addr_start;

    }

    long scheduleRefresh(long cycle_sched, int row_index) {

long l_pre_start = -1;
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long l_row_start = -1;
long l_addr_start = -1;
long l_addr_end = -1;

/*
if ((lastTrans instanceof trans) &&
    (current_cycle < lastTrans.start_cycle)) {
    advanceCurrentTime(lastTrans.start_cycle);
}
*/

/*
** Determine start time for refresh
*/
trans prev_a_trans = null;
try {
    prev_a_trans = (trans) addrTrans.lastElement();
} catch (java.util.NoSuchElementException e) {
    // Do nothing it remains
    // prev_a_trans = null;
}

long refresh_cycle = cycle_sched;

if ((prev_a_trans instanceof trans) &&
    (refresh_cycle < (prev_a_trans.addrEnd + the_ctrler.Trp))) {
    //
    // Wait refresh until Addr bus avail
    //
    refresh_cycle = prev_a_trans.addrEnd + the_ctrler.Trp;
}

//
// Refresh ALWAYS requires precharge, and row access only!
//

l_pre_start = refresh_cycle;
l_row_start = l_pre_start + the_ctrler.Trp;
l_addr_end = l_row_start + the_ctrler.Trcd;
l_addr_start = l_pre_start;

//
// Create Refresh Transaction
//

trans refresh_trans = new trans(the_ctrler.TRANS_REFRESH, 0L, 0,
l_addr_start,
l_addr_end);

refresh_trans.addrStart = l_addr_start;
refresh_trans.addrEnd = l_addr_end;
refresh_trans.preStart = l_pre_start;
refresh_trans.rowStart = l_row_start;
refresh_trans.start_cycle = l_addr_start;
refresh_trans.end_cycle = l_addr_end;

if (debug) {
    System.out.println(“Refresh row “+row_index+” scheduled from “+
       l_addr_start+” to “+l_addr_end);
}

//
// Add Transaction to Schedule
//

refr_sched++;
while(addrTrans.size() >= MAX_LIST_SIZE) {
    if (removeFromAddrTrans(addrTrans.elementAt(0)) == false) {
break;
    }
}
addrTrans.addElement(refresh_trans);

lastTrans = refresh_trans;

return l_addr_start;
    }

    long currentTime() {
return current_cycle;

    }
147



     boolean advanceCurrentTime(long new_time) {
 if (new_time < current_cycle) return true;
//
// Check for refresh
//
for (long r_iter = (last_refresh_iter+1) ;
     r_iter < (new_time/the_ctrler.refresh_rate) ;
     r_iter++) {

    int refr_row = the_ctrler.the_bus.refreshAllDevices();
    last_refresh_iter = r_iter;
    /*
    long refr_time = ((current_cycle <
       (r_iter*the_ctrler.refresh_rate)) ?
      (r_iter*the_ctrler.refresh_rate) :
      current_cycle);
    */
    long refr_time = (r_iter*the_ctrler.refresh_rate);
    last_refresh_time =
scheduleRefresh(refr_time, refr_row);
} // for r_iter

        current_cycle = new_time;

if (debug) {
    System.out.println(“schedule : cycleClock advanced to “+
       current_cycle);
}
return(true);

    } // advanceBusTime

    public boolean endSimulation() {
if (debug) {
    System.out.println(“schedule.endSimulation() called”);
}

return retireAll();
    }

    public boolean retireAll() {
//
// Advance Bus Time to end
//
trans le = (trans) addrTrans.lastElement();
if (debug_shutdown) {
    System.out.println(“DEBUG(schedule) le.end_cycle = “+
       le.end_cycle);
    System.out.println(“DEBUG(schedule) current_cycle = “+
       current_cycle);
    System.out.println(“DEBUG(schedule) retired_to = “+
       last_retired);
}
advanceCurrentTime(le.end_cycle);
retireTo(le.end_cycle);
if (debug_shutdown) {
    System.out.println(“DEBUG(schedule) le.end_cycle = “+
       le.end_cycle);
    System.out.println(“DEBUG(schedule) current_cycle = “+
       current_cycle);
    System.out.println(“DEBUG(schedule) retired_to = “+
       last_retired);
}
return true;

    }

    private boolean removeFromAddrTrans(Object to_be_removed) {
if (!(to_be_removed instanceof trans)) {
    System.out.println(“ERROR : item “+to_be_removed+
       “ to be removed from schedule is not “+
       “a transaction object”);
    return false;
}
trans tbr = (trans) to_be_removed;

if ((addrTrans.size() > ERROR_LIST_SIZE) &&
    (tbr.end_cycle > current_cycle))
{
    System.out.println(“ERROR : attempt to remove transaction “+
       “prior to time advance beyond end\n”+
       “\tMight want to increase MAX_LIST_SIZE”);
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    System.out.println(“\ttrans end_cycle\t= “+tbr.end_cycle);
    System.out.println(“\tCurrent bus cycles\t= “+
       current_cycle);
    return false;
}

//
// Determine usage for cycles to completion of this transaction
//
retireTo(tbr.end_cycle);

addrTrans.remove(to_be_removed);

return true;
    }

    boolean cycleUsedAddr(long cyc) {
boolean ret_val = false;
for (int j = 0 ; j < addrTrans.size() ; j++) {
    trans t = (trans) addrTrans.elementAt(j);
    // Early Term
    if (cyc < t.addrStart) {
break;
    }
    // Cycle Used
    if ((t.addrStart <= cyc) &&
(cyc <= t.addrEnd))
{ return true; }
}
return (ret_val);

    }

    boolean cycleUsedData(long cyc) {
boolean ret_val = false;
for (int j = 0 ; j < dataTrans.size() ; j++) {
    trans t = (trans) dataTrans.elementAt(j);
    // Early Term
    if (cyc < t.dataStart) {
break;
    }
    // Cycle used
    if ((t.dataStart <= cyc) &&
(cyc <= t.dataEnd))
{ return true; }
}
return (ret_val);

    }

    boolean retireTo(long ret_to) {
if (ret_to < last_retired) { return false; }
for (long cyc = (last_retired+1) ; cyc <= ret_to ; cyc++) {
    boolean cua = cycleUsedAddr(cyc);
    boolean cud = cycleUsedData(cyc);
    if (cua || cud) {
used_cycles++;
    }
    if (cua && cud) {
olap_used_cycles++;
    }
    if (cua) {
addr_used_cycles++;
    }
    if (cud) {
data_used_cycles++;
    }
}
last_retired = ret_to;
return true;

    }

    //
    // ToString
    //
    public String toString(int dt) {

display_type = dt;
return this.toString();

    }

    public String toString() {
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String str = new String();

str += “Schedule [“+super.toString()+”]\n”;

double tot_sched = (double) (reads_sched + writes_sched + refr_sched);

if ((display_type & STATS) != 0) {
    str += “\tReads Scheduled\t\t: “ + reads_sched +”\t”+
percent8Str(reads_sched / tot_sched) + “\n”;
    str += “\tWrites Scheduled\t: “+writes_sched +”\t”+
percent8Str(writes_sched / tot_sched) + “\n”;
    str += “\tRefresh Scheduled\t: “+refr_sched +”\t”+
percent8Str(refr_sched / tot_sched) + “\n”;
    str += “\tAverage latency\t\t: “+
((total_latency / ((double)total_sched)) *
 the_ctrler.clock_period) + “\n”;
    str += “\tAdjacent Bank Accesses\t: “+adj_bank_accesses+”\t”+
percent8Str(adj_bank_accesses / ((double)total_sched)) + “\n”;
    str += “\tCurrent cycle\t\t: “+current_cycle+”\n”;
    str += “\tLast cycle Retired\t: “+last_retired+”\n”;
    str += “\tUsed Cycles\t\t: “+used_cycles+”\n”;
    double rc = (double) last_retired;
    str += “\tAddr Used Cycles\t: “ + addr_used_cycles +”\t”+
percent8Str(addr_used_cycles / rc ) + “\n”;
    str += “\tData Used Cycles\t: “+data_used_cycles + “\t”+
percent8Str(data_used_cycles / rc ) + “\n”;
    str += “\tOverlap Cycles\t\t: “+olap_used_cycles+”\t”+
percent8Str(olap_used_cycles / rc ) + “\n”;
}

if ((display_type & DEBUG) != 0) {
    str += “\nADDRESS TRANSACTIONS:”;
    for (int j = (addrTrans.size()-1) ; j >= 0 ; j--) {
trans t = (trans)addrTrans.elementAt(j);
str += “\n”+t.toString(0xFFF);
    }

    str += “\nDATA TRANSACTIONS:”;
    for (int j = (dataTrans.size()-1) ; j >= 0 ; j--) {
trans t = (trans)dataTrans.elementAt(j);
str += “\n”+t.toString(0xFFF);
    }
} // DEBUG

return str;
    }

    private String percent8Str(double in) {
if (!(nf instanceof java.text.NumberFormat)) {
    nf = java.text.NumberFormat.getPercentInstance();
    nf.setMinimumFractionDigits(2);
}
String ret_str;
ret_str = SPACES8 + nf.format(in);
return ret_str.substring(ret_str.length() - 8);

    }

}

======================================================================================================

// package drdram_sim

/*
  File : SDRAM_device

  Author : Brian Davis
  **
  ** all devices are defined to be BUS-WIDE devices
  */

import java.util.Vector;

public class sdram_device {

    //
    // Constants
    //
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    static final boolean debug = false;
    static final String DIMM_64MB = “64MByte DIMM”;
    static final String DIMM_256MB = “256MByte DIMM”;
    static final long SIZE_64MB = ((0x1L)<<26); // 2^26 bytes
    static final long SIZE_256MB = ((0x1L)<<28); // 2^28 bytes
    static final String SPACES8 = “        “;

    //
    // display items
    //
    static final int DEBUG = (1<<0);
    static final int STATS = (1<<1);
    int display_mode = 0;
    static java.text.NumberFormat nf;

    //
    // Device specific values
    //
    sdram_ctrl the_ctrler;
    String type_string;
    long device_size;
    long addr_start;
    long addr_end;
    int num_banks;
    sdram_bank [] banks;
    long bank_mask;
    int bank_shift;

    //
    // Statistics
    //
    long accesses = 0;
    long sa_hits = 0;
    long pc_hits = 0;

    //
    // Constructor
    //
    sdram_device(sdram_ctrl ctrler_host, String type, long start) {

the_ctrler = ctrler_host;
type_string = type;
int rows_per_bank = 0;
if ((the_ctrler.type_string == sdram_ctrl.PC100_SDRAM) &&
    (type == DIMM_64MB)) {
    device_size = SIZE_64MB;
    num_banks = 8;
    bank_mask = (0x7 << 22);
    bank_shift = 22;
    rows_per_bank = 4096;
    // row_mask = (((long)0xFFF) << 11);
    // row_shift = 11;
} else if (((the_ctrler.type_string == sdram_ctrl.DDR133_SDRAM) ||
    (the_ctrler.type_string == sdram_ctrl.DDR133_CAS3_SDRAM)) &&
   (type == DIMM_256MB)) {
    device_size = SIZE_256MB;
    num_banks = 8;
    bank_mask = (0x7 << 24);
    bank_shift = 24;
    rows_per_bank = 8192;
    // row_mask = (((long)0x1FFF) << 12);
    // row_shift = 12;
} else {
    System.out.println(“ERROR : undefined device type!\n”);
    System.exit(1);
}
// start should of course be aligned
addr_start = start;
addr_end = start + (device_size-1);
long bank_size = device_size / num_banks;
// Define banks
banks = new sdram_bank[num_banks];
long bank_start_addr = addr_start;
for (int j = 0 ; j < banks.length ; j++) {
    banks[j] = new sdram_bank(bank_size,
      rows_per_bank,
      bank_start_addr);
    bank_start_addr += bank_size;
}

if (debug) {
    System.out.println(“SDRAM device “+type+” created\n”+
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       “\taddr_start = “+addr_start+”(“+
       Long.toHexString(addr_start)+
       “)\n\taddr_end = “+addr_end+”(“+
       Long.toHexString(addr_end)+”)”);

}

    } // sdram_device

    boolean access(trans this_trans) {
accesses++;
//
// Primary purpose is to determine hit/miss status
//

sdram_bank this_bank = whichBank(this_trans.address);
if (!(this_bank instanceof sdram_bank)) {
    System.out.println(“ERROR : undefined bank in “+
       “sdram_device.access()”);
    System.exit(1);
}
this_bank.accesses++;

long row_addr = this_bank.rowIndex(this_trans.address);

/*
** Check bank conditions
*/
if (this_bank.rowInSA(row_addr)) {
    // Condition 1;
    this_trans.SAHit = true;
    this_trans.BankPrecharged = false;
    sa_hits++;
    this_bank.sa_hits++;
} else if (this_bank.precharged()) {
    // Condition 2;
    this_trans.SAHit = false;
    this_trans.BankPrecharged = true;
    pc_hits++;
    this_bank.pc_hits++;
} else {
    // Condition 3;
    this_trans.SAHit = false;
    this_trans.BankPrecharged = false;
}
this_trans.access_bank = this_bank;

/*
** Update bank conditions
*/
if (the_ctrler.policy_closeautoprecharge) {
    this_bank.prechargeBank();
} else if (the_ctrler.policy_openpage) {
    this_bank.setOpen(row_addr);
} else {
    System.out.println(“ERROR : unknown controller policy”);
    System.exit(1);
}

return true;
    }

    //
    // Address mapping dependant
    //

    int bankIndex(long addr) {
int index = ((int)((addr & bank_mask) >> bank_shift));
return index;

    }

    sdram_bank whichBank(long addr) {
sdram_bank ret_bank = null;
int index = bankIndex(addr);
if ((index >= 0) &&
    (index < banks.length)) {
    ret_bank = banks[index];
}
return ret_bank;

    }
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    int refreshAllBanks() {
int row = -1;
for (int j = 0 ; j < banks.length ; j++) {
    row = banks[j].refreshNextRow();
}
return row;

    }

    //
    // toString
    //
    public String toString() {

return this.toString(display_mode);
    }

    public String toString(int dm) {
String str = new String();
str += “sdram_device [“+super.toString()+”]\n”;
str += “\tDevice type \t\t: “+type_string+”\n”;
str += “\tSpans Addresses\t\t: (“;
str += “0x”+java.lang.Long.toHexString(addr_start);
str += “ : “;
str += “0x”+java.lang.Long.toHexString(addr_end);
str += “)\n”;
if ((dm & STATS) != 0) {
    str += “\tDevice Accesses\t\t: “+accesses+”\n”;
    double ac = (double) accesses;
    str += “\tDev SAmp Hits\t\t: “+sa_hits+”\t”+
percent8Str(sa_hits / ac ) + “\n”;
    str += “\tDev PreChg Hits\t\t: “+pc_hits+”\t”+
percent8Str(pc_hits / ac ) + “\n”;
}
for (int j = 0 ; j < banks.length ; j++) {
    str += banks[j].toString(dm);
}
return str;

    }

    private String percent8Str(double in) {
if (!(nf instanceof java.text.NumberFormat)) {
    nf = java.text.NumberFormat.getPercentInstance();
    nf.setMinimumFractionDigits(2);
}
String ret_str;
ret_str = SPACES8 + nf.format(in);
return ret_str.substring(ret_str.length() - 8);

    }

} // CLASS sdram_device

======================================================================================================

// package sdram_sim

/*
  File : trans

  Author : Brian Davis

  */

public class trans {

  //
  // Constants
  //
  static final int TRANS_READ = sdram_ctrl.TRANS_READ;
  static final int TRANS_WRITE = sdram_ctrl.TRANS_WRITE;
  static final int TRANS_REFRESH = sdram_ctrl.TRANS_REFRESH;

  // Class Variables
  static long trans_created = 0;
  static int display_mode = 0;

  // Instance Variable(s)

    //
    // Transaction Attributes
    int type;
    int num_bytes;
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    long address;
    boolean read = false;
    boolean write = false;
    boolean SAHit = false;
    boolean BankPrecharged = false;
    Object access_bank = null;

    //
    // Overall Transaction bounds
    long start_cycle;
    long end_cycle;

    //
    // Component Times
    long preStart;
    long rowStart;
    long colStart;
    long addrStart;
    long addrEnd;
    long dataStart, dataEnd;

    long bus_cycles_reqd;

    // Constructor(s)
    trans(long addr, int bytes) {

this(TRANS_READ, addr, bytes, -1L, -1L);
    }

    trans(int rw, long addr, int bytes) {
this(rw, addr, bytes, -1L, -1L);

    }

  trans(int rw, long addr, int bytes, long start, long end) {

    trans_created++;

    type = rw;
    if (rw == TRANS_READ)
      read = true;
    else if (rw == TRANS_WRITE)
      write = true;

    address = addr;
    num_bytes = bytes;

    start_cycle = start;
    end_cycle = end;

    //
    // Check to verify withing above [start:end] bounds
    rowStart = colStart = dataStart = dataEnd = -1L;
  }

  // Class Methods

  //
  // Instance Methods
  //

    public boolean dataBusReqd() {
if (((type & TRANS_READ) != 0) || (( type & TRANS_WRITE) != 0)) {
    return true;
}
return false;

    }

  public boolean rowStart(long cycle) {
    //
    // Check for potential ERROR conditions
    if (rowStart != -1L) {
      System.out.println(“ERROR : multiple definition of Row Start for transaction”);
      return true;
    }

    if ((start_cycle != -1L) || (start_cycle > cycle)) {
      System.out.println(“ERROR : Illegal definition of row given Start for transaction”);
      return true;
    }

    rowStart = cycle;
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    start_cycle = cycle;

    return false;
  }

  public boolean colStart(long cycle) {
    //
    // Check for potential ERROR conditions
    if (colStart != -1L) {
      System.out.println(“ERROR : multiple definition of Column Start for transaction”);
      return true;
    }

    /*
    if (rowHit == true)
      start_cycle = cycle;
    */

    return false;
  }

  private boolean startAt(long new_start) {
    // Check for valid start
    if ((end_cycle != 0) && (new_start > end_cycle)) {
      // ERROR ILLEGAL START
      return true;
    } else {
      start_cycle = new_start;
      return false;
    }
  }

  //
  // To String
  //
  public String toString(int new_mode) {
    display_mode = new_mode;
    return toString();
  }

  public String toString() {
    String str = new String();
    str += “Transaction [“+super.toString()+”]”;

    if ((display_mode & (1<<0)) != 0) {
      str += “\n\tTrans type\t: “+((read) ? “Read” : ((write) ? “Write” : “UNKNOWN”));

      str += “\n\tAddress\t\t: “ + java.lang.Long.toHexString(address);

      str += “\n\tNumber Bytes\t: “+num_bytes;

      str += “\n\tHit Status\t: “;
      if (SAHit) {

  str += “SenseAmp Hit”;
      } else if (BankPrecharged) {

  str += “Precharge Hit”;
      } else {

  str += “SenseAmp/Precharge Miss”;
      }

      str += “\n\tTrans Span\t: ( “+start_cycle+” : “+end_cycle+” )”;

      str += “\n\tPre Start\t: “+preStart;

      str += “\n\tRow Start\t: “+rowStart;
      str += “\n\tCol Start\t: “+colStart;
      str += “\n\tAddr Start\t: “+addrStart;
      str += “\n\tAddr End\t: “+addrEnd;
      str += “\n\tData Start\t: “+dataStart;
      str += “\n\tData End\t: “+dataEnd;

    }

    return str;
  } // toString

}
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A.2 DDR2 Model

/*
  File : SDRAM_BUS

  Author : Brian Davis

  */

abstract class dram_ctrl {
    static final String PC100_SDRAM = “PC100 SDRAM”;
    static final String DDR133_SDRAM = “DDR133 SDRAM”;
    static final String DDR133_CAS3_SDRAM = “DDR133 cas3 SDRAM”;
    static final String DDR2_200 = “DDR2 200Mhz DRAM”;
    static final String DDR2_EMS = “DDR2 200Mhz ESDRAM-lite”;
    static final String DDR2_VC = “DDR2 200MHz VC Enabled”;

    static final String CLOSEAUTOPRE = “Close-Page-Autoprecharge”;
    static final String OPENPAGE = “Open-Page”;
    // static final String ES_OP_ALLWRITEXFER = “Open-Page All-Write-Xfer”;
    static final String ES_CPA_ALLWRITEXFER =

“Close-Page-Prechg All-Write-Xfer”;
    static final String ES_CPA_NOWRITEXFER =

“Close-Page-Prechg 100% No-Write-Xfer”;

    static final int PC100 = 0x1;
    static final int DDR133 = 0x2;
    static final int DDR133C3 = 0x4;
    static final int DDR2 = 0x8;
    static final int ES_DDR2 = 0x10;
    static final int VC_DDR2 = 0x20;

    static final int POLICY_SHIFT = 8;
    static final int CPA = (0x1 << POLICY_SHIFT);
    static final int OP = (0x2 << POLICY_SHIFT);
    static final int OP_AWX = (0x4 << POLICY_SHIFT);
    static final int CPA_AWX = (0x8 << POLICY_SHIFT);
    static final int CPA_WX = (0x10 << POLICY_SHIFT);

    static final int PC100_CPA = PC100 | CPA;
    static final int PC100_OP = PC100 | OP;
    static final int DDR133_CPA = DDR133 | CPA;
    static final int DDR133_OP = DDR133 | OP;
    static final int DDR133_CAS3_CPA = DDR133C3 | CPA;
    static final int DDR2_CPA = DDR2 | CPA;
    static final int DDR2_OP = DDR2 | OP;
    static final int DDR2VC_CPA = VC_DDR2 | CPA;
    static final int DDR2VC_OP = VC_DDR2 | OP;
    static final int DDR2EMS_CPA_AWX = ES_DDR2 | CPA_AWX;
    static final int DDR2EMS_CPA_NWX = ES_DDR2 | CPA_WX;

    static final String POLICY_LRU = “Least-Recently-Used”;
    static final String POLICY_RANDOM = “Random”;
    static final String POLICY_ASSOC = “Limited Associativity LRU”;
    static final String POLICY_P12IO4 = “Processor 12 / IO 4”;

    static final int TRANS_REFRESH = (1<<0);
    // static final int TRANS_PRECHARGE = (1<<1);
    static final int TRANS_READ_NOPRE = (1<<2);
    static final int TRANS_READ_PRE = (1<<3);
    static final int TRANS_WR_NOPRE = (1<<4);
    static final int TRANS_WR_PRE = (1<<5);
    static final int TRANS_WR_NOXFER = (1<<6);
    static final int TRANS_READ =

TRANS_READ_NOPRE | TRANS_READ_PRE;
    static final int TRANS_WRITE =

TRANS_WR_NOPRE | TRANS_WR_PRE | TRANS_WR_NOXFER;

    static final String SPACES8 = “        “;
    static java.text.NumberFormat nf;

    abstract boolean endSimulation();

    abstract dram_trans access(long time, int trans_type,
       long addr, int num_bytes);

    abstract boolean addDevice(int dev_int);
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    abstract boolean addDevice(String dev_type);

    abstract void enableRemap();

    abstract long maxAddr();

    abstract long currentTime();

}

======================================================================================================

/*
  File : dram_trans

  Author : Brian Davis

  */

abstract class dram_trans {
    //
    // Constants
    //

    static final int TRANS_REFRESH = dram_ctrl.TRANS_REFRESH;
    static final int TRANS_READ_NOPRE = dram_ctrl.TRANS_READ_NOPRE;
    static final int TRANS_READ_PRE = dram_ctrl.TRANS_READ_PRE;
    static final int TRANS_WR_NOPRE = dram_ctrl.TRANS_WR_NOPRE;
    static final int TRANS_WR_PRE = dram_ctrl.TRANS_WR_PRE;
    static final int TRANS_WR_NOXFER = dram_ctrl.TRANS_WR_NOXFER;

    static final int TRANS_READ = dram_ctrl.TRANS_READ;
    static final int TRANS_WRITE = dram_ctrl.TRANS_WRITE;

} // class dram_trans

======================================================================================================

// package sdram_sim

/*
  File : sdram_ctrl

  Author : Brian Davis

  */
import java.math.BigInteger;

public class ddr2_ctrl extends dram_ctrl {

    //
    // Constants
    //
    static final boolean DEBUG = false;
    static final boolean debug_split = false;
    static final boolean debug_remap = false;
    static final int DIMM_256MB = (1<<28);
    static final int DIMM_512MB = (1<<29);

    //
    // Controller Parameters
    //
    boolean policy_closeautoprecharge = false;
    boolean policy_openpage = false;
    boolean policy_noxferallwrite = false;
    boolean enable_remap = false;

    //
    // Controller Constants
    //
    String type_string = null;
    String policy_string = null;
    String vc_policy = null;
    boolean VCEnabled = false;
    boolean EMSEnabled = false;
    long refresh_rate;
    long refresh_cycles;
    long cas_lat;
    // ^^ RCHit_todata ^^
    // ^^ VCHit_todata
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    long Tras;
    long Trcd;
    long Trp;
    long Twr;
    // long RCHit_todata = -1;
    long TvcEvict = -1;
    long BusWidth;
    double clock_period;
    long ctrler_accesses = 0;
    long multi_trans_accesses = 0;
    double total_bytes = 0;

    // ReMap Variables
    long max_addr;
    int used_bits;
    long bank_mask;
    long row_mask;
    long index_mask;
    int dev_msb, dev_lsb;
    int bank_msb, bank_lsb;
    int row_msb, row_lsb;
    int debug_prints = 0;

    // Class Variable
    // Instance Variable(s)
    int display_mode = 0;
    ddr2_bus the_bus;
    ddr2_sched the_schedule;
    long row_shift;
    int max_cycles_per_trans;
    boolean mem_changed = true;
    //
    // Constructor
    //
    ddr2_ctrl() {

this(DDR2_200, OPENPAGE);
    }

    ddr2_ctrl(int type_int) {
this(
     // type
     (((type_int & DDR2) != 0) ?
      DDR2_200 :
      ((type_int & ES_DDR2) != 0) ?
      DDR2_EMS :
      ((type_int & VC_DDR2) != 0) ?
      DDR2_VC :
      null),
     // policy
     (((type_int & OP) != 0) ?
      OPENPAGE :
      ((type_int & CPA) != 0) ?
      CLOSEAUTOPRE :
      //      ((type_int & OP_AWX) != 0) ?
      //ES_OP_ALLWRITEXFER:
      ((type_int & CPA_AWX) != 0) ?
      ES_CPA_ALLWRITEXFER :
      ((type_int & CPA_WX) != 0) ?
      ES_CPA_NOWRITEXFER :
      null));

    }

    ddr2_ctrl(String type, String policy) {

if ((!(type instanceof String)) ||
    (!(policy instanceof String))) {
    System.out.println(“ERROR : NULL parameters to “+
       “sdram_ctrl() constructor”);
    System.out.println(“\ttype = “+type);
    System.out.println(“\tpolicy = “+policy);
    System.exit(1);
}

if (type == DDR2_200) {
    type_string = DDR2_200;
    /* dram_cycles per refresh */
    /* 8096 refresh cycles / 64mS */
    refresh_rate = 1581; // upd 1/14/99
    refresh_cycles = 3; //
    // posted_cas = 0; // unsimulated as of yet
    Tras = 5;//
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    Trcd = 3;//
    Trp = 3;//
    Twr = 3;
    cas_lat = 3;//
    BusWidth = 16; // upd 1/14/99
    clock_period = 1/(200E6); // upd 1/14/99
    row_shift = 11; //  To split up multi-requests
    max_cycles_per_trans = 2;
}
else if (type == DDR2_VC) {
    type_string = DDR2_VC;
    /* dram_cycles per refresh */
    /* 8096 refresh cycles / 64mS */
    refresh_rate = 1581; // upd 1/14/99
    refresh_cycles = 3;
    Tras = 5;//
    Trcd = 4;//
    Trp = 3;//
    Twr = 3;
    cas_lat = 2;//
    TvcEvict = 9;
    BusWidth = 16; // upd 1/14/99
    clock_period = 1/(200E6); // upd 1/14/99
    row_shift = 11; //  To split up multi-requests
    max_cycles_per_trans = 2;
    VCEnabled = true;
    // vc_policy = ;
    vc_policy = POLICY_LRU;
}
else if (type == DDR2_EMS) {
    type_string = DDR2_EMS;
    /* dram_cycles per refresh */
    /* 8096 refresh cycles / 64mS */
    refresh_rate = 1581; // upd 1/14/99
    refresh_cycles = 3;
    EMSEnabled = true;
    Tras = 5;//
    Trcd = 3;//
    Trp = 3;//
    Twr = 3;
    cas_lat = 3;//
    // RCHit_todata = 3;
    BusWidth = 16; // upd 1/14/99
    clock_period = 1/(200E6); // upd 1/14/99
    row_shift = 11; //  To split up multi-requests
    max_cycles_per_trans = 2;
}
else {
    System.out.println(“ERROR : Illegal type parameters to “+
       “sdram_ctrl() constructor\n”);
    System.exit(1);
}

if ((policy == CLOSEAUTOPRE) ||
    (policy == ES_CPA_ALLWRITEXFER)) {
    policy_noxferallwrite = false;
    policy_closeautoprecharge = true;
    policy_openpage = false;
} else if (policy == OPENPAGE) {
    policy_noxferallwrite = false;
    policy_closeautoprecharge = false;
    policy_openpage = true;
} else if (policy == ES_CPA_NOWRITEXFER) {
    policy_noxferallwrite = true;
    policy_closeautoprecharge = false;
    policy_openpage = false;
    if (type != DDR2_EMS) {
System.out.println(“ERROR : Illegal DRAM type / “+
   “policy pairing to “+
   “sdram_ctrl() constructor\n”);
System.exit(1);
    }
}
else {
    System.out.println(“ERROR : Illegal policy parameter to “+
       “sdram_ctrl() constructor\n”);
    System.exit(1);
}
policy_string = policy;
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the_bus = new ddr2_bus(this);
the_schedule = new ddr2_sched(this);

// End constructor
    }

    public boolean changeVCAllocPolicy(String new_policy) {
if ((new_policy == POLICY_LRU) ||
    (new_policy == POLICY_RANDOM) ||
    (new_policy == POLICY_ASSOC) ||
    (new_policy == POLICY_P12IO4)) {
    vc_policy = new_policy;
    return false;
}
return true;

    }

    public boolean addDevice(int dev_size) {
String str = null;
if (dev_size == DIMM_256MB) {
    str = ddr2_device.DIMM_256MB;
} else {
    System.out.println(“ERROR : SDRAM device of size “+ dev_size +
       “could not be created in “ + type_string +
       “ Environment\n”);
    return false;
}
return addDevice(str);

    }

    public boolean addDevice(String dev_type) {
if (dev_type == ddr2_device.DIMM_256MB) {
    mem_changed = true;
    the_bus.addDevice(dev_type);
} else {
    System.out.println(“ERROR : SDRAM device “+ dev_type +
       “could not be created in “ + type_string +
       “Environment\n”);
    return false;
}
return true;

    }

    public void enableRemap() {
enable_remap = true;

    }

    public dram_trans access(long time, int trans_type,
     long addr, int num_bytes) {
//
// Verify valid input
//
if ((num_bytes <= 0) ||
    ((trans_type != TRANS_READ) && (trans_type != TRANS_WRITE))) {
    System.out.println(“ERROR : Illegal parameters to access()”+
       “ in controller”);
    System.out.println(“num_bytes = “+num_bytes+”/n”);
    System.out.println(“type = “+trans_type+”/n”);
    System.exit(1);
}
if (!the_bus.addrMapped(addr)) {
    System.out.println(“ERROR : Address “+Long.toHexString(addr)+
       “ not contained within Memory System”);
    return null;
}

// Update time
if (time > the_schedule.currentTime()) {
    the_schedule.advanceCurrentTime(time);
}

ctrler_accesses++;
total_bytes += num_bytes;

//
// Determine a more specific trans_type
//
if (trans_type == TRANS_READ) {
    if (policy_openpage)
trans_type = TRANS_READ_NOPRE;
    else if ((policy_closeautoprecharge) ||
160



     (policy_noxferallwrite))
trans_type = TRANS_READ_PRE;
    else
System.out.println(“ERROR : Unknown READ Policy in  “+
   “ddr2_ctrl.access()”);
} else if (trans_type == TRANS_WRITE) {
    if (policy_openpage)
trans_type = TRANS_WR_NOPRE;
    else if (policy_closeautoprecharge)
trans_type = TRANS_WR_PRE;
    else if (policy_noxferallwrite)
trans_type = TRANS_WR_NOXFER;
    else
System.out.println(“ERROR : Unknown WRITE Policy in  “+
   “ddr2_ctrl.access()”);
} else {
    System.out.println(“ERROR : Unknown Trans type in “+
       “ddr2_ctrl.access()”);
}

//
// Verify that this transaction only spans a single device/bank
//

ddr2_trans this_trans = null;
long last_addr = addr + (num_bytes - 1);
if ((num_bytes <= (max_cycles_per_trans * BusWidth)) &&
    (addr >> row_shift) == (last_addr >> row_shift)) {

    //
    // Munge/re-order address bits to accomplish pseudo-interleaving
    // of DRAM pages between different banks.
    //
    long dram_addr = map_procaddr_to_dramaddr(addr);

    // Create Transaction
    this_trans = new ddr2_trans(trans_type, dram_addr, num_bytes);

    // Initiate Access on channel
    the_bus.access(this_trans);

    // Schedule Transaction
    the_schedule.schedTrans(this_trans);

} else {
    multi_trans_accesses++;

    this_trans = split_access(trans_type, addr, num_bytes);

    // return null;
}

return this_trans;
    }

    private ddr2_trans split_access(int type_param, long start_addr,
   int num_bytes) {
ddr2_trans this_trans = null;
long last_addr = start_addr + ((long)(num_bytes - 1));
int type = -1;
int open_type = -1;

if (debug_split) {
    String str = “DEBUG(drd_ctrl) : Source of Split Access\n”;
    str += “addr = “+Long.toHexString(start_addr)+”\n”;
    str += “loc_bytes = “+num_bytes+”\n”;
    System.out.println(str);
}

if ((open_type & TRANS_READ) != 0) {
    open_type = TRANS_READ_NOPRE;
} else if ((open_type & TRANS_WRITE) != 0) {
    open_type = TRANS_WR_NOPRE;
} else {
    System.out.println(“ERROR : Logical impossiblity 02.03.00”);
}

long local_addr = start_addr;
while (local_addr < last_addr) {
    ddr2_device local_dev = the_bus.devForAddr(local_addr);
    ddr2_bank local_bank = local_dev.whichBank(local_addr);
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    int local_row = local_bank.rowIndex(local_addr);
    long row_end_addr = local_bank.rowEndAddr(local_row);
    long to_end_of_row = (row_end_addr - local_addr) + 1L;
    long to_end_of_trans = (last_addr - local_addr) + 1L;
    int loc_bytes = (int) java.lang.Math.min(to_end_of_row,
     to_end_of_trans);
    if (loc_bytes > (BusWidth * max_cycles_per_trans))
loc_bytes = (int)(BusWidth * max_cycles_per_trans);
    if (debug_split) {
String str = “DEBUG(drd_ctrl) : Split Access\n”;
str += “row = “+local_row+”\n”;
str += “addr = “+Long.toHexString(local_addr)+”\n”;
str += “loc_bytes = “+loc_bytes+”\n”;
System.out.println(str);
    }

    if (loc_bytes <= 0) {
System.out.println(“Fatal Error (negative loc_bytes) “+
   “in split_access”);

String str = “row_end_addr\t= “+row_end_addr+”\n”;
str += “last_addr\t= “+last_addr+”\n”;
str += “local_addr\t= “+local_addr+”\n”;
str += local_bank.toString(0xFFF);
str += local_dev.toString(0xFFF);
System.out.println(str);
System.exit(1);
    }

    // Don’t close when splitting accesses
    if ((loc_bytes == to_end_of_row) ||
(loc_bytes == to_end_of_trans)) {
type = type_param;
    } else {
type = open_type;
    }

    //
    // Munge/re-order address bits to accomplish pseudo-interleaving
    // of DRAM pages between different banks.
    //
    long dram_addr = local_addr;
    if (enable_remap)
dram_addr = map_procaddr_to_dramaddr(local_addr);

    // Create Transaction
    this_trans = new ddr2_trans(type, dram_addr,
loc_bytes);

    // Initiate Access on channel
    the_bus.access(this_trans);

    // Schedule Transaction
    the_schedule.schedTrans(this_trans);

    local_addr += ((long)loc_bytes);
}
return this_trans;

    }

    long map_procaddr_to_dramaddr(long procaddr) {

if (mem_changed) {

    //
    // Determine Number of bits used in memory system.
    //
    max_addr = maxAddr();
    String s1 = (new Long(max_addr)).toString();
    // System.out.println(“@@@ Max_addr = “+s1+”\n”);
    used_bits = (new BigInteger(s1)).bitLength();

    //
    // Determine memory system/device boundaries
    //
    // Assume that all devices/banks are of the same size, and
    // therefor we can get critical values from first device/bank
    //
    ddr2_device dev_0 = (ddr2_device) the_bus.device_list.elementAt(0);
    if (! (dev_0 instanceof ddr2_device)) {
System.out.println(“ERROR : unable to determine device bits “+
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   “in ddr2_ctrl.map_procaddr_to_dramaddr()”);
return procaddr;
    }

    bank_mask = dev_0.bank_mask;
    s1 = (new Long(bank_mask)).toString();
    bank_msb = (new BigInteger(s1)).bitLength();
    bank_lsb = (new BigInteger(s1)).getLowestSetBit();

    //
    // retrieve First Bank & thus Row info
    //
    ddr2_bank bank_0 = dev_0.banks[0];
    if (! (bank_0 instanceof ddr2_bank)) {
System.out.println(“ERROR : unable to determine bank bits “+
   “in ddr2_ctrl.map_procaddr_to_dramaddr()”);
return procaddr;
    }
    row_mask = bank_0.row_mask;
    s1 = (new Long(row_mask)).toString();
    row_msb = (new BigInteger(s1)).bitLength();
    row_lsb = (new BigInteger(s1)).getLowestSetBit();

    //
    // From above derive device info
    //
    dev_msb = used_bits;
    dev_lsb = bank_msb + 1;

    index_mask = ((1<<row_lsb) - 1);

    mem_changed = false;
} // mem_changed

//
// Perform Re-mapping
//

// Inversion Remap

long dramaddr = procaddr & index_mask;

long loop_bits = 0;
//System.out.println(“prior to j loop ; row_lsb = “+row_lsb+
//   “\tused_bits = “+used_bits+”\n”);
for (int j = row_lsb ; j < used_bits ; j++) {
    // System.out.println(“In j loop; j = “+j+”/n”);
    long bit_mask = (0x1L<<j);
    if ((bit_mask & procaddr) != 0) {
loop_bits = (loop_bits << 1) | 0x1;
// System.out.println(“inserting 0x1\n”);
    } else {
loop_bits = (loop_bits << 1) | 0x0;
    }
}
loop_bits = loop_bits << row_lsb;
dramaddr = dramaddr | loop_bits;

//
// Debug print
//

if (debug_remap) {
    debug_prints++;
    String str = “Loop Bits = 0x”+Long.toHexString(loop_bits)+”\n”;
    str += “Processor Address = 0x”+Long.toHexString(procaddr)+
“\n\t”;
    str += “bank = 0x”+Long.toHexString(procaddr & bank_mask);
    str += “\n\trow  = 0x”+Long.toHexString(procaddr & row_mask);
    str += “\nDRAM Address = 0x”+Long.toHexString(dramaddr)+
“\n\t”;
    str += “bank = 0x”+Long.toHexString(dramaddr & bank_mask);
    str += “\n\trow  = 0x”+Long.toHexString(dramaddr & row_mask) +
“\n”;
    System.out.print(str);
    if (debug_prints > 200)
System.exit(1);
}

return dramaddr;
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    }

    public long maxAddr() {
return the_bus.maxAddr();

    }

    public long currentTime() {
return the_schedule.currentTime();

    }

    public boolean endSimulation() {
return the_schedule.endSimulation();

    }

    //
    // toString
    //
    public void printYourself() {

System.err.println(this.toString(0xFFFFFFFF));
    }

    public String toString() {
return this.toString(display_mode);

    }

    public String toString(int dm) {
String str = new String();

str += “ddr2_ctrl [“+super.toString()+”]\n”;
str += “\tDRAM Type\t\t: “+type_string+”\n”;
str += “\tCtrler Policy\t\t: “;
if (policy_closeautoprecharge) {
    str += “Close-Page-Autoprecharge\n”;
} else if (policy_openpage) {
    str += “Open-Page\n”;
} else {
    str += “UNKNOWN\n”;
}
str += “\tCAS Latency\t\t: “+cas_lat+”\n”;
str += “\ttRAS\t\t: “+Tras+”\n”;
str += “\ttRCD\t\t: “+Trcd+”\n”;
str += “\ttRP\t\t: “+Trp+”\n”;
str += “\ttWR\t\t: “+Twr+”\n”;

str += “\tCtrler Nominal row size : “+(1 << row_shift)+”\n”;
str += “\tTime Elapsed\t\t: “+
    ((double)the_schedule.currentTime()) * clock_period+” (sec)\n”;

str += “\tController Accesses\t: “+ctrler_accesses+”\n”;
str += “\tTotal Bytes Transfered\t: “+total_bytes+”\n”;
str += “\tAvg Request size\t: “+
    (total_bytes / ctrler_accesses) + “\n”;
str += “\tMultiTrans Accesses\t: “+multi_trans_accesses+”\n”;
if (VCEnabled) {
    str += “\tVirtual Channel Enabled\n”;
    str += “\tVirtual Channel Allocation Policy\t: “+vc_policy+”\n”;
}

str += the_schedule.toString(ddr2_sched.STATS);
str += the_bus.toString(ddr2_bus.STATS);
return str;

    }

} // sdram_ctrl

======================================================================================================

// package drdram_sim

/*
  File : SDRAM_BUS

  Author : Brian Davis

  */

import java.util.Vector;

public class ddr2_bus {
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    //
    // Constants
    //
    static final boolean debug = false;
    static final int DEBUG = (1<<0);
    static final int STATS = (1<<1);
    static final String SPACES8 = “        “;
    static java.text.NumberFormat nf;

    //
    // Variables
    //
    Vector device_list;
    ddr2_ctrl the_ctrler;
    // Refresh
    private long access_calls = 0;
    private double access_bytes = 0;
    private long read_hits = 0;
    private long read_misses = 0;
    private long write_hits = 0;
    private long write_misses = 0;
    private long refresh_calls = 0;
    // Display
    int display_type = 0;

    //
    // Constructors
    //
    ddr2_bus(ddr2_ctrl ctrl_host) {

the_ctrler = ctrl_host;
device_list = new Vector();

    }

    public ddr2_device addDevice(String dev_type) {
long new_start;
if (device_list.isEmpty()) {
    new_start = 0;
} else {
    new_start = ((ddr2_device)(device_list.lastElement())).addr_end + 1;
}
ddr2_device newDevice = new ddr2_device(the_ctrler, dev_type, new_start);
if (newDevice instanceof ddr2_device) {
    // Add to Vector
    device_list.addElement(newDevice);
}
return newDevice;

    }

    public boolean addrMapped(long addr) {
if (device_list.isEmpty()) {
    if (debug) {
System.out.println(“ddr2_bus device_list is Empty”);
    }
    return false;
}

long first_start =
    ((ddr2_device)(device_list.firstElement())).addr_start;

long last_end = ((ddr2_device)(device_list.lastElement())).addr_end;

boolean ret_val =
    ((first_start <= addr) && (addr <= last_end));

if (debug && (!ret_val)) {
    System.out.println(“first_start = “+first_start+
       “\nlast_end = “+last_end);
}

return ret_val;
    }

    long maxAddr() {
long last_end = 0;
if (device_list.size() > 0)
    last_end = ((ddr2_device)(device_list.lastElement())).addr_end;
return last_end;

    }

    ddr2_device devForAddr(long addr) {
for (int j = 0 ; j < device_list.size() ; j++) {
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    ddr2_device dev = ((ddr2_device)device_list.elementAt(j));
    if ((dev.addr_start <= addr) &&
(dev.addr_end >= addr)) {
return dev;
    }
} // for
return null;

    }

    public boolean access(ddr2_trans this_trans) {
//
// Advance time
//
access_calls++;
access_bytes += this_trans.num_bytes;

//
// Perform Transaction - Transaction allocated
//
ddr2_device dev_for_trans;

//
// Determine device via Address mapping
//
dev_for_trans = devForAddr(this_trans.address);

//
// Determine VC based on

//
// Perform Access
//
if (dev_for_trans instanceof ddr2_device) {
    dev_for_trans.access(this_trans);
} else {
    System.out.println(“ERROR : no device found for Transaction :\n”+
       this_trans);
    return false;
}

if ((this_trans.type & dram_trans.TRANS_READ) != 0) {
    if (this_trans.SAHit)
read_hits++;
    else
read_misses++;
} else if ((this_trans.type & dram_trans.TRANS_WRITE) != 0) {
    if (this_trans.SAHit)
write_hits++;
    else
write_misses++;
}

return true;
    }

    int refreshAllDevices() {
int ret_row = 0;
refresh_calls ++;
for (int j = 0 ; j < device_list.size() ; j++) {
    ddr2_device dimm = (ddr2_device) device_list.elementAt(j);
    ret_row = dimm.refreshAllBanks();
}
return ret_row;

    }

    boolean prechargeAllDevices() {
boolean ret_val = false;
for (int j = 0 ; j < device_list.size() ; j++) {
    ddr2_device dimm = (ddr2_device) device_list.elementAt(j);
    dimm.prechargeAllBanks();
}
return ret_val;

    }

    //
    // toString
    //
    public String toString(int dt) {

display_type = dt;
return this.toString();

    }
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    public String toString() {
String str = new String();
str += “ddr2_bus [“+super.toString()+”]\n”;
str += “\tSpans Addresses\t\t: (“;
str += “0x”+java.lang.Long.toHexString(((ddr2_device)(device_list.firstEle-

ment())).addr_start);
str += “ : “;
str += “0x”+java.lang.Long.toHexString(((ddr2_device)(device_list.lastElement())).addr_end);
str += “)\n”;
str += “\tNumber of Devices\t: “+device_list.size()+”\n”;
str += “\tAccesses crossing bus\t: “+access_calls+”\n”;
str += “\tBus Access Hits\t\t: “+(read_hits + write_hits)+”\t\t”;
str += percent8Str((read_hits + write_hits)/((double)access_calls))+
    “\n”;
if (access_calls != 0) {

    long reads = (read_hits + read_misses);
    str += “\tBus Reads\t\t: “+reads+”\t\t”;
    str += percent8Str(reads/((double)access_calls))+”\n”;
    if (reads != 0) {
str += “\tBus Read Hits\t\t: “+read_hits+”\t\t”;
str += percent8Str(read_hits/((double)access_calls))+”\t\t”;
str += percent8Str(read_hits/((double)reads))+”\n”;
str += “\tBus Read Misses\t\t: “+read_misses+”\t\t”;
str += percent8Str(read_misses/((double)access_calls))+”\t\t”;
str += percent8Str(read_misses/((double)reads))+”\n”;
} // reads

    long writes = (write_hits + write_misses);
    str += “\tBus Writes\t\t: “+writes+”\t\t”;
    str += percent8Str(writes/((double)access_calls))+”\n”;
    if (writes != 0) {
str += “\tBus Write Hits\t\t: “+write_hits+”\t\t”;
str += percent8Str(write_hits/((double)access_calls))+”\t\t”;
str += percent8Str(write_hits/((double)writes))+”\n”;
str += “\tBus Write Misses\t: “+write_misses+”\t\t”;
str += percent8Str(write_misses/((double)access_calls))+”\t\t”;
str += percent8Str(write_misses/((double)writes))+”\n”;
    } // Writes

} // If Accesses

str += “\tBytes crossing bus\t: “+access_bytes+”\n”;
str += “\tAvg Bytes / access\t: “+
    (access_bytes / access_calls)+”\n”;
if ((display_type & STATS) != 0) {
    // str += “\tRefresh Transactions\t: “+refresh_calls+”\n”;

    for (int j = 0 ; j < device_list.size() ; j++) {
ddr2_device dimm = (ddr2_device) device_list.elementAt(j);
str += dimm.toString(ddr2_device.STATS);
    }
}

if ((display_type & DEBUG) != 0) {
}

return str;
    }

    private String percent8Str(double in) {
        if (!(nf instanceof java.text.NumberFormat)) {
            nf = java.text.NumberFormat.getPercentInstance();
            nf.setMinimumFractionDigits(2);
        }
        String ret_str;
        ret_str = SPACES8 + nf.format(in);
        return ret_str.substring(ret_str.length() - 8);
    }

} // class sdram_bus

======================================================================================================

// package drdram_sim

/*
  File : SDRAM_device
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  Author : Brian Davis
  **
  ** all devices are defined to be BUS-WIDE devices
  */

// import java.util.Vector;
import java.math.BigInteger;

public class ddr2_device {

    //
    // Constants
    //
    static final boolean debug = false;
    static final String DIMM_64MB = “64MByte DIMM”;
    static final String DIMM_256MB = “256MByte DIMM”;
    static final long SIZE_64MB = ((0x1L)<<26); // 2^26 bytes
    static final long SIZE_256MB = ((0x1L)<<28); // 2^28 bytes
    static final int VCHANNELS_PER_DEVICE = 16;
    static final String SPACES8 = “        “;

//     static final String POLICY_LRU = dram_ctrl.POLICY_LRU;
//     static final String POLICY_RANDOM = dram_ctrl.POLICY_RANDOM;
//     static final String POLICY_ASSOC = dram_ctrl.POLICY_ASSOC;
//     static final String POLICY_P12IO4 = dram_ctrl.POLICY_P12IO4;

    //
    // display items
    //
    static final int DEBUG = (1<<0);
    static final int STATS = (1<<1);
    int display_mode = 0;
    static java.text.NumberFormat nf;
    static java.util.Random rand = null;

    //
    // Device specific values
    //
    ddr2_ctrl the_ctrler;
    String type_string;
    long device_size;
    long addr_start;
    long addr_end;
    int num_banks;
    ddr2_bank [] banks;
    vc_buffer [] vchannels = null;
    //     String vc_policy = null;
    int debug_ctr = 0;
    long bank_mask;
    int bank_shift;

    //
    // Statistics
    //
    long accesses = 0;
    long vc_hits = 0;
    long rc_hits = 0;
    long sa_hits = 0;
    long pc_hits = 0;

    //
    // Constructor
    //
    ddr2_device(ddr2_ctrl ctrler_host, String type, long start) {

the_ctrler = ctrler_host;
type_string = type;
int rows_per_bank = 0;
if (type == DIMM_256MB) {
    device_size = SIZE_256MB;
    num_banks = 8;
    rows_per_bank = 8192;
} else {
    System.out.println(“ERROR : undefined device type!\n”);
    System.exit(1);
}
// start should of course be aligned
addr_start = start;
addr_end = start + (device_size-1);
long bank_size = device_size / num_banks;
//
bank_mask = (device_size-1) & (~(bank_size-1));
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String s1 = (new Long(bank_mask)).toString();
bank_shift = (new BigInteger(s1)).getLowestSetBit();

// Define banks
banks = new ddr2_bank[num_banks];
long bank_start_addr = addr_start;
for (int j = 0 ; j < banks.length ; j++) {
    banks[j] = new ddr2_bank(this,
     bank_size,
      rows_per_bank,
      bank_start_addr);
    bank_start_addr += bank_size;
}

if (the_ctrler.VCEnabled) {
    vchannels = new vc_buffer[VCHANNELS_PER_DEVICE];
    // Added 5/8/2000
    // vc_policy= the_ctrler.POLICY_LRU;
    for (int j = 0 ; j < vchannels.length ; j++) {
vchannels[j] = new vc_buffer();
    }
}

if (debug) {
    System.out.println(“DDR2 device “+type+” created\n”+
       “\taddr_start = “+addr_start+”(“+
       Long.toHexString(addr_start)+
       “)\n\taddr_end = “+addr_end+”(“+
       Long.toHexString(addr_end)+”)”);

}

    } // sdram_device

    boolean access(ddr2_trans this_trans) {
accesses++;
//
// Primary purpose is to determine hit/miss status
//

ddr2_bank this_bank = whichBank(this_trans.address);
if (!(this_bank instanceof ddr2_bank)) {
    System.out.println(“ERROR : undefined bank in “+
       “sdram_device.access()”);
    System.exit(1);
}
this_bank.accesses++;

long row_addr = this_bank.rowIndex(this_trans.address);

/*
** Check bank conditions
*/
if (the_ctrler.VCEnabled) {
    vc_buffer chan = this_bank.getActiveVCBuffer(this_trans.address);
    if (chan instanceof vc_buffer) {
// VC Possible only
this_trans.VCHit = true;
this_trans.vc_used = chan;
vc_hits++;
    } else {
// VC Must Allocate Channel
this_trans.VCHit = false;
// Get LRU clean (or whatever policy buffer)
chan = determineVCForEvict(this_bank, this_trans.address);
this_trans.vc_used = chan;
// Where does the allocate buffer scheduling go?
// in ddr2_sched.schedTrans()
    }
    if (debug) {
debug_ctr++;
if ((debug_ctr % 100) == 0) {
    System.out.println(this.toString(0xFFF));
}
if ((debug_ctr % 1000000) == 0) {
    System.out.println(“Terminating due to debug_ctr “+
       “in ddr2_device”);
    System.exit(0);
}
    }
} else if ((the_ctrler.EMSEnabled) &&
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   (this_bank.inRowCache(row_addr))) {
    // EMS Possible only
    this_trans.RCHit = true;
    rc_hits++;
} else if (this_bank.rowInSA(row_addr)) {
    // Condition 1;
    this_trans.SAHit = true;
    this_trans.PrechargeHit = false;
    sa_hits++;
    this_bank.sa_hits++;
} else if (this_bank.precharged()) {
    // Condition 2;
    this_trans.SAHit = false;
    this_trans.PrechargeHit = true;
    pc_hits++;
    this_bank.pc_hits++;
} else {
    // Condition 3;
    this_trans.SAHit = false;
    this_trans.PrechargeHit = false;
}
this_trans.access_bank = this_bank;
this_trans.access_row = row_addr;

//
// Don’t want to update bank conditions until after scheduling
// because Refresh might be forced to happen first!
//

// /*
// ** Update bank conditions
// */
// if ((this_trans.type == dram_trans.TRANS_READ_PRE) ||
//     (this_trans.type == dram_trans.TRANS_WR_PRE)) {
//     this_bank.prechargeBank();
// } else if ((this_trans.type == dram_trans.TRANS_READ_NOPRE) ||
//            (this_trans.type == dram_trans.TRANS_WR_NOPRE)) {
//     this_bank.setOpen(row_addr);
// } else {
//     System.out.println(“ERROR : unknown bank status from Trans type”);
//     System.out.println(“type = this_trans.type”);
//     System.exit(1);
// }

return true;
    }

    //
    // Associativity of Channels dependant
    //
    boolean inActiveChannel(ddr2_bank in_bank, long addr) {

if (!the_ctrler.VCEnabled) {
    System.out.println(“ERROR : device.inActiveChannel should not “+
       “be called in a non-VCEnabled environment”);
    return false;
}
if (vchannels == null) {
    System.out.println(“ERROR : device.vchannels not initialized”);
    return false;
}
for (int j = 0 ; j < vchannels.length ; j++) {
    if (vchannels[j].contains(addr)) {
return true;
    }
}
return false;

    }

    vc_buffer getActiveVCBuffer(ddr2_bank in_bank, long addr) {
if (!the_ctrler.VCEnabled) {
    System.out.println(“ERROR : device.getActiveVCBuffer should not “+
       “be called in a non-VCEnabled environment”);
    return null;
}
if (vchannels == null) {
    System.out.println(“ERROR : device.vchannels not initialized”);
    return null;
}
for (int j = 0 ; j < vchannels.length ; j++) {
    if (vchannels[j].contains(addr)) {
return vchannels[j];
    }
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}
return null;

    }

    vc_buffer determineVCForEvict(ddr2_bank in_bank, long addr) {
vc_buffer ret_buf = null;
    for (int j = 0 ; j < vchannels.length ; j++) {
if (vchannels[j].contains(addr)) {
    System.out.println(“ERROR : determineVCForEvict should “+
       “not be called if buffer is already “+
       “ allocated”);
    return vchannels[j];
}
    }
if (the_ctrler.vc_policy == dram_ctrl.POLICY_LRU) {
    // Initially Assume fully associative mapping
    long oldest_use = Long.MAX_VALUE;
    for (int j = 0 ; j < vchannels.length ; j++) {
if (vchannels[j].last_access_cycle < oldest_use) {
    oldest_use = vchannels[j].last_access_cycle;
    ret_buf = vchannels[j];
}
    }
} else if (the_ctrler.vc_policy == dram_ctrl.POLICY_RANDOM) {
    if (rand == null) {
rand = new java.util.Random();
    }
    int index = rand.nextInt(vchannels.length);
    ret_buf = vchannels[index];
} else if (the_ctrler.vc_policy == dram_ctrl.POLICY_P12IO4) {
    System.out.println(“ERROR : policy busmaster variant undef “+
       “determineVCForEvict()”);
} else {
    //
    // What state to change to denote/indicate allocation process
    // to sched methods??
    //
    System.out.println(“ERROR : Unknown policy in “+
       “determineVCForEvict()”);
}

return ret_buf;
    }

    //
    // Address mapping dependant
    //

    int bankIndex(long addr) {
int index = ((int)((addr & bank_mask) >> bank_shift));
return index;

    }

    ddr2_bank whichBank(long addr) {
ddr2_bank ret_bank = null;
int index = bankIndex(addr);
if ((index >= 0) &&
    (index < banks.length)) {
    ret_bank = banks[index];
}
return ret_bank;

    }

    void prechargeAllBanks() {
for (int j = 0 ; j < banks.length ; j++) {
   banks[j].prechargeBank();
}

    }

    int refreshAllBanks() {
int row = -1;
for (int j = 0 ; j < banks.length ; j++) {
    row = banks[j].refreshNextRow();
}
return row;

    }

    //
    // toString
    //
    public String toString() {
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return this.toString(display_mode);
    }

    public String toString(int dm) {
String str = new String();
str += “ddr2_device [“+super.toString()+”]\n”;
str += “\tDevice type \t\t: “+type_string+”\n”;
str += “\tSpans Addresses\t\t: (“;
str += “0x”+java.lang.Long.toHexString(addr_start);
str += “ : “;
str += “0x”+java.lang.Long.toHexString(addr_end);
str += “)\n”;
if ((dm & STATS) != 0) {
    str += “\tDevice Accesses\t\t: “+accesses+”\n”;
    double ac = (double) accesses;
    str += “\tDev VChan Hits\t\t: “+vc_hits+”\t”+
percent8Str(vc_hits / ac ) + “\n”;
    str += “\tDev RowCache Hits\t: “+rc_hits+”\t”+
percent8Str(rc_hits / ac ) + “\n”;
    str += “\tDev SAmp Hits\t\t: “+sa_hits+”\t”+
percent8Str(sa_hits / ac ) + “\n”;
    str += “\tDev PreChg Hits\t\t: “+pc_hits+”\t”+
percent8Str(pc_hits / ac ) + “\n”;
    str += “\tbank_mask\t\t: 0x”+java.lang.Long.toHexString(bank_mask);
    str += “\n\tbank_shift\t\t: “+bank_shift+”\n”;
}

if (vchannels != null) {
    str += “\tVirtual Channels\t\t: “+vchannels.length+”\n”;
    //     str += “\tVC allocation policy\t: “+vc_policy+”\n”;
    for (int j = 0 ; j < vchannels.length ; j++) {
str += vchannels[j].toString(dm);
    }
}
for (int j = 0 ; j < banks.length ; j++) {
    str += banks[j].toString(dm);
}
return str;

    }

    private String percent8Str(double in) {
if (!(nf instanceof java.text.NumberFormat)) {
    nf = java.text.NumberFormat.getPercentInstance();
    nf.setMinimumFractionDigits(2);
}
String ret_str;
ret_str = SPACES8 + nf.format(in);
return ret_str.substring(ret_str.length() - 8);

    }

} // CLASS ddr2_device

======================================================================================================

// package sdram_sim

/*
  File : DDR2_BANK

  Author : Brian Davis

  */
// import java.util.Vector;
import java.math.BigInteger;

public class ddr2_bank {

    // Class Variables
    static int banks_created = 0;
    static boolean debug = false;

    //
    // display items
    //
    static final int DEBUG = (1<<0);
    static final int STATS = (1<<1);
    static final int VC_FRACTION_OF_ROW = 4;
    int display_mode = 0;
    static java.text.NumberFormat nf;
    static final String SPACES8 = “        “;
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    // Instance Variables
    ddr2_device the_device;
    long addr_start;
    long addr_end;
    int NumRows;
    long row_size;
    long row_mask;
    int row_shift;
    boolean precharged;
    boolean validSA;
    long sa_contains;
    boolean validRC = false;
    long rc_contains;
    long bank_ready;

    // Stats
    long accesses = 0;
    long pc_hits = 0;
    long sa_hits = 0;

    //
    int last_refreshed_row = -1;

    // debug variables
    long lgst_row_seen = -1;

    ddr2_bank(ddr2_device device_host, long bank_size, int rows, long s_addr) {
banks_created++;
the_device = device_host;
precharged = false;
validSA = false;
sa_contains = -1;
NumRows = rows;
addr_start = s_addr;
addr_end = addr_start + (bank_size - 1);
row_size = bank_size / NumRows;
row_mask = (bank_size-1) & (~(row_size-1));
String s1 = (new Long(row_mask)).toString();
row_shift = (new BigInteger(s1)).getLowestSetBit();
bank_ready = 0;

    }

    int rowIndex(long addr) {
int rowIndex = ((int)((addr & row_mask) >> row_shift));
return rowIndex;

    }

    long rowEndAddr(int row) {
if ((row < 0) || (row >= NumRows)) {
    System.out.println(“ERROR(sdram_bank) : attempt to find EndAddr “+
       “of out-of-bounds row”);
    return(-1L);
}
long re_addr = addr_start + ((row + 1) * row_size) - 1;
return re_addr;

    }

    boolean rowInSA (long row) {
if (validSA && (sa_contains == row)) {
    return true;
}
return false;

    }

    boolean inRowCache(long row) {
if ((the_device.the_ctrler.EMSEnabled) &&
    (validRC) &&
    (rc_contains == row)) {
    return true;
}
return false;

    }

    boolean inActiveChannel(long addr) {
return the_device.inActiveChannel(this, addr);

    }

    vc_buffer getActiveVCBuffer(long addr) {
return the_device.getActiveVCBuffer(this, addr);

    }
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    boolean precharged() {
return precharged;

    }

    void prechargeBank() {
precharged = true;
validSA = false;

    }

    boolean setOpen(long row) {
if (!(row < NumRows)) {
    return false;
}
if (row > lgst_row_seen) {
    lgst_row_seen = row;
}
precharged = false;
validSA = true;
sa_contains = row;
return true;

    }

    boolean setRowCache(long row) {
if ((row < 0) ||
    (row >= NumRows)) {
    return false;
}
validRC = true;
rc_contains = row;
return true;

    }

    boolean setChannelOpen(vc_buffer channel, long addr, long cycle) {
if (channel instanceof vc_buffer) {
    //
    // address currently contained in buffer
    // no need to open new buffer
    //
    channel.setAccessState(addr, cycle);
} else {
    //
    // If this is the case, prior to the transaction
    // this a buffer should have been made empty
    //
    System.out.println(“ERROR : ddr2_bank.setChannelOpen() : “+
       “Buffer not allocated prior to access”);
}
return false;

    }

    boolean prefetchRowIntoChan(vc_buffer new_chan, long addr) {
//
// Determine address range to be contained by Row
//

// generating WRONG row & row_start
//int row = rowIndex(addr);
// long row_start = row << row_shift;

long row_start = addr & (~(row_size-1));
long row_end = (row_start + row_size - 1);
long chan_size = row_size / VC_FRACTION_OF_ROW;

if (debug) {
    String str = “In prefetchRowIntoChan\n”;
    str += “\taddr = 0x”+java.lang.Long.toHexString(addr)+”\n”;
    str += “\trow_start = 0x”+java.lang.Long.toHexString(row_start)+
“\n”;
    str += “\trow_end = 0x”+java.lang.Long.toHexString(row_end)+”\n”;
    str += “\tchan_size = 0x”+java.lang.Long.toHexString(chan_size);
    System.out.println(str);
}
int vc_found = 0;
long vc_start, vc_end;
for (vc_start = row_start ;
     vc_start < row_end ;
     vc_start += chan_size) {
    vc_end = vc_start + (chan_size - 1);
    //
    // Stop this loop if addr in range
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    //
    if ((vc_start <= addr) &&
(addr <= vc_end)) {
vc_found++;
new_chan.setToContain(this, vc_start, vc_end);
break;
    }
}

// Error Found 4/27
// vc_found != 1 frequently!!!
if (vc_found != 1) {
    System.out.println(“ERROR : ddr2_bank.prefetchRowIntoChan() “+
   “vc_found != 1\n”);
}

return false;
    }

    int refreshNextRow() {
// Refresh command INCLUDES prefetch transaction in timing
//
// if (!precharged) {
// System.out.println(“ERROR : refresh of non-precharged bank”);
// }
int row = (last_refreshed_row + 1) % NumRows;
last_refreshed_row = row;
if (!the_device.the_ctrler.EMSEnabled) {
    precharged = true;
    validSA = false;
    sa_contains = row;
}
return row;

    }

    String toString(int dm) {
String str = new String();
str += “ddr2_bank [“+super.toString()+”]\n”;
str += “\tSpans Addresses\t\t: (“;
str += “0x”+java.lang.Long.toHexString(addr_start);
str += “ : “;
str += “0x”+java.lang.Long.toHexString(addr_end);
str += “)\n”;
str += “\tRows in bank\t\t: “+NumRows+”\n”;
str += “\tRow size\t\t: “+row_size+”\n”;
if ((dm & STATS) != 0) {
    str += “\tBank Accesses\t\t: “+accesses+”\n”;
    double ac = (double) accesses;
    str += “\tBank SAmp Hits\t\t: “+sa_hits+”\t”+
percent8Str(sa_hits / ac ) + “\n”;
    str += “\tBank PreChg Hits\t: “+pc_hits+”\t”+
percent8Str(pc_hits / ac ) + “\n”;
}
if ((dm & DEBUG) != 0) {
    str += “\tLgst Row Set Open\t: “+lgst_row_seen+”\n”;
    str += “\trow_mask\t: 0x”+java.lang.Long.toHexString(row_mask);
    str += “\n\trow_shift\t: “+row_shift+”\n”;
}
return str;

    }

    private String percent8Str(double in) {
if (!(nf instanceof java.text.NumberFormat)) {
    nf = java.text.NumberFormat.getPercentInstance();
    nf.setMinimumFractionDigits(2);
}
String ret_str;
ret_str = SPACES8 + nf.format(in);
return ret_str.substring(ret_str.length() - 8);

    }

} // class sdram_bank

======================================================================================================

// package drdram_sim

/*
  File : SDRAM_BUS

  Author : Brian Davis
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  */

import java.util.Vector;

public class ddr2_sched {

    //
    // Constants
    //
    static final boolean debug = false;
    static final boolean debug_shutdown = false;
    static final int MAX_LIST_SIZE = 10;
    static final int ERROR_LIST_SIZE = 1000;

    static final int DEBUG = (1<<0);
    static final int STATS = (1<<1);
    static final String SPACES8 = “        “;

    //
    // Variables
    //
    ddr2_ctrl the_ctrler;
    Vector addrTrans;
    Vector dataTrans;
    long reads_sched = 0;
    long writes_sched = 0;
    long refr_sched = 0;
    long total_sched = 0;
    double total_latency = 0.0;
    long adj_bank_accesses = 0;
    // time variables
    long current_cycle = -1;
    long last_retired = 0;
    long used_cycles = 0;
    long addr_used_cycles = 0;
    long data_used_cycles = 0;
    long olap_used_cycles = 0;
    // Refresh
    private long last_refresh_time = 0;
    private long last_refresh_iter = 0;
    // display variables
    int display_type = 0;
    static java.text.NumberFormat nf;
    ddr2_trans lastTrans;

    //
    // Constructor
    //
    ddr2_sched(ddr2_ctrl host_ctrler) {

the_ctrler = host_ctrler;
addrTrans = new Vector();
dataTrans = new Vector();

    }

    long schedTrans(ddr2_trans new_trans) {

long l_evict_start = -1;
long l_pre_start = -1;
long l_row_start = -1;
long l_col_start = -1;
long l_post_start = -1;
long l_addr_start = -1;
long l_addr_end = -1;
long l_data_start = -1;
long l_data_end = -1;

if ((lastTrans instanceof ddr2_trans) &&
    (current_cycle < lastTrans.start_cycle)) {
    advanceCurrentTime(lastTrans.start_cycle);
}

long earliest_possible = (current_cycle > 0 ) ? current_cycle : 0;

boolean occupies_data = false;

/*
** Prior transaction(s) on bus
*/
ddr2_trans prev_a_trans = null;
try {
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    prev_a_trans = (ddr2_trans)addrTrans.lastElement();
} catch (java.util.NoSuchElementException e) {
    // Do nothing it remains
    // prev_a_trans = null;
}

ddr2_trans prev_d_trans = null;
try {
    prev_d_trans = (ddr2_trans)dataTrans.lastElement();
} catch (java.util.NoSuchElementException e) {
    // Do nothing it remains
    // prev_d_trans = null;
}

/*
** check to see if there is already a transaction CURRENTLY using
** the addr portion of the DRAM bus
*/
if ((prev_a_trans instanceof ddr2_trans) &&
    (prev_a_trans.addrEnd > earliest_possible)) {
    earliest_possible = prev_a_trans.addrEnd;
}

/*
** Determine # of data cycles which will be required
*/
long data_cycles = (long)
    (java.lang.Math.ceil(((double)new_trans.num_bytes)/the_ctrler.BusWidth));

//
// Check for requirement of VC allocation phase to transaction
//
if ((the_ctrler.VCEnabled) &&
    (new_trans.VCHit == false)) {
    //
    // Check for writeback of dirty Channel req’d
    //
    if (!(new_trans.vc_used instanceof vc_buffer)) {
System.out.println(“ERROR : vc_used not initialized prior “+
   “to schedTrans()”);
System.exit(1);
    }
    if (new_trans.vc_used.dirty) {
//
// Writeback req’d
//
l_evict_start = earliest_possible;
earliest_possible = l_evict_start + the_ctrler.TvcEvict;

if (debug) {
    System.out.println(“DEBUG : Channel Ejection Scheduled\n”+
       “Re-used vc : \n”+
       new_trans.vc_used.toString(0xFFF)+
       “Full Device Info : \n”+
       new_trans.access_bank.the_device.
   toString(0xFFF));
}

new_trans.vc_used.evict(l_evict_start);

// This time (TvcEvict) does not include
// precharge time!!
if (new_trans.SAHit || new_trans.PrechargeHit ||
    new_trans.VCHit || new_trans.RCHit) {
    //
    // Since VC Should always be used in conjunction with
    // a CPA policy, this should not be an issue.
    //
    System.out.println(“ERROR : ddr2_sched Eviction will not “+
       “account for precharge”);
}
    } // dirty
    //
    // Update channel state for this transaction
    //
    new_trans.access_bank.prefetchRowIntoChan(new_trans.vc_used,
      new_trans.address);

} // VC Enabled & VC Miss
/*
** Assume we can schedule starting at earliest_possible
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*/
if ((new_trans.type & dram_trans.TRANS_READ) != 0) {
    occupies_data = true;
    reads_sched++;
    /*
    ** Read transaction timings
    */
    if ((!new_trans.SAHit) &&
(!new_trans.PrechargeHit) &&
(!new_trans.VCHit) &&
        (!new_trans.RCHit)) {
/*
** Must do precharge
*/
l_pre_start = earliest_possible;
l_row_start = l_pre_start + the_ctrler.Trp;
l_col_start = l_row_start + the_ctrler.Trcd;
// l_addr_start = l_pre_start;
    } else if (new_trans.PrechargeHit) {
/*
** already precharged, but must access row
*/
l_pre_start = -1;
l_row_start = earliest_possible;
l_col_start = l_row_start + the_ctrler.Trcd;
// l_addr_start = l_row_start;
    } else if (new_trans.SAHit) {
/*
** requested row already in open page! YEAH!
*/
l_pre_start = -1;
l_row_start = -1;
l_col_start = earliest_possible;
// l_addr_start = l_col_start;
    } else if (new_trans.VCHit) {
//
// Virtual Channel Hit
//
l_pre_start = -1;
l_row_start = -1;
l_col_start = earliest_possible;
// l_addr_start = l_col_start;
    } else if (new_trans.RCHit) {
//
// Row Cache Hit
//
l_pre_start = -1;
l_row_start = -1;
l_col_start = earliest_possible;
// l_addr_start = l_col_start;
    } else {
System.out.println(“ERROR : Logical impossibility”);
System.exit(1);
    }
    //
    // Common elements of all reads
    //
    l_addr_end = l_col_start;
    l_data_start = l_col_start + the_ctrler.cas_lat;
    l_data_end = l_data_start + data_cycles;
} else if ((new_trans.type & dram_trans.TRANS_WRITE) != 0) {
    /*
    ** Write transaction timings
    */
    occupies_data = true;
    writes_sched++;
    if ((!new_trans.VCHit) &&
(!new_trans.RCHit) &&
(!new_trans.SAHit) &&
(!new_trans.PrechargeHit)) {
/*
** Must do precharge
*/
l_pre_start = earliest_possible;
l_row_start = l_pre_start + the_ctrler.Trp;
l_col_start = l_row_start + the_ctrler.Trcd;
// l_addr_start = l_pre_start;
    } else if (new_trans.PrechargeHit) {
/*
** already precharged, but must access row
*/
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l_pre_start = -1;
l_row_start = earliest_possible;
l_col_start = l_row_start + the_ctrler.Trcd;
// l_addr_start = l_row_start;
    } else if (new_trans.SAHit) {
/*
** requested row already in open page! YEAH!
*/
l_pre_start = -1;
l_row_start = -1;
l_col_start = earliest_possible;
// l_addr_start = l_col_start;
    } else if (new_trans.VCHit) {
//
// Virtual Channel Hit
//
l_pre_start = -1;
l_row_start = -1;
l_col_start = earliest_possible;
// l_addr_start = l_col_start;
    } else if (new_trans.RCHit) {
//
// Row Cache Hit
//
l_pre_start = -1;
l_row_start = -1;
l_col_start = earliest_possible;
// l_addr_start = l_col_start;
    } else {
System.out.println(“ERROR : Logical impossibility”);
System.exit(1);
    }
    //
    // Common elements of all writes
    //
    l_addr_end = l_col_start;
    l_data_start = l_col_start;
    l_data_end = l_data_start + data_cycles;
} else {
    System.out.println(“ERROR : Access neither read nor write”+
       “ in schedTrans()”);
    System.exit(1);
}

l_addr_start = l_col_start;
if (l_row_start != -1)
    l_addr_start = l_row_start;
if (l_pre_start != -1)
    l_addr_start = l_pre_start;
if (l_evict_start != -1)
    l_addr_start = l_evict_start;

if (false && debug) {
    System.out.println(“local variables scheduled”);
}

/*
** Check for conflicts with prior accesses
** (prev_a_trans & prev_d_trans) and advance ALL l_* vars
** if conflict exists
*/

long addr_spacing = 0;
long data_spacing = 0;
long conflict_delta = 0;

/*
** Determine addr spacing from adjacency, bank & access type
**
// Only need to concern with adjacent bank !IF! this is not an
// open-page hit, VCHit or RCHit, true?
*/
if ((prev_a_trans instanceof ddr2_trans) &&
    (prev_a_trans.access_bank == new_trans.access_bank)) {
    // This is a trace/access stream stat
    if (prev_a_trans.dataBusReqd() && new_trans.dataBusReqd()) {
adj_bank_accesses++;
    }
    // Added 02/11/00
    if ((!new_trans.VCHit) &&
(!new_trans.RCHit) &&
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(!new_trans.SAHit)) {
//
// adjacent access spacing
// Is bank_read used to determine timing in the case of
// implicit precharge?
// Is adjacent access completely handled with above timing
// requirements
//
addr_spacing = the_ctrler.Trp;
    }
}

if ((prev_d_trans instanceof ddr2_trans) &&
    (prev_d_trans.access_bank == new_trans.access_bank)) {
    //
    //  Adjacent access spacing
    // Is bank_read used to determine timing in the case of
    // implicit precharge?
    // Is adjacent access completely handled with above timing
    // requirements
    //
    data_spacing = 0;
}

// Must check for time conflicts between adjacent accesses
if ((prev_a_trans instanceof ddr2_trans) &&
    (l_addr_start < (prev_a_trans.addrEnd + addr_spacing))) {
    conflict_delta = (prev_a_trans.addrEnd + addr_spacing) -
l_addr_start;
}

if ((prev_d_trans instanceof ddr2_trans) &&
    (l_data_start < (prev_d_trans.dataEnd + data_spacing))) {
    long data_delta = (prev_d_trans.dataEnd + data_spacing) -
l_data_start;

    if (data_delta > conflict_delta) {
conflict_delta = data_delta;
    }
}

// Case where two adjacent requests go to different rows of the
// same bank : Pg 23 IBM 256Mb DDR SDRAM datasheet
if ((prev_d_trans instanceof ddr2_trans) &&
    (prev_d_trans.access_bank == new_trans.access_bank) &&
    (new_trans.SAHit == false)) {
    long adj_samebank_delta = 0;
    long pre_happens = (l_pre_start >= 0) ? l_pre_start :
(l_row_start - the_ctrler.Trp);
    if ((pre_happens >= 0) &&
((pre_happens + the_ctrler.cas_lat) < prev_d_trans.dataEnd)) {
adj_samebank_delta = prev_d_trans.dataEnd -
    (pre_happens + the_ctrler.cas_lat);
    }
    if (adj_samebank_delta > conflict_delta) {
conflict_delta = adj_samebank_delta;
    }
}

if (debug) {
    System.out.println(“conflict delta (“+conflict_delta+
       “) determined”);
}

if (conflict_delta > 0) {
    if (l_evict_start >= 0)
l_evict_start += conflict_delta;
    if (l_pre_start >= 0)
l_pre_start += conflict_delta;
    if (l_row_start >= 0)
l_row_start += conflict_delta;

    l_col_start += conflict_delta;
    l_addr_start += conflict_delta;
    l_addr_end += conflict_delta;

    if (l_data_start >= 0)
l_data_start += conflict_delta;
    if (l_data_end >= 0)
l_data_end += conflict_delta;
}
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new_trans.preStart = l_pre_start;
new_trans.rowStart = l_row_start;
new_trans.colStart = l_col_start;
new_trans.addrStart = l_addr_start;
new_trans.addrEnd = l_addr_end;
new_trans.dataStart = l_data_start;
new_trans.dataEnd = l_data_end;
new_trans.start_cycle = l_addr_start;
new_trans.end_cycle = (l_data_end >= 0) ? l_data_end : l_addr_end;

//
// by here must have set (in trans):
// long start_cycle;
// long end_cycle;
// long rowStart;
// long colStart;
// long dataStart, dataEnd;
//

/*
** Precharge & Bank Ready STATUS & Timing Issues
*/
if (((new_trans.type & dram_trans.TRANS_READ_PRE) != 0) ||
    ((new_trans.type & dram_trans.TRANS_WR_PRE) != 0)) {

    /*
    ** Schedule implicit Precharge
    ** does not requre Address bus usage
    */
    if ((new_trans.type & dram_trans.TRANS_READ) != 0) {
new_trans.access_bank.bank_ready = l_data_end;
    } else if ((new_trans.type & dram_trans.TRANS_WRITE) != 0) {
new_trans.access_bank.bank_ready = l_data_end + the_ctrler.Twr;
    }
    //
    // Change Device/Bank State
    //
    new_trans.access_bank.prechargeBank();
} else if (((new_trans.type & dram_trans.TRANS_READ_NOPRE) != 0) ||
   ((new_trans.type & dram_trans.TRANS_WR_NOPRE) != 0) ||
   ((new_trans.type & dram_trans.TRANS_WR_NOXFER) != 0)) {
    /*
    ** No scheduling necessary
    ** is this block req’d? - Verify Not precharged &
    ** open-page status?
    */
    new_trans.access_bank.bank_ready = new_trans.dataEnd;
    //
    // Change Device/Bank State
    //
    // what does it mean for bank to be ready in a non-
    // precharge policy?
    //
    if ((new_trans.type & dram_trans.TRANS_WR_NOXFER) == 0) {
new_trans.access_bank.setOpen(new_trans.access_row);
    }
} else {
    System.out.println(“ERROR : Unknown TRANS type to determine “+
       “precharge state”);
}

//
// Update state for Cache-enhanced or unique DDR2 architectures
//
if (the_ctrler.VCEnabled) {
    new_trans.access_bank.setChannelOpen(new_trans.vc_used,
 new_trans.address,
 l_data_end);
    //  4/27 - why is dirty set here?
    // new_trans.vc_used.dirty = true;

    if ((new_trans.type & dram_trans.TRANS_WRITE) != 0) {
new_trans.vc_used.dirty = true;
    }
}
if (the_ctrler.EMSEnabled) {
    if ((new_trans.type != dram_trans.TRANS_WR_NOXFER) ||
(new_trans.RCHit)) {
new_trans.access_bank.setRowCache(new_trans.access_row);
    }
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} // EMS Enabled

//
// Update Latency metric values
//
total_sched++;
long this_latency = (new_trans.end_cycle - new_trans.start_cycle);
total_latency += this_latency;
if (this_latency > 999) {
    System.out.println(“ERROR (arbitrary) : this_latency > 999 in “+
       “ddr2_sched.schedTrans()”);
}

/*
** Schedule : Add to addrTrans & dataTrans vectors
*/
if (debug) {
    System.out.println(“SCHEDULING(placing in transaction queues):\n”+
       new_trans.toString(0xFFF));
}

while(addrTrans.size() >= MAX_LIST_SIZE) {
    if (removeFromAddrTrans(addrTrans.elementAt(0)) == false) {
break;
    }
}
addrTrans.addElement(new_trans);

if (occupies_data) {
    while(dataTrans.size() >= MAX_LIST_SIZE) {
dataTrans.removeElementAt(0);
    }
    dataTrans.addElement(new_trans);
}
lastTrans = new_trans;
return l_addr_start;

    } // schedTrans()

    long scheduleRefresh(long cycle_sched, int row_index) {

long l_pre_start = -1;
long l_row_start = -1;
long l_addr_start = -1;
long l_addr_end = -1;

// Invoked prior to scheduleRefresh call-site
// prechargeAllBanks();

/*
** Determine start time for refresh
*/
ddr2_trans prev_a_trans = getPrevATrans();

long refresh_cycle = cycle_sched;

if ((prev_a_trans instanceof ddr2_trans) &&
    (refresh_cycle < (prev_a_trans.addrEnd + the_ctrler.Trp))) {
    //
    // Wait refresh until Addr bus avail
    //
    refresh_cycle = prev_a_trans.addrEnd + the_ctrler.Trp;
}

//
// Refresh ALWAYS requires precharge, and row access only!
//

l_pre_start = refresh_cycle;
l_row_start = l_pre_start + the_ctrler.Trp;
l_addr_end = l_row_start + the_ctrler.Trcd;
l_addr_start = l_pre_start;

//
// Create Refresh Transaction
//

ddr2_trans refresh_trans = new ddr2_trans(the_ctrler.TRANS_REFRESH,
  0L, 0,
  l_addr_start,
  l_addr_end);
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refresh_trans.addrStart = l_addr_start;
refresh_trans.addrEnd = l_addr_end;
refresh_trans.preStart = l_pre_start;
refresh_trans.rowStart = l_row_start;
refresh_trans.start_cycle = l_addr_start;
refresh_trans.end_cycle = l_addr_end;

if (debug) {
    System.out.println(“Refresh row “+row_index+” scheduled from “+
       l_addr_start+” to “+l_addr_end);
}

//
// Add Transaction to Schedule
//

refr_sched++;
while(addrTrans.size() >= MAX_LIST_SIZE) {
    if (removeFromAddrTrans(addrTrans.elementAt(0)) == false) {
break;
    }
}
addrTrans.addElement(refresh_trans);

lastTrans = refresh_trans;

return l_addr_start;
    }

    /*
    ** This method should typically be called prior to any multi-bank
    ** refresh command, as all refresh commands require that the bank being
    ** refreshed (or read) be first precharged
    */
    boolean prechargeAllBanks(long earliest_cycle) {

boolean ret_val = false;

//
// All banks can be precharged simultaneously
// As described in page 18 of IBM DDR2 datasheet
// labeled ADVANCE (11/99)
//
ret_val |= SchedulePrechargeAll(earliest_cycle);
ret_val |= the_ctrler.the_bus.prechargeAllDevices();

return ret_val;
    }

    boolean SchedulePrechargeAll(long earliest_cycle) {
boolean ret_val = false;
ddr2_trans prechg_trans = null;
ddr2_trans prev_a_trans = getPrevATrans();

//
// Determine when precharge happens
//
long precharge_cycle = earliest_cycle;
if ((prev_a_trans instanceof ddr2_trans) &&
    (precharge_cycle < (prev_a_trans.addrEnd + the_ctrler.Trp))) {
    //
    // Wait refresh until Addr bus avail
    //
    precharge_cycle = prev_a_trans.addrEnd + the_ctrler.Trp;
}

System.out.println(“ERROR : ddr2_sched.SchedulePrechargeAll()”+
   “never completed”);

return ret_val;
    }

    ddr2_trans getPrevATrans() {
ddr2_trans prev_a_trans = null;
try {
    prev_a_trans = (ddr2_trans) addrTrans.lastElement();
} catch (java.util.NoSuchElementException e) {
    // Do nothing it remains
    // prev_a_trans = null;
}
return prev_a_trans;

    }
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    long currentTime() {
return current_cycle;

    }

     boolean advanceCurrentTime(long new_time) {
 if (new_time < current_cycle) return true;
//
// Check for refresh
//
for (long r_iter = (last_refresh_iter+1) ;
     r_iter < (new_time/the_ctrler.refresh_rate) ;
     r_iter++) {
    //
    // Determine refresh time & update state
    //
    last_refresh_iter = r_iter;
    long refr_time = (r_iter*the_ctrler.refresh_rate);
    //
    // Prior to refreshing devices, devices should be precharged
    //
    // prechargeAllBanks(refr_time);
    //
    // Refresh command scheduled below INCLUDES refresh
    //
    // state in devices is changed prior to scheduling because
    // this follows the access model (allows us to know hit/miss
    // status at schedule time)... but is not necessary for
    // refresh transactions
    //
    int refr_row = the_ctrler.the_bus.refreshAllDevices();
    last_refresh_time =
scheduleRefresh(refr_time, refr_row);
} // for r_iter

        current_cycle = new_time;

if (debug) {
    System.out.println(“schedule : cycleClock advanced to “+
       current_cycle);
}
return(true);

    } // advanceBusTime

    public boolean endSimulation() {
if (debug) {
    System.out.println(“schedule.endSimulation() called”);
}

return retireAll();
    }

    public boolean retireAll() {
//
// Advance Bus Time to end
//
ddr2_trans le = (ddr2_trans) addrTrans.lastElement();
if (debug_shutdown) {
    System.out.println(“DEBUG(schedule) le.end_cycle = “+
       le.end_cycle);
    System.out.println(“DEBUG(schedule) current_cycle = “+
       current_cycle);
    System.out.println(“DEBUG(schedule) retired_to = “+
       last_retired);
}
advanceCurrentTime(le.end_cycle);
retireTo(le.end_cycle);
if (debug_shutdown) {
    System.out.println(“DEBUG(schedule) le.end_cycle = “+
       le.end_cycle);
    System.out.println(“DEBUG(schedule) current_cycle = “+
       current_cycle);
    System.out.println(“DEBUG(schedule) retired_to = “+
       last_retired);
}
return true;

    }

    private boolean removeFromAddrTrans(Object to_be_removed) {
if (!(to_be_removed instanceof ddr2_trans)) {
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    System.out.println(“ERROR : item “+to_be_removed+
       “ to be removed from schedule is not “+
       “a transaction object”);
    return false;
}
ddr2_trans tbr = (ddr2_trans) to_be_removed;

if ((addrTrans.size() > ERROR_LIST_SIZE) &&
    (tbr.end_cycle > current_cycle))
{
    System.out.println(“ERROR : attempt to remove transaction “+
       “prior to time advance beyond end\n”+
       “\tMight want to increase MAX_LIST_SIZE”);
    System.out.println(“\ttrans end_cycle\t= “+tbr.end_cycle);
    System.out.println(“\tCurrent bus cycles\t= “+
       current_cycle);
    return false;
}

//
// Determine usage for cycles to completion of this transaction
//
retireTo(tbr.end_cycle);

addrTrans.remove(to_be_removed);

return true;
    }

    boolean cycleUsedAddr(long cyc) {
boolean ret_val = false;
for (int j = 0 ; j < addrTrans.size() ; j++) {
    ddr2_trans t = (ddr2_trans) addrTrans.elementAt(j);
    // Early Term
    if (cyc < t.addrStart) {
break;
    }
    // Cycle Used
    if ((t.addrStart <= cyc) &&
(cyc <= t.addrEnd))
{ return true; }
}
return (ret_val);

    }

    boolean cycleUsedData(long cyc) {
boolean ret_val = false;
for (int j = 0 ; j < dataTrans.size() ; j++) {
    ddr2_trans t = (ddr2_trans) dataTrans.elementAt(j);
    // Early Term
    if (cyc < t.dataStart) {
break;
    }
    // Cycle used
    if ((t.dataStart <= cyc) &&
(cyc <= t.dataEnd))
{ return true; }
}
return (ret_val);

    }

    boolean retireTo(long ret_to) {
if (ret_to < last_retired) { return false; }
for (long cyc = (last_retired+1) ; cyc <= ret_to ; cyc++) {
    boolean cua = cycleUsedAddr(cyc);
    boolean cud = cycleUsedData(cyc);
    if (cua || cud) {
used_cycles++;
    }
    if (cua && cud) {
olap_used_cycles++;
    }
    if (cua) {
addr_used_cycles++;
    }
    if (cud) {
data_used_cycles++;
    }
}
last_retired = ret_to;
return true;
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    }

    //
    // ToString
    //
    public String toString(int dt) {

display_type = dt;
return this.toString();

    }

    public String toString() {
String str = new String();

str += “Schedule [“+super.toString()+”]\n”;

double tot_sched = (double) (reads_sched + writes_sched + refr_sched);

if ((display_type & STATS) != 0) {
    str += “\tReads Scheduled\t\t: “ + reads_sched +”\t”+
percent8Str(reads_sched / tot_sched) + “\n”;
    str += “\tWrites Scheduled\t: “+writes_sched +”\t”+
percent8Str(writes_sched / tot_sched) + “\n”;
    str += “\tRefresh Scheduled\t: “+refr_sched +”\t”+
percent8Str(refr_sched / tot_sched) + “\n”;
    str += “\tAverage Trans Cycles\t: “+
(total_latency / total_sched) + “\n”;
    str += “\tAverage latency\t\t: “+
((total_latency / ((double)total_sched)) *
 the_ctrler.clock_period) + “\n”;
    str += “\tAdjacent Bank Accesses\t: “+adj_bank_accesses+”\t”+
percent8Str(adj_bank_accesses / ((double)total_sched)) + “\n”;
    str += “\tCurrent cycle\t\t: “+current_cycle+”\n”;
    str += “\tLast cycle Retired\t: “+last_retired+”\n”;
    str += “\tUsed Cycles\t\t: “+used_cycles+”\n”;
    double rc = (double) last_retired;
    str += “\tAddr Used Cycles\t: “ + addr_used_cycles +”\t”+
percent8Str(addr_used_cycles / rc ) + “\n”;
    str += “\tData Used Cycles\t: “+data_used_cycles + “\t”+
percent8Str(data_used_cycles / rc ) + “\n”;
    str += “\tOverlap Cycles\t\t: “+olap_used_cycles+”\t”+
percent8Str(olap_used_cycles / rc ) + “\n”;
}

if ((display_type & DEBUG) != 0) {
    str += “\nADDRESS TRANSACTIONS:”;
    for (int j = (addrTrans.size()-1) ; j >= 0 ; j--) {
ddr2_trans t = (ddr2_trans)addrTrans.elementAt(j);
str += “\n”+t.toString(0xFFF);
    }

    str += “\nDATA TRANSACTIONS:”;
    for (int j = (dataTrans.size()-1) ; j >= 0 ; j--) {
ddr2_trans t = (ddr2_trans)dataTrans.elementAt(j);
str += “\n”+t.toString(0xFFF);
    }
} // DEBUG

return str;
    }

    private String percent8Str(double in) {
if (!(nf instanceof java.text.NumberFormat)) {
    nf = java.text.NumberFormat.getPercentInstance();
    nf.setMinimumFractionDigits(2);
}
String ret_str;
ret_str = SPACES8 + nf.format(in);
return ret_str.substring(ret_str.length() - 8);

    }

}

======================================================================================================

// package sdram_sim

/*
  File : trans

  Author : Brian Davis
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  */

public class ddr2_trans extends dram_trans {

    // Class Variables
    static long trans_created = 0;
    static int display_mode = 0;

    // Instance Variable(s)

    //
    // Transaction Attributes
    int type;
    int num_bytes;
    long address;
    private boolean read = false;
    private boolean write = false;
    boolean VCHit = false;
    boolean RCHit = false;
    boolean SAHit = false;
    boolean PrechargeHit = false;
    ddr2_bank access_bank = null;
    vc_buffer vc_used = null;
    long access_row = -1L;

    //
    // Overall Transaction bounds
    long start_cycle;
    long end_cycle;

    //
    // Component Times
    long preStart;
    long rowStart;
    long colStart;
    long addrStart;
    long addrEnd;
    long dataStart, dataEnd;

    long bus_cycles_reqd;

    // Constructor(s)
    ddr2_trans(int rw, long addr, int bytes) {

this(rw, addr, bytes, -1L, -1L);
    }

    ddr2_trans(int rw, long addr, int bytes, long start, long end) {

trans_created++;

type = rw;

if ((rw & TRANS_READ) != 0)
    read = true;
else if ((rw & TRANS_WRITE) != 0)
    write = true;

address = addr;
num_bytes = bytes;

start_cycle = start;
end_cycle = end;

//
// Check to verify withing above [start:end] bounds
rowStart = colStart = dataStart = dataEnd = -1L;

    }

  // Class Methods

  //
  // Instance Methods
  //

    public boolean dataBusReqd() {
if (((type & TRANS_READ) != 0) || (( type & TRANS_WRITE) != 0)) {
    return true;
}
return false;

    }
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  public boolean rowStart(long cycle) {
    //
    // Check for potential ERROR conditions
    if (rowStart != -1L) {
      System.out.println(“ERROR : multiple definition of Row Start for transaction”);
      return true;
    }

    if ((start_cycle != -1L) || (start_cycle > cycle)) {
      System.out.println(“ERROR : Illegal definition of row given Start for transaction”);
      return true;
    }

    rowStart = cycle;

    start_cycle = cycle;

    return false;
  }

  public boolean colStart(long cycle) {
    //
    // Check for potential ERROR conditions
    if (colStart != -1L) {
      System.out.println(“ERROR : multiple definition of Column Start for transaction”);
      return true;
    }

    /*
    if (rowHit == true)
      start_cycle = cycle;
    */

    return false;
  }

  private boolean startAt(long new_start) {
    // Check for valid start
    if ((end_cycle != 0) && (new_start > end_cycle)) {
      // ERROR ILLEGAL START
      return true;
    } else {
      start_cycle = new_start;
      return false;
    }
  }

  //
  // To String
  //
  public String toString(int new_mode) {
    display_mode = new_mode;
    return toString();
  }

  public String toString() {
    String str = new String();
    str += “Transaction [“+super.toString()+”]”;

    if ((display_mode & (1<<0)) != 0) {
      str += “\n\tTrans type\t: “+((read) ? “Read” : ((write) ? “Write” : “UNKNOWN”));

      str += “\n\tAddress\t\t: “ + java.lang.Long.toHexString(address);

      str += “\n\tNumber Bytes\t: “+num_bytes;

      str += “\n\tHit Status\t: “;
      if (VCHit) {

  str += “Virtual Channel Hit”;
      } else if (RCHit) {

  str += “Row Cache Hit”;
      } else if (SAHit) {

  str += “SenseAmp Hit”;
      } else if (PrechargeHit) {

  str += “Precharge Hit”;
      } else {

  str += “SenseAmp/Precharge Miss”;
      }

      str += “\n\tTrans Span\t: ( “+start_cycle+” : “+end_cycle+” )”;
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      str += “\n\tPre Start\t: “+preStart;

      str += “\n\tRow Start\t: “+rowStart;
      str += “\n\tCol Start\t: “+colStart;
      str += “\n\tAddr Start\t: “+addrStart;
      str += “\n\tAddr End\t: “+addrEnd;
      str += “\n\tData Start\t: “+dataStart;
      str += “\n\tData End\t: “+dataEnd;

    }

    return str;
  } // toString

}

A.3 DRDRAM Model

// package drdram_sim

/*
  File : DRD_ctrl

  Author : Brian Davis

  */

public class drd_ctrl {

    //
    // Constants
    //
    static final boolean DEBUG = false;
    static final long Tcycle = 1;
    static final long OCTCYCLE = (4*Tcycle);
    static final long Trcd = (7*Tcycle);

    static final int TRANS_READ = (1<<0);
    static final int TRANS_WRITE = (1<<1);
    static final int TRANS_REFRESH = (1<<2);

    static final int CFG_CLOSEPAGEAUTO = (1<<0);
    static final int CFG_OPENPAGE = (1<<1);

    //
    // Controller Parameters
    //
    boolean policy_closeautoprecharge;
    boolean policy_openpage;

    //
    // Timing & Channel Parameters
    //
    long BytePerCycle = 16;
    // 32 mS / 16384 refresh = 1953.125 nS between refresh
    // 1953 / 2.5nS ~= 781
    long refresh_rate = 781;

    // Class Variable
    // Instance Variable(s)
    int display_mode = 0;
    long ctrler_accesses = 0;
    long multi_trans_accesses = 0;
    drd_channel the_channel;
    drd_schedule the_schedule;
    drd_trans last_trans = null;
    long row_shift;

    // Constructor(s)
    drd_ctrl() {

this(CFG_OPENPAGE);
    }

    drd_ctrl(int cfg) {
the_channel = new drd_channel();
row_shift = 10;
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the_schedule = new drd_schedule(this);
switch (cfg) {
case CFG_OPENPAGE:
    policy_closeautoprecharge = false;
    policy_openpage = true;
    break;
case CFG_CLOSEPAGEAUTO:
    policy_closeautoprecharge = true;
    policy_openpage = false;
    break;
default:
    System.out.println(“Illegal Configuration to drd_ctrl() “+
       “Constructor”);
    System.exit(1);
}

    }

  // Class Methods

  // Instance Methods
  public boolean addDevice(drd_device new_dev) {
    if (new_dev instanceof drd_device) {
      return the_channel.addDevice(new_dev);
    }
    return true;
  }

  public drd_trans access(long new_time,
  int trans_type, long addr, int num_bytes) {

      advanceClockTo(new_time);
      return access(trans_type, addr, num_bytes);
  }

  public drd_trans access(int trans_type, long addr, int num_bytes) {

      ctrler_accesses++;

    //
    // Verify valid input
    //
    if ((num_bytes <= 0) ||

((trans_type != TRANS_READ) && (trans_type != TRANS_WRITE))) {
      System.out.println(“ERROR : Illegal parameters to access() in controller”);
      System.exit(1);
    }

    if (!the_channel.isWithin(addr)) {
      System.out.println(“ERROR : Address “+Long.toHexString(addr)+

 “ not contained within Channel”);
      return null;
    }

    //
    // Advance time if req’d
    //
    if ((last_trans instanceof drd_trans) &&

(last_trans.start_cycle > the_schedule.current_cycle)) {
advanceClockTo(last_trans.start_cycle);

    }

    //
    // Verify that this transaction does not cross device/bank boundaries
    // or split into multiple transactions
    //

    drd_trans this_trans = null;
    long last_addr = addr + (num_bytes - 1);
    if ((addr >> row_shift) == (last_addr >> row_shift)) {

// Create Transaction
this_trans = new drd_trans(trans_type, addr, num_bytes);

// Initiate Access on channel
the_channel.access(this_trans);

// Schedule Transaction
the_schedule.schedTrans(this_trans);

    } else {
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multi_trans_accesses++;

this_trans = split_access(trans_type, addr, num_bytes);

    }

    last_trans = this_trans;

    return this_trans;
  } // access

    private drd_trans split_access(int type, long start_addr,
   int num_bytes) {
drd_trans this_trans = null;
long last_addr = start_addr + (num_bytes - 1);

if (DEBUG) {
    String str = “DEBUG(drd_ctrl) : Source of Split Access\n”;
    str += “addr = “+Long.toHexString(start_addr)+”\n”;
    str += “loc_bytes = “+num_bytes+”\n”;
    System.out.println(str);
}

long local_addr = start_addr;
while (local_addr < last_addr) {
    drd_device local_dev = the_channel.which_device(local_addr);
    drd_bank local_bank = local_dev.whichBank(local_addr);
    int local_row = local_bank.rowIndex(local_addr);
    long row_end_addr = local_bank.rowEndAddr(local_row);
    long to_end_of_row = (row_end_addr - local_addr) + 1;
    long to_end_of_trans = (last_addr - local_addr) + 1;
    int loc_bytes = (int) java.lang.Math.min(to_end_of_row,
     to_end_of_trans);

    if (DEBUG) {
String str = “DEBUG(drd_ctrl) : Split Access\n”;
str += “row = “+local_row+”\n”;
str += “addr = “+Long.toHexString(local_addr)+”\n”;
str += “loc_bytes = “+loc_bytes+”\n”;
System.out.println(str);
    }

    // Create Transaction
    this_trans = new drd_trans(type, local_addr,
       loc_bytes);

    // Initiate Access on channel
    the_channel.access(this_trans);

    // Schedule Transaction
    the_schedule.schedTrans(this_trans);

    local_addr += loc_bytes;
}
return this_trans;

    }

  //
  // Clock Handling Methods
  //
  public boolean advanceClockTo(double new_clock) {

      long drd_tics = (long)new_clock;

      if ((double)drd_tics < new_clock)
  drd_tics++;

      return(the_schedule.advanceClockTo(drd_tics));
  }

  public boolean advanceClock(int cycles) {
    return the_schedule.advanceClock(cycles);
  }

  public boolean advanceClockTo(long new_clock) {
    return the_schedule.advanceClockTo(new_clock);
  }
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    public long maxAddr() {
return the_channel.maxAddr();

    }

    public boolean endSimulation() {
return the_schedule.endSimulation();

    }

    public long currentTime() {
return the_schedule.currentTime();

    }

  //
  // To String
  //
  public void printYourself() {
    System.err.println();
    System.err.println(“DRDRAM Simulation Parameters”);
    System.err.println(“\t64Mbit Devices Specified\t: “ +

       the_channel.num_devices());
    System.err.println(this.toString(0xFFFFFFFF));
  }

  public String toString(int new_mode) {
    display_mode = new_mode;
    return toString();
  }

  public String toString() {
    String str = new String();
    str += “DRDRAM Controller[“+super.toString()+”]\n”;
    str += “\tController Policy\t: “;
    if (policy_closeautoprecharge) {

str += “ClosePageAutoPrecharge\n”;
    } else if (policy_openpage) {

str += “OpenPage\n”;
    } else {

str += “Unknown\n”;
    }

    str += “\tNominal Row Size\t: 0x”+Long.toHexString(1<<row_shift)+”\n”;
    str += “\tController Accesses\t: “+ctrler_accesses+”\n”;
    str += “\tMultiTrans Accesses\t: “+multi_trans_accesses+”\n”;

    str += the_schedule.toString(display_mode);
    str += the_channel.toString(display_mode);

    return str;
  } // toString

} // end drd_ctrl class

======================================================================================================

// package drdram_sim

/*
  File : DRD_CHANNEL

  Author : Brian Davis

  */

import java.util.Vector;

public class drd_channel {

    // Constants
    boolean debug = true;
    static final String SPACES8 = “        “;
    static java.text.NumberFormat nf;
    int display_mode = 0;

    // Class Variables

    // Instance Variables
    Vector devices;

    long accesses = 0;
    long read_hits = 0;
    long read_misses = 0;
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    long write_hits = 0;
    long write_misses = 0;

    double total_bytes_transacted = 0.0;

    // Constructors
    drd_channel() {

devices = new Vector();
    }

  // Class Methods

  //
  // Instance Methods
  //
  public boolean addDevice(drd_device new_device) {
    if (new_device instanceof drd_device) {
      //
      devices.addElement(new_device);
      return true;
    }
    else
      return false;
  }

  drd_device which_device(long addr) {
    for (int j = 0 ; j < devices.size() ; j++) {
      drd_device this_dev = (drd_device) devices.elementAt(j);
      if (this_dev.isWithin(addr)) {

return this_dev;
      }
    }
    return null;
  }

  public boolean access(drd_trans the_trans) {

    if (!(the_trans instanceof drd_trans)) {
      System.out.println(“Invalid parameters to drd_channel access()\n”);
      System.exit(1);
    }

    drd_device the_dev = which_device(the_trans.address);

    //
    // Check for repetitive Channel/Transaction Access
    //
    if (the_trans.channel_loc != null) {
      System.out.println(“Repetitive Channel Access with single transaction\n”);
      System.exit(1);
    } else {
      the_trans.channel_loc = this;
    }

    if (the_dev instanceof drd_device) {
      accesses++;

      total_bytes_transacted += the_trans.num_bytes;

      the_dev.access(the_trans);

      if (the_trans.read) {

if (the_trans.SAHit)
  read_hits++;
else
  read_misses++;

      } else if (the_trans.write) {

if (the_trans.SAHit)
  write_hits++;
else
  write_misses++;

      }

      return(true);
    }

    return(false);
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  }

  public boolean isWithin(long addr) {
      for (int j = 0 ; j < devices.size() ; j++) {

  drd_device this_dev = (drd_device) devices.elementAt(j);
  if (this_dev.isWithin(addr))
      return(true);

      }
      return(false);
  }

  public boolean rowHit(long addr) {
    drd_device the_dev = which_device(addr);
    if (the_dev instanceof drd_device) {
      return the_dev.rowHit(addr);
    }
    return false;
  }

  public int num_devices() {
    return devices.size();
  }

    public long maxAddr() {
drd_device ld = (drd_device) devices.lastElement();
return ld.lastAddr();

    }

    public int refreshNextRow() {
int this_row = -1;
int ret_row = -1;
for (int j = 0 ; j < devices.size() ; j++) {
    drd_device dev = (drd_device) devices.elementAt(j);
    this_row = dev.refreshAllBanks();
    if ((debug) &&
(j != 0) &&
(this_row != ret_row)) {
System.out.println(“DEBUG : Successive calls to “+
   “dev.refreshAllBanks() return different “+
   “row values”);
    }
    if ((ret_row == -1) ||
(this_row != ret_row)) {
ret_row = this_row;
    }
}

return ret_row;
    }

  //
  // To String
  //
  public String toString(int mode) {
    display_mode = mode;
    return this.toString();
  }

  public String toString() {
    String str = new String();
    str += “DRDRAM Channel [“+super.toString()+”]\n”;

    // Number of Devices
    if ((display_mode & (1<<0)) != 0) {
      str += “\tChannel contains “+devices.size()+” device(s)\n”;
    }

    // Accesses
    if ((display_mode & (1<<1)) != 0) {
      str += “\tChan Accesses\t\t: “+accesses+”\n”;
      str += “\tChan Access Hits\t\t: “+(read_hits + write_hits)+”\t\t”;
      str += percent8Str((read_hits + write_hits)/((double)accesses))+”\n”;
      str += “\tChan Avg access bytes\t: “+

(total_bytes_transacted/((double)accesses))+”\n”;

      if (accesses != 0) {

long reads = (read_hits + read_misses);
str += “\tChan Reads\t\t\t: “+reads+”\t\t”;
str += percent8Str(reads/((double)accesses))+”\n”;
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if (reads != 0) {
  str += “\tChan Read Hits\t\t: “+read_hits+”\t\t”;
  str += percent8Str(read_hits/((double)accesses))+”\t\t”;

          str += percent8Str(read_hits/((double)reads))+”\n”;
  str += “\tChan Read Misses\t: “+read_misses+”\t\t”;
  str += percent8Str(read_misses/((double)accesses))+”\t\t”;
  str += percent8Str(read_misses/((double)reads))+”\n”;
} // reads

long writes = (write_hits + write_misses);
str += “\tChan Writes\t\t\t: “+writes+”\t\t”;
str += percent8Str(writes/((double)accesses))+”\n”;
if (writes != 0) {
  str += “\tChan Write Hits\t\t: “+write_hits+”\t\t”;
  str += percent8Str(write_hits/((double)accesses))+”\t\t”;

          str += percent8Str(write_hits/((double)writes))+”\n”;
  str += “\tChan Write Misses\t\t: “+write_misses+”\t\t”;
  str += percent8Str(write_misses/((double)accesses))+”\t\t”;
  str += percent8Str(write_misses/((double)writes))+”\n”;
} // Writes

      } // If Accesses

    }

    // Device Info
    if ((display_mode & (1<<4)) != 0) {
      for (int j = 0 ; j < devices.size() ; j++) {

drd_device this_dev = (drd_device) devices.elementAt(j);
str += this_dev.toString(display_mode);

      }
    }
    return str;
  }

    private String percent8Str(double in) {
        if (!(nf instanceof java.text.NumberFormat)) {
            nf = java.text.NumberFormat.getPercentInstance();
            nf.setMinimumFractionDigits(2);
        }
        String ret_str;
        ret_str = SPACES8 + nf.format(in);
        return ret_str.substring(ret_str.length() - 8);
    }

}

======================================================================================================

// package drdram_sim

/*
  File : DRD_DEVICE
  */

import java.math.BigInteger;

public class drd_device {

    //
    // Constants
    //
    // Sizes described in bits, numerically in bytes
    static final boolean DEBUG = false;
    static final long RIMM_64MB_8by64Mb = (1<<26) | (1<<0);
    static final long RIMM_128MB_16by64Mb = (1<<27) | (1<<0);
    static final long RIMM_128MB_4by128Mb = (1<<27) | (1<<1);
    static final long RIMM_256MB_8by128Mb = (1<<28) | (1<<1);
    static final int access_gran = 16;
    static final String SPACES8 = “        “;
    static java.text.NumberFormat nf;
    int display_mode = 0;

    // Class Variables
    static int devices_created = 0;

    // Instance Variables
    drd_ctrl the_ctrler = null;
    private long first_addr, last_addr;
    long rimm_size;
    long device_size;
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    int num_devices;
    long device_mask;
    int device_shift;
    int num_banks;
    long bank_size;
    long bank_mask;
    int bank_shift;
    int num_rows;
    long row_size;
    drd_bank [] banks;

    // Statistic maint variables
    long accesses = 0;
    long page_crossing_accesses = 0;
    long read_hits = 0;
    long read_misses = 0;
    long write_hits = 0;
    long write_misses = 0;

    // Constructors
    drd_device(long rimm_type, long start_addr, drd_ctrl ctrl) {

devices_created++;
the_ctrler = ctrl;

if (rimm_type == RIMM_64MB_8by64Mb) {
    rimm_size = ((0x1L)<<26);
    num_devices = 8;
    device_size = rimm_size / num_devices;
    num_banks = 8*16;
    bank_size = rimm_size / num_banks;
    num_rows = 8*16* 512;
    row_size = rimm_size / num_rows;
} else {
      System.out.println(“Illegal rimm_type to DRD_DEVICE “+
 “constructor\n”);
      System.exit(1);
}

// Dependant variables
first_addr = start_addr;
//System.out.println(“@@@ device_created : start address parameter =”+start_addr+”\n”);
last_addr = first_addr + (rimm_size - 1);

// device
device_mask = (rimm_size -1) & (~(device_size-1));
String s1 = (new Long(device_mask)).toString();
device_shift = (new BigInteger(s1)).getLowestSetBit();
// bank
bank_mask = (rimm_size - 1) & (~(bank_size-1));
String s2 = (new Long(bank_mask)).toString();
bank_shift = (new BigInteger(s2)).getLowestSetBit();

if (DEBUG) {
    System.out.println(“device_created : \n”+this.toString(1));
}

// Create & Initialize Banks
banks = new drd_bank[num_banks];
long bank_start = first_addr;
for (int j = 0 ; j < banks.length ; j++) {
    banks[j] = new drd_bank(bank_size, bank_start, the_ctrler);
    bank_start += bank_size;
}

// Set up Adjoining banks
for (int dev = 0 ; dev < num_devices ; dev++) {
    int banks_per_dev = (num_banks/num_devices);
    for (int bank = 0 ; bank < banks_per_dev ; bank++) {
drd_bank prev = ((bank == 0) ? null :
 banks[(dev * banks_per_dev) + (bank-1)]);
drd_bank cur = banks[(dev * banks_per_dev) + bank];
drd_bank next = ((bank == (banks_per_dev-1)) ? null :
 banks[(dev * banks_per_dev) + (bank+1)]);

cur.setAdjoining(prev, next);
    } // bank
} // dev

    } // constructor

  //
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  // Class Methods
  //

    public long lastAddr() {
return last_addr;

    }

    // Instance Methods
    public boolean isWithin(long addr) {

return ((first_addr <= addr) &&
(addr <= last_addr));

    }

    int bankIndex(long addr) {
int bank_index = (int)((addr & bank_mask) >> bank_shift);
return bank_index;

    }

  public drd_bank whichBank(long addr) {
      int bank_index = bankIndex(addr);
      if ((bank_index >= 0) && (bank_index < banks.length))

  return banks[bank_index];
      return null;
  }

  public boolean rowHit(long addr) {
    drd_bank the_bank = whichBank(addr);
    if (the_bank instanceof drd_bank)
      return the_bank.rowHit(addr);
    return false;
  }

  /*
  ** access()
  **
  ** process a request which entails:
  **   (1) Enter into the schedule the busy slots cooresponding to this
  **       access
  **   (2) Add to the statistics for this device based on the hit/miss
  **       status of this access
  */
  public boolean access(drd_trans the_trans) {

    long addr = the_trans.address;
    int num_bytes = the_trans.num_bytes;

    //
    // Check for repetitive Device/Transaction Access
    //
    if (the_trans.device_loc != null) {
      System.out.println(“Repetitive Device Access with single transaction\n”);
      System.exit(1);
    } else {
      the_trans.device_loc = this;
    }

    //
    // Check for row-crossing accesses
    //
    if (whichBank(addr) != whichBank(addr+(num_bytes-1))) {

page_crossing_accesses++;
//
// Check that it only crosses a single page boundary
//
int index_dif = bankIndex(addr+(num_bytes-1)) - bankIndex(addr);
if (index_dif > 1) {
    System.out.println(“ERROR : Access illegal due access of at least 3 banks”);
    System.out.println(“\tAddress\t= “+Long.toHexString(addr));
    System.out.println(“\tnum bytes\t= “+num_bytes);
    return false;
}

//
// Generate info for two transactions
// the_trans must be last for latency reasons
//
// long first_bank_end = whichBank(addr) ;
    //first_trans_bytes =
    // if (DEBUG) {
    // }
    // the_trans.num_b
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//
if (false) {
    System.out.println(“ERROR : Access illegal due to data from multiple-banks”);
    System.out.println(“\tAddress\t= “+Long.toHexString(addr));

    drd_bank bank = whichBank(addr);
    System.out.println(“\tFirst Byte Bank\t= “ +
       ((bank instanceof drd_bank) ?
bank.toString(1<<0) : “NULL”));

    bank = whichBank(addr+num_bytes);
    System.out.println(“\tLast Byte Bank\t= “ +
       ((bank instanceof drd_bank) ?
bank.toString(1<<0) : “NULL”));

    System.out.println(“FROM : “+this.toString(1<<0));

}

      return false;
    } // multiple banks

    //
    // First check for correct access pattern
    //
    if (!isWithin(addr)) {
      System.out.println(“ERROR : Access of device not holding address”);
      return false;
    }

    accesses++;

    int bank_index = (int)((addr & bank_mask) >> bank_shift);
    if (bank_index >= banks.length) {
      System.out.println(“ERROR : Invalid bank_index (“+

 bank_index+” MAX is “+(banks.length-1)+
 “) in device.access()”);

      System.exit(1);
    }
    drd_bank which_bank = banks[bank_index];
    if (DEBUG) {

System.out.println(“DEBUG(drd_device) bank_index = “+bank_index);
    }
    if (!which_bank.isWithin(addr)) {
      System.out.println(“\nERROR(drd_dev.access() : “+

 “Access of bank not holding address”);
      System.out.println(“Access Address : 0x”+

 java.lang.Long.toHexString(addr));
      System.out.println(“Bank Index = “+bank_index);
      System.out.println(“Bank Mask = 0x”+

 java.lang.Long.toHexString(bank_mask));
      System.out.println(“Bank shift = “+bank_shift);
      System.out.println(“Bank Spans (0x”+

 java.lang.Long.toHexString(which_bank.first_addr)+
 “ : 0x”+
 java.lang.Long.toHexString(which_bank.last_addr)+”)”
 );

      System.out.println(“RIMM Spans (0x”+
 java.lang.Long.toHexString(first_addr)+
 “ : 0x”+
 java.lang.Long.toHexString(last_addr)+”)”);

      return false;
    }

    which_bank.access(the_trans);

    if (the_trans.read) {

      if (the_trans.SAHit)
read_hits++;

      else
read_misses++;

    } else if (the_trans.write) {

      if (the_trans.SAHit)
write_hits++;

      else
write_misses++;
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    }

    return true;
  } // access

    //
    // RefreshAllBanks()
    //
    int refreshAllBanks() {

int this_row = -1;
int ret_row = -1;
for (int j = 0 ; j < banks.length ; j++) {
    this_row = banks[j].refreshNextRow();
    if ((DEBUG) &&
(ret_row != -1) &&
(this_row != ret_row)) {
System.out.println(“DEBUG : Successive calls to “+
   “bank.refreshNextRow() return different “+
   “row values”);
    }
    if ((ret_row == -1) ||
        (this_row != ret_row)) {
ret_row = this_row;
    }
}
return ret_row;

    } // refresh All Banks

  //
  // To String
  //
  public String toString(int mode) {
    display_mode = mode;
    return this.toString();
  }

  public String toString() {
    String str = new String();
    str += “DRDRAM Device [“+super.toString()+”]\n”;

    // Address Span
    if ((display_mode & (1<<0)) != 0) {
      str += “\tDevice Spans\t\t: (0x” +

  java.lang.Long.toHexString(first_addr) + “ : 0x” +
  java.lang.Long.toHexString(last_addr)+”)\n”;

      str += “\tRimm Size\t\t: 0x”+java.lang.Long.toHexString(rimm_size);
      str += “\n\tDevice Size\t\t: 0x”+java.lang.Long.toHexString(device_size);
      str += “\n\tNum Devices\t\t: “+num_devices;
      str += “\n\tDevice Mask\t\t: 0x”+java.lang.Long.toHexString(device_mask);
      str += “\n\tDevice Shift\t\t: “+device_shift;
      str += “\n\tBank Size\t\t: 0x”+java.lang.Long.toHexString(bank_size);
      str += “\n\tNum Banks\t\t: “+num_banks;
      str += “\n\tBank Mask\t\t: 0x”+java.lang.Long.toHexString(bank_mask);
      str += “\n\tBank Shift\t\t: “+bank_shift+”\n”;

    }

    // Access numbers
    if ((display_mode & (1<<1)) != 0) {
      str += “\tDevice Accesses\t: “+accesses+”\n”;
      if (accesses != 0) {

long reads = (read_hits + read_misses);
str += “\tDev Reads\t\t: “+reads+”\t\t”;
str += percent8Str(reads/((double)accesses))+”\n”;
if (reads != 0) {
  str += “\tDev Read Hits\t\t: “+read_hits+”\t\t”;
  str += percent8Str(read_hits/((double)accesses))+”\t\t”;

          str += percent8Str(read_hits/((double)reads))+”\n”;
  str += “\tDev Read Misses\t\t: “+read_misses+”\t\t”;
  str += percent8Str(read_misses/((double)accesses))+”\t\t”;
  str += percent8Str(read_misses/((double)reads))+”\n”;
} // reads

long writes = (write_hits + write_misses);
str += “\tDev Writes\t\t: “+writes+”\t\t”;
str += percent8Str(writes/((double)accesses))+”\n”;
if (writes != 0) {
  str += “\tDev Write Hits\t\t: “+write_hits+”\t\t”;
  str += percent8Str(write_hits/((double)accesses))+”\t\t”;
199



          str += percent8Str(write_hits/((double)writes))+”\n”;
  str += “\tDev Write Misses\t\t: “+write_misses+”\t\t”;
  str += percent8Str(write_misses/((double)accesses))+”\t\t”;
  str += percent8Str(write_misses/((double)writes))+”\n”;
} // Writes

      } // If Accesses

    } // Display Mode

    // Individual Bank info
    if ((display_mode & (1<<4)) != 0) {
      for (int j = 0 ; j < banks.length ; j++) {

drd_bank this_bank = banks[j];
str += this_bank.toString(display_mode);

      }
    }
    return str;
  } // toString

    private String percent8Str(double in) {
        if (!(nf instanceof java.text.NumberFormat)) {
            nf = java.text.NumberFormat.getPercentInstance();
            nf.setMinimumFractionDigits(2);
        }
        String ret_str;
        ret_str = SPACES8 + nf.format(in);
        return ret_str.substring(ret_str.length() - 8);
    }

}

======================================================================================================

// package drdram_sim

/*
  File : DRD_BANK

  Author : Brian Davis

  */

import java.math.BigInteger;

public class drd_bank {

    //
    // Constants
    //
    // Sizes described in bits, numerically in bytes
    static final boolean DEBUG = false;
    final long BANK_SIZE_512KB = (1<<19); // 2^19 Bytes
    static final String SPACES8 = “        “;
    static java.text.NumberFormat nf;

    // Class Variables
    static int banks_created = 0;

    // Instance Variables
    int display_mode = 0;
    long first_addr, last_addr;
    long row_mask, row_shift;
    long row_size;
    int num_rows;
    int last_refreshed_row = -1;
    drd_ctrl the_ctrler = null;
    drd_bank prev_bank = null;
    drd_bank next_bank = null;
    // bank-state
    boolean precharged = false;
    boolean validSA = false;
    int sa_contains = 0;

    // Statistic Variables
    long accesses = 0;
    long read_hits = 0;
    long read_misses = 0;
    long write_hits = 0;
    long write_misses = 0;
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    // Constructor(s)
    drd_bank(long bank_size, long start_addr, drd_ctrl ctrl) {

banks_created++;

the_ctrler = ctrl;

// set mask & shift as well as checking for legal parameters
if (bank_size == BANK_SIZE_512KB) {
    num_rows = 512;
    row_size = bank_size / num_rows;
} else {
    System.out.println(“Illegal Parameters to DRD_BANK constructor\n”);
    System.exit(1);
}

first_addr = start_addr;
last_addr = start_addr + bank_size - 1;

row_mask = (bank_size-1) & (~(row_size-1));
String s1 = (new Long(row_mask)).toString();
row_shift = (new BigInteger(s1)).getLowestSetBit();

if (DEBUG) {
    System.out.println(“DEBUG(drd_bank)\n\t”+
       “\tbank_size\t: “+bank_size+”\n”+
       “\tnum rows\t: “+num_rows+”\n”+
       “\trow_size\t: “+row_size+”\n”+
       “\trow_mask\t: 0x”+
       java.lang.Long.toHexString(row_mask)+”\n”+
       “\trow_shift\t: “+row_shift);
}

if (false && DEBUG) {
    System.out.println(“DEBUG(drd_bank): Bank created spanning (0x”+
       java.lang.Long.toHexString(first_addr)+
       “ : 0x”+
       java.lang.Long.toHexString(last_addr)+”)”);
}

    } // constructor

    // Class Methods

    // Instance Methods
    public boolean isWithin(long addr) {

return ((first_addr <= addr) &&
(addr <= last_addr));

    }

    public boolean access(drd_trans the_trans) {
long addr = the_trans.address;

if (!isWithin(addr)) {
    System.out.println(“Access of bank not holding address\n”);
    return false;
}

if (the_trans.access_bank != null) {
    System.out.println(“Repetitive Bank Access with”+
       “ single transaction\n”);
    System.exit(1);
} else {
    the_trans.access_bank = this;
}

this.accesses++;

if (DEBUG) {
    System.out.println(“DEBUG(drd_bank)\taccess(0x”+
       java.lang.Long.toHexString(addr)+
       “) goes to Row “+
       rowIndex(addr));
}

if (rowHit(the_trans.address)) {
    the_trans.SAHit = true;
} else {
    the_trans.SAHit = false;
}

if (the_trans.read) {
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    if (the_trans.SAHit)
read_hits++;
    else
read_misses++;
} else if (the_trans.write) {
    if (the_trans.SAHit)
write_hits++;
    else
write_misses++;
}

//
// Set up Row Cache Validity
//
if (the_ctrler.policy_openpage) {
    sa_contains = rowIndex(addr);
    validSA = true;
    precharged = false;
} else if (the_ctrler.policy_closeautoprecharge) {
    precharged = true;
    validSA = false;
} else {
    System.out.println(“ERROR : Unknown Policy in drd_bank.access()”);
    System.exit(1);
}

// Set Adjoining rowCacheValid False
if (prev_bank instanceof drd_bank)
    prev_bank.validSA = false;
if (next_bank instanceof drd_bank)
    next_bank.validSA = false;

return true;
    }

    public void setAdjoining(drd_bank prev, drd_bank next) {
prev_bank = prev;
next_bank = next;

    }

    public boolean rowHit(long addr) {
int cur_row = rowIndex(addr);
return (validSA && (sa_contains == cur_row));

    }

    public int rowIndex(long addr) {
return ((int)((addr & row_mask) >> row_shift));

    }

    long rowEndAddr(int row) {
if ((row < 0) || (row >= num_rows)) {
    System.out.println(“ERROR(sdram_bank) : attempt to find EndAddr “+
       “of out-of-bounds row”);
    return(-1L);
}
long re_addr = first_addr + ((row + 1) * row_size) - 1;
return re_addr;

    }

    int refreshNextRow() {
int ret_row = ((last_refreshed_row + 1) % num_rows);
//
// Process refresh
//
last_refreshed_row = ret_row;
precharged = true;
validSA = false;
sa_contains = -1;
//
// Return row precharged
//
return ret_row;

    }

  //
  // To String
  //
  public String toString(int mode) {
    display_mode = mode;
    return this.toString();
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  }

  public String toString() {

    String str = new String();
    str += “DRDRAM Bank [“+super.toString()+”]\n”;

    // Address Span
    if ((display_mode & (1<<0)) != 0) {
      str += “\tBank Spans\t: (0x” + java.lang.Long.toHexString(first_addr) +

  “ : 0x” +
  java.lang.Long.toHexString(last_addr)+”)\n”;

      str += “\tNumber of rows\t: “+num_rows+”\n”;
      str += “\trow size\t: “+row_size+”\n”;
      str += “\tRow Mask\t: 0x”+java.lang.Long.toHexString(row_mask)+”\n”;
      str += “\tRow Shift\t: “+row_shift+”\n”;
    }

    // Access numbers
    if ((display_mode & (1<<1)) != 0) {
      str += “\tBank Accesses\t: “+accesses+”\n”;

      if (accesses != 0) {

long reads = (read_hits + read_misses);
str += “\tBank Reads\t; “+reads+”\t\t”;
str += percent8Str(reads/((double)accesses))+”\n”;
if (reads != 0) {
  str += “\tBank Read Hits\t: “+read_hits+”\t\t”;
  str += percent8Str(read_hits/((double)accesses))+”\t\t”;

          str += percent8Str(read_hits/((double)reads))+”\n”;
  str += “\tBank Read Misses\t: “+read_misses+”\t\t”;
  str += percent8Str(read_misses/((double)accesses))+”\t\t”;
  str += percent8Str(read_misses/((double)reads))+”\n”;
} // reads

long writes = (write_hits + write_misses);
str += “\tBank Writes\t\t: “+writes+”\t\t”;
str += percent8Str(writes/((double)accesses))+”\n”;
if (writes != 0) {
  str += “\tBank Write Hits\t: “+write_hits+”\t\t”;
  str += percent8Str(write_hits/((double)accesses))+”\t\t”;

          str += percent8Str(write_hits/((double)writes))+”\n”;
  str += “\tBank Write Misses\t: “+write_misses+”\t\t”;
  str += percent8Str(write_misses/((double)accesses))+”\t\t”;
  str += percent8Str(write_misses/((double)writes))+”\n”;
} // Writes

      } // If Accesses

    }

    return str;
  } // toString

    private String percent8Str(double in) {
        if (!(nf instanceof java.text.NumberFormat)) {
            nf = java.text.NumberFormat.getPercentInstance();
            nf.setMinimumFractionDigits(2);
        }
        String ret_str;
        ret_str = SPACES8 + nf.format(in);
        return ret_str.substring(ret_str.length() - 8);
    }

}

======================================================================================================

// package drdram_sim

/*
  File : DRD_schedule

  Author : Brian Davis

  */

import java.util.Vector;

public class drd_schedule {
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    // Debug Flags
    static final boolean DEBUG = false;
    static final boolean ARRAYDEBUG = false;
    static final int ERROR_LIST_SIZE = 500;
    static final int MAX_LIST_SIZE = 10;
    static final String SPACES8 = “        “;
    static java.text.NumberFormat nf;

    // Constants
    static final long Tcycle = drd_ctrl.Tcycle;
    static final double cycleNs = 2.5E-9;
    static final long OCTCYCLE = drd_ctrl.OCTCYCLE;
    static final long Tcc = 4 * Tcycle;
    static final long Tcac = 8 * Tcycle;
    static final long Tcwd = 6 * Tcycle;
    static final long Trcd = 7 * Tcycle;
    static final long Trc = 28 * Tcycle;
    static final long Trp = 8 * Tcycle;
    static final long Tras = 20 * Tcycle;
    static final long Trdly = 0; // Dependant upon the # of devices in Channel

    // Parameters
    boolean data_sched = false;

    // Class Variables

    // Instance Variable(s)
    drd_ctrl the_ctrler;
    Vector rowTrans,

colTrans,
dataTrans;

    long current_cycle = -1;
    long retired_cycle = 0;
    long overlap_cycles = 0;
    long utilized_cycles = 0;
    double trans_cycles = 0.0;
    long reads_sched = 0;
    long writes_sched = 0;
    long refr_sched = 0;
    long total_sched = 0;
    double total_latency = 0.0;
    long adj_bank_accesses = 0;
    // Refresh
    private long last_refresh_time = 0;
    private long last_refresh_iter = 0;
    // Display
    int display_mode = 0;

    // Constructor(s)
    drd_schedule(drd_ctrl ctloc) {

rowTrans = new Vector();
colTrans = new Vector();
dataTrans = new Vector();
the_ctrler = ctloc;

    }

  // Class Methods

    // Instance Methods

    //
    // Schedule Transaction
    //
    public long schedTrans(drd_trans new_trans) {

long l_pre_start = -1;
long l_row_start = -1;
long l_row_end = -1;
long l_col_start = -1;
long l_col_end = -1;
long l_data_start = -1;
long l_data_end = -1;
long l_start = -1;
long l_end = -1;

long earliest_possible = (current_cycle > 0 ) ? current_cycle : 0;

//
// Prior transactions
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//
drd_trans prev_r_trans = lastRowTrans();
drd_trans prev_c_trans = lastColTrans();
drd_trans prev_d_trans = lastDataTrans();

//
// Determine # of OCTCYCLES req’d for data Xfer
long data_cycles = (long)
    (java.lang.Math.ceil(((double)new_trans.num_bytes)/
 the_ctrler.BytePerCycle));

//
// Determine slot for row / act packets
//
if (new_trans.read) {
    reads_sched++;
    if ((!new_trans.SAHit) &&
(!new_trans.BankPrecharged)) {
//
// Must do precharge
//
if ((prev_r_trans instanceof drd_trans) &&
    (prev_r_trans.rowEnd > earliest_possible)) {
    earliest_possible = prev_r_trans.rowEnd;
}
l_pre_start = earliest_possible;
l_row_start = l_pre_start + Trp;
l_row_end = l_row_start + OCTCYCLE;
l_col_start = l_row_start + Trcd;
l_col_end = l_col_start + OCTCYCLE;
l_data_start = l_col_end + Tcac;
l_data_end = l_data_start + data_cycles;
l_start = l_pre_start;
l_end = l_data_end;
    } else if ((!new_trans.SAHit) &&
       (new_trans.BankPrecharged)) {
//
// already precharged, but must access row
//
if ((prev_r_trans instanceof drd_trans) &&
    (prev_r_trans.rowEnd > earliest_possible)) {
    earliest_possible = prev_r_trans.rowEnd;
}
l_pre_start = -1;
l_row_start = earliest_possible;
l_row_end = l_row_start + OCTCYCLE;
l_col_start = l_row_start + Trcd;
l_col_end = l_col_start + OCTCYCLE;
l_data_start = l_col_end + Tcac;
l_data_end = l_data_start + data_cycles;
l_start = l_row_start;
l_end = l_data_end;
    } else if (new_trans.SAHit) {
//
// Sense Amp Hit
//
// Row bus component not used!
prev_r_trans = null;
if ((prev_c_trans instanceof drd_trans) &&
    (prev_c_trans.rowEnd > earliest_possible)) {
    earliest_possible = prev_c_trans.rowEnd;
}
l_pre_start = -1;
l_row_start = -1;
l_row_end = -1;
l_col_start = earliest_possible;
l_col_end = l_col_start + OCTCYCLE;
l_data_start = l_col_end + Tcac;
l_data_end = l_data_start + data_cycles;
l_start = l_col_start;
l_end = l_data_end;
    } else {
System.out.println(“ERROR : Logical impossibility”);
System.exit(1);
    }
} else if (new_trans.write) {
    //
    // new_trans.read == false
    // presume that new_trans is a write transaction
    //
    writes_sched++;
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    if ((!new_trans.SAHit) &&
(!new_trans.BankPrecharged)) {
//
// Must do precharge
//
if ((prev_r_trans instanceof drd_trans) &&
    (prev_r_trans.rowEnd > earliest_possible)) {
    earliest_possible = prev_r_trans.rowEnd;
}
l_pre_start = earliest_possible;
l_row_start = l_pre_start + Trp;
l_row_end = l_row_start + OCTCYCLE;
l_col_start = l_row_start + Trcd;
l_col_end = l_col_start + OCTCYCLE;
l_data_start = l_col_end + Tcwd;
l_data_end = l_data_start + data_cycles;
l_start = l_pre_start;
l_end = l_data_end;
    } else if ((!new_trans.SAHit) &&
       (new_trans.BankPrecharged)) {
//
// already precharged, but must access row
//
if ((prev_r_trans instanceof drd_trans) &&
    (prev_r_trans.rowEnd > earliest_possible)) {
    earliest_possible = prev_r_trans.rowEnd;
}
l_pre_start = -1;
l_row_start = earliest_possible;
l_row_end = l_row_start + OCTCYCLE;
l_col_start = l_row_start + Trcd;
l_col_end = l_col_start + OCTCYCLE;
l_data_start = l_col_end + Tcwd;
l_data_end = l_data_start + data_cycles;
l_start = l_row_start;
l_end = l_data_end;
    } else if (new_trans.SAHit) {
//
// Sense Amp Hit
//
// Row bus component not used!
prev_r_trans = null;
if ((prev_c_trans instanceof drd_trans) &&
    (prev_c_trans.rowEnd > earliest_possible)) {
    earliest_possible = prev_c_trans.rowEnd;
}
l_pre_start = -1;
l_row_start = -1;
l_row_end = -1;
l_col_start = earliest_possible;
l_col_end = l_col_start + OCTCYCLE;
l_data_start = l_col_end + Tcwd;
l_data_end = l_data_start + data_cycles;
l_start = l_col_start;
l_end = l_data_end;
    } else {
System.out.println(“ERROR : Logical impossibility : “+
   “Impossible condition in schedule Write”);
System.exit(1);
    }
} /* write */
else {
    System.out.println(“ERROR : Logical impossibility : “+
       “neither read nor write”);
    System.exit(1);
}

/*
** Check for conflicts with prior accesses
** (prev_a_trans & prev_d_trans) and advance ALL l_* vars
** if conflict exists
*/

long row_spacing = 0;
long col_spacing = 0;
long data_spacing = 0;
long conflict_delta = 0;

/*
** Determine addr spacing from adjacency, bank & access type
*/
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if ((prev_r_trans instanceof drd_trans) &&
    (prev_r_trans.access_bank == new_trans.access_bank)) {

    row_spacing = Tras - OCTCYCLE;
}
if ((prev_c_trans instanceof drd_trans) &&
    (prev_c_trans.access_bank == new_trans.access_bank)) {

    col_spacing = 0;
    // Added 07/07/00 BTD
    if (prev_c_trans.dataBusReqd() && new_trans.dataBusReqd()) {
adj_bank_accesses++;
    }
}
if ((prev_d_trans instanceof drd_trans) &&
    (prev_d_trans.access_bank == new_trans.access_bank)) {

    data_spacing = 0;
}

//
// Must check for time conflicts between adjacent accesses
//
if ((prev_r_trans instanceof drd_trans) &&
    (l_row_start < (prev_r_trans.rowEnd + row_spacing))) {
    conflict_delta = (prev_r_trans.rowEnd + row_spacing) -
l_row_start;
}
if ((prev_c_trans instanceof drd_trans) &&
    (l_col_start < (prev_d_trans.colEnd + col_spacing))) {
    long col_delta = (prev_d_trans.colEnd + col_spacing) -
l_col_start;
    if (col_delta > conflict_delta) {
conflict_delta = col_delta;
    }
}
if ((prev_d_trans instanceof drd_trans) &&
    (l_data_start < (prev_d_trans.dataEnd + data_spacing))) {
    long data_delta = (prev_d_trans.dataEnd + data_spacing) -
l_data_start;
    if (data_delta > conflict_delta) {
conflict_delta = data_delta;
    }
}

if (conflict_delta > 0) {
    if (l_pre_start >= 0)
l_pre_start += conflict_delta;
    if (l_row_start >= 0)
l_row_start += conflict_delta;
    if (l_row_end >= 0)
l_row_end += conflict_delta;
    if (l_col_start >= 0)
l_col_start += conflict_delta;
    if (l_col_end >= 0)
l_col_end += conflict_delta;
    if (l_data_start >= 0)
l_data_start += conflict_delta;
    if (l_data_end >= 0)
l_data_end += conflict_delta;
    l_start += conflict_delta;
    l_end += conflict_delta;
}

new_trans.preStart = l_pre_start;
new_trans.rowStart = l_row_start;
new_trans.rowEnd = l_row_end;
new_trans.colStart = l_col_start;
new_trans.colEnd = l_col_end;
new_trans.dataStart = l_data_start;
new_trans.dataEnd = l_data_end;
new_trans.start_cycle = l_start;
new_trans.end_cycle = l_end;

if (l_row_start > 0)
    addToRowTrans(new_trans);
if (l_col_start > 0)
    addToColTrans(new_trans);
if (l_data_start >0)
    addToDataTrans(new_trans);
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//
// Update Latency metric values
//
total_sched++;
long this_latency = (new_trans.end_cycle - new_trans.start_cycle);
total_latency += this_latency;
if (this_latency > 999) {
    System.out.println(“ERROR (arbitrary) : this_latency > 999 in “+
       “drd_schedule.schedTrans()”);
}

if (DEBUG) {
    System.out.println(“DEBUG(drd_schedule) : Transaction Scheduled\n”+
       new_trans.toString(1));
}

return new_trans.start_cycle;
    } // scheduleTrans

    public long scheduleRefresh(long cycle, long row) {
long l_pre_start = -1;
long l_row_start = -1;
long l_start = -1;
long l_end = -1;

drd_trans prev_r_trans = lastRowTrans();

if (DEBUG) {
    System.out.println(“In scheduleRefresh, Prior Row Trans is :\n”+
       ((prev_r_trans instanceof drd_trans) ?
prev_r_trans.toString(0xFFF) :
“NULL”));
}

long refr_cycle = cycle;
if ((prev_r_trans instanceof drd_trans) &&
    (refr_cycle < (prev_r_trans.rowEnd + Tras))) {
    refr_cycle = (prev_r_trans.rowEnd + Tras);
}

if (DEBUG) {
    System.out.println(“In scheduleRefresh, refr_cycle = “+refr_cycle);
}

l_pre_start = refr_cycle;
l_row_start = l_pre_start + Trp;
l_start = l_pre_start;
l_end = l_row_start+OCTCYCLE;

// Create Refresh Transaction
drd_trans refr_trans = new drd_trans(drd_trans.TRANS_REFRESH);

        refr_trans.preStart = l_pre_start;
refr_trans.rowStart = l_row_start;
refr_trans.rowEnd = l_end;
refr_trans.start_cycle = l_start;
refr_trans.end_cycle = l_end;

if (DEBUG) {
    System.out.println(“DEBUG(drd_schedule) : Refresh Scheduled\n”+
       refr_trans.toString(1));
}
refr_sched++;
addToRowTrans(refr_trans);

return refr_trans.start_cycle;
    }

    public drd_trans lastRowTrans() {
return lastTrans(rowTrans);

    }

    public drd_trans lastColTrans() {
return lastTrans(colTrans);

    }

    public drd_trans lastDataTrans() {
return lastTrans(dataTrans);

    }

    public drd_trans lastTrans(Vector v) {
drd_trans lt = null;
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try {
    lt = (drd_trans)v.lastElement();
} catch (java.util.NoSuchElementException e) {
    // Do nothing it remains
    // prev_a_trans = null;
}
return lt;

    }

  //
  // Add Transaction to Vector
  //
  public void addTransToList(drd_trans newTrans, Vector vect) {
      while (vect.size() >= MAX_LIST_SIZE) {

  drd_trans tbr = (drd_trans) vect.elementAt(0);
  if (tbr.end_cycle > current_cycle) {
      if (vect.size() > ERROR_LIST_SIZE) {
  System.out.println(“ERROR : Trans Vector size (“+
     vect.size()+
     “) exceeds MAX : while first element”+
     “ end cycle greater than “+
     “current_cycle”);
  // System.out.println(“\tVector size = “+vect.size());
      }
      break;
  } else {
      vect.removeElement(tbr);
  }

      }
      vect.addElement(newTrans);
  }

    public void addToRowTrans(drd_trans newTrans) {
addTransToList(newTrans, rowTrans);

    }

  //
  // Add Transaction to Column Array
  //
  public void addToColTrans(drd_trans newTrans) {
    // addElement() adds to the end of the vector
      //colTrans.addElement(newTrans);
      addTransToList(newTrans, colTrans);
  }

  //
  // Add Transaction to Data Array
  //
  public void addToDataTrans(drd_trans newTrans) {
    // addElement() adds to the end of the vector
      // dataTrans.addElement(newTrans);
      addTransToList(newTrans, dataTrans);

  }

  //
  // Display the Array of Row Transactions
  //
  public void displayRowTrans(int mark) {
      String str = new String();
      str += “=== ROW ARRAY ===\n”;
      for (int j = 0 ; j < rowTrans.size() ; j++) {

drd_trans jth_trans = (drd_trans) rowTrans.elementAt(j);
str += “Row[“+j+”] = ( “+jth_trans.rowStart+” : “+(jth_trans.rowStart+OCTCYCLE)+” )”;
str += ((mark == j) ? “ <-- NEW\n” : “\n”);

      }
      System.out.print(str);
  }

  //
  // Display the array of Data Transactions
  //
  public void displayDataTrans(int mark_index) {
    String str = new String();
    str += “=== DATA ARRAY ===\n”;
    for (int j = 0 ; j < dataTrans.size() ; j++) {
      drd_trans jth_trans = (drd_trans) dataTrans.elementAt(j);
      str += “Data[“+j+”] = ( “+jth_trans.dataStart+” : “+jth_trans.dataEnd+” )”;
      str += ((mark_index == j) ? “ <-- NEW\n” : “\n”);
    }
    System.out.print(str);
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  }

  //
  // Advance Clock
  //
  public boolean advanceClock(int cycles) {
    if (cycles >= 0) {
      advanceClockTo(current_cycle + cycles);
      return false;
    }
    return true;
  }

    long currentTime() {
return current_cycle;

    }

    public boolean advanceClockTo(long new_clock) {
if (new_clock < current_cycle) return true;
if (DEBUG) {
    System.out.println(“DEBUG(drd_schedule) : “+
       “advancing clock to “+new_clock);
}
//
// Check for refresh in the interval between current_cycle
// and retire_to
//
for (long r_iter = (last_refresh_iter+1) ;
     r_iter < (new_clock/the_ctrler.refresh_rate) ;
     r_iter += 1) {
    int refr_row = the_ctrler.the_channel.refreshNextRow();
    last_refresh_iter = r_iter;
    long refr_time = ((current_cycle <
       (r_iter*the_ctrler.refresh_rate)) ?
      (r_iter*the_ctrler.refresh_rate) :
      current_cycle);
    last_refresh_time =
scheduleRefresh(refr_time, refr_row);
} // for r_iter

      /*
      ** determine overlap cycles
      */
      for (long j = (retired_cycle + 1) ; j <= current_cycle ; j++) {

  int used = 0;
  for (int n = 0 ; n < dataTrans.size() ; n++) {
      drd_trans nth_trans = (drd_trans) dataTrans.elementAt(n);

      if ((j >= nth_trans.start_cycle) &&
  (j < nth_trans.end_cycle)) {
  used++;
      }
  } /* for n transactions */

  if (used >= 1) {
      utilized_cycles++;

      if (used > 1) {
  overlap_cycles++;
      }
  }
  trans_cycles += used;

      } /* for j cycles */
      retired_cycle = current_cycle;

      /*
      ** Actually Advance Clock
      */
      current_cycle = new_clock;
      return false;
  } // advanceClockTo

  boolean cycle_used_row(long test_cycle) {
    for (int j = 0 ; j < rowTrans.size() ; j++) {
      drd_trans jth_trans = (drd_trans) rowTrans.elementAt(j);

      if ((test_cycle >= jth_trans.rowStart) &&
  (test_cycle < (jth_trans.rowStart + OCTCYCLE))) {
  return true;

      }
    }
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    return false;
  }

  boolean cycle_used_col(long test_cycle) {
    for (int j = 0 ; j < colTrans.size() ; j++) {
      drd_trans jth_trans = (drd_trans) colTrans.elementAt(j);

      if ((test_cycle >= jth_trans.colStart) &&
  (test_cycle < (jth_trans.colStart + OCTCYCLE))) {
  return true;

      }
    }
    return false;
  }

  boolean cycle_used_data(long test_cycle) {
    for (int j = 0 ; j < dataTrans.size() ; j++) {
      drd_trans jth_trans = (drd_trans) dataTrans.elementAt(j);

      if ((test_cycle >= jth_trans.dataStart) &&
  (test_cycle < (jth_trans.dataEnd))) {
  return true;

      }
    }
    return false;
  }

    boolean endSimulation() {
drd_trans last = lastTrans();
// Call twice - the second retires to the first
advanceClockTo(last.end_cycle);
advanceClockTo(last.end_cycle);
return true;

    }

    drd_trans lastTrans() {
drd_trans last = (drd_trans) dataTrans.lastElement();
drd_trans temp = (drd_trans) colTrans.lastElement();
if (temp.end_cycle > last.end_cycle) {
    last = temp;
}
temp = (drd_trans) rowTrans.lastElement();
if (temp.end_cycle > last.end_cycle) {
    last = temp;
}
return last;

    }

  //
  // ToString
  //
  public String toString(int new_mode) {
    display_mode = new_mode;
    return toString();
  }

  public String toString() {
    String str = new String();
    str += “DRDRAM Schedule [“+super.toString()+”]\n”;
    double all_sched = reads_sched + writes_sched + refr_sched;
    str += “\tReads scheduled\t\t\t: “+reads_sched+”\t”;
    str += percent8Str(reads_sched / all_sched) + “\n”;
    str += “\tWrites scheduled\t\t: “+writes_sched+”\t”;
    str += percent8Str(writes_sched / all_sched) + “\n”;
    str += “\tRefresh scheduled\t\t: “+refr_sched+”\t”;
    str += percent8Str(refr_sched / all_sched) + “\n”;
    // Added 07/07/00 BTD
    str += “\tAverage Trans Cycles\t: “+

(total_latency / total_sched) + “\n”;
    //    str += “\tAverage latency\t\t: “+
    // ((total_latency / ((double)total_sched)) *
    //  the_ctrler.clock_period) + “\n”;
    str += “\tAverage latency\t\t: “+

((total_latency / ((double)total_sched)) *
 cycleNs) + “\n”;

    str += “\tAdjacent Bank Accesses\t: “+adj_bank_accesses+”\t”+
percent8Str(adj_bank_accesses / ((double)total_sched)) + “\n”;

    str += “\tCycles elapsed\t\t\t: “+current_cycle+”\n”;
    str += “\tCycles retired\t\t\t: “+retired_cycle+”\n”;
    str += “\tUtilized cycles\t\t\t: “+utilized_cycles+”\t”;
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    str += percent8Str(utilized_cycles / ((double)retired_cycle)) +”\n”;
    str += “\tOverlap cycles\t\t\t: “+overlap_cycles+”\t”;
    str += percent8Str(overlap_cycles / ((double)retired_cycle)) + “\t”;
    str += percent8Str(overlap_cycles / ((double)utilized_cycles)) + “\n”;
    str += “\tTransaction cycles\t\t: “+trans_cycles+”\n”;
    str += “\tDegree of (retired) concurrency\t: “;
    str += (trans_cycles/retired_cycle) + “\n”;
    str += “\tDegree of (util) concurrency\t: “;
    str += (trans_cycles/utilized_cycles) + “\n”;
    str += “\tTime elapsed\t\t\t: “+(cycleNs * current_cycle)+” Seconds\n”;
    return str;
  } // toString

    private String percent8Str(double in) {
        if (!(nf instanceof java.text.NumberFormat)) {
            nf = java.text.NumberFormat.getPercentInstance();
            nf.setMinimumFractionDigits(2);
        }
        String ret_str;
        ret_str = SPACES8 + nf.format(in);
        return ret_str.substring(ret_str.length() - 8);
    }

}

======================================================================================================

// package drdram_sim

/*
  File : DRD_trans

  Author : Brian Davis

  */

public class drd_trans {

    //
    // Constants
    //
    static final long OCTCYCLE = drd_ctrl.OCTCYCLE;
    static final int TRANS_READ = drd_ctrl.TRANS_READ;
    static final int TRANS_WRITE = drd_ctrl.TRANS_WRITE;
    static final int TRANS_REFRESH = drd_ctrl.TRANS_REFRESH;

    // Class Variables
    static long trans_created = 0;
    static int display_mode = 0;

    // Instance Variable(s)

    //
    // Transaction Attributes
    int num_bytes;
    long address;
    int trans_type;
    boolean read = false;
    boolean write = false;
    // boolean rowHit = false;
    boolean SAHit = false;
    boolean BankPrecharged = false;

    //
    // Overall Transaction bounds
    long start_cycle;
    long end_cycle;

    //
    // Component Times
    long preStart;
    long rowStart;
    long rowEnd;
    long colStart;
    long colEnd;
    long dataStart, dataEnd;

    //
    // Pointers
    drd_bank access_bank = null;
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    drd_device device_loc = null;
    drd_channel channel_loc = null;

    // Constructor(s)
    drd_trans(int type) {

this(type, 0L, 0, -1L, -1L);
    }

    drd_trans(long addr, int bytes) {
this(TRANS_READ, addr, bytes, -1L, -1L);

    }

    drd_trans(int rw, long addr, int bytes) {
this(rw, addr, bytes, -1L, -1L);

    }

    drd_trans(int rw, long addr, int bytes, long start, long end) {

trans_created++;
trans_type = rw;
if (rw == TRANS_READ)
    read = true;
else if (rw == TRANS_WRITE)
    write = true;

address = addr;
num_bytes = bytes;

start_cycle = start;
end_cycle = end;

//
// Check to verify withing above [start:end] bounds
rowStart = colStart = dataStart = dataEnd = -1L;

    }

  // Class Methods

  //
  // Instance Methods
  //

    public boolean dataBusReqd() {
if (((trans_type & TRANS_READ) != 0) ||
    (( trans_type & TRANS_WRITE) != 0)) {
    return true;
}
return false;

    }

  public boolean rowStart(long cycle) {
    //
    // Check for potential ERROR conditions
    if (rowStart != -1L) {
      System.out.println(“ERROR : multiple definition of Row Start for transaction”);
      return true;
    }

    if ((start_cycle != -1L) || (start_cycle > cycle)) {
      System.out.println(“ERROR : Illegal definition of row given Start for transaction”);
      return true;
    }

    rowStart = cycle;

    start_cycle = cycle;

    return false;
  }

  public boolean colStart(long cycle) {
    //
    // Check for potential ERROR conditions
    if (colStart != -1L) {
      System.out.println(“ERROR : multiple definition of Column Start for transaction”);
      return true;
    }

    if (SAHit == true)
      start_cycle = cycle;
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    return false;
  }

  private boolean startAt(long new_start) {
    // Check for valid start
    if ((end_cycle != 0) && (new_start > end_cycle)) {
      // ERROR ILLEGAL START
      return true;
    } else {
      start_cycle = new_start;
      return false;
    }
  }

  //
  // To String
  //
  public String toString(int new_mode) {
    display_mode = new_mode;
    return toString();
  }

  public String toString() {
    String str = new String();
    str += “DRDRAM Transaction [“+super.toString()+”]\n”;

    if ((display_mode & (1<<0)) != 0) {
      str += “\tTrans type\t: “;

      if (trans_type == TRANS_READ) {
  str += “Read\n”;

      } else if (trans_type == TRANS_WRITE) {
  str += “Write\n”;

      } else if (trans_type == TRANS_REFRESH) {
  str += “Refresh\n”;

      } else {
  str += “UNKNOWN\n”;

      }

      str += “\tAddress\t\t: “ + java.lang.Long.toHexString(address) + “\n”;

      str += “\tNumber Bytes\t: “+num_bytes + “\n”;

      str += “\tSAmp cache\t: “ + ((SAHit) ? “Hit\n” : “Miss\n”);

      str += “\tTrans Span\t: ( “+start_cycle+” : “+end_cycle+” )\n”;

      if (SAHit == false)
str += “\tRow Span\t: ( “+rowStart+” : “+rowEnd+” )\n”;

      str += “\tCol Span\t: ( “+colStart+” : “+colEnd+” )\n”;

      str += “\tData Span\t: ( “+dataStart+” : “+dataEnd+” )\n”;

    }

    return str;
  } // toString

}

======================================================================================================

// package drdram_sim

/*
  File : DRD_CYCLE

  Author : Brian Davis

  */

public class drd_cycle {

  // Class Variables
  long cycles_created = 0;

  // Instance Variable(s)
  int display_mode = 0;
  long cycleno;
  drd_trans rsigs, // Row signals
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            csigs_c, // Column signals
            csigs_mx, // Column signals
            dsigs; // Data signals

  // Constructor(s)
  drd_cycle() {
    cycles_created++;
    rsigs = csigs_c = csigs_mx = dsigs = null;
  }

  // Class Methods

  // Instance Methods
  public String toString() {
    String str = new String();
    str += “DRDRAM cycle\n”;
    switch (display_mode) {
    case 999:
      if (rsigs != null)

str += “Row signals hold “+rsigs;
      else

str += “Row signals idle”;

      if (csigs_c != null)
str += “Column signals hold “+csigs_c;

     else
str += “Column signals idle”;

      if (csigs_mx != null)
str += “Column signals hold “+csigs_mx;

     else
str += “Column signals idle”;

      if (dsigs != null)
str += “Data signals hold “+dsigs;

      else
str += “Data signals idle”;

      break;

    default:
      str += super.toString();
    }
    return str;
  } // toString

}

A.4 SimpleScalar JNI Interface

/*
** Author : btdavis
**
** Definition of variables used by the JVM
**
*/

#ifndef DRAM_JV_H
#define DRAM_JV_H

JavaVM *jvm;
JNIEnv *env;
JDK1_1InitArgs vm_args;

/*
** drdram variables
*/

// Can be trans or drd_trans :
jclass trans_jcl;

jobject ctrler_obj;
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jmethodID ctrlaccess_jmid;
jmethodID endsim_jmid;
jmethodID ctrlprintyou_jmid;

jfieldID sc_jfid;
jfieldID ec_jfid;
jfieldID ds_jfid;

/*
** sdram varables
*/

#endif

extern int sdram;
extern int drdram;
extern int ddr2_200;
extern int ddr2_200_ems;
extern int ddr2_200_vc;

extern int use_ctrler_remap;
extern char *vc_alloc_policy;

extern jint dram_trans_read;
extern jint dram_trans_write;

======================================================================================================

/*
 * dram_jv.c - Support for Java DRAM routines
 *
 * This file is a part of the SimpleScalar tool suite written by
 * Todd M. Austin as a part of the Multiscalar Research Project.
 *
 * The tool suite is currently maintained by Doug Burger and Todd M. Austin.
 *
 * Copyright (C) 1994, 1995, 1996, 1997 by Todd M. Austin
 *
 * This source file is distributed “as is” in the hope that it will be
 * useful.  The tool set comes with no warranty, and no author or
 * distributor accepts any responsibility for the consequences of its
 * use.
 *
 * Everyone is granted permission to copy, modify and redistribute
 * this tool set under the following conditions:
 *
 *    This source code is distributed for non-commercial use only.
 *    Please contact the maintainer for restrictions applying to
 *    commercial use.
 *
 *    Permission is granted to anyone to make or distribute copies
 *    of this source code, either as received or modified, in any
 *    medium, provided that all copyright notices, permission and
 *    nonwarranty notices are preserved, and that the distributor
 *    grants the recipient permission for further redistribution as
 *    permitted by this document.
 *
 *    Permission is granted to distribute this file in compiled
 *    or executable form under the same conditions that apply for
 *    source code, provided that either:
 *
 *    A. it is accompanied by the corresponding machine-readable
 *       source code,
 *    B. it is accompanied by a written offer, with no time limit,
 *       to give anyone a machine-readable copy of the corresponding
 *       source code in return for reimbursement of the cost of
 *       distribution.  This written offer must permit verbatim
 *       duplication by anyone, or
 *    C. it is distributed by someone who received only the
 *       executable form, and is accompanied by a copy of the
 *       written offer of source code that they received concurrently.
 *
 * In other words, you are welcome to use, share and improve this
 * source file.  You are forbidden to forbid anyone else to use, share
 * and improve what you give them.
 *
 *
 * CREATED : Brian Davis 12/14/99
 *
 */
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#include <string.h>
#include <jni.h>

#include “misc.h”

#include “dram_jv.h”

int use_ctrler_remap = FALSE;
char *vc_alloc_policy = “lru”;

/* initialize the Java Virtual Machine */
void jvm_init(char *dram_string, char *dram_policy)
{
  /* variables */
  int res, j, num_devices = 16;
  long long base_addr = 0, device_size;
  jmethodID mid;
  jclass ctrl_jcl = NULL;
  jclass dev_jcl;
  jint cfg_param_jint = 0;

  /* JVM setup */

  JavaVMInitArgs vm_args;
  JavaVMOption options[4];

  /* user classes */
  vm_args.nOptions = 1;
  options[0].optionString =
    “-Djava.class.path=/nfs/shaitan.eecs/l/users/btdavis/java.classes”;

  /* disable JIT */
  // options[0].optionString = “-Djava.compiler=NONE”;

  /* set native library path */
  // options[2].optionString = “-Djava.library.path=c:\mylibs”;

#ifdef DEBUG
  /* print JNI-related messages */
  options[vm_args.nOptions].optionString = “-verbose:jni”;
  vm_args.nOptions += 1;
#endif

  vm_args.version = JNI_VERSION_1_2;
  vm_args.options = options;
  vm_args.ignoreUnrecognized = TRUE;

  /* Note that in the Java 2 SDK, there is no longer any need to call
   * JNI_GetDefaultJavaVMInitArgs.
   */
  res = JNI_CreateJavaVM(&jvm, (void **)&env, &vm_args);
  if ((res < 0) || (jvm == NULL) || (env == NULL)) {
    fatal(“BTD/JAVA : problems with JNI_CreateJavaVM”);
  }

#ifdef DEBUG
    fprintf(stderr, “DEBUG: Return from JNI_CreateJavaVM Invokation\n”);
#endif

    if ((!mystricmp(dram_string, “ddr2”)) ||
        (!mystricmp(dram_string, “ddr2vc”)) ||

(!mystricmp(dram_string, “ddr2ems”))) {
      /*
      ** Variables
      */
      char *field_name = NULL;

#ifdef DEBUG
      fprintf(stderr,

      “DEBUG: Creating structures nessesary for DDR2 memory system\n”);
#endif

      /*
      ** Intialize for DDR2
      */
      ctrl_jcl = (*env)->FindClass(env, “ddr2_ctrl”);
      if (ctrl_jcl == NULL) {

fatal(“BTD/JAVA : ddr2_ctrl class could not be found”);
      }

      if (!mystricmp(dram_string, “ddr2”)) {
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if (!mystricmp(dram_policy, “cpa”)) {
  field_name = “DDR2_CPA”;
} else if (!mystricmp(dram_policy, “op”)) {
  field_name = “DDR2_OP”;
} else {
  fatal(“DRAM_JV : Unknown dram_policy for ddr2 system”);
}

      } else if (!mystricmp(dram_string, “ddr2ems”)) {
if (!mystricmp(dram_policy, “cpa”)) {
  field_name = “DDR2EMS_CPA_AWX”;
} else if (!mystricmp(dram_policy, “nwx”)) {
  field_name = “DDR2EMS_CPA_NWX”;
} else {
  printf(“policy = %s\n”, dram_policy);
  fatal(“DRAM_JV : Unknown dram_policy for ddr2ems system”);
}

      } else if (!mystricmp(dram_string, “ddr2vc”)) {
if (!mystricmp(dram_policy, “cpa”)) {
  field_name = “DDR2VC_CPA”;
} else if (!mystricmp(dram_policy, “op”)) {
  field_name = “DDR2VC_OP”;
} else {
  fatal(“DRAM_JV : Unknown dram_policy for ddr2vc system”);
}

      } else {
fatal(“DRAM_JV : Unknown dram_string for ddr2 system”);

      }

      // local variable region
      {

jfieldID fid = NULL;
fid = (*env)->GetStaticFieldID(env, ctrl_jcl, field_name, “I”);
if (fid == NULL) {
  printf(“field_name = %s\n”, field_name);
  fatal(“DRAM_JV : ddr2_ctrl(field_name) could not be found”);
}
cfg_param_jint = (*env)->GetStaticIntField(env, ctrl_jcl, fid);
if (cfg_param_jint == 0) {
  fatal(“DRAM_JV : ddr2_ctrl(field_name) yields ZERO cfg value”);
}

      }

      /*
      ** Create & Initialize DDR2 memory system
      */

      mid = (*env)->GetMethodID(env, ctrl_jcl, “<init>”, “(I)V”);

      if (mid != NULL) {
ctrler_obj = (*env)->NewObject(env, ctrl_jcl, mid, cfg_param_jint);

      } else {
fatal(“DRAM_JV : ddr2_ctrl Constructor not found”);

      }

      if (ctrler_obj == NULL)
fatal(“DRAM_JV : ddr2_ctrl object is NULL”);

#ifdef DEBUG
      fprintf(stderr,

      “DEBUG: ddr2_ctrl object created & valid\n”);
#endif

      /*
      ** If dram type is VC, it may be req’d to change the
      ** Channel Allocation policy
      */
      if (!mystricmp(dram_string, “ddr2vc”)) {

// May 10 2000
// add code for changeVCAllocPolicy(vc_alloc_policy);
jfieldID fid = NULL;
jobject alloc_str = NULL;

mid = (*env)->GetMethodID(env, ctrl_jcl, “changeVCAllocPolicy”,
  “(Ljava/lang/String;)Z”);
if (mid == NULL) {
fatal(“DRAM_JV : ctrler.changeVCAllocPolicy() not found”);
}

if (!mystricmp(vc_alloc_policy, “lru”)) {
  field_name = “POLICY_LRU”;
} else if (!mystricmp(vc_alloc_policy, “rand”)) {
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  field_name = “POLICY_RANDOM”;
} else if (!mystricmp(vc_alloc_policy, “assoc”)) {
  field_name = “POLICY_ASSOC”;
} else if (!mystricmp(vc_alloc_policy, “busmaster”)) {
  field_name = “POLICY_P12IO4”;
} else {
  fatal(“DRAM_JV : vc_alloc_policy unknonwn”);
}

fid = (*env)->GetStaticFieldID(env, ctrl_jcl, field_name,
 “Ljava/lang/String;”);
if (fid == NULL) {
  fprintf(stderr, “Field Name = %s\n”, field_name);
  fatal(“DRAM_JV : vc_alloc_policy FIELD could not be found”);
}

alloc_str = (*env)->GetStaticObjectField(env, ctrl_jcl, fid);
if (alloc_str == NULL) {
  fatal(“DRAM_JV : alloc_str PTR could not be found”);
}

if ((*env)->CallBooleanMethod(env, ctrler_obj, mid, alloc_str) != 0) {
  fatal(“DRAM_JV : invocation of changeVCAllocPolicy() returns error”);
}

      } // if ddr2vc

      /*
      ** Controller has been created & is valid, create devices
      */

      mid = (*env)->GetMethodID(env, ctrl_jcl, “addDevice”,
“(I)Z”);

      if (mid == NULL) {
fatal(“DRAM_JV : ddr2_ctrl.addDevice() not found”);

      }

      {
jfieldID fid = NULL;
jint dimm_size;
fid = (*env)->GetStaticFieldID(env, ctrl_jcl, “DIMM_256MB”,
       “I”);
if (fid == NULL) {
  fatal(“JNI_CALLS : ddr2_ctrl.addDevice() init FIELD not found”);
}
dimm_size = (*env)->GetStaticIntField(env, ctrl_jcl,
      fid);

if ((*env)->CallBooleanMethod(env, ctrler_obj, mid, dimm_size) == 0) {
  fatal(“JNI_CALLS : ddr2_ctrl.addDevice() returned error”);
}

      }
#ifdef DEBUG
      fprintf(stderr, “DEBUG : ddr2 ctrler created, Devices ADDed\n”);
#endif

      /*
      ** Setup access methods
      */

      trans_jcl = (*env)->FindClass(env, “ddr2_trans”);

      ctrlaccess_jmid = (*env)->GetMethodID(env, ctrl_jcl, “access”,
    “(JIJI)Ldram_trans;”);

      endsim_jmid = (*env)->GetMethodID(env, ctrl_jcl,
“endSimulation”,
“()Z”);

      ctrlprintyou_jmid = (*env)->GetMethodID(env, ctrl_jcl,
      “printYourself”,
      “()V”);

      // local variable region
      {

jfieldID fid;
fid = (*env)->GetStaticFieldID(env, ctrl_jcl, “TRANS_READ”, “I”);
if (fid == NULL) {
  fatal(“DRAM_JV : ddr2_ctrl(field_name) could not be found”);
}
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dram_trans_read = (*env)->GetStaticIntField(env, ctrl_jcl, fid);
      }
      // local variable region
      {

jfieldID fid;
fid = (*env)->GetStaticFieldID(env, ctrl_jcl, “TRANS_WRITE”, “I”);
if (fid == NULL) {
  fatal(“DRAM_JV : ddr2_ctrl(field_name) could not be found”);
}
dram_trans_write = (*env)->GetStaticIntField(env, ctrl_jcl, fid);

      }

      if ((trans_jcl == NULL) ||
  (ctrlaccess_jmid == NULL) ||
  (endsim_jmid == NULL) ||
  (ctrlprintyou_jmid == NULL)) {
fprintf(stderr, “trans_jcl = 0x%08X\n”, ((unsigned int)trans_jcl));
fprintf(stderr, “ctrlaccess_jmid = 0x%08X\n”,
((unsigned int)ctrlaccess_jmid));
fprintf(stderr, “endsim_jmid = 0x%08X\n”, ((unsigned int)endsim_jmid));
fprintf(stderr, “ctrlprintyou_jmid = 0x%08X\n”,
((unsigned int)ctrlprintyou_jmid));
fatal(“DRAM_JV(DDR2) : required method pointers not initialized”);

      }

      /*
      ** End DDR2 init
      */

#ifdef DEBUG
    fprintf(stderr, “DEBUG: Exitting DDR2 initialization routines\n”);
#endif

    } else if (!mystricmp(dram_string, “drdram”)) {

    /*
    ** Variables
    */
    char *field_name = NULL;
    jmethodID add_mid;

    /*
    ** Initialize for DRDRAM
    */

    ctrl_jcl = (*env)->FindClass(env, “drd_ctrl”);
    if (ctrl_jcl == NULL)
      fatal(“BTD/JAVA : drdctrl class could not be found”);

    // Select CFG int for controler policy

    if (!mystricmp(dram_policy, “cpa”))
      field_name = “CFG_CLOSEPAGEAUTO”;
    else
      field_name = “CFG_OPENPAGE”;

    {
      jfieldID fid;
      fid = (*env)->GetStaticFieldID(env, ctrl_jcl, field_name, “I”);
      cfg_param_jint = (*env)->GetStaticIntField(env, ctrl_jcl, fid);
      if ((fid == NULL) ||

  (cfg_param_jint == 0)) {
fatal(“BTD/JAVA : drdctrl(field_name) could not be found”);

      }
    }

    /*
    ** Create & Initialize DRDRAM memory system
    */

    mid = (*env)->GetMethodID(env, ctrl_jcl, “<init>”, “(I)V”);

    if (mid != NULL) {
      ctrler_obj = (*env)->NewObject(env, ctrl_jcl, mid, cfg_param_jint);
    } else
      fatal(“BTD/JAVA : drd_ctrl Constructor not found”);

    if (ctrler_obj == NULL)
      fatal(“BTD/JAVA : drd_ctrl object is NULL”);

    /*
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    ** Controller has been created & is valid, create DRDRAM devices
    */

    add_mid = (*env)->GetMethodID(env, ctrl_jcl,
  “addDevice”,
  “(Ldrd_device;)Z”);

    dev_jcl = (*env)->FindClass(env, “drd_device”);

    mid = (*env)->GetMethodID(env, dev_jcl, “<init>”, “(JJLdrd_ctrl;)V”);

    if ((add_mid == NULL) ||
(dev_jcl == NULL) ||
(mid == NULL)) {

      fprintf(stderr, “add_mid = 0x%08X\n”, ((unsigned int)add_mid));
      fprintf(stderr, “dev Class = 0x%08X\n”, ((unsigned int)dev_jcl));
      fprintf(stderr, “dev Constructor = 0x%08X\n”, ((unsigned int)mid));
      fatal(“BTD/JAVA : Add (DRD) Device methods not found”);
    }

    // Local variable region
    {
      jfieldID fid;

      fid = (*env)->GetStaticFieldID(env, dev_jcl,
     “RIMM_64MB_8by64Mb”, “J”);

      if (fid == NULL)
fatal(“BTD/JAVA : Field ID for device size not found”);

      device_size = (*env)->GetStaticLongField(env, dev_jcl, fid);

      /* fprintf(stdout, “DEBUG : Device size = %08lx\n”, device_size); */
    }

    for (j = 0 ; j < num_devices ; j++) {
      jobject drddev_obj;

      /*
      ** Create DRDRAM device & Add to ctrler/channel
      */

      /*    fprintf(stdout,
    “DEBUG : before call : drd_device(%08llx, %i, %08llx)\n”,
    device_size, 16, base_addr); */

      drddev_obj = (*env)->NewObject(env, dev_jcl, mid,
     device_size, base_addr,
     ctrler_obj);

      (*env)->CallBooleanMethod(env, ctrler_obj, add_mid, drddev_obj);

      base_addr += device_size;

      /*
ctrler.addDevice(new drd_device(drd_device.DEVICE_SIZE_64Mb,
16,
base_addr));
base_addr += drd_device.DEVICE_SIZE_64Mb;

      */
    } // For

    /*
    ** Prepare class pointers for later use
    */

    trans_jcl = (*env)->FindClass(env, “drd_trans”);

    if (trans_jcl == NULL) {
      fatal(“BTD/JAVA : required class pointers not initialized”);
    }

    /*
    ** Prepare method pointers for later use
    */

    ctrlaccess_jmid = (*env)->GetMethodID(env, ctrl_jcl, “access”,
  “(JIJI)Ldrd_trans;”);

    endsim_jmid = (*env)->GetMethodID(env, ctrl_jcl,
      “endSimulation”,
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      “()Z”);

    ctrlprintyou_jmid = (*env)->GetMethodID(env, ctrl_jcl,
    “printYourself”,
    “()V”);

    if ((ctrlaccess_jmid == NULL) ||
(endsim_jmid == NULL) ||
(ctrlprintyou_jmid == NULL)) {

      fatal(“BTD/JAVA : required method pointers not initialized”);
    }

    /*
    ** Prepare field pointers for later use
    */
    /* Commented out out 4/10/2000

    sc_jfid = (*env)->GetFieldID(env, trans_jcl, “start_cycle”, “J”);

    ec_jfid = (*env)->GetFieldID(env, trans_jcl, “end_cycle”, “J”);

    ds_jfid = (*env)->GetFieldID(env, trans_jcl, “dataStart”, “J”);

    if ((sc_jfid == NULL) ||
(ec_jfid == NULL) ||
(ds_jfid == NULL)) {

      fatal(“BTD/JAVA : required field pointers not initialized”);
    }

*/

  } else if ((!mystricmp(dram_string, “pc100_sdram”)) ||
     (!mystricmp(dram_string, “ddr133”)) ||
     (!mystricmp(dram_string, “ddr133_cas2”))) {

    /*
    ** Variables
    */
    jint init_param_jint = 0;
    char *field_name = NULL;

    /*
    ** Statements
    */
#ifdef DEBUG
    fprintf(stderr, “DEBUG : Into SDRAM Init\n”);
#endif

    /*
    ** find sdram_ctrl class
    */
    ctrl_jcl = (*env)->FindClass(env, “sdram_ctrl”);
    if (ctrl_jcl == NULL)
      fatal(“BTD/JAVA : sdram_ctrl class could not be found”);

    /*
    ** Get Config String (parameters) for sdram_ctrl constructor
    */
    if (!mystricmp(dram_string, “ddr133”)) {
      if (!mystricmp(dram_policy, “cpa”))

field_name = “DDR133_CAS3_CPA”;
      else

field_name = “DDR133_CAS3_OP”;
    } else if (!mystricmp(dram_string, “ddr133_cas2”)) {
      if (!mystricmp(dram_policy, “cpa”))

field_name = “DDR133_CPA”;
      else

field_name = “DDR133_OP”;
    } else {
      if (!mystricmp(dram_policy, “cpa”))

field_name = “PC100_CPA”;
      else

field_name = “PC100_OP”;
    }

    // Local variables section
    {
      jfieldID fid;
      fid = (*env)->GetStaticFieldID(env, ctrl_jcl, field_name, “I”);
      init_param_jint = (*env)->GetStaticIntField(env, ctrl_jcl, fid);
      if ((fid == NULL) ||

  (init_param_jint == 0)) {
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fatal(“BTD/JAVA : sdramctrl(field_name) could not be found”);
      }
    }

    /*
    ** Get sdram_ctrl() constructor
    */
#ifdef DEBUG
    fprintf(stderr, “DEBUG : retriving sdram_ctrl constructor\n”);
#endif
    mid = (*env)->GetMethodID(env, ctrl_jcl, “<init>”, “(I)V”);
    ctrler_obj = (*env)->NewObject(env, ctrl_jcl, mid, init_param_jint);
    if ((mid == NULL) ||
        (ctrler_obj == NULL)) {
      fatal(“BTD/JAVA : sdram_ctrl Constructor not found or returned NULL”);
    }

    /*
    ** Invoke addDevice()
    **
    ** retrieve Method ID first
    */
    mid = (*env)->GetMethodID(env, ctrl_jcl, “addDevice”,

      “(I)Z”);
    if (mid == NULL) {
      fatal(“JNI_CALLS : sdram_ctrl.addDevice() method not found”);
    }

    {
      jfieldID fid = NULL;
      jint dimm_size;
      if (!mystricmp(dram_string, “pc100_sdram”)) {

fid = (*env)->GetStaticFieldID(env, ctrl_jcl, “DIMM_64MB”,
       “I”);

      } else if ((!mystricmp(dram_string, “ddr133”)) ||
 (!mystricmp(dram_string, “ddr133_cas2”))) {
fid = (*env)->GetStaticFieldID(env, ctrl_jcl, “DIMM_256MB”,
       “I”);

      } else {
fatal(“Logical Impossibility #218”);

      }
      if (fid == NULL) {

fatal(“JNI_CALLS : sdram_ctrl.addDevice() init String FIELD not found”);
      }

      dimm_size = (*env)->GetStaticIntField(env, ctrl_jcl,
     fid);

      if ((*env)->CallBooleanMethod(env, ctrler_obj, mid, dimm_size) == 0) {
fatal(“JNI_CALLS : sdram_ctrl.addDevice() returned error”);

      }
    }
#ifdef DEBUG
    fprintf(stderr, “DEBUG : ctrler created, Devices ADDed\n”);
#endif

    /*
    ** Setup access methods
    */

    trans_jcl = (*env)->FindClass(env, “trans”);

    ctrlaccess_jmid = (*env)->GetMethodID(env, ctrl_jcl, “access”,
 “(JIJI)Ltrans;”);

    endsim_jmid = (*env)->GetMethodID(env, ctrl_jcl,
  “endSimulation”,
 “()Z”);

    ctrlprintyou_jmid = (*env)->GetMethodID(env, ctrl_jcl,
    “printYourself”,
    “()V”);

    if ((trans_jcl == NULL) ||
(ctrlaccess_jmid == NULL) ||
(endsim_jmid == NULL) ||
(ctrlprintyou_jmid == NULL)) {

      fatal(“BTD/JAVA(SDRAM) : required method pointers not initialized”);

    }
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  } else {
    fatal(“Unknown dram_type in jvm_init()\n”);
  }

    /*
    ** Prepare field pointers for later use
    */

    sc_jfid = (*env)->GetFieldID(env, trans_jcl, “start_cycle”, “J”);

    ec_jfid = (*env)->GetFieldID(env, trans_jcl, “end_cycle”, “J”);

    ds_jfid = (*env)->GetFieldID(env, trans_jcl, “dataStart”, “J”);

    if ((sc_jfid == NULL) ||
(ec_jfid == NULL) ||
(ds_jfid == NULL)) {

      fatal(“BTD/JAVA(ALL) : required field pointers not initialized”);
    }

    /*
    ** Turn on Controller re-mapping if indicated

if (use_remap) {
    new_ctrler.enableRemap();
}

    */

    if (use_ctrler_remap) {
      mid = (*env)->GetMethodID(env, ctrl_jcl, “enableRemap”,

“()V”);

      if (mid == NULL) {
fatal(“DRAM_JV : ctrler.enableRemap() not found”);

      }

      (*env)->CallVoidMethod(env, ctrler_obj, mid);

    }

} /* jvm_init() */
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