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ABSTRACT 

 
APPLICATION-SPECIFIC ARCHITECTURE FRAMEWORK FOR HIGH-

PERFORMANCE LOW-POWER EMBEDDED COMPUTING 
 
 

by 
 
 

Allen Chao-Hung Cheng 
 
 
 
 

Co-Chairs: Gary S. Tyson and Trevor N. Mudge 
 

 

The design space of embedded systems is extremely large. Examples of 

embedded systems range from small form factor portable handheld devices such as smart 

phones, MP3 players, and personal digital assistants (PDA), to real-time control systems 

used in automobiles and the space shuttle. These embedded applications require a new 

architecture paradigm with strict requirements on power consumption, computing 

performance, competitive end-user price, and rapid time to market (TTM). Thus, when 

designing microprocessors for embedded systems, it is extremely important to consider 

energy efficiency, performance, production cost, and design turnaround time. 

This dissertation introduces Framework-based Instruction-set Tuning Synthesis 

(FITS), an architectural and microarchitectural innovation that addresses all the above 

design constraints of embedded microprocessors. FITS reduces energy consumption by 
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running same applications with much smaller code size and improved locality. This is 

accomplished through tailoring the instruction set to the requirements of a targeted 

application. Smaller code size with better locality means it is possible to replace original 

instruction caches with smaller ones that can still yield better cache miss rates. Smaller 

instruction cache consumes less dynamic and leakage power. Lower cache miss rates 

yield less traffic from the processor to off-chip memories, which can improve both 

performance and power consumption.  

Making new chips can be both an economical challenge and a time-consuming 

process. Fabricating a new chip can incur millions of dollars of non-recurring engineering 

(NRE) cost. The average turnaround time for fabricating a new chip ranges from several 

months to several years. FITS reduces the chip production cost and shortens the design 

turnaround time through the use of a general-purpose, functionally-rich underlying 

microarchitecture. Instead of having to fabricate a new chip every time there is a new 

application to target, we use a single microarchitecture platform that contains enough 

general-purpose functionality that can map to all applications of interest. The one-time 

high NRE cost and long turnaround design cycle can be effectively amortized through 

mass production over the period of product lifetime. 

FITS improves the performance by introducing the Versatile Integrated 

Processing (VIP) unit and integrating a Zero-Overhead Loop Execution (ZOLE) unit into 

the microarchitecture. The VIP unit is a universal data-crunching engine that delivers 

superb data computing and data streaming performances. The ZOLE unit streamlines the 

program control flow by removing expensive loop control overhead from both nested and 

non-nested loops.  
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The application-specific instruction set tailoring is achieved by replacing the fixed 

instruction decoder of general-purpose embedded processors with a programmable 

decoder. The use of a programmable decoder allows designers to add new capabilities to 

microarchitecture without being restricted by the limited instruction space. The only 

constraint of adding new operations is due to chip area. The net effect is that the 

underlying microarchitecture may contain an extremely large set of operations that can 

never be mapped to any single instruction set architecture (ISA); yet, through the use of a 

programmable instruction decoder, FITS can choose the needed subset of operations 

being mapping to the premier instruction space for a given application. The instruction 

selection is determined at compile time. The definition of ISA is loaded to the 

programmable decoder at boot time. If necessary, the programmable decoder can be 

dynamically reconfigured with different set of ISA definitions at run time. 

Through the use of programmable decoder, general-purpose microarchitecture 

equipped with VIP and ZOLE, FITS provides designers with a new genre of embedded 

microprocessors that can achieve application-specific processor performance and low 

energy consumption, while maintaining the fabrication advantages of a mass-produced 

single-chip solution that yields low production cost and fast time to market. 
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CHAPTER 1 

INTRODUCTION 

1.1   Motivation and Background 

The design space of embedded systems is extremely large. Examples of 

embedded systems range from small form factor portable handheld devices such as smart 

phones, MP3 players, personal digital assistants (PDA), and digital cameras and 

camcorders, to real-time control systems used in automobiles and the space shuttle. These 

embedded applications require a new architecture paradigm with strict requirements in 

computing performance, energy efficiency, competitive end-user price, and rapid time to 

market (TTM). Thus, when designing microprocessors for embedded systems, it is 

extremely important to consider performance, power consumption, production cost, and 

design turnaround time. This trend necessitates a new platform of innovations leveraging 

novel architectural, and microarchitectural techniques. 

An emerging popular strategy to meet the challenging cost, performance, and 

power demands is to move away from general-purpose designs to application-specific 

designs. An application-specific processor (ASP) is a processor designed for a particular 
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application or set of applications that share many common characteristics. Thus, an ASP 

design contains only those capabilities necessary to execute its targeted workload. The 

result is that ASPs can achieve levels of performance and efficiency that are unattainable 

in general-purpose processors. The performance gain of ASP is highly valued for modern 

embedded workloads, which are well known of their ever increasing processing 

requirements demanded by endless user computing needs. 

With wide-spread use of Intellectual Property (IP) cores and advancement in 

electronic design automation (EDA) tools, customized instruction set synthesis has 

become a feasible option to make products stand out in competitive consumer electronics 

market today. Generally speaking, modern embedded microprocessors have many strict 

design constraints that touch many facets of application requirements, such as processing 

speed, energy efficiency, chip area, code size, production cost, and design turnaround 

time, etc. Designers of contemporary general-purpose machines with 32-bit instructions 

are struggling to achieve even the minimal satisfactory balance among these design 

requirements.  

This dissertation proposes Framework-based Instruction-set Tuning Synthesis 

(FITS): an architectural and microarchitectural innovation that addresses all the above 

design constraints of embedded microprocessors.  

1.2   Addressing Performance Issue 

FITS improves the performance by integrating proposed Versatile Integrated 

Processing (VIP) unit and a Zero-Overhead Loop Execution (ZOLE) unit into the 
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microarchitecture. The ZOLE unit streamlines the program control flow by removing 

expensive loop control overhead from both nested and non-nested loops. The VIP unit is 

a universal data-crunching engine that delivers superb data computing and data streaming 

performances. The area cost of adding new operations using VIP is extremely low: for 

every additional VIP unit added, the number of additional operations available will 

increase exponentially. Furthermore, because VIP is synthesized in standard cells and 

chaining each extra VIP only costs few multiplexers, we can implement thousands of new 

specialized operations using less area than it would take to configure a single operation 

using programmable circuits like FPGAs, and would result in faster circuit speeds.  

The key difference between our proposed VIP and other approaches of 

customized reconfigurable function units is in how the large potential instruction space of 

specialized chained operations is mapped to the instruction set. Other reconfigurable 

function units reserve a single opcode which specifies the data dependencies to 

whichever configuration is programmed into the customized accelerator, while the 

decoupled instruction set provided in our underlying FITS architecture allows all function 

permutations to be mapped into the instruction set architecture (ISA) without 

necessitating additional opcode space. A conventional ISA could not support the wide 

range of different functions that can be configured since the number of total instructions 

will quickly grow into the order of thousands just with 2 levels of chained function units 

and it will be well past that with 3 or more levels of chained functional units.  Prior work 

configures the programmable circuit with the chained functions that the compiler or 

designers found useful, while the programmable nature of the FITS instruction decoder 

enables the microarchitecture to implement a fixed circuit capable of executing any of the 
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function permutations; we simply map the one or more permutations that the application 

requires to one of the instructions in the FITS ISA.  

While it may seem that implementing the circuit to perform all permutations 

would require much greater area than that of a programmable circuit would require, that 

is not the case. Since each permutation differs in only the control signals going to the 

multiplexers at each level of the chained function unit design;  it is not area limitations 

that prevent the design of these chained function units (since the area requirement for 

implementing any one circuit are only slightly smaller than implementing all 

permutations), but it is the tremendous increase in operations that can be specified in the 

microarchitecture and the corresponding increase required in the opcode for conventional 

ISA that is the true limitation.  Customized reconfigurable function units provide one 

method of avoiding the limitation (programmable circuits), while VIP/FITS provides a 

more flexible method (programmable instruction decode). 

Another aspect of performance improvement comes from the custom synthesized 

application-specific ISA tailored to the requirements of a given application. The 

application-specific instruction set tailoring is achieved by replacing the fixed instruction 

decoder of general-purpose embedded processors with a programmable decoder. The use 

of a programmable decoder allows designers to add new capabilities to microarchitecture 

without being restricted by the limited instruction space. The only other constraint of 

adding new operations is due to chip area, which has been addressed by the space-

efficient VIP unit. 

The net effect is that the underlying microarchitecture may contain an extremely 

large set of operations that can never be mapped to a small fixed width ISA. Yet, through 
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the use of a programmable instruction decoder, FITS can choose the needed subset of 

operations being mapping to the premier instruction space for a given application. The 

instruction selection is determined at compile time. The definition of ISA is loaded to the 

programmable decoder at boot time. The programmable decoder can be dynamically 

reconfigured with different set of ISA definitions at run time, if necessary. 

One other major advantage of using the programmable decoder is the benefit of 

decoupling the microarchitectural enhancements from the ISA so that new instructions 

can be integrated into the underlying microarchitecture, as much as the chip area goal 

permits, without being restricted by limited opcode space nor being crippled with bigger 

instruction decoders. Designers are free to include additional functional capabilities to 

improve performance, even when those enhancements are useful for only a small 

percentage of applications since the inclusion of one operation does not require the 

elimination of another to fit in the instruction set encoding space. 

1.3   Addressing Power Consumption Issue 

Power consumption is now a leading design constraint in microprocessor designs, 

especially in low-end embedded system market [Mudge01]. In addition to costly heat 

removal expense, excessive power consumption in embedded devices also reduces the 

battery lifetime. As a result, the quality and reliability of an embedded device would be 

severely compromised by high power dissipation. With battery power density increasing 

only at a rate of approximately 5% per year, any significant extension of battery lifetime 

must come from a thorough improvement of energy efficiency for each power-hungry 
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component in a system. Among other system components, memory structures, such as 

caches, register files, TLBs, BTBs, etc., are by far the most predominant source of power 

dissipation on the processor. For instance, in Intel’s StrongARM processor, caches 

consume more than 40% of total chip power with 27% being devoted to the instruction 

cache [Montanaro96]. This dissertation presents a novel ISA synthesis technique that 

could reduce significant instruction cache power loss. 

FITS reduces energy consumption by running same applications with much 

smaller code size and improved locality as a result of half-width ISA. The philosophy of 

FITS is that high performance and high code density can co-exist if we can match the 

instruction set to the requirement of a targeted application. FITS improves code density 

by utilizing instructions that are only 16-bit instead of 32-bit that are commonly used in 

most conventional machines. Since the instruction width is reduced by half, the total code 

size can be reduced by half as long as what was originally done in a single 32-bit 

instruction can also be done in a single 16-bit instruction. To best utilize the half-sized 

instruction width, the instruction space is allocated to only those operations that are 

necessary and useful to the given application. The chapter of results and analyses shows 

that FITS can achieve a code size reduction that is close to 50% with better performance 

through application-specific customization. 

Half-sized program with better locality means it is possible to replace original 

instruction caches with those that are only half big and still can yield better cache miss 

rates. Smaller instruction caches with better hit rates can save both dynamic and static 

power consumption. Better cache hit rates also means less traffic from the processor to 

off-chip memories, which can further improve both performance and power consumption.  
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1.4   Addressing Cost and Time to Market Issues 

Making new chips can be both an economical challenge and a time-consuming 

process. Fabricating a new chip can incur millions of dollars of non-recurring engineering 

(NRE) cost. The average turnaround time for fabricating a new chip ranges from several 

months to several years. FITS reduces the chip production cost and shortens the design 

turnaround time through the use of a general-purpose, functionally-rich underlying 

microarchitecture. Rather than fabricating a new chip to map each new application, we 

choose a single general-purpose microarchitecture platform augmented with VIP and 

ZOLE units, so there are an extremely large set (i.e. in the order of thousands) of 

operations that can be selected to map the requirements of any application of interests. 

Because of the nature of this single general-purpose microarchitectural platform, FITS 

can reduce the chip production cost and shortens time to market by leveraging the 

fabrication advantages of a mass-produced, single-chip solution that amortizes the one-

time high NRE cost and lengthy design turnaround time.  

1.5   Thesis Summary 

In this dissertation, we proposed an efficient and effective Framework-based 

Instruction-set Tuning Synthesis (FITS) platform for designing a new class of embedded 

microprocessors that can effectively address all important design constraints. FITS offers 

designers an enhanced general-purpose microarchitecture solution with configurable ISA 

synthesis to tailor the processor to match the requirements of a given application. FITS 
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delays instruction set synthesis until after chip fabrication. With a fixed 

microarchitecture, synthesis is performed by replacing the fixed instruction decoder with 

a programmable decoder. With a programmable decoder, designers can add new 

capabilities to microarchitecture without being restricted by the limited instruction space. 

The underlying datapath of a FITS processor would be similar to a general-purpose 

embedded processor such as ARM and is enhanced with VIP and ZOLE units that can 

result in thousands of extra specialized operations. The total available instructions are 

extremely large that may never be mapped to any single ISA. Through the use of a 

programmable instruction decoder, designers can map only a subset of this large set of 

instructions to the synthesized ISA. By only mapping those operations that a particular 

application needs to the synthesized instruction set, it is possible to encode all 

instructions in a short, 16-bit format while retaining all of the special purpose operations 

that can ever be found in any large instruction embedded processor. 

The contributions of this dissertation research are threefold. First, we improve 

performance with reduced code size by synthesizing specialized 16-bit VIP and ZOLE 

instructions that can accelerate performance for full range of embedded applications, 

which would normally require 32-bit instructions. Secondly, we improve energy 

efficiency from a much dense, half-sized code of high locality, which requires smaller 

instruction caches and has less off-chip memory traffic. More energy can be conserved by 

deactivating those parts of the datapath that are not mapped to any execution of the 

synthesized ISA. Lastly, we reduce production cost and time to market by utilizing a 

single processor platform across a wide range of applications, while retaining the ability 

to optimize the ISA for the individual requirements of each application. 
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In summary, through the use of programmable decoder, general-purpose 

microarchitecture equipped with VIP and ZOLE, this dissertation research provides 

designers with a new genre of embedded microprocessors that can achieve application-

specific processor performance and low energy consumption, while maintaining the 

fabrication advantages of a mass-produced single-chip solution that yields low production 

cost and fast time to market. 

1.6   Thesis Organization 

The remainder of this dissertation thesis is organized as follows: Chapter 2 

analyzes and describes important characteristics of embedded workload. Chapter 3 

presents the FITS design framework methodology and the architectural and 

microarchitectural innovations that support it. Chapter 4 explains experimental set-up 

procedures. Chapter 5 discusses the experimental results and provides detailed analyses 

for benefits of FITS. Chapter 6 discusses related work. Chapter 7 offers conclusions and 

future directions of this dissertation research. 
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CHAPTER 2 

WORKLOAD ANALYSIS 

This section presents important characteristics of embedded applications in terms 

of their requirements in opcode space, operand space, immediate space, and physical 

register space. A representative subset of the MiBench suite [Guthaus01] programs have 

been compiled into the ARM binary using the GCC tool chain [GCC04] and simulated 

using the SimpleScalar tool set [Austin02] to provide both static and dynamic profiling 

statistics. The results and analyses of each requirement are discussed in each of the sub-

sections respectively. 

2.1   Opcode Space Requirement 

The opcode space in an ISA specifies the number of different instructions or 

functional capabilities a processor may perform. If an application need to perform many 

different instructions, a large number of instruction bits need to be allocated for opcodes. 

Figure 2.1 shows the number of distinct opcodes that were executed throughout 

the life time of a program. The 100% bar on the left represents the total number of 
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opcodes that a program has executed, so they account for 100% of total dynamic 

instruction frequency. Among these 23 MiBench programs, 16 of them (69.6%) utilize 27 

or less opcodes; 7 of them (30.4%) utilize from 32 to 40 opcodes. The 95% bar on the 

right indicates the number of opcodes needed to account for 95% or above of total 

dynamic instruction frequency. Ignoring less than 5% of total dynamic instructions 

reduces the opcode requirement significantly: 20 out of 23 programs need at most 13 

opcodes, while the highest opcode demand does not exceed 20.  

The reason for the significant reduction in opcode requirement is because not all 

opcodes are demanded equally frequently. This unbalanced utilization of opcodes is 

illustrated in Figure 2.2. This figure shows the percentage of under-utilized opcodes as a 

fraction of total number of opcodes has been executed. An opcode is “under-utilized” if it 

account for less than 1% of total dynamic instruction frequency. As shown in the figure, 
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many opcodes are rarely executed: on average, 55.6% of opcodes do not contribute to 

more than 1% of total dynamic instructions. Rather than mapping these infrequently 

executed opcodes onto the ISA space, we can emulate them in software to save the 

instruction space without affecting performance significantly. A software emulated 

instruction is often translated into one or more “real” machine instructions as specified in 

the ISA. 

2.2   Operand Space Requirement 

The number of explicit distinct register operands, or the register address mode, is 

another important parameter to be considered for designing a cost-effective ISA design. 

Three-address instructions, or instructions that have three register operand fields, prevail 
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in many popular 32-bit ISA designs. Despite many advantages of having three explicit 

register operand fields, our preliminary studies showed that two register operands are 

often enough. This section shows the results of our static and dynamic examination on 

how often two-address instructions suffice in a program. Static statistics are important 

from a code size viewpoint, and dynamic statistics help us gauge power dissipation. 

2.2.1   Static Profiling Operand Analysis 

Figure 2.3 is a static address mode profiling results for compiled ARM binaries. It 

illustrates the fraction of all three-address integer instructions that can be satisfied with 

only two addresses. This is determined, at compile time, by calculating the fraction of 

total instructions in which the destination register operand is the same as one of the 
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source register operands. The results are sorted according to the instruction type as shown 

in the figure. Besides load, store, and swap instructions, the remaining 3-address integer 

instructions only need two operands 19% to 88% of the time. This result suggests the 

possibility of intermixing two-address instructions and three-address instructions within 

an application. This approach trades off the expressive power of an instruction for a 

compact instruction space.  

2.2.2   Dynamic Profiling Operand Analysis 

Figure 2.4 is a dynamic address mode profiling results from simulating the 

compiled ARM binaries on SimpleScalar. Similarly, it illustrates the fraction of all 
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dynamic three-address integer instructions that can be satisfied with two addresses. This 

is determined, at run time, by calculating the fraction of total instructions in which the 

destination register operand is the same as one of the source register operands. These 

dynamic profiling statistics strengthens the static profiling results by showing a wide 

applicability of replacing three addresses with two addresses during the actual program 

execution. The lower distribution are from instructions, which either (1) rarely get 

executed such as add with carry, subtract with carry, reverse subtract with carry, and 

swap; or (2) tend to use all three operands such as load, and store. The remaining 3-

address instructions only require two register operands 59% to 87% of the time. The 

multiply instruction is rather unpredictable across the benchmark suite and ranges from 

0% (e.g. quicksort) to 41% (e.g. typeset). 

 2.3   Immediate Space Requirement 

ARM instructions use a lot of immediate operands. Clearly, if we are going to 

have a processor architecture that is similar to ARM, we will have to be capable of 

handling these immediate values efficiently. In this sub-section, we provide static and 

dynamic analyses of the space requirement for these immediate operands. To aid our 

analyses, we classify immediate operands into three categories: branch immediate 

operands, ALU immediate operands, and memory (load and store) immediate operands. 

Branch instructions contain immediate operands because ARM uses PC plus offset to 

calculate the branch target address. ALU instructions use immediate operands because 

ARM not only does regular arithmetic and logic operations, which often use immediate 
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operands to process data, but it may also do a shift operation followed by these data 

processing operations and the specification of the shift is an immediate. Memory 

instructions use immediate values because ARM uses base plus displacement to calculate 

the effective memory addresses. 

2.3.1   Static Profiling Analysis of Immediate Operands 

Immediate instructions are instructions that have immediate constants embedded 

in them. This section provides the static analysis of their characteristics in compiled 

ARM binaries. Figure 2.5 illustrates two important aspects of immediate operands’ usage. 

First, it shows their uses spread across the entire benchmark suite: on average, 71% of all 

static instructions contain immediate values. Second, it shows a clear distribution for each 
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type of immediate instructions within a program: on average, ALU immediate 

instructions constitute 30.7% of total program size. Memory immediate instructions 

constitute 23.5% of total program size, and branch immediate instructions constitute 

16.8% of total program size. 

Static utilization of these immediate operands may help us determine the size of 

immediate operand in instructions. Figure 2.6 shows the number of unique immediate 

constants utilized by each category respectively. Despite their small contribution to total 

code size, branch instructions use the largest number of unique immediate constants and 

range from 4427 to 16531 with an average at 6020 and a median at 5681. However, all 

programs except the typset use less than 8000 branch immediate operands. The numbers 

of distinct ALU and memory immediate operands utilized are much smaller than branch 
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immediate operands. The ALU immediate operands range from 558 to 956 different 

values with an average at 648 and a median at 623; while the memory immediate 

operands range from 422 to 683 different values with an average at 464 and a median at 

428.  

2.3.2   Dynamic Profiling Analysis of Immediate Operands 

One disadvantage of looking at static profiling analysis alone is that we may 

overshoot the requirement since not all immediate operands are dynamically executed 

equally frequently. In contrast to the static profiling approach, dynamic profiling allows 

us to identify the most frequently used immediate constants, and thus enabling us to 

pinpoint the greatest need of immediate constants and allocate the instructions bits 
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accordingly. Therefore, it is necessary to perform both static and dynamic profiling 

analyses to get a more balanced view of application execution needs. 

Figure 2.7 shows the dynamic distribution of immediate instructions. It 

strengthens the trend illustrated by Figure 2.5: On average, 97.7% of all executed 

instructions are immediate instructions. Within this overwhelmingly large fraction, 53.9% 

are ALU immediate instructions; 32.2% are memory immediate instructions, and 11.7% 

are branch immediate instructions. 

Figure 2.8 shows the number of unique immediate constants utilized by each 

category respectively. Despite the fact that they have the smallest share of total dynamic 

instruction counts, branch instructions again use the largest number of unique immediate 

constants, and range from 117 to 1193 with an average at 335 and a median at 295. The 

number of unique ALU and memory immediate operands dynamically utilized is again 
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smaller than branch immediate operands. The ALU immediate operands range from 63 to 

213 different values with both an average and a median at 113. The memory immediate 

operands range from 121 to 408 different values with an average at 197 and a median at 

192.  

2.4   Physical Register Space Requirement 

The physical register requirement is the maximum number of physical registers 

necessary without causing memory spills during the register allocation phase of the 

compiler. This information is closely related to the register operand width in the physical 

instruction space. The smaller the number of physical registers used by a program, the 

better the performance of instruction set with short register operand width would have. 
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To collect the maximum number of physical registers that an application may need, we 

used the MIRV [MIRV01] compiler to compile and profile MiBench. The results are 

shown in Figure 2.9. 

The profiling is done by examining this requirement at the procedure call level. 

Specifically, we looked at the register usage for each procedure and determined the 

maximum usage among all procedures for a given program. We did not look at the 

register spilling at procedure boundaries because they are less well-defined to be 

captured. This does not prevent us from obtaining a good overall estimate since most 

programs nowadays spend majority of their time in function calls one way or the other.  

The left bar (100%) shows the maximum physical register requirement among all 

procedure calls: they range from 9 to 82 with an average at 26 and a median at 20. The 

right bar (>1%) shows the maximum physical register requirement among those 

procedures that each individually contributes to more than 1% of total dynamic 

instruction count; hence it is the number of physical registers a program needs the most: 

they range from 5 to 26 with both an average and a median at 17. We argue that in order 

to achieve a better resource utilization, procedures which contribute less than 1% of total 

executed instructions yet demands many registers (e.g. Main, Init…etc.) should be given 

less consideration. According to Figure 2.9, 3 programs need 8 or less physical registers; 

7 programs need 9-16 physical registers; 13 programs need 17-26 physical registers. 
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CHAPTER 3 

FRAMEWORK DESIGN 

This chapter describes the FITS design approach and the framework that supports 

it. The basic philosophy of FITS is that high performance and high code density can both 

be achieved if we can match the instruction set to the requirements of a targeted 

application. FITS improves code density by using only 16-bit instructions instead of the 

conventional 32-bit instructions. Since the instruction width is reduced by half, the total 

code size can be reduced by half as long as what was originally done in a single 32-bit 

instruction can also be done in a single 16-bit instruction. In the chapter of experimental 

results, we will show that FITS indeed can achieve a code size reduction that is close to 

50%. FITS does not trade off performance for code density. Through application-specific 

customization, FITS can achieve high performance using only 16-bit wide instructions. 

To best utilize the half-sized instruction width, the instruction space is allocated to only 

those operations that are necessary and useful to the given application. As a result, we 

can have a design that has best parts of both worlds: compact code density of 16-bit 

instructions with high performance of 32-bit instructions. 
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3.1   Methodology 

FITS is an application-specific hardware software co-design approach that 

matches microarchitectural resources to performance needs of a given application, while 

improving code-density. FITS does application-specific customization at the instruction 

set level utilizing programmable decoders for instruction decode and register access. A 

FITS processor consists of a fairly large set of functional units, including standard ALU 

operations as well as a set of other useful instructions (e.g. Multiply/accumulate, zero-

overhead looping instructions, etc.). Limitations on the functions provided are only due to 

chip area goals, not instruction set size limits. This can greatly increase the number of 

similar operations, such as saturating add, because the additional circuitry to add 

saturation to an add operation is minimal. Since instruction space encoding is decoupled 

from the underlying microarchitecture, it is possible to add many instructions that may 

only be useful to a small subset of applications. With a programmable decoder, FITS can 

tune an ISA to include only those operations necessary for a single application. 

Moreover, FITS is extremely flexible in terms of the range of underlying 

microarchitecture that it can work with: from general-purpose DSPs or embedded 

processors such as ARM to application-specific customized data-path. FITS provides the 

same level of customization as many ASPs, trading somewhat greater chip area 

requirements for eliminating the need to synthesize a new chip for each application. 

To tune a FITS processor, a FITS aware compiler analyzes the instruction and 

register requirements of an application, before instruction selection and register 

allocation. We currently use profile information, but we are exploring new optimization 
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heuristics using static dataflow information to perform the code transformation. Once 

code generation is complete, the compiler can specify the register organization and 

instruction decoding to perform for the application. This configuration information is 

then downloaded to a non-volatile state in a FITS processor. At this point, the processor 

instruction set and register file organization is complete. If this application is later 

upgraded with increased functionality, FITS can re-configure the decoders to match the 

new requirements of the application. In general, FITS can transform any general-purpose 

machine into an application-specific processor platform with over-provisioned resources 

that can be dynamically configured to adept to the needs of different applications. 

3.2   System Design Flow 

The system design flow of FITS consists of five stages: profile, synthesize, and 

compile are done off-line; configure and execute are done on-line. As illustrated in Figure 

3.1, the targeted application is first analyzed by the FITS profiler to extract its 

characteristics. The output of the profile stage is a list of extensive requirements analysis 

related to each element that makes up an instruction set, such as opcode field, operand 

field, immediate field, and register pressure. 

After gathering the profiling information, FITS uses this information as a 

guideline to synthesize an appropriate instruction set that will satisfy the requirements of 

a given application. This is the stage where the instruction selection and encoding take 

place. Instructions are selected based on their referenced frequencies. When the 

instruction synthesis finishes, the definition of a complete ISA is formed. The FITS 
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compiler would then take the instruction set definition to compile the given application 

into a 16-bit FITS binary. Any unused portions of datapath are turned off to save power 

consumption [Joseph03]. Up until this point, the instruction synthesis is completed and 

everything is performed off-line. During the chip initialization, the programmable 

decoder is configured using the instruction decoding and register organization specified 

by the compiler. The overhead of this one time configuration is trivially insignificant. 

Please refer to the chapter on programmable decoder for more details on its initialization. 

Once everything completes successfully, the compact FITS code is executed without 

performance degradation. 

 

PROFILE

FITS
Binary

Application

SYNTHESIZE

COMPILE

EXECUTE

CONFIGURE

offoff--lineline
onon--lineline

 

Figure 3.1: System Design Flow of FITS Framework 
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3.3   Instruction Set Synthesis Flow 

This section describes how instruction synthesis is performed in FITS framework. 

Along with step-by-step description, we also demonstrated the synthesis process with real 

data from embedded benchmark programs. A representative subset of MiBench programs 

[Guthaus01] are compiled into ARM binary using GCC tool chain [GCC04]. We choose 

the ARM ISA as the target ISA to be studied, because it is popularly found in many 

embedded applications. 

At instruction synthesis stage, the compiler must make tradeoffs in the instruction 

selection phase of optimization. This may include software emulation of rarely used 

instructions. In almost all cases, the instruction set mapping includes a Base Instruction 
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Set (BIS), a Supplemental Instruction Set (SIS), and an Application-specific Instruction 

Set (AIS). 

3.3.1   Base Instruction Set (BIS) 

A BIS includes instructions found across all applications. As illustrated in Figure 

3.2, these may include instructions, such as load, move, add, branch, and compare, which 

are universally required by all applications. Together, these BIS instructions contribute to 

at least 53% of total dynamic instruction frequency as seen in crc32. In some applications 

like dijkstra, where application behavior can be easily captured in small dense loops with 

many repeated computations, the BIS can contribute as high as 87% of total dynamic 
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Figure 3.3: Synthesized Supplemental Instruction Set (SIS) 
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instruction frequency. On average, 70% of total program time can be captured by BIS 

instructions. 

3.3.2   Supplemental Instruction Set (SIS) 

A SIS includes instructions required to make the instruction set Turing-complete 

[Church36][Turing36]. An instruction set is Turing-complete only if it can specify all 

behaviors of any arbitrary programs that can be envisioned, just as a Turing machine can 

describe any programs in the universe. As illustrated in Figure 3.3, a SIS may include 

instructions, such as subtract, store, and, branch and link, and or, which are required only 

to compose a Turing-complete instruction set. Together, these SIS instructions can 
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Figure 3.4: Synthesized Turing-complete Instruction Set (TIS) 
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contribute to an average of 18% of total dynamic instruction frequency, and in the case of 

quicksort, as high as 31%. 

3.3.3   Turing-complete Instruction Set (TIS) 

It is essential for any FITS instruction sets to be Touring-complete, so correct 

program behaviors can be guaranteed when running a program that required some rarely 

executed instructions, which are not mapped to the target ISA. Therefore, after the BIS 

and SIS instructions have been identified and synthesized, the next step is to take the 

union of BIS and SIS to create the Turing-complete Instruction Set (TIS). As Figure 3.4 

illustrates, the TIS contains instructions from both BIS and SIS. The total dynamic 

instruction frequency coverage of TIS for each application is the sum of those from BIS 

and SIS. On average, the TIS contribute to 87% of total dynamic program time. In the 

case of dijkstra, more than 97% of total dynamic instructions can be captured by TIS 

instructions. 

The BIS and SIS together contain enough functionality to simulate any 

instructions not mapped for an application. BIS and SIS are generated differently and 

separately during the instruction selection phase. For clarity purpose, they are separated 

into two different instruction sets; even we include both them in all applications. 
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3.3.4   Application-specific Instruction Set (AIS) 

In addition to the BIS and SIS instructions, FITS will include a set of application-

specific instructions (taken from the set of functional units in the microarchitecture) 

necessary for the application to meet any performance goals. An application-specific 

instruction set (AIS) includes instructions that may not be required by all applications, 

and are included only to boost the performance of a particular application. Thus, the AIS 

from one application is probably going to be different from that of another application. 

The AIS is determined by evaluating the performance of existing TIS and the potential 

performance gain by adding any extra instructions. Since AIS is really application 
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independent, a FITS compiler only need to focus selecting the instructions that can 

maximize the performance of a given application. 

As illustrated in Figure 3.5, each application has from 3 to 5 AIS instructions to 

boost its dynamic instruction frequency coverage. Different applications may require a 

different set of AIS instructions. Some applications rely more heavily on these additional 

AIS instructions to cover their dynamic execution requirement. For example, adding 

additional 4 AIS instructions can fulfill additional 23% of dynamic run time execution 

needs for crc32. Other applications, such as dijkstra, where most of its dynamic 

execution requirement can be met by its TIS instructions will only gain marginal benefits 

when adding AIS instructions. Adding 3 to 5 additional AIS instructions on top of 

existing 10 TIS instructions yields a total of 13 to 15 total instructions. For an instruction 

format that only has 4-bit opcode field, this will ensure there is at least one opcode entry 

reserved for configuring FITS programmable decoder. 

3.3.5   Addressing Mode Synthesis 

To improve the operand space utilization, FITS uses the two operand version of 

an instruction, say add, when almost all of the uses of the instruction can be done with 

two operands without requiring an additional move, provided there is a register space, 

and three operands otherwise. FITS can mix and match these two address modes, so that 

some instructions have two operands and some have three, as long as any two operand 

definition that has a three operand use is in the part of the register file that can be read by 

the three operand instructions. Since there is only one address mode for each instruction, 
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there is no need of extra opcode bit to indicate mode switch. Register allocation is also 

designed to trade off the register file size and encoding with register spill frequency. 

3.3.6   Immediate Operand Synthesis 

Since the space requirements for different categories of immediates demonstrate 

distinctive trends, as shown in the chapter of workload characterization, it makes sense to 

partition the immediate synthesis problem into three sub-categories and perform a 

category-based synthesis accordingly. FITS adopts an utilization-based technique to 

encode the immediate operand space. FITS identifies the most frequently accessed 

immediates and places them them in programmable, non-volatile memory storage, 

replacing the instruction immediate with an index into the immediate storage. This is 

similar to the dictionary compression method in [Lefurgy00] except: (1) FITS can 

dynamically reconfigure the total immediate field width and adjust widths of other 

instruction fields accordingly to best reflect the application's requirements, and (2) FITS 

targets the immedaite fields only rather than a whole instruction. 
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3.4   Instruction Formats 

FITS instructions are all 16 bits in various different instruction formats specifying 

0, 1, 2, or 3 register fields. Generally speaking, all FITS ISAs have four basic instruction 

categories: operate, memory, branch, and trap. The details of the instruction format may 

vary, depending on the needs of the targeted application. For the illustration purpose, 

Figure 3.6 included example instruction formats, which was used for the CRC32 program 

from the MiBench Telecommunication benchmark group. 

The Operate instructions are used for data processing such as arithmetic, compare, 

logical. They use a source register RA and a source operand OPRD, writing result 

register RC. For three-operand instructions, the OPRD field can be either a register 

specifier or an immediate value, depending on the addressing mode. For two-operand 

OP RC RA OPRD

15       12 11        8 7        4 3        0

OP DISP

Operate

Branch

NUMBERTrap OP

OP RA RB IMMMemory

OP RC RA OPRD

15       12 11        8 7        4 3        0

OP DISP

Operate

Branch

NUMBERTrap OP

OP RA RB IMMMemory

Figure 3.6: An Example FITS Instruction Formats for CRC32 of MiBench 
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instructions, the OPRD field can be combined with RA to specify an 8-bit zero-extended 

literal. The Memory instructions move data between register RA and memory, using RB 

plus a displacement indicated by the IMM field as the memory address. The Branch 

instructions change the program control flow to the target specified by the sum of 12-bit 

DISP offset and the PC. Subroutine calls put the return address in the register specified 

by the first four bits of DISP field. The Trap instructions perform interrupts, exceptions, 

task switching, and other complex operations that must be done atomically. 

3.5   Synthesized Instruction Sets 

For our experiments, we evaluated the effectiveness of FITS across a wide range 

of embedded applications contained in the MiBench benchmark suite [Guthaus01]. A 
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Figure 3.7: Synthesized Final Instruction Sets 
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representative subset of MiBench programs from each of its 6 application domains: 

automotive, consumer, network, office, security, and telecommunication, are compiled 

into ARM binary using GCC tool chain [GCC04]. We choose the ARM ISA as the target 

ISA to be studied, because it is popularly found in many embedded applications. We used 

the SimpleScalar toolset [Austin02] to examine the quality of the synthesized instruction 

set in terms of the dynamic execution needs for opcodes and immediates, which the 

synthesized ISA can capture. 

3.5.1   Synthesized Instructions 

Figure 3.7 shows synthesized final instruction sets for different applications. The 

synthesized final instruction set consists of three subsets of instructions: BIS, SIS, AIS as 
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Figure 3.8: Synthesized Final Instruction Sets – Detailed Instruction Breakdown 
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described in previous section. Figure 3.7 illustrates the composition of the final 

instruction sets in terms of the distribution of BIS, SIS, and AIS. Figure 3.8 provides the 

detailed instruction breakdown of synthesized instruction sets. 

BIS consists of five opcodes: load, move, add, branch, and compare. BIS 

accounts for the majority of the dynamic instruction execution needs: on average, 69.1% 

of total executed instructions are those from the BIS. SIS also consists of five 

instructions: subtract, store, and, branch with link, and or. SIS accounts for 17.9% of 

total executed instructions on average. The size of AIS is different from one application 

to another. The union of entire suite’s AIS consists of: bit clear, compare negative, 

exclusive or, load multiple, multiply accumulate, multiply, reverse subtract, store 

multiple, and test bits. Depending on the individual execution characteristics, each 

application includes at most 3 to 5 of them and each AIS from different application 

accounts for 10.8% of total executed instructions on average. This AIS distribution will 

likely expand as we will modify the compiler to utilize more specialized instructions 

(such as a 0-cycle loop instruction), but since we limited ourselves to use the same code 

generation as the ARM, the ability to identify useful AIS instructions was also limited. 

Together, the contributions made by BIS, SIS, and AIS account for 97.8% of total 

executed instructions. One important observation to be made here is that instructions 

required by each benchmark are different, i.e., no fixed set of 16 instructions would be 

sufficient for all programs. 



 

37 

3.5.2   Synthesized Immediate Operands 

Figure 3.9 shows the contribution of the top 16 synthesized ALU immediate 

operands to the total number of accessed frequencies of the entire ALU immediate 

operand space. It is satisfying to learn that with as few as only 16 unique immediate 

operands, the synthesized 4-bit immediate scheme can capture, on average, 96.9% of total 

number of references made to the ALU immediate operand space. It is interesting to 

observe that, on average, 51.8% of the contribution was made by the most frequently 

referenced immediate value: zero. 

Figure 3.10 shows the results for synthesized memory immediate operands. On 

average, 87.4% of total references made to entire memory immediate operand space can 
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Figure 3.9: Synthesized Final ALU Immediate Operands 
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be captured by the top 16 synthesized immediate operands. The anomalies are basicmath, 

patria, fft and fft.inverse, which are due to excessive utilization of floating point memory 

immediate operands. Similar to the ALU immediate operand synthesis result where the 

single most frequently accessed immediate value is responsible for a significant portion 

of total immediate references: 26.9% of the total memory immediate operand references 

were attributed to the value zero. 

3.6   FITS Microarchitectural Enhancement 

The FITS framework mentioned thus far assumes standard general-purpose 

microarchitecture that can be seen in many embedded processors, such as ARM. In the 

case of using the same the microarchitecture that can perform the same functional 
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Figure 3.10: Synthesized Final MEM Immediate Operands 



 

39 

executions, the best FITS can do is to perform equally well like conventional processor 

designs with 32-bit instructions, but not better. It is certainly cost-effective to use half-

sized instructions, which, in turn, yield roughly half-sized programs that can perform 

equally well compared to the 32-bit counterparts. Yet, to raise the performance to the 

next level, we must equip FITS framework with performance enhancers. The 

performance enhancers we extend FITS framework with can speed up both data 

processing and program control flow streamlining. 

The FITS framework extension includes an enhanced microarchitecture that 

provides the additional rich capabilities and exceptional horse power to meet the ever 

increasing application requirements. These microarchitectural enhancements come from 

two special on-chip processing units: the Versatile Integrated Processing (VIP) unit, and 

the zero-overhead loop execution unit. The VIP unit is a universal data-crunching engine 

that delivers superb data computing and data streaming performances. The zero-overhead 

loop execution unit streamlines the program control flow by removing expensive loop 

control overhead from both nested and non-nested loops.  

Finally, to provide an interface to utilize these special resources efficiently at ISA 

level, FITS again relies on the use of a programmable decoder that can dynamically map 

a needed operation into instruction set definition as necessary. The use of a 

programmable decoder allows adding new capabilities to microarchitecture without being 

restricted by limited instruction space, which is one of the most critical constraints 

existing in most multimedia processors. 
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3.6.1   Versatile Integrated Processing (VIP) Unit 

A Versatile Integrated Processing (VIP) unit can execute up to five basic types of 

computations: Shift (S), Logical (L), Arithmetic (A), Multiplication (M), and Division 

(D), or SLAMD, as illustrated in Figure 3.11. Each basic type includes one to four 

different operations. Using as few as three multiplexers enables all possible permutations 

of input operands to a VIP unit. Although one VIP unit is stacked in front of the other 

VIP unit, the two-to-one multiplexer at the end of the datapath can select either the result 

of the first VIP unit or that of the second VIP unit to output. This creates a non-binding 

cascaded processing paradigm, which can freely act as a single-level or a dual-level data 

processing engine as directed by the requirement of a program.  

S
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<< >>
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Figure 3.11: Versatile Integrated Processing (VIP) Unit 
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The VIP unit has very flexible operand routing schemes, which can generate a 

rich set of computing patterns. As shown in Figure 3.12, there are as many as fifteen VIP 

instruction patterns, which a special data streaming operation can be synthesized to. A 

circle in each VIP instruction pattern represents one of the twelve basic SLAMD 

operations supported by a VIP unit. Synthesizing custom instructions to tailor a FITS 

processor to the requirement of an application is simple. For example, a logical operation 

followed by a shift computation, such as xor-right-shift (e.g. ^a >> 5), can be synthesized 

using VIP instruction pattern ten with XOR (^) operation executed by the first VIP and a 

(8) (9) (10)

(3) (4) (5)

(7)

(2)

(6)

(1)

(11) (12) (13) (14) (15)
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(1)(1)
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Figure 3.12: VIP Instruction Computing Patterns 
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right shift (>>) executed by the second VIP. Multiply-accumulate (MAC) instruction, 

such as (c += a x b), is another popular common computation in most media and DSP 

applications. To synthesize a MAC instruction, the VIP instruction pattern eight can be 

used with the first VIP executing multiply (x) operation and the second VIP executing 

accumulate (+=) operation. 

The VIP unit does not require extra read and write ports from the register file. The 

FITS register file supports two register reads per cycle, which is common in most modern 

RISC processors. Any pattern that can read three input operands (e.g. pattern eleven) will 

take the third input operand from the immediate field of an instruction. Since there is no 

extra cycle to wait for the input operands to arrive, provided that the VIP datapath is very 

well optimized and can be clocked at modest frequency of 250 MHz, all VIP instructions 

can be completed in one clock cycle. The VIP unit may be pipelined to achieve a higher 

clock frequency, if proven necessary. Yet, the discussion of this approach is beyond of 

the scope of this study. 

Given that a VIP unit can execute up to a total of twelve different SLAMD 

operations, and there are three single-level computing patterns and twelve dual-level 

computing patterns for VIP instructions; a FITS processor can specify as many as (12 x 

3) + (12 x 12 x 12), or 1764, distinct VIP instructions. This is a rich set of instructions, 

which can efficiently execute any single-level or dual-level computations that can be 

envisioned. To maintain the clock rate, 4 patterns that involve multiply and/or divide 

followed by another multiply and/or divide are not used. Since these two-level 

multiply/divide patterns, if ever used, can be easily replaced with a single 

multiply/divide, restrict them from being used will not affect the wide applicability of 
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VIP. To save chip area, it is possible to completely replace the regular ALU with a VIP 

unit since the operations implemented in the VIP unit is a superset of that of a regular 

ALU. Different applications exhibit different behaviors that may require different subset 

of VIP instructions to match. Any unused datapath within the VIP can be clock gated 

[Srinivasan05] to reduce the power consumption. 

3.6.2   Zero-Overhead Loop Execution Unit 

For many applications, a large percentage of the dynamic program execution time 

is spent in the innermost loops of a program [PattersonHennessy03]. These loop 

execution incur significant overhead due to the increment or decrement of the loop 

counter variables and the branches to initiate a new iteration.  

Many software and hardware techniques have been proposed to improve loop 

execution time. Please see the chapter of related work for a more complete list of relevant 

literature. The zero-overhead loop support in FITS is similar to [Analog-ADSP21160] in 

that it is stack-based. Stack-based zero-overhead loop execution can support not only the 

innermost loop but also nested loops as well. Moreover, since it does not store the actual 

instructions within loops, there is no need for additional storage, which can result in extra 

power consumption and area overheads. 

FITS microarchitecture supports three hardware stacks: top-of-loop address stack, 

end-of-loop address stack, and loop count stack. These three address stacks work in a 

synchronized manner for zero-overhead loop execution. When the FITS processor 

executes a zero-overhead loop instruction, LOOP, the program sequencer pushes the 
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address of the top-of-loop address, which is the address of the instruction following the 

LOOP instruction, on the top-of-loop address stack. The address of the last loop 

instruction is pushed on the end-of-loop address stack. The loop iteration count, which 

keeps track of the total number of iterations a loop must execute, is pushed on the loop 

count stack. The LOOP instruction specifies both the end-of-loop and the loop count. The 

end-of-loop address can be either a label for an absolute program memory address, or a 

PC-relative twos-complement address. The loop count is either an immediate unsigned 

value or can be the value of a register. The program sequencer decrements the loop count 

at the end of each loop iteration. The loop executes until the loop count reaches zero. The 

FITS stack-based zero-overhead looping mechanism removes most control overhead for 

executing loops. While this zero overhead loop instruction supports counter-based loops, 

i.e. the total number of loop iteration count is known at compiled time or can be easily 

computed at run time, this is sufficient for most media and DSP applications. In our 

experiments, we found that almost all program loops are or can be easily converted to 

counter-based loops. The benefits of this overhead removal are demonstrated later in the 

results chapter. 
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3.7   FITS Programmable Instruction Decoder 

The most vital piece of innovation for FITS framework to work is the 

programmable instruction decoder. This section describes its detail mechanisms and 

implementation. 

3.7.1   Hardwired Instruction Decoder 

In almost all modern processors, datapath control lines for an instruction are 

hardwired. These hardwired control lines regulate the behavior (e.g. reads or writes) of 

different parts of the processor datapath, such as updating the PC and the register file, 

selecting ALU functions, accessing memories, and other processor state, etc.. A non-

volatile read-only memory (ROM) is usually used to store control lines associated with 

each instruction. This conventional hardwired instruction decoder scheme is illustrated in 

Figure 3.13. When an instruction is decoded, its opcode is used to select the 

corresponding row of control line patterns to set the control on different parts of the 

processor datapath. The width of the ROM determines the number of control signals an 

instruction can regulate. The more complex underlying datapath is; the larger number of 

control signal lines there are, hence, the wider of each ROM entry has to be. The height 

or the number of rows of the ROM determines the number of distinct datapath control 

signal patterns the decoder can store. It is proportional to the size of the instruction 

opcodes. The larger the opcode is; the more operations a processor can support.  
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The reasons for using non-volatile memory, such as a ROM, instead of using 

volatile memory, such as RAM, to store control signal patterns is mainly because the 

fixed nature of conventional ISA designs. Because the control signals regulated by an 

opcode are never changed, it makes sense to store these control signals in memory that 

can retain its contents even when the power is turned off. Otherwise if a volatile memory 

is used, the control signals need to be loaded from somewhere (e.g. BIOS) into this 

volatile memory each time the machine is booted. 

3.7.2   Programmable Instruction Decoder 

Unlike the conventional hardwired fixed decoding scheme, the instruction 

decoding of a FITS processor is programmable. This section explains the architecture and 

mechanism of the FITS programmable decoder. A detailed evaluation of this 

programmability overhead is provided in the evaluation chapter. 

One of the key components enabling FITS to adapt to different applications, with 

the same microarchitecture, lies on the use of its programmable instruction decoder. This 
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Figure 3.13: Conventional Hardwired Instruction Decoder 
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adaptability is in the form of having custom instruction set for each different application. 

The FITS instruction decoder consists of a standard n-to- n2  binary row decoder and a 

n2 -entry programmable memory, where n is the opcode width and n2  is the number of 

instructions specified by the ISA. For all the embedded applications we studied, 4-bit 

opcode is sufficiently large to meet the execution requirements, which makes the number 

of FITS instruction decoder entries equal to 16. The 16-entry FITS decoder is used to 

store the instruction control information, which ordinarily would be stored in the ROM of 

a conventional decoder. The width of a FITS decoder entry is same as that of a ROM 

entry, so each FITS decoder entry is wide enough to store all control line signals for one 

instruction. When the 4-bit opcode input is inserted, exactly one of the16 outputs is 

activated and the corresponding instruction control signals are fetched and being sent 

down the pipeline to set the datapath accordingly. 

Either static random-access memory (SRAM) or a register flip-flop can be used to 

implement this programmable memory of FITS decoder. Although the dynamic random-

access memory (DRAM) has higher density that uses as little as one transistor per bit, a 

periodic refresh operation is required to keep its memory contents from disappearing. 

Thus, the DRAM is not considered when selecting the memory cells to implement FITS 

decoder. 

By making the instruction decoder programmable, designers can freely select a 

subset of pre-defined microarchitecture functions that are best suitable for the targeted 

application. These selected functions are mapped to the ISA of a FITS processor by 

loading their corresponding instruction control signals into the programmable decoder. 
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Specifically, a custom instruction set is defined and synthesized by the compiler for the 

targeted application. 

At boot time, the programmable decoder is initialized with the synthesized 

instruction set. We introduced a OVERWRITE instruction and included it in all 

synthesized ISA to perform this decoder initialization. As Figure 3.14 illustrates, the 

OVERWRITE instruction updates the FITS decoder with the instruction control 

information stored in the original ROM decoder. The OVERWRITE instruction takes two 

operands: DestinationEntry and SourceEntry. The DestinationEntry operand specifies a 

FITS decoder entry, to which the instruction control information of a selected opcode is 

going to be written. The SourceEntry operand specifies a ROM decoder entry, from 

which the instruction control information of a selected opcode is going to be used to load 

the FITS decoder entry. The decoder initialization overhead is small. The reading of the 

ROM decoder and writing to the FITS decoder can be done in a single cycle. With 4-bit 
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Figure 3.14: FITS Programmable Instruction Decoder 
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opcode that specifies up to 16 instructions, we pay a one-time 16 cycles of start-up cost to 

load the FITS programmable decoder.  

Depending on if we need to do any dynamic ISA reconfiguration or not, the fixed-

wired ROM instruction decoder can be handled differently to reduce its power 

consumption. The need of dynamic ISA reconfiguration can be determined at compile 

time, when the target application is profiled and analyzed and the ISA synthesis is to be 

performed. If dynamic ISA reconfiguration is not necessary, then the ROM decoder is 

only accessed during the chip initialization, after which there is no need to access the 

ROM decoder again and it can be completely turned off to save power consumption. 

After initialization, all instruction decoding is handled directly by the FITS decoder in the 

same way that a conventional ROM decoder handles it. 

If the ISA will need to be dynamically reconfigured at run time, we want the 

contents of the ROM decoder to be accessible during the ISA reconfiguration and we can 

leave the ROM decoder to be inactive or turned-off otherwise to maximize our power 

savings. Our preliminary studies show that the default synthesized ISA is effective 

enough to satisfy the majority of the program execution requirement. Thus, the ROM 

decoder is mainly accessed during the chip initialization. After initialization, the rarely 

accessed ROM decoder stays mostly inactive or powered-off and consumes nominal 

leakage power, which is the price we pay for the dynamic instruction re-configurability. 

More aggressive dynamic power management techniques, such as dynamic voltage 

scaling or dynamic frequency scaling [Magklis03], can be easily applied to reduce the 

power consumption of the ROM decoder further, but the discussion of which is beyond 

the scope of this dissertation and is left as our future research.  
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CHAPTER 4 

EXPERIMENTAL METHODOLOGIES 

4.1   Power Modeling 

Power dissipation is becoming a critical concern for semiconductor industry. If 

current design trends continue, a typical microprocessor will consume 50 times more 

power than that can be supported by cost-effective packaging techniques by 2016 

[Allen02]. Clearly, power has become one of the most serious design constraints in 

today’s process generations. Design engineers who are serious about providing power-

efficient cutting edge technology to their customers see the value in handling power 

problem early in the design flow. By understanding a design’s power requirements at 

every phase of the design cycle, engineers will be able to produce high-performance, 

power sensitive products without impacting cost or time to market. To help illustrate how 

FITS addresses this issue, this section describes the power metrics and modeling tool that 

were used to measure the power dissipation results presented in the experiment chapter. 
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4.1.1   Power Components for CMOS Circuits 

There are three components of power consumption in complementary metal-oxide 

semiconductor (CMOS) logic circuits: switching (capacitive) power; internal (short-

circuit) power; and leakage power. Figure 4.1 depicts how electric current flows in a 

CMOS transistor: swI , intI , and leakI  are currents associated with switching power, 

internal power, and leakage power respectively.  

Switching or capacitive power, which typically represents 60 to 80 percent of 

power consumption, is the power dissipated when a load capacitance is charged or 

discharged, i.e. 0 to 1 or 1 to 0 transitions of the nets in the design.  
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Figure 4.1: Power Dissipation in CMOS Circuits 
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Internal or short circuit power, typically 20 to 40 percent of power consumption, 

is the power consumed within a cell. This includes power loss due to short-circuit ( DDV to 

ground) current as well as all power dissipated due to switching of internal nets. The sum 

of the switching power and internal power is together referred as dynamic power.  

Leakage or static power, on the other hand, is the power dissipated due to sub-

threshold leakage and the current flow through the reverse-biased p-n junction between 

diffusion and substrate. The leakage power is also referred as static power.  

4.1.2   Power Equations for CMOS Circuits 

In computer architecture research community, the overall power consumption of a 

CMOS logic is often modeled as the sum of dynamic power and static power 

consumption [Mudge01] as equation (4.1) shows: 

   

The first term models the switching power caused by the charging and 

discharging of the capacitive load on the output of each logic gate: A is the fraction of 

gates actively switching; C is the total capacitance load of all gates; V is the supply 

voltage; f is the system operating frequency.  

The second term measures the internal power. The intI  is the short-circuit current, 

which flows between the supply voltage and ground when the output of a CMOS logic 

gate switches. The τ  is the coefficient that captures the momentary loss of internal power 

 leakVIfAVIfACVP ++= int
2 τ  (4.1)
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during a gate switch. Sometimes, the short circuit power can be ignored. The reason is its 

relatively small contribution to the dynamic power and can thus be absorbed by the 

dynamic power, if necessary. 

The third term measures leakI , the static power lost due to leakage current. 

Regardless whether a gate is actively switching or not, as long as it is not turned off, it 

will consume the leakage power. 

 

Dynamic power is activity based because it is directly related to the toggling 

frequency and operating duration of the gates in the circuit. The leakage power, on the 

other hand, is unaffected by activity since it is governed only by the number of gates and 

their threshold voltages. The only time that leakage can be reduced to zero is when the 

gates are turned off. Leakage power accounts for the majority of power dissipated when 

the circuit is inactive. Thus, this is an important metric to measure and optimize for 

portable battery-powered applications.  

In addition to the dynamic power and static power, the peak power is also relevant 

because exceeding an upper power limit imposed by a system will lead to circuit damage. 

Reduction in peak power may also help reduce the di/dt noise, an inductive effect caused 

by sharp changes in power consumption which can result in circuit malfunction. 

These fore-mentioned power characteristics imply that: given the same C and V, 

smaller logic block that completes a task faster could save both dynamic and static 

powers and possibly the peak power. As it will be shown in the experiment chapter, this 

is exactly how FITS achieves power savings for its programmable decoder, VIP function 

units, instruction cache, which all translate into significant power savings for the target 
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applications. . A FITS processor can achieve significant dynamic and static power 

savings by executing powerful and half-sized instructions. Powerful VIP instructions 

reduce dynamic program run time, thus reducing dynamic power. Half-sized instructions 

require smaller functional block and datapath (e.g. instruction cache), thus reducing static 

power. 

4.1.3   Power Modeling Tools 

It is very difficult to model power consumption of a system at the architectural 

level. A natural solution is to build a power estimator into the cycle simulators. However 

as [Kim01] pointed out, cycle simulators intentionally omit considerable implementation 

detail to speed up simulation speed. Therefore, the challenge is to select the necessary 

details that must be put back in to produce accurate power figures.  

In this dissertation, we used a modified version of the “sim-panalyzer” 

[Panalyzer04] to run power modeling simulation for our experiments. “sim-panalyzer” is 

an infrastructure for microarchitectural power simulation at the architectural level. It is 

built on top of SimpleScalar-ARM simulator [Austin02]. “sim-panalyzer” measures 

power consumption by tying cycle accurate behavior to activity at the gate level for 

obtaining the dynamic power and to estimate the number of gates that the 

microarchitecture requires for obtaining the static power. Specifically, “sim-panalyzer” 

computes the power dissipation with the switching capacitance multiplied by the number 

of microarchitectural accesses. It uses the logic simulator to collect the number of gate 

switching in each internal node of the targeted circuit on the fly, and the capacitance 
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extractor to estimate the switching capacitance of each node. The chip-wide power 

dissipation breakdown given by the simulator is consistent with that of an actual 

fabricated StrongARM design [Montanaro96]. 

4.2   Benchmarking Workloads 

This section describes the procedures that we used to perform the workload 

benchmarking. The applications we studied are from the MiBench benchmark suite 

[Guthaus01] and MediaBench benchmark suite [Lee97]. 

4.2.1   Profiling Procedures 

Profiling allows a system designer to learn where a program spent its time and 

which functions called which other functions while a program was executing. This 

information can show a designer which pieces of a program are bottlenecks, and might be 

candidates for optimization to make a program execute faster. For this study, we use the 

GNU profiler, gprof [GPROF], to analyze the target workload. The gprof profiler works 

by changing how every function in a program is compiled so that when a function is 

called, it will stash away some information about where it was called from. From this 

information, the gprof profiler can figure out what function called it, and can count how 

many times this function was called. This change is made by the compiler when your 

program is compiled with the `-pg' option, which causes every function to call a profiling 

library routine responsible for constructing an in-memory call graph table to record a 
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function’s parent and its parent's parent. This is done by examining the stack frame to 

find both the address of the child, and the return address in the original parent. Since the 

profiler uses information collected during the actual execution of a program, it is often 

used on programs that are too large or too complex to analyze by reading the source code. 

There are two forms of profiling output for program analysis. The flat profile shows how 

much time a program spent in each function, and how many times that function was 

called. The flat profile states concisely which functions burn most of the machine cycles. 

The call graph shows, for each function, which functions called it, which other functions 

it called, and how many times. There is also an estimate of how much time was spent in 

the subroutines of each function. This can suggest places to eliminate excessive function 

calls that use a lot of time. In this dissertation, we used both profiling outputs as general 

guidelines to apply FITS optimizations. 

4.2.2   Instruction Cache Evaluation Procedures 

To do an analysis of power consumption and performance evaluation on real 

embedded workload, four different processor configurations were simulated with “sim-

panalyzer.” A representative subset of the MiBench suite [Guthaus01] is compiled into 

the ARM binary using the GCC tool chain [GCC04]. To clearly demonstrate the 

effectiveness of FITS in reducing instruction cache power dissipation, we restrict the 

experiment to only allow a single controlled variable: instruction cache size. There are 

two different instruction cache sizes: 16 Kb or 8 Kb. For simplicity, simulations of the 

original ARM code with a 16 Kb and an 8 Kb instruction cache are abbreviated as 
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ARM16 and ARM8 respectively; likewise, simulations of the FITS-optimized code with 

a 16 Kb and an 8 Kb instruction cache is abbreviated as FITS16 and FITS8 respectively. 

The rest of the microarchitecture remained the same and were modeled after Intel’s SA-

1100 StrongARM embedded microprocessors [Intel-SA1100] as shown in the following 

table. 

 ARM16 ARM8 FITS16 FITS8 

Fetch queue 8 8 8 8 

Branch Predictor Not-taken Not-taken Not-taken Not-taken 

Fetch & Decode Width 2 2 2 2 

Issue Width 2 2 2 2 

Issue Order In-Order In-Order In-Order In-Order 

Function 

Units 

1 Int ALU, 

1 FP Mult, 

1 FP ALU 

1 Int ALU, 

1 FP Mult, 

1 FP ALU 

1 Int ALU, 

1 FP Mult, 

1 FP ALU 

1 Int ALU, 

1 FP Mult, 

1 FP ALU 

Instruction L1 Cache 

(cache size, associativity, 

block size) 

16 Kb, 

32-Way, 

32-Byte 

8 Kb, 

32-Way, 

32-Byte 

16 Kb, 

32-Way, 

32-Byte 

8 Kb, 

32-Way, 

32-Byte 

Data L1 Cache 

(cache size, associativity, 

block size) 

16 Kb, 

32-Way, 

32-Byte 

16 Kb, 

32-Way, 

32-Byte 

16 Kb, 

32-Way, 

32-Byte 

16 Kb, 

32-Way, 

32-Byte 

L2 Cache None None None None 

Memory (bus width, first 

block latency) 

4-Byte, 

64 Cycles 

4-Byte, 

64 Cycles 

4-Byte, 

64 Cycles 

4-Byte, 

64 Cycles 

Frequency 250 MHz 250 MHz 250 MHz 250 MHz 

Power Supply 1.8 V 1.8 V 1.8 V 1.8 V 

 

Table 4.1: Processor Configuration for Evaluating I-Cache Performance 
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We ran full simulation on all compatible benchmarks to their completions without 

skipping any instructions. Up to approximately 1 billion dynamic instructions were 

simulated for all benchmarks. Due to compatibility issues between the MiBench and the 

simulator, basicmath and gsm.encode are dropped from the power dissipation study and 

gsm.decode was thus renamed to gsm accordingly. 

4.2.3   Programmable Decoder Evaluation Procedures 

To perform a realistic and accurate cost evaluation on programmable decoder 

overhead, memories used for both the FITS programmable decoder and the regular ROM 

decoder were synthesized using the Artisan Memory Generator [Artisan-

MemoryGenerator] under worst-case process conditions. The technology used is TSMC’s 

six-layer metal 0.18 µm CMOS process [TSMC-18]. The SRAM memory synthesized for 

the FITS programmable decoder is a high-speed and synchronous SRAM, which has a 

single read port and a single write port [TSMC-SRAM]. The SRAM’s storage array is 

composed of six-transistor cells with fully static memory circuitry. The ROM memories 

synthesized for the both the FITS and regular decoders are high-speed and synchronous 

diffusion ROMs that have a single read port and a single write port [TSMC-ROM]. The 

diffusion ROM’s storage array is composed of diffusion-programmable single-transistor 

cells with fully static memory circuitry. Both SRAM and ROM operate at a voltage of 

1.8V ± 10% and a junction temperature range of -40°C to +125°C.  

Many of the characteristics of a memory cell are depend on its y-mux type, which 

defines the aspect ratio of the memory layout. When the y-mux type is changed from one 



 

59 

to the other, it will change many major characteristics, such as access time, area, and 

power consumption, of the memory. Consequently, the width of y-mux circuit for SRAM 

and ROM is fixed to be 4 and 8 respectively to ensure aspect ratio of the memory layout 

remain the same. These y-mux widths were selected because their corresponding aspect 

ratios yielded the best performance for each memory type. 

4.2.4   VIP and ZOLE Evaluation Procedures 

To show true performance advantages of VIP and ZOLE units, we evaluate both 

units on realistic embedded multimedia applications. We select the MediaBench 

benchmark suite [Lee97] as our evaluation benchmark. Four processor configurations 

were simulated on a modified SimpleScalar [Austin02] tool chain. Modifications to 

SimpleScalar were made, so it can execute VIP instructions and ZOLE instructions.  

Because the development of automated control flow and data flow analyses is in 

progress, all VIP and ZOLE optimizations were hand coded into the source code for this 

study. The modified programs were then compiled using the modified GCC tool chain 

[GCC04]. Using the default data sets, we ran full simulation on all benchmarks to their 

completions without skipping any instructions. Hundreds of million to billion dynamic 

instructions were simulated for all benchmark programs. Due to compatibility issues 

between the some of the programs and the compiler tool chain, four programs: pgp, rasta, 

ghostscript, and mesa were dropped from this study. 
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CHAPTER 5 

RESULTS AND ANALYSES 

Experimental results are discussed in this chapter. We first presented a 

comprehensive evaluation on costs and benefits of FITS programmable decoder in area, 

access latency, and power consumption. Following the decoder analysis is the discussion 

on the effectiveness of FITS framework, in application level, using the following metrics: 

instruction mapping rate, code size saving, power reduction, and performance 

measurement. Metrics are presented in a progressively order so any cause-effect 

relationships could be clearly established and results could be easily assimilated. 

5.1   FITS Programmable Decoder Evaluation 

To understand the cost of incorporating programmable instruction decoding to a 

FITS processor, we compared the area, access latency, and power consumption of both 

fixed and programmable decoders. In all figures, three lines were plotted: ROM 

represents the data points of a regular fixed instruction decoder; FITS represents the data 

points of the FITS programmable instruction decoder; Overhead represents the overhead 
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associated with the FITS programmable decoder. Overhead is expressed in percentage 

difference, which is computed with the following formula:  

 

A positive overhead indicates additional costs for using FITS decoder; a negative 

overhead indicates achievable savings through using the FITS decoder. 

5.1.1   The Size of a Decoder 

The first step of evaluation was to determine the size of a decoder being 

examined. The size of an instruction decoder is determined by the product of the number 

of entries stored (row dimension) and the width of each entry (column dimension). Every 

decoder entry stores the datapath control information of one instruction. The size of the 

row determines the number of distinct instructions that a decoder can accommodate. The 

size of the column determines the number of control lines an instruction can regulate.  

To show how the FITS decoder scales with a wide range of number of 

instructions, we plotted data points against the number of instructions ranging from 64 to 

4096. This is same as looking at how well the programmable decoder can scale for 

opcode field width ranging from six bits to twelve bits. This range was chosen because 

many popular ISAs today have their top-level opcode field, the second-level opcode field, 

or the combination of opcodes from both levels, fall into this range. For example, MIPS 
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has 6-bit top-level opcodes and 6-bit second-level opcodes [MIPS-MIPS32]; ARM has 4-

bit top-level opcodes preceded by a 4-bit conditional execution field, and 4-bit second-

level opcodes [ARM-ARM]; Alpha has 6-bit top-level opcodes and 11-bit second-level 

opcodes [Compaq-Alpha]. 

Both the FITS decoder and an ordinary ROM decoder have entry size starting at 

32 bits for 64 instructions. The entry size will increase by 1 bit every time we double the 

number of instructions available on chip. To put this dimension into perspectives, there 

are approximately 120 control lines in the integer datapath of Intel’s Pentium 4 processor 

[PattersonHennessy05]. For its floating-point datapath, the number of control lines ranges 

between 275 to over 400 – the latter number for including the SSE2 instructions [Intel-

IA32]. This is undoubtedly overkill for any embedded processor design. 
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Figure 5.1: Area Comparison between Fixed and FITS Decoders 
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5.1.2   Footprint Area Analysis 

Figure 5.1 shows the footprint area, in micron (µm) squared, of the fixed decoder 

and the programmable FITS decoder. The footprint area shown includes the core area, 

power ring and pin spacing areas. The area of the FITS decoder is computed by adding 

the area of the 16-entry SRAM and the area of the ROM used for initialization. A 16x32 

SRAM (for 64 instructions) is less than 47K micron squared and a 16x38 SRAM (for 

4096 instructions) is less than 54K micro squared when implemented using the TSMC’s 

0.18 µm process. The additional area associated with programmable decoder is very 

small compared to the total chip area, which generally ranges from tens to hundreds of 

millimeter (mm) squared under the same process technology. Moreover, this area 

overhead is scaling down as the number of instructions supported increases. As shown in 

the figure, the overhead starts out to be 98% for 64 instructions and it drops down to only 

23% for 4096 instructions. This is because while the number of entries in the ROM 

decoder needs to increase along with the increasing number of instructions, the number 

entries in the SRAM can be kept the same. 
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5.1.3   Access Time Analysis 

Figure 5.2 shows the access time, in nanoseconds (ns), of the fixed decoder and 

the programmable FITS decoder. Access time is defined as the slowest possible input-to-

output transition for accessing a critical path. The access time overhead for using the 

FITS programmable decoder is small: the worst case has less than 3% overhead when the 

ROM decoder is small (64 entries). Moreover, this access time overhead decreases down 

to less than 1.4% when the number of instructions reaches 256, after which accessing the 

FITS programmable decoder become faster than accessing the ROM decoder: 0.4% faster 

for 512 instructions; 4% faster for 1024 instructions; 10% faster for 2048 instructions, 

and 20% faster for 4096 words. Most important of all, with the processor clock frequency 

0.0
0.2
0.4

0.6

0.8
1.0

1.2

1.4
1.6

1.8

64 128 256 512 1024 2048 4096

Number of Instructions

A
cc

es
s 

Ti
m

e 
(n

s)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

%
 D

if
fe

re
nc

e

ROM FITS Overhead

Figure 5.2: Access Time Comparison between Fixed and FITS Decoders 
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targeted at 250 MHz, all read and write accesses to the FITS programmable decoder can 

be easily finished within one cycle. 

5.1.4   Power Consumption Analysis 

The leakage power, dynamic power, and total power consumption, in milliwatts 

(mw), of the fixed decoder and the FITS programmable decoder are shown in Figure 5.3 

and Figure 5.4 respectively. The dynamic power is calculated by multiplying the dynamic 

AC current by the operating voltage. The dynamic AC current assumes 50% read and 

write operations, where all addresses and 50% of input and output pins switch. Likewise, 

the leakage power is the product of the operating voltage and the standby leakage current, 

which assumes inactive memory cells with all input and output pins being held stable. 

The total power consumption is the sum of dynamic and leakage power consumed. Both 
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dynamic and static power consumptions of FITS programmable decoder presented here 

includes the leakage power consumption of the back-up ROM decoder. Through clever 

dynamic power/energy management techniques [Magklis03][ Huang00], it is possible to 

clock gate the rarely accessed back-up ROM decoder to achieve further power savings by 

reducing its leakage power. Yet, the discussion of applying these techniques is beyond 

the scope of this thesis. 

Similar to the area and access time analyses shown in previous sections, the FITS 

programmable decoder shows a nice scaling effect in leakage power consumption. As 

shown in Figure 5.3, the leakage power overhead starts with 66% and gradually decreases 

down to 14% as the number of instructions supported increases from 64 to 4096.  

Unlike all the analyses shown above where positive overheads were observed, the 

dynamic power consumption of the FITS programmable decoder is less than that of a 

regular fixed decoder as indicated by negative overhead line. As depicted in Figure 5.4, a 
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54% to 59% of dynamic power savings can be achieved by FITS decoder as the number 

of instructions supported increases from 64 to 4096. These power savings are due to the 

fact that FITS decoder mostly accesses the small 16-entry SRAM during program 

execution; whereas a regular fixed decoder needs to access a much bigger sized ROM 

that consumes more power to operate. 

The observation to be made here is the scale of leakage power is an order of 

magnitude smaller than that of dynamic power. This means the positive overheads of 

leakage power shown in Figure 5.3 will not negligible effect for the total power 

consumption, which is computed by adding leakage power with dynamic power. Figure 

5.5 depicts the total power consumption. As expected, the total power consumption of the 

FITS programmable decoder is dictated by the dominant dynamic power consumption. 

As indicated by negative overhead lines in Figure 5.5: 52% to 56% of total power savings 
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can be achieved by FITS decoder as the number of instructions supported increases from 

64 to 4096.  

5.2   Instruction Mapping Coverage 

In order for FITS to demonstrate any noticeable power and code size benefits, 

enough one-to-one translations must be made from the native 32-bit ARM instructions to 

the optimized 16-bit FITS instructions. This section demonstrates the reality of FITS with 

its promisingly high one-to-one correspondence to ARM: a 96% average of static 

mapping and a 98% average dynamic mapping, as illustrated by Figure 5.6 and Figure 

5.7 respectively.  
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Higher static mapping gives us smaller code size and fewer cache misses. Higher 

dynamic mapping means greater power reduction and faster execution. The mapping is 

determined to be one-to-one if there was a FITS instruction that could achieve the same 

result as an ARM instruction. Otherwise, a one-to-n mapping, where n > 1, is determined 

when we had to translate this ARM instruction into multiple FITS instructions. In theory, 

n could be any number ranging from 2 to 4; however, in practice, n = 2 is almost always 

the case. The lower dynamic one-to-one mapping of fft.inverse and fft is due to a larger 

fraction floating-point code executed which are currently not accounted for by the FITS. 
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5.3   Code Size Benefits 

Figure 5.8 compares the program code density achieved by different code 

generations, namely, ARM, THUMB, and FITS. The FITS bars represent the program 

code size after the ARM-to-FITS translation. The ARM and THUMB bars represent the 

program code size compiled in pure 32-bit ARM and 16-bit THUMB respectively. ARM-

THUMB intermixing result was omitted since FITS is a pure 16-bit instruction synthesis 

technique and ARM-THUMB intermixing does not yield better code density than that of 

THUMB alone. We normalized everything with respect to ARM in order to show the 

code size savings that THUMB and FITS each achieves in terms of percentages. On 

average, THUMB reduced approximately 33% of ARM code across the entire benchmark 
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suite. For jpeg where there are many expensive image compression and decompression 

routines, THUMB can only reduce code size by approximately 20%. On the other hand, 

FITS was able to reduce the ARM code by almost an half: on average, 47% of total ARM 

segment could be eliminated. The reason for THUMB not being able to achieve as much 

code size savings as FITS does is because THUMB is not able to utilize its 16-bit 

instruction fields as efficiently due to its general-purpose nature. Thus, for an application 

that has several performance critical regions, such as jpeg, many 32-bit ARM instructions 

would still need to remain in the program to handle the expensive processing. 

Like most general-purpose ISAs, THUMB supports a wide range of instructions 

in order to be able to specify lots of applications. However, this general-purpose 

capability requires more opcode space and makes the other instruction fields, such as 

register and immediate operands, smaller. When the register operand width is reduced, 

the processor can specify less architect registers and thus increasing the register pressure. 

Higher register pressure causes more spilling and thus increasing the number of memory 

references in the program. This is the reason why THUMB is not able to achieve the level 

of code size savings that FITS gives. 

This code size saving achieved by FITS does not come at expense of performance 

lost as illustrated by the performance results later. This is mainly due to the following two 

reasons. First and foremost, FITS aggressively optimized and adopted the utilization-

driven synthesis heuristic, which makes it very effective in determining the target 

instructions for synthesis without any noticeable performance lost. Second, the resultant 

half-sized FITS code effectively makes the L1 instruction cache almost twice as large as 

before. Thus, the FITS execution core was able to take advantage of higher spatial 
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locality exhibited to largely raise the cache hit rate, and so does the overall execution 

speed. 

5.4   Power Dissipation Benefits 

The best way to reduce overall chip power dissipation is to attack each of the 

microarchitectural components using power. In this study, we focus on attacking 

instruction cache power consumption. We start by showing the breakdown of instruction 

cache power for each of the four processors under simulation. Next, we present the power 

reduction that FITS is able to achieve in each of the component powers: switching, 

internal, leakage, and peak powers. The reduction of each component power is then 

translated into the total instruction cache power reduction. Finally, the instruction cache 

power savings is mapped into the corresponding overall chip-wide power saving. 

As mentioned in the chapter of evaluation methodology, we model only dynamic 

and static power dissipation. The dynamic power was further broken down into switching 

power and internal power to better facilitate monitoring power reduction by FITS. The 

switching power is the power consumed by the output driver and its output load 

capacitance of the instruction cache microarchitecture. The internal power is the dynamic 

power of the instruction cache microarchitecture itself. Therefore, the switching power is 

sensitive to the power consumed by the amount of output data during each cache access, 

or switch. On the other hand, the internal power is sensitive to the overall power 

consumed by the entire cache logic block when it is on; hence it is highly dependent upon 

the total size of the cache.  
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The static power, or leakage power, is sensitive to the power lost due to leakage 

current of each gate of cache logic block; thus it is also dependent upon the total size of 

the cache. The peak power depends both on the microarchitectural configuration of a 

cache, such as block size and total cache size, as well as the characteristics of the 

instruction address stream from each individual cache access. 

Energy savings in both instruction cache and system chip could be directly 

inferred from the corresponding power reduction; hence they are not explicitly shown 

here. The validity of this energy saving inference comes from the fact that all the 

execution cores run at a fixed operating frequency and the difference between their 

simulation times was not significant. Since energy is the product of power and time, 

without too much difference in the time component, the ratio of energy saving would 

roughly have identical distribution as the ratio of power saving. 

There are many results to be presented in this power consumption study. To 

facilitate easy assimilations, we show only average results collected from the entire 

benchmark suite to simplify the information presented here for better digestion. We move 

all individual detailed results to the appendices section at the back of this dissertation for 

interested readers to pursue. 
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5.4.1   Instruction Cache Power Breakdown 

From the instruction cache power breakdowns shown from Figure 5.9, the 

following power usage trends are noticed. First, the total instruction cache power is 

dominated by the dynamic power, i.e. the switching power plus the internal power. This 

is expected since SA-1100 is a relatively low-end embedded microprocessor built with 

less aggressive fabrication technologies (e.g. 0.35µm), we would not encounter the same 

level of leakage current problem found on current state-of-the-art high-end designs 

fabricated with deeper sub-micron technology.  

Second, as the size of the instruction cache increases, the percentage of switching 

power goes down; the percentage of internal power goes up; the percentage of leakage 

power remains approximately the same. The reason is larger cache consists of more gates 
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and thus more internal and leakage power. In addition, given the same cache block size 

and associativity, larger cache would yield better hit rate, which means less gate switches 

and the switching power is reduced. 

Third, with the instruction cache size being equal FITS uses lower percentage of 

switching power, higher percentage of internal power, and approximately the same 

percentage of leakage. The leakage power percentage stays unchanged because the 

numbers of gates in caches of same size are equal. The reduction of switching power 

percentage is due to the increased cache hit rate of FITS-sized code. Since the cache size 

is the same, the increase of internal power percentage is due to the normalization effect 

after accounting for the reduction of switching power percentage. 

Last, if we compare the switching power percentage between ARM8 to ARM16 

and ARM8 to FITS8, we will find that applying FITS transformation reduces more 

switching percentage than simply doubling the size of cache. Considering this with the 

fact that the FITS reduction comes solely from the increased cache hit rate as opposed to 

the joint effect of increased internal power seen in ARM16, it implies that FITS can 

reduce switching power more effectively than doubling the size of the cache. This 

speculation is confirmed by the instruction cache power saving analysis that follows. 
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5.4.2   Instruction Cache Power Saving 

To see how FITS optimizes the power usage of an instruction cache, it is best to 

look at the power reduction in each power component broken down as shown in Figure 

5.10. We compare the power saving from a 16 Kb and an 8 Kb FITS caches (FITS16 and 

FITS8) with the default 16 Kb ARM cache in the SA-1100 core. The 8 Kb ARM cache 

(ARM8) is included to show that simply reducing the size of ARM cache is not going to 

help us much and we may have to pay more performance penalty than we can bear. 

As speculated in the section of power breakdown analysis, FITS-sized codes 

benefit greatly from switching power reduction. This is the power saving that clearly 

distinguishes a FITS-optimized cache from a normal ARM cache. Both FITS16 and FIT8 

save approximately 50% cache switching power while ARM8 saves virtually none. The 
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switching power saving of FITS is a result of better cache hit rate due to better spatial 

locality that FITS-sized codes exhibit. On the other hand, ARM8 consumed as much 

overall switching power as the baseline 16 Kb cache indicates the overall gate switching 

frequencies of the two caches are essentially the same. 

For the internal and leakage powers, the two half-sized caches, FITS8 and ARM8, 

demonstrate nontrivial savings in most applications. This is because both internal and 

leakage powers are directly proportional to the number of gates given the same 

operational period. For the leakage power; however, exceptions occur for some 

applications where FITS8 or even FITS16 shows greater savings than ARM8. This is 

because the saving of smaller amount of logic gates in ARM8 were compromised or even 

wiped out by its longer operational period due to larger cache miss rates. This effect was 

hidden in the internal power results because internal power contributes to more than half 

of the total cache power in all four different cache schemes (see the cache power 

breakdown); therefore, the power loss due to longer operational period were simply 

absorbed. 

The peak power consumption, depends on both switching frequency and amount 

of logic gates; therefore, we can observe savings from all three cache schemes: on 

average 46% for FITS16, 63% for FITS8, and 31% for ARM8. Since peak power is 

sensitive to factors that affect both the dynamic and the static powers, greater peak power 

saving of FITS16 and FITS8 indicate that FITS is a well balanced low power technique 

for instruction cache. 

This claim is supported by the overall instruction cache power consumption 

results, which combine all the component savings above. As the figure shows, FITS8 
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gives the highest 47% average total instruction cache power saving followed by ARM8 

and FITS16 with each saves 27% and 18% respectively.  

 

To see how effective does FITS reduce the total chip power, Figure 5.11 

illustrates how these instruction cache power savings would be translated into the total 

chip power savings. It provides the corresponding chip-wide power savings for 

instruction cache power savings presented in Figure 5.10. As shown in Figure 5.11, 

FITS16 and FITS8 save approximately on average 10% and 15% chip-wide switching 

power respectively while ARM8 saves 5%. For the chip-wide internal power savings, 

FITS16 and FITS8 save approximately on average 5% and 16% respectively and ARM8 

saves 10%. For leakage power savings, both FITS16 and FITS8 save approximately on 

average 5% to 6% while ARM8 saves 2%. For peak power savings, on average, FITS16 

saves more than 1.5%; FITS8 saves more than 3%; ARM8 saves over 2%. At last, for the 
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overall chip-wide total power saving, on average, FITS8 saves 15%; FITS16 saves7%; 

ARM8 saves 8%. 

As shown by the individual detailed results in the appendix, FITS has 

demonstrated exceptional power savings on patricia. Patricia uses special tree data 

structure to represent routing tables for IP traffic in network applications. This special 

tree data structure, or a patricia tree, is used in place of a full tree with very sparse leaf 

nodes. Branches with only a single leaf are collapsed upwards in the tree to reduce 

traversal time at the expense of code complexity. The increased code complexity has 

translated into more cache misses for normal ARM code, which resulted in increased 

power dissipation. On the other hand, improved program spatial locality seen on FITS 

caches neutralized the increased code complexity effect of using a patricia tree: cache 

miss rates were significantly improved for caches loaded with FITS code. Other 

applications, such as typeset and stringsearch, have demonstrated similar power savings 

for the same reason of much improved cache miss rates. Typeset is a front-end typesetting 

tool for HTML. It captures the processing required to typeset an HTML document, and is 

a major core component of a web browser. Stringsearch searches for given words in 

phrases using a case insensitive comparison algorithm. Both applications took the 

advantages of much increased spatial locality rendered by dense FITS codes. Please refer 

to following section for more discussion on cache miss rate results. 
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5.5   Performance Benefits 

To demonstrate that FITS does not save power at the expense of performance; we 

include the following performance results. Performance is measured in both instruction 

cache miss rates and instructions per cycle (IPC) rates. The cache miss rate analysis helps 

to explain why simply reducing the cache size of the default ARM cache does not reduce 

much power. The IPC analysis gives an idea of overall FITS performance compared to 

the ARM. Both results showed that FITS saves power without compromising 

performance. Looking this section together with the power results from the last section, 

we observe that reducing the regular sized cache to 8 Kb not only hurts performance as 

measured by high miss rates and low IPC, it also just shifts power use. On the other hand, 

8 Kb caches for FITS have no more misses than 16 Kb for ARM. 
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5.5.1   Cache Miss Rate Evaluation 

Figure 5.12 shows the instruction cache miss rates for all four processor 

configurations. The miss rate was measured as misses per one million cache accesses 

since most of the benchmarks are easily cacheable due to their small code size footprint. 

Values that are too large to be displayed are marked with their real miss rate numbers on 

the side. FITS surpassed ARM with greatly improved cache performance: the half-sized 

FITS8 caches have smaller miss rates than the normal full-sized ARM16 caches. This is 

due to the better spatial locality exhibited by FITS-sized code. Since the instructions are 

half the size, the cache lines can be viewed as being twice the size (this operates much 

like a next line prefetch on cache miss since twice the number of instructions are brought 

0

50

100

150

200

250

300

350

400

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

M
is

se
s 

pe
r 1

,0
00

,0
00

 A
cc

es
se

s

ARM8 ARM16 FITS8 FITS16

674 9264 
6128
3771
2540

49410
42289
24480

576

1289 1438
1344
763
750

17497 22256 1450

0

50

100

150

200

250

300

350

400

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

M
is

se
s 

pe
r 1

,0
00

,0
00

 A
cc

es
se

s

ARM8 ARM16 FITS8 FITS16

674 9264 
6128
3771
2540

49410
42289
24480

576

1289 1438
1344
763
750

17497 22256 1450
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into the cache (i.e. fewer compulsory misses and for displaced lines, fewer conflict 

misses to restore the instructions). Moreover, since embedded applications are typically 

stream-based, most branches in MiBench are easily predictable. Therefore, this 

instruction “packing” effect makes FITS caches seem virtually twice as large as their true 

physical size. 

5.5.2   Instruction per Cycle (IPC) Rate Evaluation 

Figure 5.13 shows the IPC performance measures for all four processor 

configurations. Since the SA-1100 simulated core is a dual-issue, in-order machine, the 

highest IPC possible is 2. Overall, the IPC for all four configurations are satisfactory. 

This is the result of the easy predictability and cacheability of MiBench programs. As 

expected, the IPC performance of FITS codes is comparable to that of native ARM codes. 

It is interesting to observe that an 8 Kb FITS cache could achieve roughly the same IPC 

as a 16 Kb ARM cache with only few minor variations. We expect FITS to be 
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performance neutral, but consistently find a small improvement, and in some 

applications, a large improvement (e.g. patricia). This is due to increased instruction 

cache locality exhibited from packed FITS code. 

5.5.3   VIP and ZOLE Speedup Evaluation 

The performance is evaluated in terms of total dynamic execution time. The 

baseline processor is a single-issue, in-order five-stage MIPS pipeline. Any popular 

processor could have been used, but the MIPS is a common basis of research within the 

academia community. The other three processor configurations are the baseline 

augmented with VIP processing units; the baseline augmented with ZOLE unit; and the 

baseline augmented with both VIP and ZOLE units. This is to mimic real life scenarios 

where there can be different chip area constraints specified by customers. If there are 

enough spare transistors left, we may as well include both VIP and ZOLE units; or 

otherwise, we must make clever tradeoffs based on careful analyses and thorough 

evaluations. 

Figure 5.14 depicts the performance speedup benefits for each FITS optimization. 

For VIP optimization alone, the performance improvement was as much as 39% (1.39x 

speedup) as demonstrated by mpeg2decode and a 12% average performance 

improvement was achieved throughout the entire MediaBench suite. For LOOP 

optimization alone, the performance improvement was as much as 64% (1.64x speedup) 

as demonstrated by epic and a 19% average performance improvement was achieved 

throughout the entire benchmark suite. For VIP and LOOP optimizations combined, the 
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performance improvement was as much as 99% (1.99x speedup) as demonstrated by 

mpeg2decode and a 37% average performance improvement was achieved benchmark 

wide. All optimizations were applied to subroutines that account for more than 1% of 

total run time. Once a FITS aware compiler is fully developed, optimization can be 

automated to exploit more opportunities to achieve even greater speedups. 

This speedup result demonstrates significant performance improvements of FITS. 

Yet, there is still much potential remained to be explored. Specifically, all speedup 

presented above were obtained from original algorithm without modification. These 

algorithms were written by programmers without the knowledge of FITS’s powerful and 

versatile microarchitectural support. It is clear that if programmers are aware of the 

FITS’s VIP and ZOLE supports, further speedup gains can be easily achieved with more 
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aggressive optimization at the algorithm level. Instead of trying to approximate a 

multiply-divide operation with a long series of adding, subtracting, and shifting 

operations plus conditional tests, programmers can write multiply followed by divide 

directly, knowing that it will be mapped into one of the VIP instructions. Besides 

potential significant speedup, this algorithm level optimization can also further reduce the 

code size, which can lead to on-chip and off-chip memory power reduction and better 

cache performance. 
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CHAPTER 6 

RELATED WORK 

This chapter describes prior and concurrent research related to FITS. These 

relevant researches are presented under different categories based on the nature of the 

work. Along with detailed description and careful analysis, what is also provided are 

insights explaining why FITS is advantageous compared to these work. 

6.1   Microprogramming 

One of the early approaches to reduce code size was microprogramming 

[Wilkes53]. A microprogram, or microcode, is a program that is made up of macro 

instructions which consist of several microinstructions. Each CISC-like macro instruction 

fetched from memory caused a sequence of microinstructions to be fetched and executed. 

Each microinstruction defines the set of datapath control signals that must be asserted in a 

given state. Executing a microinstruction has the effect of asserting the control signals 

specified by the microinstruction. Microcode saves time by allowing to fetch fewer 

instructions from the main memory. This work differs from microcode in several ways, 
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including that specific instructions within the programmable decoder can be individually 

referenced and that the instructions in the programmable decoder can be changed for each 

executable binary as well as within each executable binary on the fly. 

6.2   Code Compression 

Embedded applications must execute under constraints of limited memory and 

low energy consumption. Instruction caches have been recognized as a major source of 

energy consumption in embedded systems. In [Kadri03], Kadri et al. observed that 

energy consumption and program execution time are very sensitive to the level one 

instruction cache size. One way to address this issue is to compress the code within a 

program, which can decrease the number of cache misses due to a smaller footprint of 

instructions being accessed. IBM’s CodePack technique [IBM-CodePack][Orpaz02] 

included in its PowerPC processors [IBM-PowerPC] used Huffman tables to compress 

cache blocks. Xie et al. [Xie01] proposed a code compression algorithm based on 

arithmetic coding in combination with a pre-calculated Markov model. These code 

compression schemes compress all instructions in the program. Thus, the decompression 

overhead occurs at every instruction fetch. Benini et al. [Benini99] and Lekatsas et al. 

[Lekatsas00] proposed selective instruction compression. They proposed dictionary-

based code compression algorithm to compress frequently appearing instructions. Only 

the most commonly executed instructions are compressed, while other instructions of the 

code are left uncompressed. These code compression approaches have the disadvantage 

of complicating instruction fetch and decode logic since instructions can differ in size. 
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Instruction reuse is another popular approach to reduce code size. Procedural 

abstraction [Debray00] is a compiler optimization, which identifies common code 

sequences and abstracts them into procedures. The original sites of each code sequence 

are replaced with function calls. A hardware extension of this technique is to use echo 

instructions [Lau 03]. An echo instruction indicates where the abstracted code sequence 

is located and the number of instructions to be executed. Unlike conventional procedure 

calls, echo instructions do not call returns at the end of the abstracted sequence. Another 

advantage of this approach is that abstracted sequences can overlap to further facilitate 

code reuse. The main disadvantage of both procedural abstraction and echo instruction is 

that the overhead of executing calls and returns for each abstracted code sequence will 

usually slow down the program execution. Spatial locality may also be reduced, which 

may decrease cache performance. 

More recently, Hines et al. proposed instruction packing technique to reduce code 

size. [Hines05] Instruction packing removes instruction fetch cost by placing frequently 

occurring instructions into special registers, just as frequently accessed data are kept in 

registers through compiler register allocation. The advantage is that code size is reduced 

without use of large dictionaries. The difference between instruction packing technique 

and FITS is at the instruction decode. FITS utilizes a programmable instruction decoder 

to achieve application-specific customization effect by allowing a subset of instructions 

implemented in the microarchitecture to be mapped to the ISA for each different 

application. The advantage to make decoder programmable is that all instructions are 

half-sized (16-bit long) and native: there is no need to decompress or unpack an 
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instruction before its corresponding control signal can be fetched from the decoder and 

passed down to pipeline. 

6.3   SIMD Architecture  

Single-instruction multiple-data (SIMD) architecture is a popular technique to 

exploit parallelism in performance demanding applications. The ability to process 

multiple data in one instruction makes SIMD architecture attractive for programs that 

have large vectors and matrices. Recent works such as IMAP [Kyo05], Imagine Stream 

[Ahn04], and Synchroscalar [Oliver04] have demonstrated the potential of applying 

SIMD in high-performance embedded workloads. Nevertheless, it is very difficult to 

keep all generously allocated processing elements occupied all the time when a program, 

or regions of a program, lack of “embarrassingly parallel” ILP. The leakage power 

consumed by idle processing elements can add up to significant energy waste. Moreover, 

extending any regular microprocessors with SIMD not only requires adding new 

hardware support but also a new programming model. Adding new programming model 

requires a complete software tool chain to support, which is usually not economically 

feasible for many vendors. These drawbacks limit SIMD from being widely deployed to 

many real world applications. 
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6.4   Zero-Overhead Loop Execution 

For many applications, a large percentage of the dynamic program execution time 

is spent in small program loops [PattersonHennessy03]. These loop execution incur 

significant overhead due to the updates of loop counters and the branches to initiate a 

new iteration. Many software code transformation techniques have been proposed to 

improve loop execution time. For instance, both software loop unrolling [Davidson96] 

and software pipelining [Intel-IA64] are popular techniques to decrease loop overhead. 

Nevertheless, these approaches suffer from drastic increase in code size. Space increasing 

transformations, such as loop unrolling or software pipelining, are often unacceptable for 

many embedded and DSP applications that have strict code size and power requirements. 

On hardware side, it is popular to use branch prediction to reduce branch 

misprediction penalty and superscalar or VLIW execution to allow other instructions to 

execute in parallel with the loop overhead instructions. However, the use of complex 

hardware to reduce branch overhead can often cause more power consumption, which is 

also not acceptable in embedded and DSP processors that have strict power envelope. 

Branch folding is another architectural technique to reduce branch misprediction 

penalty. It is used in AT&T CRISP microprocessor [Ditzel87] and in IBM PowerPC 

architecture [IBM-PowerPC]. By performing early decoding of branch instructions in the 

fetch stage and looking ahead on conditional branches to resolve them early, these 

resolved or “folded out” branches do not need to be issued to the execution pipeline; thus 

achieving the effect of a zero-cycle branch execution. Implementing this technique 
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requires (1) early branch decoding logic at front end; (2) condition code dependency 

checking on all the instructions being issued to the execution; and (3) logic for branch 

misprediction recovery. The associated hardware cost for implementing branch folding is 

prohibitively high for cost-sensitive embedded and DSP domains. 

Several commercial DSP processors have special loop or branch instructions for 

removing the overhead associated with the loop control mechanism [Analog-

ADSP21160][TI-TMS320C67][Motorola-MCore][Siemens-TriCore]. For example, the 

TriCore ISA has three special branch and loop instructions to handle program loops: 

JNEI, JNED, and LOOP. The JNEI and JNED instructions are like normal jump-not-

equal instructions with an additional increment or decrement operations to update the 

dynamic loop count. The LOOP instruction can achieve zero execution time in all but the 

first and last iteration of the program loop with loop iteration count known at compile 

time. 

Loop buffering is an architectural feature commonly found in many embedded 

and DSP processors. A loop buffer is a small dedicated instruction buffer placed between 

the execution core and a larger main instruction cache that allows efficient looping fetch. 

Instructions are supplied to the execution core either from the loop buffer or from the 

main cache. This buffer can be used to increase the speed of applications without 

increasing code size. Other buffering benefits include reduced power consumption due to 

more localized instruction fetch, accurate loop-back branch predictions, elimination of 

taken-branch stalls, and reduced memory bus contention if data and instruction fetch 

share the same memory bus. 
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The Lucent DSP16000 architecture [Lucent-DSP16000] includes a  loop buffer 

that can hold up to 31 instructions. Two special instructions are used to control the loop 

buffer on the DSP16000: DO and REDO. The DO instruction can specify n instructions 

to be executed k times. The value of n, ranging from 1 to 31, indicates the number of 

instructions following the DO instruction to be placed in the loop buffer. The value of k 

represents the number of times the instructions within the loop buffer to be executed and 

it is compile-time constant than 128. If the loop iterations are bigger than 128, a 

dedicated register is used to encode the value. The first iteration results in the instructions 

following the DO to be fetched into the loop buffer. Ideally, the remaining k-1 iterations 

are serviced directly by the loop buffer. The REDO instruction is identical to DO, except 

that it executes the current existing instructions within the loop buffer k times. The 

advantage of this technique is that the back branch at the end of loop can be eliminated 

since the loop will be executed the predetermined number of times. The limitation of this 

technique includes: (1) it only can be applied to the innermost loop; (2) the number of 

loop iterations must be known at compile time; (3) the number of instructions in the loop 

cannot exceed the size of the loop buffer; (4) there cannot be other internal branches (e.g. 

if-else blocks) within the loop body other than the loop back branch. 

The innermost loop restriction can be addressed by incorporating more loop 

registers to keep track of extra loop states. For example, the StarCore SC140 processor 

[StarCore-SC140] includes a loop buffer and four sets of loop registers to allow for four 

levels of nested counted loop execution. On the other hand, the STMicroelectronics 

ST120 [ST-ST120] provides hardware support for up to three loops, which may be 

nested, overlapped, or independent of one another. 
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To address the unknown loop iteration count issue, Lee et al. took a hardware 

approach to dynamically detect and capture small tight loops with short backward 

branches [Lee99]. J. Rivers et al. extended the work in [Lee99] by generalizing the loop 

controller to enable capturing loops that: (1) contain if-else blocks; and (2) bigger than 

the loop buffer [Rivers03]. While both techniques are capable of handling loops with 

unknown loop iteration count at compile time, they have to execute the last loop back 

branch in all iterations, even for those loops with constant loop iteration count. 

The restriction of including additional transfer of control within loop body is 

partially addressed by applying compiler code transformation in [Uh99] and [Sias01]. Uh 

et al. showed that using many conventional compiler optimizations can increase the 

utilization of a loop buffer in Lucent DSP16000 on a set of small DSP kernels. Among 

these transformations were function inlining and the use of the conditional execution 

support to include loops with simple control diamonds [Uh99]. Sias et al. showed that the 

internal control flow within loop can be further reduced by applying if-conversion to 

transform control flow into predicated blocks [Sias01]. 

The zero-overhead loop support in FITS is similar to [Analog-ADSP21160] in 

that it is stack-based. Stack-based zero-overhead loop execution can support not only the 

innermost loop but also nested loops as well. Moreover, since it does not store the actual 

instructions within loops, there is no need for additional storage, which can result in extra 

power consumption and area overheads 



 

94 

6.5   Extended and Customized ISA.  

Adopting special custom instructions to improve computational efficiency and 

throughput is a well established area. These special custom instructions can be either an 

extension to an existing general-purpose ISA or a standalone custom designed 

application-specific ISA by itself. Examples for the first paradigm are Intel’s MMX and 

SSE [Intel-IA32] or AMD’s 3DNow! [Fomithchev00] for common multimedia 

applications. Examples for the second paradigm are commonly found in ASP designs, 

such as NVIDIA GeForce [NVIDIA-GeForce] and ATI Radeon [ATI-Radeon] for 

graphics and gaming, CryptoManiac [Wu01] for cryptography, and [Saini04] for speech 

synthesis. ISA extension makes the already overly large instruction space of general-

purpose ISA even bigger by adding more new instructions. Increased instruction space 

requires larger opcode fields, which can result in smaller operand size, reduced address 

modes, or larger instructions that can have detrimental effects on performance and code 

size. ISA customization requires designing a new datapath for each new application. The 

non-recurring engineering (NRE) cost and turnaround time for designing a new processor 

for each application is prohibitively high. 

6.6   Dual-width ISA  

Dual-width ISA designs, such as Thumb [ARM-Thumb], Thumb2 [ARM-

Thumb2], MIPS16 [MIPS-MIPS16], MeP [Toshiba-MeP], ST100 [ST-ST100], and 
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ARCtangent [ARC-ARCtangent], have been proposed to reduce code size to address the 

issue of limited memory bandwidth in embedded media computing. In addition to the 

regular 32-bit instructions, these designs support 16-bit instructions, which specify a 

subset of the default 32-bit instructions. The idea is to use 16-bit instructions for 

performance non-critical regions to trade off execution time for smaller memory 

footprint. For performance critical regions, 32-bit instructions will have to resume 

execution to make sure important tasks can be completed on time. Ideally, designers want 

to use 16-bit instructions as much as possible. Because 16-bit instructions alone cannot 

guarantee the required performance, designers have to keep 32-bit instructions as a fall-

back option. Instruction coalescing [Krishnaswamy05] extends the Thumb architecture 

with the augmenting instructions (AX), which allow the execution of two 16-bit Thumb 

instructions as a single 32-bit ARM instruction. This avoids some of the performance 

penalty in replacing 32-bit code with 16-bit code in a dual-width ISA. 

Our approach is different in that we believe that 16-bit instructions alone are 

sufficient to accommodate the requirements of most embedded media applications 

without the support of large-width instructions. Different applications may not require the 

same set of instructions. We propose a general-purpose microarchitecture that includes 

both standard operations enhanced with high-performance data-streaming processing 

capabilities, but only map a subset of these instructions that a particular program needs to 

a 16-bit instruction format. We introduce a novel programmable instruction decoder, 

which can re-map the instruction set definition at run time to accommodate special 

dynamic execution requirement of a program at any performance critical regions. 
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Thus, rather than starting with a 32-bit ISA and looking for places to partially 

substitute it with its 16-bit counterpart, we move straight into the single 16-bit ISA 

scheme and utilize an instruction encoding and enhanced streamlining computing 

synthesized to the requirements of each application. We have shown that 16-bit 

instruction sets are very effective in improving code density as well as reducing power 

consumption for on-chip caches in our prior work [Cheng04][Cheng05a][Cheng05b]. In 

this dissertation, we demonstrate that an enhanced general-purpose microarchitecture 

interfaced with a 16-bit instruction set can achieve significant performance advantages in 

high-performance embedded applications. 

6.7   Reconfigurable Systems  

Reconfigurable architecture is a recent trend introduced to improve program 

encoding efficiency. Reconfigurable processors, like Xtensa [Gonzalez00] and Lx 

[Faraboschi00], consist of a basic set of instructions that exist in all implementations 

extended by reconfigurable resources. Designers have the ability to choose from optional 

functional units, memory interfaces, and peripherals. Customizations are made available 

through user-defined instructions. The advantage of this approach is that common code 

sequences may be replaced with one or few user-defined instructions to save code size. 

However, it is extremely difficult to design a general-purpose Reconfigurable datapath 

that is well balanced among speed, area, and energy. 

The availability of large and cheap field programmable gate array (FPGA) logic 

promoted reconfigurable computing - a class of architecture alternatives for complex 
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digital systems. In most reconfigurable architectures, the main microprocessor is coupled 

with an array of programmable FPGA logic. Depending on the logic block size in the 

array and the level of coupling between the reconfigurable array and the main processor, 

a reconfigurable array can be integrated as a standalone coprocessor like Garp 

[Callahan00] or a function unit for a main processor such as CHIMAERA [Ye00] and 

Altera Nios II [Altera-NiosII]. Reconfigurable coprocessors perform more tasks 

independently without the constant supervision of the main processor. On the contrary, 

reconfigurable function units are more tightly integrated with the main processor. The 

execution of a reconfigurable function unit occurs on the datapath of the main processor. 

Moreover, a reconfigurable function unit normally shares the resources, such as register 

files, on the main processor. Despite promoters argue that FPGAs are flexible to be 

mapped to any interesting algorithm, the overhead in speed, area, and power associated 

with a FPGA is often too high to make performance-demanding applications benefit from 

these FPGA-integrated designs. 

DISE [Corliss03] is another work that can dynamically replace dataflow 

subgraphs in the instruction stream with reconfigurable function units. A special 

instruction is used to signal the DISE engine, which then sends the appropriate control 

signals into the pipeline. This model requires a DISE aware operating system and 

processor, since the DISE subgraphs are specified in the binary at boot time, and must be 

replaced to execute the modified binary at runtime. Conversely, the FITS platform 

proposed in this paper does not affect the operating system, nor does it require any 

special binary translation engine to execute the program. 
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More recently, Clark et al. proposed configurable compute accelerators (CCA) [ 

Clark04] to speed up the execution of dataflow subgraphs, and an interface [Clark05] that 

facilitates integrating different CCAs into the baseline processor. Subgraphs are 

identified and replaced with new microcode instructions at run time. These microcode 

instructions control the CCA, which is a big array of function units that generally can 

capture subgraphs of depth from 4 to 7. The microcode is then invoked when a reserved 

instruction is executed in the program code.  The compiler is responsible for what code 

sequences should be mapped to CCA subgraphs and at what locations in the program 

these subgraphs should be loaded into a CCA configuration cache. CCA and VIP share 

some of the same advantages of accelerating program execution by streamlining dataflow 

computation without expanding the instruction set encoding. The key difference between 

the CCA approach and VIP is in how the large potential instruction space of chained 

functions is mapped to the instruction set. CCA reserves a single opcode which specifies 

the data dependencies to whichever configuration is programmed into the accelerator, 

while the decoupled instruction set provided in our underlying FITS architecture allow all 

function permutations to be mapped into the ISA without necessitating additional opcode 

space. A conventional ISA could not support the wide range of different functions that 

can be configured since the number of total instructions will quickly grow into the order 

of thousands just with 2 levels of function units and it will be well past that with 3 or 

more levels of chained functional units.  CCA configures the programmable circuit with 

the chained functions that the compiler found useful, while the programmable nature of 

the FITS instruction decoder enables the microarchitecture to implement a fixed circuit 

capable of executing any of the function permutations; we simply map the one or more 



 

99 

permutations that the application requires to one of the instructions in the FITS ISA. 

While it may seem that implementing the circuit to perform all permutations would 

require much greater area than that of a programmable circuit would require, that is not 

the case. Since each permutation differs in only the control signals going to the 

multiplexers at each level of the chained function unit design;  it is not area limitations 

that prevent the design of these chained function units (since the area requirement for 

implementing any one circuit are only slightly smaller than implementing all 

permutations), but it is the tremendous increase in operations that can be specified in the 

microarchitecture and the corresponding increase required in the opcode for conventional 

ISA that is the true limitation.  CCA provides one method of avoiding the limitation 

(configurable circuits), while VIP/FITS provides a more flexible method (programmable 

instruction decode). 



 

100 

CHAPTER 7 

CONCLUSIONS 

7.1   Thesis Summary 

In this dissertation, we proposed the design and implementation of FITS. FITS is 

an innovative architectural and microarchitectural framework that can effectively support 

high-performance embedded computing that requires low-power, low-cost, and rapid 

time to market. This section summarizes how FITS achieves each of these goals. 

7.1.1   High-Performance Solution 

FITS improves the performance by integrating proposed Versatile Integrated 

Processing (VIP) unit and a Zero-Overhead Loop Execution (ZOLE) unit into the 

microarchitecture. The VIP unit is a universal data-crunching engine that delivers superb 

data computing and data streaming performances. The area cost of adding new operations 

using VIP is extremely low: for every additional VIP unit added, the number of 

additional operations available will increase exponentially. Furthermore, because VIP is 
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synthesized in standard cells and chaining each extra VIP only costs few multiplexers, we 

can implement thousands of new specialized operations using less area than it would take 

to configure a single operation using programmable circuits like FPGAs, and would 

result in faster circuit speeds. The ZOLE unit streamlines the program control flow by 

removing expensive loop control overhead from both nested and non-nested loops.  

Another aspect of performance improvement comes from the custom synthesized 

application-specific ISA tailored to the requirements of a given application. The 

application-specific instruction set tailoring is achieved by replacing the fixed instruction 

decoder of general-purpose embedded processors with a programmable decoder. The use 

of a programmable decoder allows designers to add new capabilities to microarchitecture 

without being restricted by the limited instruction space. The only other constraint of 

adding new operations is due to chip area, which has been addressed by the space-

efficient VIP unit. 

The net effect is that the underlying microarchitecture may contain an extremely 

large set of operations that can never be mapped to any single ISA. Yet, through the use 

of a programmable instruction decoder, FITS can choose the needed subset of operations 

being mapping to the premier instruction space for a given application. The instruction 

selection is determined at compile time. The definition of ISA is loaded to the 

programmable decoder at boot time. The programmable decoder can be dynamically 

reconfigured with different set of ISA definitions at run time, if necessary. 

One other major advantage of using the programmable decoder is the benefit of 

decoupling the microarchitectural enhancements from the ISA so that new instructions 

can be integrated into the underlying microarchitecture, as much as the chip area goal 
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permits, without being restricted by limited opcode space nor being crippled with bigger 

instruction decoders. Designers are free to include additional functional capabilities to 

improve performance, even when those enhancements are useful for only a small 

percentage of applications since the inclusion of one operation does not require the 

elimination of another to fit in the instruction set encoding space. 

7.1.2   Low-Power Solution 

FITS reduces energy consumption by running same applications with much 

smaller code size and improved locality as a result of half-width ISA. The philosophy of 

FITS is that high performance and high code density can co-exist if we can match the 

instruction set to the requirement of a targeted application. FITS improves code density 

by utilizing instructions that are only 16-bit instead of 32-bit that are commonly used in 

most conventional machines. Since the instruction width is reduced by half, the total code 

size can be reduced by half as long as what was originally done in a single 32-bit 

instruction can also be done in a single 16-bit instruction. To best utilize the half-sized 

instruction width, the instruction space is allocated to only those operations that are 

necessary and useful to the given application. We have shown that FITS can achieve a 

code size reduction that is close to 50% with better performance through application-

specific customization. 

Half-sized program with better locality means it is possible to replace original 

instruction caches with those that are only half big and still can yield better cache miss 

rates. Smaller instruction caches with better hit rates can save both dynamic and static 
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power consumption. Better cache hit rates also means less traffic from the processor to 

off-chip memories, which can further improve both performance and power consumption.  

7.1.3   Low-Cost and Fast Time to Market Solution 

FITS reduces the chip production cost and shortens the design turnaround time 

through the use of a general-purpose, functionally-rich underlying microarchitecture. 

Rather than fabricating a new chip to map each new application, we choose a single 

general-purpose microarchitecture platform augmented with VIP and ZOLE units, so 

there are an extremely large set (i.e. in the order of thousands) of operations that can be 

selected to map the requirements of any application of interests. Because of the nature of 

this single general-purpose microarchitectural platform, FITS can reduce the chip 

production cost and shortens time to market by leveraging the fabrication advantages of a 

mass-produced, single-chip solution that amortizes the one-time high NRE cost and 

lengthy design turnaround time.  

Through the use of programmable decoder, general-purpose microarchitecture 

enhanced with VIP and ZOLE units, FITS provides a new class of low-cost, low-power 

architecture designs for embedded microprocessors that can achieve application-specific 

processor performance with fast time to market. 
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7.2   Future Directions 

Future directions of this dissertation research are aimed to broaden the impact of 

FITS framework by expanding its benefits to both consumers and chip vendors in the IT 

industry. One aspect of this agenda is to make FITS a reliable, secure, and scalable (RSS) 

framework. 

• Reliable - so FITS can be assured 

• Secure - so FITS can be trusted  

• Scalable - so FITS can be extended 

Making FITS reliable means making it dependable. This will involve in research 

on fault-tolerant computing, design-for-test and various chip testing techniques, defect 

detection and prevention, concurrent checking of system operation, run-time failure 

detection and recovery techniques. 

Making FITS secure means making it trustworthy. This will involve in research 

on implementing cryptographic support in FITS. Cryptographic algorithms are designed 

so that by observing only the inputs and outputs of the algorithm it is computationally 

infeasible to break the cipher or to guess the secret key used in encryption and 

decryption. A well designed cryptographic algorithm does not leak enough useful 

information during its operation to compromise the security of the system it is trying to 

protect. However, when a physical implementation of an algorithm is considered, 

information like the timing characteristics of the circuit implementing the algorithm, 

power consumption, behavior as a result of internal faults, and timing of the circuit can 

provide sufficient information to compromise the security of the system.  
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This type of data is widely accessible since anyone can buy a piece of 

cryptographic hardware such as smart cards, SIM cards, USB tokens, and perform fault 

or power analyses on it. Attacks based on the use of this implementation specific 

information are known as Side Channel Attacks (SCA). Contrary to traditional 

cryptanalysis attacks, very small amount of side-channel information is enough to 

completely break a crypto system.  One of the goals of this future research direction is to 

develop methods and designs to make such attacks infeasible. 

Making FITS Scalable means two things: (1) FITS can take advantages of 

continuously shrinking process technology so long as the Moore’s Law should live; (2) 

FITS can be the building block for large multi-processor based designs. To achieve both 

aspects of scalability, continuous architectural and microarchitectural research 

advancement must be made. 

Part of these future research endeavors is not only developing useful techniques 

that enable FITS to have these useful RSS properties, but also understanding the 

underlying principles behind inventing these techniques. We can then apply these 

understanding to automate the entire design synthesis process. The grand challenge I 

propose here is to automatically generate an efficient, scalable, reliable, and secure FITS 

processors in its entirety from a simple goal-directed high level specification. 

Another research direction that will broaden the impact of FITS is to empower 

end-user programmers with the ability to create their own application-specific functional 

specifications and to automate transferring such specifications into real hardware designs. 

Oftentimes, it is the end-user programmers who have the application-specific knowledge 

and the coding-pattern information necessary to implement useful functional synthesis. 
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My dissertation research has provided a practical foundation framework for extensible 

processor architectures, at both ISA and microarchitecture levels. As a result, end-users, 

with little or no knowledge of the backend program analysis, can easily extend existing 

processor architectures without worrying about breaking them. In this dissertation, I 

apply this foundation framework to examine how application-specific optimizations can 

be made practical and useful. In the future, I want to investigate techniques for allowing 

end-user programmers to develop their own application-specific hardware design 

languages (HDL) that can be easily incorporated into mainstream HDL, such as Verilog 

and VHDL. 
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APPENDIX A: Instruction Cache Breakdown 
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Figure A.1: Instruction Cache Power Breakdown for ARM8 
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Figure A.2: Instruction Cache Power Breakdown for ARM16 
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Figure A.3: Instruction Cache Power Breakdown for FITS8 
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Figure A.4: Instruction Cache Power Breakdown for FITS16 
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APPENDIX B: Instruction Cache power savings 
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Figure B.1: Instruction Cache Switching Power Saving 
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Figure B.2: Instruction Cache Internal Power Saving 
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Figure B.3: Instruction Cache Leakage Power Saving 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

Figure B.4: Instruction Cache Peak Power Saving 
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Figure B.5: Instruction Cache Total Power Saving 
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APPENDIX C: Chip-wide Power Savings 
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Figure C.1: Chip-wide Switching Power Saving 
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Figure C.2: Chip-wide Internal Power Saving 
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Figure C.3: Chip-wide Leakage Power Saving 
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Figure C.4: Chip-wide Peak Power Saving 
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Figure C.5: Chip-wide Total Power Saving 

 



 

116 

 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY 



 

117 

 
BIBLIOGRAPHY 

 
 
 

[Ahn04] J. Ahn et al., “Evaluating the Imagine Stream Architecture,” Proceedings of the 
International Symposium on Computer Architecture (ISCA), 2004. 

[Analog-ADSP21160] Analog Devices Inc, “ADSP-21160 SHARC DSP Instruction Set 
Reference.” 

[Allen02] A. Allan et al., “2001 Technology Roadmap for Semiconductors,” Computer, 
Vol. 35, No. 1, January 2002, pp. 42-53. 

[Altera-NiosII] Altera Corporation, Nios II Processor Reference Handbook, v 5.0, 2005; 
see http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf. 

[ARC-ARCtangent] ARC International, S. Zammattio, “How to Reduce Time-to-Market 
for System-on-Chip Design,”2002; see 
http://www.arc.com/documentation/whitepapers/ 

[ARM-ARM] ARM Limited, ARM7TDMI (Rev. 4) technical Manual, 2001; see 
http://www.arm.com/pdfs/DDI0210B_7TDMI_R4.pdf. 

[ARM-Thumb] ARM Limited, ARM7TDMI (Rev. 4) technical Manual, 2001; see 
http://www.arm.com/pdfs/DDI0210B_7TDMI_R4.pdf. 

[ARM-Thumb2] ARM Limited, ARM Thumb-2 Core Technology, 2003; see 
http://www.arm.com/pdfs/Thumb2%20Core%20Technology%20Whitepaper%20
-%20Final4.pdf 

[ATI-Radeon] ATI Technologies Systems Corp., Radeon X850 Graphics Technology, 
http://www.ati.com, 2005 

[Artisan-MemoryGenerator] Artisan Memory Generator, Artisan Components, Inc., 
http://www.artisan.com. 

[Austin02] T. Austin et al., “SimpleScalar: An Infrastructure for Computer System 
Modeling,” IEEE Computer, Vol. 35, February 2002, pp. 59-67. 

[Benini99] L. Benini, A. Macii, E. Macii, and M. Poncino, “Selective Instruction 
Compression for Memory Energy Reduction in Embedded Systems,” 
International Symposium on Low-Power Electronics and Design (ISLPED), Aug. 
1999, pp. 206-211. 

[Callahan00] T. J. Callahan,  J. R. Hauser, and J. Wawrzynek, “The Garp architecture and 
C compiler,” IEEE Computer, Volume 33,  Issue 4, pp. 62 – 69, 2000. 



 

118 

[Cheng04] A. Cheng, G. Tyson, and T. Mudge, "FITS: Framework-based Instruction-set 
Tuning Synthesis for Embedded Application Specific Processors," Proceedings of 
the ACM/IEEE Design Automation Conference (DAC), pp. 920-923, June 2004. 

[Cheng05a] A. Cheng, G. Tyson, and T. Mudge, "PowerFITS: Reduce Dynamic and 
Static I-Cache Power Using Application Specific Instruction Set Synthesis," 
Proceedings of the IEEE International Symposium on Performance Analysis of 
Systems and Software (ISPASS), pp. 32-41, March 2005. 

[Cheng05b] A. Cheng and G. Tyson, "An Energy Efficient Instruction Set Synthesis 
Framework for Low Power Embedded System Designs," IEEE Transactions on 
Computers (TC), Volume 54, Issue 6, pp. 698-713, June 2005. 

[Church36] A. Church, “An Unsolvable Problem of Elementary Number Theory,” 
American Journal of Mathematics, 58, 1936, pp 345-363. 

[Clark03] N. Clark, H. Zhong, and S. Mahlke, “Processor Acceleration through 
Automated Instruction Set Customization,” Proceedings of the International 
Symposium on Microarchitecture (MICRO), December 2003. pp. 129-140. 

[Clark04] N. Clark et al., “Application-Specific Processing on a General-Purpose Core 
via Transparent Instruction Set Customization,” Proceedings of the International 
Symposium on Microarchitecture (MICRO), 2004. 

[Clark05] N. Clark et al., “An Architecture Framework for Transparent Instruction Set 
Customization in Embedded Processors,” Proceedings of the International 
Symposium on Computer Architecture (ISCA), pp. 272-283, 2005. 

[Compaq-Alpha] Alpha Architecture Handbook, Order Number: EC-QD2KC-TE, 
Compaq Computer Corp., 1998 

[Corliss03] M. Corliss, E. Lewis, and A. Roth, “DISE: A programmable macro engine for 
customizing applications,” Proceedings of the International Symposium on 
Computer Architecture (ISCA), pp. 362-373, 2003. 

[Davidson96] J. W. Davidson, and S. Jinturkar, “Aggressive Loop Unrolling in a 
Regargetable, Optimizing Compiler,” Proceedings of Compiler Construction 
Conference, pp. 59-73, April 1996. 

[Debray00] S. Debray et al., “Compiler Techniques for Code Compaction,” ACM 
Transactions on Programming languages and Systems (TOPLAS), Vol. 22, No. 2, 
March 2000, pp. 378-415. 

[Ditzel87] D. Ditzel, H. McLellan, “Branch Folding in the CRISP Microprocessor: 
Reducing Branch Delay to Zero,” Proceedings of the International Symposium on 
Computer Architecture (ISCA), 1987. 



 

119 

[Faraboschi00] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood. “Lx: 
A technology platform for customizable VLIW embedded processing,” 
Proceedings of the International Symposium on Computer Architecture (ISCA), 
June 2000, pp. 203-213. 

[Fomithchev00] M. Fomithchev, “AMD 3DNow!,” Dr. Dobb’s Journal, vol. 25, No. 8, 
pp. 40-42, 2000. 

[GCC04] GNU Compiler Collection, http://gcc.gnu.org, 2004. 

[Gonzalez00] R. E. Gonzalez, “Xtensa: A configurable and extensible processor,” IEEE 
Micro, Vol. 20, No. 2, Mar.-Apr. 2000, pp. 60-70. 

[GPROF] GNU Profiler gprof online manual, 
http://www.gnu.org/software/binutils/manual/gprof-2.9.1. 

[Guthaus01] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, 
“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,” 
Proceedings of the International Workshop on Workload Characterization, 
December 2001, pp. 3-14. 

[Hines05] S. Hines, J. Green, G. Tyson, and D. Whalley, “Improving Program Efficiency 
by Packing Instructions into Registers,” Proceedings of the International 
Symposium on Computer Architecture (ISCA), 2005, pp. 260 – 271. 

[Huang00] M. Huang, J. Renau, S. Yoo, J. Torrellas, “A framework for dynamic energy 
efficiency and temperature management,” Proceedings of the Annual 
International Symposium on Microarchitecture (MICRO), 2000, pp. 202-213. 

[IBM-CodePack] IBM Corporation, “CodePack PowerPc Code Compression Utility 
User’s Manual 3.0,” 1998. 

[IBM-PowerPC] IBM Corporation, “PowerPC Microprocessor Family: The 
Programming Environments for 32-Bit Microprocessors,” Software Reference 
Manual, Pub. G522-0290-01, 2000. 

[Intel-IA32] Intel Corporation, “IA-32 Intel Architecture Software Developer’s Manual 
Volume 1: Basic Architecture, Order Number: 245470,” 2001. 

[Intel-IA64] Intel Corporation, “Intel IA-64 Architecture Software Developer’s Manual, 
Volume 1: IA-64 Application Architecture,” 2001. 

[Intel-SA1100] Intel Corporation, “SA-1100 Microprocessor Technical Reference 
Manual,” 2000; see 
http://www.acm.uiuc.edu/sigarch/resources/docs/sa110_27805802.pdf 



 

120 

[Joseph03] R. Joseph, D. Brooks, and M. Martonosi, “Control techniques to eliminate 
voltage emergencies in high performance processors,” Proceedings of the 
International Symposium on High-Performance Computer Architecture (HPCA), 
2003, pp. 79-90. 

[Kadri03] N.Kadri, S.Niar, and A.R.Baba-Ali, “Impact of Code Compression on the 
Power Consumption in Embedded Systems,” International Conference on 
Embedded Systems and Applications (ESA), June. 2003, pp. 197-203. 

[Kim01] N. S. Kim, T. Austin, T. Mudge, and D. Grunwald, “Challenges For 
Architectural Level Power Modeling in Power Aware Computing (R. Melhem 
and R. Graybill eds.),” Kluwer Academic Publishers: Boston, MA, 2001. 

[Kim03] N. S. Kim et al., “Leakage Current - Moore's Law Meets Static Power,” IEEE 
Computer, Dec. 2003, pp. 68-75. 

[Krishnaswamy05] Krishnaswamy and Gupta, “Dynamic Coalescing for 16-Bit 
Instructions,” ACM Transactions on Embedded Computing Systems (TECS), 
Vol. 4, No. 1, February 2005, pp. 3–37. 

[Kyo05] S. Kyo et al., “An Integrated Memory Array Processor Architecture for 
Embedded Image Recognition Systems,” Proceedings of the International 
Symposium on Computer Architecture (ISCA), pp.134-145, 2005. 

[Lau 03] J. Lau, S. Schoenmackers, T. Sherwood, and B. Calder, “Reducing code size 
with echo instructions,” Proceedings of the International Conference on 
Compilers, Architectures, and Synthesis for Embedded Systems (CASES), 2003, 
pp. 84-94. 

[Lee97] C. Lee et al., “Mediabench: A tool for evaluating and synthesizing multimedia 
and communications systems,” Proceedings of International Symposium on 
Microarchitecture (MICRO), 1997. 

[Lee99] L. H. Lee, W. Moyer, and J. Arends, “Instruction Fetch Energy Reduction Using 
Loop Caches For Embedded Applications with Small Tight Loops,” Proceedings 
of International Symposium on Low Power Electronics and Design (ISLPED), 
August 1999. 

[Lefurgy00] C. Lefurgy, E. Piccininni, and T. Mudge, “Reducing Code Size with Run-
time Decompression,” Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), Jan. 2000, pp. 218-227. 

[Lekatsas00] H. Lekatsas, J. Henkel and W. Wolf, “Code Compression for Low Power 
Embedded System Design,” Proceedings of the Design Automation Conference 
(DAC), June 2000. pp. 294-299. 

[Lucent-DSP16000] Lucent Technologies, DSP16000 Digital Signal Processor Core 
Instruction Set Manual, 1997. 



 

121 

[Magklis03] Magklis G. et al., “Profile-based dynamic voltage and frequency scaling for 
a multiple clock domain microprocessor,” Proceedings of the International 
Symposium on Computer Architecture (ISCA), 2003, pp. 14-27. 

[MIPS-MIPS16] MIPS Technologies, “MIPS32 Architecture for Programmers Vol. IV-a: 
The MIPS16 Application Specific Extension to the MIPS32 Architecture,” March 
2001; see 
http://www.mips.com/content/Documentation/MIPSDocumentation/ProcessorArc
hitecture/doclibrary. 

[MIPS-MIPS32] MIPS Technologies, “MIPS32 Architecture for Programmers Volume 
II: The MIPS32 Instruction Set, Document Number: MD00086,” 2003. 

[MIRV01] The MIRV Compiler Project, http://www.eecs.umich.edu/mirv, 2001 

[Montanaro96] J. Montanaro, et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC 
Microprocessor,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 11, Nov. 
1996, pp. 1703 – 1714. 

[Motorola-MCore] Motorola Inc, “M-Core Reference Manual.” 

[Mudge01] T. Mudge, “Power: A First-Class Architectural Design Constraint,” IEEE 
Computer, Vol. 34, No. 4, Apr. 2001, pp. 52-58. 

[NVIDIA-GeForce] NVIDIA Corp., GeForce 7800 GTX GPU, http://www.nvidia.com, 
2005. 

[Oliver04] J. Oliver et al., “Synchroscalar: A Multiple Clock Domain, Power-Aware, 
Tile-Based Embedded Processor,” Proceedings of the International Symposium 
on Computer Architecture (ISCA), 2004. 

[Orpaz02] A. Orpaz and S. Weiss, "A study of CodePack: optimizing embedded code 
space," Proceedings of the International Symposium on Hardware/Software 
Codesign (CODES), 2002, pp.103-108. 

[Panalyzer04] SimpleScalar-ARM Power Modeling Project, 
http://www.eecs.umich.edu/~panalyzer, 2004 

[PattersonHennessy03] D. Patterson and J. Hennessy, “Computer Architecture: A 
Quantitative Approach,” third edition, Morgan Kaufmann Publishers, 2003. 

[PattersonHennessy05] D. Patterson and J. Hennessy, “Computer Organization and 
Design – The Hardware / Software Interface”, 3rd edition, ISBN: 1-55860-604-1, 
Morgan Kaufmann Publishers, San Francisco, CA, 2005, pp. 348-349. 



 

122 

[Rivers03] J. Rivers, S. Asaad, J. Wellman, and J. Moreno, “Reducing Instruction Fetch 
Energy with Backwards Branch Control Information and Buffering,” Proceedings 
of International Symposium on Low Power Electronics and Design (ISLPED), 
August 2003. 

[Saini04] R Saini et al., “Design of an application specific instruction set processor for 
parametric speech synthesis,” Proceedings of the International Conference on 
VLSI Design, 2004. 

[Sias01] J. Sias, H. Hunter, and W. Hwu, “Enhancing loop buffering of media and 
telecommunications applications using low-overhead predication,” Proceedings of 
the Annual International Symposium on Microarchitecture (MICRO), pp. 262-
273, December 2001. 

[Siemens-TriCore] Siemens Inc, “TriCore Architecture Manual.” 

[Srinivasan05] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Exploiting Structural 
Duplication for Lifetime Reliability Enhancement,” Proceedings of the Annual 
International Symposium on Computer Architecture (ISCA), 2005.   

[ST-ST100] STMicroelectronics, ST100 Technical Manual, 2003; see 
http://www.st.com/stonline/books/pdf/docs/10071.pdf 

[ST-ST120] STMicroelectronics, ST120 DSP-MCU Programming Manual, December 
2000. 

[StarCore-SC140] StarCore DSP Technology, SC140 DSP Core Reference Manual, June 
2000. 

[TI-TMS320C67] Texas Instruments Inc, “TMS320C67 User’s Guide.” 

[Toshiba-MeP] Media embedded Processor (MeP), Toshiba Corporation; see 
http://www.mepcore.com/. 

[TSMC-18] TSMC 0.18 µm CMOS Process, Taiwan Semiconductor Manufacturing 
Company (TSMC) Ltd., http://www.tsmc.com. 

[TSMC-ROM] TSMC 0.18 µm Process (CL018G) ROM-DIFF-HS Datasheet, Version 
2004Q1V1, Artisan Components, Inc. 

[TSMC-SRAM] TSMC 0.18 µm Process (CL018G) SRAM-SP-HS Datasheet, Version 
2004Q1V1, Artisan Components, Inc. 

[Turing36] A. Turing, “On Computable Numbers, with an Application to the 
Entscheidungs problem,” Proceedings of the London Mathematical Society, series 
2, 42, 1936, pp 230-265. 



 

123 

[Uh99] G. Uh, et al., “Efficient exploitation of a zero overhead loop buffer,” Proceedings 
of Workshop on Languages, Compilers, and Tools for Embedded Systems 
(LCTES), pp. 10-19, May 1999. 

[Wilkes53] M. Wilkes and J. Stringer, “Microprogramming an dthe design of the control 
circuits in an electronic digital computer,” Proceedings of the Cambridge 
Philosophical Society, Vol. 49, pp. 230-238, April, 1953. 

[Wu01] L. Wu, C. Weaver, and T. Austin, “CryptoManiac: A Fast Flexible Architecture 
for Secure Communication,” Proceedings of the International Symposium on 
Computer Architecture (ISCA), June 2001, pp. 110-119. 

[Xie01] Y. Xie, W. Wolf, and H. Lekatsas, “A Code Decompression Architecture for 
VLIW processors,” Proceedings of the International Symposium on 
Microarchitecture (MICRO), 2001, pp. 66-75. 

[Ye00] Z. Ye et al., “CHIMAERA: a high-performance architecture with a tightly-
coupled reconfigurable functional unit,” Proceedings of the International 
Symposium on Computer Architecture (ISCA), pp. 225-235, 2000. 

 


