

APPLICATION-SPECIFIC ARCHITECTURE FRAMEWORK FOR HIGH-

PERFORMANCE LOW-POWER EMBEDDED COMPUTING

by

Allen Chao-Hung Cheng

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2006

Doctoral Committee:

Associate Professor Gary S. Tyson, Co-Chair
Professor Trevor N. Mudge, Co-Chair
Professor Marios C. Papaefthymiou
Associate Professor Dennis M. Sylvester
Assistant Professor Scott A. Mahlke

©
Reserved Rights All

Cheng Hung-ChaoAllen 2006

ii

To My Beloved Wife,
Chia-Lin Chang

For her unfailing love, tender care, and steady support.

iii

ACKNOWLEDGMENTS

Whenever acknowledgments are given, there is a danger of leaving someone out

or forgetting something they have done. Many people contributed to the success of this

dissertation thesis. While I would like to acknowledge individually each by name, I

would inevitably leave out deserving colleagues, friends, and relatives. I apologize in

advance for such omissions and convey my sincerest respect and admiration to all who

contributed to the extraordinary experiences I have been fortunate to enjoy. I would like

to give thanks to those who have been close to me over the years, first in familial

relationships, then in professional ones.

First and foremost, I thank God – Father, Son and Spirit - for His unconditional

love, guidance, sustenance, and strength. He has enabled me to do this work.

My family has been a tremendous source of love, encouragement and inspiration.

Their support kept me going not only through this thesis work but through my entire life.

Chia-Lin Chang, my dear wife, who has also been my best friend and best

supporter to me for the years I have spent in Michigan. Chia-Lin, I thank you for bringing

me to the grace of God. I also thank you for faithfully staying besides me during the most

difficult and confusing time of my life. Without you, this work can never be finished as

fast and well. I love you so much!

Beyond family support, I am deeply indebted to my advisors Gary Tyson and

Trevor Mudge, who have constantly supported me and to my work during these years.

iv

Gary, your pointed questions and lucid explanations were invaluable help to me

while working on my dissertation. You are the constant source of my inspiration, even

when things do not seem so inspirable. Your optimism and ability to motivate me have

kept me stay on the course during ups and downs are amazing! Gary, you are my advisor,

my mentor, and even more, a great friend, who carried me through the dark times when I

was in need.

Trevor, you are my best advocate both in and out of Michigan for me and for this

work. You are my advisor who always stands by me and speaks for my best interests

whenever I have a battle to fight. You are the source of the steadiness when everything

seems so unsteady. You always seem to have the wisdom and experience to simplify

situations and things that seem so complicated to me. Trevor, you are a true wonder!

Your laid-back management style is legendary: you grant me all the freedom I need to do

my work, and still manage to gently push me forward without causing unnecessary

tension and stress. It was really a joy ride!

Thanks to Marios Papaefthymiou, Scott Mahlke, and Dennis Sylvester for serving

on my doctoral committee.

Marios, I thank you for being open and sharing with me your wonderful

experience and perspectives as a faculty in Michigan. You are on my thesis committee,

although interestingly a lot of our interactions come from teaching 370, which I enjoyed

very much. Your incredible sense of humor and jokes made supposed-to-be-taxing staff

meetings much more like stress relievers.

v

Dennis, I thank you for contributing your hardcore EE knowledge and expertise

that helped me decipher the cryptic standard cell libraries and fortify my hardware

synthesis analyses.

Scott, I thank you for teaching me everything about compilers that I ever wanted

to know. This valuable compiler knowledge will enable me to expand the horizon of this

dissertation work to the next level.

Thanks to Karem Sakallah, Toby Torey, Elliot Solloway, Don Windsor, and

Karen Langona for all the wonderful role modeling, mentoring and the joyful interaction

that I am fortunate to receive while working as your GSI.

Last but not least, thanks to EECS and ACAL staff Karen, Dawn, Bertha, and

Denise. You are such great resources who helped me navigate my graduate school career.

You provided everything I needed for a smooth graduation.

As I cross the major milestone of my life, it is such a warm and pleasant thought

to share this day that bears the fruits of the difficult battle I fought with all those who

touched my life in memorable ways. I thank you all, fore-mentioned or not, for guiding

me with your wisdom and knowledge; showering me with your love and tender care;

inspiring me through your indelible influences and support.

vi

TABLE OF CONTENTS

DEDICATION... ii

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES .. x

LIST OF APPENDICES .. xii

ABSTRACT.. xiii

Chapter 1 Introduction... 1

1.1 Motivation and Background ... 1

1.2 Addressing Performance Issue.. 2

1.3 Addressing Power Consumption Issue ... 5

1.4 Addressing Cost and Time to Market Issues .. 7

1.5 Thesis Summary.. 7

1.6 Thesis Organization .. 9

Chapter 2 Workload Analysis.. 10

2.1 Opcode Space Requirement.. 10

2.2 Operand Space Requirement... 12

2.2.1 Static Profiling Operand Analysis ... 13

2.2.2 Dynamic Profiling Operand Analysis.. 14

vii

2.3 Immediate Space Requirement ... 15

2.3.1 Static Profiling Analysis of Immediate Operands 16

2.3.2 Dynamic Profiling Analysis of Immediate Operands.................... 18

2.4 Physical Register Space Requirement .. 20

Chapter 3 Framework Design.. 22

3.1 Methodology... 23

3.2 System Design Flow ... 24

3.3 Instruction Set Synthesis Flow.. 26

3.3.1 Base Instruction Set (BIS) ... 27

3.3.2 Supplemental Instruction Set (SIS).. 28

3.3.3 Turing-complete Instruction Set (TIS)... 29

3.3.4 Application-specific Instruction Set (AIS) 30

3.3.5 Addressing Mode Synthesis... 31

3.3.6 Immediate Operand Synthesis ... 32

3.4 Instruction Formats ... 33

3.5 Synthesized Instruction Sets ... 34

3.5.1 Synthesized Instructions .. 35

3.5.2 Synthesized Immediate Operands.. 37

3.6 FITS Microarchitectural Enhancement... 38

3.6.1 Versatile Integrated Processing (VIP) Unit 40

3.6.2 Zero-Overhead Loop Execution Unit .. 43

3.7 FITS Programmable Instruction Decoder... 45

3.7.1 Hardwired Instruction Decoder.. 45

viii

3.7.2 Programmable Instruction Decoder ... 46

Chapter 4 Experimental Methodologies ... 50

4.1 Power Modeling.. 50

4.1.1 Power Components for CMOS Circuits .. 51

4.1.2 Power Equations for CMOS Circuits... 52

4.1.3 Power Modeling Tools... 54

4.2 Benchmarking Workloads .. 55

4.2.1 Profiling Procedures... 55

4.2.2 Instruction Cache Evaluation Procedures 56

4.2.3 Programmable Decoder Evaluation Procedures 58

4.2.4 VIP and ZOLE Evaluation Procedures .. 59

Chapter 5 Results and Analyses .. 60

5.1 FITS Programmable Decoder Evaluation... 60

5.1.1 The Size of a Decoder.. 61

5.1.2 Footprint Area Analysis... 63

5.1.3 Access Time Analysis.. 64

5.1.4 Power Consumption Analysis.. 65

5.2 Instruction Mapping Coverage ... 68

5.3 Code Size Benefits.. 70

5.4 Power Dissipation Benefits... 72

5.4.1 Instruction Cache Power Breakdown... 74

5.4.2 Instruction Cache Power Saving.. 76

5.5 Performance Benefits.. 80

ix

5.5.1 Cache Miss Rate Evaluation .. 81

5.5.2 Instruction per Cycle (IPC) Rate Evaluation 82

5.5.3 VIP and ZOLE Speedup Evaluation .. 83

Chapter 6 Related Work .. 86

6.1 Microprogramming ... 86

6.2 Code Compression.. 87

6.3 SIMD Architecture.. 89

6.4 Zero-Overhead Loop Execution ... 90

6.5 Extended and Customized ISA. .. 94

6.6 Dual-width ISA... 94

6.7 Reconfigurable Systems.. 96

Chapter 7 Conclusions.. 100

7.1 Thesis Summary.. 100

7.1.1 High-Performance Solution ... 100

7.1.2 Low-Power Solution .. 102

7.1.3 Low-Cost and Fast Time to Market Solution 103

7.2 Future Directions .. 104

APPENDICES... 107

BIBLIOGRAPHY... 116

x

LIST OF FIGURES

Figure 2.1: Utilization of Distinct Opcodes throughout Program Life Time 11

Figure 2.2: Percentage of Under-utilized Opcodes... 12

Figure 2.3: 2-Address Compatible Static Instruction Distribution 13

Figure 2.4: 2-Address Compatible Dynamic Instruction Distribution.............................. 14

Figure 2.5: Static Distribution of Immediate-Instructions.. 16

Figure 2.6: Static Utilization of Distinct Immediate Operands .. 17

Figure 2.7: Dynamic Distribution of Immediate-Instructions .. 18

Figure 2.8: Dynamic Utilization of Distinct Immediate Operands................................... 19

Figure 2.9: Utilization of Physical Registers .. 20

Figure 3.1: System Design Flow of FITS Framework.. 25

Figure 3.2: Synthesized Base Instruction Set Synthesis (BIS) ... 26

Figure 3.3: Synthesized Supplemental Instruction Set (SIS).. 27

Figure 3.4: Synthesized Turing-complete Instruction Set (TIS)....................................... 28

Figure 3.5: Synthesized Application-specific Instruction Set (AIS) 30

Figure 3.6: An Example FITS Instruction Formats for CRC32 of MiBench 33

Figure 3.7: Synthesized Final Instruction Sets ... 34

Figure 3.8: Synthesized Final Instruction Sets – Detailed Instruction Breakdown 35

Figure 3.9: Synthesized Final ALU Immediate Operands.. 37

Figure 3.10: Synthesized Final MEM Immediate Operands .. 38

Figure 3.11: Versatile Integrated Processing (VIP) Unit.. 40

xi

Figure 3.12: VIP Instruction Computing Patterns .. 41

Figure 3.13: Conventional Hardwired Instruction Decoder ... 46

Figure 3.14: FITS Programmable Instruction Decoder .. 48

Figure 4.1: Power Dissipation in CMOS Circuits .. 51

Figure 5.1: Area Comparison between Fixed and FITS Decoders 62

Figure 5.2: Access Time Comparison between Fixed and FITS Decoders 64

Figure 5.3: Leakage Power Comparison between Fixed and FITS Decoders 65

Figure 5.4: Dynamic Power Comparison between Fixed and FITS Decoders 66

Figure 5.5: Total Power Comparison between Fixed and FITS Decoders 67

Figure 5.6: Static ARM-to-FITS Instruction Mapping ... 68

Figure 5.7: Dynamic ARM-to-FITS Instruction Mapping ... 69

Figure 5.8: Code Size Comparison between ARM, THUMB, and FITS 70

Figure 5.9: Instruction Cache Power Breakdown for ARM and FITS 74

Figure 5.10: Instruction Cache Power Savings of FITS ... 76

Figure 5.11: Chip-wide Power Savings of FITS... 78

Figure 5.12: Instruction Cache Miss Rate... 81

Figure 5.13: Instruction per Cycle (IPC) Rate .. 82

Figure 5.14: Performance Speedup Achieved by VIP and ZOLE.................................... 84

xii

LIST OF APPENDICES

APPENDIX A: Instruction Cache Breakdown... 108

APPENDIX B: Instruction Cache power savings... 110

APPENDIX C: Chip-wide Power Savings ... 113

xiii

ABSTRACT

APPLICATION-SPECIFIC ARCHITECTURE FRAMEWORK FOR HIGH-

PERFORMANCE LOW-POWER EMBEDDED COMPUTING

by

Allen Chao-Hung Cheng

Co-Chairs: Gary S. Tyson and Trevor N. Mudge

The design space of embedded systems is extremely large. Examples of

embedded systems range from small form factor portable handheld devices such as smart

phones, MP3 players, and personal digital assistants (PDA), to real-time control systems

used in automobiles and the space shuttle. These embedded applications require a new

architecture paradigm with strict requirements on power consumption, computing

performance, competitive end-user price, and rapid time to market (TTM). Thus, when

designing microprocessors for embedded systems, it is extremely important to consider

energy efficiency, performance, production cost, and design turnaround time.

This dissertation introduces Framework-based Instruction-set Tuning Synthesis

(FITS), an architectural and microarchitectural innovation that addresses all the above

design constraints of embedded microprocessors. FITS reduces energy consumption by

xiv

running same applications with much smaller code size and improved locality. This is

accomplished through tailoring the instruction set to the requirements of a targeted

application. Smaller code size with better locality means it is possible to replace original

instruction caches with smaller ones that can still yield better cache miss rates. Smaller

instruction cache consumes less dynamic and leakage power. Lower cache miss rates

yield less traffic from the processor to off-chip memories, which can improve both

performance and power consumption.

Making new chips can be both an economical challenge and a time-consuming

process. Fabricating a new chip can incur millions of dollars of non-recurring engineering

(NRE) cost. The average turnaround time for fabricating a new chip ranges from several

months to several years. FITS reduces the chip production cost and shortens the design

turnaround time through the use of a general-purpose, functionally-rich underlying

microarchitecture. Instead of having to fabricate a new chip every time there is a new

application to target, we use a single microarchitecture platform that contains enough

general-purpose functionality that can map to all applications of interest. The one-time

high NRE cost and long turnaround design cycle can be effectively amortized through

mass production over the period of product lifetime.

FITS improves the performance by introducing the Versatile Integrated

Processing (VIP) unit and integrating a Zero-Overhead Loop Execution (ZOLE) unit into

the microarchitecture. The VIP unit is a universal data-crunching engine that delivers

superb data computing and data streaming performances. The ZOLE unit streamlines the

program control flow by removing expensive loop control overhead from both nested and

non-nested loops.

xv

The application-specific instruction set tailoring is achieved by replacing the fixed

instruction decoder of general-purpose embedded processors with a programmable

decoder. The use of a programmable decoder allows designers to add new capabilities to

microarchitecture without being restricted by the limited instruction space. The only

constraint of adding new operations is due to chip area. The net effect is that the

underlying microarchitecture may contain an extremely large set of operations that can

never be mapped to any single instruction set architecture (ISA); yet, through the use of a

programmable instruction decoder, FITS can choose the needed subset of operations

being mapping to the premier instruction space for a given application. The instruction

selection is determined at compile time. The definition of ISA is loaded to the

programmable decoder at boot time. If necessary, the programmable decoder can be

dynamically reconfigured with different set of ISA definitions at run time.

Through the use of programmable decoder, general-purpose microarchitecture

equipped with VIP and ZOLE, FITS provides designers with a new genre of embedded

microprocessors that can achieve application-specific processor performance and low

energy consumption, while maintaining the fabrication advantages of a mass-produced

single-chip solution that yields low production cost and fast time to market.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

The design space of embedded systems is extremely large. Examples of

embedded systems range from small form factor portable handheld devices such as smart

phones, MP3 players, personal digital assistants (PDA), and digital cameras and

camcorders, to real-time control systems used in automobiles and the space shuttle. These

embedded applications require a new architecture paradigm with strict requirements in

computing performance, energy efficiency, competitive end-user price, and rapid time to

market (TTM). Thus, when designing microprocessors for embedded systems, it is

extremely important to consider performance, power consumption, production cost, and

design turnaround time. This trend necessitates a new platform of innovations leveraging

novel architectural, and microarchitectural techniques.

An emerging popular strategy to meet the challenging cost, performance, and

power demands is to move away from general-purpose designs to application-specific

designs. An application-specific processor (ASP) is a processor designed for a particular

2

application or set of applications that share many common characteristics. Thus, an ASP

design contains only those capabilities necessary to execute its targeted workload. The

result is that ASPs can achieve levels of performance and efficiency that are unattainable

in general-purpose processors. The performance gain of ASP is highly valued for modern

embedded workloads, which are well known of their ever increasing processing

requirements demanded by endless user computing needs.

With wide-spread use of Intellectual Property (IP) cores and advancement in

electronic design automation (EDA) tools, customized instruction set synthesis has

become a feasible option to make products stand out in competitive consumer electronics

market today. Generally speaking, modern embedded microprocessors have many strict

design constraints that touch many facets of application requirements, such as processing

speed, energy efficiency, chip area, code size, production cost, and design turnaround

time, etc. Designers of contemporary general-purpose machines with 32-bit instructions

are struggling to achieve even the minimal satisfactory balance among these design

requirements.

This dissertation proposes Framework-based Instruction-set Tuning Synthesis

(FITS): an architectural and microarchitectural innovation that addresses all the above

design constraints of embedded microprocessors.

1.2 Addressing Performance Issue

FITS improves the performance by integrating proposed Versatile Integrated

Processing (VIP) unit and a Zero-Overhead Loop Execution (ZOLE) unit into the

3

microarchitecture. The ZOLE unit streamlines the program control flow by removing

expensive loop control overhead from both nested and non-nested loops. The VIP unit is

a universal data-crunching engine that delivers superb data computing and data streaming

performances. The area cost of adding new operations using VIP is extremely low: for

every additional VIP unit added, the number of additional operations available will

increase exponentially. Furthermore, because VIP is synthesized in standard cells and

chaining each extra VIP only costs few multiplexers, we can implement thousands of new

specialized operations using less area than it would take to configure a single operation

using programmable circuits like FPGAs, and would result in faster circuit speeds.

The key difference between our proposed VIP and other approaches of

customized reconfigurable function units is in how the large potential instruction space of

specialized chained operations is mapped to the instruction set. Other reconfigurable

function units reserve a single opcode which specifies the data dependencies to

whichever configuration is programmed into the customized accelerator, while the

decoupled instruction set provided in our underlying FITS architecture allows all function

permutations to be mapped into the instruction set architecture (ISA) without

necessitating additional opcode space. A conventional ISA could not support the wide

range of different functions that can be configured since the number of total instructions

will quickly grow into the order of thousands just with 2 levels of chained function units

and it will be well past that with 3 or more levels of chained functional units. Prior work

configures the programmable circuit with the chained functions that the compiler or

designers found useful, while the programmable nature of the FITS instruction decoder

enables the microarchitecture to implement a fixed circuit capable of executing any of the

4

function permutations; we simply map the one or more permutations that the application

requires to one of the instructions in the FITS ISA.

While it may seem that implementing the circuit to perform all permutations

would require much greater area than that of a programmable circuit would require, that

is not the case. Since each permutation differs in only the control signals going to the

multiplexers at each level of the chained function unit design; it is not area limitations

that prevent the design of these chained function units (since the area requirement for

implementing any one circuit are only slightly smaller than implementing all

permutations), but it is the tremendous increase in operations that can be specified in the

microarchitecture and the corresponding increase required in the opcode for conventional

ISA that is the true limitation. Customized reconfigurable function units provide one

method of avoiding the limitation (programmable circuits), while VIP/FITS provides a

more flexible method (programmable instruction decode).

Another aspect of performance improvement comes from the custom synthesized

application-specific ISA tailored to the requirements of a given application. The

application-specific instruction set tailoring is achieved by replacing the fixed instruction

decoder of general-purpose embedded processors with a programmable decoder. The use

of a programmable decoder allows designers to add new capabilities to microarchitecture

without being restricted by the limited instruction space. The only other constraint of

adding new operations is due to chip area, which has been addressed by the space-

efficient VIP unit.

The net effect is that the underlying microarchitecture may contain an extremely

large set of operations that can never be mapped to a small fixed width ISA. Yet, through

5

the use of a programmable instruction decoder, FITS can choose the needed subset of

operations being mapping to the premier instruction space for a given application. The

instruction selection is determined at compile time. The definition of ISA is loaded to the

programmable decoder at boot time. The programmable decoder can be dynamically

reconfigured with different set of ISA definitions at run time, if necessary.

One other major advantage of using the programmable decoder is the benefit of

decoupling the microarchitectural enhancements from the ISA so that new instructions

can be integrated into the underlying microarchitecture, as much as the chip area goal

permits, without being restricted by limited opcode space nor being crippled with bigger

instruction decoders. Designers are free to include additional functional capabilities to

improve performance, even when those enhancements are useful for only a small

percentage of applications since the inclusion of one operation does not require the

elimination of another to fit in the instruction set encoding space.

1.3 Addressing Power Consumption Issue

Power consumption is now a leading design constraint in microprocessor designs,

especially in low-end embedded system market [Mudge01]. In addition to costly heat

removal expense, excessive power consumption in embedded devices also reduces the

battery lifetime. As a result, the quality and reliability of an embedded device would be

severely compromised by high power dissipation. With battery power density increasing

only at a rate of approximately 5% per year, any significant extension of battery lifetime

must come from a thorough improvement of energy efficiency for each power-hungry

6

component in a system. Among other system components, memory structures, such as

caches, register files, TLBs, BTBs, etc., are by far the most predominant source of power

dissipation on the processor. For instance, in Intel’s StrongARM processor, caches

consume more than 40% of total chip power with 27% being devoted to the instruction

cache [Montanaro96]. This dissertation presents a novel ISA synthesis technique that

could reduce significant instruction cache power loss.

FITS reduces energy consumption by running same applications with much

smaller code size and improved locality as a result of half-width ISA. The philosophy of

FITS is that high performance and high code density can co-exist if we can match the

instruction set to the requirement of a targeted application. FITS improves code density

by utilizing instructions that are only 16-bit instead of 32-bit that are commonly used in

most conventional machines. Since the instruction width is reduced by half, the total code

size can be reduced by half as long as what was originally done in a single 32-bit

instruction can also be done in a single 16-bit instruction. To best utilize the half-sized

instruction width, the instruction space is allocated to only those operations that are

necessary and useful to the given application. The chapter of results and analyses shows

that FITS can achieve a code size reduction that is close to 50% with better performance

through application-specific customization.

Half-sized program with better locality means it is possible to replace original

instruction caches with those that are only half big and still can yield better cache miss

rates. Smaller instruction caches with better hit rates can save both dynamic and static

power consumption. Better cache hit rates also means less traffic from the processor to

off-chip memories, which can further improve both performance and power consumption.

7

1.4 Addressing Cost and Time to Market Issues

Making new chips can be both an economical challenge and a time-consuming

process. Fabricating a new chip can incur millions of dollars of non-recurring engineering

(NRE) cost. The average turnaround time for fabricating a new chip ranges from several

months to several years. FITS reduces the chip production cost and shortens the design

turnaround time through the use of a general-purpose, functionally-rich underlying

microarchitecture. Rather than fabricating a new chip to map each new application, we

choose a single general-purpose microarchitecture platform augmented with VIP and

ZOLE units, so there are an extremely large set (i.e. in the order of thousands) of

operations that can be selected to map the requirements of any application of interests.

Because of the nature of this single general-purpose microarchitectural platform, FITS

can reduce the chip production cost and shortens time to market by leveraging the

fabrication advantages of a mass-produced, single-chip solution that amortizes the one-

time high NRE cost and lengthy design turnaround time.

1.5 Thesis Summary

In this dissertation, we proposed an efficient and effective Framework-based

Instruction-set Tuning Synthesis (FITS) platform for designing a new class of embedded

microprocessors that can effectively address all important design constraints. FITS offers

designers an enhanced general-purpose microarchitecture solution with configurable ISA

synthesis to tailor the processor to match the requirements of a given application. FITS

8

delays instruction set synthesis until after chip fabrication. With a fixed

microarchitecture, synthesis is performed by replacing the fixed instruction decoder with

a programmable decoder. With a programmable decoder, designers can add new

capabilities to microarchitecture without being restricted by the limited instruction space.

The underlying datapath of a FITS processor would be similar to a general-purpose

embedded processor such as ARM and is enhanced with VIP and ZOLE units that can

result in thousands of extra specialized operations. The total available instructions are

extremely large that may never be mapped to any single ISA. Through the use of a

programmable instruction decoder, designers can map only a subset of this large set of

instructions to the synthesized ISA. By only mapping those operations that a particular

application needs to the synthesized instruction set, it is possible to encode all

instructions in a short, 16-bit format while retaining all of the special purpose operations

that can ever be found in any large instruction embedded processor.

The contributions of this dissertation research are threefold. First, we improve

performance with reduced code size by synthesizing specialized 16-bit VIP and ZOLE

instructions that can accelerate performance for full range of embedded applications,

which would normally require 32-bit instructions. Secondly, we improve energy

efficiency from a much dense, half-sized code of high locality, which requires smaller

instruction caches and has less off-chip memory traffic. More energy can be conserved by

deactivating those parts of the datapath that are not mapped to any execution of the

synthesized ISA. Lastly, we reduce production cost and time to market by utilizing a

single processor platform across a wide range of applications, while retaining the ability

to optimize the ISA for the individual requirements of each application.

9

In summary, through the use of programmable decoder, general-purpose

microarchitecture equipped with VIP and ZOLE, this dissertation research provides

designers with a new genre of embedded microprocessors that can achieve application-

specific processor performance and low energy consumption, while maintaining the

fabrication advantages of a mass-produced single-chip solution that yields low production

cost and fast time to market.

1.6 Thesis Organization

The remainder of this dissertation thesis is organized as follows: Chapter 2

analyzes and describes important characteristics of embedded workload. Chapter 3

presents the FITS design framework methodology and the architectural and

microarchitectural innovations that support it. Chapter 4 explains experimental set-up

procedures. Chapter 5 discusses the experimental results and provides detailed analyses

for benefits of FITS. Chapter 6 discusses related work. Chapter 7 offers conclusions and

future directions of this dissertation research.

10

CHAPTER 2

WORKLOAD ANALYSIS

This section presents important characteristics of embedded applications in terms

of their requirements in opcode space, operand space, immediate space, and physical

register space. A representative subset of the MiBench suite [Guthaus01] programs have

been compiled into the ARM binary using the GCC tool chain [GCC04] and simulated

using the SimpleScalar tool set [Austin02] to provide both static and dynamic profiling

statistics. The results and analyses of each requirement are discussed in each of the sub-

sections respectively.

2.1 Opcode Space Requirement

The opcode space in an ISA specifies the number of different instructions or

functional capabilities a processor may perform. If an application need to perform many

different instructions, a large number of instruction bits need to be allocated for opcodes.

Figure 2.1 shows the number of distinct opcodes that were executed throughout

the life time of a program. The 100% bar on the left represents the total number of

11

opcodes that a program has executed, so they account for 100% of total dynamic

instruction frequency. Among these 23 MiBench programs, 16 of them (69.6%) utilize 27

or less opcodes; 7 of them (30.4%) utilize from 32 to 40 opcodes. The 95% bar on the

right indicates the number of opcodes needed to account for 95% or above of total

dynamic instruction frequency. Ignoring less than 5% of total dynamic instructions

reduces the opcode requirement significantly: 20 out of 23 programs need at most 13

opcodes, while the highest opcode demand does not exceed 20.

The reason for the significant reduction in opcode requirement is because not all

opcodes are demanded equally frequently. This unbalanced utilization of opcodes is

illustrated in Figure 2.2. This figure shows the percentage of under-utilized opcodes as a

fraction of total number of opcodes has been executed. An opcode is “under-utilized” if it

account for less than 1% of total dynamic instruction frequency. As shown in the figure,

0

5

10

15

20

25

30

35

40

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

M
E

D
IA

N

Auto Consumer Network Office Security Telecomm

Nu
m

be
r o

f D
is

tin
ct

 O
pc

od
es

100% 95%

Figure 2.1: Utilization of Distinct Opcodes throughout Program Life Time

12

many opcodes are rarely executed: on average, 55.6% of opcodes do not contribute to

more than 1% of total dynamic instructions. Rather than mapping these infrequently

executed opcodes onto the ISA space, we can emulate them in software to save the

instruction space without affecting performance significantly. A software emulated

instruction is often translated into one or more “real” machine instructions as specified in

the ISA.

2.2 Operand Space Requirement

The number of explicit distinct register operands, or the register address mode, is

another important parameter to be considered for designing a cost-effective ISA design.

Three-address instructions, or instructions that have three register operand fields, prevail

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

M
E

D
IA

N

Auto Consumer Network Office Security Telecomm

Fr
ac

tio
n

of
 U

til
iz

ed
 O

pc
od

es
 E

xe
cu

te
d

<
1%

 T
ot

al
 In

st
ru

ct
io

ns

Figure 2.2: Percentage of Under-utilized Opcodes

13

in many popular 32-bit ISA designs. Despite many advantages of having three explicit

register operand fields, our preliminary studies showed that two register operands are

often enough. This section shows the results of our static and dynamic examination on

how often two-address instructions suffice in a program. Static statistics are important

from a code size viewpoint, and dynamic statistics help us gauge power dissipation.

2.2.1 Static Profiling Operand Analysis

Figure 2.3 is a static address mode profiling results for compiled ARM binaries. It

illustrates the fraction of all three-address integer instructions that can be satisfied with

only two addresses. This is determined, at compile time, by calculating the fraction of

total instructions in which the destination register operand is the same as one of the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h

sh
a

cr
c3

2 fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

Auto Consumer Network Office Security Telecomm

Fr
ac

tio
n

of
 In

st
ru

ct
io

ns
 C

on
ve

rta
bl

e
to

 2
-O

pe
ra

nd and eor sub rsb add adc sbc rsc orr bic mul ldr str swp MEAN

Figure 2.3: 2-Address Compatible Static Instruction Distribution

14

source register operands. The results are sorted according to the instruction type as shown

in the figure. Besides load, store, and swap instructions, the remaining 3-address integer

instructions only need two operands 19% to 88% of the time. This result suggests the

possibility of intermixing two-address instructions and three-address instructions within

an application. This approach trades off the expressive power of an instruction for a

compact instruction space.

2.2.2 Dynamic Profiling Operand Analysis

Figure 2.4 is a dynamic address mode profiling results from simulating the

compiled ARM binaries on SimpleScalar. Similarly, it illustrates the fraction of all

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

Auto Consumer Network Office Security Telecomm

Fr
ac

tio
n

of
 In

st
ru

ct
io

ns
 C

on
ve

rta
bl

e
to

 2
-O

pe
ra

nd and eor sub rsb add adc sbc rsc orr bic mul ldr str swp MEAN

Figure 2.4: 2-Address Compatible Dynamic Instruction Distribution

15

dynamic three-address integer instructions that can be satisfied with two addresses. This

is determined, at run time, by calculating the fraction of total instructions in which the

destination register operand is the same as one of the source register operands. These

dynamic profiling statistics strengthens the static profiling results by showing a wide

applicability of replacing three addresses with two addresses during the actual program

execution. The lower distribution are from instructions, which either (1) rarely get

executed such as add with carry, subtract with carry, reverse subtract with carry, and

swap; or (2) tend to use all three operands such as load, and store. The remaining 3-

address instructions only require two register operands 59% to 87% of the time. The

multiply instruction is rather unpredictable across the benchmark suite and ranges from

0% (e.g. quicksort) to 41% (e.g. typeset).

 2.3 Immediate Space Requirement

ARM instructions use a lot of immediate operands. Clearly, if we are going to

have a processor architecture that is similar to ARM, we will have to be capable of

handling these immediate values efficiently. In this sub-section, we provide static and

dynamic analyses of the space requirement for these immediate operands. To aid our

analyses, we classify immediate operands into three categories: branch immediate

operands, ALU immediate operands, and memory (load and store) immediate operands.

Branch instructions contain immediate operands because ARM uses PC plus offset to

calculate the branch target address. ALU instructions use immediate operands because

ARM not only does regular arithmetic and logic operations, which often use immediate

16

operands to process data, but it may also do a shift operation followed by these data

processing operations and the specification of the shift is an immediate. Memory

instructions use immediate values because ARM uses base plus displacement to calculate

the effective memory addresses.

2.3.1 Static Profiling Analysis of Immediate Operands

Immediate instructions are instructions that have immediate constants embedded

in them. This section provides the static analysis of their characteristics in compiled

ARM binaries. Figure 2.5 illustrates two important aspects of immediate operands’ usage.

First, it shows their uses spread across the entire benchmark suite: on average, 71% of all

static instructions contain immediate values. Second, it shows a clear distribution for each

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h

sh
a

cr
c3

2 fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

M
E

D
IA

N

Auto Consumer Network Office Security Telecomm

C
on

tri
bu

tio
n

to
 T

ot
al

 S
ta

tic
 In

st
ru

ct
io

ns

branch alu load/store

Figure 2.5: Static Distribution of Immediate-Instructions

17

type of immediate instructions within a program: on average, ALU immediate

instructions constitute 30.7% of total program size. Memory immediate instructions

constitute 23.5% of total program size, and branch immediate instructions constitute

16.8% of total program size.

Static utilization of these immediate operands may help us determine the size of

immediate operand in instructions. Figure 2.6 shows the number of unique immediate

constants utilized by each category respectively. Despite their small contribution to total

code size, branch instructions use the largest number of unique immediate constants and

range from 4427 to 16531 with an average at 6020 and a median at 5681. However, all

programs except the typset use less than 8000 branch immediate operands. The numbers

of distinct ALU and memory immediate operands utilized are much smaller than branch

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h

sh
a

cr
c3

2 fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

M
E

D
IA

N

Auto Consumer Network Office Security Telecomm

Nu
m

be
r o

f D
is

tin
ct

 Im
m

ed
ia

te
 O

pe
ra

nd
s

branch alu load/store

Figure 2.6: Static Utilization of Distinct Immediate Operands

18

immediate operands. The ALU immediate operands range from 558 to 956 different

values with an average at 648 and a median at 623; while the memory immediate

operands range from 422 to 683 different values with an average at 464 and a median at

428.

2.3.2 Dynamic Profiling Analysis of Immediate Operands

One disadvantage of looking at static profiling analysis alone is that we may

overshoot the requirement since not all immediate operands are dynamically executed

equally frequently. In contrast to the static profiling approach, dynamic profiling allows

us to identify the most frequently used immediate constants, and thus enabling us to

pinpoint the greatest need of immediate constants and allocate the instructions bits

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

M
E

D
IA

N

Auto Consumer Network Office Security Telecomm

Co
nt

rib
ut

io
n

to
 T

ot
al

 D
yn

am
ic

 In
st

ru
ct

io
ns

branch alu load/store

Figure 2.7: Dynamic Distribution of Immediate-Instructions

19

accordingly. Therefore, it is necessary to perform both static and dynamic profiling

analyses to get a more balanced view of application execution needs.

Figure 2.7 shows the dynamic distribution of immediate instructions. It

strengthens the trend illustrated by Figure 2.5: On average, 97.7% of all executed

instructions are immediate instructions. Within this overwhelmingly large fraction, 53.9%

are ALU immediate instructions; 32.2% are memory immediate instructions, and 11.7%

are branch immediate instructions.

Figure 2.8 shows the number of unique immediate constants utilized by each

category respectively. Despite the fact that they have the smallest share of total dynamic

instruction counts, branch instructions again use the largest number of unique immediate

constants, and range from 117 to 1193 with an average at 335 and a median at 295. The

number of unique ALU and memory immediate operands dynamically utilized is again

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

M
E

D
IA

N

Auto Consumer Network Office Security Telecomm

Nu
m

be
r o

f D
is

tin
ct

 Im
m

ed
ia

te
 O

pe
ra

nd
s

branch alu load/store

Figure 2.8: Dynamic Utilization of Distinct Immediate Operands

20

smaller than branch immediate operands. The ALU immediate operands range from 63 to

213 different values with both an average and a median at 113. The memory immediate

operands range from 121 to 408 different values with an average at 197 and a median at

192.

2.4 Physical Register Space Requirement

The physical register requirement is the maximum number of physical registers

necessary without causing memory spills during the register allocation phase of the

compiler. This information is closely related to the register operand width in the physical

instruction space. The smaller the number of physical registers used by a program, the

better the performance of instruction set with short register operand width would have.

0

10

20

30

40

50

60

70

80

90

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

M
E

D
IA

N

Auto Consumer Network Office Security Telecomm

Nu
m

be
r o

f P
hy

si
ca

l R
eg

is
te

rs

100% > 1%

Figure 2.9: Utilization of Physical Registers

21

To collect the maximum number of physical registers that an application may need, we

used the MIRV [MIRV01] compiler to compile and profile MiBench. The results are

shown in Figure 2.9.

The profiling is done by examining this requirement at the procedure call level.

Specifically, we looked at the register usage for each procedure and determined the

maximum usage among all procedures for a given program. We did not look at the

register spilling at procedure boundaries because they are less well-defined to be

captured. This does not prevent us from obtaining a good overall estimate since most

programs nowadays spend majority of their time in function calls one way or the other.

The left bar (100%) shows the maximum physical register requirement among all

procedure calls: they range from 9 to 82 with an average at 26 and a median at 20. The

right bar (>1%) shows the maximum physical register requirement among those

procedures that each individually contributes to more than 1% of total dynamic

instruction count; hence it is the number of physical registers a program needs the most:

they range from 5 to 26 with both an average and a median at 17. We argue that in order

to achieve a better resource utilization, procedures which contribute less than 1% of total

executed instructions yet demands many registers (e.g. Main, Init…etc.) should be given

less consideration. According to Figure 2.9, 3 programs need 8 or less physical registers;

7 programs need 9-16 physical registers; 13 programs need 17-26 physical registers.

22

CHAPTER 3

FRAMEWORK DESIGN

This chapter describes the FITS design approach and the framework that supports

it. The basic philosophy of FITS is that high performance and high code density can both

be achieved if we can match the instruction set to the requirements of a targeted

application. FITS improves code density by using only 16-bit instructions instead of the

conventional 32-bit instructions. Since the instruction width is reduced by half, the total

code size can be reduced by half as long as what was originally done in a single 32-bit

instruction can also be done in a single 16-bit instruction. In the chapter of experimental

results, we will show that FITS indeed can achieve a code size reduction that is close to

50%. FITS does not trade off performance for code density. Through application-specific

customization, FITS can achieve high performance using only 16-bit wide instructions.

To best utilize the half-sized instruction width, the instruction space is allocated to only

those operations that are necessary and useful to the given application. As a result, we

can have a design that has best parts of both worlds: compact code density of 16-bit

instructions with high performance of 32-bit instructions.

23

3.1 Methodology

FITS is an application-specific hardware software co-design approach that

matches microarchitectural resources to performance needs of a given application, while

improving code-density. FITS does application-specific customization at the instruction

set level utilizing programmable decoders for instruction decode and register access. A

FITS processor consists of a fairly large set of functional units, including standard ALU

operations as well as a set of other useful instructions (e.g. Multiply/accumulate, zero-

overhead looping instructions, etc.). Limitations on the functions provided are only due to

chip area goals, not instruction set size limits. This can greatly increase the number of

similar operations, such as saturating add, because the additional circuitry to add

saturation to an add operation is minimal. Since instruction space encoding is decoupled

from the underlying microarchitecture, it is possible to add many instructions that may

only be useful to a small subset of applications. With a programmable decoder, FITS can

tune an ISA to include only those operations necessary for a single application.

Moreover, FITS is extremely flexible in terms of the range of underlying

microarchitecture that it can work with: from general-purpose DSPs or embedded

processors such as ARM to application-specific customized data-path. FITS provides the

same level of customization as many ASPs, trading somewhat greater chip area

requirements for eliminating the need to synthesize a new chip for each application.

To tune a FITS processor, a FITS aware compiler analyzes the instruction and

register requirements of an application, before instruction selection and register

allocation. We currently use profile information, but we are exploring new optimization

24

heuristics using static dataflow information to perform the code transformation. Once

code generation is complete, the compiler can specify the register organization and

instruction decoding to perform for the application. This configuration information is

then downloaded to a non-volatile state in a FITS processor. At this point, the processor

instruction set and register file organization is complete. If this application is later

upgraded with increased functionality, FITS can re-configure the decoders to match the

new requirements of the application. In general, FITS can transform any general-purpose

machine into an application-specific processor platform with over-provisioned resources

that can be dynamically configured to adept to the needs of different applications.

3.2 System Design Flow

The system design flow of FITS consists of five stages: profile, synthesize, and

compile are done off-line; configure and execute are done on-line. As illustrated in Figure

3.1, the targeted application is first analyzed by the FITS profiler to extract its

characteristics. The output of the profile stage is a list of extensive requirements analysis

related to each element that makes up an instruction set, such as opcode field, operand

field, immediate field, and register pressure.

After gathering the profiling information, FITS uses this information as a

guideline to synthesize an appropriate instruction set that will satisfy the requirements of

a given application. This is the stage where the instruction selection and encoding take

place. Instructions are selected based on their referenced frequencies. When the

instruction synthesis finishes, the definition of a complete ISA is formed. The FITS

25

compiler would then take the instruction set definition to compile the given application

into a 16-bit FITS binary. Any unused portions of datapath are turned off to save power

consumption [Joseph03]. Up until this point, the instruction synthesis is completed and

everything is performed off-line. During the chip initialization, the programmable

decoder is configured using the instruction decoding and register organization specified

by the compiler. The overhead of this one time configuration is trivially insignificant.

Please refer to the chapter on programmable decoder for more details on its initialization.

Once everything completes successfully, the compact FITS code is executed without

performance degradation.

PROFILE

FITS
Binary

Application

SYNTHESIZE

COMPILE

EXECUTE

CONFIGURE

offoff--lineline
onon--lineline

Figure 3.1: System Design Flow of FITS Framework

26

3.3 Instruction Set Synthesis Flow

This section describes how instruction synthesis is performed in FITS framework.

Along with step-by-step description, we also demonstrated the synthesis process with real

data from embedded benchmark programs. A representative subset of MiBench programs

[Guthaus01] are compiled into ARM binary using GCC tool chain [GCC04]. We choose

the ARM ISA as the target ISA to be studied, because it is popularly found in many

embedded applications.

At instruction synthesis stage, the compiler must make tradeoffs in the instruction

selection phase of optimization. This may include software emulation of rarely used

instructions. In almost all cases, the instruction set mapping includes a Base Instruction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

Auto Consumer Network Office Security Telecomm

To
ta

l D
yn

am
ic

 In
st

ru
ct

io
n

Fr
eq

ue
nc

y

ldr mov add b cmp

Figure 3.2: Synthesized Base Instruction Set Synthesis (BIS)

27

Set (BIS), a Supplemental Instruction Set (SIS), and an Application-specific Instruction

Set (AIS).

3.3.1 Base Instruction Set (BIS)

A BIS includes instructions found across all applications. As illustrated in Figure

3.2, these may include instructions, such as load, move, add, branch, and compare, which

are universally required by all applications. Together, these BIS instructions contribute to

at least 53% of total dynamic instruction frequency as seen in crc32. In some applications

like dijkstra, where application behavior can be easily captured in small dense loops with

many repeated computations, the BIS can contribute as high as 87% of total dynamic

0%

5%

10%

15%

20%

25%

30%

35%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

Auto Consumer Network Office Security Telecomm

To
ta

l D
yn

am
ic

 In
st

ru
ct

io
n

Fr
eq

ue
nc

y

sub str and　 bl orr

Figure 3.3: Synthesized Supplemental Instruction Set (SIS)

28

instruction frequency. On average, 70% of total program time can be captured by BIS

instructions.

3.3.2 Supplemental Instruction Set (SIS)

A SIS includes instructions required to make the instruction set Turing-complete

[Church36][Turing36]. An instruction set is Turing-complete only if it can specify all

behaviors of any arbitrary programs that can be envisioned, just as a Turing machine can

describe any programs in the universe. As illustrated in Figure 3.3, a SIS may include

instructions, such as subtract, store, and, branch and link, and or, which are required only

to compose a Turing-complete instruction set. Together, these SIS instructions can

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

Auto Consumer Network Office Security Telecomm

To
ta

l D
yn

am
ic

 In
st

ru
ct

io
n

Fr
eq

ue
nc

y

ldr mov add b cmp sub str and　 bl orr

Figure 3.4: Synthesized Turing-complete Instruction Set (TIS)

29

contribute to an average of 18% of total dynamic instruction frequency, and in the case of

quicksort, as high as 31%.

3.3.3 Turing-complete Instruction Set (TIS)

It is essential for any FITS instruction sets to be Touring-complete, so correct

program behaviors can be guaranteed when running a program that required some rarely

executed instructions, which are not mapped to the target ISA. Therefore, after the BIS

and SIS instructions have been identified and synthesized, the next step is to take the

union of BIS and SIS to create the Turing-complete Instruction Set (TIS). As Figure 3.4

illustrates, the TIS contains instructions from both BIS and SIS. The total dynamic

instruction frequency coverage of TIS for each application is the sum of those from BIS

and SIS. On average, the TIS contribute to 87% of total dynamic program time. In the

case of dijkstra, more than 97% of total dynamic instructions can be captured by TIS

instructions.

The BIS and SIS together contain enough functionality to simulate any

instructions not mapped for an application. BIS and SIS are generated differently and

separately during the instruction selection phase. For clarity purpose, they are separated

into two different instruction sets; even we include both them in all applications.

30

3.3.4 Application-specific Instruction Set (AIS)

In addition to the BIS and SIS instructions, FITS will include a set of application-

specific instructions (taken from the set of functional units in the microarchitecture)

necessary for the application to meet any performance goals. An application-specific

instruction set (AIS) includes instructions that may not be required by all applications,

and are included only to boost the performance of a particular application. Thus, the AIS

from one application is probably going to be different from that of another application.

The AIS is determined by evaluating the performance of existing TIS and the potential

performance gain by adding any extra instructions. Since AIS is really application

0%

5%

10%

15%

20%

25%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

5 4 5 5 5 3 3 3 4 3 4 5 4 4 4 3 4 5 5 5 3 3 4

Auto Consumer Network Office Security Telecomm

To
ta

l D
yn

am
ic

 In
st

ru
ct

io
n

Fr
eq

ue
nc

y

bic cmn eor ldm mla mul rsb stm tst

Figure 3.5: Synthesized Application-specific Instruction Set (AIS)

31

independent, a FITS compiler only need to focus selecting the instructions that can

maximize the performance of a given application.

As illustrated in Figure 3.5, each application has from 3 to 5 AIS instructions to

boost its dynamic instruction frequency coverage. Different applications may require a

different set of AIS instructions. Some applications rely more heavily on these additional

AIS instructions to cover their dynamic execution requirement. For example, adding

additional 4 AIS instructions can fulfill additional 23% of dynamic run time execution

needs for crc32. Other applications, such as dijkstra, where most of its dynamic

execution requirement can be met by its TIS instructions will only gain marginal benefits

when adding AIS instructions. Adding 3 to 5 additional AIS instructions on top of

existing 10 TIS instructions yields a total of 13 to 15 total instructions. For an instruction

format that only has 4-bit opcode field, this will ensure there is at least one opcode entry

reserved for configuring FITS programmable decoder.

3.3.5 Addressing Mode Synthesis

To improve the operand space utilization, FITS uses the two operand version of

an instruction, say add, when almost all of the uses of the instruction can be done with

two operands without requiring an additional move, provided there is a register space,

and three operands otherwise. FITS can mix and match these two address modes, so that

some instructions have two operands and some have three, as long as any two operand

definition that has a three operand use is in the part of the register file that can be read by

the three operand instructions. Since there is only one address mode for each instruction,

32

there is no need of extra opcode bit to indicate mode switch. Register allocation is also

designed to trade off the register file size and encoding with register spill frequency.

3.3.6 Immediate Operand Synthesis

Since the space requirements for different categories of immediates demonstrate

distinctive trends, as shown in the chapter of workload characterization, it makes sense to

partition the immediate synthesis problem into three sub-categories and perform a

category-based synthesis accordingly. FITS adopts an utilization-based technique to

encode the immediate operand space. FITS identifies the most frequently accessed

immediates and places them them in programmable, non-volatile memory storage,

replacing the instruction immediate with an index into the immediate storage. This is

similar to the dictionary compression method in [Lefurgy00] except: (1) FITS can

dynamically reconfigure the total immediate field width and adjust widths of other

instruction fields accordingly to best reflect the application's requirements, and (2) FITS

targets the immedaite fields only rather than a whole instruction.

33

3.4 Instruction Formats

FITS instructions are all 16 bits in various different instruction formats specifying

0, 1, 2, or 3 register fields. Generally speaking, all FITS ISAs have four basic instruction

categories: operate, memory, branch, and trap. The details of the instruction format may

vary, depending on the needs of the targeted application. For the illustration purpose,

Figure 3.6 included example instruction formats, which was used for the CRC32 program

from the MiBench Telecommunication benchmark group.

The Operate instructions are used for data processing such as arithmetic, compare,

logical. They use a source register RA and a source operand OPRD, writing result

register RC. For three-operand instructions, the OPRD field can be either a register

specifier or an immediate value, depending on the addressing mode. For two-operand

OP RC RA OPRD

15 12 11 8 7 4 3 0

OP DISP

Operate

Branch

NUMBERTrap OP

OP RA RB IMMMemory

OP RC RA OPRD

15 12 11 8 7 4 3 0

OP DISP

Operate

Branch

NUMBERTrap OP

OP RA RB IMMMemory

Figure 3.6: An Example FITS Instruction Formats for CRC32 of MiBench

34

instructions, the OPRD field can be combined with RA to specify an 8-bit zero-extended

literal. The Memory instructions move data between register RA and memory, using RB

plus a displacement indicated by the IMM field as the memory address. The Branch

instructions change the program control flow to the target specified by the sum of 12-bit

DISP offset and the PC. Subroutine calls put the return address in the register specified

by the first four bits of DISP field. The Trap instructions perform interrupts, exceptions,

task switching, and other complex operations that must be done atomically.

3.5 Synthesized Instruction Sets

For our experiments, we evaluated the effectiveness of FITS across a wide range

of embedded applications contained in the MiBench benchmark suite [Guthaus01]. A

0%
10%

20%
30%

40%
50%
60%

70%
80%

90%
100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

Auto Consumer Network Office Security Telecomm

To
ta

l D
yn

am
ic

 In
st

ru
ct

io
n

Fr
eq

ue
nc

y

BIS SIS AIS

Figure 3.7: Synthesized Final Instruction Sets

35

representative subset of MiBench programs from each of its 6 application domains:

automotive, consumer, network, office, security, and telecommunication, are compiled

into ARM binary using GCC tool chain [GCC04]. We choose the ARM ISA as the target

ISA to be studied, because it is popularly found in many embedded applications. We used

the SimpleScalar toolset [Austin02] to examine the quality of the synthesized instruction

set in terms of the dynamic execution needs for opcodes and immediates, which the

synthesized ISA can capture.

3.5.1 Synthesized Instructions

Figure 3.7 shows synthesized final instruction sets for different applications. The

synthesized final instruction set consists of three subsets of instructions: BIS, SIS, AIS as

0%
10%

20%
30%
40%
50%

60%
70%
80%

90%
100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

Auto Consumer Network Office Security Telecomm

To
ta

l D
yn

am
ic

 In
st

ru
ct

io
n

Fr
eq

ue
nc

y

ldr mov add b cmp sub str and　 bl orr
bic cmn eor ldm mla mul rsb stm tst

Figure 3.8: Synthesized Final Instruction Sets – Detailed Instruction Breakdown

36

described in previous section. Figure 3.7 illustrates the composition of the final

instruction sets in terms of the distribution of BIS, SIS, and AIS. Figure 3.8 provides the

detailed instruction breakdown of synthesized instruction sets.

BIS consists of five opcodes: load, move, add, branch, and compare. BIS

accounts for the majority of the dynamic instruction execution needs: on average, 69.1%

of total executed instructions are those from the BIS. SIS also consists of five

instructions: subtract, store, and, branch with link, and or. SIS accounts for 17.9% of

total executed instructions on average. The size of AIS is different from one application

to another. The union of entire suite’s AIS consists of: bit clear, compare negative,

exclusive or, load multiple, multiply accumulate, multiply, reverse subtract, store

multiple, and test bits. Depending on the individual execution characteristics, each

application includes at most 3 to 5 of them and each AIS from different application

accounts for 10.8% of total executed instructions on average. This AIS distribution will

likely expand as we will modify the compiler to utilize more specialized instructions

(such as a 0-cycle loop instruction), but since we limited ourselves to use the same code

generation as the ARM, the ability to identify useful AIS instructions was also limited.

Together, the contributions made by BIS, SIS, and AIS account for 97.8% of total

executed instructions. One important observation to be made here is that instructions

required by each benchmark are different, i.e., no fixed set of 16 instructions would be

sufficient for all programs.

37

3.5.2 Synthesized Immediate Operands

Figure 3.9 shows the contribution of the top 16 synthesized ALU immediate

operands to the total number of accessed frequencies of the entire ALU immediate

operand space. It is satisfying to learn that with as few as only 16 unique immediate

operands, the synthesized 4-bit immediate scheme can capture, on average, 96.9% of total

number of references made to the ALU immediate operand space. It is interesting to

observe that, on average, 51.8% of the contribution was made by the most frequently

referenced immediate value: zero.

Figure 3.10 shows the results for synthesized memory immediate operands. On

average, 87.4% of total references made to entire memory immediate operand space can

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

M
E

A
N

Auto Consumer Network Office Security Telecomm

To
ta

l D
yn

am
ic

 Im
m

ed
ia

te
 V

al
ue

 F
re

qu
en

cy

Figure 3.9: Synthesized Final ALU Immediate Operands

38

be captured by the top 16 synthesized immediate operands. The anomalies are basicmath,

patria, fft and fft.inverse, which are due to excessive utilization of floating point memory

immediate operands. Similar to the ALU immediate operand synthesis result where the

single most frequently accessed immediate value is responsible for a significant portion

of total immediate references: 26.9% of the total memory immediate operand references

were attributed to the value zero.

3.6 FITS Microarchitectural Enhancement

The FITS framework mentioned thus far assumes standard general-purpose

microarchitecture that can be seen in many embedded processors, such as ARM. In the

case of using the same the microarchitecture that can perform the same functional

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
si

cm
at

h

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

Auto Consumer Network Office Security Telecomm

To
ta

l D
yn

am
ic

 Im
m

ed
ia

te
 V

al
ue

 F
re

qu
en

cy

Figure 3.10: Synthesized Final MEM Immediate Operands

39

executions, the best FITS can do is to perform equally well like conventional processor

designs with 32-bit instructions, but not better. It is certainly cost-effective to use half-

sized instructions, which, in turn, yield roughly half-sized programs that can perform

equally well compared to the 32-bit counterparts. Yet, to raise the performance to the

next level, we must equip FITS framework with performance enhancers. The

performance enhancers we extend FITS framework with can speed up both data

processing and program control flow streamlining.

The FITS framework extension includes an enhanced microarchitecture that

provides the additional rich capabilities and exceptional horse power to meet the ever

increasing application requirements. These microarchitectural enhancements come from

two special on-chip processing units: the Versatile Integrated Processing (VIP) unit, and

the zero-overhead loop execution unit. The VIP unit is a universal data-crunching engine

that delivers superb data computing and data streaming performances. The zero-overhead

loop execution unit streamlines the program control flow by removing expensive loop

control overhead from both nested and non-nested loops.

Finally, to provide an interface to utilize these special resources efficiently at ISA

level, FITS again relies on the use of a programmable decoder that can dynamically map

a needed operation into instruction set definition as necessary. The use of a

programmable decoder allows adding new capabilities to microarchitecture without being

restricted by limited instruction space, which is one of the most critical constraints

existing in most multimedia processors.

40

3.6.1 Versatile Integrated Processing (VIP) Unit

A Versatile Integrated Processing (VIP) unit can execute up to five basic types of

computations: Shift (S), Logical (L), Arithmetic (A), Multiplication (M), and Division

(D), or SLAMD, as illustrated in Figure 3.11. Each basic type includes one to four

different operations. Using as few as three multiplexers enables all possible permutations

of input operands to a VIP unit. Although one VIP unit is stacked in front of the other

VIP unit, the two-to-one multiplexer at the end of the datapath can select either the result

of the first VIP unit or that of the second VIP unit to output. This creates a non-binding

cascaded processing paradigm, which can freely act as a single-level or a dual-level data

processing engine as directed by the requirement of a program.

S
&L

A

M

D

| ^ ~

+ - +=

<< >>

x

/ %

VIPVIP

S
&L

A

M

D

| ^ ~

+ - +=

<< >>

x

/ %

S
&L

A

M

D

| ^ ~

+ - +=

<< >>

x

/ %

VIPVIPVIPVIP

Figure 3.11: Versatile Integrated Processing (VIP) Unit

41

The VIP unit has very flexible operand routing schemes, which can generate a

rich set of computing patterns. As shown in Figure 3.12, there are as many as fifteen VIP

instruction patterns, which a special data streaming operation can be synthesized to. A

circle in each VIP instruction pattern represents one of the twelve basic SLAMD

operations supported by a VIP unit. Synthesizing custom instructions to tailor a FITS

processor to the requirement of an application is simple. For example, a logical operation

followed by a shift computation, such as xor-right-shift (e.g. ^a >> 5), can be synthesized

using VIP instruction pattern ten with XOR (^) operation executed by the first VIP and a

(8) (9) (10)

(3) (4) (5)

(7)

(2)

(6)

(1)

(11) (12) (13) (14) (15)

(8)(8) (9)(9) (10)(10)

(3)(3) (4)(4) (5)(5)

(7)(7)

(2)(2)

(6)(6)

(1)(1)

(11)(11) (12)(12) (13)(13) (14)(14) (15)(15)

Figure 3.12: VIP Instruction Computing Patterns

42

right shift (>>) executed by the second VIP. Multiply-accumulate (MAC) instruction,

such as (c += a x b), is another popular common computation in most media and DSP

applications. To synthesize a MAC instruction, the VIP instruction pattern eight can be

used with the first VIP executing multiply (x) operation and the second VIP executing

accumulate (+=) operation.

The VIP unit does not require extra read and write ports from the register file. The

FITS register file supports two register reads per cycle, which is common in most modern

RISC processors. Any pattern that can read three input operands (e.g. pattern eleven) will

take the third input operand from the immediate field of an instruction. Since there is no

extra cycle to wait for the input operands to arrive, provided that the VIP datapath is very

well optimized and can be clocked at modest frequency of 250 MHz, all VIP instructions

can be completed in one clock cycle. The VIP unit may be pipelined to achieve a higher

clock frequency, if proven necessary. Yet, the discussion of this approach is beyond of

the scope of this study.

Given that a VIP unit can execute up to a total of twelve different SLAMD

operations, and there are three single-level computing patterns and twelve dual-level

computing patterns for VIP instructions; a FITS processor can specify as many as (12 x

3) + (12 x 12 x 12), or 1764, distinct VIP instructions. This is a rich set of instructions,

which can efficiently execute any single-level or dual-level computations that can be

envisioned. To maintain the clock rate, 4 patterns that involve multiply and/or divide

followed by another multiply and/or divide are not used. Since these two-level

multiply/divide patterns, if ever used, can be easily replaced with a single

multiply/divide, restrict them from being used will not affect the wide applicability of

43

VIP. To save chip area, it is possible to completely replace the regular ALU with a VIP

unit since the operations implemented in the VIP unit is a superset of that of a regular

ALU. Different applications exhibit different behaviors that may require different subset

of VIP instructions to match. Any unused datapath within the VIP can be clock gated

[Srinivasan05] to reduce the power consumption.

3.6.2 Zero-Overhead Loop Execution Unit

For many applications, a large percentage of the dynamic program execution time

is spent in the innermost loops of a program [PattersonHennessy03]. These loop

execution incur significant overhead due to the increment or decrement of the loop

counter variables and the branches to initiate a new iteration.

Many software and hardware techniques have been proposed to improve loop

execution time. Please see the chapter of related work for a more complete list of relevant

literature. The zero-overhead loop support in FITS is similar to [Analog-ADSP21160] in

that it is stack-based. Stack-based zero-overhead loop execution can support not only the

innermost loop but also nested loops as well. Moreover, since it does not store the actual

instructions within loops, there is no need for additional storage, which can result in extra

power consumption and area overheads.

FITS microarchitecture supports three hardware stacks: top-of-loop address stack,

end-of-loop address stack, and loop count stack. These three address stacks work in a

synchronized manner for zero-overhead loop execution. When the FITS processor

executes a zero-overhead loop instruction, LOOP, the program sequencer pushes the

44

address of the top-of-loop address, which is the address of the instruction following the

LOOP instruction, on the top-of-loop address stack. The address of the last loop

instruction is pushed on the end-of-loop address stack. The loop iteration count, which

keeps track of the total number of iterations a loop must execute, is pushed on the loop

count stack. The LOOP instruction specifies both the end-of-loop and the loop count. The

end-of-loop address can be either a label for an absolute program memory address, or a

PC-relative twos-complement address. The loop count is either an immediate unsigned

value or can be the value of a register. The program sequencer decrements the loop count

at the end of each loop iteration. The loop executes until the loop count reaches zero. The

FITS stack-based zero-overhead looping mechanism removes most control overhead for

executing loops. While this zero overhead loop instruction supports counter-based loops,

i.e. the total number of loop iteration count is known at compiled time or can be easily

computed at run time, this is sufficient for most media and DSP applications. In our

experiments, we found that almost all program loops are or can be easily converted to

counter-based loops. The benefits of this overhead removal are demonstrated later in the

results chapter.

45

3.7 FITS Programmable Instruction Decoder

The most vital piece of innovation for FITS framework to work is the

programmable instruction decoder. This section describes its detail mechanisms and

implementation.

3.7.1 Hardwired Instruction Decoder

In almost all modern processors, datapath control lines for an instruction are

hardwired. These hardwired control lines regulate the behavior (e.g. reads or writes) of

different parts of the processor datapath, such as updating the PC and the register file,

selecting ALU functions, accessing memories, and other processor state, etc.. A non-

volatile read-only memory (ROM) is usually used to store control lines associated with

each instruction. This conventional hardwired instruction decoder scheme is illustrated in

Figure 3.13. When an instruction is decoded, its opcode is used to select the

corresponding row of control line patterns to set the control on different parts of the

processor datapath. The width of the ROM determines the number of control signals an

instruction can regulate. The more complex underlying datapath is; the larger number of

control signal lines there are, hence, the wider of each ROM entry has to be. The height

or the number of rows of the ROM determines the number of distinct datapath control

signal patterns the decoder can store. It is proportional to the size of the instruction

opcodes. The larger the opcode is; the more operations a processor can support.

46

The reasons for using non-volatile memory, such as a ROM, instead of using

volatile memory, such as RAM, to store control signal patterns is mainly because the

fixed nature of conventional ISA designs. Because the control signals regulated by an

opcode are never changed, it makes sense to store these control signals in memory that

can retain its contents even when the power is turned off. Otherwise if a volatile memory

is used, the control signals need to be loaded from somewhere (e.g. BIOS) into this

volatile memory each time the machine is booted.

3.7.2 Programmable Instruction Decoder

Unlike the conventional hardwired fixed decoding scheme, the instruction

decoding of a FITS processor is programmable. This section explains the architecture and

mechanism of the FITS programmable decoder. A detailed evaluation of this

programmability overhead is provided in the evaluation chapter.

One of the key components enabling FITS to adapt to different applications, with

the same microarchitecture, lies on the use of its programmable instruction decoder. This

Hardwired
Decoder

Opcode Control
Signals

Hardwired
Decoder

Opcode Control
Signals

Figure 3.13: Conventional Hardwired Instruction Decoder

47

adaptability is in the form of having custom instruction set for each different application.

The FITS instruction decoder consists of a standard n-to- n2 binary row decoder and a

n2 -entry programmable memory, where n is the opcode width and n2 is the number of

instructions specified by the ISA. For all the embedded applications we studied, 4-bit

opcode is sufficiently large to meet the execution requirements, which makes the number

of FITS instruction decoder entries equal to 16. The 16-entry FITS decoder is used to

store the instruction control information, which ordinarily would be stored in the ROM of

a conventional decoder. The width of a FITS decoder entry is same as that of a ROM

entry, so each FITS decoder entry is wide enough to store all control line signals for one

instruction. When the 4-bit opcode input is inserted, exactly one of the16 outputs is

activated and the corresponding instruction control signals are fetched and being sent

down the pipeline to set the datapath accordingly.

Either static random-access memory (SRAM) or a register flip-flop can be used to

implement this programmable memory of FITS decoder. Although the dynamic random-

access memory (DRAM) has higher density that uses as little as one transistor per bit, a

periodic refresh operation is required to keep its memory contents from disappearing.

Thus, the DRAM is not considered when selecting the memory cells to implement FITS

decoder.

By making the instruction decoder programmable, designers can freely select a

subset of pre-defined microarchitecture functions that are best suitable for the targeted

application. These selected functions are mapped to the ISA of a FITS processor by

loading their corresponding instruction control signals into the programmable decoder.

48

Specifically, a custom instruction set is defined and synthesized by the compiler for the

targeted application.

At boot time, the programmable decoder is initialized with the synthesized

instruction set. We introduced a OVERWRITE instruction and included it in all

synthesized ISA to perform this decoder initialization. As Figure 3.14 illustrates, the

OVERWRITE instruction updates the FITS decoder with the instruction control

information stored in the original ROM decoder. The OVERWRITE instruction takes two

operands: DestinationEntry and SourceEntry. The DestinationEntry operand specifies a

FITS decoder entry, to which the instruction control information of a selected opcode is

going to be written. The SourceEntry operand specifies a ROM decoder entry, from

which the instruction control information of a selected opcode is going to be used to load

the FITS decoder entry. The decoder initialization overhead is small. The reading of the

ROM decoder and writing to the FITS decoder can be done in a single cycle. With 4-bit

Hardwired
Decoder

Opcode Control
Signals

Initialized and
updated with
Overwrite
instructions

FITS Decoder

Hardwired
Decoder

Opcode Control
Signals

Initialized and
updated with
Overwrite
instructions

FITS Decoder

Figure 3.14: FITS Programmable Instruction Decoder

49

opcode that specifies up to 16 instructions, we pay a one-time 16 cycles of start-up cost to

load the FITS programmable decoder.

Depending on if we need to do any dynamic ISA reconfiguration or not, the fixed-

wired ROM instruction decoder can be handled differently to reduce its power

consumption. The need of dynamic ISA reconfiguration can be determined at compile

time, when the target application is profiled and analyzed and the ISA synthesis is to be

performed. If dynamic ISA reconfiguration is not necessary, then the ROM decoder is

only accessed during the chip initialization, after which there is no need to access the

ROM decoder again and it can be completely turned off to save power consumption.

After initialization, all instruction decoding is handled directly by the FITS decoder in the

same way that a conventional ROM decoder handles it.

If the ISA will need to be dynamically reconfigured at run time, we want the

contents of the ROM decoder to be accessible during the ISA reconfiguration and we can

leave the ROM decoder to be inactive or turned-off otherwise to maximize our power

savings. Our preliminary studies show that the default synthesized ISA is effective

enough to satisfy the majority of the program execution requirement. Thus, the ROM

decoder is mainly accessed during the chip initialization. After initialization, the rarely

accessed ROM decoder stays mostly inactive or powered-off and consumes nominal

leakage power, which is the price we pay for the dynamic instruction re-configurability.

More aggressive dynamic power management techniques, such as dynamic voltage

scaling or dynamic frequency scaling [Magklis03], can be easily applied to reduce the

power consumption of the ROM decoder further, but the discussion of which is beyond

the scope of this dissertation and is left as our future research.

50

CHAPTER 4

EXPERIMENTAL METHODOLOGIES

4.1 Power Modeling

Power dissipation is becoming a critical concern for semiconductor industry. If

current design trends continue, a typical microprocessor will consume 50 times more

power than that can be supported by cost-effective packaging techniques by 2016

[Allen02]. Clearly, power has become one of the most serious design constraints in

today’s process generations. Design engineers who are serious about providing power-

efficient cutting edge technology to their customers see the value in handling power

problem early in the design flow. By understanding a design’s power requirements at

every phase of the design cycle, engineers will be able to produce high-performance,

power sensitive products without impacting cost or time to market. To help illustrate how

FITS addresses this issue, this section describes the power metrics and modeling tool that

were used to measure the power dissipation results presented in the experiment chapter.

51

4.1.1 Power Components for CMOS Circuits

There are three components of power consumption in complementary metal-oxide

semiconductor (CMOS) logic circuits: switching (capacitive) power; internal (short-

circuit) power; and leakage power. Figure 4.1 depicts how electric current flows in a

CMOS transistor: swI , intI , and leakI are currents associated with switching power,

internal power, and leakage power respectively.

Switching or capacitive power, which typically represents 60 to 80 percent of

power consumption, is the power dissipated when a load capacitance is charged or

discharged, i.e. 0 to 1 or 1 to 0 transitions of the nets in the design.

Gnd

VDD

Cload

Isw

Iint

Ileak

(Subthreshold)(Gate)

Gnd

VDD

Cload

Isw

Iint

Ileak

(Subthreshold)(Gate)

Figure 4.1: Power Dissipation in CMOS Circuits

52

Internal or short circuit power, typically 20 to 40 percent of power consumption,

is the power consumed within a cell. This includes power loss due to short-circuit (DDV to

ground) current as well as all power dissipated due to switching of internal nets. The sum

of the switching power and internal power is together referred as dynamic power.

Leakage or static power, on the other hand, is the power dissipated due to sub-

threshold leakage and the current flow through the reverse-biased p-n junction between

diffusion and substrate. The leakage power is also referred as static power.

4.1.2 Power Equations for CMOS Circuits

In computer architecture research community, the overall power consumption of a

CMOS logic is often modeled as the sum of dynamic power and static power

consumption [Mudge01] as equation (4.1) shows:

The first term models the switching power caused by the charging and

discharging of the capacitive load on the output of each logic gate: A is the fraction of

gates actively switching; C is the total capacitance load of all gates; V is the supply

voltage; f is the system operating frequency.

The second term measures the internal power. The intI is the short-circuit current,

which flows between the supply voltage and ground when the output of a CMOS logic

gate switches. The τ is the coefficient that captures the momentary loss of internal power

 leakVIfAVIfACVP ++= int
2 τ (4.1)

53

during a gate switch. Sometimes, the short circuit power can be ignored. The reason is its

relatively small contribution to the dynamic power and can thus be absorbed by the

dynamic power, if necessary.

The third term measures leakI , the static power lost due to leakage current.

Regardless whether a gate is actively switching or not, as long as it is not turned off, it

will consume the leakage power.

Dynamic power is activity based because it is directly related to the toggling

frequency and operating duration of the gates in the circuit. The leakage power, on the

other hand, is unaffected by activity since it is governed only by the number of gates and

their threshold voltages. The only time that leakage can be reduced to zero is when the

gates are turned off. Leakage power accounts for the majority of power dissipated when

the circuit is inactive. Thus, this is an important metric to measure and optimize for

portable battery-powered applications.

In addition to the dynamic power and static power, the peak power is also relevant

because exceeding an upper power limit imposed by a system will lead to circuit damage.

Reduction in peak power may also help reduce the di/dt noise, an inductive effect caused

by sharp changes in power consumption which can result in circuit malfunction.

These fore-mentioned power characteristics imply that: given the same C and V,

smaller logic block that completes a task faster could save both dynamic and static

powers and possibly the peak power. As it will be shown in the experiment chapter, this

is exactly how FITS achieves power savings for its programmable decoder, VIP function

units, instruction cache, which all translate into significant power savings for the target

54

applications. . A FITS processor can achieve significant dynamic and static power

savings by executing powerful and half-sized instructions. Powerful VIP instructions

reduce dynamic program run time, thus reducing dynamic power. Half-sized instructions

require smaller functional block and datapath (e.g. instruction cache), thus reducing static

power.

4.1.3 Power Modeling Tools

It is very difficult to model power consumption of a system at the architectural

level. A natural solution is to build a power estimator into the cycle simulators. However

as [Kim01] pointed out, cycle simulators intentionally omit considerable implementation

detail to speed up simulation speed. Therefore, the challenge is to select the necessary

details that must be put back in to produce accurate power figures.

In this dissertation, we used a modified version of the “sim-panalyzer”

[Panalyzer04] to run power modeling simulation for our experiments. “sim-panalyzer” is

an infrastructure for microarchitectural power simulation at the architectural level. It is

built on top of SimpleScalar-ARM simulator [Austin02]. “sim-panalyzer” measures

power consumption by tying cycle accurate behavior to activity at the gate level for

obtaining the dynamic power and to estimate the number of gates that the

microarchitecture requires for obtaining the static power. Specifically, “sim-panalyzer”

computes the power dissipation with the switching capacitance multiplied by the number

of microarchitectural accesses. It uses the logic simulator to collect the number of gate

switching in each internal node of the targeted circuit on the fly, and the capacitance

55

extractor to estimate the switching capacitance of each node. The chip-wide power

dissipation breakdown given by the simulator is consistent with that of an actual

fabricated StrongARM design [Montanaro96].

4.2 Benchmarking Workloads

This section describes the procedures that we used to perform the workload

benchmarking. The applications we studied are from the MiBench benchmark suite

[Guthaus01] and MediaBench benchmark suite [Lee97].

4.2.1 Profiling Procedures

Profiling allows a system designer to learn where a program spent its time and

which functions called which other functions while a program was executing. This

information can show a designer which pieces of a program are bottlenecks, and might be

candidates for optimization to make a program execute faster. For this study, we use the

GNU profiler, gprof [GPROF], to analyze the target workload. The gprof profiler works

by changing how every function in a program is compiled so that when a function is

called, it will stash away some information about where it was called from. From this

information, the gprof profiler can figure out what function called it, and can count how

many times this function was called. This change is made by the compiler when your

program is compiled with the `-pg' option, which causes every function to call a profiling

library routine responsible for constructing an in-memory call graph table to record a

56

function’s parent and its parent's parent. This is done by examining the stack frame to

find both the address of the child, and the return address in the original parent. Since the

profiler uses information collected during the actual execution of a program, it is often

used on programs that are too large or too complex to analyze by reading the source code.

There are two forms of profiling output for program analysis. The flat profile shows how

much time a program spent in each function, and how many times that function was

called. The flat profile states concisely which functions burn most of the machine cycles.

The call graph shows, for each function, which functions called it, which other functions

it called, and how many times. There is also an estimate of how much time was spent in

the subroutines of each function. This can suggest places to eliminate excessive function

calls that use a lot of time. In this dissertation, we used both profiling outputs as general

guidelines to apply FITS optimizations.

4.2.2 Instruction Cache Evaluation Procedures

To do an analysis of power consumption and performance evaluation on real

embedded workload, four different processor configurations were simulated with “sim-

panalyzer.” A representative subset of the MiBench suite [Guthaus01] is compiled into

the ARM binary using the GCC tool chain [GCC04]. To clearly demonstrate the

effectiveness of FITS in reducing instruction cache power dissipation, we restrict the

experiment to only allow a single controlled variable: instruction cache size. There are

two different instruction cache sizes: 16 Kb or 8 Kb. For simplicity, simulations of the

original ARM code with a 16 Kb and an 8 Kb instruction cache are abbreviated as

57

ARM16 and ARM8 respectively; likewise, simulations of the FITS-optimized code with

a 16 Kb and an 8 Kb instruction cache is abbreviated as FITS16 and FITS8 respectively.

The rest of the microarchitecture remained the same and were modeled after Intel’s SA-

1100 StrongARM embedded microprocessors [Intel-SA1100] as shown in the following

table.

 ARM16 ARM8 FITS16 FITS8

Fetch queue 8 8 8 8

Branch Predictor Not-taken Not-taken Not-taken Not-taken

Fetch & Decode Width 2 2 2 2

Issue Width 2 2 2 2

Issue Order In-Order In-Order In-Order In-Order

Function

Units

1 Int ALU,

1 FP Mult,

1 FP ALU

1 Int ALU,

1 FP Mult,

1 FP ALU

1 Int ALU,

1 FP Mult,

1 FP ALU

1 Int ALU,

1 FP Mult,

1 FP ALU

Instruction L1 Cache

(cache size, associativity,

block size)

16 Kb,

32-Way,

32-Byte

8 Kb,

32-Way,

32-Byte

16 Kb,

32-Way,

32-Byte

8 Kb,

32-Way,

32-Byte

Data L1 Cache

(cache size, associativity,

block size)

16 Kb,

32-Way,

32-Byte

16 Kb,

32-Way,

32-Byte

16 Kb,

32-Way,

32-Byte

16 Kb,

32-Way,

32-Byte

L2 Cache None None None None

Memory (bus width, first

block latency)

4-Byte,

64 Cycles

4-Byte,

64 Cycles

4-Byte,

64 Cycles

4-Byte,

64 Cycles

Frequency 250 MHz 250 MHz 250 MHz 250 MHz

Power Supply 1.8 V 1.8 V 1.8 V 1.8 V

Table 4.1: Processor Configuration for Evaluating I-Cache Performance

58

We ran full simulation on all compatible benchmarks to their completions without

skipping any instructions. Up to approximately 1 billion dynamic instructions were

simulated for all benchmarks. Due to compatibility issues between the MiBench and the

simulator, basicmath and gsm.encode are dropped from the power dissipation study and

gsm.decode was thus renamed to gsm accordingly.

4.2.3 Programmable Decoder Evaluation Procedures

To perform a realistic and accurate cost evaluation on programmable decoder

overhead, memories used for both the FITS programmable decoder and the regular ROM

decoder were synthesized using the Artisan Memory Generator [Artisan-

MemoryGenerator] under worst-case process conditions. The technology used is TSMC’s

six-layer metal 0.18 µm CMOS process [TSMC-18]. The SRAM memory synthesized for

the FITS programmable decoder is a high-speed and synchronous SRAM, which has a

single read port and a single write port [TSMC-SRAM]. The SRAM’s storage array is

composed of six-transistor cells with fully static memory circuitry. The ROM memories

synthesized for the both the FITS and regular decoders are high-speed and synchronous

diffusion ROMs that have a single read port and a single write port [TSMC-ROM]. The

diffusion ROM’s storage array is composed of diffusion-programmable single-transistor

cells with fully static memory circuitry. Both SRAM and ROM operate at a voltage of

1.8V ± 10% and a junction temperature range of -40°C to +125°C.

Many of the characteristics of a memory cell are depend on its y-mux type, which

defines the aspect ratio of the memory layout. When the y-mux type is changed from one

59

to the other, it will change many major characteristics, such as access time, area, and

power consumption, of the memory. Consequently, the width of y-mux circuit for SRAM

and ROM is fixed to be 4 and 8 respectively to ensure aspect ratio of the memory layout

remain the same. These y-mux widths were selected because their corresponding aspect

ratios yielded the best performance for each memory type.

4.2.4 VIP and ZOLE Evaluation Procedures

To show true performance advantages of VIP and ZOLE units, we evaluate both

units on realistic embedded multimedia applications. We select the MediaBench

benchmark suite [Lee97] as our evaluation benchmark. Four processor configurations

were simulated on a modified SimpleScalar [Austin02] tool chain. Modifications to

SimpleScalar were made, so it can execute VIP instructions and ZOLE instructions.

Because the development of automated control flow and data flow analyses is in

progress, all VIP and ZOLE optimizations were hand coded into the source code for this

study. The modified programs were then compiled using the modified GCC tool chain

[GCC04]. Using the default data sets, we ran full simulation on all benchmarks to their

completions without skipping any instructions. Hundreds of million to billion dynamic

instructions were simulated for all benchmark programs. Due to compatibility issues

between the some of the programs and the compiler tool chain, four programs: pgp, rasta,

ghostscript, and mesa were dropped from this study.

60

CHAPTER 5

RESULTS AND ANALYSES

Experimental results are discussed in this chapter. We first presented a

comprehensive evaluation on costs and benefits of FITS programmable decoder in area,

access latency, and power consumption. Following the decoder analysis is the discussion

on the effectiveness of FITS framework, in application level, using the following metrics:

instruction mapping rate, code size saving, power reduction, and performance

measurement. Metrics are presented in a progressively order so any cause-effect

relationships could be clearly established and results could be easily assimilated.

5.1 FITS Programmable Decoder Evaluation

To understand the cost of incorporating programmable instruction decoding to a

FITS processor, we compared the area, access latency, and power consumption of both

fixed and programmable decoders. In all figures, three lines were plotted: ROM

represents the data points of a regular fixed instruction decoder; FITS represents the data

points of the FITS programmable instruction decoder; Overhead represents the overhead

61

associated with the FITS programmable decoder. Overhead is expressed in percentage

difference, which is computed with the following formula:

A positive overhead indicates additional costs for using FITS decoder; a negative

overhead indicates achievable savings through using the FITS decoder.

5.1.1 The Size of a Decoder

The first step of evaluation was to determine the size of a decoder being

examined. The size of an instruction decoder is determined by the product of the number

of entries stored (row dimension) and the width of each entry (column dimension). Every

decoder entry stores the datapath control information of one instruction. The size of the

row determines the number of distinct instructions that a decoder can accommodate. The

size of the column determines the number of control lines an instruction can regulate.

To show how the FITS decoder scales with a wide range of number of

instructions, we plotted data points against the number of instructions ranging from 64 to

4096. This is same as looking at how well the programmable decoder can scale for

opcode field width ranging from six bits to twelve bits. This range was chosen because

many popular ISAs today have their top-level opcode field, the second-level opcode field,

or the combination of opcodes from both levels, fall into this range. For example, MIPS

%100×

−
=

ROM
ROMFITSOverhead

 (5.1)

62

has 6-bit top-level opcodes and 6-bit second-level opcodes [MIPS-MIPS32]; ARM has 4-

bit top-level opcodes preceded by a 4-bit conditional execution field, and 4-bit second-

level opcodes [ARM-ARM]; Alpha has 6-bit top-level opcodes and 11-bit second-level

opcodes [Compaq-Alpha].

Both the FITS decoder and an ordinary ROM decoder have entry size starting at

32 bits for 64 instructions. The entry size will increase by 1 bit every time we double the

number of instructions available on chip. To put this dimension into perspectives, there

are approximately 120 control lines in the integer datapath of Intel’s Pentium 4 processor

[PattersonHennessy05]. For its floating-point datapath, the number of control lines ranges

between 275 to over 400 – the latter number for including the SSE2 instructions [Intel-

IA32]. This is undoubtedly overkill for any embedded processor design.

K

50K

100K

150K

200K

250K

300K

64 128 256 512 1024 2048 4096

Number of Instructions

A
re

a
(u

M
 s

qu
ar

e)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

%
 D

if
fe

re
nc

e

ROM FITS Overhead

Figure 5.1: Area Comparison between Fixed and FITS Decoders

63

5.1.2 Footprint Area Analysis

Figure 5.1 shows the footprint area, in micron (µm) squared, of the fixed decoder

and the programmable FITS decoder. The footprint area shown includes the core area,

power ring and pin spacing areas. The area of the FITS decoder is computed by adding

the area of the 16-entry SRAM and the area of the ROM used for initialization. A 16x32

SRAM (for 64 instructions) is less than 47K micron squared and a 16x38 SRAM (for

4096 instructions) is less than 54K micro squared when implemented using the TSMC’s

0.18 µm process. The additional area associated with programmable decoder is very

small compared to the total chip area, which generally ranges from tens to hundreds of

millimeter (mm) squared under the same process technology. Moreover, this area

overhead is scaling down as the number of instructions supported increases. As shown in

the figure, the overhead starts out to be 98% for 64 instructions and it drops down to only

23% for 4096 instructions. This is because while the number of entries in the ROM

decoder needs to increase along with the increasing number of instructions, the number

entries in the SRAM can be kept the same.

64

5.1.3 Access Time Analysis

Figure 5.2 shows the access time, in nanoseconds (ns), of the fixed decoder and

the programmable FITS decoder. Access time is defined as the slowest possible input-to-

output transition for accessing a critical path. The access time overhead for using the

FITS programmable decoder is small: the worst case has less than 3% overhead when the

ROM decoder is small (64 entries). Moreover, this access time overhead decreases down

to less than 1.4% when the number of instructions reaches 256, after which accessing the

FITS programmable decoder become faster than accessing the ROM decoder: 0.4% faster

for 512 instructions; 4% faster for 1024 instructions; 10% faster for 2048 instructions,

and 20% faster for 4096 words. Most important of all, with the processor clock frequency

0.0
0.2
0.4

0.6

0.8
1.0

1.2

1.4
1.6

1.8

64 128 256 512 1024 2048 4096

Number of Instructions

A
cc

es
s

Ti
m

e
(n

s)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

%
 D

if
fe

re
nc

e

ROM FITS Overhead

Figure 5.2: Access Time Comparison between Fixed and FITS Decoders

65

targeted at 250 MHz, all read and write accesses to the FITS programmable decoder can

be easily finished within one cycle.

5.1.4 Power Consumption Analysis

The leakage power, dynamic power, and total power consumption, in milliwatts

(mw), of the fixed decoder and the FITS programmable decoder are shown in Figure 5.3

and Figure 5.4 respectively. The dynamic power is calculated by multiplying the dynamic

AC current by the operating voltage. The dynamic AC current assumes 50% read and

write operations, where all addresses and 50% of input and output pins switch. Likewise,

the leakage power is the product of the operating voltage and the standby leakage current,

which assumes inactive memory cells with all input and output pins being held stable.

The total power consumption is the sum of dynamic and leakage power consumed. Both

0.00

0.01

0.02

0.03

64 128 256 512 1024 2048 4096

Number of Instructions

Le
ak

ag
e

Po
w

er
 (

m
W

)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

%
 D

if
fe

re
nc

e

ROM FITS Overhead

Figure 5.3: Leakage Power Comparison between Fixed and FITS Decoders

66

dynamic and static power consumptions of FITS programmable decoder presented here

includes the leakage power consumption of the back-up ROM decoder. Through clever

dynamic power/energy management techniques [Magklis03][Huang00], it is possible to

clock gate the rarely accessed back-up ROM decoder to achieve further power savings by

reducing its leakage power. Yet, the discussion of applying these techniques is beyond

the scope of this thesis.

Similar to the area and access time analyses shown in previous sections, the FITS

programmable decoder shows a nice scaling effect in leakage power consumption. As

shown in Figure 5.3, the leakage power overhead starts with 66% and gradually decreases

down to 14% as the number of instructions supported increases from 64 to 4096.

Unlike all the analyses shown above where positive overheads were observed, the

dynamic power consumption of the FITS programmable decoder is less than that of a

regular fixed decoder as indicated by negative overhead line. As depicted in Figure 5.4, a

0

0.1

0.2

0.3

0.4

0.5

0.6

64 128 256 512 1024 2048 4096

Number of Instructions

D
yn

am
ic

 P
ow

er
 (

m
W

)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

%
 D

if
fe

re
nc

e

ROM FITS Overhead

Figure 5.4: Dynamic Power Comparison between Fixed and FITS Decoders

67

54% to 59% of dynamic power savings can be achieved by FITS decoder as the number

of instructions supported increases from 64 to 4096. These power savings are due to the

fact that FITS decoder mostly accesses the small 16-entry SRAM during program

execution; whereas a regular fixed decoder needs to access a much bigger sized ROM

that consumes more power to operate.

The observation to be made here is the scale of leakage power is an order of

magnitude smaller than that of dynamic power. This means the positive overheads of

leakage power shown in Figure 5.3 will not negligible effect for the total power

consumption, which is computed by adding leakage power with dynamic power. Figure

5.5 depicts the total power consumption. As expected, the total power consumption of the

FITS programmable decoder is dictated by the dominant dynamic power consumption.

As indicated by negative overhead lines in Figure 5.5: 52% to 56% of total power savings

0

0.1

0.2

0.3

0.4

0.5

0.6

64 128 256 512 1024 2048 4096

Number of Instructions

To
ta

l P
ow

er
 (

m
W

)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

%
 D

if
fe

re
nc

e

ROM FITS Overhead

Figure 5.5: Total Power Comparison between Fixed and FITS Decoders

68

can be achieved by FITS decoder as the number of instructions supported increases from

64 to 4096.

5.2 Instruction Mapping Coverage

In order for FITS to demonstrate any noticeable power and code size benefits,

enough one-to-one translations must be made from the native 32-bit ARM instructions to

the optimized 16-bit FITS instructions. This section demonstrates the reality of FITS with

its promisingly high one-to-one correspondence to ARM: a 96% average of static

mapping and a 98% average dynamic mapping, as illustrated by Figure 5.6 and Figure

5.7 respectively.

0%

10%

20%

30%

40%
50%

60%

70%

80%

90%

100%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

In
st

ru
ct

io
n

M
ap

pi
ng

 D
is

tri
bu

tio
n

1-1 1-n

Figure 5.6: Static ARM-to-FITS Instruction Mapping

69

Higher static mapping gives us smaller code size and fewer cache misses. Higher

dynamic mapping means greater power reduction and faster execution. The mapping is

determined to be one-to-one if there was a FITS instruction that could achieve the same

result as an ARM instruction. Otherwise, a one-to-n mapping, where n > 1, is determined

when we had to translate this ARM instruction into multiple FITS instructions. In theory,

n could be any number ranging from 2 to 4; however, in practice, n = 2 is almost always

the case. The lower dynamic one-to-one mapping of fft.inverse and fft is due to a larger

fraction floating-point code executed which are currently not accounted for by the FITS.

0%

10%

20%

30%

40%

50%
60%

70%

80%

90%

100%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

In
st

ru
ct

io
n

M
ap

pi
ng

 D
is

tr
ib

ut
io

n

1-1 1-n

Figure 5.7: Dynamic ARM-to-FITS Instruction Mapping

70

5.3 Code Size Benefits

Figure 5.8 compares the program code density achieved by different code

generations, namely, ARM, THUMB, and FITS. The FITS bars represent the program

code size after the ARM-to-FITS translation. The ARM and THUMB bars represent the

program code size compiled in pure 32-bit ARM and 16-bit THUMB respectively. ARM-

THUMB intermixing result was omitted since FITS is a pure 16-bit instruction synthesis

technique and ARM-THUMB intermixing does not yield better code density than that of

THUMB alone. We normalized everything with respect to ARM in order to show the

code size savings that THUMB and FITS each achieves in terms of percentages. On

average, THUMB reduced approximately 33% of ARM code across the entire benchmark

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

M
E

A
N

Auto ConsumerNetwork Office Security Telecomm

No
rm

al
iz

ed
 C

od
e

S
iz

e

ARM THUMB FITS

Figure 5.8: Code Size Comparison between ARM, THUMB, and FITS

71

suite. For jpeg where there are many expensive image compression and decompression

routines, THUMB can only reduce code size by approximately 20%. On the other hand,

FITS was able to reduce the ARM code by almost an half: on average, 47% of total ARM

segment could be eliminated. The reason for THUMB not being able to achieve as much

code size savings as FITS does is because THUMB is not able to utilize its 16-bit

instruction fields as efficiently due to its general-purpose nature. Thus, for an application

that has several performance critical regions, such as jpeg, many 32-bit ARM instructions

would still need to remain in the program to handle the expensive processing.

Like most general-purpose ISAs, THUMB supports a wide range of instructions

in order to be able to specify lots of applications. However, this general-purpose

capability requires more opcode space and makes the other instruction fields, such as

register and immediate operands, smaller. When the register operand width is reduced,

the processor can specify less architect registers and thus increasing the register pressure.

Higher register pressure causes more spilling and thus increasing the number of memory

references in the program. This is the reason why THUMB is not able to achieve the level

of code size savings that FITS gives.

This code size saving achieved by FITS does not come at expense of performance

lost as illustrated by the performance results later. This is mainly due to the following two

reasons. First and foremost, FITS aggressively optimized and adopted the utilization-

driven synthesis heuristic, which makes it very effective in determining the target

instructions for synthesis without any noticeable performance lost. Second, the resultant

half-sized FITS code effectively makes the L1 instruction cache almost twice as large as

before. Thus, the FITS execution core was able to take advantage of higher spatial

72

locality exhibited to largely raise the cache hit rate, and so does the overall execution

speed.

5.4 Power Dissipation Benefits

The best way to reduce overall chip power dissipation is to attack each of the

microarchitectural components using power. In this study, we focus on attacking

instruction cache power consumption. We start by showing the breakdown of instruction

cache power for each of the four processors under simulation. Next, we present the power

reduction that FITS is able to achieve in each of the component powers: switching,

internal, leakage, and peak powers. The reduction of each component power is then

translated into the total instruction cache power reduction. Finally, the instruction cache

power savings is mapped into the corresponding overall chip-wide power saving.

As mentioned in the chapter of evaluation methodology, we model only dynamic

and static power dissipation. The dynamic power was further broken down into switching

power and internal power to better facilitate monitoring power reduction by FITS. The

switching power is the power consumed by the output driver and its output load

capacitance of the instruction cache microarchitecture. The internal power is the dynamic

power of the instruction cache microarchitecture itself. Therefore, the switching power is

sensitive to the power consumed by the amount of output data during each cache access,

or switch. On the other hand, the internal power is sensitive to the overall power

consumed by the entire cache logic block when it is on; hence it is highly dependent upon

the total size of the cache.

73

The static power, or leakage power, is sensitive to the power lost due to leakage

current of each gate of cache logic block; thus it is also dependent upon the total size of

the cache. The peak power depends both on the microarchitectural configuration of a

cache, such as block size and total cache size, as well as the characteristics of the

instruction address stream from each individual cache access.

Energy savings in both instruction cache and system chip could be directly

inferred from the corresponding power reduction; hence they are not explicitly shown

here. The validity of this energy saving inference comes from the fact that all the

execution cores run at a fixed operating frequency and the difference between their

simulation times was not significant. Since energy is the product of power and time,

without too much difference in the time component, the ratio of energy saving would

roughly have identical distribution as the ratio of power saving.

There are many results to be presented in this power consumption study. To

facilitate easy assimilations, we show only average results collected from the entire

benchmark suite to simplify the information presented here for better digestion. We move

all individual detailed results to the appendices section at the back of this dissertation for

interested readers to pursue.

74

5.4.1 Instruction Cache Power Breakdown

From the instruction cache power breakdowns shown from Figure 5.9, the

following power usage trends are noticed. First, the total instruction cache power is

dominated by the dynamic power, i.e. the switching power plus the internal power. This

is expected since SA-1100 is a relatively low-end embedded microprocessor built with

less aggressive fabrication technologies (e.g. 0.35µm), we would not encounter the same

level of leakage current problem found on current state-of-the-art high-end designs

fabricated with deeper sub-micron technology.

Second, as the size of the instruction cache increases, the percentage of switching

power goes down; the percentage of internal power goes up; the percentage of leakage

power remains approximately the same. The reason is larger cache consists of more gates

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ARM8 ARM16 FITS8 FITS16

Average of MiBench Suite

Ic
ac

he
 P

ow
er

 B
re

ak
do

w
n

switching internal leakage

Figure 5.9: Instruction Cache Power Breakdown for ARM and FITS

75

and thus more internal and leakage power. In addition, given the same cache block size

and associativity, larger cache would yield better hit rate, which means less gate switches

and the switching power is reduced.

Third, with the instruction cache size being equal FITS uses lower percentage of

switching power, higher percentage of internal power, and approximately the same

percentage of leakage. The leakage power percentage stays unchanged because the

numbers of gates in caches of same size are equal. The reduction of switching power

percentage is due to the increased cache hit rate of FITS-sized code. Since the cache size

is the same, the increase of internal power percentage is due to the normalization effect

after accounting for the reduction of switching power percentage.

Last, if we compare the switching power percentage between ARM8 to ARM16

and ARM8 to FITS8, we will find that applying FITS transformation reduces more

switching percentage than simply doubling the size of cache. Considering this with the

fact that the FITS reduction comes solely from the increased cache hit rate as opposed to

the joint effect of increased internal power seen in ARM16, it implies that FITS can

reduce switching power more effectively than doubling the size of the cache. This

speculation is confirmed by the instruction cache power saving analysis that follows.

76

5.4.2 Instruction Cache Power Saving

To see how FITS optimizes the power usage of an instruction cache, it is best to

look at the power reduction in each power component broken down as shown in Figure

5.10. We compare the power saving from a 16 Kb and an 8 Kb FITS caches (FITS16 and

FITS8) with the default 16 Kb ARM cache in the SA-1100 core. The 8 Kb ARM cache

(ARM8) is included to show that simply reducing the size of ARM cache is not going to

help us much and we may have to pay more performance penalty than we can bear.

As speculated in the section of power breakdown analysis, FITS-sized codes

benefit greatly from switching power reduction. This is the power saving that clearly

distinguishes a FITS-optimized cache from a normal ARM cache. Both FITS16 and FIT8

save approximately 50% cache switching power while ARM8 saves virtually none. The

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

switching internal leakage peak total

Average of MiBench Suite

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

Figure 5.10: Instruction Cache Power Savings of FITS

77

switching power saving of FITS is a result of better cache hit rate due to better spatial

locality that FITS-sized codes exhibit. On the other hand, ARM8 consumed as much

overall switching power as the baseline 16 Kb cache indicates the overall gate switching

frequencies of the two caches are essentially the same.

For the internal and leakage powers, the two half-sized caches, FITS8 and ARM8,

demonstrate nontrivial savings in most applications. This is because both internal and

leakage powers are directly proportional to the number of gates given the same

operational period. For the leakage power; however, exceptions occur for some

applications where FITS8 or even FITS16 shows greater savings than ARM8. This is

because the saving of smaller amount of logic gates in ARM8 were compromised or even

wiped out by its longer operational period due to larger cache miss rates. This effect was

hidden in the internal power results because internal power contributes to more than half

of the total cache power in all four different cache schemes (see the cache power

breakdown); therefore, the power loss due to longer operational period were simply

absorbed.

The peak power consumption, depends on both switching frequency and amount

of logic gates; therefore, we can observe savings from all three cache schemes: on

average 46% for FITS16, 63% for FITS8, and 31% for ARM8. Since peak power is

sensitive to factors that affect both the dynamic and the static powers, greater peak power

saving of FITS16 and FITS8 indicate that FITS is a well balanced low power technique

for instruction cache.

This claim is supported by the overall instruction cache power consumption

results, which combine all the component savings above. As the figure shows, FITS8

78

gives the highest 47% average total instruction cache power saving followed by ARM8

and FITS16 with each saves 27% and 18% respectively.

To see how effective does FITS reduce the total chip power, Figure 5.11

illustrates how these instruction cache power savings would be translated into the total

chip power savings. It provides the corresponding chip-wide power savings for

instruction cache power savings presented in Figure 5.10. As shown in Figure 5.11,

FITS16 and FITS8 save approximately on average 10% and 15% chip-wide switching

power respectively while ARM8 saves 5%. For the chip-wide internal power savings,

FITS16 and FITS8 save approximately on average 5% and 16% respectively and ARM8

saves 10%. For leakage power savings, both FITS16 and FITS8 save approximately on

average 5% to 6% while ARM8 saves 2%. For peak power savings, on average, FITS16

saves more than 1.5%; FITS8 saves more than 3%; ARM8 saves over 2%. At last, for the

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

switching internal leakage peak total

Average of MiBench Suite

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

Figure 5.11: Chip-wide Power Savings of FITS

79

overall chip-wide total power saving, on average, FITS8 saves 15%; FITS16 saves7%;

ARM8 saves 8%.

As shown by the individual detailed results in the appendix, FITS has

demonstrated exceptional power savings on patricia. Patricia uses special tree data

structure to represent routing tables for IP traffic in network applications. This special

tree data structure, or a patricia tree, is used in place of a full tree with very sparse leaf

nodes. Branches with only a single leaf are collapsed upwards in the tree to reduce

traversal time at the expense of code complexity. The increased code complexity has

translated into more cache misses for normal ARM code, which resulted in increased

power dissipation. On the other hand, improved program spatial locality seen on FITS

caches neutralized the increased code complexity effect of using a patricia tree: cache

miss rates were significantly improved for caches loaded with FITS code. Other

applications, such as typeset and stringsearch, have demonstrated similar power savings

for the same reason of much improved cache miss rates. Typeset is a front-end typesetting

tool for HTML. It captures the processing required to typeset an HTML document, and is

a major core component of a web browser. Stringsearch searches for given words in

phrases using a case insensitive comparison algorithm. Both applications took the

advantages of much increased spatial locality rendered by dense FITS codes. Please refer

to following section for more discussion on cache miss rate results.

80

5.5 Performance Benefits

To demonstrate that FITS does not save power at the expense of performance; we

include the following performance results. Performance is measured in both instruction

cache miss rates and instructions per cycle (IPC) rates. The cache miss rate analysis helps

to explain why simply reducing the cache size of the default ARM cache does not reduce

much power. The IPC analysis gives an idea of overall FITS performance compared to

the ARM. Both results showed that FITS saves power without compromising

performance. Looking this section together with the power results from the last section,

we observe that reducing the regular sized cache to 8 Kb not only hurts performance as

measured by high miss rates and low IPC, it also just shifts power use. On the other hand,

8 Kb caches for FITS have no more misses than 16 Kb for ARM.

81

5.5.1 Cache Miss Rate Evaluation

Figure 5.12 shows the instruction cache miss rates for all four processor

configurations. The miss rate was measured as misses per one million cache accesses

since most of the benchmarks are easily cacheable due to their small code size footprint.

Values that are too large to be displayed are marked with their real miss rate numbers on

the side. FITS surpassed ARM with greatly improved cache performance: the half-sized

FITS8 caches have smaller miss rates than the normal full-sized ARM16 caches. This is

due to the better spatial locality exhibited by FITS-sized code. Since the instructions are

half the size, the cache lines can be viewed as being twice the size (this operates much

like a next line prefetch on cache miss since twice the number of instructions are brought

0

50

100

150

200

250

300

350

400

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

M
is

se
s

pe
r 1

,0
00

,0
00

 A
cc

es
se

s

ARM8 ARM16 FITS8 FITS16

674 9264
6128
3771
2540

49410
42289
24480

576

1289 1438
1344
763
750

17497 22256 1450

0

50

100

150

200

250

300

350

400

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

M
is

se
s

pe
r 1

,0
00

,0
00

 A
cc

es
se

s

ARM8 ARM16 FITS8 FITS16

674 9264
6128
3771
2540

49410
42289
24480

576

1289 1438
1344
763
750

17497 22256 1450

Figure 5.12: Instruction Cache Miss Rate

82

into the cache (i.e. fewer compulsory misses and for displaced lines, fewer conflict

misses to restore the instructions). Moreover, since embedded applications are typically

stream-based, most branches in MiBench are easily predictable. Therefore, this

instruction “packing” effect makes FITS caches seem virtually twice as large as their true

physical size.

5.5.2 Instruction per Cycle (IPC) Rate Evaluation

Figure 5.13 shows the IPC performance measures for all four processor

configurations. Since the SA-1100 simulated core is a dual-issue, in-order machine, the

highest IPC possible is 2. Overall, the IPC for all four configurations are satisfactory.

This is the result of the easy predictability and cacheability of MiBench programs. As

expected, the IPC performance of FITS codes is comparable to that of native ARM codes.

It is interesting to observe that an 8 Kb FITS cache could achieve roughly the same IPC

as a 16 Kb ARM cache with only few minor variations. We expect FITS to be

0
0.2
0.4
0.6
0.8

1
1.2

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

IP
C

ARM8 ARM16 FITS8 FITS16

Figure 5.13: Instruction per Cycle (IPC) Rate

83

performance neutral, but consistently find a small improvement, and in some

applications, a large improvement (e.g. patricia). This is due to increased instruction

cache locality exhibited from packed FITS code.

5.5.3 VIP and ZOLE Speedup Evaluation

The performance is evaluated in terms of total dynamic execution time. The

baseline processor is a single-issue, in-order five-stage MIPS pipeline. Any popular

processor could have been used, but the MIPS is a common basis of research within the

academia community. The other three processor configurations are the baseline

augmented with VIP processing units; the baseline augmented with ZOLE unit; and the

baseline augmented with both VIP and ZOLE units. This is to mimic real life scenarios

where there can be different chip area constraints specified by customers. If there are

enough spare transistors left, we may as well include both VIP and ZOLE units; or

otherwise, we must make clever tradeoffs based on careful analyses and thorough

evaluations.

Figure 5.14 depicts the performance speedup benefits for each FITS optimization.

For VIP optimization alone, the performance improvement was as much as 39% (1.39x

speedup) as demonstrated by mpeg2decode and a 12% average performance

improvement was achieved throughout the entire MediaBench suite. For LOOP

optimization alone, the performance improvement was as much as 64% (1.64x speedup)

as demonstrated by epic and a 19% average performance improvement was achieved

throughout the entire benchmark suite. For VIP and LOOP optimizations combined, the

84

performance improvement was as much as 99% (1.99x speedup) as demonstrated by

mpeg2decode and a 37% average performance improvement was achieved benchmark

wide. All optimizations were applied to subroutines that account for more than 1% of

total run time. Once a FITS aware compiler is fully developed, optimization can be

automated to exploit more opportunities to achieve even greater speedups.

This speedup result demonstrates significant performance improvements of FITS.

Yet, there is still much potential remained to be explored. Specifically, all speedup

presented above were obtained from original algorithm without modification. These

algorithms were written by programmers without the knowledge of FITS’s powerful and

versatile microarchitectural support. It is clear that if programmers are aware of the

FITS’s VIP and ZOLE supports, further speedup gains can be easily achieved with more

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ad
pc

mde
co

de

ad
pc

men
co

de
un

ep
ic

ep
ic

g7
21

de
co

de

g7
21

en
co

de

gs
mde

co
de

gs
men

co
de

jpe
gd

ec
od

e

jpe
ge

nc
od

e

mpe
g2

de
co

de

mpe
g2

en
co

de

pe
gw

itd
ec

od
e

pe
gw

ite
nc

od
e
MEAN

Sp
ee

du
p

VIP ZOLE VIP+ZOLE

Figure 5.14: Performance Speedup Achieved by VIP and ZOLE

85

aggressive optimization at the algorithm level. Instead of trying to approximate a

multiply-divide operation with a long series of adding, subtracting, and shifting

operations plus conditional tests, programmers can write multiply followed by divide

directly, knowing that it will be mapped into one of the VIP instructions. Besides

potential significant speedup, this algorithm level optimization can also further reduce the

code size, which can lead to on-chip and off-chip memory power reduction and better

cache performance.

86

CHAPTER 6

RELATED WORK

This chapter describes prior and concurrent research related to FITS. These

relevant researches are presented under different categories based on the nature of the

work. Along with detailed description and careful analysis, what is also provided are

insights explaining why FITS is advantageous compared to these work.

6.1 Microprogramming

One of the early approaches to reduce code size was microprogramming

[Wilkes53]. A microprogram, or microcode, is a program that is made up of macro

instructions which consist of several microinstructions. Each CISC-like macro instruction

fetched from memory caused a sequence of microinstructions to be fetched and executed.

Each microinstruction defines the set of datapath control signals that must be asserted in a

given state. Executing a microinstruction has the effect of asserting the control signals

specified by the microinstruction. Microcode saves time by allowing to fetch fewer

instructions from the main memory. This work differs from microcode in several ways,

87

including that specific instructions within the programmable decoder can be individually

referenced and that the instructions in the programmable decoder can be changed for each

executable binary as well as within each executable binary on the fly.

6.2 Code Compression

Embedded applications must execute under constraints of limited memory and

low energy consumption. Instruction caches have been recognized as a major source of

energy consumption in embedded systems. In [Kadri03], Kadri et al. observed that

energy consumption and program execution time are very sensitive to the level one

instruction cache size. One way to address this issue is to compress the code within a

program, which can decrease the number of cache misses due to a smaller footprint of

instructions being accessed. IBM’s CodePack technique [IBM-CodePack][Orpaz02]

included in its PowerPC processors [IBM-PowerPC] used Huffman tables to compress

cache blocks. Xie et al. [Xie01] proposed a code compression algorithm based on

arithmetic coding in combination with a pre-calculated Markov model. These code

compression schemes compress all instructions in the program. Thus, the decompression

overhead occurs at every instruction fetch. Benini et al. [Benini99] and Lekatsas et al.

[Lekatsas00] proposed selective instruction compression. They proposed dictionary-

based code compression algorithm to compress frequently appearing instructions. Only

the most commonly executed instructions are compressed, while other instructions of the

code are left uncompressed. These code compression approaches have the disadvantage

of complicating instruction fetch and decode logic since instructions can differ in size.

88

Instruction reuse is another popular approach to reduce code size. Procedural

abstraction [Debray00] is a compiler optimization, which identifies common code

sequences and abstracts them into procedures. The original sites of each code sequence

are replaced with function calls. A hardware extension of this technique is to use echo

instructions [Lau 03]. An echo instruction indicates where the abstracted code sequence

is located and the number of instructions to be executed. Unlike conventional procedure

calls, echo instructions do not call returns at the end of the abstracted sequence. Another

advantage of this approach is that abstracted sequences can overlap to further facilitate

code reuse. The main disadvantage of both procedural abstraction and echo instruction is

that the overhead of executing calls and returns for each abstracted code sequence will

usually slow down the program execution. Spatial locality may also be reduced, which

may decrease cache performance.

More recently, Hines et al. proposed instruction packing technique to reduce code

size. [Hines05] Instruction packing removes instruction fetch cost by placing frequently

occurring instructions into special registers, just as frequently accessed data are kept in

registers through compiler register allocation. The advantage is that code size is reduced

without use of large dictionaries. The difference between instruction packing technique

and FITS is at the instruction decode. FITS utilizes a programmable instruction decoder

to achieve application-specific customization effect by allowing a subset of instructions

implemented in the microarchitecture to be mapped to the ISA for each different

application. The advantage to make decoder programmable is that all instructions are

half-sized (16-bit long) and native: there is no need to decompress or unpack an

89

instruction before its corresponding control signal can be fetched from the decoder and

passed down to pipeline.

6.3 SIMD Architecture

Single-instruction multiple-data (SIMD) architecture is a popular technique to

exploit parallelism in performance demanding applications. The ability to process

multiple data in one instruction makes SIMD architecture attractive for programs that

have large vectors and matrices. Recent works such as IMAP [Kyo05], Imagine Stream

[Ahn04], and Synchroscalar [Oliver04] have demonstrated the potential of applying

SIMD in high-performance embedded workloads. Nevertheless, it is very difficult to

keep all generously allocated processing elements occupied all the time when a program,

or regions of a program, lack of “embarrassingly parallel” ILP. The leakage power

consumed by idle processing elements can add up to significant energy waste. Moreover,

extending any regular microprocessors with SIMD not only requires adding new

hardware support but also a new programming model. Adding new programming model

requires a complete software tool chain to support, which is usually not economically

feasible for many vendors. These drawbacks limit SIMD from being widely deployed to

many real world applications.

90

6.4 Zero-Overhead Loop Execution

For many applications, a large percentage of the dynamic program execution time

is spent in small program loops [PattersonHennessy03]. These loop execution incur

significant overhead due to the updates of loop counters and the branches to initiate a

new iteration. Many software code transformation techniques have been proposed to

improve loop execution time. For instance, both software loop unrolling [Davidson96]

and software pipelining [Intel-IA64] are popular techniques to decrease loop overhead.

Nevertheless, these approaches suffer from drastic increase in code size. Space increasing

transformations, such as loop unrolling or software pipelining, are often unacceptable for

many embedded and DSP applications that have strict code size and power requirements.

On hardware side, it is popular to use branch prediction to reduce branch

misprediction penalty and superscalar or VLIW execution to allow other instructions to

execute in parallel with the loop overhead instructions. However, the use of complex

hardware to reduce branch overhead can often cause more power consumption, which is

also not acceptable in embedded and DSP processors that have strict power envelope.

Branch folding is another architectural technique to reduce branch misprediction

penalty. It is used in AT&T CRISP microprocessor [Ditzel87] and in IBM PowerPC

architecture [IBM-PowerPC]. By performing early decoding of branch instructions in the

fetch stage and looking ahead on conditional branches to resolve them early, these

resolved or “folded out” branches do not need to be issued to the execution pipeline; thus

achieving the effect of a zero-cycle branch execution. Implementing this technique

91

requires (1) early branch decoding logic at front end; (2) condition code dependency

checking on all the instructions being issued to the execution; and (3) logic for branch

misprediction recovery. The associated hardware cost for implementing branch folding is

prohibitively high for cost-sensitive embedded and DSP domains.

Several commercial DSP processors have special loop or branch instructions for

removing the overhead associated with the loop control mechanism [Analog-

ADSP21160][TI-TMS320C67][Motorola-MCore][Siemens-TriCore]. For example, the

TriCore ISA has three special branch and loop instructions to handle program loops:

JNEI, JNED, and LOOP. The JNEI and JNED instructions are like normal jump-not-

equal instructions with an additional increment or decrement operations to update the

dynamic loop count. The LOOP instruction can achieve zero execution time in all but the

first and last iteration of the program loop with loop iteration count known at compile

time.

Loop buffering is an architectural feature commonly found in many embedded

and DSP processors. A loop buffer is a small dedicated instruction buffer placed between

the execution core and a larger main instruction cache that allows efficient looping fetch.

Instructions are supplied to the execution core either from the loop buffer or from the

main cache. This buffer can be used to increase the speed of applications without

increasing code size. Other buffering benefits include reduced power consumption due to

more localized instruction fetch, accurate loop-back branch predictions, elimination of

taken-branch stalls, and reduced memory bus contention if data and instruction fetch

share the same memory bus.

92

The Lucent DSP16000 architecture [Lucent-DSP16000] includes a loop buffer

that can hold up to 31 instructions. Two special instructions are used to control the loop

buffer on the DSP16000: DO and REDO. The DO instruction can specify n instructions

to be executed k times. The value of n, ranging from 1 to 31, indicates the number of

instructions following the DO instruction to be placed in the loop buffer. The value of k

represents the number of times the instructions within the loop buffer to be executed and

it is compile-time constant than 128. If the loop iterations are bigger than 128, a

dedicated register is used to encode the value. The first iteration results in the instructions

following the DO to be fetched into the loop buffer. Ideally, the remaining k-1 iterations

are serviced directly by the loop buffer. The REDO instruction is identical to DO, except

that it executes the current existing instructions within the loop buffer k times. The

advantage of this technique is that the back branch at the end of loop can be eliminated

since the loop will be executed the predetermined number of times. The limitation of this

technique includes: (1) it only can be applied to the innermost loop; (2) the number of

loop iterations must be known at compile time; (3) the number of instructions in the loop

cannot exceed the size of the loop buffer; (4) there cannot be other internal branches (e.g.

if-else blocks) within the loop body other than the loop back branch.

The innermost loop restriction can be addressed by incorporating more loop

registers to keep track of extra loop states. For example, the StarCore SC140 processor

[StarCore-SC140] includes a loop buffer and four sets of loop registers to allow for four

levels of nested counted loop execution. On the other hand, the STMicroelectronics

ST120 [ST-ST120] provides hardware support for up to three loops, which may be

nested, overlapped, or independent of one another.

93

To address the unknown loop iteration count issue, Lee et al. took a hardware

approach to dynamically detect and capture small tight loops with short backward

branches [Lee99]. J. Rivers et al. extended the work in [Lee99] by generalizing the loop

controller to enable capturing loops that: (1) contain if-else blocks; and (2) bigger than

the loop buffer [Rivers03]. While both techniques are capable of handling loops with

unknown loop iteration count at compile time, they have to execute the last loop back

branch in all iterations, even for those loops with constant loop iteration count.

The restriction of including additional transfer of control within loop body is

partially addressed by applying compiler code transformation in [Uh99] and [Sias01]. Uh

et al. showed that using many conventional compiler optimizations can increase the

utilization of a loop buffer in Lucent DSP16000 on a set of small DSP kernels. Among

these transformations were function inlining and the use of the conditional execution

support to include loops with simple control diamonds [Uh99]. Sias et al. showed that the

internal control flow within loop can be further reduced by applying if-conversion to

transform control flow into predicated blocks [Sias01].

The zero-overhead loop support in FITS is similar to [Analog-ADSP21160] in

that it is stack-based. Stack-based zero-overhead loop execution can support not only the

innermost loop but also nested loops as well. Moreover, since it does not store the actual

instructions within loops, there is no need for additional storage, which can result in extra

power consumption and area overheads

94

6.5 Extended and Customized ISA.

Adopting special custom instructions to improve computational efficiency and

throughput is a well established area. These special custom instructions can be either an

extension to an existing general-purpose ISA or a standalone custom designed

application-specific ISA by itself. Examples for the first paradigm are Intel’s MMX and

SSE [Intel-IA32] or AMD’s 3DNow! [Fomithchev00] for common multimedia

applications. Examples for the second paradigm are commonly found in ASP designs,

such as NVIDIA GeForce [NVIDIA-GeForce] and ATI Radeon [ATI-Radeon] for

graphics and gaming, CryptoManiac [Wu01] for cryptography, and [Saini04] for speech

synthesis. ISA extension makes the already overly large instruction space of general-

purpose ISA even bigger by adding more new instructions. Increased instruction space

requires larger opcode fields, which can result in smaller operand size, reduced address

modes, or larger instructions that can have detrimental effects on performance and code

size. ISA customization requires designing a new datapath for each new application. The

non-recurring engineering (NRE) cost and turnaround time for designing a new processor

for each application is prohibitively high.

6.6 Dual-width ISA

Dual-width ISA designs, such as Thumb [ARM-Thumb], Thumb2 [ARM-

Thumb2], MIPS16 [MIPS-MIPS16], MeP [Toshiba-MeP], ST100 [ST-ST100], and

95

ARCtangent [ARC-ARCtangent], have been proposed to reduce code size to address the

issue of limited memory bandwidth in embedded media computing. In addition to the

regular 32-bit instructions, these designs support 16-bit instructions, which specify a

subset of the default 32-bit instructions. The idea is to use 16-bit instructions for

performance non-critical regions to trade off execution time for smaller memory

footprint. For performance critical regions, 32-bit instructions will have to resume

execution to make sure important tasks can be completed on time. Ideally, designers want

to use 16-bit instructions as much as possible. Because 16-bit instructions alone cannot

guarantee the required performance, designers have to keep 32-bit instructions as a fall-

back option. Instruction coalescing [Krishnaswamy05] extends the Thumb architecture

with the augmenting instructions (AX), which allow the execution of two 16-bit Thumb

instructions as a single 32-bit ARM instruction. This avoids some of the performance

penalty in replacing 32-bit code with 16-bit code in a dual-width ISA.

Our approach is different in that we believe that 16-bit instructions alone are

sufficient to accommodate the requirements of most embedded media applications

without the support of large-width instructions. Different applications may not require the

same set of instructions. We propose a general-purpose microarchitecture that includes

both standard operations enhanced with high-performance data-streaming processing

capabilities, but only map a subset of these instructions that a particular program needs to

a 16-bit instruction format. We introduce a novel programmable instruction decoder,

which can re-map the instruction set definition at run time to accommodate special

dynamic execution requirement of a program at any performance critical regions.

96

Thus, rather than starting with a 32-bit ISA and looking for places to partially

substitute it with its 16-bit counterpart, we move straight into the single 16-bit ISA

scheme and utilize an instruction encoding and enhanced streamlining computing

synthesized to the requirements of each application. We have shown that 16-bit

instruction sets are very effective in improving code density as well as reducing power

consumption for on-chip caches in our prior work [Cheng04][Cheng05a][Cheng05b]. In

this dissertation, we demonstrate that an enhanced general-purpose microarchitecture

interfaced with a 16-bit instruction set can achieve significant performance advantages in

high-performance embedded applications.

6.7 Reconfigurable Systems

Reconfigurable architecture is a recent trend introduced to improve program

encoding efficiency. Reconfigurable processors, like Xtensa [Gonzalez00] and Lx

[Faraboschi00], consist of a basic set of instructions that exist in all implementations

extended by reconfigurable resources. Designers have the ability to choose from optional

functional units, memory interfaces, and peripherals. Customizations are made available

through user-defined instructions. The advantage of this approach is that common code

sequences may be replaced with one or few user-defined instructions to save code size.

However, it is extremely difficult to design a general-purpose Reconfigurable datapath

that is well balanced among speed, area, and energy.

The availability of large and cheap field programmable gate array (FPGA) logic

promoted reconfigurable computing - a class of architecture alternatives for complex

97

digital systems. In most reconfigurable architectures, the main microprocessor is coupled

with an array of programmable FPGA logic. Depending on the logic block size in the

array and the level of coupling between the reconfigurable array and the main processor,

a reconfigurable array can be integrated as a standalone coprocessor like Garp

[Callahan00] or a function unit for a main processor such as CHIMAERA [Ye00] and

Altera Nios II [Altera-NiosII]. Reconfigurable coprocessors perform more tasks

independently without the constant supervision of the main processor. On the contrary,

reconfigurable function units are more tightly integrated with the main processor. The

execution of a reconfigurable function unit occurs on the datapath of the main processor.

Moreover, a reconfigurable function unit normally shares the resources, such as register

files, on the main processor. Despite promoters argue that FPGAs are flexible to be

mapped to any interesting algorithm, the overhead in speed, area, and power associated

with a FPGA is often too high to make performance-demanding applications benefit from

these FPGA-integrated designs.

DISE [Corliss03] is another work that can dynamically replace dataflow

subgraphs in the instruction stream with reconfigurable function units. A special

instruction is used to signal the DISE engine, which then sends the appropriate control

signals into the pipeline. This model requires a DISE aware operating system and

processor, since the DISE subgraphs are specified in the binary at boot time, and must be

replaced to execute the modified binary at runtime. Conversely, the FITS platform

proposed in this paper does not affect the operating system, nor does it require any

special binary translation engine to execute the program.

98

More recently, Clark et al. proposed configurable compute accelerators (CCA) [

Clark04] to speed up the execution of dataflow subgraphs, and an interface [Clark05] that

facilitates integrating different CCAs into the baseline processor. Subgraphs are

identified and replaced with new microcode instructions at run time. These microcode

instructions control the CCA, which is a big array of function units that generally can

capture subgraphs of depth from 4 to 7. The microcode is then invoked when a reserved

instruction is executed in the program code. The compiler is responsible for what code

sequences should be mapped to CCA subgraphs and at what locations in the program

these subgraphs should be loaded into a CCA configuration cache. CCA and VIP share

some of the same advantages of accelerating program execution by streamlining dataflow

computation without expanding the instruction set encoding. The key difference between

the CCA approach and VIP is in how the large potential instruction space of chained

functions is mapped to the instruction set. CCA reserves a single opcode which specifies

the data dependencies to whichever configuration is programmed into the accelerator,

while the decoupled instruction set provided in our underlying FITS architecture allow all

function permutations to be mapped into the ISA without necessitating additional opcode

space. A conventional ISA could not support the wide range of different functions that

can be configured since the number of total instructions will quickly grow into the order

of thousands just with 2 levels of function units and it will be well past that with 3 or

more levels of chained functional units. CCA configures the programmable circuit with

the chained functions that the compiler found useful, while the programmable nature of

the FITS instruction decoder enables the microarchitecture to implement a fixed circuit

capable of executing any of the function permutations; we simply map the one or more

99

permutations that the application requires to one of the instructions in the FITS ISA.

While it may seem that implementing the circuit to perform all permutations would

require much greater area than that of a programmable circuit would require, that is not

the case. Since each permutation differs in only the control signals going to the

multiplexers at each level of the chained function unit design; it is not area limitations

that prevent the design of these chained function units (since the area requirement for

implementing any one circuit are only slightly smaller than implementing all

permutations), but it is the tremendous increase in operations that can be specified in the

microarchitecture and the corresponding increase required in the opcode for conventional

ISA that is the true limitation. CCA provides one method of avoiding the limitation

(configurable circuits), while VIP/FITS provides a more flexible method (programmable

instruction decode).

100

CHAPTER 7

CONCLUSIONS

7.1 Thesis Summary

In this dissertation, we proposed the design and implementation of FITS. FITS is

an innovative architectural and microarchitectural framework that can effectively support

high-performance embedded computing that requires low-power, low-cost, and rapid

time to market. This section summarizes how FITS achieves each of these goals.

7.1.1 High-Performance Solution

FITS improves the performance by integrating proposed Versatile Integrated

Processing (VIP) unit and a Zero-Overhead Loop Execution (ZOLE) unit into the

microarchitecture. The VIP unit is a universal data-crunching engine that delivers superb

data computing and data streaming performances. The area cost of adding new operations

using VIP is extremely low: for every additional VIP unit added, the number of

additional operations available will increase exponentially. Furthermore, because VIP is

101

synthesized in standard cells and chaining each extra VIP only costs few multiplexers, we

can implement thousands of new specialized operations using less area than it would take

to configure a single operation using programmable circuits like FPGAs, and would

result in faster circuit speeds. The ZOLE unit streamlines the program control flow by

removing expensive loop control overhead from both nested and non-nested loops.

Another aspect of performance improvement comes from the custom synthesized

application-specific ISA tailored to the requirements of a given application. The

application-specific instruction set tailoring is achieved by replacing the fixed instruction

decoder of general-purpose embedded processors with a programmable decoder. The use

of a programmable decoder allows designers to add new capabilities to microarchitecture

without being restricted by the limited instruction space. The only other constraint of

adding new operations is due to chip area, which has been addressed by the space-

efficient VIP unit.

The net effect is that the underlying microarchitecture may contain an extremely

large set of operations that can never be mapped to any single ISA. Yet, through the use

of a programmable instruction decoder, FITS can choose the needed subset of operations

being mapping to the premier instruction space for a given application. The instruction

selection is determined at compile time. The definition of ISA is loaded to the

programmable decoder at boot time. The programmable decoder can be dynamically

reconfigured with different set of ISA definitions at run time, if necessary.

One other major advantage of using the programmable decoder is the benefit of

decoupling the microarchitectural enhancements from the ISA so that new instructions

can be integrated into the underlying microarchitecture, as much as the chip area goal

102

permits, without being restricted by limited opcode space nor being crippled with bigger

instruction decoders. Designers are free to include additional functional capabilities to

improve performance, even when those enhancements are useful for only a small

percentage of applications since the inclusion of one operation does not require the

elimination of another to fit in the instruction set encoding space.

7.1.2 Low-Power Solution

FITS reduces energy consumption by running same applications with much

smaller code size and improved locality as a result of half-width ISA. The philosophy of

FITS is that high performance and high code density can co-exist if we can match the

instruction set to the requirement of a targeted application. FITS improves code density

by utilizing instructions that are only 16-bit instead of 32-bit that are commonly used in

most conventional machines. Since the instruction width is reduced by half, the total code

size can be reduced by half as long as what was originally done in a single 32-bit

instruction can also be done in a single 16-bit instruction. To best utilize the half-sized

instruction width, the instruction space is allocated to only those operations that are

necessary and useful to the given application. We have shown that FITS can achieve a

code size reduction that is close to 50% with better performance through application-

specific customization.

Half-sized program with better locality means it is possible to replace original

instruction caches with those that are only half big and still can yield better cache miss

rates. Smaller instruction caches with better hit rates can save both dynamic and static

103

power consumption. Better cache hit rates also means less traffic from the processor to

off-chip memories, which can further improve both performance and power consumption.

7.1.3 Low-Cost and Fast Time to Market Solution

FITS reduces the chip production cost and shortens the design turnaround time

through the use of a general-purpose, functionally-rich underlying microarchitecture.

Rather than fabricating a new chip to map each new application, we choose a single

general-purpose microarchitecture platform augmented with VIP and ZOLE units, so

there are an extremely large set (i.e. in the order of thousands) of operations that can be

selected to map the requirements of any application of interests. Because of the nature of

this single general-purpose microarchitectural platform, FITS can reduce the chip

production cost and shortens time to market by leveraging the fabrication advantages of a

mass-produced, single-chip solution that amortizes the one-time high NRE cost and

lengthy design turnaround time.

Through the use of programmable decoder, general-purpose microarchitecture

enhanced with VIP and ZOLE units, FITS provides a new class of low-cost, low-power

architecture designs for embedded microprocessors that can achieve application-specific

processor performance with fast time to market.

104

7.2 Future Directions

Future directions of this dissertation research are aimed to broaden the impact of

FITS framework by expanding its benefits to both consumers and chip vendors in the IT

industry. One aspect of this agenda is to make FITS a reliable, secure, and scalable (RSS)

framework.

• Reliable - so FITS can be assured

• Secure - so FITS can be trusted

• Scalable - so FITS can be extended

Making FITS reliable means making it dependable. This will involve in research

on fault-tolerant computing, design-for-test and various chip testing techniques, defect

detection and prevention, concurrent checking of system operation, run-time failure

detection and recovery techniques.

Making FITS secure means making it trustworthy. This will involve in research

on implementing cryptographic support in FITS. Cryptographic algorithms are designed

so that by observing only the inputs and outputs of the algorithm it is computationally

infeasible to break the cipher or to guess the secret key used in encryption and

decryption. A well designed cryptographic algorithm does not leak enough useful

information during its operation to compromise the security of the system it is trying to

protect. However, when a physical implementation of an algorithm is considered,

information like the timing characteristics of the circuit implementing the algorithm,

power consumption, behavior as a result of internal faults, and timing of the circuit can

provide sufficient information to compromise the security of the system.

105

This type of data is widely accessible since anyone can buy a piece of

cryptographic hardware such as smart cards, SIM cards, USB tokens, and perform fault

or power analyses on it. Attacks based on the use of this implementation specific

information are known as Side Channel Attacks (SCA). Contrary to traditional

cryptanalysis attacks, very small amount of side-channel information is enough to

completely break a crypto system. One of the goals of this future research direction is to

develop methods and designs to make such attacks infeasible.

Making FITS Scalable means two things: (1) FITS can take advantages of

continuously shrinking process technology so long as the Moore’s Law should live; (2)

FITS can be the building block for large multi-processor based designs. To achieve both

aspects of scalability, continuous architectural and microarchitectural research

advancement must be made.

Part of these future research endeavors is not only developing useful techniques

that enable FITS to have these useful RSS properties, but also understanding the

underlying principles behind inventing these techniques. We can then apply these

understanding to automate the entire design synthesis process. The grand challenge I

propose here is to automatically generate an efficient, scalable, reliable, and secure FITS

processors in its entirety from a simple goal-directed high level specification.

Another research direction that will broaden the impact of FITS is to empower

end-user programmers with the ability to create their own application-specific functional

specifications and to automate transferring such specifications into real hardware designs.

Oftentimes, it is the end-user programmers who have the application-specific knowledge

and the coding-pattern information necessary to implement useful functional synthesis.

106

My dissertation research has provided a practical foundation framework for extensible

processor architectures, at both ISA and microarchitecture levels. As a result, end-users,

with little or no knowledge of the backend program analysis, can easily extend existing

processor architectures without worrying about breaking them. In this dissertation, I

apply this foundation framework to examine how application-specific optimizations can

be made practical and useful. In the future, I want to investigate techniques for allowing

end-user programmers to develop their own application-specific hardware design

languages (HDL) that can be easily incorporated into mainstream HDL, such as Verilog

and VHDL.

107

APPENDICES

108

APPENDIX A: Instruction Cache Breakdown

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

Ic
ac

he
 P

ow
er

 B
re

ak
do

w
n

switching internal leakage

Figure A.1: Instruction Cache Power Breakdown for ARM8

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

Ic
ac

he
 P

ow
er

 B
re

ak
do

w
n

switching internal leakage

Figure A.2: Instruction Cache Power Breakdown for ARM16

109

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

Ic
ac

he
 P

ow
er

 B
re

ak
do

w
n

switching internal leakage

Figure A.3: Instruction Cache Power Breakdown for FITS8

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

Ic
ac

he
 P

ow
er

 B
re

ak
do

w
n

switching internal leakage

Figure A.4: Instruction Cache Power Breakdown for FITS16

110

APPENDIX B: Instruction Cache power savings

0%
10%
20%
30%
40%
50%
60%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

Figure B.1: Instruction Cache Switching Power Saving

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

Figure B.2: Instruction Cache Internal Power Saving

111

0%

5%
10%

15%
20%

25%
bi

tc
ou

nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

78% 41%

0%

5%
10%

15%
20%

25%
bi

tc
ou

nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

78% 41%

Figure B.3: Instruction Cache Leakage Power Saving

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

Figure B.4: Instruction Cache Peak Power Saving

112

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

Figure B.5: Instruction Cache Total Power Saving

113

APPENDIX C: Chip-wide Power Savings

0%

5%
10%

15%
20%

25%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

79% 44%

0%

5%
10%

15%
20%

25%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

79% 44%

Figure C.1: Chip-wide Switching Power Saving

0%

5%
10%

15%
20%

25%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

73% 43%

0%

5%
10%

15%
20%

25%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

73% 43%

Figure C.2: Chip-wide Internal Power Saving

114

0%

5%

10%

15%

20%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

78% 35%

0%

5%

10%

15%

20%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

78% 35%

Figure C.3: Chip-wide Leakage Power Saving

0%
2%
4%
6%
8%

10%
12%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

Figure C.4: Chip-wide Peak Power Saving

115

0%

5%
10%

15%
20%

25%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

76% 43%

0%

5%
10%

15%
20%

25%

bi
tc

ou
nt

qu
ic

ks
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

ty
pe

se
t

di
jk

st
ra

pa
tri

ci
a

is
pe

ll

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de sh
a

cr
c3

2

fft
.in

ve
rs

e fft

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

Auto Consumer Network Office Security Telecomm

%
 P

ow
er

 S
av

in
g

FITS16 FITS8 ARM8

76% 43%

Figure C.5: Chip-wide Total Power Saving

116

BIBLIOGRAPHY

117

BIBLIOGRAPHY

[Ahn04] J. Ahn et al., “Evaluating the Imagine Stream Architecture,” Proceedings of the
International Symposium on Computer Architecture (ISCA), 2004.

[Analog-ADSP21160] Analog Devices Inc, “ADSP-21160 SHARC DSP Instruction Set
Reference.”

[Allen02] A. Allan et al., “2001 Technology Roadmap for Semiconductors,” Computer,
Vol. 35, No. 1, January 2002, pp. 42-53.

[Altera-NiosII] Altera Corporation, Nios II Processor Reference Handbook, v 5.0, 2005;
see http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf.

[ARC-ARCtangent] ARC International, S. Zammattio, “How to Reduce Time-to-Market
for System-on-Chip Design,”2002; see
http://www.arc.com/documentation/whitepapers/

[ARM-ARM] ARM Limited, ARM7TDMI (Rev. 4) technical Manual, 2001; see
http://www.arm.com/pdfs/DDI0210B_7TDMI_R4.pdf.

[ARM-Thumb] ARM Limited, ARM7TDMI (Rev. 4) technical Manual, 2001; see
http://www.arm.com/pdfs/DDI0210B_7TDMI_R4.pdf.

[ARM-Thumb2] ARM Limited, ARM Thumb-2 Core Technology, 2003; see
http://www.arm.com/pdfs/Thumb2%20Core%20Technology%20Whitepaper%20
-%20Final4.pdf

[ATI-Radeon] ATI Technologies Systems Corp., Radeon X850 Graphics Technology,
http://www.ati.com, 2005

[Artisan-MemoryGenerator] Artisan Memory Generator, Artisan Components, Inc.,
http://www.artisan.com.

[Austin02] T. Austin et al., “SimpleScalar: An Infrastructure for Computer System
Modeling,” IEEE Computer, Vol. 35, February 2002, pp. 59-67.

[Benini99] L. Benini, A. Macii, E. Macii, and M. Poncino, “Selective Instruction
Compression for Memory Energy Reduction in Embedded Systems,”
International Symposium on Low-Power Electronics and Design (ISLPED), Aug.
1999, pp. 206-211.

[Callahan00] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp architecture and
C compiler,” IEEE Computer, Volume 33, Issue 4, pp. 62 – 69, 2000.

118

[Cheng04] A. Cheng, G. Tyson, and T. Mudge, "FITS: Framework-based Instruction-set
Tuning Synthesis for Embedded Application Specific Processors," Proceedings of
the ACM/IEEE Design Automation Conference (DAC), pp. 920-923, June 2004.

[Cheng05a] A. Cheng, G. Tyson, and T. Mudge, "PowerFITS: Reduce Dynamic and
Static I-Cache Power Using Application Specific Instruction Set Synthesis,"
Proceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 32-41, March 2005.

[Cheng05b] A. Cheng and G. Tyson, "An Energy Efficient Instruction Set Synthesis
Framework for Low Power Embedded System Designs," IEEE Transactions on
Computers (TC), Volume 54, Issue 6, pp. 698-713, June 2005.

[Church36] A. Church, “An Unsolvable Problem of Elementary Number Theory,”
American Journal of Mathematics, 58, 1936, pp 345-363.

[Clark03] N. Clark, H. Zhong, and S. Mahlke, “Processor Acceleration through
Automated Instruction Set Customization,” Proceedings of the International
Symposium on Microarchitecture (MICRO), December 2003. pp. 129-140.

[Clark04] N. Clark et al., “Application-Specific Processing on a General-Purpose Core
via Transparent Instruction Set Customization,” Proceedings of the International
Symposium on Microarchitecture (MICRO), 2004.

[Clark05] N. Clark et al., “An Architecture Framework for Transparent Instruction Set
Customization in Embedded Processors,” Proceedings of the International
Symposium on Computer Architecture (ISCA), pp. 272-283, 2005.

[Compaq-Alpha] Alpha Architecture Handbook, Order Number: EC-QD2KC-TE,
Compaq Computer Corp., 1998

[Corliss03] M. Corliss, E. Lewis, and A. Roth, “DISE: A programmable macro engine for
customizing applications,” Proceedings of the International Symposium on
Computer Architecture (ISCA), pp. 362-373, 2003.

[Davidson96] J. W. Davidson, and S. Jinturkar, “Aggressive Loop Unrolling in a
Regargetable, Optimizing Compiler,” Proceedings of Compiler Construction
Conference, pp. 59-73, April 1996.

[Debray00] S. Debray et al., “Compiler Techniques for Code Compaction,” ACM
Transactions on Programming languages and Systems (TOPLAS), Vol. 22, No. 2,
March 2000, pp. 378-415.

[Ditzel87] D. Ditzel, H. McLellan, “Branch Folding in the CRISP Microprocessor:
Reducing Branch Delay to Zero,” Proceedings of the International Symposium on
Computer Architecture (ISCA), 1987.

119

[Faraboschi00] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood. “Lx:
A technology platform for customizable VLIW embedded processing,”
Proceedings of the International Symposium on Computer Architecture (ISCA),
June 2000, pp. 203-213.

[Fomithchev00] M. Fomithchev, “AMD 3DNow!,” Dr. Dobb’s Journal, vol. 25, No. 8,
pp. 40-42, 2000.

[GCC04] GNU Compiler Collection, http://gcc.gnu.org, 2004.

[Gonzalez00] R. E. Gonzalez, “Xtensa: A configurable and extensible processor,” IEEE
Micro, Vol. 20, No. 2, Mar.-Apr. 2000, pp. 60-70.

[GPROF] GNU Profiler gprof online manual,
http://www.gnu.org/software/binutils/manual/gprof-2.9.1.

[Guthaus01] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown,
“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,”
Proceedings of the International Workshop on Workload Characterization,
December 2001, pp. 3-14.

[Hines05] S. Hines, J. Green, G. Tyson, and D. Whalley, “Improving Program Efficiency
by Packing Instructions into Registers,” Proceedings of the International
Symposium on Computer Architecture (ISCA), 2005, pp. 260 – 271.

[Huang00] M. Huang, J. Renau, S. Yoo, J. Torrellas, “A framework for dynamic energy
efficiency and temperature management,” Proceedings of the Annual
International Symposium on Microarchitecture (MICRO), 2000, pp. 202-213.

[IBM-CodePack] IBM Corporation, “CodePack PowerPc Code Compression Utility
User’s Manual 3.0,” 1998.

[IBM-PowerPC] IBM Corporation, “PowerPC Microprocessor Family: The
Programming Environments for 32-Bit Microprocessors,” Software Reference
Manual, Pub. G522-0290-01, 2000.

[Intel-IA32] Intel Corporation, “IA-32 Intel Architecture Software Developer’s Manual
Volume 1: Basic Architecture, Order Number: 245470,” 2001.

[Intel-IA64] Intel Corporation, “Intel IA-64 Architecture Software Developer’s Manual,
Volume 1: IA-64 Application Architecture,” 2001.

[Intel-SA1100] Intel Corporation, “SA-1100 Microprocessor Technical Reference
Manual,” 2000; see
http://www.acm.uiuc.edu/sigarch/resources/docs/sa110_27805802.pdf

120

[Joseph03] R. Joseph, D. Brooks, and M. Martonosi, “Control techniques to eliminate
voltage emergencies in high performance processors,” Proceedings of the
International Symposium on High-Performance Computer Architecture (HPCA),
2003, pp. 79-90.

[Kadri03] N.Kadri, S.Niar, and A.R.Baba-Ali, “Impact of Code Compression on the
Power Consumption in Embedded Systems,” International Conference on
Embedded Systems and Applications (ESA), June. 2003, pp. 197-203.

[Kim01] N. S. Kim, T. Austin, T. Mudge, and D. Grunwald, “Challenges For
Architectural Level Power Modeling in Power Aware Computing (R. Melhem
and R. Graybill eds.),” Kluwer Academic Publishers: Boston, MA, 2001.

[Kim03] N. S. Kim et al., “Leakage Current - Moore's Law Meets Static Power,” IEEE
Computer, Dec. 2003, pp. 68-75.

[Krishnaswamy05] Krishnaswamy and Gupta, “Dynamic Coalescing for 16-Bit
Instructions,” ACM Transactions on Embedded Computing Systems (TECS),
Vol. 4, No. 1, February 2005, pp. 3–37.

[Kyo05] S. Kyo et al., “An Integrated Memory Array Processor Architecture for
Embedded Image Recognition Systems,” Proceedings of the International
Symposium on Computer Architecture (ISCA), pp.134-145, 2005.

[Lau 03] J. Lau, S. Schoenmackers, T. Sherwood, and B. Calder, “Reducing code size
with echo instructions,” Proceedings of the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES), 2003,
pp. 84-94.

[Lee97] C. Lee et al., “Mediabench: A tool for evaluating and synthesizing multimedia
and communications systems,” Proceedings of International Symposium on
Microarchitecture (MICRO), 1997.

[Lee99] L. H. Lee, W. Moyer, and J. Arends, “Instruction Fetch Energy Reduction Using
Loop Caches For Embedded Applications with Small Tight Loops,” Proceedings
of International Symposium on Low Power Electronics and Design (ISLPED),
August 1999.

[Lefurgy00] C. Lefurgy, E. Piccininni, and T. Mudge, “Reducing Code Size with Run-
time Decompression,” Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), Jan. 2000, pp. 218-227.

[Lekatsas00] H. Lekatsas, J. Henkel and W. Wolf, “Code Compression for Low Power
Embedded System Design,” Proceedings of the Design Automation Conference
(DAC), June 2000. pp. 294-299.

[Lucent-DSP16000] Lucent Technologies, DSP16000 Digital Signal Processor Core
Instruction Set Manual, 1997.

121

[Magklis03] Magklis G. et al., “Profile-based dynamic voltage and frequency scaling for
a multiple clock domain microprocessor,” Proceedings of the International
Symposium on Computer Architecture (ISCA), 2003, pp. 14-27.

[MIPS-MIPS16] MIPS Technologies, “MIPS32 Architecture for Programmers Vol. IV-a:
The MIPS16 Application Specific Extension to the MIPS32 Architecture,” March
2001; see
http://www.mips.com/content/Documentation/MIPSDocumentation/ProcessorArc
hitecture/doclibrary.

[MIPS-MIPS32] MIPS Technologies, “MIPS32 Architecture for Programmers Volume
II: The MIPS32 Instruction Set, Document Number: MD00086,” 2003.

[MIRV01] The MIRV Compiler Project, http://www.eecs.umich.edu/mirv, 2001

[Montanaro96] J. Montanaro, et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC
Microprocessor,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 11, Nov.
1996, pp. 1703 – 1714.

[Motorola-MCore] Motorola Inc, “M-Core Reference Manual.”

[Mudge01] T. Mudge, “Power: A First-Class Architectural Design Constraint,” IEEE
Computer, Vol. 34, No. 4, Apr. 2001, pp. 52-58.

[NVIDIA-GeForce] NVIDIA Corp., GeForce 7800 GTX GPU, http://www.nvidia.com,
2005.

[Oliver04] J. Oliver et al., “Synchroscalar: A Multiple Clock Domain, Power-Aware,
Tile-Based Embedded Processor,” Proceedings of the International Symposium
on Computer Architecture (ISCA), 2004.

[Orpaz02] A. Orpaz and S. Weiss, "A study of CodePack: optimizing embedded code
space," Proceedings of the International Symposium on Hardware/Software
Codesign (CODES), 2002, pp.103-108.

[Panalyzer04] SimpleScalar-ARM Power Modeling Project,
http://www.eecs.umich.edu/~panalyzer, 2004

[PattersonHennessy03] D. Patterson and J. Hennessy, “Computer Architecture: A
Quantitative Approach,” third edition, Morgan Kaufmann Publishers, 2003.

[PattersonHennessy05] D. Patterson and J. Hennessy, “Computer Organization and
Design – The Hardware / Software Interface”, 3rd edition, ISBN: 1-55860-604-1,
Morgan Kaufmann Publishers, San Francisco, CA, 2005, pp. 348-349.

122

[Rivers03] J. Rivers, S. Asaad, J. Wellman, and J. Moreno, “Reducing Instruction Fetch
Energy with Backwards Branch Control Information and Buffering,” Proceedings
of International Symposium on Low Power Electronics and Design (ISLPED),
August 2003.

[Saini04] R Saini et al., “Design of an application specific instruction set processor for
parametric speech synthesis,” Proceedings of the International Conference on
VLSI Design, 2004.

[Sias01] J. Sias, H. Hunter, and W. Hwu, “Enhancing loop buffering of media and
telecommunications applications using low-overhead predication,” Proceedings of
the Annual International Symposium on Microarchitecture (MICRO), pp. 262-
273, December 2001.

[Siemens-TriCore] Siemens Inc, “TriCore Architecture Manual.”

[Srinivasan05] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Exploiting Structural
Duplication for Lifetime Reliability Enhancement,” Proceedings of the Annual
International Symposium on Computer Architecture (ISCA), 2005.

[ST-ST100] STMicroelectronics, ST100 Technical Manual, 2003; see
http://www.st.com/stonline/books/pdf/docs/10071.pdf

[ST-ST120] STMicroelectronics, ST120 DSP-MCU Programming Manual, December
2000.

[StarCore-SC140] StarCore DSP Technology, SC140 DSP Core Reference Manual, June
2000.

[TI-TMS320C67] Texas Instruments Inc, “TMS320C67 User’s Guide.”

[Toshiba-MeP] Media embedded Processor (MeP), Toshiba Corporation; see
http://www.mepcore.com/.

[TSMC-18] TSMC 0.18 µm CMOS Process, Taiwan Semiconductor Manufacturing
Company (TSMC) Ltd., http://www.tsmc.com.

[TSMC-ROM] TSMC 0.18 µm Process (CL018G) ROM-DIFF-HS Datasheet, Version
2004Q1V1, Artisan Components, Inc.

[TSMC-SRAM] TSMC 0.18 µm Process (CL018G) SRAM-SP-HS Datasheet, Version
2004Q1V1, Artisan Components, Inc.

[Turing36] A. Turing, “On Computable Numbers, with an Application to the
Entscheidungs problem,” Proceedings of the London Mathematical Society, series
2, 42, 1936, pp 230-265.

123

[Uh99] G. Uh, et al., “Efficient exploitation of a zero overhead loop buffer,” Proceedings
of Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES), pp. 10-19, May 1999.

[Wilkes53] M. Wilkes and J. Stringer, “Microprogramming an dthe design of the control
circuits in an electronic digital computer,” Proceedings of the Cambridge
Philosophical Society, Vol. 49, pp. 230-238, April, 1953.

[Wu01] L. Wu, C. Weaver, and T. Austin, “CryptoManiac: A Fast Flexible Architecture
for Secure Communication,” Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2001, pp. 110-119.

[Xie01] Y. Xie, W. Wolf, and H. Lekatsas, “A Code Decompression Architecture for
VLIW processors,” Proceedings of the International Symposium on
Microarchitecture (MICRO), 2001, pp. 66-75.

[Ye00] Z. Ye et al., “CHIMAERA: a high-performance architecture with a tightly-
coupled reconfigurable functional unit,” Proceedings of the International
Symposium on Computer Architecture (ISCA), pp. 225-235, 2000.

