
Scaling High-Performance Interconnect Architectures to
Many-Core Systems

by

Korey LaMar Sewell

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2012

Doctoral Committee:

Professor Trevor Mudge, Chair
Professor Scott Mahlke
Professor Dennis Sylvester
Adjunct Associate Professor Steven K. Reinhardt

© Korey LaMar Sewell 2012

All Rights Reserved

To my wife Shetia and my son Kaden

ii

ACKNOWLEDGEMENTS

First off, I would like to thank God for putting me in the position that I am in today. As

any Ph.D student knows, there are many times where the academic grind and struggle of

completing a doctoral degree seems overwhelming. Thus, I have to thank God for putting

the right people in my life to keep me going and giving me the peace of mind of knowing

that He put me at Michigan for a reason. My faith was truly a key factor in persevering and

persisting through this process.

Next, I have to say thank you to my two advisors during my time at Michigan. Pro-

fessor Trevor Mudge and Professor Steve Reinhardt were instrumental in facilitating my

development as a student, allowing me to explore interesting research projects, and most

importantly supporting me through life. It was refreshing and invaluable to have advisors

who supported my ideas and challenged me to prove whether ideas were worthwhile or not.

My favorite Steve quote is “It’s necessarily complex...” while my favorite Trev quotes are:

“We’ve been doing it for years...It’s called computers!” and “(insert lab member’s name

here), You’ve got to think!”

I have to thank all my labmates for being a great support system. The “m5/gem5” team–

Nate Binkert, Ali Saidi, Ron Dreslinski, Kevin Lim, Lisa Hsu, and Gabe Black–introduced

me to a level of software and simulator development that can only be referenced as “awe-

some”. I learned so much from you all and I thank you for helping me build a skill set

that will serve me well into the future. Geoff Blake, Tony Gutierrez, Joe Pusderis, Tom

Manville, Michael Cieslak, Reetu Das, Kyla McMullen, Joe Greathouse, Andrea Pelle-

grini, Jason Clemons, Ben Cassell, Timur Alperovich, Dave Meisner and Steve Pelley are

iii

among the many other people who were always around for great research conversation,

good laughs, and overall just a great environment.

I also have to thank my best friends at Michigan for helping me have a great experience

outside of just “lab-life”. My 1st summer at Michigan, Jason Torrey and I visited just

about every inch of Ann Arbor. Thanks for showing me the ropes Jason! Kevin Carter

was my long-time roommate at Michigan and has been an inspiration to me. Watching him

complete his Ph.D showed me that there was a path to having a great life inside and outside

of school. Cedric Armand introduced me to golf, snowboarding, and what “New York” life

is in Michigan. I can’t say enough about Ced’s “you only have 1 life, live it!” attitude. It’s

contagious. Bradley Campbell was and always will be good for a worthy debate. We’ve

“fought” hours at a time over topics ranging from basketball (Kobe Bryant/LeBron James!)

to food (chiclet and tacos?!) to politics. “Chuck” Sutton is also a guy that’s been a true

friend: always available when you need him and definitely always available when there is a

good time to be had! All of the aforementioned guys were like brothers to me at Michigan

and always provided encouragement when I needed it.

Of course, I have to thank my mother, Gertrude Green, and my father, William Sewell,

for all the books, Saturday library outings, and relentless “haggling” about school over

the years. My little brother, Kenneth Wise, has always made me feel like I could solve

the world’s problems. Although that’s obviously impossible, I appreciate his consistent

emotional support. These three people might be the only ones more excited then me about

this Ph.D!

Last *but* certainly not least, I have to thank my wife Shetia and my son Kaden for

being there for me every night and providing a daily reminder of what I was truly fighting

for in this Ph.D process. There’s nothing like the love and support of your family to keep

you going when things get tough.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . xiii

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 Trends in Performance Scaling 2
1.1.1 Single-Core Performance Scaling 2
1.1.2 The Multi-Core Era . 7
1.1.3 Scaling from Multi-Core to Many-Core 8

1.2 Scalability and the Impact of On-Chip Interconnects 9
1.2.1 Busses . 9
1.2.2 Crossbars . 9
1.2.3 Network-On-Chip . 10

1.3 Contributions . 12
1.4 Organization . 13

II. Background and Related Work . 14

2.1 Interconnect Characteristics . 14
2.1.1 Units of Communication 15
2.1.2 Metrics . 16
2.1.3 Arbitration . 18
2.1.4 Limitations . 20

2.2 Busses . 20
2.3 Crossbars . 22

v

2.4 Network-on-Chip . 24
2.4.1 Topologies . 25
2.4.2 Router Microarchitecture 28
2.4.3 Routing . 30

2.5 Related Works . 31

III. Swizzle-Switch: A High-Radix, Self-Arbitrating Crossbar 33

3.1 Overview . 34
3.2 Layout and Data-Transmission Phase 36
3.3 Arbitration Phase . 37

3.3.1 Arbitration Mechanism 38
3.3.2 Least Recently Granted 40
3.3.3 Most Recently Granted (MRG) 42
3.3.4 Selective LRG and MRG 42
3.3.5 Priority Swap and Reversal 44
3.3.6 Round Robin . 45
3.3.7 QoS Arbitration . 45

3.4 Silicon Validation . 46
3.5 Enhanced 32nm Design and Analysis 47
3.6 Conclusions . 48

IV. Swizzle-Switch Networks for Many-Core Systems 50

4.1 Interconnect Design Components 51
4.2 Swizzle Switch Network . 52

4.2.1 Coherence Protocol . 53
4.2.2 Timing and Layout Evaluation 54
4.2.3 Reliability . 55

4.3 Mesh Topology . 55
4.4 Flattened Butterfly . 57
4.5 Simulation Methodology . 58
4.6 Performance Analysis . 58
4.7 Energy and Power Analysis . 62
4.8 Sensitivity Analysis . 62

4.8.1 Router Pipelines . 63
4.8.2 Virtual Channels . 63
4.8.3 Interconnect Frequency 64
4.8.4 Out-of-Order Cores . 65

4.9 Conclusions . 66

V. Scalable 3D Interconnects . 68

5.1 3D Integration Technology . 69
5.2 3D-Swizzle-Switch Networks . 70

vi

5.2.1 Architecture . 70
5.2.2 Performance Results 72
5.2.3 Thermal Analysis . 72

5.3 XPoint: Scaling Many-Core Busses to 3D 73
5.3.1 Architecture . 74
5.3.2 Methodology . 76
5.3.3 Performance Analysis 79

5.4 Conclusions . 81

VI. Conclusions . 83

BIBLIOGRAPHY . 86

vii

LIST OF FIGURES

Figure

1.1 Processor Frequency Trends in Intel Processors [95]. 3

1.2 Reported Microprocessor Power Trends [51]. 5

1.3 Types of Multithreaded Processors [110]. This example assumes a 4-wide
superscalar processor. Each vertical set of boxes represents one execution
cycle and different colors represent different threads. 6

1.4 QoS in network-on-chip. Figures (a) and (b): All nodes generate traffic
directed to a hotspot located at (8,8) with injection rate of 0.05 flit/cycle/node,
and the bar graphs show the accepted service rate per source node for (a)
8x8 mesh and (b) 64-radix SSN. Figures (c) and (d) demonstrate the same
effect for uniform random traffic at injection rate of 1 flit/cycle/node. Un-
fairness metric derived from [25]. 10

1.5 Comparison of interconnect power of SSN and Mesh Network-on-Chip . 11

2.1 High-level view of an interconnection network. In this example, core
(C0) and memory (M0) components are connected to the interconnect
fabric through their own communication channel. 15

2.2 Breakdown of a 64-byte interconnect message into 8 packets and 4 flits. . 16

2.3 Offered Traffic v. Message Latency in a Interconnection Network. 17

2.4 A bus interconnect connecting cores to memory. 21

2.5 High-level view of a (a) 8x8 crossbar interconnect and an (b) 4x4 matrix
crossbar connecting cores to memory. A separate crossbar connecting
memory to cores would be needed to complete the circuit in (a). 23

2.6 A Mesh Network-on-Chip Topology. 24

viii

2.7 Common on-chip network topologies. Illustration from [52]. 26

2.8 A 2-ary, 3-fly butterfly network. Illustration from [52]. 27

2.9 The Microarchitecture for a credit-based, virtual channel router found in
a Mesh Topology (note: 5 inputs and 5 outputs). The circled numbers
represent router pipeline stages. 28

3.1 High level view of (a) bus interleaving required for mux-based crossbars;
(b) a traditional matrix style crossbar with arbiter/controller consuming
space and requiring additional input wires; (c) the proposed Swizzle-
Switch design that reuses input/output busses for programming/arbitration
of the crossbar with the arbitration logic placed under the dense metal in-
terconnect. 34

3.2 Scaling trends of the Swizzle-Switch Interconnect in 32nm vs. a conven-
tional crossbar (Simulated). 35

3.3 Circuit implementation of the Swizzle-Switch Interconnect. Each output
column in the interconnect uses the same request bit from each input bus.
Each input row uses the same bit from each output bus to perform arbitra-
tion. The expanded view of the crosspoint shows the stored configuration
and crosspoint connections for each bit. It also shows the programming
of priority bits using the output bus. Because the crosspoint is for Input
Row 0, the arbitration sense amp is on output wire 0. Similarly, because
it is Output column 1, the request line is drawn from input wire 1. 36

3.4 Conceptual example of Swizzle-Switch Arbitration. A matrix represents
one complete output column. Each output column arbitrates and trans-
mits data independently of other output columns. 38

3.5 A 5x3 crossbar showing arbitration circuits. Each output column arbi-
trates and transmits independently. 39

3.6 Detailed blowup of arbitration for the Kth output column of a 5-input
Swizzle-Switch interconnect. 40

3.7 Least-Recently-Granted priority update of a Swizzle-Switch output. . . . 41

3.8 (a) 64-Core Swizzle-Switch Network System (b) Maximum Request La-
tency for Random and Round-Robin Arbitration Policies (Normalized to
LRG). 41

3.9 Most Recently Granted priority update of a Swizzle-Switch output. 42

ix

3.10 Selective LRG (a) and MRG (b) priority update of a Swizzle-Switch output. 43

3.11 Priority Swap (a) and Reversal (b) of a Swizzle-Switch output. 44

3.12 A Quality-of-Service Circuit for the Swizzle-Switch. 46

3.13 Die Photo of the 45nm silicon test chip. 47

3.14 Measured Frequency and Bandwidth Efficiency of the silicon test chip
from 3.13. 47

3.15 Bandwidth and Speed of a Swizzle-Switch with 128-bit busses in 32nm.
Both repeated and non-repeated versions are presented. When using re-
peaters the Swizzle-Switch scales to designs as large as 128x128x128 re-
sulting in 15 Tbps of total bandwidth. 48

4.1 (a) High-level architecture diagram (a) of the 64-core Swizzle-Switch Net-
work (SSN) built with Swizzle-Switch crossbars. (b) The floor-plan of
the (SSN) system and estimated dimensions. Octants are colored to aid
the reader in seeing how wires leave the crossbar. The total chip area
is 204mm2, each core/L1 tile consumes 0.74mm2, the L2 tiles consume
4.5mm2 and the Swizzle-Switch consumes 6.65mm2. 51

4.2 (a) Classification of communication messages required for coherence (b)
Wiring diagram for combining three Swizzle-Switches into a 64×64×128bit
crossbar. The wires are labeled by the quadrant to which they connect.
Each wire in the diagram represents either 3, 5, or 8 busses, where each
bus is 128-bits. The overall area of the Crossbar is 6.65mm2(⇠ 4% of the
64 tile system). 53

4.3 Floor-plan of the Mesh and Flattened Butterfly systems with estimated
dimensions. The total size of both chips is 190mm2. 56

4.4 Cycle Analysis for 64 core Mesh, FBFly, and SSN topologies during par-
allel regions of the SPLASH2 benchmarks. 60

4.5 Histogram of L1 cache miss latency for the Radix benchmark. 60

x

4.6 Total interconnect power (top) broken down by components within the
Mesh, FBFly, and SSN systems for all benchmarks tested. Total system
energy (bottom) for each benchmark broken down by component. Over-
all the SSN reduces interconnect power by 33% over the Mesh and 28%
over the FBFly on average. As a result of the lower interconnect power
and better performance the total SSN system energy is 25% less than the
Mesh and 11% less than the FBFly. 61

4.7 Sensitivity analysis using ideal, 2-stage speculative routers. Histogram of
the L1 miss latencies for the Radix benchmark. 63

4.8 Mesh sensitivity to the number of virtual channels (VCs) per virtual net-
work for the Raytrace benchmark. For this example, there is only a 1 %
performance improvement using 5 VCs (over 3 VCs) per virtual network.
The enlarged data point represents the configuration used in Section 4.6. . 64

4.9 Sensitivity to the interconnect frequency for the Mesh and SSN (Cores
remain at 1.5GHz). Results show that a Mesh w/4-cycle routers needs to
be run at 4x the frequency of a SSN to achieve the same performance. The
enlarged data points for the SSN and Mesh represent the configurations
used in Section 4.6. 65

4.10 Speedups of a 64-core SSN using out-of-order cores over 64-core NoCs
also using out-of-order cores. Benchmarks shown represent the 3 traf-
fic classes referenced in Section 4.6. The compute intensive benchmark
(WaterNSquared) sees a 1.31x improvement while the memory-intensive
(Radix) and synchronization-sensitive workloads see ⇠2x and ⇠3x im-
provements respectively when using out-of-order cores. 66

5.1 Top level view of the Centip3De 7-layer 3D system [33] built on Tez-
zaron 3D stacking technology and a cross section of the same process on
the 3D-MAPS system [59]. Note the TSV’s are only 6.47 microns deep
and the wafer is thinned to less than 12 microns which is important for
reducing thermal resistance and RC delays. 69

5.2 (a) A 3D Swizzle-Switch Network achieved by stacking four 2D Swizzle-
Switch Network layers and using TSV’s to interconnect the layers. (b)
The modified circuits for the 3D Swizzle-Switch Network. Even num-
bered outputs are arbitrated on the top layer, odd outputs are arbitrated
on the bottom layer. Input request lines must be forwarded from the
top!bottom or bottom!top through TSV connections. 71

5.3 Speedup of the 3D-SSN on 2-layer and 4-layer systems compared to a
2D-SSN. The benchmarks most sensitive to interconnect delay are plotted
as well as the average across all benchmarks. 72

xi

5.4 HotSpot simulation of 64 Core SSN system on 1 and 4 layers for the
worst case benchmark. The peak temperature of the 3D chip is 60o Celsius. 73

5.5 High level view of (a) a conventional bus based architecture, and (b) The
XPoint-2D architecture. Caches in a vertical column are all assigned
to the same address range. No snooping is required between vertical
columns. The horizontal connections use point-to-point links. 74

5.6 Diagram of the XPoint 3D design. 75

5.7 Runtime (solid lines) Bus Utilization (dotted lines) vs. core counts for
Conventional Bus and XPoint Systems. A straight line for runtime repre-
sents ideal scaling of the benchmark. 78

5.8 Speedup comparison for Bus, XPoint 2D, and XPoint 3D interconnects.
The best performing parameters for each benchmark and configuration
are used. Details of number of cores, slices, and layers are found in
Table 5.4 . 79

xii

LIST OF ABBREVIATIONS

CGMT Coarse-Grained Multithreading

CMP Chip Multiprocessor

CPU Central Processing Unit

FBFly Flattened Butterfly

FGMT Fine-Grained Multithreading

I/O Input/Output

LRG Least-Recently Granted

MRG Most-Recently Granted

NoC Network-on-Chip

NUMA Non-Uniform Memory-Access

QoS Quality-of-Service

RR Round-Robin

SMT Simultaneous Multithreading

SSN Swizzle-Switch Network

TDMA Time Division Multiple Access

TSV Through-Silicon Via

VC Virtual Channel

xiii

ABSTRACT

Scaling High-Performance Interconnect Architectures to Many-Core Systems

by

Korey LaMar Sewell

Chair: Trevor Mudge

The ever-increasing demand for performance scaling has made multi-core (2-8 cores) chips

prevalent in today’s computing systems and foreshadows the shift toward many-core (10s-

100s of cores) chips in the near future. Although the potential performance gains from

many-core systems remain appealing, the widespread adoption of these systems hinges on

their ability to scale performance while simultaneously satisfying Quality-of-Service (QoS)

and energy-efficiency constraints.

This work makes the case that the interconnect for these many-core systems has a sig-

nificant impact on the aforementioned scalability issues. The impact of interconnects on

many-core systems is illustrated by observing that the degree of the interconnect has a sig-

nicant effect on system scalability and demonstrating that the architecture of high-radix,

many-core systems are feasible, energy-efficient, and high-performance.

The feasibility of high-radix crossbars for many-core systems is first shown through a

new circuit-level building block called the Swizzle-Switch. A 32nm Swizzle-Switch uti-

lizes integrated arbitration techniques to provides an energy- and area-efficient switch-

ing element that improves the scalability of crossbars to a high radices. The Swizzle-

Switch is shown to operate at frequencies up to 1.5GHz for 128-bit, radix-64 crossbars

xiv

and also to have the ability to implement many arbitration policies such as Least-Recently

Granted (LRG) and Round-Robin (RR). Results show that Swizzle-Switch’s LRG arbitra-

tion policy reduces the worst-case request access latency by 1.83× and 2.03× on average

over round robin and random arbitration schemes, respectively.

This work then shows how a many-core system called the Swizzle-Switch Network

can use the Swizzle-Switch as the central building block for a flat crossbar interconnect.

The Swizzle-Switch Network is shown to be advantageous to traditional Network-on-Chip

(NoC) for systems up to 64 cores. The Swizzle-Switch Network improves system per-

formance by 21%, reduces L1 on-chip average miss latency by 2.2×, and decreases the

standard deviation of that L1 miss latency by 3.0× relative to a Mesh NoC topology. Ad-

ditionally, all of these performance benefits are obtained while providing a 25% energy

savings over the Mesh.

The Swizzle-Switch is also leveraged as a building block for high-radix NoC topologies

that can support many-core architectures. The Swizzle-Switch-based Flattened Butterfly

topology is demonstrated to provide a 15% speedup, 1.76× smaller L1 on-chip average

miss latency, 2.5× reduction in miss latency standard deviation, and 10% energy savings

over the Mesh topology.

Finally, the impact that 3D stacking technology has on many-core scalability is eval-

uated and shown to assist crossbar and bus interconnects in scaling past their traditional

limitations. A 3D-optimized Swizzle-Switch Network is able to leverage frequency gains

to achieve a 15-28% speedup over a 2D-Swizzle-Switch Network when using memory-

intensive benchmarks. Additionally, a bus-based 64-core architecture is shown to provide

an average speedup of 49× over a baseline uniprocessor system when using 3D technology.

xv

CHAPTER I

Introduction

The ever-increasing demand for computing power has driven the computer industry for

decades. Significant compute resources are no longer reserved for servers and supercom-

puters but also for an array of mobile devices such as laptops, tablets, and cell phones.

While these compute elements continue to become more powerful, they have reached the

point where physical limitations threaten the future scalability of high-performance pro-

cessors. Consequently, computer architects face the continuing challenge of scaling perfor-

mance while simultaneously managing area, frequency, and power constraints.

The first part of this chapter details processor scaling trends that have caused the com-

puter systems industry to move from multi-core to many-core systems. Performance scal-

ing is first discussed in the context of single-thread processor designs and then extended

to consider pertinent issues for multithreaded processors. After outlining the tradeoffs of

multithreaded designs, scaling trends for multi-core and many-core processors are detailed.

The second part of this chapter motivates the need for scalable interconnect architec-

tures. In particular, this section discusses the inability of busses and crossbars to scale

for many-core systems and notes that Network-On-Chips have consequently become the

default interconnect for many-core designs.

The final part of this chapter outlines the contributions this work makes in analyzing

and designing interconnect architectures for many-core systems.

1

1.1 Trends in Performance Scaling

For years, performance scaling in computer chips has followed the path defined by

Moore’s law [82, 83]. Moore’s prediction that the number of transistors on a chip would

double every 18 months has created a market in which single-chip performance improves

even while the actual size of a chip decreases. This increase in transistors per chip has

coincided with an increase in area for performance enhancing hardware (e.g., large on-chip

caches, out-of-order processing, floating point units, etc.). Additionally, computer archi-

tects could scale performance simply by waiting for smaller technology nodes to increase

processor clock frequency. Rapidly multiplying transistor counts eventually allowed for

multiple threads per core, multiple cores on chip, and a host of hybrid technologies to

increase performance.

1.1.1 Single-Core Performance Scaling

Early contributions in performance scaling have focused on speeding up a single core

(also referred to as CPU) on a single chip. This scaling has primarily consisted of CPU

pipeline enhancements enabled by additional Moore’s law transistors as well as circuit

improvements that have seen single core frequency boosted from the MHz to the GHz

range.

1.1.1.1 Frequency Scaling

Along with Moore’s law, Dennard scaling [29] has been a key trend in the performance

scaling of a single CPU. Dennard scaling provided that decreasing the size of a transistor

was enough to provide an improvement in circuit delay and also consume less power. Fig-

ure 1.1 shows an example of the significant frequency advances that have been achieved

according to predicted scaling trends. An Intel i386 processor [94] in 1987 operated around

the 16MHz range while the 2000 version of the Pentium 4 [48] operated around 1.5GHz.

This yearly doubling of clock frequency has been a large contributor to single core perfor-

2

Figure 1.1: Processor Frequency Trends in Intel Processors [95].

mance scaling as application speedup could be achieved without necessarily optimizing the

application itself.

Unfortunately, the benefits of Dennard scaling have dissipated past the 130nm technol-

ogy node. While circuit advances have still allowed technology nodes to continue scaling

past 32nm [65], the proportional relationship of power and frequency (P = CV2f) makes it

difficult to blindly increase clock frequency without suffering significant thermal disadvan-

tages.

Sutter [109] analyzes transistor, clock frequency, and power trends for Intel processors

produced through the year 2009 and observes that the speed of Intel CPUs peaked around

3.4GHz due to cooling constraints. Consequently, today’s chip designers can no longer

count on the speedup of improved technology nodes to arbitrarily improve clock frequency.

3

1.1.1.2 Single-Thread Scaling

The ability to scale single-thread performance has historically been one of the great

beneficiaries of Moore’s law. Many authors have proposed performance-enhancing hard-

ware to pipeline, speculate, and cache single-threaded applications. The increased presence

of on-chip caches has also been a direct beneficiaries of Moore’s law. Whereas early pro-

cessors might have used a single level of caching, it is common for current processors to

use up to three levels of cache at sizes approaching 8 to 16 MB. The larger amount of on-

chip caching continues to aid single-thread scaling by decreasing average memory access

latency and in turn providing more CPU cycles for a single-thread.

In-order pipelines, like the MIPS4K [81], divide the execution of an instruction into

distinct stages (e.g., fetch, decode, execute, memory, and writeback). This division of tasks

provides greater instruction throughput and also decreases the minimum cycle time of the

CPU (as the maximum frequency of the pipeline is limited by the pipeline stage with the

longest delay). The Prescott derivatives of the Intel Pentium 4 series [119] have used up to

31 pipeline stages in an effort to maximize how fast the CPU can process instructions.

Other single-thread scaling techniques, such as out-of-order processing, attempt to

leverage the Instruction Level Parallelism (ILP) within an application to improve perfor-

mance. While scoreboards [44] can be used to track and execute independent instructions,

register renaming techniques are the primary way modern processors exploit ILP. Toma-

solu’s reservation-station approach [112] is recognized as the seminal work in out-of-order

processing and has been followed by designs such as the MIPS 10K [124] which use free

lists, load-store queues, and physical register files to further optimize register renaming.

Processors like the Intel Itanium [80] take advantage of ILP using Very Long Instruc-

tion Word (VLIW) architectures. These techniques rely on the compiler to expose the

parallelism for the hardware in the form of multiple instructions to execute on one cycle

(VLIW).

The continued scaling of ILP hardware has become limited by the available ILP in

4

Figure 1.2: Reported Microprocessor Power Trends [51].

applications as well as the cost of out-of-order hardware. While application-specific paral-

lelism can not be helped without changes in the software, exploiting the maximum amount

of parallelism entails increasing expensive hardware structures such as the instruction win-

dow (queue), number of renaming registers, reorder buffers and load-store queues. In par-

ticular, the large buffers needed to implement hardware such as the instruction window of-

ten use power-intensive, content-associative memories (CAM), which can also negatively

impact the maximum processor frequency if on the processor pipeline’s critical path. Fig-

ure 1.2 shows processor power trends over the past decade. Because the cost of cooling a

chip is prohibitive, single-chip power has stalled in the 10s of Watts range. Consequently,

recent work has shown that there is only a marginal amount gain left to obtain in single-

thread hardware without incurring a disproportionate amount of power overhead [6].

1.1.1.3 Exploiting Multithreaded Performance

As a response to the problems of single-core scaling, computer architects turned toward

multithreaded architectures for increased processing power. While the latency to com-

plete a single-thread of execution only continues to improve incrementally, the opportunity

5

Single-

Threaded

Coarse-Grained

Multithreaded

(CGMT)

Fine-Grained

Multithreaded

(FGMT)

Simultaneous

Multithreaded

(SMT)

Thread 1 Thread 2

Thread 1 Thread 2 Thread 3 Thread 4

OS Context Switch Code

return from

exception

Interrupt, exception or

OS call

Cache

Miss

Cache

Miss

Cache

Miss

Figure 1.3:
Types of Multithreaded Processors [110]. This example assumes a 4-wide su-
perscalar processor. Each vertical set of boxes represents one execution cycle
and different colors represent different threads.

to increase throughput amongst multiple threads has given rise to numerous architectures

striving to exploit thread-level parallelism (TLP) in addition to ILP.

Multithreaded architectures can be split up into three types: Coarse-Grained Multithreading

(CGMT) , Fine-Grained Multithreading (FGMT) and Simultaneous Multithreading (SMT).

Figure 1.3 illustrates multithreaded architecture types. CGMT designs switch threads on

every long-latency CPU event such as a cache miss or page fault. While one thread is ser-

vicing this type of event, the CPU switches threads instead of stalling. FGMT architectures

switch threads at a much smaller time quantum. Thread switch can be triggered every cy-

cle, using some priority scheme (e.g., round-robin), or reacting to some speculative event

(e.g., branch instruction).

SMT has been the most popular of multithreading architectures. First introduced by

Tullsen et al. [115], SMT architectures process multiple hardware threads in parallel by

dynamically partitioning resources amongst threads (e.g., register file, instruction queue,

etc.) The Intel Pentium 4’s version of SMT, HyperThreading [123], was among the 1st

commercially available SMT processors and allowed up to 2 hardware threads at one time.

Prior studies have explored fetch policies [114], partitioning schemes [93, 17], and using

SMT threads as helpers (e.g., prefetchers) for a main running thread [18]. Works such as

Oehmke’s Virtual Context Architecture [87] and Sewell’s EXtreme Virtual Pipelining [105]

6

propose SMT processors that can support high thread counts. These works optimize the

limitation of the static storage resources within the processor pipeline (e.g., the register

file) to create virtual hardware contexts. Burns and Gaudiot [16] find that 8-way (threaded)

SMT designs can provide a 5x throughput improvement over a traditional out-of-order

processor.

Despite the throughput gains, Burns’ work has also shown that single-core multithreaded

processors are limited by the amount of inter-thread resource sharing (e.g., the cache) and

the hardware cost of adding additional thread contexts in the system. The additional area

overhead of an 8-way SMT processor is found to be 46% compared to a non-SMT, out-of-

order design. Thus, recent SMT processors have been limited to about 4 threads per system

while in-order, SMT designs like the SPARC Niagara [63] have much less thread state to

replicate and have implemented CPUs with 8-16 hardware threads per core.

1.1.2 The Multi-Core Era

As transistor and voltage scaling started to see diminishing performance returns for

both single- and multi-threaded CPUs, chip architects began to leverage increased transistor

counts to build chips with multiple CPUs (cores) on one die. Commonly referred to as Chip

Multiprocessor (CMP), these multi-core systems typically replicate the core and private

caches for each processing element while sharing a second-level cache and then connecting

to a main memory controller. In comparison to a multithreaded processor, replicating per-

core resources instead of per-thread resources becomes more energy-efficient as the number

of hardware contexts (threads) increases. This is primarily due to the cache thrashing and

microarchitectural resource sharing issues that can hinder the performance of multithreaded

CPUs with a high number of hardware threads.

In 2001, IBM’s Power4 processor [111] realized 2 cores on chip and is regarded as

the first commercial, general purpose CMP. The Power4 was quickly followed by designs

such as the AMD Opteron [55] and the Intel Itanium 2 [80]. CMPs have now become the

7

predominant choice for throughput scaling in both the general-purpose and embedded sys-

tems markets. Currently, Intel’s Core i7 [50] series targets the general-purpose computing

market and offers up to 6 cores per processor while the ARM Cortex A9 is a popular choice

in the embedded world and can support up to 4 cores on die.

Because single-core multithreading and multi-core systems are not mutually exclusive

designs, Chip Multithreading (CMT) architectures like the Sun UltraSparc IV (codename:

Niagara [63]) have combined both technologies to maximize throughput. The latest version

of the Niagara series (Niagara 3/UltraSparc T3) has 16 inorder cores and 8 threads per cores

allowing for the processing of 128 threads simultaneously.

1.1.3 Scaling from Multi-Core to Many-Core

The continued scaling from multi-core (4-16 cores) to many-core (64+ cores) has be-

come prohibited by factors such as power distribution and interconnect topology. The chal-

lenge of powering a many-core chip can lead to designs that have “dark silicon” [32]: chips

where parts of the area must be turned off due to power constraints. Although dynamic

Voltage and Frequency Scaling [104] technology allows architects to tune core frequency

at runtime, there is a significant amount of core management necessary to maintain high

performance for designs where the frequency is mitigated by the total core count.

Additionally, the on-chip interconnect has become a limiting factor for future many-

core chips. Managing communication costs in the form of wire delay, contention, and

bandwidth has a large impact on the performance scalability as the number of cores rises.

Bus and crossbar-based interconnects are commonplace for small multi-core systems but

have been limited by the amount of contention and the high power of their designs re-

spectively. Recently, systems with large core counts have used Network-on-Chip (NoC)

topologies such as a ring or mesh to solve the wiring and power problems inherent in tradi-

tional bus and crossbar interconnect fabrics. However, enforcing quality of service in NoCs

becomes problematic as the core count continues to rise and limit performance gains.

8

1.2 Scalability and the Impact of On-Chip Interconnects

1.2.1 Busses

The emergence of many-core designs has led to a renewed interest in interconnect tech-

niques because intra-chip communication bottlenecks can compromise performance. Al-

though most commercial multi-core designs have used bus-based communication [49, 4],

long bus wires as well as saturated bus contention has hindered the scalability of busses

past 8-16 cores [23]. As such, it is clear that bus-based interconnects are not suitable for

many-core systems.

1.2.2 Crossbars

To provide better bandwidth, early multi-core systems transitioned from bus-based in-

terconnect fabrics to crossbars [54, 3, 78, 127]. Crossbar-based architectures, like those

in the Niagara2 [54] and IBM BlueGene/Q [43], can provide the uniform memory access

latency that is unachievable in multi-stage NoC systems. Additionally, crossbar systems

provide higher bisection bandwidth and lower complexity solutions for quality-of-service

guarantees than NoC designs.

Despite these advantages, large crossbars are generally considered infeasible because

the area and power of traditional matrix-style crossbars grow quadratically with crossbar

radix. The increased power consumption and die area from high-radix crossbars has led

researchers to explore alternatives to flat crossbar topologies [126]. In systems whose core

counts approach 64-128, several studies have noted that creating a crossbar to interconnect

all cores would cause the interconnect’s power and area to dominate the system [66]. Con-

sequently, there has been a paradigm shift towards packet-switched, on-chip networks with

regular topologies such as meshes [120, 45] and rings [40, 103].

However, this thesis revisits the ability of crossbars to scale to many-core systems. The

integrated arbitration technology found in the Swizzle-Switch (detailed in Chapter III) opti-

9

1
3

5
7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 node i
ndex

 (Y
)

node index (X)

ac
ce

pt
ed

 th
ro

ug
hp

ut

[f
lit

s/
no

de
/c

yc
le

]

Average'='0.017'flits/node/sec'
Unfairness'='42.2'''

1
3

5
7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 node i
ndex

 (Y
)

node index (X)

Average'='0.013'flits/node/sec'
Unfairness'='1.008'''

1
3

5
7

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 3 4 5 6 7 8 node i
ndex

 (Y
)

node index (X)

Average'='0.36'flits/node/sec'
Unfairness'='1.89'''

1
3

5
7

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 3 4 5 6 7 8 node i
ndex

 (Y
)

node index (X)

Average'='0.47'flits/node/sec'
Unfairness'='1.02'''

!!!!!!!!!!(a)!Mesh!!!!!!!!!!!!!Hotspot!Traffic!!!!!!!!!!!!!!(b)!SSN! (c)$Mesh$$$$$$Uniform$Random$Traffic$$$$$(d)SSN

Figure 1.4:
QoS in network-on-chip. Figures (a) and (b): All nodes generate traffic directed
to a hotspot located at (8,8) with injection rate of 0.05 flit/cycle/node, and the
bar graphs show the accepted service rate per source node for (a) 8x8 mesh and
(b) 64-radix SSN. Figures (c) and (d) demonstrate the same effect for uniform
random traffic at injection rate of 1 flit/cycle/node. Unfairness metric derived
from [25].

mizes area and power relative to traditional crossbar systems. This works finds that high-

radix crossbars are feasible designs and architects a many-core system called the Swizzle-

Switch Network (detailed in Chapter IV) to evaluate the tradeoffs against Network-On-Chip

systems.

1.2.3 Network-On-Chip

Network-on-Chip (NoC) designs have been advocated as an alternative to bus-based

architectures. NoC systems, such as the Tilera Tile64 [120], utilize a distributed multi-

stage interconnect design to avoid the scaling issues of long wires. However, this improved

scalability comes at the expense of high variability in memory access latencies as well as

increased design complexity to guarantee correctness and fairness (e.g., avoiding deadlock,

livelock, starvation, etc.).

This shift from a flat interconnect model to non-uniform, multi-hop interconnects has

come at the cost of Non-Uniform Cache Access (NUCA) latencies [58]. The ability to

provide uniform latency makes using a crossbar an appealing option because predictable

latencies remove the need for complex techniques for routing algorithms [91], quality-of-

service [39], congestion management [71], data placement [77], and thread scheduling [46].

10

0"

5"

10"

15"

20"

25"

Mesh" SSN"

In
te
rc
on

ne
ct
((T
he

rm
al
(

D
es
ig
n(
Po

w
er
((W

a6
s)
(

Link"
Clock"
Control"
Switch"
Buffer"

Figure 1.5: Comparison of interconnect power of SSN and Mesh Network-on-Chip

Figure 1.4 shows the high variability of multi-hop, on-chip networks compared to the

single-hop Swizzle-Switch Network (SSN) (both the Mesh and SSN are assumed to run

at the same frequencies in this experiment). In a Mesh network, the accepted throughput

at any given node is highly dependent upon the location of the destination node. Under

hotspot traffic, nodes closest to destination (node8,8) receive the highest throughput, while

nodes closest to the center (e.g., node4,4) receive the highest throughput when traffic is uni-

formly distributed. In contrast, the SSN distributes its throughput evenly amongst its nodes

allowing for it to see a 40× and 87% fairness improvement for hotspot and uniform random

traffic respectively. While there are many research papers that address fairness issues in

NoCs, these solutions typically involve complex mechanisms [39, 71] to enforce fairness

whereas crossbar topologies simplifies these quality of service concerns by construction.

Additionally, the reduced wiring complexity of a NoC system is bought at a price other

than non-uniform latency: collisions can occur within the network. To resolve these colli-

sions and avoid protocol deadlocks, on-chip networks usually require additional buffers per

router node (e.g., to provide multiple protocol lanes or virtual channels), which consume

significant power and area. As a result, Borkar et al. [15] predict that many-core NoCs

could consume as much as 80 Watts in future systems. In contrast, a flat crossbar is non-

blocking and does not require intermediate buffers, reducing power and area overheads.

Previous studies address the power and latency scalability challenges of NoCs by build-

ing concentrated and hierarchical topologies to reduce the required number of on-chip

11

routers [7, 61, 28]. In contrast to those works, the Swizzle-Switch Network (SSN) realizes a

single-router flat interconnect with a scalable high-radix crossbar design and minimal end-

point buffering. Figure 1.5 illustrates the power savings achieved by this work’s proposed

SSN design for a synthetic benchmark designed to saturate the network (details for this

analysis are found in Chapter IV). Additionally, the technology used in the SSN can be

used as a building block for future hierarchical NoC topologies.

1.3 Contributions

This thesis analyzes the scalability of many-core systems and proposes interconnect

architectures that can assist in solving these scalability challenges. In particular, this work

observes that the degree of the interconnect has a significant effect on system scalability

and seeks to build high-radix, many-core systems that will scale performance, power, and

quality-of-service metrics to core counts of up to 64.

Many-core scalability efforts are first done in this work by revisiting the design of

crossbar and high-radix interconnects in light of advances in circuit techniques that signifi-

cantly improve crossbar scalability. A new circuit-level building block, the Swizzle-Switch,

utilizes an integration arbitration technique within the crossbar to build a energy- and area-

efficient switching element that can improve the scalability of crossbars to high radices.

In addition, this work finds that the multicast ability within the Swizzle-Switch makes it a

good candidate for many-core system design.

After being scaled to 32nm, multiple Swizzle-Switches are used to create the Swizzle-

Switch Network: a flat, cache-coherent crossbar topology supporting many-core systems of

up to 64 cores. The Swizzle-Switch Network is shown to scale favorably over a traditional

Network-on-Chip (NoC) topology (Mesh) for systems of up to 64 cores. Hierarchical,

high-radix NoC topologies are also studied and demonstrated to be scalable architecture

choices for systems with core counts above 64.

Finally, this work studies the impact that 3D stacking technology has on many-core

12

scalability and finds that this emerging technology can help crossbar and bus interconnects

scale past their traditional limitations.

1.4 Organization

This work is organized as follows: Chapter II specifies background and related work for

interconnect design, Chapter III discusses the design and implementation high-radix cross-

bars, Chapter IV details and compares the Swizzle-Switch Network to Mesh and Flattened

Butterfly NoC topologies, and Chapter V extends the scalability discussion toward 3D-

stacked crossbar and bus architectures. Finally, conclusions and future works are outlined

in Chapter VI.

13

CHAPTER II

Background and Related Work

The text in this chapter presents background concepts and works related to the design

of scalable interconnects for many-core systems. First, characteristics and terminology of

interconnect architectures are defined. Next, concepts and architectural details for busses,

crossbars, and Network-on-Chips (NoCs) are presented. This chapter then concludes by ty-

ing this thesis’ contribution of scalable interconnect architectures to relevant related works.

2.1 Interconnect Characteristics

Modern computer systems are made up of many components (e.g. CPUs, caches, I/O

devices, etc.) communicating over an on-chip interconnect. Figure 2.1 shows a high-level

view of an interconnection network. The network consists of core and memory compo-

nents on the edge of the network as well as channels that connect those components to the

interconnect. Components can be generally classified into either initiator or response types.

For example, cores are an initiator type component as it makes requests to other compo-

nents in the system, while a memory (or cache) would be a response-type component as

it only responds to requests. The interconnect can also contain intermediate channels and

switching components (e.g., NoC routers) to help facilitate on-chip communication.

Ideally, the interconnect choice for any given system would be high speed, low power,

and meet any necessary bandwidth requirements. However, desirable interconnect char-

14

M0 M1 M2
M3

Interconnect Fabric

C0 C1 C2 C3

Figure 2.1:
High-level view of an interconnection network. In this example, core (C0)
and memory (M0) components are connected to the interconnect fabric through
their own communication channel.

acteristics are often conflicting and force the architect to make tradeoffs in designing the

most efficient communication architecture for their particular system. The following text

gives an overview of the basic interconnect characteristics and serves as a basis for the

terminology used throughout this thesis.

2.1.1 Units of Communication

Messages can be viewed as the logical communication unit between two components in

a interconnect network. For example, a memory component will only process once it has

received some type of request message from another component within the network. The

message would include all the data the memory component would need in order to handle

the request correctly (e.g., address, data, etc.).

On-chip networks recognize packets as their form of communication unit. Any desti-

nation, data, or command attributes contained in a message is first translated into packets

before they leave their component and begin transfer over the network. A particular inter-

connect can choose to implement variable or fixed size length packets. In the case that a

message is greater then the size of one packet, the interconnect will split the message up

into multiple packets in order to satisfy the message requirements. However, messages and

packets are typically the same size in on-chip networks.

15

Messages
(64 bytes)

Packets
(64 bits)

H B B T Flits
(16 bits)

Figure 2.2: Breakdown of a 64-byte interconnect message into 8 packets and 4 flits.

Similar to messages, packets can further be subdivided into flits. Flits are short for

flow control digits and represent the unit of bandwidth and storage allocation in a network.

Unlike messages or packets, all flits do not contain destination or data information. Flits

are categorized as head flits which contains packet and route identifiers, body flits which

contain payload data, or tail flits which indicate the end of a packets. If the packet size is

the same as the flit size, then one flit can serve as both a head and tail flit simultaneously.

Finally, flits are segmented into phits, a physical unit corresponding to the channel

width. Flits are predominantly the same size as phits in on-chip networks. As such, the

remainder of this thesis will refer to flits as the lowest communication unit within an inter-

connection network.

Figure 2.2 illustrates the units of communication within a system. In the example,

a 64-byte message is first divided into 8, 64-bit packets. Since the channel size of the

interconnect is 16-bits, the packet is then divided into 4 16-bit flits for data transfer. From

the example, one can derive that the size of a flit is determined by the width of channel

connecting two components.

2.1.2 Metrics

Latency (or delay) is known as that time it takes one component to receive a message

from another component. In Figure 2.1, Core0 would communicate with Memory3 by

generating a message X and sending that message through the interconnect. The time it

16

Figure 2.3: Offered Traffic v. Message Latency in a Interconnection Network.

takes for X to reach Memory3 is then the communication latency for message X.

Additionally, Memory3 would like respond to request message X with response mes-

sage Y. The total time for message X and message Y to be completed is known as the

round-trip delay for Core0’s request.

Typically, the latency of a particular message can be variable depending on factors such

as contention for interconnect resources or the distance between the source and destina-

tion components. Zero-load latency refers to the optimal delay for any message—the case

where a source component sends a message to it’s destination without any contention.

Bandwidth is a throughput metric that measures how much data can be transferred over

a interconnect during a given time period. Given an interconnect with a single channel,

the bandwidth would then be the width of that channel multiplied by the frequency of the

interconnect. Bisection bandwidth is a measure of how well an interconnect can communi-

cate across the interconnect. If the interconnect is equally split into two parts, the bisection

bandwidth is the bandwidth that would be achieved between those two parts. The aggregate

bandwidth of the system is the sum of all the channels widths in the interconnect multiplied

17

by the same frequency as before. Aggregate bandwidth of the interconnect represents the

maximum achievable throughput that can be maintained by the interconnection network.

The amount of traffic that one or more components send to the interconnection network

is known as the offered bandwidth. Figure 2.3 shows how a interconnection network may

be analyzed for a given amount offered bandwidth from one of it’s components. As one

would expect, the amount of aggregate bandwidth (throughput) that the system can sustain

will eventually saturate and provide the saturation throughput for the interconnect under

evaluation. Thus, the zero-load latency and saturation throughput lines can be viewed as

the limiting factors for any component’s offered traffic.

2.1.3 Arbitration

In cases where more then one component is using an interconnect channel as a shared

resource, an arbitration scheme must be implemented to resolve conflicts. From Figure 2.1,

it is apparent that all components have their own channel to the interconnect but the inter-

connect fabric itself is shared amongst components. If one were to imagine that intercon-

nect fabric as a single channel that could only service one component at a time (i.e. a bus),

then a conflict scenario would arise when multiple memory or core components would want

simultaneous access.

This conflict resolution can be aimed toward providing fairness amongst contending

components, providing priority for important components, or guaranteeing metrics such as

bandwidth or latency for a subset of components. The requirements of a particular inter-

connect to arbitrate under specific constraints can then be labeled as that system’s Quality-

of-Service (QoS) policy.

Priority arbiters resolve shared resource contention by granting the component with the

highest priority value access to interconnect. The most straightforward QoS policy is “static

priority” in which fixed priority values are assigned to components. While static priority is

a easy to implement QoS scheme, they are vulnerable to starvation of low priority compo-

18

nents. Dynamic priority schemes can change priorities according to system state. Lahiri et

al. [69, 70] proposes a communication architecture tuner (CAT) that monitors the system,

predicts the importance of future transactions, and alters the priorities of the underlying

interconnect arbitration scheme. Interconnects like Satpathy et al.’s XRAM [99] provide a

programmable priority substrate that can be dynamically tuned at the system’s request.

Other architectures attempt to implement starvation free, fair QoS policies. These

schemes aim to equally distribute the available interconnect bandwidth amongst compo-

nents. Round-Robin (RR) schemes are perhaps the most straightforward and grant priority

in a circular fashion to requesting components. A drawback of RR priority is that the maxi-

mum wait to get top priority from a RR arbiter rises as the number of connected component

increases. In systems where there are messages that are more critical then others, this could

create performance degradation. McKeown’s iSlip algorithm [79] optimizes RR priority by

de-prioritizing the Most-Recently Granted (MRG) component on the RR priority list. Im-

plementations of the Least-Recently Granted (LRG) schemes [25, 100] similarly provide

fairness through MRG demotion and can guarantee that all requesting components that

haven’t had access to the interconnect will be granted access before any components that

have been previously granted.

Time Division Multiple Access (TDMA) arbitration schemes [88] are part of a class of

arbiters that attempt to guarantee metrics such as bandwidth and latency amongst conflict-

ing resources. In particular, TDMA allocates each input on the bus a fixed time slot for use

of the interconnect. Such a method guarantees bandwidth and latency for a components

on a bus. If a component does not want to use the bus during it’s fixed time slot, RR pri-

ority can be used to pick between other available components. This type of hierarchical

TDMA/RR scheme is featured in the Sonics SMART Interconnect [108]. Lahiri’s LOT-

TERYBUS [67, 68] arbiter guarantees bandwidth by assigning tickets to components on

the bus and using a ’lottery manager’ circuit to replicate a lottery (i.e. random drawing) for

arbitration cycle winners. Variations of LOTTERYBUS use the arbitration history [125]

19

or weights on the contending components [19] to direct the lottery manager and possibly

enforce real-time bandwidth guarantees [73].

The final class of arbiters discussed in this section is called queueing arbiters [25].

These mechanisms enforce a FIFO priority on time stamping incoming interconnect re-

quests. The implementation of such a queuing policy can be complex as tree-logic may be

needed to find the oldest request and care must be taken to handle the overflow of times-

tamps. If those issues can be taken care of, a queueing arbiter would provide the strongest

fairness possible out of all the QoS arbitration options.

2.1.4 Limitations

At any particular technology node, physical limitations such as the length of wires, the

number of channels and channel width affect the frequency that a interconnect is run at and

the energy that it consumes. For monolithic interconnects such as busses, the longest wire

that needs to be communicated across is considered to be the critical path and consequently

is a frequency limiter. Interconnects that have a high-radix (number of channels) or whose

channel size is large can consume a high amount of energy during operation. Consequently,

narrow channel [102], hierarchical [28], and multiple-clock domain interconnects have all

been proposed as viable solutions for connecting components.

The following sections elaborates further on 3 common interconnect designs: busses,

crossbars, and network-on-chip. Each have overlapping characteristics and tradeoff fea-

tures such as simplicity, bandwidth, frequency, and QoS.

2.2 Busses

Busses are comprised of a set of shared wires amongst communicating components. In

the simplest case, a bus can be viewed as a single, shared channel. Figure 2.4 illustrates a

bus connecting cores to the memory.

To access the bus, a component must first request access to the bus from the bus arbiter.

20

Figure 2.4: A bus interconnect connecting cores to memory.

The bus arbiter is typically a centralized arbitration unit in which all components can make

their requests to. The arbiter provides contention resolution and priority to competing

requests and will eventually grant a requesting component access to the bus.

Once access is granted, a component will broadcast its message to all components on

the bus. This broadcast property of busses provides system-level benefits with regards to

cache coherency and memory consistency. Since all requests have a single ordering point

(the centralized arbitration), it’s easier to maintain and enforce memory consistency in a

bus-based system relative to systems that do not broadcast all accesses. Additionally, the

visibility of requests to all components simplifies cache coherency protocols and allows

components to update their cache state or respond to cache requests immediately after

seeing a relevant request across the bus.

The frequency of a particular bus is dependent upon the length of wire needed to con-

nect all the communicating components on a bus. The constraint of connecting all com-

ponents on a singled shared bus line has typically limited busses from running at high

frequencies (GHz range) as the number of cores in a system increases.

The zero-load latency of a flit to travel across a bus is again governed by the frequency

of that bus. However, zero-load latency may not be achieved often on systems with a large

number of components because of the sharing of the bus. Traffic due to memory requests,

21

coherence updates, and I/O demands can significantly increase the amount of contention

for a shared bus. Since the bandwidth of a single bus is limited to the sequential fulfillment

of only one request at a time, busses reach their saturation throughput faster then other,

more distributed interconnects.

Modern bus-based systems combat these frequency and bandwidth issues by imple-

menting multiple busses according to component types, message class, and other system

characteristics. For example, ARM’s AMBA bus protocol [5] specifies a high-performance

bus (AHB) and peripheral bus (APB) to separate the latency and bandwidth requirements of

performance critical components (e.g., cores and memories) from less latency critical com-

ponents (e.g., timers and UARTs). The AXI and ACE extensions to AMBA also specify

separate busses for control, data request, data response, and even cache coherency. Addi-

tionally, bus protocols also extract parallelism from the interconnect by allowing compo-

nents to send bursty traffic (i.e., multiple packets in sequence), pipeline transactions, and

complete requests out-of-order [88].

Although split-transaction [35] and hierarchical [101] bus architectures have led to in-

creased bus performance, the implementation of high-performance busses typically does

not constitute a power-efficient interconnect. The overheads of wiring complexity and en-

ergy become prohibitive as the demand to drive arbitration and data lines at high frequen-

cies increases as more components are added to the bus. As such, power issues as well as

the previously mentioned contention issues threaten the future scalability of busses beyond

8-16 cores [25].

2.3 Crossbars

Crossbars, often referred to as just “Switches”, are similar to busses in that there is a

central connection between communicating components. Also similar to a bus, components

must be granted access to the crossbar before they are allowed to drive their data across

the interconnect. The key difference is that all components connected to a crossbar are

22

C0

C1

C2

C3

X

B

A

R

M0

M1

M2

M3

C0

C1

C2

M0

Out0

C3

Out1

M1 M2

Out2 Out3

M3

Matrix Crossbar

Figure 2.5:
High-level view of a (a) 8x8 crossbar interconnect and an (b) 4x4 matrix cross-
bar connecting cores to memory. A separate crossbar connecting memory to
cores would be needed to complete the circuit in (a).

available as separate channels to other components. Each channel contributes to the radix

of the crossbar, such that a crossbar with 128 ports (i.e.,. 1 per separate component channel)

is referred to as a radix-128 crossbar. As long as the crossbar has no requests with the

same destination channel, messages on a crossbar can be processed in parallel. Using

Figure 2.5b as an example, Core0 can send a message to Memory0 on the same cycle as

Core1 sends a message to Memory1. Consequently, the crossbar can maintain the the same

zero-load latency that a bus achieves despite having multiple components request access to

the crossbar on the same cycle. Additionally, the independent output channels of a crossbar

allow for higher bisection and aggregate bandwidth of crossbar interconnects relative to

busses of the same channel size.

The increase in input and output ports on a crossbar can cause significant arbitration

overheads as well as affect the critical path of the crossbar. Passas [90] implemented a

radix-128 crossbar and found that the arbitration/scheduling area for his design was 60% of

the total crossbar area. Thus, the frequency of a crossbar is degraded as the radix increases

and the logic to needed to arbitrate amongst increasing components becomes more and

more complex.

23

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Core

Mem

Figure 2.6: A Mesh Network-on-Chip Topology.

Since interconnect power is also adversely affected as the crossbar radix increases,

many researchers have published that crossbars are simply infeasible for systems with a

large number of components that need to be connected [66]. Although wiring complexity,

area, and power are all concerns for the feasibility of high-radix crossbar, commercial

chips like the Niagara2 [54] and IBM BlueGene/Q [43] use a crossbar for 16 and 18 cores

respectively.

This work shows how a optimized crossbar using integrated arbitration and a a SRAM-

like layout can scale to high-radices and support many-core systems. Chapter III will elab-

orate further on challenges and solutions to the high-radix switch problem. Chapter IV will

present a system-level design for a high-radix crossbar system.

2.4 Network-on-Chip

The bandwidth issues in busses combined with the prohibitive implementation over-

heads of crossbars has led many architects toward Network-on-Chip interconnects when

searching for a scalable on-chip communication fabric. While busses and crossbars cen-

tralize their communication logic, NoCs distribute the communication between compo-

nents through the use of intermediate routing elements. Figure 2.6(a) shows an example of

a NoC with Mesh topology. Each of the tiled components on the Mesh (core+memory) are

24

connected to it’s own router. Within each router is a crossbar-like switch, which connects

to it’s home tile and at most 4 other routers. However, since the radix of these switches

is small, the Mesh avoids the wiring complexity and power overheads that are seen in a

monolithic crossbar system while maintaining high aggregate bandwidth throughout the

interconnect. Because of these advantages, the tiled Mesh topology has been implemented

in both the Intel TeraFlops [45] and the Tilera Tile64 [120] processors. Rings [40, 103] and

spidergon [22] interconnects have also been used in commercial NoC chips.

While the distributed nature of a NoC enhances scalability, it also brings the issue

of non-uniform communication amongst components. In cases where each NoC compo-

nent has a slice of shared memory, this Non-Uniform Memory-Access (NUMA) can cause

problems when the communicating components are far away from each other. In Fig-

ure 2.6(a), consider the situation in which the uppermost-left tile (A) requests data located

in the bottom-right tile (B). No matter what path the requests take, there will be at minimum

6 routers that the request needs to traverse through to reach it’s destination. Consequently,

issues like quality-of-service enforcement can become significant as NoC systems continue

to increase in number of components. Recent work has proposed solutions to these prob-

lems that map thread and data in a NoC aware fashion [42] as well as provide guarantees

on QoS fairness [39, 71].

Since the ideal interconnect can vary greatly even within application domains, param-

eters such as topology and routing are of great importance when deciding what type of

NoC to implement. The following subsections examine these details closer while acknowl-

edging that an exhaustive look at all relevant NoC parameters is beyond the scope of this

chapter.

2.4.1 Topologies

The choice of NoC topology has a direct effect on the performance and power tradeoffs

of the system. In particular, the desired number of nodes (i.e., components), zero-load

25

Figure 2.7: Common on-chip network topologies. Illustration from [52].

latency, and bandwidth are first-order constraints when building a NoC topology.

Systems with a small number of nodes may opt for a fully connected interconnect like a

bus or crossbar (note: busses and crossbars can be viewed as a subset of the NoC domain),

while systems with a large number of nodes tend to invite a more distributed NoC topol-

ogy. Similarly, the required zero-load latency and bandwidth to and from arbitrary nodes

provides a constraint on the the distance between any two nodes as well as the width of the

NoC’s channels.

The aforementioned design constraints manifest themselves into topology-specific char-

acteristics such as degree, hop count, path diversity, and maximum channel load. The

degree of a topology refers to the number of channels that a particular routing element con-

nects. For example, the ring in Figure 2.7 has routing nodes of degree 2 and the torus has

routing nodes of degree 4.

The hop count is the number of routing elements a flit must traverse in order to get from

source to destination node. Zero-load latency is directly effected by hop count as even with

no contention on the NoC, a message still must spend the required cycles to route from one

node to the next. Maximum hop count and average hop count are typical metrics used when

evaluating a topology. Computing the maximum hop count is typically straightforward: it

is the largest manhattan distance from source to destination node. The average hop count is

26

Figure 2.8: A 2-ary, 3-fly butterfly network. Illustration from [52].

defined as the average minimum hop count for all possible source to destination node pars

in the NoC.

Path diversity refers to the number of shortest paths (i.e. minimum hop counts) that is

available between any two nodes in the systems. Path diversity typically allows for greater

routing flexibility as a system with high path diversity will have the ability to route around

highly contended or faulty routing elements.

Finally, the maximum channel load represents the highest amount of offered traffic that

a particular channel can accept before it reaches it’s saturation throughput. For any channel

in the system, an analysis similar to the one showed in Figure 2.3 can be done to identify

the maximum channel load for the interconnect.

Once all design constraints are known, a NoC architect can select a direct or indirect

topology to satisfy network requirements. Direct topologies are networks in which each

routing element connects to a destination (or terminal) node whereas indirect topologies

have an intermediate routing elements that connect to other routing elements but no termi-

nal nodes. The Mesh, Ring, and Torus topology from Figure 2.7 are examples of direct

networks and Butterfly network in Figure 2.8 illustrates an indirect network topology.

27

2

1

3

4

5

Figure 2.9:
The Microarchitecture for a credit-based, virtual channel router found in a
Mesh Topology (note: 5 inputs and 5 outputs). The circled numbers represent
router pipeline stages.

2.4.2 Router Microarchitecture

Figure 2.9 illustrates the contents of typical NoC routing element. From a high-level,

each router accepts an input flit, implements a routing algorithm, and uses the crossbar

switch to send a flit to it’s the next output port along it’s routing path. Ideally, NoC routing

would minimize the hop count between source and destination node in an area and energy-

efficient manner. The example in Figure 2.9 also notes the 5 logical stages in NoC router:

Buffer Write (BW), Route Computation (RC), Virtual Channel Allocate (VA), Switch Al-

locate (ST), and Switch Traversal (ST).

In the BW stage, an incoming flit is written into buffer space reserved for that input.

That space can be in the form of a single queue for all incoming flits or multiple queues

known as virtual channels (VCs). Providing virtual channels per input port assists the

router in deadlock avoidance [26], Head-of-Line (HoL) blocking prevention [25], and in

28

providing dynamic routing algorithms [30].

Additionally, the BW stage provides the first level of flow-control to a NoC router. Flow

control mechanisms determine how much buffer space is reserved per router and when

messages can leave the router. The tracking of credits in Figure 2.9 supports flow control

by allowing upstream routers to process information (e.g., buffer space) from downstream

routers. Message-based (or circuit-switched) flow control is bufferless as the necessary

routing resources (links and router switch) are reserved before the message is sent from

the source nodes. Store-and-Forward flow control [25] reserves enough buffer space for a

packet in the router and will only send that packet to the next node (or router) once all the

flits for that packet are first stored in the current router. Virtual-Cut Through [56] optimizes

Store-and-Forward flow control by allowing the packet to start sending to the next routing

node as long as that next routing node has sufficient resources to buffer the complete packet.

Wormhole [27] flow control becomes more useful as packet-sizes become large and the

requirement of a reserving a full-packet at a time decreases network utilization. Wormhole

routing will transmit a flit to the next node as long as there is buffering for that single flit in

the downstream router.

The output port for an incoming packet is determined in the RC stage. Most of the

routing algorithms outlined in the Section 2.4.3 use a table-based routing scheme where

a packet can find it’s output port by using it’s destination node as a index. Table-based

schemes also are easily updated for use in dynamic (i.e., adaptive) routing algorithms.

Route computation can also be computed using a combinational circuit at each routing

node or calculating the complete route at the initial sending node (source routing).

The VA stage starts the arbitration process for the router by choosing a ready Virtual

Channel (VC) from each input port. Once a VC is selected, a flit from that input port’s VC

can vie for access to the crossbar switch.

Arbitration for the crossbar switch is done in the SA stage. Flits from each input port

request access to the switch and a grant signal is sent back to indicate that a particular input

29

port can now send it’s data through the crossbar.

The ST stage represents the cycles taken for a flit to pass through the crossbar and onto

the appropriate output port. Once a flit reaches it’s output port in the router it is then free to

be traverse the link to either it’s destination node or the next downstream router (note: this

process is also be referred to as the Link Traversal (LT) stage in some literature).

Router pipeline optimizations include eliminating the routing stage via lookahead rout-

ing [34], bypassing buffer writing if there are no flits ahead in the input VC, and processing

the VA and SA stages in parallel [91, 84, 85]. Since these optimizations can significantly

increase the complexity of the router, their implementation is often dependent on target

frequency of the network and whether the pipeline can satisfy critical path constraints. Ad-

ditionally, performance from speculative optimizations is limited by the amount of offered

traffic and contention at a particular router node.

2.4.3 Routing

Routing algorithms can broadly be classified as either deterministic, oblivious, or adap-

tive. Deterministic algorithms always traverse the same path from source to destination

node. A commonly used deterministic algorithm is a dimension-ordered routing (DOR)

algorithm. DOR algorithms are both simple to implement and deadlock free. For example,

the X-Y DOR algorithm will always travel in the x direction first and then the y dimension.

The Tilera Tile64 is an example of a system that uses DOR routing.

Oblivious algorithms select a path without regard to any dynamic network conditions

(e.g., congested or faulty routers). The implementation of these algorithms is often low-

complexity (no network information is needed) and can often implicitly load-balance the

network. A routing algorithm that randomly selects it’s path would be considered oblivious

as well as load-balancing. Valiant’s algorithm [116] randomly selects a intermediate node

between source and destination to achieve this effect. The average hop count between

any two nodes would be increased in such routing methods as the shortest path between

30

two nodes is usually disregarded in favor of the random destination node. Nesson [86]

optimizes Valiant’s by restrict the randomization to minimal paths only. This “Minimal

Valiant’s” sees the dual benefits of load-balanced traffic and reduced average hop-count.

Adaptive routing algorithms can choose a message’s path dynamically. For instance,

if the routing algorithm detects traffic along a particular path it can route around the con-

gested nodes [106, 24]. The downside of adaptive routing algorithms is the complexity of

implementation. Resources (e.g., logic and buffers) must be maintained to monitor net-

work conditions and the adaptive routing algorithm also must ensure deadlock-free opera-

tion. Typically, turn model routing [37, 21] is used to avoid this deadlock. These schemes

specify a ordering of legal turns along any message’s path that will prevent cyclic depen-

dency and in turn prevent deadlock. Alternatively, there has been work by Duato [31] that

allows for full-routing adaptivity but ensures deadlock free operation through flow-control

mechanisms.

2.5 Related Works

The paradigm shift toward many-core systems has led to a renewed interest in intercon-

nect research and a transition from traditional bus-based systems [66] to more sophisticated

topologies, including hierarchical bus models [11, 28], rings [1, 117, 40, 103], spidergon

networks [13], mesh network-on-chips [7, 120], flattened butterfly on-chip networks [61],

express cube on-chip networks [38] and crossbars [54, 3, 78, 127]. The ability to provide

uniform cache access latency makes crossbars an appealing option because predictable

cache access latencies allow for quality-of-service guarantees and ease of programming.

In addition, previous research has shown that crossbars can enable performance benefits

in coherence protocols [20] as well as the construction of cache hierarchies [72]. While

some studies have noted that link latency can increase to a point that it would be intolerable

compared to an NoC system [14, 117], this thesis proves through detailed floorplans and

spice analysis that this is not always the case.

31

The Swizzle-Switch Network proposed in this thesis optimizes the crossbar intercon-

nect allowing for high performance many-core systems with minimal power and area over-

heads readily scaling to support 64-core systems. This work demonstrates the benefits

of a crossbar-based architecture for systems that are required to support a wide range of

communication patterns.

Additionally, this thesis evaluates the future scalability of crossbar and bus architectures

in the presence of 3D-stacking technology. There have been many works that research 3D

technology for use in logic circuits [92], memory optimizations [113, 75] and full-system

architectures [57]. However, this work focuses on the use of 3D integration technology for

scalable, high-radix interconnects.

Related works have also leveraged the benefits of high-radix switches by using nar-

row channels to increase crossbar radix and build larger systems from these high-radix

building blocks [62] [102]. Additionally, there has been similar work analyzing crossbar

interconnects for large-scale CMPs. Some assume idealized crossbars with minimal laten-

cies to calculate best-case performance [96], others use crossbars to connect small clusters

of cores in a hierarchical system [118], and yet others study pipelined/buffered crossbar

systems [89, 64]. The Swizzle-Switch Network differs from these systems because it uses

a flat, non-buffered interconnect based on detailed floor-planning, SPICE simulation, and

measured silicon results of the Swizzle-Switch crossbar.

32

CHAPTER III

Swizzle-Switch: A High-Radix, Self-Arbitrating Crossbar

Chapters I and II motivate the performance-scaling needs of many-core systems as well

as discuss the inability of bus-based interconnects to support scaling from multi- to many-

core. This thesis makes the case that high-radix interconnects are needed to support future

many-core architectures and in Chapter IV designs a crossbar-connected 64-core system,

the Swizzle-Switch Network, to prove that such a interconnect is both feasible and advanta-

geous to traditional Network-On-Chips.

This chapter focuses on the Swizzle-Switch, an essential building block of the Swizzle-

Switch Network (SSN). The SSN is a high-radix crossbar system built using a number of

Swizzle-Switch components. Each Swizzle-Switch component employs several techniques

to reduce the area and power overhead of high-radix crossbars. After this chapter explains

the theory of operation for the Swizzle-Switch, it is then scaled to 32nm using measured

crossbar power and performance from 65nm and 45nm test chips. The research conducted

was done in collaboration with Sudhir Satpathy, Nathaniel Pinckney, Ronald Dreslinski,

and Reetuparna Das and portions of this chapter are published in [99, 98, 100, 97].

After detailing the Swizzle-Switch crossbar circuit, the key architectural challenges of

building a MOESI-coherence, 64-core chip multiprocessor using Swizzle-Switches are fur-

ther described in Chapter IV.

33

3.1 Overview

In 1
In 3
In 5
In 7
In 9

In N

In 2
In 4
In 6
In 8
In 10

In N-1

.
 .

.

O
ut

 1

O
ut

 2

O
ut

 3

O
ut

 4

O
ut

 5

O
ut

 6

O
ut

 M

!"#$%"&'()*
+()%"(,-

In 1
In 3
In 5
In 7
In 9

In N

In 2
In 4
In 6
In 8
In 10

In N-1
.
 .

.

O
ut

 1

O
ut

 3

O
ut

 5

O
ut

 2

O
ut

 4

O
ut

 6

O
ut

 M

O
ut

 M
-1

(a) (c)

4
4
4
4

.$%-
/-
.$%-
0-

.$%-
1-
.$%-
2-

(b)

(a)

In 1
In 3
In 5
In 7
In 9

In N

In 2
In 4
In 6
In 8
In 10

In N-1

.
 .

.

O
ut

 1

O
ut

 2

O
ut

 3

O
ut

 4

O
ut

 5

O
ut

 6

O
ut

 M

!"#$%"&'()*
+()%"(,-

In 1
In 3
In 5
In 7
In 9

In N

In 2
In 4
In 6
In 8
In 10

In N-1
.
 .

.

O
ut

 1

O
ut

 3

O
ut

 5

O
ut

 2

O
ut

 4

O
ut

 6

O
ut

 M

O
ut

 M
-1

(a) (c)

4
4
4
4

.$%-
/-
.$%-
0-

.$%-
1-
.$%-
2-

(b) (b)

In 1
In 3
In 5
In 7
In 9

In N

In 2
In 4
In 6
In 8
In 10

In N-1

.
 .

.

O
ut

 1

O
ut

 2

O
ut

 3

O
ut

 4

O
ut

 5

O
ut

 6

O
ut

 M

!"#$%"&'()*
+()%"(,-

In 1
In 3
In 5
In 7
In 9

In N

In 2
In 4
In 6
In 8
In 10

In N-1
.
 .

.

O
ut

 1

O
ut

 3

O
ut

 5

O
ut

 2

O
ut

 4

O
ut

 6

O
ut

 M

O
ut

 M
-1

(a) (c)

4
4
4
4

.$%-
/-
.$%-
0-

.$%-
1-
.$%-
2-

(b) (c)

Figure 3.1:
High level view of (a) bus interleaving required for mux-based crossbars; (b)
a traditional matrix style crossbar with arbiter/controller consuming space and
requiring additional input wires; (c) the proposed Swizzle-Switch design that
reuses input/output busses for programming/arbitration of the crossbar with the
arbitration logic placed under the dense metal interconnect.

Conventional mux-based crossbars suffer from a layout challenge at high bus widths

because of complex wire interleaving within the crossbar itself. Figure 3.1(a) shows how

four buses each with four bits must be interleaved to connect to a mux-based crossbar. To

avoid these interleaving structures, more recent crossbars use matrix-style structures.

Figure 3.1(b) shows a typical matrix-style crossbar, where the connection to each output

34

0 16 32 48 64

0.8

1.6

2.4

3.2
 SSN delay
 Conventional delay

 Dimension

D
el

ay
 (n

s)
0.0

0.8

1.6

2.4

3.2 SSN area
 Conventional area

A
re

a(
m

m
2)

Bus width = 128

Figure 3.2:
Scaling trends of the Swizzle-Switch Interconnect in 32nm vs. a conventional
crossbar (Simulated).

is made at a crosspoint inside the crossbar, the inputs can be in any order and no interleaving

of bits from buses is required. Conventionally, these matrix-style interconnects consist

of a crossbar that routes data and a separate arbiter that configures the crossbar. This

decoupled approach poses two hurdles to scalability: (1) the routing to and from the arbiter

becomes more challenging as the number of sources and destinations increase and (2) the

arbitration logic grows more complex as the radix of the crossbar increases. Consequently,

the conventional matrix-style crossbar suffers from poor scalability in delay, area and power

when scaled to large core counts.

To overcome these limitations, the proposed Swizzle-Switch crossbar can be used to

replace conventional matrix-style crossbars. Although the Swizzle-Switch has the same

asymptotic behavior as the matrix-style crossbar, O(n2), it uses circuit techniques to re-

duce the multiplicative constants of that behavior to readily scale to at least 64 cores. The

Swizzle-Switch combines the routing-dominated crossbar and logic-dominated arbiter by

embedding the arbitration logic within the router crosspoints. Furthermore, it reuses in-

put/output buses for arbitration, producing a compact design. Figure 3.1(c) shows a high-

level Swizzle-Switch design. To reduce power, the Swizzle-Switch uses SRAM-like technol-

35

ogy with low-swing output wires and a single-ended thyristor-based sense amplifier [99].

To understand the scalability of the Swizzle-Switch interconnect compared to a conventional

crossbar design, a series of layouts across a wide range of radices is generated. Figure 3.2

shows the results of this analysis. The Swizzle-Switch design scales far better to higher

radix designs, consuming 2.7× less area and performing 2.6× faster at a radix of 64.

3.2 Layout and Data-Transmission Phase

!
"#$%&'(
))(

"+,"+%-("+,"+%-(*"+,"+%-(

…

…

.&$/&(
012(

Output Channel 1 (Request Line In[1])

In
pu

t C
ha

nn
el

 0

(A
rb

itr
at

e
Li

ne
 O

ut
[0

])

R
eq

 L
in

e

Gnt Line

In[0]

In[1]

In[2]

In[63]
O

ut
[0

]

O
ut

[1
]

O
ut

[2
]

O
ut

[6
3]

Logic

Wiring

Ove
rla

pp
ed

 in

Phy
sic

al
Im

ple
men

tat
ion

*"+,"+%-(

…

Gnt

…

Gnt

…
Gnt

… … …

!"#$%&'&

!"#$%&(&

!"#$%&)*&

+,-.&/$0,12&

3$%#$%&'& 3$%#$%&(& 3$%#$%&)*&

64

64

64

64

64

64

4&

R
eq

: I
n[

0]
 Arb: Out[0]

4&

R
eq

: I
n[

0]
 Arb: Out[1]

4&

R
eq

: I
n[

0]
 Arb: Out[63]

4&

R
eq

: I
n[

1]
 Arb: Out[0]

4&

R
eq

: I
n[

1]
 Arb: Out[1]

4&

R
eq

: I
n[

1]
 Arb: Out[63]

4&
R

eq
: I

n[
63

] Arb: Out[0]

4&

R
eq

: I
n[

63
] Arb: Out[1]

4&

R
eq

: I
n[

63
] Arb: Out[63]

Figure 3.3:
Circuit implementation of the Swizzle-Switch Interconnect. Each output col-
umn in the interconnect uses the same request bit from each input bus. Each
input row uses the same bit from each output bus to perform arbitration. The
expanded view of the crosspoint shows the stored configuration and crosspoint
connections for each bit. It also shows the programming of priority bits using
the output bus. Because the crosspoint is for Input Row 0, the arbitration sense
amp is on output wire 0. Similarly, because it is Output column 1, the request
line is drawn from input wire 1.

As shown in Figure 3.3, the Swizzle-Switch’s input and output buses run perpendicular,

creating a matrix of crosspoints each containing a storage element to designate connectivity.

Along a column (output), at most one connection can be made, allowing each output to

connect to at most one input. Along a row (input), multiple connections can be made. This

allows a single input to multicast to a subset of outputs, or broadcast to all outputs.

Every output channel operates independently in one of two modes, data-transmission

36

or arbitration. When an output channel is not allocated, it enters arbitration mode until an

input is granted access to the output channel. Once the output channel has been granted,

it transitions to data-transmission mode. Data transmission can continue for several cycles

as the input channel transfers the complete payload. Once the input is finished transmitting

data, it releases the channel and allows the output channel to move back into arbitration

mode.

The circuit details of the data transmission phase are illustrated in Figure 3.3. During

data transmission, the output buses are pre-charged to ‘1’. The input channel then drives

the horizontal wires with the data. At crosspoints where the “Granted FF (Flip Flop)” stores

a ‘1’, the input bitlines are coupled to the pre-charged output bitlines with a pass gate. If

the input bitline is ‘0’, the output bitline will discharge and the sense amplifier at the read-

buffer will sense the data. The “Granted FF” uses a thyristor-based sense amplifier to set

the enabled latch, which only enables the discharge of the output bus for a short period of

time, reducing the voltage swing on the output wire. This reduced swing coupled with the

single-ended sense amplifier helps to increase the speed, reduce the crosstalk, and reduce

the power consumption of the Swizzle-Switch.

3.3 Arbitration Phase

Any output channel that is not in the data transmission phase is in arbitration phase. In

this phase, each output channel will grant a single input channel access to transmit data. The

input channel with highest priority is granted access. The Swizzle-Switch uses an inhibit-

based approach to accomplish this arbitration. When an output channel is requested, input

channels will inhibit other inputs with lower priority. Consequently, managing the priorities

of each input allows for the implementation of various priority schemes. There are two

novel aspects of the arbitration design: (1) The priority bits stored in each crosspoint are

used to determine the winner of the arbitration. (2) Each input re-purposes a particular

37

bit of horizontal input bus to assert a request signal and is assigned a particular bit of the

vertical output bus to use as an inhibit line.

3.3.1 Arbitration Mechanism

X0 X1 X2 X3 X4 Priority
In0 X 1 0 0 0 1

In1 0 X 0 0 0 0

In2 1 1 X 0 0 2

In3 1 1 1 X 1 4

In4 1 1 1 0 X 3

Inhibits (X)

In
pu

ts
 (I

n)

Figure 3.4:
Conceptual example of Swizzle-Switch Arbitration. A matrix represents one
complete output column. Each output column arbitrates and transmits data
independently of other output columns.

The conceptual view of inhibit-based arbitration of a single output column for a 5-input

Swizzle-Switch is shown in Figure 3.4. The arbitration for an output channel can repre-

sented by a matrix (M) of requests (In) and inhibits (X). A row of bits in M correspond to

the storage elements labelled “priority bits” in the expanded crosspoint view in Figure 3.3.

An input In
i

inhibits an input In
j

if and only if the entry M(i,j) is 1, indicating that In
i

has

priority over In
j

. In this example, if input In0 and In1 are both arbitrating for the output

channel then In0 would inhibit In1 (since M(0,1)=1) and win the arbitration between the

two requesting inputs. However, if In0 and In2 were in arbitration with each other, then

In2 would win the arbitration by inhibiting In0 (since M(2,0)=1). The priority for an input

is then the number of other inputs that it can inhibit.

Figures 3.5 and 3.6 illustrates the operation of the arbitration circuit. The same priority

scheme from Figure 3.4 is used. The vertical output Out K
i

bit-line is repurposed as inhibit

line X
i

during the arbitration phase. The input channel In3 has 1’s stored in all its priority

38

SA +
Grant

FF

SA +
Grant

FF

SA +
Grant

FF

Pre-Charge Module

SA +
Grant

FF

Discharge

No
Discharge

0

1

0

11

11

11 1

1 0 0 0

0 0 0

0 0

1 1

SA +
Grant

FF

OutK

59

(Request) In0[K]

O
ut

K
 [0

]

O
ut

K
 [1

]

O
ut

K
 [2

]

O
ut

K
 [3

]

O
ut

K
 [4

]

O
ut

K
 [5

:6
3]

Priority

1

0

2

4

30

GNT 0

GNT 1

GNT 2

GNT 3

GNT 4

X
0

X
1

X
2

X
3

X
4

}
}

Legend

64
In4

In3

In2

In1

In0

64

64

64

64

(Request) In1[K]

(Request) In2[K]

(Request) In3[K]

(Request) In4[K]

Figure 3.5:
A 5x3 crossbar showing arbitration circuits. Each output column arbitrates and
transmits independently.

bits M3,j

and hence has the highest priority. The input channel In2 has priority over only

inputs In0 and In1 (because only these priority bits are set). At the start of arbitration, all

inhibit lines are precharged. Then, for each competing input channel, if the priority bit (i.e.

M(
i,j

)) is set, the corresponding inhibit line (i.e. X
j

) is discharged via a pass transistor.

Each input channel In
i

monitors inhibit line X
i

to determine if it won the arbitration. If

the inhibit line is discharged, a higher-priority channel must have requested the output and

consequently In
i

loses the arbitration. Conversely, if the inhibit line remains pre-charged,

then no higher-priority channel requested the output. The arbitration result is latched in the

39

Out 1
Priorities

Out 0
Priorities

Out 2
Priorities

GNT 0

GNT 1

GNT 2

GNT 3

GNT 4

Out0 [0:63] Out1 [0:63] Out2 [0:63]

In0 [0] In0 [1] In0 [2]

In1 [0] In1 [1] In1 [2]

In2 [0] In2 [1] In2 [2]

In3 [0] In3 [1] In3 [2]

In4 [0] In4 [1] In4 [2]

In
4 [

0:
63

]
In

3 [
0:

63
]

In
2 [

0:
63

]
In

1 [
0:

63
]

In
0 [

0:
63

]

0

1

2

4

3

1

0

2

3

4

1

0

2

4

3

Figure 3.6:
Detailed blowup of arbitration for the Kth output column of a 5-input Swizzle-
Switch interconnect.

“GrantedFF” to set up the connection for data transmission.

Note that though these examples illustrate unicast requests, each input can request mul-

tiple output columns. Together, the bit-lines of an input port constitute a multi-hot signal

to request a subset of output channels. The priority bits stored in the different crosspoints

are used to determine the winner of the arbitration. By updating the priority every time the

channel is granted, fair arbitration can be achieved.

3.3.2 Least Recently Granted

Fair scheduling algorithms can be implemented in the Swizzle-Switch by resetting and

setting the appropriate inhibit bits in the arbitration matrix. Figure 3.4(b) shows how least

recently granted (LRG) priority can be achieved using the Swizzle-Switch’s inhibit-based

priority scheme. In this example, inputs 0, 2, and 4 are all arbitrating for the output channel.

40

X0 X1 X2 X3 X4 Priority
In0 X 1 0 0 0 1

In1 0 X 0 0 0 0

In2 1 1 X 0 0 2

In3 1 1 1 X 1 4

In4 1 1 1 0 X 3 Reset

Se
t

X0 X1 X2 X3 X4 Priority
In0 X 1 0 0 1 2

In1 0 X 0 0 1 1

In2 1 1 X 0 1 3

In3 1 1 1 X 1 4

In4 0 0 0 0 X 0

Figure 3.7: Least-Recently-Granted priority update of a Swizzle-Switch output.

Input 4 wins the arbitration since it has the highest priority amongst the arbitrating requests.

To achieve an LRG update, all bits in the row of In4 are reset to enforce that input 4 can

not inhibit any other request in the matrix. Next, all bits in the inhibit column of X4 are set.

This enforces that all requests can inhibit input 4 during the next arbitration cycle. Thus,

the combination of set and reset operations achieves LRG by giving least priority to input

In4 and incrementing the priority of all other inputs that previously had lower priority then

In4 by 1. LRG arbitration helps to ensure starvation-free operation.

Figure 3.8:
(a) 64-Core Swizzle-Switch Network System (b) Maximum Request Latency for
Random and Round-Robin Arbitration Policies (Normalized to LRG).

41

The impact of LRG arbitration is further seen by comparing the algorithm to Random

and Round-Robin schemes. Figure 3.8 charts the maximum latency of the arbitration al-

gorithms. Each algorithm is run using the SPLASH 2 benchmarks [122] on a 64-core

Swizzle-Switch Network system (detailed in Chapter IV). The results show that LRG arbi-

tration reduces the worst-case request access latency by 1.83× and 2.03× on average over

round robin and random arbitration schemes, respectively.

3.3.3 Most Recently Granted (MRG)

X
0

X
1

X
2

X
3

X
4

X
5

P

In
0

X 0 0 1 0 0 1

In
1

1 X 1 1 0 0 3

In
2

1 0 X 1 0 0 2

In
3

0 0 0 X 0 0 0

In
4

1 1 1 1 X 1 5

In
5

1 1 1 1 0 X 4

X
0

X
1

X
2

X
3

X
4

X
5

P

In
0

X 0 0 1 0 0 1

In
1

1 X 1 1 1 1 5

In
2

1 0 X 1 0 0 2

In
3

0 0 0 X 0 0 0

In
4

1 0 1 1 X 1 4

In
5

1 0 1 1 0 X 3

Set

R
e
s
e
t

Figure 3.9: Most Recently Granted priority update of a Swizzle-Switch output.

Applications that desire greedy arbitration algorithms (e.g. prioritizing bursty traffic

patterns) can use the Swizzle-Switch’s Most-Recently Granted (MRG) priority update. Fig-

ure 3.9 provides an example of MRG arbitration for an output on the Swizzle-Switch with

6-inputs. MRG based update is accomplished by setting all the priority bits along the In1’s

row and resetting all the priority bits along the X1 inhibit column. This set and reset oper-

ation provides In1 with the highest priority and downgrades all priorities that were greater

then In1 by one.

3.3.4 Selective LRG and MRG

Selective LRG and MRG arbitration refers to the ability of the Swizzle-Switch to update

priority on a specified subset of outputs. This type of arbitration can be useful in cases

42

X
0

X
1

X
2

X
3

X
4

X
5

P

In
0

X 0 0 1 0 0 1

In
1

1 X 1 1 0 0 3

In
2

1 0 X 1 0 0 2

In
3

0 0 0 X 0 0 0

In
4

1 1 1 1 X 1 5

In
5

1 1 1 1 0 X 4

X
0

X
1

X
2

X
3

X
4

X
5

P

In
0

X 0 0 1 0 1 2

In
1

1 X 1 1 0 1 4

In
2

1 0 X 1 0 1 3

In
3

0 0 0 X 0 0 0

In
4

1 1 1 1 X 1 5

In
5

0 0 0 1 0 X 1

S
e
t

Reset

Freeze

F
r
e
e
z
e

(a)

X
0

X
1

X
2

X
3

X
4

X
5

P

In
0

X 0 0 1 0 0 1

In
1

1 X 1 1 0 0 3

In
2

1 0 X 1 0 0 2

In
3

0 0 0 X 0 0 0

In
4

1 1 1 1 X 1 5

In
5

1 1 1 1 0 X 4

X
0

X
1

X
2

X
3

X
4

X
5

P

In
0

X 1 1 1 0 1 4

In
1

0 X 1 1 0 0 2

In
2

0 0 X 1 0 0 1

In
3

0 0 0 X 0 0 0

In
4

1 1 1 1 X 1 5

In
5

0 1 1 1 0 X 3

Freeze

F
r
e
e
z
e

R
e
s
e
t

Set

(b)

Figure 3.10: Selective LRG (a) and MRG (b) priority update of a Swizzle-Switch output.

where a subset of components must maintain a constant priority.

In the standard LRG scheme, the input that used the output most recently is downgraded

to have the least priority while all inputs with lower priorities get upgraded one priority

level. In the example shown in Figure 3.10(a), In5 has a priority level of 4 and has used the

channel most recently. However, the Selective LRG (S-LRG) arbitration in this example

does not intend to downgrade In5 to priority level 0, but to an intermediate priority such

as 1. To accomplish this, S-LRG must identify certain rows and columns that need to be

frozen. In this case, all columns corresponding to priority bits that are high in In3 are

frozen as shown in Figure 3.10(a). Simultaneously, all rows corresponding to priority bits

that are low in the X3 (which is the inhibit line for In3) are also frozen. Lastly, the all the

priority bits in the In5 that aren’t frozen are reset and those in the column for X5 that aren’t

frozen are now set. These operations fulfill the S-LRG requirements. The update process

for Selective MRG (S-MRG) is similar except that the set and reset operations for the most

43

recently granted input is updated the same way that is done in Section 3.3.3. Figure 3.10(b)

shows an example of a S-MRG being performed where In0 has just received access to the

output but the priority for In4 is maintained throughout the update process.

3.3.5 Priority Swap and Reversal

X
0

X
1

X
2

X
3

X
4

X
5

P

In
0

X 0 0 1 0 0 1

In
1

1 X 1 1 0 0 3

In
2

1 0 X 1 0 0 2

In
3

0 0 0 X 0 0 0

In
4

1 1 1 1 X 1 5

In
5

1 1 1 1 0 X 4

X
0

X
1

X
2

X
3

X
4

X
5

P

In
0

X 0 1 0 0 0 1

In
1

1 X 1 1 0 0 3

In
2

1 0 X 0 0 0 2

In
3

0 0 1 X 0 0 0

In
4

1 1 1 1 X 1 5

In
5

1 1 1 1 0 X 4

Swap

Swap

(a)

X0 X1 X2 X3 X4 X5 P

In0 X 0 0 1 0 0 1

In1 1 X 1 1 0 0 3

In2 1 0 X 1 0 0 2

In3 0 0 0 X 0 0 0

In4 1 1 1 1 X 1 5

In5 1 1 1 1 0 X 4

X0 X1 X2 X3 X4 X5 P

In0 X 1 1 0 1 1 4

In1 0 X 0 0 1 1 2

In2 0 1 X 0 1 1 3

In3 1 1 1 X 1 1 5

In4 0 0 0 0 X 0 0

In5 0 0 0 0 1 X 1

Flip

(b)

Figure 3.11: Priority Swap (a) and Reversal (b) of a Swizzle-Switch output.

Support for priority swap and priority reversal algorithms further allows the Swizzle-

Switch to enable arbitrarily complex schemes amongst the its connected inputs. The prior-

ities of 2 inputs can be swapped (without affecting priorities of other inputs) by swapping

the priority bits in their corresponding rows and those in the columns corresponding to their

priority lines as shown in Figure 3.11(a). In this example the priorities for In3 and In4 are

swapped. In the physical realization of this technique, already existing word-lines will be

used to swap priority bits between columns and bit-lines to swap priority bits between rows.

In a single cycle, any two priorities can be swapped. The Swizzle-Switch’s unique priority

encoding scheme also allows reversing the priority of all inputs instantaneously by flipping

44

all the priority bits as shown in Figure 3.11(b). Rather than flipping all the bits, a more

energy-efficient physical implementation might use a multiplexer to invert the priority. An

added benefit would also be the realization of this functionality without spending a clock

cycle.

3.3.6 Round Robin

More traditional arbitration algorithms such as Round Robin (RR) can also be easily

implemented in a Swizzle-Switch. Since a RR algorithm simply steps through the list of

inputs and rotates priority, it can be abstracted onto either the LRG or MRG arbitration

algorithms. Once the highest priority is established within the Swizzle-Switch, a RR update

can be iteratively applying the LRG update to the highest priority on every arbitration

cycle. Alternatively, a MRG update can be used on the lowest priority of arbitration cycle

and achieve the same RR arbitration effect.

3.3.7 QoS Arbitration

In a 64× 64 Swizzle-Switch it might take a message 64 cycles to win arbitration in the

worst case when all inputs collide. To assist critical messages in reaching their destination

early, the Swizzle-Switch can also feature a 4- level message-based QoS arbitration tech-

nique that allows only input buses with the highest message priority to arbitrate for the

channel as shown in 3.12. A 2-bit message priority is decoded into a 4-bit thermometer

code at the crosspoint, which is used to selectively discharge priority bit-lines comprising

the QoS priority bus. A multiplexer samples one of those priority bit-lines using its own

message priority and the input bus progresses to the LRG arbitration cycle if the monitored

priority bit is not discharged. Using separate wires for QoS arbitration incurs 3% area

overhead. However, the additional QoS arbitration cycle can be overlapped with the prior

routing operation for the output bus, avoiding a latency penalty.

45

Figure 3.12: A Quality-of-Service Circuit for the Swizzle-Switch.

3.4 Silicon Validation

Previous work has shown the feasibility of the Swizzle-Switch building block with a

fabricated and tested silicon prototype [100]. The prototype chip was manufactured in a

commercial 45nm technology and consisted of a 64×64 Swizzle interconnect with 128-bit

busses. The total size of the Swizzle interconnect was 4mm2. The interconnect was driven

by synthetic traffic generators (including support for broadcast and multicast traffic) with

a built-in test circuit that verified correct transmission. Figures 3.13 and 3.14 shows the

die photo of the silicon test chip. Measurements of the chip show that at full voltage the

Swizzle interconnect operates around 559 MHz and provides 4.47 Tbps of bandwidth. The

total power of the interconnect was 1.32W at full voltage under a 20% switching factor.

46

Figure 3.13: Die Photo of the 45nm silicon test chip.

0.6 0.7 0.8 0.9 1.0 1.1
0

200

400

600

 Supply Voltage (V)

 F
re

qu
en

cy
 (M

H
z)

Technology : 45nm
Temperature : 25°C

0

2

4

6

8Fabric size : 64´ 64 (128 bit channel)

559MHz, 4.47Tbps @ 1.1V
511MHz, 4.09Tbps @ 1.0V
Nominal efficiency: 3.4Tb/s/W
Peak efficiency: 7.4Tb/s/W @0.6V E

ff
ic

ie
nc

y
(T

b/
s/

W
)

Figure 3.14:
Measured Frequency and Bandwidth Efficiency of the silicon test chip
from 3.13.

3.5 Enhanced 32nm Design and Analysis

SPICE modeling is used to scale the design of the Swizzle-Switch to 32nm. All results

are validated against the 45nm test chip. In addition, the crossbar is further optimized for

higher frequencies at high radices. The schematic-based SPICE crossbar model includes

word-/bit-line drivers, parasitic loads, and worst-case coupling capacitance to neighboring

wires. For a specific radix and bus width, driver sizes are optimized to maximize crossbar

frequency and utilize the additional metallization layers to reduce area.

47

!"!!!!
!2,000!!
!4,000!!
!6,000!!
!8,000!!
!10,000!!
!12,000!!
!14,000!!
!16,000!!

!"!!!!
!750!!

!1,500!!
!2,250!!
!3,000!!
!3,750!!
!4,500!!
!5,250!!
!6,000!!

0! 16! 32! 48! 64! 80! 96! 112! 128! 144!

To
ta
l!B
an
dw

id
th
!(G

bp
s)
!

!F
re
qu

en
cy
!(M

H
z)
!

Crossbar!Radix!

Frequeny!"!Non"Repeated!
Frequency!"!Repeated!
Bandwidth!"!Non"Repeated!
Bandwidth!"!Repeated!

Figure 3.15:
Bandwidth and Speed of a Swizzle-Switch with 128-bit busses in 32nm. Both
repeated and non-repeated versions are presented. When using repeaters the
Swizzle-Switch scales to designs as large as 128x128x128 resulting in 15 Tbps
of total bandwidth.

This study then analyzes two crossbar designs: one with single-segment word-/bit-lines

and another with optimally-spaced repeaters. Metal wire delay scales quadratically with

distance while repeated wire delay scales linearly. Thus, for high crossbar radices, adding

repeaters drastically reduces word- and bit-line delay at the cost of increased power.

Figure 3.15 shows total crossbar bandwidth and maximum frequency as a function of

radix, with and without repeaters, for a design with 128-bit busses. A crossbar of radix

64×64×128 supports a bandwidth of 13 Tbps and can operate at greater than 1.5GHz with

an area of about 1mm2.

3.6 Conclusions

Because of wiring and power challenges in conventional crossbars, high-radix cross-

bar systems are often seen as infeasible designs. However, the architecture of many-core

systems is greatly simplified as the radix of the switches in the interconnect increase.

This chapter details the design of a feasible, high-radix crossbar called the Swizzle-

Switch. The Swizzle-Switch optimizes the arbitration overheads in traditional crossbars by

integrating arbitration within switch crosspoints while simultaneously enabling the imple-

mentation of fair and prioritized algorithms. It is shown that a Swizzle-Switch implementing

48

LRG arbitration reduces the worst-case request latency by 1.83× and 2.03× on average over

Round-Robin and Random arbitration policies, respectively.

The Swizzle-Switch design is also scaled to 32nm and shown to enable attractive cross-

bar design points such as a radix-64 crossbar operating at a frequency of 1.5GHz. The

following chapter capitalizes on the benefits of the Swizzle-Switch to build a 64-core many-

core system called the Swizzle-Switch Network.

49

CHAPTER IV

Swizzle-Switch Networks for Many-Core Systems

Using the optimized crossbar architecture from Chapter III and insights derived from

coherence traffic classification, this chapter presents a 64-core crossbar-based, many-core

architecture called the Swizzle-Switch Network (SSN). The SSN represents a system previ-

ously thought to be impractical [66, 96] due to power and wiring constraints.

The SSN is initially compared against a 64-core Mesh topology in order to evaluate the

benefits of the SSN against a conventional Network-On-Chip (NoC) architecture. Results

show that a many-core SSN can provide significant performance, quality-of-service, and

power advantages over a Mesh network of up to 64 cores.

To further motivate the utilization of high-radix switches in many-core systems, this

chapter also presents the design of a Flattened Butterfly (FBFly) interconnect optimized

by the use of Swizzle-Switches inside it’s network routers. Flattened Butterfly many-core

systems also provide performance and quality-of-services advantages over the Mesh but

suffer a power disadvantage relative to the SSN architecture.

The insights gained from this chapter suggest that many-core chip architects should

consider flat, crossbar systems as feasible, high-performance designs for systems up to 64

cores and that high-radix topologies such as the Flattened Butterfly should be considered as

scaling trends push many-core systems past the 64 core benchmark. This chapter’s research

is done in collaboration with Ronald Dreslinski, Nathaniel Pinckney and Reetuparna Das.

50

	���
�

�����

	���
�

�����

	���
�

�����

	���
��

���
��

	�������

���
������

���
������

���
������

���
�������

��������

1.38 m
m

Memory Controller

512 kB L2 cache

Swizzle
Switch x 3

32 kB
Dcache

32 kB
Icache

Arm
Cortex

A5

Memory Controller

Memory Controller Memory Controller

M
em

ory C
ontroller

M
em

ory C
ontroller

M
em

ory C
ontroller

M
em

ory C
ontroller

0.86 mm

0.86 m
m

3.27 mm

14.3 mm

Total Area = 204 mm2

Core + L1 Area = .74 mm2

L2 Area = 4.50 mm214.3 m
m

NE

EN

ES
SESW

WS

WN
NW

(a) (b)

Figure 4.1:
(a) High-level architecture diagram (a) of the 64-core Swizzle-Switch Network
(SSN) built with Swizzle-Switch crossbars. (b) The floor-plan of the (SSN) sys-
tem and estimated dimensions. Octants are colored to aid the reader in seeing
how wires leave the crossbar. The total chip area is 204mm2, each core/L1
tile consumes 0.74mm2, the L2 tiles consume 4.5mm2 and the Swizzle-Switch
consumes 6.65mm2.

4.1 Interconnect Design Components

The three interconnect designs in this chapter, the Swizzle-Switch Network (SSN), Flat-

tened Butterfly and Mesh, are all targeted in an industrial 32nm process. To provide the

most realistic comparison possible, the interconnect topologies are floor planned to target

a 200mm2 chip. Results from floor planning are then used to drive the simulation models

describe in section 4.5.

Cores are modeled after the published characteristics of an ARM Cortex-A5 [4]. Core

size, speed, and power are then scaled to 32nm. The 32nm A5 achieves a frequency of

1.5GHz and occupies 0.18mm2.

Cache area, latencies, and power are calculated using Artisan SRAM compiler esti-

mates and SPICE simulations. Each 64-core system uses eight interleaved memory con-

51

trollers. Additionally, L2 address ranges are assigned to the nearest memory controller in

order to minimize interconnect congestion.

The target 32nm process provides a 9-layer metallization stack to utilize in each floor

plan. In this metallization stack there are four 1X, two 2X, two 4X and one 8X metal layers.

The 1X metal layers and one of the 2X metal layers are reserved for local routing (within

the core/cache). The 8X layer is reserved for power and clock routing. That leaves one

2X and two 4X layers for global routing. The interconnect for the NoC and SSN uses

only parts of one 2X and parts of one 4X layer. Wire delays were determined using wire

models from the design kit using SPICE analysis including repeaters, taking into account

cross-coupling capacitance of neighboring wires and metal layers. For interconnect wires,

four options are considered that trade off area for speed. These options include a 4X or

2X metal layer with either single or double spacing. Repeater insertion is adjusted so that

repeaters are placed in the gaps between cores. The repeater placement was considered

for all topologies to accurately estimate timing. The resulting wire delays ranged from

55-350ps/mm depending on repeater placement, wire spacing, and metal layer.

4.2 Swizzle Switch Network

The Swizzle-Switch Network (SSN) combines novel circuit and architectural insights to

challenge the conventional scaling limitations of crossbars. Crossbar-based systems are

desirable in many-core chips because they can ease the burden of managing highly variable

memory access latencies. Thus, an SSN-based system can take advantage of new crossbar

technology to provide uniform memory access at the many-core level.

Figure 4.1(a) shows one possible configuration of a SSN system. The SSN connects 64

cores, each with their own private L1 instruction and data caches, to 32 banks of L2 cache.

The L2 cache banks are then connected to DRAM. Figure 4.1(b) shows one potential layout

of such a system. Each tile comprises an ARM Cortex A5 and 32kB L1 I/D caches. The

L2 cache is banked in 32 tiles of 512kB each and placed around the perimeter of the cores.

52

1 1

1

University of Michigan 1

Coherence Matrix

L1 L2

L1

Shared Data
Data Forwarding

Requests
Writebacks

L2

Responses
Invalidations

S
ou

rc
e

Destination

2.58%mm

L1s$%>$L2s
64x32x128
Swizzle$
Switch
.53mm²

L1s$%>$L1S
64x64x128
Swizzle
Switch
1.1mm²

L2s$%>$L1s
32x64x128

Swizzle$Switch
.53mm²

L1$Mux

EN%L1%in%

EN%L2%out%

EN%L1%out

EN%L2%in
ES%L2%in

ES%L1%in
ES%L1%out
ES%L2%out

SE%L2%in
SE%L1%out

SW%L1%out

SW%l2%in

SE%L1%in
SE%L2%out

SW%L2%out

SW%L1%In

WS%L1%out

WS%L2%in

WN%L2%in

WS%L2%out

WS%L1%in

WN%L1%in

WN%L2%out

WN%L1%out

8 5 3 8 5 8 8 3

58838538

8

5

3

5

8

8

3

8

NW
%L1
%In

NW
%L2
%ou

t

NE
%L2
%ou

t

NE
%L1
%in

NW
%L2
%in

NW
%L1
%ou

t

NE
%L1
%ou

t

NE
%L2
%in

2.58%m
m

8

5
3

8

5

8

8
3

(a) (b)

Figure 4.2:
(a) Classification of communication messages required for coherence (b)
Wiring diagram for combining three Swizzle-Switches into a 64×64×128bit
crossbar. The wires are labeled by the quadrant to which they connect. Each
wire in the diagram represents either 3, 5, or 8 busses, where each bus is 128-
bits. The overall area of the Crossbar is 6.65mm2(⇠ 4% of the 64 tile system).

Memory controllers are placed in the periphery and are directly connected to the L2s. The

colored octants indicate the association of L2 and core tiles to the centralized switch.

4.2.1 Coherence Protocol

A novel design aspect of the SSN is it’s use of three Swizzle-Switches to enable a

directory-based, MOESI coherence protocol. MOESI coherence requires an interconnect

fabric to facilitate communication among the private (L1s) and shared (L2s) caches in the

system. Figure 4.2 (a) classifies coherence messages into four types: L1!L1, L1!L2,

L2!L1 and L2!L2. Note that MOESI protocols require no L2!L2 communication.

Consequently, the SSN is optimized to provide only the three required communication

paths, each via dedicated Swizzle-Switches (omitting a crossbar for L2!L2 communica-

tion). This optimization reduces SSN power requirements by 17% relative to a switch with

53

all four communication paths.

In addition, the multicast ability of the SSN facilitates further traffic and power opti-

mizations for invalidation messages. Within the SSN, the invalidations can be multicast

to several L1 caches simultaneously (i.e., driving the SSN input bus only once). In con-

trast, NoC designs either transmit individual invalidation messages per destination or must

employ sophisticated control policies to enable broadcast/multicast [53].

4.2.2 Timing and Layout Evaluation

Figure 4.2 (b) illustrates the layout of the three Swizzle-Switches needed to build a

complete SSN crossbar: two for the bi-directional interconnect from L1s!L2s and one

for communication of shared data from L1s!L1s. Each depicted wire represents several

128-bit buses. Busses are grouped by the chip octant to which they are routed, as identi-

fied in Figure 4.1. The diagram reflects the relative locations of input/output busses and

corresponds to the floorplan in Figure 4.1.

To calculate the area of the SSN itself, several measurements are needed. The area of

each Swizzle-Switch is determined from detailed layouts: the two smaller Swizzle-Switches

occupy 0.53mm2 while the larger requires 1.1mm2. Routing over the Swizzle-Switch is not

possible (as it occupies all global-routing metal layers), so all busses that pass around the

Swizzle-Switches consume area.

Overall, including these route-around overheads, the Swizzle-Switch network is 2.58mm×

2.58mm, for a total area of 6.65mm2 (⇠4% of total chip area). The SSN layout also in-

cludes some empty space at the periphery due to symmetry/routing constraints, however,

this empty space could be used for other circuitry. Considering this additional overhead,

the total area of the SSN-based chip is 204mm2, a 7% increase in area over the Mesh and

Flattened Butterfly topologies.

Interconnect signals take one cycle to reach the crossbar, one cycle to arbitrate, one

cycle to pass data through the crossbar, and one cycle to reach the destination. Global

54

wires are routed in a mixture of 2X and 4X metal depending on the distance routed. As a

result, the longest wires operate at 1.7GHz. At the most routing dense point in the layout,

just outside the Swizzle-Switch, the 4X metal layer utilization due to SSN routing is 60%

of routing tracks and the 2X metal layer utilization is 40% of routing tracks. In other parts

of the chip, routing density due to SSN routing drops substantially and is not a significant

factor. From Chapter III Figure 3.15, the 64x64x128 repeated crossbar configuration was

selected to maximize bandwidth while achieving a 1.5 GHz clock frequency to match the

cores.

4.2.3 Reliability

The SSN’s monotholic design can potentially make it susceptible to reliability issues

if one or more of the input/output ports experiences a fault. Modifications to enhance the

robustness of an SSN are available because of it’s SRAM-like layout and it’s small total

area. Error correction techniques (e.g., ECC) that are used in standard SRAM systems can

also be used to enhance SSN reliability. Additionally, redundant output ports could be used

to aid fault recovery mechanisms.

4.3 Mesh Topology

The SSN is contrasted against a Mesh topology, which has been used in a number of

recent many-core designs [120, 45]. A Mesh is amenable to a tiled design, is easy to lay out,

and does not require any long, cross-chip wires. Moreover, by distributing L2 cache slices

in each core tile, Meshes can facilitate L2 cache designs that provide low latency from

the core to its associated L2 slice. Despite these advantages, Mesh interconnects do not

always scale well because they are vulnerable to issues such as router congestion, network

power, and non-uniform (and high worst-case) access latencies to remote L2 banks. In

addition, bursty and hotspot traffic patterns that often arise in real applications can lead to

55

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile Tile

TileTile

Tile Tile

TileTile

Tile Tile

TileTile

Tile Tile

TileTile

Tile Tile

TileTile

Tile Tile

TileTile

Tile Tile

TileTile

Tile Tile

TileTile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

32 kB
ICache

ARM
Cortex

A5

32 kB
DCache

256 kB
L2 Cache Bank

(a) (b)

Tile

Tile Tile Tile
Router Router Router Router

Router Router Router Router

Router Router Router Router

Router Router Router Router

13.8 mm

13.8 m
m

1.73 mm

1.73 m
m

Memory Controller Memory Controller

Memory Controller Memory Controller

M
em

ory C
ontroller

M
em

ory C
ontroller

M
em

ory C
ontroller

M
em

ory C
ontroller

13.8 m
m

M
em

ory C
ontroller

M
em

ory C
ontroller

Memory Controller Memory Controller

M
em

ory C
ontroller

M
em

ory C
ontroller

Memory Controller Memory Controller

13.8 mm

Area = 3.0 mm2

Area = 190 mm2 Area = 190 mm2

Figure 4.3:
Floor-plan of the Mesh and Flattened Butterfly systems with estimated dimen-
sions. The total size of both chips is 190mm2.

high queuing delays even if overall interconnect utilization is relatively low.

Figure 4.3 (a) shows the 64-core Mesh layout. Each tile comprises one ARM Cortex-

A5, private 32kB instruction and data caches, a 256kB slice of the shared L2 cache, and

a router that links the tile to its four nearest neighbors. Tiles at the periphery connect to

the memory controllers. The Mesh topology implements 4-stage pipelined routers, using

lookahead routing to eliminate the need for a route computation stage [34]. To prevent

deadlock, the Mesh utilizes XY-dimension ordered routing and implements 3 virtual net-

works (request, response, writeback) over 1 physical network. Finally, three virtual chan-

nels per virtual network are allocated to reduce network congestion (e.g., due to head-of-

line blocking).

The area of each tile is 3mm2, resulting in a total chip area of 190mm2 (excluding

memory controllers). Router latency is dominated by virtual channel allocation and arbi-

tration time, resulting in a peak frequency of ⇠3.5 GHz. The interconnect links (channels)

are 16 bytes wide and 1.73mm in length. When routed in 2X double-space metal they can

achieve a speed of 3.1GHz. As such, links are operated in the NoC at 3GHz to match an

even multiple of the core frequency.

56

4.4 Flattened Butterfly

As a second baseline for comparison, this work designs a flattened butterfly network

(FBFly) [61]. Recent work has demonstrated that this topology can outperform meshes due

to decreased hop count between any tile pair. For example, a 4-ary, 3-flat FBFly can support

64 cores while bounding the router hop count to 2 (as opposed to a 64-core Mesh average

hop count of 8). The FBFly requires considerably higher radix routers than the Mesh.

Large high-radix routers are typically slow, however, by using a Swizzle-Switch as the

crossbar element within the router, the design of a FBFly can operate at a 40% higher

frequency compared to a conventional crossbar-based router design. Thus, the Swizzle-

Switch demonstrates its utility as a building block for high-radix network design.

Figure 4.3 (b) shows the proposed layout of the Flattened Butterfly topology. Tiles in

the FBFly are identical to those in the Mesh. In this layout, each of the 16 routers are

connected to 4 tiles creating a 64 node network. The radix for each router in the FBFly can

be either 14 or 16 because there are 3 links for routers in the same row, 3 links for routers

in the same column, 4 links to the local L1s, 4 links to the local L2s, and up to 2 links to

memory controllers.

Although adaptive routing can take advantage of the FBFly’s path diversity, implement-

ing such a technique typically includes a signficant amount of router complexity. This work

simplifies FBFly routing by always routing to the XY-dimension ordered path that requires

2-hops from source to destination.

The links to nearest-neighbor routers are 3.46mm and are routed in the 4X double

spaced metal. These nearest-neighbor links can operate faster than 3GHz. For links to

non–nearest-neighbor routers, the wire lengths are either 6.92mm or 10.38mm. These

links are both routed in 4x double spaced metal, resulting in up to 620ns of delay. To allow

the network to operate at 3GHz, these links are pipelined in 2 stages.

57

4.5 Simulation Methodology

Table 4.1: gem5 64-Core Simulation Parameters
Feature Mesh & Flattened Butterfly Swizzle-Switch Network

Processors 64 in-order cores, 1 IPC, 1.5 GHz
L1 Caches 32kB I/D Caches, 4-way associative, 64-byte line size, 1 cycle latency
L2 Caches Shared L2, 16 MB, 64-way banked, 8-way asso-

ciative, 64-byte line size, 10 cycle latency
Shared L2, 16MB, 32-way banked, 16-way asso-
ciative, 64-byte line size, 11 cycle latency

Interconnect 3.0 GHz, 128-bit, 4-stage Routers 1.5 GHz, 64x32x128bit Swizzle Switch Network
Main Memory 4096MB, 50 cycle latency

Table 4.2: SPLASH2 Benchmarks tested and input sets
Benchmark Input Set Bench. Input Set

Cholesky tk15.O Ocean* 258x258 ocean
FFT 64K points Radix 1M ints, rad. 1024

FMM 16K particles Raytrace teapot

Lu* 512x512 matrix, Barnes head
16x16 blocks Water* 512 molecules

Each interconnect design in the previous sections are evaluated using detailed timing

simulation with the gem5 full-system simulator [9].To simulate the many-core systems,

gem5 is extended to model the three interconnects and a MOESI directory-based coherence

protocol.

Simulation parameters are configured using timing characteristics derived from the

SPICE and layout analysis discussed in the previous sections. Table 5.3 details the simu-

lation parameters. To account for non-determinism in threaded workloads, the simulations

randomly perturb memory access latencies and are run multiple times to arrive at stable

runtimes (as described by Alameldeen et al. [2]).

Benchmarks from the SPLASH2 [122] suite are used fore evaluation. The SPLASH2

benchmarks are of particular interest for the study of on-chip interconnects as they have

diverse sharing and data migration patterns between cores as shown by Barrow-Williams

et al. [8].

4.6 Performance Analysis

The Swizzle-Switch Network (SSN), Mesh, and Flattened Butterfly (FBFly) systems are

evaluated according to four metrics: overall runtime performance, average miss latency,

58

Table 4.3: Cache Miss Rates and L1 Miss Latency (in CPU cycles)
L1 Miss Latency to an On-Chip† Location Speedup††

Benchmark L1 MPKI L2 MPKI Mesh FBFly SSN over Mesh
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. FBFly SSN

Barnes 6.2 0.5 53.6 16.1 32.0 5.5 27.1 2.2 1.12× 1.15×
Cholesky 2.4 1.2 57.2 16.7 32.3 5.8 24.7 5.3 1.04× 1.07×
FFT 4.4 1.4 57.5 16.7 33.2 6.7 27.2 7.3 1.11× 1.14×
FMM 2.5 0.7 55.4 16.5 32.1 5.7 25.9 3.9 1.11× 1.15×
LuC. 1.2 0.7 57.1 16.4 32.0 5.6 23.9 5.3 1.02× 1.03×
LuNonC. 1.8 2.0 60.5 16.1 32.3 7.4 22.1 9.6 1.04× 1.05×
OceanC. 17.9 7.1 54.7 16.2 32.5 6.6 26.4 6.0 1.29× 1.43×
OceanNonC. 27.2 8.2 54.2 16.0 32.3 6.0 26.7 5.1 1.31× 1.45×
Radix 22.1 8.6 54.4 16.1 27.2 10.3 26.8 4.3 1.28× 1.37×
Raytrace 7.7 2.0 56.2 16.7 32.6 6.0 25.9 3.8 1.57× 1.82×
WaterNSq. 3.3 0.5 54.4 16.2 32.4 5.9 26.9 4.3 1.05× 1.07×
WaterSp. 0.6 0.2 56.9 16.6 32.5 6.8 25.0 7.8 1.02× 1.02×
Mean 56.2 16.4 31.9 6.5 25.6 5.4 1.15× 1.21×
†Excludes main memory accesses ††Speedup uses geomean

miss latency variation, and energy/power. The analysis shows that both of the topologies

enabled by a high radix crossbar—the FBFly and the SSN—perform noticeably better than

the Mesh even though the SSN runs at only half the frequency. The FBFly is 15% faster in

overall runtime, has a 1.76× reduction in average L1 on-chip miss latency, and experiences

a 2.52× reduction in the standard deviation of L1 on-chip miss latency compared to the

Mesh. The SSN has a 33% lower interconnect power, decreases the run time by 25%,

reduces the average L1 on-chip miss latency by 2.2×, and provides a 3× reduction in the

standard deviation of L1 on-chip miss latency relative to the Mesh.

Table 4.3 shows the speedup for each benchmark and Figure 4.4 shows execution time

breakdowns comprising three categories: core active cycles, memory stall cycles, and syn-

chronization stall cycles. From the results, one can observe three different performance-

impact scenarios in the results. The first arises for benchmarks with high L1 miss rates

and substantial sensitivity to L2 access stalls. OceanContig, OceanNonContig, and Radix

all have high L1 Misses Per KiloInstruction (MPKI) as shown in Table 4.3 and also spend

a substantial fraction of execution time on memory stalls as shown in Figure 4.4. The

Swizzle-Switch-based topologies substantially accelerate these workloads, due to the im-

proved average L2 access latency.

The second class of workloads, including Raytrace and FMM, spend a large fraction of

59

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

M
es

h

FB
Fl

y

S
S

N

Barnes . Cholesky . FFT . FMM . Lu
Contig

. Lu
NonContig

. Ocean
Contig

. Ocean
NonContig

. Radix . Raytrace . Water
NSquared

. Water Spatial

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Synchronization Stall Core Active Memory Stall

Figure 4.4:
Cycle Analysis for 64 core Mesh, FBFly, and SSN topologies during parallel
regions of the SPLASH2 benchmarks.

time in synchronization stalls. These particular benchmarks have locks that are sensitive

to miss latency. As average miss latency improves, synchronization time is also reduced,

yielding significant speedups. When synchronization stalls arise due to load imbalance, as

in LuNonContig, there is no significant speedup since improving memory latency does not

resolve the load imbalance.

The last scenario arises for benchmarks with a low L1 MPKI, for example, WaterSpa-

tial. Such benchmarks are insensitive to L2 latency as their working sets fit in L1, and thus,

achieve only minimal performance gains (2%) from the faster interconnects.

0"
10"
20"
30"
40"
50"
60"

0" 5" 10
"

15
"

20
"

25
"

30
"

35
"

40
"

45
"

50
"

55
"

60
"

65
"

70
"

75
"

80
"

85
"

90
"

95
"

10
0"

10
5"

11
0"

11
5"

12
0"

12
5"

13
0"

13
5"

14
0"

14
5"

15
0+
"Pe

rc
en

ta
ge
)o
f)M

is
se
s)

CPU"Cycles"

Mesh" FBFLY" SSN"

Figure 4.5: Histogram of L1 cache miss latency for the Radix benchmark.

In Figure 4.5, the miss latency distribution is shown for the Radix benchmark (other

benchmarks have similar miss latency distributions). Within this distribution, accesses with

latencies from 10-80 cycles are serviced on chip, whereas those with latencies above 100

cycles are misses to main memory. The figure illustrates that the high-radix interconnects

achieve tighter latency distributions for on-chip accesses. The wide latency variance in the

Mesh is due to the highly-variable hop count (as many as eight hops) for some messages. In

contrast, messages on the FBFly require at most two hops, while the SSN requires only one

60

0!
1,000!
2,000!
3,000!
4,000!
5,000!
6,000!
7,000!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

 M
es

h!
FB

Fl
y!

 S
SN

!

Barnes! .! Cholesky! .! FFT! .! FMM! .! Lu Contig! .! Lu
NonContig!

.! Ocean
Contig!

.! Ocean
NonContig!

.! Radix! .! Raytrace! .! Water
NSquared!

.! Water
Spatial!

.! Weighted
Average!

In
te

rc
on

ne
ct

 P
ow

er
 (m

W
)! Wire Dynamic!

 SSN/Router Dynamic!
 SSN/Router Leakage!
Clock!
Buffer!

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

 M
es

h!
 F

BF
ly!

 S
SN

!

M
es

h!
FB

Fl
y!

SS
N!

Barnes! .! Cholesky! .! FFT! .! FMM! .! LuContig! .! Lu
NonContig!

.! Ocean
Contig!

.! Ocean
NonContig!

.! Radix! .! Raytrace! .! Water
NSquared!

.! Water
Spatial!

.! Average!

To
ta

l B
en

ch
m

ar
k

En
er

gy
!

 (p
J/

In
st

)!

Interconnect!
 L2 Dynamic!
 L2 Leakage!
 Core/L1 Dynamic!
 Core/L1 Leakage!

Figure 4.6:
Total interconnect power (top) broken down by components within the Mesh,
FBFly, and SSN systems for all benchmarks tested. Total system energy (bot-
tom) for each benchmark broken down by component. Overall the SSN reduces
interconnect power by 33% over the Mesh and 28% over the FBFly on average.
As a result of the lower interconnect power and better performance the total
SSN system energy is 25% less than the Mesh and 11% less than the FBFly.

(variance arises only due to endpoint queueing and latency differences between L1-to-L1

and L2-to-L1 transfers). The average and standard deviation of the miss latency is given

in Table 4.3. While the Mesh maintains a standard deviation of L1 miss latency of 16.4

cycles, the FBFly is able to achieve a standard deviation of 6.5 cycles and the SSN tightens

the standard deviation even further to 5.4 cycles. The more predictable access latency in

the FBFly and SSN interconnects makes it easier for programmers to analyze performance,

balance work across cores and reduce the need for careful on-chip data placement.

Overall, it has been shown that high-radix topologies enabled by the Swizzle-Switch

scale well to 64 cores and achieve significant speedups over a Mesh. The FBFly on average

sees a 15% speedup over the Mesh, while the SSN further increases the average overall

speedup over the Mesh to 21%.

61

4.7 Energy and Power Analysis

Previously, one of the main criticisms of high radix crossbars was their high power

consumption [66]. However, the Swizzle-Switch Network’s optimized design demonstrates

that high-radix interconnects can be more power efficient than low-radix topologies, which

require a larger number of routers and buffers. Figure 4.6 shows the power consumption

for the three interconnects broken down into switch, buffers, link, and clocking power sub-

components. The Mesh has the highest interconnect power consumption. The FBFly, on

the other hand, runs at the same high frequency as the Mesh and has pipeline buffers on its

longer wires, therefore requiring higher dynamic wire power than the Mesh but has lower

overall router power consumption. The SSN trades off reduction in buffer power with

increase in wire dynamic power while maintaining similar switch power. Overall, the SSN

reduces interconnect power by 33% over the Mesh and 28% over the FBFly on average.

The total system energy consumption of the SSN is reduced because of the overall

runtime improvement. The energy savings arises from conserving leakage energy in the

core and L2, which shrink as performance increases and total runtime is reduced. From

the plot one can see that the largest improvements in energy consumption correlate to the

benchmarks with the largest performance improvement (i.e., Raytrace). As a result of the

lower interconnect power and reduced runtime, the total SSN system energy is 25% less

than the Mesh and 11% less than the FBFly.

4.8 Sensitivity Analysis

To further explore tradeoffs in many-core system design, Sensitivity analysis is per-

formed on 4 key parameters: router pipeline depth, virtual channel sizing, interconnect

frequency, and out-of-order core traffic.

62

1"
1.1"
1.2"
1.3"
1.4"
1.5"
1.6"
1.7"
1.8"
1.9"
2"

Barnes" Cholesky" FFT" FMM" Lu"Cntg" Lu"
NonCntg"

Ocean"
Cntg"

Ocean"
NonCntg"

Radix" Raytrace" Water"
Nsqrd"

Water"
SpaJal"

Average"
SS
N
#S
pe

ed
up

s#
O
ve
r#

D
iff
er
en

t#T
op

ol
og
ie
s#

Mesh"M"4"Cycle" Mesh"M"Ideal"2"Cycle" FBFly"

0"

10"

20"

30"

40"

50"

60"
0" 5" 10
"

15
"

20
"

25
"

30
"

35
"

40
"

45
"

50
"

55
"

60
"

65
"

70
"

75
"

80
"

85
"

90
"

95
"

10
0"

10
5"

11
0"

11
5"

12
0"

12
5"

13
0"

13
5"

14
0"

14
5"

15
0 +"

Pe
rc
en

ta
ge
)o
f)M

is
se
s)

CPU"Cycles"

Mesh74cycle" Mesh72cycle" SSN"

Figure 4.7:
Sensitivity analysis using ideal, 2-stage speculative routers. Histogram of the
L1 miss latencies for the Radix benchmark.

4.8.1 Router Pipelines

Figure 4.7 contrasts the performance gains of SSN over a Mesh interconnect with 4-

stage router pipeline and an idealized 2-stage router pipeline (employing pipeline bypassing

and speculative virtual channel allocation) [91]. An idealized design that assumes bypass-

ing is always possible and speculative virtual channel allocation never fails (i.e., by config-

uring the simulation with a 2-stage pipeline). Even under these idealized assumptions, the

2-stage Mesh still incurs a wide variation in miss latencies and the SSN still outperforms

it by an average of 12.4%. Note that this estimate is conservative: gains would be higher

when compared to an accurate implementation of a speculative router (due to mispeculation

stalls). This section does not consider speculative routers for the FBFly topology because

their higher radix make routing implementations considerably more difficult.

4.8.2 Virtual Channels

Figure 4.8 illustrates the impact that the number of virtual channels has on the Mesh

interconnect. In this study, three virtual networks (request, response, writeback) are still

63

0.92 

0.94 

0.96 

0.98 

1 

1.02 

1  2  3  4  5 

S
p
e
e
d
u
p
  

o
v
e
r 
3
 V
C
s 
p
e
r 
V
ir
tu
a
l 
N
e
tw

o
rk
 

Virtual Channels 

Figure 4.8:
Mesh sensitivity to the number of virtual channels (VCs) per virtual network
for the Raytrace benchmark. For this example, there is only a 1 % performance
improvement using 5 VCs (over 3 VCs) per virtual network. The enlarged data
point represents the configuration used in Section 4.6.

needed to prevent deadlock but the number of virtual channels per network is varied. Be-

cause the Raytrace benchmark is most sensitive to synchronization, it best shows the signif-

icance of virtual channel allocations for the Mesh. It is observed that simply using 3 virtual

networks with 1 virtual channels can cause up to a 7% degradation in performance, while

the benefit of additional virtual channels stagnates at around 3 virtual channels. Conse-

quently, the 3 virtual channels per virtual network design represents a good design choice.

4.8.3 Interconnect Frequency

Figure 4.9 evaluates the performance of the SSN, the 4-cycle Mesh and the ideal 2-

cycle Mesh when the interconnect frequency is varied from 1.5GHz to 6.0GHz. To isolate

the impact of the interconnect, the cores held at a constant 1.5GHz for all design points. As

expected, a flat crossbar system is always advantageous to a Mesh when the interconnect

frequencies are equal. However, the study shows that the average number of router hops in

the network-on-chip system is such a prohibitive factor that it would take a Mesh running at

6.0GHz to match the performance of a SSN running at 1.5GHz. Consequently, one can see

that the benefit of building a flat system can be significant given the feasiblity constraints

of building a network-on-chip with an aggressive clock as well as small number of pipeline

stages.

64

0.70 

0.80 

0.90 

1.00 

1.10 

1.20 

1.30 

1.40 

1.5  3.0  4.5  6.0 
S
p
e
e
d
u
p
  

(R
e
la
+
v
e
 t
o
 3
.0
G
H
z 
M
e
sh
) 

Interconnnect Frequency 

Mesh ‐ 1cycle 

Mesh ‐ 2cycle 

Mesh ‐ 4cycle 

SSN 

Figure 4.9:
Sensitivity to the interconnect frequency for the Mesh and SSN (Cores remain
at 1.5GHz). Results show that a Mesh w/4-cycle routers needs to be run at 4x
the frequency of a SSN to achieve the same performance. The enlarged data
points for the SSN and Mesh represent the configurations used in Section 4.6.

4.8.4 Out-of-Order Cores

The performance impact of using out-of-order cores on a 64-core system is demon-

strated in Figure 4.10. Replacing the in-order cores with out-of-order cores would present

significant area and power overheads to both the SSN and NoC systems. The increased

wire length between the SSN and the L2 caches would cause the SSN to be clocked at a

lower frequency. Similarly, the increased distance between connected routers in the NoC

topologies would also present frequency degradation as well as increased buffer sizing de-

mands. For the purposes of this example, those limitations are ignored and instead this

sensitivity study focuses on generating as much core-stimulated traffic as possible in the

interconnection networks. This is done by placing 1.5 GHz, 8-wide out-of-order cores (64

inst. window, 64 load/store queue, and 256 physical regs.) in each network and assuming

the frequency of the SSN and NoC topologies are equivalent to their achieved speeds when

using inorder cores (1.5GHz and 3.0GHz respectively).

The increased traffic from the out-of-order cores magnifies the workload trends that

were seen in Section 4.6. For example, the SSN achieves a 7% speedup over the Mesh

on the compute-intensive WaterNSquared when in-order cores are used on both systems,

65

1 

1.5 

2 

2.5 

3 

3.5 

WaterNSquared  Radix  Raytrace 
S
p
e
e
d
u
p
 o
f 
S
S
N
 w
/ 

O
u
t‐
o
f‐
O
rd
e
r 
(O
3
) 
C
o
re
s 

o
v
e
r 
N
o
C
 T
o
p
o
lo
g
ie
s 
 

Mesh ‐ 4cycle w/O3 Cores 

Mesh ‐ 2cycle w/O3 Cores 

FBFly w/O3 Cores 

Figure 4.10:
Speedups of a 64-core SSN using out-of-order cores over 64-core NoCs
also using out-of-order cores. Benchmarks shown represent the 3 traffic
classes referenced in Section 4.6. The compute intensive benchmark (Wa-
terNSquared) sees a 1.31x improvement while the memory-intensive (Radix)
and synchronization-sensitive workloads see ⇠2x and ⇠3x improvements re-
spectively when using out-of-order cores.

but sees a 31% improvement when out-of-order cores are utilized. Similarly, the SSN’s

in-order core speedup of Radix and Raytrace are 37% and 82% respectively over the Mesh.

However, those gains become 1.96x and 3.24x speedups when the evaluation is performed

only using out-of-order cores. The increased amount of memory traffic from out-of-order

cores on gives the SSN more opportunity for optimization. Consequently, it is shown that

a flat crossbar system can potentially be of even greater benefit if constructed for systems

with high-performance, out-of-order cores.

4.9 Conclusions

The results from this chapter demonstrate that a flat, crossbar-based many-core system

can outperform a conventional Network-on-Chip (NoC) many-core when evaluated using

performance, quality-of-service, and power metrics. A 64 core Swizzle-Switch Network, the

many-core system presented in this chapter, has a 33% lower interconnect power, decreases

the run time by 25%, reduces the average L1 on-chip miss latency by 2.2×, and provides

a 3× reduction in the standard deviation of L1 on-chip miss latency relative to a 64 core

66

Mesh.

Additionally, a number of sensitivity studies are performed in order to fully understand

the tradeoffs of a Swizzle-Switch Network against the other NoC topologies. From this

analysis, it is shown that the traffic from out-of-order cores can increases the performance

benefits of a Swizzle-Switch Network to 3× over a 64 core Mesh. These studies also ob-

served that a 64 core Mesh would need to be run at 4× the frequency of the Swizzle-Switch

Network in order to match performance.

Lastly, this chapter demonstrates that high-radix topologies enabled by Swizzle-Switch

technology are feasible alternatives to conventional, low-radix NoCs. A 64 core, Swizzle-

Switch-optimized Flattened Butterfly is 15% faster in overall runtime, has a 1.76× reduction

in average L1 on-chip miss latency, and experiences a 2.52× reduction in the standard

deviation of L1 on-chip miss latency compared to a 64 core Mesh. These results also

suggest that as systems continued to move past 64 cores, high-radix networks can be the

building block needed for future scalability.

67

CHAPTER V

Scalable 3D Interconnects

The previous chapters demonstrated various challenges and solutions for building in-

terconnect architectures to support many-core systems. As the number of cores rises in a

system, interconnect scalability is limited by issues such as wiring complexity, total area,

and power.

Three-dimensional (3D) integrated circuits are attractive options for overcoming the

barriers in interconnect scaling. In a 3D chip, multiple circuit layers are stacked together

with direct vertical interconnects tunneling through them. By utilizing the 3rd dimension

for core and memory components, 3D architectures present an opportunity for interconnect

architectures to efficiently support many-core systems.

This chapter looks at the impact of 3D interconnects on many-core architectures. First,

a brief overview of 3D integration is presented. Next, a 3D-Swizzle-Switch Network (SSN)

is shown to provide further optimizations over the original SSN architecture presented in

Chapter IV. Lastly, this chapter shows how 3D-technologies can extend bus architectures

to support many-core systems. The work in this chapter was done in collaboration with

Ronald Dreslinski and Tom Manville.

68

Figure 5.1:
Top level view of the Centip3De 7-layer 3D system [33] built on Tezzaron
3D stacking technology and a cross section of the same process on the 3D-
MAPS system [59]. Note the TSV’s are only 6.47 microns deep and the wafer
is thinned to less than 12 microns which is important for reducing thermal re-
sistance and RC delays.

5.1 3D Integration Technology

There have been many works that research 3D technology for use in logic circuits [92],

memory optimizations [113, 75] and full-system architectures [57]. 3D integration tech-

niques include die-to-die bonding [12], wafer-to-wafer bonding [74], and various technolo-

gies that mix die and wafer integration.

This work focuses on the use of 3D for scalable, high-radix interconnects and assumes

the Tezzaron [41] 3D integration which uses a via-first, back-end-of-line integration tech-

nology. The technique has been demonstrated in test chips such as centip3De [33] and the

3D-MAPS processor [59].

In Fick et al.’s centip3De, the Tezzaron technology is used to stack four layers of CMOS

logic on top of three layers of DRAM. Figure 5.1 (left) shows a diagram of the system im-

plemented by Fick et al. Figure 5.1 (right) shows a cross section [59] of the Through-Silicon

Via (TSV) technology from Tezzaron. The layers are thinned to less than 12 microns, and

the TSV’s themselves are less than 6 microns thick. The size of the TSVs are 1.4 square

microns, and can be placed with a density of 62,000 TSVs per square mm. This technique’s

high density of TSVs allows architectures to further take advantage of vertical integration

69

and alleviates some of the concerns of TSV-limited systems detailed in prior works [60, 47].

Additionally, the resistance (<.35⌦) and capacitance (2fF) of these TSV’s are ex-

tremely small compared to other 3D technologies. This allows for fast and short con-

nections between layers that. In fact, in a 4 layer stack the length of a TSV running the

whole height of the stack is <50 microns. Along with the reduction of total wiring area,

the potential of TSVs to operate within one clock cycle of traditional cores frequencies

(1-2GHz) is another added benefit that 3D architectures.

5.2 3D-Swizzle-Switch Networks

The Swizzle-Switch Network (SSN) designed in Chapter IV is limited by the overheads

of global interconnecting cores and memory in a single, high-radix router. One of the

most important benefits of a 3D chip over a traditional two-dimensional (2D) design is

the reduction of these global interconnects. This section proposes a combination of 3D

integration and the SSN to further improve performance over the original SSN design.

5.2.1 Architecture

In the 3D-SSN design, the baseline 2D-SSN is folded over multiple layers while hold-

ing the overall design constant at 64 cores. By folding the Swizzle-Switch over multiple

layers the total size of the Swizzle-Switch is reduced and the shorter wires result in lower

capacitance. This reduction in capacitance is translated into a speedup of the Swizzle-

Switch itself. In addition the number of inputs and outputs per layer is reduced, leading to a

more compact design where the links to and from the Swizzle-Switch are shorter and faster.

The basic 3D-SSN design is explored presented in Figure 5.2(a). In the 4-layer system

each layer contains 16 cores and 8 L2 banks. The central Swizzle-Switch communicates

through TSV’s to the other layers in the system. The modified circuit diagram is presented

in Figure 5.2(b), for illustrative purposes only two inputs, two outputs, and two layers are

presented. The system requires that inputs on one layer forward requests to the proper out-

70

in0

in1

in63

out0 out2

out126

in64

in65

in127

out1 out3

out127

TSVs

(a)

SA
0,0Req 0

Rel 0
0 0 0 0 0

SA
0,1Req 1

Rel 1

0 0 0 0 0

SA
64,0Req 0

Rel 0
0 00 0 0

SA
64,1Req 1

Rel 1

0 00 0 0

Top Layer
Bottom Layer

 out0

 out1

(b)

Intra-layer SSN in 2D

Inter-layer SSN with TSVs

(c)

Figure 10: (a) A 3D Swizzle-Switch of radix-128 achieved by stacking two 2D Swizzle-Switch layers. (b) The
circuit modifications for a 3D Swizzle-Switch. (c) Conceptual view of network with more than two layers
stacked in 3D. To scale beyond two layers we propose vertical Swizzle-Switches (dotted rectangles) connect
the different 3D Swizzle-Switches with two layers

5 Related Work
The paradigm shift toward many-core systems has led to a renewed interest in interconnect research and a
transition from traditional bus-based systems [49] to more sophisticated designs, including hierarchical bus
models [50, 51], crossbars [52, 53, 54, 55], rings [56, 57, 58, 59], spidergon networks [60], mesh network-on-
chips [45, 61], flattened butterfly on-chip networks [44], express cube [62] and express virtual channels [63].
It is beyond the scope of this proposal to cover fully the diverse landscape of on-chip network research.
Below we discuss related works most relevant to this proposal.

Power consumption is a major limiting factor in design of scalable on-chip interconnects. Prior work has
explored power modeling of NoCs [26, 64, 65], selectively shutting down links [66, 67], power-driven router
micro-architecture [25, 68, 69]. Other researchers have proposed concentrated [70], high-radix [71] and bus-
based on-chip network topologies [72, 73] to reduce network power. Our proposed research is different
from these as it integrates multiple networks, Swizzle-Switches and 3D technology for power scaling and
fine-grained power management. Moreover, our focus is a power-driven scaling of on-chip networks to
enable processor architectures with 1000+ cores. Earlier works have been limited to small NoCs with less
than 100 cores.

Multiple networks have been explored in different contexts by prior works. TRIPS [18] and RAW [17]
network architectures provisioned multiple networks to isolate different message classes such as instruction
operands and coherence traffic. Tilera [16] processors also have five on-chip networks to isolate different
message classes. The purpose of multiple network in these processor implementations is to easily guaran-
tee properties such as protocol-level deadlock freedom and quality of service, without having to support
virtual channels.

However, these architectures did not consider the power scaling advantages of a multiple network de-
sign, nor did they consider fine-grained power-gating opportunities. Also, separation of traffic into differ-
ent sub-networks can potentially lead to bandwidth fragmentation, if any one message class contributes
to a large fraction of traffic. The message classes in our proposed design need not be fragmented across
different sub-networks, as they can utilize any of the sub-networks. Protocol-level deadlock freedom can
be supported in Arcus using virtual channels.

Dynamic Voltage and Frequency Scaling (DVFS) [15] is another potential approach towards power-
reduction in NoC. DVFS dynamically reduces the frequency and voltage during periods of inactivity to
reduce average power. However, this incurs high network latency cost. For, example if we apply DVFS
to a 512-bit network at 2GHz and run it at 500MHz (equivalent power to 1 active 128-bit sub-network in
Arcus) at low load, the latency increases by 4X. For Arcus design we expect the latency to increase by only
few cycles (equal to the serialization latency).

Regional congestion awareness [74] has been proposed in the context of adaptive routing to improve

Project Description Page 13

Figure 5.2:
(a) A 3D Swizzle-Switch Network achieved by stacking four 2D Swizzle-Switch
Network layers and using TSV’s to interconnect the layers. (b) The modified
circuits for the 3D Swizzle-Switch Network. Even numbered outputs are arbi-
trated on the top layer, odd outputs are arbitrated on the bottom layer. Input
request lines must be forwarded from the top!bottom or bottom!top through
TSV connections.

put layer via TSV’s. The total number of TSV’s at each layer is equal to the total number of

arbitrating crosspoints times the number of layers. The exploration of more sophisticated

3D designs is left as future work.

If the total area of the 2D-SSN is split evenly across the 3D layers it will result in a 50%

and 75% reduction in area for a 2 and 4 layer system respectively. However, the 2D-SSN

is already very dense in both wiring and logic. Currently the 2D-SSN system requires one

additional unused routing lane per four lanes of dedicated routing to fit the required logic.

The addition of TSV’s in the system will dilate the size further. Given the minimum spacing

in the Tezzaron process, this corresponds to an additional routing track every 8 tracks in

the 2-layer system and every 4 tracks in the 4-layer system. This means the Swizzle-Switch

in the 2-layer 3D-SSN is 57% of the size of a Swizzle-Switch in 2D and the Swizzle-Switch

in the 4-layer 3D-SSN is 32% of the size of a Swizzle-Switch in 2D.

This reduced area of the SSN yields a faster design, and the smaller number of devices

71

0%#

5%#

10%#

15%#

20%#

25%#

30%#

35%#

Ocean&Ctg& Ocean&NonCtg& Radix& Raytrace& .& Average&

Sp
ee
du

p&
&

N
or
m
al
iz
ed

&to
&2
D
=S
SN

&

2(Layer#
4(Layer#

Figure 5.3:
Speedup of the 3D-SSN on 2-layer and 4-layer systems compared to a 2D-SSN.
The benchmarks most sensitive to interconnect delay are plotted as well as the
average across all benchmarks.

per layer shortens the links to the SSN. After careful floorplanning of the system, the 2-

layer version achieves an interconnect speed of 2.2 GHz, and the 4-layer version achieves

an interconnect speed of 2.7 GHz (core speeds remain at 1.5GHz).

5.2.2 Performance Results

Figure 5.3 presents the overall speedup of the 3D-SSN normalized to the 2D version.

On average the 3D system sees a 8% and 10% speedup for a 2-layer and 4-layer system

respectively. For benchmarks where the interconnect latency is a significant fraction of the

runtime—Ocean, Radix, and Raytrace—the improvements are more significant showing a

15-28% speedup. Recall from Chapter IV that these benchmarks improved significantly

due to either faster L2 accesses, or faster synchronization and as such reflect further gains

in a 3D design. The other benchmarks only showed marginal sensitivity to interconnect

latency and result in only modest gains 1-6%, lowering the average across all benchmarks.

5.2.3 Thermal Analysis

As with any 3D chip design, thermal constraints can be a matter of concern. To verify

the system operates in a thermal region that can be cooled by conventional solutions, the

72

SSN SSN

L2s

L2s

Cores
Cores

Figure 5.4:
HotSpot simulation of 64 Core SSN system on 1 and 4 layers for the worst case
benchmark. The peak temperature of the 3D chip is 60o Celsius.

system is analyzed with the HotSpot 5.1 [107] simulator. The thermal characteristics of

the Tezzaron process were modeled in HotSpot and power draw numbers from the hottest

benchmark (Ocean) are plotted. Power numbers for the Cortex-A5 were based on published

data and scaled to 32nm. Figure 5.4 shows the simulated system for a single layer and a

4-layer stack. The low power design of the Cortex-A5 processor helps to make stacking

feasible. The peak temperature of the 4-layer system peaks around 60 degrees centigrade,

within the capability of passive cooling solutions. The HotSpot analysis did not consider

the thermal dissipating characteristics of the TSV’s, which would have further reduced the

peak temperature.

5.3 XPoint: Scaling Many-Core Busses to 3D

As detailed in Chapter II, bus-based systems traditionally do not scale to many-core

systems because of the long wires that prohibit high-frequency designs and contention that

limits the parallelism of it’s interconnected components. This section proposes XPoint—an

bus-based design that minimizes the wire length and contention constraints seen in conven-

73

Core%
0%

L2%

Core%
1%

Core%
2%

Core%
N+1%

L1%

L1%

L1%

L1%

…

…

Core%
0%

L2%)%0%

Core%
1%

Core%
2%

Core%
N)1%

L2%)%1% L2%)%3% L2%–%M)1%

L1
2%

L1
1%

L1
0%

L1
M%

L1
2%

L1
1%

L1
0%

L1
M%

L1
2%

L1
1%

L1
0%

L1
M%

L1
2%

L1
1%

L1
0%

L1
M%…

…

…

…

…

…

…

…

…

…

(a) (b)

Figure 5.5:
High level view of (a) a conventional bus based architecture, and (b) The
XPoint-2D architecture. Caches in a vertical column are all assigned to the
same address range. No snooping is required between vertical columns. The
horizontal connections use point-to-point links.

tional designs.

5.3.1 Architecture

As the number of cores grows, the contention on the shared bus becomes a bottleneck in

the system. The XPoint architectures addresses this bottleneck by banking and interleaving

caches in a shared memory many-core system. A significant advantage of this memory in-

terleaving scheme is that the snoopy coherence protocol found in typical bus-based systems

does not need to be modified.

This baseline system builds on memory interleaving techniques developed in the 1980’s

to address congestion in board level multi-processor interconnects [121]. However, integra-

tion levels and pin constraints limited their practicality. The proposed XPoint systems show

that with new architectural techniques these designs are now practical for single chip im-

plementations, where point-to-point connections, higher cache associativites, and a greater

number of wires are available.

Figure 5.5(a) shows a high level view of a traditional bus based system. Each core is

74

S
ta

ck
 1

1u
m

 p
er

 L
ay

er
 T

hi
ck

L1->L2 Bus (Red)
Runs Only on Top Layer

Through Silicon Vias (TSV’s)
Take L1->L2 bus to other layers
3D Length ~= 2D Length

L2’s Banked Across Multiple Layers

Improving Access Speed and Aspect Ratio

Figure 5.6: Diagram of the XPoint 3D design.

connected to a private L1, each of the L1’s are connected to a shared snooping bus, which in

turn is connected to the L2. The XPoint 2D system exploits address-interleaving to reduce

bandwidth pressure on the shared bus fabric. Figure 5.5(b) shows the logical layout of the

XPoint 2D architecture. To scale the coherence protocol to n cores, each core’s last level of

private cache (L1 in this diagram) is split into m equal slices. The core can access all the

m slices via direct point-to-point channels. By using point-to-point connections, the speed

of the interconnect can be much faster than a traditional bus which requires bi-directional

repeaters and arbitration units. The shared L2 cache is also split into m equal slices. A bus

connects a vertical column of private cache slices (n L1 slices) to a shared L2 cache slice, all

of which map to the same addresses. This isolates the coherence traffic separately on each

vertical bus from the other vertical buses in the system. The result is a multi-bus system

with simple, unmodified coherence that reduces contention and increases bandwidth.

Figure 5.6 shows the proposed XPoint 3D system. The coherent buses are run only

75

Table 5.1: Component Areas and Speeds in 32nm
Area/Length Speed/Latency

ARM Cortex-A9 0.38mm2 1.25GHz
L1 (64kB Split I&D) per core 0.61mm2 1 cycle
L2 (256 kB Unified) per core 1.33mm2 8 cycles

Coherent Bus 0.31mm/core 160 ps/mm

along the top layer, and connections to L2’s at lower levels are made with TSV’s which are

11 microns long per layer. This pitchfork layout creates a 3D bus that is approximately the

same length as the bus on the top layer. This means that the effective length of the bus is

halved when the system contains 2-layers, and quartered when spread across 4-layers. To a

first order the latency of the bus grows linearly with cores/layers instead of linearly with

cores as it does in a 2D system. In addition the L2 cache is banked across multiple layers

to improve the aspect ratio of the cache itself, thereby improving access times and power

consumption of the L2.

5.3.2 Methodology

The following text details the design and simulation methodology used to evaluate the

baseline bus and XPoint systems. This includes methods to calculate area and speed for the

core, cache, and bus components. Additionally, parameters and framework for the many-

core simulation are discussed.

5.3.2.1 Components

Cache sizes and speeds are obtained from a commercial memory compiler and are listed

in Table 5.1. The L1 access time is 1 cycle for the bus based system and 2 cycles in the

XPoint cache system due to the point-to-point link latency. To hide this latency in the

XPoint cache system a 4 cache line, fully-associative buffer is added as a L0 next to each

core. On a cache lookup, the L0 and L1 are accessed in parallel.

Bus delays and power estimations were obtained using a 13-layer metallization stack

76

Table 5.2: 2D Floorplan Sizes and Bus Speeds
Number of Cores Die Size Bus Length Bus Speed Total L2 Size

8 19mm2 2.48mm >1.25 GHz 2MB
16 38mm2 4.96mm 1.25 GHz 4MB
32 78mm2 10.1mm ⇠630 MHz 8MB
64 156mm2 20.1mm ⇠315 MHz 16MB

Table 5.3: gem5 Simulation Parameters
Component Bus Based System XPoint System

Processor ARM Cortex-A9, 1.25 GHz, 2-Wide, 56 Physical Registers
Cache Block Size 64 Bytes
L0 Cache None 4-entry, fully associative, 1-cycle
L1 Cache 64kB Split I and D Caches

4-way Associative, 1-Cycle Divided by number of Slices
Associativity 4-way/#Slices, 2 -cycle

L2 Cache 256 kB per Core, 16-way, 8-cycle
Coherent Bus 312-1250 MHz, 64Bytes
Main Memory 2GB, 50 Cycle Latency

from an industrial 32nm process. Once layers were reserved for local and global routing,

bus delays were calculated using wire models from the design kit and SPICE analysis. Re-

peaters are used to achieve optimized frequency on the bus designs and are placed using the

optimally interleaved spacing process described by Ghoneima and Ismail [36]. Table 5.2

shows the achieved speeds of the bus for each core count.

5.3.2.2 Simulation

The Bus 2D (conventional bus), XPoint 2D, and XPoint 3D architectures are evaluated

using the m5 full-system simulator [10]. The m5 simulator was extended to accommodate

the busses and point-to-point links of the XPoint architecture. Table 5.3 details the simu-

lation parameters for the studies. To account for non-determinism in threaded workloads,

randomly perturb memory access latencies are used to run multiple simulations and arrive

at stable runtimes (following the approach described by Alameldeen et al. [2]). Bench-

marks from the SPLASH2 [122] suite to test the systems. The SPLASH2 benchmarks are

77

!"!#
!"$#
!"%#
!"&#
!"'#
("!#
("$#

!"!#!"$#!"%#!"&#!"'#("!#("$#("%#("&#("'#

!# '# (&# $%#)$# %!# %'# *&# &%#

+,
-#
.
/0
12
/3

4#
56
2-
78

9:
#

;
3<
=
20
1>
89

#?
,4

/=
8#
5@
30
19
:#

;,=A8<#3B#C3<8-#

+,-#$6# DE314F#$6#G#$#@01H8-# DE314F#$6#G#%#@01H8-# DE314F#$6#G#'#@01H8-#

!"#$%&'(%)(%*+&

!"!#$

!"#$

%
&'
(
)*
+,
-.

$/
01

2(
-$
34
&*
+.
5$

60
7$
8
2*
+,
)2

&1
$39

)7
:-

.5
$

;"!$

<"!$

!"<#$

!";#$

8" 64"

Ocean&Con)g&

16"""""""""""""""""""""""""""""""32" 8" 64"

Water&N(Squared&

16"""""""""""""""""""""""""""""""32"

!"
!#$"
!#%"
!#&"
!#'"
!#("
!#)"
!#*"
!#+"
!#,"

!"
!#%"
!#'"
!#)"
!#+"
$"

$#%"

!" +" $)" %'" &%" '!" '+" ()")'"

-.
/"
0
12
34
51

67
"89

5/
:;

<=
"

>
6?
@
52
34
;<

"A
.7

1@
;"
8B
62
3<
="

>.@C;?"6D"E6?;/"

-./"&9"F'" GH637I"%9"J"'"B23K;/" GH637I"&9"F%"J"'"B23K;/" GH637I"&9"F'"J"'"B23K;/"

!"#$%&'(%)(%*+&

!"!#$

!"#$

%
&'
(
)*
+,
-.

$/
01

2(
-$
34
&*
+.
5$

60
7$
8
2*
+,
)2

&1
$39

)7
:-

.5
$

;"!$

<"!$

!"<#$

!";#$

8" 64"

Ocean&Con)g&

16"""""""""""""""""""""""""""""""""32" 8" 64"

Water&N(Squared&

16"""""""""""""""""""""""""""""""""32"!"!#
!"$#
!"%#
!"&#
!"'#
("!#
("$#

!"!#!"$#!"%#!"&#!"'#("!#("$#("%#("&#("'#

!# '# (&# $%#)$# %!# %'# *&# &%#

+,
-#
.
/0
12
/3

4#
56
2-
78

9:
#

;
3<
=
20
1>
89

#?
,4

/=
8#
5@
30
19
:#

;,=A8<#3B#C3<8-#

+,-#$6# DE314F#$6#G#$#@01H8-# DE314F#$6#G#%#@01H8-# DE314F#$6#G#'#@01H8-#

!"#$%&'(%)(%*+&

Figure 5.7:
Runtime (solid lines) Bus Utilization (dotted lines) vs. core counts for
Conventional Bus and XPoint Systems. A straight line for runtime
represents ideal scaling of the benchmark.

of particular interest for the study of on-chip interconnects as they have many sharing and

data migration patterns. This is illustrated in the work of Barrow-Williams et al. [8].

5.3.2.3 Thermal Analysis

As in Section 5.2.3, thermal analysis of the system is performed using the HotSpot

5.1 [107] simulator. The thermal characteristics of the Tezzaron process were modeled

in HotSpot and peak power draw numbers were used for the core. Power numbers for

the Cortex-A9 were based on published data [76] and scaled to 32nm. HotSpot results

show that the peak temperature of the 4-layer system reaches 92 degrees centigrade. Thus,

even without considering the thermal dissipating properties of the TSVS, the design is still

within conventional cooling solutions.

78

1"

11"

21"

31"

41"

51"

61"

Ba
rne
s'

Ch
ole
sky
'

FM
M'

Lu
Co
n2
g'

Lu
No
nC
on
2g
'

Oc
ea
nC
on
2g
'

Oc
ea
nN
on
Co
n2
g'

Ra
dix
'

Ra
ytr
ac
e'

W
ate
rN
Sq
ua
red
'

W
ate
rSp
a2
al'

Sp
ee
du

p'
'o
ve
r'1

BC
or
e'

Bus" XPoint12D" XPoint13D"

Figure 5.8:
Speedup comparison for Bus, XPoint 2D, and XPoint 3D interconnects. The
best performing parameters for each benchmark and configuration are used.
Details of number of cores, slices, and layers are found in Table 5.4

5.3.3 Performance Analysis

Analysis of the XPoint systems are made through the evaluation of speedup and bus

utilization. The XPoint-2D system is first evaluated against a conventional bus architecture.

Then, it is shown how XPoint-3D can push scalability even further past the XPoint-2D

gains. The XPoint systems are also compared against a 3D-conventional bus architecture to

further demonstrate the advantages of alleviating contention and latency in many-core bus

systems.

The plots in Figure 5.7 show, on a log-log plot, the normalized runtime (solid lines) and

bus utilization (dotted lines). The ideal scaling of these benchmarks would be a straight

line (for runtime) where the slope is determined by the efficiency of the parallel scaling

in the application itself (workload imbalance and/or ratios of serial to parallel code). Bus

utilization is a metric from 0 to 1, describing how often the bus is utilized. The bus uti-

lization numbers saturate for the Bus 2D (conventional bus) systems for most benchmarks

around 32 cores. This saturation correlates with the dramatic increase in bus contention

plotted in Figure 2.4. As the bus utilization and contention increase, the overall runtimes of

79

the benchmarks increase. Eventually the increase in contention outweighs the performance

gains of more cores, yielding an optimal number of cores for the system (i.e. highest per-

forming system).

The XPoint 2D system is most effective for benchmarks with scalability limitations due

to contention. As the number of slices (cache banks) in the system grows, the probability

of contention decreases (as well as associated snoop overheads). In benchmarks whose Bus

2D line is not straight, the XPoint cache reduces bus contention and lowers the runtime at

high core counts (making the line straighter). For example, when Water N-Squared is run

on the XPoint 2D, 8 slice system the runtime speedup is brought back to linear.

However, XPoint 2D is not effective for every contention-limited benchmark. For

benchmarks like Ocean Non-Contig, the XPoint 2D system is only effective up to 32 cores.

This limit occurs because the bus latency is increasing as the core count is increased, re-

ducing the total bandwidth of the system and effectively creating more contention.

By extending the system in 3D, the bus latencies are decreased and further scaling is

possible for these benchmarks. Figure 5.7 shows runtime and bus utilization on the same

axes as before, but for XPoint 2D and XPoint 3D designs with 4-slices. For the XPoint 2D

benchmarks that did not scale well—FMM, Ocean Contig, Ocean Non-Contig, Radix, and

Water Spatial—the use of XPoint 3D helps reduce the runtime at 64 cores, making the trend

closer to linear. On average, the XPoint 3D improves performance by 28% over the XPoint

2D system at 64 cores.

The best performing configurations for each benchmark on each type of system are

shown in Figure 5.8 and listed in Table 5.4. The average speedup achieved by the XPoint 2D

system is 35× , the XPoint 3D system further improves that number to 45×. On average the

XPoint 2D system performs 1.6× better than the bus, it also outperforms the conventional

bus in 3D for all but 3 benchmarks. Overall the XPoint 3D system improves performance

by 2.1× compared to the 2D conventional bus.

Overall, the results have shown that the XPoint architecture scales bus-based systems

80

Table 5.4:
A Breakdown of the best performing parameters on each system for each bench-
mark. Speedup is presented over a uniprocessor system with 2MB L2. Super
linear speedups occur for FFT due to the increased L2 size available in the 64
core system.

Bus 2D XPoint 2D Bus 3D XPoint 3D
Cores Sp.† Cores Slices Sp.† Cores Layers Sp.† Cores Slices Layers Sp.†

Barnes 64 33× 64 8 49× 64 4 58× 64 2 4 60×
Cholesky 64 18× 64 8 28× 64 4 27× 64 2 4 29×

FFT 32 22× 64 8 59× 64 4 41× 64 8 4 83×
FMM 32 17× 64 8 19× 64 4 21× 64 8 4 25×
LuC. 64 38× 64 2 39× 64 4 41× 64 2 4 41×

LuNonC. 64 18× 64 8 19× 64 4 20× 64 4 4 21×
OceanC. 16 13× 32 8 30× 64 4 23× 64 8 4 54×

OceanNonC. 16 13× 32 8 29× 64 4 18× 64 8 4 53×
Radix 16 15× 32 8 28× 64 4 17× 64 8 4 48×

Raytrace 32 27× 64 8 32× 64 4 38× 64 8 4 43×
WaterNSq. 32 28× 64 8 55× 64 4 51× 64 8 4 59×
WaterSp. 64 50× 64 4 60× 64 4 61× 64 8 4 62×
Geomean 22× 35× 31× 49×

†Speedup

to 64 core systems. Given these results, XPoint 2D presents a desirable approach to in-

terconnect at 32-64 cores in 32nm. As 3D technology becomes part of the commercial

mainstream the XPoint 3D systems will further scale bus based designs to higher core

counts.

5.4 Conclusions

The work in this chapter demonstrated the benefits of using 3D integration technology

in many-core interconnects. 3D-integration is demonstrated to allow interconnects to run

at higher frequencies as well as alleviate contention across shared interconnect resources

(i.e., channels).

First, a 3D-Swizzle-Switch Network architecture is presented and shown to operate at

50% and 80% higher frequencies when using 2-layer and 4-layer stacks respectively. The

3D-optimized SSN is able to leverage these frequency gains to achieve 15-28% speedup on

memory-intensive benchmarks and 10% average speedup across all benchmarks.

Next, the bus-based XPoint architecture is presented as a system that can use 3D tech-

nology to effectively scale multithreaded benchmarks. XPoint uses 3D to optimize both

81

contention and latency over conventional bus interconnects. As such, a 64-core XPoint-3D

system obtains a 49× speedup over the baseline uniprocessor system.

The results shown in this chapter demonstrate that 3D bus and crossbar interconnects

are attractive design points for many-core systems. The decision between when to use a

3D bus, crossbar, or NoC interconnect continues to be a challenging one dependent on

application domain, topology parameters and circuit limitations. Additionally, simulation

frameworks must be developed in order to make a fair comparison between interconnects.

As such, the further evaluation of 3D technology past 64 cores is a study left for future

work.

82

CHAPTER VI

Conclusions

As the number of cores on a chip increases, the demand for scalable interconnection

networks increases as well. Ideally, scalable interconnects would simultaneously support

high bisection bandwidth, predictable memory access latencies, and quality of service guar-

antees as core count grows. Network-on-Chip (NoC) systems can provide high bandwidth

but typically are unable to support applications requiring uniform memory access or quality

of service due to high hop counts associated with these networks. Bus- and crossbar-based

systems can enable more consistent memory latencies but have traditionally been consid-

ered infeasible due to wiring, power and area challenges.

This thesis analyzes the scalability of many-core systems and proposes interconnect

architectures that can assist in solving these scalability challenges. Chapters I and II intro-

duce and motivate the need for high-radix interconnect architectures to support many-core

systems.

Chapter III continues this thesis’ many-core scalability efforts by revisiting the design

of crossbar and high-radix interconnects in light of advances in circuit techniques that sig-

nificantly improve crossbar scalability. A new circuit-level building block, the Swizzle-

Switch, provides an energy- and area-efficient switching element that improves the scala-

bility of crossbars to a high radices. The multicast ability and integrated arbitration of the

Swizzle-Switch makes is shown to operate at frequencies up to 1.5GHz for 128-bit, radix-

83

64 crossbars and have the ability to implement many arbitration policies such as Least-

Recently Granted (LRG) and Round-Robin (RR). Results show that Swizzle-Switch’s LRG

arbitration policy reduces the worst-case request access latency by 1.83 and 2.03 on average

over round robin and random arbitration schemes, respectively.

After the Swizzle-Switch is scaled to 32nm, Chapter IV uses multiple Swizzle-Switches

are used to create the Swizzle-Switch Network: a flat, cache-coherent crossbar topology

supporting many-core systems of up to 64 cores. The Swizzle-Switch is also used as

a high-radix building block that can enable high-radix topologies such as the Flattened

Butterfly (FBFly). The evaluation in Chapter IV shows that the Swizzle-Switch Network

scales favorably over a traditional Network-on-Chip (NoC) topology (Mesh) for systems

of up to 64 cores. On average, the FBFly is 15% faster, has a 1.76× smaller L1 on-chip

average miss latency, a 2.5× reduction in miss latency standard deviation, and a 10% en-

ergy savings over the Mesh. The SSN improves system performance by 21%, with a 2.2×

smaller L1 on-chip average miss latency, and a 3.0× reduction in miss latency standard

deviation all while providing a 25% energy savings compared to the Mesh. These improve-

ments show that the FBFly and SSN facilitate easier programmability and quality of service

guarantees on many-core systems.

The impact of 3D stacking technology has on many-core scalability is studied in Chap-

ter V. The study finds that 3D integration technology can help crossbar and bus intercon-

nects scale past their traditional limitations. In particular, a 3D-Swizzle-Switch Network

architecture is presented and shown to operate at 50% and 80% higher frequencies when

using 2-layer and 4-layer stacks respectively. The 3D-optimized SSN is able to leverage

these frequency gains to achieve 15-28% speedup on memory-intensive benchmarks and

10% average speedup across all benchmarks. Additionally, the bus-based XPoint architec-

ture uses 3D to optimize both contention and latency over conventional bus interconnects.

As such, a 64-core XPoint-3D system obtains a 49× speedup over the baseline uniprocessor

system.

84

Challenges in interconnects for future many-core systems remain as on-chip core counts

continues to rise past 100. Interconnects will need to be further optimized for heterogenous

systems while simultaneously respect area and power constraints. This thesis suggests that

for systems of up to 64 cores, a flat-crossbar interconnect like the Swizzle-Switch Network

can be used to optimize performance, power, and quality-of-service issues. For systems

past 64 cores, high-radix topologies like the Flattened Butterfly can use the Swizzle-Switch

to continue to scale performance. Additionally, this thesis shows that 3D architectures can

be utilized to scale bus architectures to 64 cores and are promising alternatives for scal-

ing future many-core systems past 64 cores (e.g. high-radix 3D-NoC topologies). Future

research can take advantage of the feasible high-radix interconnects shown in this work

for future flat, hierarchical, and 3D interconnect architectures that can support many-core

scaling past 100 cores.

85

BIBLIOGRAPHY

86

BIBLIOGRAPHY

[1] T. W. Ainsworth and T. M. Pinkston. Characterizing the cell eib on-chip network.
IEEE Micro, 2007.

[2] A. Alameldeen and D. Wood. Variability in architectural simulations of multi-
threaded workloads. In High-Performance Computer Architecture, 2003. HPCA-9
2003., pages 7 –18, feb. 2003.

[3] J. Andrews and N. Baker. Xbox 360 system architecture. IEEE Micro, 2006.
[4] ARM Ltd. Cortex-A5 Processor. ARM Databrief, 2010.
[5] Arm Ltd. Amba open specifications: Arm. http://www.arm.com/

products/system-ip/amba/amba-open-specifications.php,
March 2012.

[6] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz. Energy-performance
tradeoffs in processor architecture and circuit design: a marginal cost analysis. In
Proceedings of the 37th annual international symposium on Computer architecture,
ISCA ’10, pages 26–36, New York, NY, USA, 2010. ACM.

[7] J. Balfour and W. J. Dally. Design tradeoffs for tiled cmp on-chip networks. In
ICS-20, 2006.

[8] N. Barrow-Williams, C. Fensch, and S. Moore. A communication characterisation
of splash-2 and parsec. In IISWC, 2009.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. Computer Architecture News (CAN),
Jun 2011.

[10] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Rein-
hardt. The m5 simulator: Modeling networked systems. IEEE Micro, 2006.

[11] T. Bjerregaard and S. Mahadevan. A survey of research and practices of network-
on-chip. ACM Computing Surveys, 2006.

[12] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. Mc-
Caule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen,
and C. Webb. Die stacking (3d) microarchitecture. In Proceedings of the 39th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO 39, pages
469–479, Washington, DC, USA, 2006. IEEE Computer Society.

87

[13] L. Bononi and N. Concer. Simulation and analysis of network-on-chip architectures:
Ring, spidergon and 2d mesh. In DATE, 2006.

[14] L. Bononi, N. Concer, M. Grammatikakis, M. Coppola, and R. Locatelli. Noc
topologies exploration based on mapping and simulation models. In EUROMICRO-
10, 2007.

[15] S. Borkar. Networks for multi-core chips: A contrarian view. Special Session at
ISLPED, 2007.

[16] J. Burns and J.-L. Gaudiot. Smt layout overhead and scalability. Parallel and Dis-
tributed Systems, IEEE Transactions on, 13(2):142 –155, feb 2002.

[17] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez. Dynamically controlled
resource allocation in smt processors. In Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 37, pages 171–182, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[18] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt. Simultaneous
subordinate microthreading (ssmt). In Proceedings of the 26th annual international
symposium on Computer architecture, ISCA ’99, pages 186–195, Washington, DC,
USA, 1999. IEEE Computer Society.

[19] C.-H. Chen, G.-W. Lee, J.-D. Huang, and J.-Y. Jou. A real-time and bandwidth
guaranteed arbitration algorithm for soc bus communication. In Design Automation,
2006. Asia and South Pacific Conference on, page 6 pp., jan. 2006.

[20] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and J. B. Carter.
Interconnect-aware coherence protocols for chip multiprocessors. In ISCA-33, 2006.

[21] G.-M. Chiu. The odd-even turn model for adaptive routing. Parallel and Distributed
Systems, IEEE Transactions on, 11(7):729 –738, jul 2000.

[22] M. Coppola, M. D. Grammatikakis, R. Locatelli, G. Maruccia, and L. Pieralisi. De-
sign of Cost-Efficient Interconnect Processing Units: Spidergon STNoC. CRC Press,
Inc., Boca Raton, FL, USA, 1st edition, 2008.

[23] D. Culler, J. Singh, and A. Gupta. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, 1st edition, 1998. The Morgan Kauf-
mann Series in Computer Architecture and Design.

[24] W. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer networks
using virtual channels. Parallel and Distributed Systems, IEEE Transactions on,
4(4):466 –475, apr 1993.

[25] W. Dally and B. Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[26] W. J. Dally. Virtual-channel flow control. Parallel and Distributed Systems, IEEE
Transactions on, 3(2):194 –205, mar 1992.

[27] W. J. Dally and C. L. Seitz. The torus routing chip. Distributed Computing, 1:187–
196, 1986. 10.1007/BF01660031.

88

[28] R. Das, S. Eachempati, A. K. Mishra, V. Narayanan, and C. R. Das. Design and eval-
uation of a hierarchical on-chip interconnect for next-generation cmps. In HPCA-15,
2009.

[29] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. Leo Rideovt, E. Bassous, and A. R.
Leblanc. Design of ion-implanted mosfet’s with very small physical dimensions.
Journal of Solid-State Circuits, IEEE, SC-9:256–268, october 1974.

[30] J. Duato. A new theory of deadlock-free adaptive routing in wormhole networks.
Parallel and Distributed Systems, IEEE Transactions on, 4(12):1320 –1331, dec
1993.

[31] J. Duato. A necessary and sufficient condition for deadlock-free adaptive routing
in wormhole networks. Parallel and Distributed Systems, IEEE Transactions on,
6(10):1055 –1067, oct 1995.

[32] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In Proceedings of the 38th annual interna-
tional symposium on Computer architecture, ISCA ’11, pages 365–376, New York,
NY, USA, 2011. ACM.

[33] D. Fick, R. Dreslinski, et al. Centip3de: A 3930 dmips/w configurable near-
threshold 3d stacked system with 64 arm cortex-m3 cores. To appear in IEEE Inter-
national Solid-State Circuits Conference, San Francisco, CA, 2012, 2012.

[34] M. Galles. Spider: A high-speed network interconnect. IEEE Micro, 17:34–39,
January 1997.

[35] M. Galles and E. Williams. Performance optimizations, implementation, and veri-
fication of the sgi challenge multiprocessor. In System Sciences, 1994. Proceedings
of the Twenty-Seventh Hawaii International Conference on, 1994.

[36] M. Ghoneima and Y. Ismail. Optimum positioning of interleaved repeaters in bidi-
rectional buses. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 24(3):461 – 469, march 2005.

[37] C. Glass and L. Ni. The turn model for adaptive routing. In Computer Architecture,
1992. Proceedings., The 19th Annual International Symposium on, pages 278 –287,
1992.

[38] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Express cube topologies for
on-chip interconnects. In HPCA-15, 2009.

[39] B. Grot, S. W. Keckler, and O. Mutlu. Preemptive virtual clock: a flexible, efficient,
and cost-effective qos scheme for networks-on-chip. In MICRO 42, pages 268–279,
New York, NY, USA, 2009. ACM.

[40] M. Gschwind, H. Hofstee, B. Flachs, M. Hopkin, Y. Watanabe, and T. Yamazaki.
Synergistic processing in cell’s multicore architecture. Micro, IEEE, 2006.

[41] S. Gupta, M. Hibert, S. Hong, and R. Patti. Techniques for producing 3d ics with
high-density interconnect. White Paper, 2004.

[42] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive nuca: near-
optimal block placement and replication in distributed caches. In Proceedings of the

89

36th annual international symposium on Computer architecture, ISCA ’09, pages
184–195, New York, NY, USA, 2009. ACM.

[43] R. Haring. The ibm blue gene/q compute chip+simd floating-point unit. In
HotChips 23: A Symposium on High-Performance Chips, 2011.

[44] G. Hinton, R. Riches, C. Jasper, and K. Lai. A register scoreboarding mechanism.
In Solid-State Circuits Conference, 1988. Digest of Technical Papers. ISSCC. 1988
IEEE International, pages 270 –271, feb. 1988.

[45] J. Howard, S. Dighe, et al. A 48-core ia-32 message-passing processor with dvfs in
45nm cmos. In ISSCC 2010, pages 108 –109, feb. 2010.

[46] J. Hu and R. Marculescu. Energy- and performance-aware mapping for regular noc
architectures. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 24(4):551 – 562, april 2005.

[47] Y. J. Hwang, J. H. Lee, and T. H. Han. 3d network-on-chip system communication
using minimum number of tsvs. In ICT Convergence (ICTC), 2011 International
Conference on, pages 517 –522, sept. 2011.

[48] Intel Corp. Intel introduces the pentium 4 processor. http://web.archive.
org/web/20070403032914/http://www.intel.com/pressroom/

archive/releases/dp112000.htm, November 2000.
[49] Intel Corp. Intel atom processor for nettop platforms. Intel Product Brief, Noveme-

ber 2008.
[50] Intel Corp. Intel core i7-2600 processor (8m cache, 3.40 ghz). http://ark.

intel.com/products/52213, March 2012.
[51] ISSCC. International solid-state circuits conference (isscc) 2011 trends report.

http://isscc.org/doc/2011/2011_Trends.pdf, February 2011.
[52] N. Jerger and L.-S. Peh. On-Chip Networks. Morgan ClayPool Publishers, 1st

edition, 2009.
[53] N. E. Jerger, L.-S. Peh, and M. Lipasti. Virtual circuit tree multicasting: A case for

on-chip hardware multicast support. In Proc. of the 35th Annl. Intnl. Symposium on
Computer Architecture, ISCA ’08, pages 229–240, 2008.

[54] T. Johnson and U. Nawathe. An 8-core, 64-thread, 64-bit power efficient sparc soc
(niagara2). In ISPD, 2007.

[55] C. Keltcher, K. McGrath, A. Ahmed, and P. Conway. The amd opteron processor
for multiprocessor servers. Micro, IEEE, 23(2):66 – 76, march-april 2003.

[56] P. Kermani and L. Kleinrock. Virtual cut-through: a new computer communication
switching technique. Computer Networks, 3:267–286, 1979.

[57] T. Kgil, S. D’Souza, A. G. Saidi, N. L. Binkert, R. G. Dreslinski, T. N. Mudge, S. K.
Reinhardt, and K. Flautner. Picoserver: using 3d stacking technology to enable a
compact energy efficient chip multiprocessor. In ASPLOS, pages 117–128, 2006.

[58] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches. In ASPLOS-X, 2002.

90

[59] D. H. Kim, K. Athikulwongse, et al. 3d-maps: 3d massively parallel processor with
stacked memory. To appear in IEEE International Solid-State Circuits Conference,
San Francisco, CA, 2012, 2012.

[60] D. H. Kim, S. Mukhopadhyay, and S. K. Lim. Tsv-aware interconnect length and
power prediction for 3d stacked ics. In Interconnect Technology Conference, 2009.
IITC 2009. IEEE International, pages 26 –28, june 2009.

[61] J. Kim, J. Balfour, and W. Dally. Flattened butterfly topology for on-chip networks.
In MICRO-40, 2007.

[62] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. Microarchitecture of a high-radix
router. In Proceedings of the 32nd annual international symposium on Computer
Architecture, ISCA ’05, pages 420–431, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[63] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multithreaded sparc
processor. Micro, IEEE, 25(2):21 – 29, march-april 2005.

[64] G. Kornaros. Bcb: A buffered crossbar switch fabric utilizing shared memory. In
EUROMICRO-9, 2006.

[65] K. Kuhn. Cmos transistor scaling past 32nm and implications on variation. In
Advanced Semiconductor Manufacturing Conference (ASMC), 2010 IEEE/SEMI,
pages 241 –246, july 2010.

[66] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in multi-core architec-
tures: Understanding mechanisms, overheads and scaling. In ISCA-32, 2005.

[67] K. Lahiri, A. Raghunathan, and G. Lakshminarayana. Lotterybus: a new high-
performance communication architecture for system-on-chip designs. In Design
Automation Conference, 2001. Proceedings, pages 15 – 20, 2001.

[68] K. Lahiri, A. Raghunathan, and G. Lakshminarayana. The lotterybus on-chip com-
munication architecture. Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on, 14(6):596 –608, june 2006.

[69] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey. Communication ar-
chitecture tuners: a methodology for the design of high-performance communica-
tion architectures for system-on-chips. In Design Automation Conference, 2000.
Proceedings 2000. 37th, pages 513 –518, 2000.

[70] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey. Design of high-
performance system-on-chips using communication architecture tuners. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 23(5):620
– 636, may 2004.

[71] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-synchronized frames for guaranteed
quality-of-service in on-chip networks. In Proc. of the 35th Annl. Intl. Symp. on
Computer Architecture, ISCA ’08, pages 89–100, 2008.

[72] L. Li, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and I. Kadayif. Ccc: crossbar
connected caches for reducing energy consumption of on-chip multiprocessors. In
EUROMICRO, 2003.

91

[73] B.-C. Lin, G.-W. Lee, J.-D. Huang, and J.-Y. Jou. A precise bandwidth control ar-
bitration algorithm for hard real-time soc buses. In Design Automation Conference,
2007. ASP-DAC ’07. Asia and South Pacific, pages 165 –170, jan. 2007.

[74] P. Lindner, V. Dragoi, T. Glinsner, C. Schaefer, and R. Islam. 3d interconnect
through aligned wafer level bonding. In Electronic Components and Technology
Conference, 2002. Proceedings. 52nd, pages 1439 – 1443, 2002.

[75] C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the processor-memory
performance gap with 3d ic technology. Design Test of Computers, IEEE, 22(6):556
– 564, nov.-dec. 2005.

[76] A. Ltd. http://www.arm.com/products/processors/cortex-a/cortex-a9.php, 2011.
[77] M. R. Marty and M. D. Hill. Virtual hierarchies to support server consolidation. In

Proceedings of the 34th annual international symposium on Computer architecture,
ISCA ’07, pages 46–56, 2007.

[78] D. May. Xmos xs1 architectures. XMOS Ltd., July 2008.
[79] N. McKeown. The islip scheduling algorithm for input-queued switches. Network-

ing, IEEE/ACM Transactions on, 7(2):188 –201, apr 1999.
[80] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture. Micro, IEEE,

23(2):44 – 55, march-april 2003.
[81] S. Mirapuri, M. Woodacre, and N. Vasseghi. The mips r4000 processor. Micro,

IEEE, 12(2):10 –22, april 1992.
[82] G. E. Moore. Cramming more components onto integrated circuits, reprinted from

electronics, volume 38, number 8, april 19, 1965, pp.114 ff. Solid-State Circuits
Newsletter, IEEE, 20(3):33 –35, sept. 2006.

[83] G. E. Moore. Lithography and the future of moore’s law, copyright 1995 ieee.
reprinted with permission. proc. spie vol. 2437, pp. 2. Solid-State Circuits Newslet-
ter, IEEE, 20(3):37 –42, sept. 2006.

[84] S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The alpha 21364 network
architecture. Micro, IEEE, 22(1):26 –35, jan/feb 2002.

[85] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel routers for on-chip
networks. In Computer Architecture, 2004. Proceedings. 31st Annual International
Symposium on, pages 188 – 197, june 2004.

[86] T. Nesson and S. L. Johnsson. Romm routing on mesh and torus networks. In
Proceedings of the seventh annual ACM symposium on Parallel algorithms and ar-
chitectures, SPAA ’95, pages 275–287, New York, NY, USA, 1995. ACM.

[87] D. W. Oehmke, N. L. Binkert, T. Mudge, and S. K. Reinhardt. How to fake 1000
registers. In Proceedings of the 38th annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 38, pages 7–18, Washington, DC, USA, 2005. IEEE
Computer Society.

[88] S. Pasricha and N. Dutt. On-Chip Communication Architectures: System on Chip
Interconnect. Morgan Kaufmann, 1st edition, 2008.

92

[89] G. Passas, M. Katevenis, and D. Pnevmatikatos. A 128 x 128 x 24gb/s crossbar in-
terconnecting 128 tiles in a single hop and occupying 6% of their area. In Proceed-
ings of the 2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip,
NOCS, 2010.

[90] G. Passas, M. Katevenis, and D. Pnevmatikatos. Vlsi micro-architectures for high-
radix crossbar schedulers. In Proceedings of the Fifth ACM/IEEE International Sym-
posium on Networks-on-Chip, NOCS, 2011.

[91] L.-S. Peh and W. J. Dally. A delay model and speculative architecture for pipelined
routers. In Proc. of the 7th Intl. Symp. on High-Performance Computer Architecture,
HPCA ’01, pages 255–, 2001.

[92] K. Puttaswamy and G. Loh. The impact of 3-dimensional integration on the design
of arithmetic units. In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006
IEEE International Symposium on, page 4 pp., may 2006.

[93] S. E. Raasch and S. K. Reinhardt. The impact of resource partitioning on smt proces-
sors. In Proceedings of the 12th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’03, pages 15–, Washington, DC, USA, 2003.
IEEE Computer Society.

[94] E. Ranney. Alr hopes to beat completion with fall release of 386 line. InfoWorld,
page 5, September 1986.

[95] S. Rusu. Keynote:trends and challenges in high-performance microprocessor de-
sign. presented at electronic design processes 2004. monterey beach, ca. www.

eda.org/edps/edp04/submissions/presentationRusu.pdf, April
2004.

[96] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis. An analysis of on-chip inter-
connection networks for large-scale chip multiprocessors. ACM TACO, 2010.

[97] S. Satpathy, R. Das, K. Sewell, R. Dreslinski, D. Sylvester, T. Mudge, and
D. Blaauw. High radix self-arbitrating switch fabric with multiple arbitration
schemes and quality of service. In Design Automation Conference (DAC) 2012,
2012.

[98] S. Satpathy, R. Dreslinski, T. Ou, D. Sylvester, T. Mudge, and D. Blaauw. Swift:
A 2.1tb/s 3232 self-arbitrating manycore interconnect fabric. In VLSI Circuits (VL-
SIC), 2011 IEEE Symposium on, june 2011.

[99] S. Satpathy, Z. Foo, B. Giridhar, R. Dreslinski, D. Sylvester, T. Mudge, and
D. Blaauw. A 1.07 tbit/s 128x128 swizzle network for simd processors. In VLSIC,
2010.

[100] S. Satpathy, K. Sewell, T. Manville, R. Dreslinski, D. Sylvester, T. Mudge, and
D. Blaauw. A 4.5tb/s 3.4tb/s/w 64x64 switch fabric with self-updating least recently
granted priority and quality of service arbitration in 45nm cmos. In IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), February 2012, 2012.

[101] J. Schanin. The design and development of a very high speed system bus: The
encore multimax nanobus. In ACM Fall Joint Computer Conference, 1986.

93

[102] S. Scott, D. Abts, J. Kim, and W. J. Dally. The blackwidow high-radix clos network.
In Proceedings of the 33rd annual international symposium on Computer Architec-
ture, ISCA ’06, pages 16–28, Washington, DC, USA, 2006. IEEE Computer Society.

[103] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanra-
han. Larrabee: a many-core x86 architecture for visual computing. ACM Transac-
tions on Graphics, 2008.

[104] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S. Dwarkadas, and
M. Scott. Energy-efficient processor design using multiple clock domains with dy-
namic voltage and frequency scaling. In High-Performance Computer Architecture,
2002. Proceedings. Eighth International Symposium on, pages 29 – 40, feb. 2002.

[105] K. Sewell, T. Mudge, and S. K. Reinhardt. Extreme virtual pipelining (xvp): Moving
towards scalable multithreaded processors. In Wild and Crazy Ideas held in conjunc-
tion with 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, March 2009.

[106] A. Singh, W. Dally, A. Gupta, and B. Towles. Goal: a load-balanced adaptive routing
algorithm for torus networks. In Computer Architecture, 2003. Proceedings. 30th
Annual International Symposium on, pages 194 – 205, june 2003.

[107] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan.
Temperature-aware microarchitecture. In Computer Architecture, 2003. Proceed-
ings. 30th Annual International Symposium on, pages 2 – 13, june 2003.

[108] Soncis Inc. Sonics unetwork technical overview. http://www.sonicsinc.

com, January 2002.
[109] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in soft-

ware. http://www.gotw.ca/publications/concurrency-ddj.htm,
August 2009.

[110] R. W. Technologies. Alpha ev8 (part 2): Simultaneous multi-threat.
http://www.realworldtech.com/page.cfm?ArticleID=

RWT122600000000, December 2000.
[111] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. Power4 system

microarchitecture. IBM Journal of Research and Development, 46(1):5 –25, jan.
2002.

[112] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.
IBM Journal of Research and Development, 11(1):25 –33, jan. 1967.

[113] Y.-F. Tsai, Y. Xie, N. Vijaykrishnan, and M. Irwin. Three-dimensional cache design
exploration using 3dcacti. In Computer Design: VLSI in Computers and Processors,
2005. ICCD 2005. Proceedings. 2005 IEEE International Conference on, pages 519
– 524, oct. 2005.

[114] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm.
Exploiting choice: instruction fetch and issue on an implementable simultaneous

94

multithreading processor. In Proceedings of the 23rd annual international sympo-
sium on Computer architecture, ISCA ’96, pages 191–202, New York, NY, USA,
1996. ACM.

[115] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: maxi-
mizing on-chip parallelism. In Proceedings of the 22nd annual international sym-
posium on Computer architecture, ISCA ’95, pages 392–403, New York, NY, USA,
1995. ACM.

[116] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication.
In Proceedings of the thirteenth annual ACM symposium on Theory of computing,
STOC ’81, pages 263–277, New York, NY, USA, 1981. ACM.

[117] J. C. Villanueva, J. Flich, J. Duato, H. Eberle, N. Gura, and W. Olesinski. A per-
formance evaluation of 2d-mesh, ring, and crossbar interconnects for chip multi-
processors. In NoCArc-2, 2009.

[118] H.-S. Wang, L.-S. Peh, and S. Malik. A power model for routers: Modeling alpha
21364 and infiniband routers. In HOTI-10, 2002.

[119] Wasson, Scott. Intel’s pentium 4 prescott processor. http://techreport.

com/articles.x/6213/1, February 2004.
[120] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,

C.-C. Miao, J. Brown, and A. Agarwal. On-chip interconnection architecture of the
tile processor. Micro, IEEE, 27(5):15–31, sept.-oct. 2007.

[121] D. Winsor and T. N. Mudge. Crosspoint cache architectures. In In International
Symposium on Computer Architecture, pages 266–269, 1987.

[122] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
Characterization and methodological considerations. In ISCA-22, 1995.

[123] Xbit Labs. Intel pentium 4 3.06ghz cpu with hyper-threading technology: Killing
two birds with a stone... http://www.xbitlabs.com/articles/cpu/

display/pentium4-3066.html, November 2002.
[124] K. Yeager. The mips r10000 superscalar microprocessor. Micro, IEEE, 16(2):28

–41, apr 1996.
[125] Y. Zhang. Architecture and performance comparison of a statistic-based lottery ar-

biter for shared bus on chip. In Design Automation Conference, 2005. Proceedings
of the ASP-DAC 2005. Asia and South Pacific, volume 2, pages 1313 – 1316 Vol. 2,
jan. 2005.

[126] Y. Zhang and M. J. Irwin. Power and performance comparison of crossbars and
buses as on-chip interconnect structures. In ASILOMAR-33, 1999.

[127] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. Gao. A study of the
on-chip interconnection network for the ibm cyclops64 multi-core architecture. In
IPDPS-20, 2006.

95

