Scaling High-Performance Interconnect Architectures to
Many-Core Systems

by

Korey LaMar Sewell

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2012

Doctoral Committee:

Professor Trevor Mudge, Chair

Professor Scott Mahlke

Professor Dennis Sylvester

Adjunct Associate Professor Steven K. Reinhardt

© Korey LaMar Sewell 2012
All Rights Reserved

To my wife Shetia and my son Kaden

il

ACKNOWLEDGEMENTS

First off, I would like to thank God for putting me in the position that I am in today. As
any Ph.D student knows, there are many times where the academic grind and struggle of
completing a doctoral degree seems overwhelming. Thus, I have to thank God for putting
the right people in my life to keep me going and giving me the peace of mind of knowing
that He put me at Michigan for a reason. My faith was truly a key factor in persevering and
persisting through this process.

Next, I have to say thank you to my two advisors during my time at Michigan. Pro-
fessor Trevor Mudge and Professor Steve Reinhardt were instrumental in facilitating my
development as a student, allowing me to explore interesting research projects, and most
importantly supporting me through life. It was refreshing and invaluable to have advisors
who supported my ideas and challenged me to prove whether ideas were worthwhile or not.
My favorite Steve quote is “It’s necessarily complex...” while my favorite Trev quotes are:
“We’ve been doing it for years...It’s called computers!” and “(insert lab member’s name
here), You’ve got to think!”

I'have to thank all my labmates for being a great support system. The “m5/gem5” team—
Nate Binkert, Ali Saidi, Ron Dreslinski, Kevin Lim, Lisa Hsu, and Gabe Black—introduced
me to a level of software and simulator development that can only be referenced as “awe-
some”. I learned so much from you all and I thank you for helping me build a skill set
that will serve me well into the future. Geoff Blake, Tony Gutierrez, Joe Pusderis, Tom

Manville, Michael Cieslak, Reetu Das, Kyla McMullen, Joe Greathouse, Andrea Pelle-

grini, Jason Clemons, Ben Cassell, Timur Alperovich, Dave Meisner and Steve Pelley are

il

among the many other people who were always around for great research conversation,
good laughs, and overall just a great environment.

I also have to thank my best friends at Michigan for helping me have a great experience
outside of just “lab-life”. My 1st summer at Michigan, Jason Torrey and I visited just
about every inch of Ann Arbor. Thanks for showing me the ropes Jason! Kevin Carter
was my long-time roommate at Michigan and has been an inspiration to me. Watching him
complete his Ph.D showed me that there was a path to having a great life inside and outside
of school. Cedric Armand introduced me to golf, snowboarding, and what “New York™ life
is in Michigan. I can’t say enough about Ced’s “you only have 1 life, live it!” attitude. It’s
contagious. Bradley Campbell was and always will be good for a worthy debate. We’ve
“fought” hours at a time over topics ranging from basketball (Kobe Bryant/LeBron James!)
to food (chiclet and tacos?!) to politics. “Chuck”™ Sutton is also a guy that’s been a true
friend: always available when you need him and definitely always available when there is a
good time to be had! All of the aforementioned guys were like brothers to me at Michigan
and always provided encouragement when I needed it.

Of course, I have to thank my mother, Gertrude Green, and my father, William Sewell,
for all the books, Saturday library outings, and relentless “haggling” about school over
the years. My little brother, Kenneth Wise, has always made me feel like I could solve
the world’s problems. Although that’s obviously impossible, I appreciate his consistent
emotional support. These three people might be the only ones more excited then me about
this Ph.D!

Last *but* certainly not least, I have to thank my wife Shetia and my son Kaden for
being there for me every night and providing a daily reminder of what I was truly fighting
for in this Ph.D process. There’s nothing like the love and support of your family to keep

you going when things get tough.

v

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS iii

LISTOF FIGURES viii

LIST OF ABBREVIATIONS xiii

ABSTRACT Xiv
CHAPTER

I. Introduction 1

1.1 Trends in Performance Scaling 2

1.1.1 Single-Core Performance Scaling 2

1.1.2 The Multi-CoreEra 7

1.1.3 Scaling from Multi-Core to Many-Core 8

1.2 Scalability and the Impact of On-Chip Interconnects 9

1.2.1 Busses 9

1.22 Crossbars 9

1.2.3 Network-On-Chip 10

1.3 Contributions 12

1.4 Organizationo e 13

II. Background and Related Work 14

2.1 Interconnect Characteristics 14

2.1.1 Units of Communication 15

2.1.2 Metrics e e 16

2.1.3 Arbitration 18

2.1.4 Limitations 20

2.2 BUSSES e e 20

23 Crossbars. 22

24 Network-on-Chip 24

24.1 Topologies 25

2.4.2 Router Microarchitecture 28

243 Routing 30

25 RelatedWorks 31
III. Swizzle-Switch: A High-Radix, Self-Arbitrating Crossbar 33
3.1 Overview 34
3.2 Layout and Data-Transmission Phase 36
3.3 ArbitrationPhase o L. 37
3.3.1 Arbitration Mechanism 38

3.3.2 LeastRecently Granted 40

3.3.3 Most Recently Granted MRG) 42

334 Selective LRGandMRG 42

3.3.5 Priority Swapand Reversal 44

336 RoundRobin 45

3377 QoS Arbitration o 45

3.4 Silicon Validation 46
3.5 Enhanced 32nm Design and Analysis 47
3.6 Conclusions 48
IV. Swizzle-Switch Networks for Many-Core Systems 50
4.1 Interconnect Design Components 51
4.2 Swizzle Switch Network, 52
42.1 Coherence Protocol 53

4.2.2 Timing and Layout Evaluation 54

423 Reliability. oL 55

43 MeshTopology 55
44 FlattenedButterfly 57
4.5 Simulation Methodology 58
4.6 Performance Analysis 58
4.7 Energy and Power Analysis, 62
4.8 Sensitivity Analysis o 62
4.8.1 RouterPipelines 63

48.2 Virtual Channels 63

4.8.3 Interconnect Frequency 64

484 Out-of-OrderCores 65

4.9 Conclusions 66
V. Scalable 3D Interconnects 68
5.1 3D Integration Technology 69
5.2 3D-Swizzle-Switch Networks 70

Vi

5.2.1 Architecture 70

5.2.2 Performance Results 72

5.2.3 Thermal Analysis 72

5.3 XPoint: Scaling Many-Core Bussesto3D 73

5.3.1 Architecture. 74

5.32 Methodology 76

5.3.3 Performance Analysis 79

54 Conclusions 81

VL. Conclusions 83
BIBLIOGRAPHY 86

vii

Figure

1.1

1.2

1.3

1.4

1.5

2.1

2.2

23

24

2.5

2.6

LIST OF FIGURES

Processor Frequency Trends in Intel Processors [95]. 3
Reported Microprocessor Power Trends [51]. 5

Types of Multithreaded Processors [110]. This example assumes a 4-wide
superscalar processor. Each vertical set of boxes represents one execution
cycle and different colors represent different threads. 6

QoS in network-on-chip. Figures (a) and (b): All nodes generate traffic
directed to a hotspot located at (8,8) with injection rate of 0.05 flit/cycle/node,
and the bar graphs show the accepted service rate per source node for (a)

8x8 mesh and (b) 64-radix SSN. Figures (c) and (d) demonstrate the same

effect for uniform random traffic at injection rate of 1 flit/cycle/node. Un-
fairness metric derived from [25].. 10

Comparison of interconnect power of SSN and Mesh Network-on-Chip . 11

High-level view of an interconnection network. In this example, core
(Cy) and memory (M;) components are connected to the interconnect

fabric through their own communication channel. 15
Breakdown of a 64-byte interconnect message into 8 packets and 4 flits. . 16
Offered Traffic v. Message Latency in a Interconnection Network. 17
A bus interconnect connecting cores to memory. 21

High-level view of a (a) 8x8 crossbar interconnect and an (b) 4x4 matrix
crossbar connecting cores to memory. A separate crossbar connecting
memory to cores would be needed to complete the circuitin (a). 23

A Mesh Network-on-Chip Topology. 24

viii

2.7

2.8

2.9

3.1

32

33

3.4

3.5

3.6

3.7

3.8

39

Common on-chip network topologies. Illustration from [52].
A 2-ary, 3-fly butterfly network. Illustration from [52].

The Microarchitecture for a credit-based, virtual channel router found in
a Mesh Topology (note: 5 inputs and 5 outputs). The circled numbers
represent router pipeline stages.

High level view of (a) bus interleaving required for mux-based crossbars;
(b) a traditional matrix style crossbar with arbiter/controller consuming
space and requiring additional input wires; (c) the proposed Swizzle-
Switch design that reuses input/output busses for programming/arbitration
of the crossbar with the arbitration logic placed under the dense metal in-
terconnect. L e e

Scaling trends of the Swizzle-Switch Interconnect in 32nm vs. a conven-
tional crossbar (Simulated).

Circuit implementation of the Swizzle-Switch Interconnect. Each output
column in the interconnect uses the same request bit from each input bus.
Each input row uses the same bit from each output bus to perform arbitra-
tion. The expanded view of the crosspoint shows the stored configuration
and crosspoint connections for each bit. It also shows the programming
of priority bits using the output bus. Because the crosspoint is for Input
Row 0, the arbitration sense amp is on output wire 0. Similarly, because
it is Output column 1, the request line is drawn from input wire 1.

Conceptual example of Swizzle-Switch Arbitration. A matrix represents
one complete output column. Each output column arbitrates and trans-

mits data independently of other output columns.

A 5x3 crossbar showing arbitration circuits. Each output column arbi-
trates and transmits independently.o,

Detailed blowup of arbitration for the K*" output column of a 5-input
Swizzle-Switch interconnect.o

Least-Recently-Granted priority update of a Swizzle-Switch output.
(a) 64-Core Swizzle-Switch Network System (b) Maximum Request La-
tency for Random and Round-Robin Arbitration Policies (Normalized to

LRG). . o o o

Most Recently Granted priority update of a Swizzle-Switch output.

X

36

39

41

42

3.10

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

4.4

4.5

Selective LRG (a) and MRG (b) priority update of a Swizzle-Switch output.

Priority Swap (a) and Reversal (b) of a Swizzle-Switch output.
A Quality-of-Service Circuit for the Swizzle-Switch.
Die Photo of the 45nm silicon testchip.

Measured Frequency and Bandwidth Efficiency of the silicon test chip
from3.13.

Bandwidth and Speed of a Swizzle-Switch with 128-bit busses in 32nm.
Both repeated and non-repeated versions are presented. When using re-
peaters the Swizzle-Switch scales to designs as large as 128x128x128 re-
sulting in 15 Tbps of total bandwidth.

(a) High-level architecture diagram (a) of the 64-core Swizzle-Switch Net-
work (SSN) built with Swizzle-Switch crossbars. (b) The floor-plan of
the (SSN) system and estimated dimensions. Octants are colored to aid
the reader in seeing how wires leave the crossbar. The total chip area
is 204mm?, each core/L1 tile consumes 0.74mm?, the L2 tiles consume
4.5mm? and the Swizzle-Switch consumes 6.65mm?.

(a) Classification of communication messages required for coherence (b)
Wiring diagram for combining three Swizzle-Switches into a 64x64x128bit
crossbar. The wires are labeled by the quadrant to which they connect.
Each wire in the diagram represents either 3, 5, or 8 busses, where each
bus is 128-bits. The overall area of the Crossbar is 6.65mm?(~ 4% of the
64 tile system). e e e

Floor-plan of the Mesh and Flattened Butterfly systems with estimated
dimensions. The total size of both chips is 190mm?2..

Cycle Analysis for 64 core Mesh, FBFly, and SSN topologies during par-
allel regions of the SPLASH2 benchmarks.

Histogram of L1 cache miss latency for the Radix benchmark.

43

44

46

47

47

48

51

53

56

4.6

4.7

4.8

4.9

4.10

5.1

5.2

5.3

Total interconnect power (top) broken down by components within the
Mesh, FBFly, and SSN systems for all benchmarks tested. Total system
energy (bottom) for each benchmark broken down by component. Over-
all the SSN reduces interconnect power by 33% over the Mesh and 28%
over the FBFly on average. As a result of the lower interconnect power
and better performance the total SSN system energy is 25% less than the
Mesh and 11% less thanthe FBFly.

Sensitivity analysis using ideal, 2-stage speculative routers. Histogram of
the L1 miss latencies for the Radix benchmark.

Mesh sensitivity to the number of virtual channels (VCs) per virtual net-
work for the Raytrace benchmark. For this example, there is only a 1 %
performance improvement using 5 VCs (over 3 VCs) per virtual network.
The enlarged data point represents the configuration used in Section 4.6. .

Sensitivity to the interconnect frequency for the Mesh and SSN (Cores
remain at 1.5GHz). Results show that a Mesh w/4-cycle routers needs to
be run at 4x the frequency of a SSN to achieve the same performance. The
enlarged data points for the SSN and Mesh represent the configurations
usedin Section4.6.

Speedups of a 64-core SSN using out-of-order cores over 64-core NoCs
also using out-of-order cores. Benchmarks shown represent the 3 traf-
fic classes referenced in Section 4.6. The compute intensive benchmark
(WaterNSquared) sees a 1.31x improvement while the memory-intensive
(Radix) and synchronization-sensitive workloads see ~2x and ~3x im-
provements respectively when using out-of-order cores.

Top level view of the Centip3De 7-layer 3D system [33] built on Tez-
zaron 3D stacking technology and a cross section of the same process on
the 3D-MAPS system [59]. Note the TSV’s are only 6.47 microns deep
and the wafer is thinned to less than 12 microns which is important for
reducing thermal resistance and RC delays.

(a) A 3D Swizzle-Switch Network achieved by stacking four 2D Swizzle-
Switch Network layers and using TSV’s to interconnect the layers. (b)
The modified circuits for the 3D Swizzle-Switch Network. Even num-
bered outputs are arbitrated on the top layer, odd outputs are arbitrated
on the bottom layer. Input request lines must be forwarded from the
top—bottom or bottom—top through TSV connections.

Speedup of the 3D-SSN on 2-layer and 4-layer systems compared to a

2D-SSN. The benchmarks most sensitive to interconnect delay are plotted
as well as the average across all benchmarks.

X1

64

65

54

5.5

5.6

5.7

5.8

HotSpot simulation of 64 Core SSN system on 1 and 4 layers for the

worst case benchmark. The peak temperature of the 3D chip is 60° Celsius. 73

High level view of (a) a conventional bus based architecture, and (b) The
XPoint-2D architecture. Caches in a vertical column are all assigned
to the same address range. No snooping is required between vertical
columns. The horizontal connections use point-to-point links.

Diagram of the XPoint 3D design.

Runtime (solid lines) Bus Utilization (dotted lines) vs. core counts for
Conventional Bus and XPoint Systems. A straight line for runtime repre-
sents ideal scaling of the benchmark.

Speedup comparison for Bus, XPoint 2D, and XPoint 3D interconnects.
The best performing parameters for each benchmark and configuration
are used. Details of number of cores, slices, and layers are found in
Table 5.4

Xii

LIST OF ABBREVIATIONS

CGMT Coarse-Grained Multithreading
CMP Chip Multiprocessor

CPU Central Processing Unit

FBFly Flattened Butterfly

FGMT Fine-Grained Multithreading
I/O Input/Output

LRG Least-Recently Granted

MRG Most-Recently Granted

NoC Network-on-Chip

NUMA Non-Uniform Memory-Access
QoS Quality-of-Service

RR Round-Robin

SMT Simultaneous Multithreading
SSN Swizzle-Switch Network

TDMA Time Division Multiple Access
TSV Through-Silicon Via

VC Virtual Channel

Xiii

ABSTRACT

Scaling High-Performance Interconnect Architectures to Many-Core Systems
by

Korey LaMar Sewell

Chair: Trevor Mudge

The ever-increasing demand for performance scaling has made multi-core (2-8 cores) chips
prevalent in today’s computing systems and foreshadows the shift toward many-core (10s-
100s of cores) chips in the near future. Although the potential performance gains from
many-core systems remain appealing, the widespread adoption of these systems hinges on
their ability to scale performance while simultaneously satisfying Quality-of-Service (QoS)
and energy-efficiency constraints.

This work makes the case that the interconnect for these many-core systems has a sig-
nificant impact on the aforementioned scalability issues. The impact of interconnects on
many-core systems is illustrated by observing that the degree of the interconnect has a sig-
nicant effect on system scalability and demonstrating that the architecture of high-radix,
many-core systems are feasible, energy-efficient, and high-performance.

The feasibility of high-radix crossbars for many-core systems is first shown through a
new circuit-level building block called the Swizzle-Switch. A 32nm Swizzle-Switch uti-
lizes integrated arbitration techniques to provides an energy- and area-efficient switch-
ing element that improves the scalability of crossbars to a high radices. The Swizzle-

Switch is shown to operate at frequencies up to 1.5GHz for 128-bit, radix-64 crossbars

Xiv

and also to have the ability to implement many arbitration policies such as Least-Recently
Granted (LRG) and Round-Robin (RR). Results show that Swizzle-Switch’s LRG arbitra-
tion policy reduces the worst-case request access latency by 1.83x and 2.03x on average
over round robin and random arbitration schemes, respectively.

This work then shows how a many-core system called the Swizzle-Switch Network
can use the Swizzle-Switch as the central building block for a flat crossbar interconnect.
The Swizzle-Switch Network is shown to be advantageous to traditional Network-on-Chip
(NoC) for systems up to 64 cores. The Swizzle-Switch Network improves system per-
formance by 21%, reduces L1 on-chip average miss latency by 2.2x, and decreases the
standard deviation of that L1 miss latency by 3.0x relative to a Mesh NoC topology. Ad-
ditionally, all of these performance benefits are obtained while providing a 25% energy
savings over the Mesh.

The Swizzle-Switch is also leveraged as a building block for high-radix NoC topologies
that can support many-core architectures. The Swizzle-Switch-based Flattened Butterfly
topology is demonstrated to provide a 15% speedup, 1.76x smaller L1 on-chip average
miss latency, 2.5x reduction in miss latency standard deviation, and 10% energy savings
over the Mesh topology.

Finally, the impact that 3D stacking technology has on many-core scalability is eval-
uated and shown to assist crossbar and bus interconnects in scaling past their traditional
limitations. A 3D-optimized Swizzle-Switch Network is able to leverage frequency gains
to achieve a 15-28% speedup over a 2D-Swizzle-Switch Network when using memory-
intensive benchmarks. Additionally, a bus-based 64-core architecture is shown to provide

an average speedup of 49x over a baseline uniprocessor system when using 3D technology.

XV

CHAPTER1

Introduction

The ever-increasing demand for computing power has driven the computer industry for
decades. Significant compute resources are no longer reserved for servers and supercom-
puters but also for an array of mobile devices such as laptops, tablets, and cell phones.
While these compute elements continue to become more powerful, they have reached the
point where physical limitations threaten the future scalability of high-performance pro-
cessors. Consequently, computer architects face the continuing challenge of scaling perfor-
mance while simultaneously managing area, frequency, and power constraints.

The first part of this chapter details processor scaling trends that have caused the com-
puter systems industry to move from multi-core to many-core systems. Performance scal-
ing is first discussed in the context of single-thread processor designs and then extended
to consider pertinent issues for multithreaded processors. After outlining the tradeoffs of
multithreaded designs, scaling trends for multi-core and many-core processors are detailed.

The second part of this chapter motivates the need for scalable interconnect architec-
tures. In particular, this section discusses the inability of busses and crossbars to scale
for many-core systems and notes that Network-On-Chips have consequently become the
default interconnect for many-core designs.

The final part of this chapter outlines the contributions this work makes in analyzing

and designing interconnect architectures for many-core systems.

1.1 Trends in Performance Scaling

For years, performance scaling in computer chips has followed the path defined by
Moore’s law [82, 83]. Moore’s prediction that the number of transistors on a chip would
double every 18 months has created a market in which single-chip performance improves
even while the actual size of a chip decreases. This increase in transistors per chip has
coincided with an increase in area for performance enhancing hardware (e.g., large on-chip
caches, out-of-order processing, floating point units, etc.). Additionally, computer archi-
tects could scale performance simply by waiting for smaller technology nodes to increase
processor clock frequency. Rapidly multiplying transistor counts eventually allowed for
multiple threads per core, multiple cores on chip, and a host of hybrid technologies to

increase performance.

1.1.1 Single-Core Performance Scaling

Early contributions in performance scaling have focused on speeding up a single core
(also referred to as CPU) on a single chip. This scaling has primarily consisted of CPU
pipeline enhancements enabled by additional Moore’s law transistors as well as circuit
improvements that have seen single core frequency boosted from the MHz to the GHz

range.

1.1.1.1 Frequency Scaling

Along with Moore’s law, Dennard scaling [29] has been a key trend in the performance
scaling of a single CPU. Dennard scaling provided that decreasing the size of a transistor
was enough to provide an improvement in circuit delay and also consume less power. Fig-
ure 1.1 shows an example of the significant frequency advances that have been achieved
according to predicted scaling trends. An Intel 1386 processor [94] in 1987 operated around
the 16MHz range while the 2000 version of the Pentium 4 [48] operated around 1.5GHz.

This yearly doubling of clock frequency has been a large contributor to single core perfor-

Pentium®4

Pentium® il

Pentium®ll

¥
z
g
5
Z
2
'

Pentium Pro®

Pentium®

10 - ‘ ‘
1987 1989 1991 1993 1995 1997 1999 2001 2003

Figure 1.1: Processor Frequency Trends in Intel Processors [95].

mance scaling as application speedup could be achieved without necessarily optimizing the
application itself.

Unfortunately, the benefits of Dennard scaling have dissipated past the 130nm technol-
ogy node. While circuit advances have still allowed technology nodes to continue scaling
past 32nm [65], the proportional relationship of power and frequency (P = CV?f) makes it
difficult to blindly increase clock frequency without suffering significant thermal disadvan-
tages.

Sutter [109] analyzes transistor, clock frequency, and power trends for Intel processors
produced through the year 2009 and observes that the speed of Intel CPUs peaked around
3.4GHz due to cooling constraints. Consequently, today’s chip designers can no longer

count on the speedup of improved technology nodes to arbitrarily improve clock frequency.

1.1.1.2 Single-Thread Scaling

The ability to scale single-thread performance has historically been one of the great
beneficiaries of Moore’s law. Many authors have proposed performance-enhancing hard-
ware to pipeline, speculate, and cache single-threaded applications. The increased presence
of on-chip caches has also been a direct beneficiaries of Moore’s law. Whereas early pro-
cessors might have used a single level of caching, it is common for current processors to
use up to three levels of cache at sizes approaching 8 to 16 MB. The larger amount of on-
chip caching continues to aid single-thread scaling by decreasing average memory access
latency and in turn providing more CPU cycles for a single-thread.

In-order pipelines, like the MIPS4K [81], divide the execution of an instruction into
distinct stages (e.g., fetch, decode, execute, memory, and writeback). This division of tasks
provides greater instruction throughput and also decreases the minimum cycle time of the
CPU (as the maximum frequency of the pipeline is limited by the pipeline stage with the
longest delay). The Prescott derivatives of the Intel Pentium 4 series [119] have used up to
31 pipeline stages in an effort to maximize how fast the CPU can process instructions.

Other single-thread scaling techniques, such as out-of-order processing, attempt to
leverage the Instruction Level Parallelism (ILP) within an application to improve perfor-
mance. While scoreboards [44] can be used to track and execute independent instructions,
register renaming techniques are the primary way modern processors exploit ILP. Toma-
solu’s reservation-station approach [112] is recognized as the seminal work in out-of-order
processing and has been followed by designs such as the MIPS 10K [124] which use free
lists, load-store queues, and physical register files to further optimize register renaming.

Processors like the Intel Itanium [80] take advantage of ILP using Very Long Instruc-
tion Word (VLIW) architectures. These techniques rely on the compiler to expose the
parallelism for the hardware in the form of multiple instructions to execute on one cycle
(VLIW).

The continued scaling of ILP hardware has become limited by the available ILP in

250

L 4

200 *

150 * *

Power Consumption (W)

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011
Year

Figure 1.2: Reported Microprocessor Power Trends [51].

applications as well as the cost of out-of-order hardware. While application-specific paral-
lelism can not be helped without changes in the software, exploiting the maximum amount
of parallelism entails increasing expensive hardware structures such as the instruction win-
dow (queue), number of renaming registers, reorder buffers and load-store queues. In par-
ticular, the large buffers needed to implement hardware such as the instruction window of-
ten use power-intensive, content-associative memories (CAM), which can also negatively
impact the maximum processor frequency if on the processor pipeline’s critical path. Fig-
ure 1.2 shows processor power trends over the past decade. Because the cost of cooling a
chip is prohibitive, single-chip power has stalled in the 10s of Watts range. Consequently,
recent work has shown that there is only a marginal amount gain left to obtain in single-

thread hardware without incurring a disproportionate amount of power overhead [6].

1.1.1.3 Exploiting Multithreaded Performance

As aresponse to the problems of single-core scaling, computer architects turned toward
multithreaded architectures for increased processing power. While the latency to com-

plete a single-thread of execution only continues to improve incrementally, the opportunity

Thread 1 OS Context Switch Code Thread 2

e TGRS e

Interrupt, exception or return from T
OS call exception

Thread 1 2 Thread 3 Thread 4

el el et | 1 LG LB
Multithreaded Multithreaded
S RN

Cache f Cache Cache
Miss Miss Miss

Execution 1
Units Time

Types of Multithreaded Processors [110]. This example assumes a 4-wide su-
perscalar processor. Each vertical set of boxes represents one execution cycle
and different colors represent different threads.

—-

-
o1 g
(3
=0
(=9

[

Figure 1.3:

to increase throughput amongst multiple threads has given rise to numerous architectures
striving to exploit thread-level parallelism (TLP) in addition to ILP.

Multithreaded architectures can be split up into three types: Coarse-Grained Multithreading
(CGMT) , Fine-Grained Multithreading (FGMT) and Simultaneous Multithreading (SMT).
Figure 1.3 illustrates multithreaded architecture types. CGMT designs switch threads on
every long-latency CPU event such as a cache miss or page fault. While one thread is ser-
vicing this type of event, the CPU switches threads instead of stalling. FGMT architectures
switch threads at a much smaller time quantum. Thread switch can be triggered every cy-
cle, using some priority scheme (e.g., round-robin), or reacting to some speculative event
(e.g., branch instruction).

SMT has been the most popular of multithreading architectures. First introduced by
Tullsen et al. [115], SMT architectures process multiple hardware threads in parallel by
dynamically partitioning resources amongst threads (e.g., register file, instruction queue,
etc.) The Intel Pentium 4’s version of SMT, HyperThreading [123], was among the 1st
commercially available SMT processors and allowed up to 2 hardware threads at one time.
Prior studies have explored fetch policies [114], partitioning schemes [93, 17], and using
SMT threads as helpers (e.g., prefetchers) for a main running thread [18]. Works such as

Oehmke’s Virtual Context Architecture [87] and Sewell’s EXtreme Virtual Pipelining [105]

propose SMT processors that can support high thread counts. These works optimize the
limitation of the static storage resources within the processor pipeline (e.g., the register
file) to create virtual hardware contexts. Burns and Gaudiot [16] find that 8-way (threaded)
SMT designs can provide a 5x throughput improvement over a traditional out-of-order
processor.

Despite the throughput gains, Burns’ work has also shown that single-core multithreaded
processors are limited by the amount of inter-thread resource sharing (e.g., the cache) and
the hardware cost of adding additional thread contexts in the system. The additional area
overhead of an 8-way SMT processor is found to be 46% compared to a non-SMT, out-of-
order design. Thus, recent SMT processors have been limited to about 4 threads per system
while in-order, SMT designs like the SPARC Niagara [63] have much less thread state to

replicate and have implemented CPUs with 8-16 hardware threads per core.

1.1.2 The Multi-Core Era

As transistor and voltage scaling started to see diminishing performance returns for
both single- and multi-threaded CPUs, chip architects began to leverage increased transistor
counts to build chips with multiple CPUs (cores) on one die. Commonly referred to as Chip
Multiprocessor (CMP), these multi-core systems typically replicate the core and private
caches for each processing element while sharing a second-level cache and then connecting
to a main memory controller. In comparison to a multithreaded processor, replicating per-
core resources instead of per-thread resources becomes more energy-efficient as the number
of hardware contexts (threads) increases. This is primarily due to the cache thrashing and
microarchitectural resource sharing issues that can hinder the performance of multithreaded
CPUs with a high number of hardware threads.

In 2001, IBM’s Power4 processor [111] realized 2 cores on chip and is regarded as
the first commercial, general purpose CMP. The Power4 was quickly followed by designs

such as the AMD Opteron [55] and the Intel Itanium 2 [80]. CMPs have now become the

predominant choice for throughput scaling in both the general-purpose and embedded sys-
tems markets. Currently, Intel’s Core 17 [50] series targets the general-purpose computing
market and offers up to 6 cores per processor while the ARM Cortex A9 is a popular choice
in the embedded world and can support up to 4 cores on die.

Because single-core multithreading and multi-core systems are not mutually exclusive
designs, Chip Multithreading (CMT) architectures like the Sun UltraSparc IV (codename:
Niagara [63]) have combined both technologies to maximize throughput. The latest version
of the Niagara series (Niagara 3/UltraSparc T3) has 16 inorder cores and 8 threads per cores

allowing for the processing of 128 threads simultaneously.

1.1.3 Scaling from Multi-Core to Many-Core

The continued scaling from multi-core (4-16 cores) to many-core (64+ cores) has be-
come prohibited by factors such as power distribution and interconnect topology. The chal-
lenge of powering a many-core chip can lead to designs that have “dark silicon” [32]: chips
where parts of the area must be turned off due to power constraints. Although dynamic
Voltage and Frequency Scaling [104] technology allows architects to tune core frequency
at runtime, there is a significant amount of core management necessary to maintain high
performance for designs where the frequency is mitigated by the total core count.

Additionally, the on-chip interconnect has become a limiting factor for future many-
core chips. Managing communication costs in the form of wire delay, contention, and
bandwidth has a large impact on the performance scalability as the number of cores rises.
Bus and crossbar-based interconnects are commonplace for small multi-core systems but
have been limited by the amount of contention and the high power of their designs re-
spectively. Recently, systems with large core counts have used Network-on-Chip (NoC)
topologies such as a ring or mesh to solve the wiring and power problems inherent in tradi-
tional bus and crossbar interconnect fabrics. However, enforcing quality of service in NoCs

becomes problematic as the core count continues to rise and limit performance gains.

1.2 Scalability and the Impact of On-Chip Interconnects

1.2.1 Busses

The emergence of many-core designs has led to a renewed interest in interconnect tech-
niques because intra-chip communication bottlenecks can compromise performance. Al-
though most commercial multi-core designs have used bus-based communication [49, 4],
long bus wires as well as saturated bus contention has hindered the scalability of busses
past 8-16 cores [23]. As such, it is clear that bus-based interconnects are not suitable for

many-core systems.

1.2.2 Crossbars

To provide better bandwidth, early multi-core systems transitioned from bus-based in-
terconnect fabrics to crossbars [54, 3, 78, 127]. Crossbar-based architectures, like those
in the Niagara2 [54] and IBM BlueGene/Q [43], can provide the uniform memory access
latency that is unachievable in multi-stage NoC systems. Additionally, crossbar systems
provide higher bisection bandwidth and lower complexity solutions for quality-of-service
guarantees than NoC designs.

Despite these advantages, large crossbars are generally considered infeasible because
the area and power of traditional matrix-style crossbars grow quadratically with crossbar
radix. The increased power consumption and die area from high-radix crossbars has led
researchers to explore alternatives to flat crossbar topologies [126]. In systems whose core
counts approach 64-128, several studies have noted that creating a crossbar to interconnect
all cores would cause the interconnect’s power and area to dominate the system [66]. Con-
sequently, there has been a paradigm shift towards packet-switched, on-chip networks with
regular topologies such as meshes [120, 45] and rings [40, 103].

However, this thesis revisits the ability of crossbars to scale to many-core systems. The

integrated arbitration technology found in the Swizzle-Switch (detailed in Chapter III) opti-

flits/node/sec
S Average=0.013 ﬂlts/node/sec Average =0. 36ﬂjts/node/sec Average=0.47 ﬂ]ts/node/sec
Uﬁ(auness 1.008 lJ;1fa irness = 1.89 Un(al;ness 1.02.

3 o006 060 060 <~
§a§0-°5 050 5 ~ 050 i
o $o0.04 0.40 0.40
£ T
§§0-03 0.30 0.30
7 £20.02 0.20 0.20
%:0.01 ::7+§\ 0.10 III' 7,Ch 010 III' 7+é\
0.00 59 —’3%" 0.00 33° 0.00 VS 3
123,40 @ 12346 e T P o
noge 4 56 & node iy node 8 o°
e index) <& lndex (X) lndex (X)
(a) Mesh Hotspot Traffic (b) SSN (c) Mesh Uniform Random Traffic (d) SSN
Figure 1.4:

QoS in network-on-chip. Figures (a) and (b): All nodes generate traffic directed
to a hotspot located at (8,8) with injection rate of 0.05 flit/cycle/node, and the
bar graphs show the accepted service rate per source node for (a) 8x8 mesh and
(b) 64-radix SSN. Figures (c) and (d) demonstrate the same effect for uniform
random traffic at injection rate of 1 flit/cycle/node. Unfairness metric derived
from [25].

mizes area and power relative to traditional crossbar systems. This works finds that high-

radix crossbars are feasible designs and architects a many-core system called the Swizzle-

Switch Network (detailed in Chapter IV) to evaluate the tradeoffs against Network-On-Chip

systems.

1.2.3 Network-On-Chip

Network-on-Chip (NoC) designs have been advocated as an alternative to bus-based
architectures. NoC systems, such as the Tilera Tile64 [120], utilize a distributed multi-
stage interconnect design to avoid the scaling issues of long wires. However, this improved
scalability comes at the expense of high variability in memory access latencies as well as
increased design complexity to guarantee correctness and fairness (e.g., avoiding deadlock,
livelock, starvation, etc.).

This shift from a flat interconnect model to non-uniform, multi-hop interconnects has
come at the cost of Non-Uniform Cache Access (NUCA) latencies [58]. The ability to
provide uniform latency makes using a crossbar an appealing option because predictable
latencies remove the need for complex techniques for routing algorithms [91], quality-of-

service [39], congestion management [71], data placement [77], and thread scheduling [46].

10

25

20
M Link

M Clock

I Control
M Switch
N Buffer

Mesh SSN

15
10

Interconnect Thermal
Design Power (Watts)

Figure 1.5: Comparison of interconnect power of SSN and Mesh Network-on-Chip

Figure 1.4 shows the high variability of multi-hop, on-chip networks compared to the
single-hop Swizzle-Switch Network (SSN) (both the Mesh and SSN are assumed to run
at the same frequencies in this experiment). In a Mesh network, the accepted throughput
at any given node is highly dependent upon the location of the destination node. Under
hotspot traffic, nodes closest to destination (nodes g) receive the highest throughput, while
nodes closest to the center (e.g., nodey 4) receive the highest throughput when traffic is uni-
formly distributed. In contrast, the SSN distributes its throughput evenly amongst its nodes
allowing for it to see a 40x and 87% fairness improvement for hotspot and uniform random
traffic respectively. While there are many research papers that address fairness issues in
NoCs, these solutions typically involve complex mechanisms [39, 71] to enforce fairness
whereas crossbar topologies simplifies these quality of service concerns by construction.

Additionally, the reduced wiring complexity of a NoC system is bought at a price other
than non-uniform latency: collisions can occur within the network. To resolve these colli-
sions and avoid protocol deadlocks, on-chip networks usually require additional buffers per
router node (e.g., to provide multiple protocol lanes or virtual channels), which consume
significant power and area. As a result, Borkar et al. [15] predict that many-core NoCs
could consume as much as 80 Watts in future systems. In contrast, a flat crossbar is non-
blocking and does not require intermediate buffers, reducing power and area overheads.

Previous studies address the power and latency scalability challenges of NoCs by build-

ing concentrated and hierarchical topologies to reduce the required number of on-chip

11

routers [7, 61, 28]. In contrast to those works, the Swizzle-Switch Network (SSN) realizes a
single-router flat interconnect with a scalable high-radix crossbar design and minimal end-
point buffering. Figure 1.5 illustrates the power savings achieved by this work’s proposed
SSN design for a synthetic benchmark designed to saturate the network (details for this
analysis are found in Chapter 1V). Additionally, the technology used in the SSN can be

used as a building block for future hierarchical NoC topologies.

1.3 Contributions

This thesis analyzes the scalability of many-core systems and proposes interconnect
architectures that can assist in solving these scalability challenges. In particular, this work
observes that the degree of the interconnect has a significant effect on system scalability
and seeks to build high-radix, many-core systems that will scale performance, power, and
quality-of-service metrics to core counts of up to 64.

Many-core scalability efforts are first done in this work by revisiting the design of
crossbar and high-radix interconnects in light of advances in circuit techniques that signifi-
cantly improve crossbar scalability. A new circuit-level building block, the Swizzle-Switch,
utilizes an integration arbitration technique within the crossbar to build a energy- and area-
efficient switching element that can improve the scalability of crossbars to high radices.
In addition, this work finds that the multicast ability within the Swizzle-Switch makes it a
good candidate for many-core system design.

After being scaled to 32nm, multiple Swizzle-Switches are used to create the Swizzle-
Switch Network: a flat, cache-coherent crossbar topology supporting many-core systems of
up to 64 cores. The Swizzle-Switch Network is shown to scale favorably over a traditional
Network-on-Chip (NoC) topology (Mesh) for systems of up to 64 cores. Hierarchical,
high-radix NoC topologies are also studied and demonstrated to be scalable architecture
choices for systems with core counts above 64.

Finally, this work studies the impact that 3D stacking technology has on many-core

12

scalability and finds that this emerging technology can help crossbar and bus interconnects

scale past their traditional limitations.

1.4 Organization

This work is organized as follows: Chapter II specifies background and related work for
interconnect design, Chapter III discusses the design and implementation high-radix cross-
bars, Chapter IV details and compares the Swizzle-Switch Network to Mesh and Flattened
Butterfly NoC topologies, and Chapter V extends the scalability discussion toward 3D-
stacked crossbar and bus architectures. Finally, conclusions and future works are outlined

in Chapter VI.

13

CHAPTER I

Background and Related Work

The text in this chapter presents background concepts and works related to the design
of scalable interconnects for many-core systems. First, characteristics and terminology of
interconnect architectures are defined. Next, concepts and architectural details for busses,
crossbars, and Network-on-Chips (NoCs) are presented. This chapter then concludes by ty-

ing this thesis’ contribution of scalable interconnect architectures to relevant related works.

2.1 Interconnect Characteristics

Modern computer systems are made up of many components (e.g. CPUs, caches, 1/O
devices, etc.) communicating over an on-chip interconnect. Figure 2.1 shows a high-level
view of an interconnection network. The network consists of core and memory compo-
nents on the edge of the network as well as channels that connect those components to the
interconnect. Components can be generally classified into either initiator or response types.
For example, cores are an initiator type component as it makes requests to other compo-
nents in the system, while a memory (or cache) would be a response-type component as
it only responds to requests. The interconnect can also contain intermediate channels and
switching components (e.g., NoC routers) to help facilitate on-chip communication.

Ideally, the interconnect choice for any given system would be high speed, low power,

and meet any necessary bandwidth requirements. However, desirable interconnect char-

14

Mo M1 Mz M3

Interconnect Fabric

Co C, C; Cs

Fi 2.1:
eure High-level view of an interconnection network. In this example, core (Cy)

and memory (M) components are connected to the interconnect fabric through
their own communication channel.

acteristics are often conflicting and force the architect to make tradeoffs in designing the
most efficient communication architecture for their particular system. The following text
gives an overview of the basic interconnect characteristics and serves as a basis for the

terminology used throughout this thesis.

2.1.1 Units of Communication

Messages can be viewed as the logical communication unit between two components in
a interconnect network. For example, a memory component will only process once it has
received some type of request message from another component within the network. The
message would include all the data the memory component would need in order to handle
the request correctly (e.g., address, data, etc.).

On-chip networks recognize packets as their form of communication unit. Any desti-
nation, data, or command attributes contained in a message is first translated into packets
before they leave their component and begin transfer over the network. A particular inter-
connect can choose to implement variable or fixed size length packets. In the case that a
message is greater then the size of one packet, the interconnect will split the message up
into multiple packets in order to satisfy the message requirements. However, messages and

packets are typically the same size in on-chip networks.

15

Messages
(64 bytes)

Packets
(64 bits)

Flits H B B T
(16 bits)

Figure 2.2: Breakdown of a 64-byte interconnect message into 8 packets and 4 flits.

Similar to messages, packets can further be subdivided into flits. Flits are short for
flow control digits and represent the unit of bandwidth and storage allocation in a network.
Unlike messages or packets, all flits do not contain destination or data information. Flits
are categorized as head flits which contains packet and route identifiers, body flits which
contain payload data, or tail flits which indicate the end of a packets. If the packet size is
the same as the flit size, then one flit can serve as both a head and tail flit simultaneously.

Finally, flits are segmented into phits, a physical unit corresponding to the channel
width. Flits are predominantly the same size as phits in on-chip networks. As such, the
remainder of this thesis will refer to flits as the lowest communication unit within an inter-
connection network.

Figure 2.2 illustrates the units of communication within a system. In the example,
a 64-byte message is first divided into 8, 64-bit packets. Since the channel size of the
interconnect is 16-bits, the packet is then divided into 4 16-bit flits for data transfer. From
the example, one can derive that the size of a flit is determined by the width of channel

connecting two components.

2.1.2 Metrics

Latency (or delay) is known as that time it takes one component to receive a message
from another component. In Figure 2.1, Core, would communicate with Memorys by

generating a message X and sending that message through the interconnect. The time it

16

Latency (sec)

Zero load [atenc}

v

Offered Traffic (bits/sec)

)

Saturation
throughpu

Figure 2.3: Offered Traffic v. Message Latency in a Interconnection Network.

takes for X to reach Memorys is then the communication latency for message X.

Additionally, Memorys would like respond to request message X with response mes-
sage Y. The total time for message X and message Y to be completed is known as the
round-trip delay for Corey’s request.

Typically, the latency of a particular message can be variable depending on factors such
as contention for interconnect resources or the distance between the source and destina-
tion components. Zero-load latency refers to the optimal delay for any message—the case
where a source component sends a message to it’s destination without any contention.

Bandwidth is a throughput metric that measures how much data can be transferred over
a interconnect during a given time period. Given an interconnect with a single channel,
the bandwidth would then be the width of that channel multiplied by the frequency of the
interconnect. Bisection bandwidth is a measure of how well an interconnect can communi-
cate across the interconnect. If the interconnect is equally split into two parts, the bisection
bandwidth is the bandwidth that would be achieved between those two parts. The aggregate

bandwidth of the system is the sum of all the channels widths in the interconnect multiplied

17

by the same frequency as before. Aggregate bandwidth of the interconnect represents the
maximum achievable throughput that can be maintained by the interconnection network.
The amount of traffic that one or more components send to the interconnection network
is known as the offered bandwidth. Figure 2.3 shows how a interconnection network may
be analyzed for a given amount offered bandwidth from one of it’s components. As one
would expect, the amount of aggregate bandwidth (throughput) that the system can sustain
will eventually saturate and provide the saturation throughput for the interconnect under
evaluation. Thus, the zero-load latency and saturation throughput lines can be viewed as

the limiting factors for any component’s offered traffic.

2.1.3 Arbitration

In cases where more then one component is using an interconnect channel as a shared
resource, an arbitration scheme must be implemented to resolve conflicts. From Figure 2.1,
it is apparent that all components have their own channel to the interconnect but the inter-
connect fabric itself is shared amongst components. If one were to imagine that intercon-
nect fabric as a single channel that could only service one component at a time (i.e. a bus),
then a conflict scenario would arise when multiple memory or core components would want
simultaneous access.

This conflict resolution can be aimed toward providing fairness amongst contending
components, providing priority for important components, or guaranteeing metrics such as
bandwidth or latency for a subset of components. The requirements of a particular inter-
connect to arbitrate under specific constraints can then be labeled as that system’s Quality-
of-Service (QoS) policy.

Priority arbiters resolve shared resource contention by granting the component with the
highest priority value access to interconnect. The most straightforward QoS policy is “static
priority” in which fixed priority values are assigned to components. While static priority is

a easy to implement QoS scheme, they are vulnerable to starvation of low priority compo-

18

nents. Dynamic priority schemes can change priorities according to system state. Lahiri et
al. [69, 70] proposes a communication architecture tuner (CAT) that monitors the system,
predicts the importance of future transactions, and alters the priorities of the underlying
interconnect arbitration scheme. Interconnects like Satpathy e al.’s XRAM [99] provide a
programmable priority substrate that can be dynamically tuned at the system’s request.

Other architectures attempt to implement starvation free, fair QoS policies. These
schemes aim to equally distribute the available interconnect bandwidth amongst compo-
nents. Round-Robin (RR) schemes are perhaps the most straightforward and grant priority
in a circular fashion to requesting components. A drawback of RR priority is that the maxi-
mum wait to get top priority from a RR arbiter rises as the number of connected component
increases. In systems where there are messages that are more critical then others, this could
create performance degradation. McKeown’s iSlip algorithm [79] optimizes RR priority by
de-prioritizing the Most-Recently Granted (MRG) component on the RR priority list. Im-
plementations of the Least-Recently Granted (LRG) schemes [25, 100] similarly provide
fairness through MRG demotion and can guarantee that all requesting components that
haven’t had access to the interconnect will be granted access before any components that
have been previously granted.

Time Division Multiple Access (TDMA) arbitration schemes [88] are part of a class of
arbiters that attempt to guarantee metrics such as bandwidth and latency amongst conflict-
ing resources. In particular, TDMA allocates each input on the bus a fixed time slot for use
of the interconnect. Such a method guarantees bandwidth and latency for a components
on a bus. If a component does not want to use the bus during it’s fixed time slot, RR pri-
ority can be used to pick between other available components. This type of hierarchical
TDMA/RR scheme is featured in the Sonics SMART Interconnect [108]. Lahiri’s LOT-
TERYBUS [67, 68] arbiter guarantees bandwidth by assigning tickets to components on
the bus and using a ’lottery manager’ circuit to replicate a lottery (i.e. random drawing) for

arbitration cycle winners. Variations of LOTTERYBUS use the arbitration history [125]

19

or weights on the contending components [19] to direct the lottery manager and possibly
enforce real-time bandwidth guarantees [73].

The final class of arbiters discussed in this section is called queueing arbiters [25].
These mechanisms enforce a FIFO priority on time stamping incoming interconnect re-
quests. The implementation of such a queuing policy can be complex as tree-logic may be
needed to find the oldest request and care must be taken to handle the overflow of times-
tamps. If those issues can be taken care of, a queueing arbiter would provide the strongest

fairness possible out of all the QoS arbitration options.

2.1.4 Limitations

At any particular technology node, physical limitations such as the length of wires, the
number of channels and channel width affect the frequency that a interconnect is run at and
the energy that it consumes. For monolithic interconnects such as busses, the longest wire
that needs to be communicated across is considered to be the critical path and consequently
is a frequency limiter. Interconnects that have a high-radix (number of channels) or whose
channel size is large can consume a high amount of energy during operation. Consequently,
narrow channel [102], hierarchical [28], and multiple-clock domain interconnects have all
been proposed as viable solutions for connecting components.

The following sections elaborates further on 3 common interconnect designs: busses,
crossbars, and network-on-chip. Each have overlapping characteristics and tradeoff fea-

tures such as simplicity, bandwidth, frequency, and QoS.

2.2 Busses

Busses are comprised of a set of shared wires amongst communicating components. In
the simplest case, a bus can be viewed as a single, shared channel. Figure 2.4 illustrates a
bus connecting cores to the memory.

To access the bus, a component must first request access to the bus from the bus arbiter.

20

r;
|

=
=
=
=

Bus === Memory

Ll

—

[J

Figure 2.4: A bus interconnect connecting cores to memory.

The bus arbiter is typically a centralized arbitration unit in which all components can make
their requests to. The arbiter provides contention resolution and priority to competing
requests and will eventually grant a requesting component access to the bus.

Once access is granted, a component will broadcast its message to all components on
the bus. This broadcast property of busses provides system-level benefits with regards to
cache coherency and memory consistency. Since all requests have a single ordering point
(the centralized arbitration), it’s easier to maintain and enforce memory consistency in a
bus-based system relative to systems that do not broadcast all accesses. Additionally, the
visibility of requests to all components simplifies cache coherency protocols and allows
components to update their cache state or respond to cache requests immediately after
seeing a relevant request across the bus.

The frequency of a particular bus is dependent upon the length of wire needed to con-
nect all the communicating components on a bus. The constraint of connecting all com-
ponents on a singled shared bus line has typically limited busses from running at high
frequencies (GHz range) as the number of cores in a system increases.

The zero-load latency of a flit to travel across a bus is again governed by the frequency
of that bus. However, zero-load latency may not be achieved often on systems with a large

number of components because of the sharing of the bus. Traffic due to memory requests,

21

coherence updates, and I/O demands can significantly increase the amount of contention
for a shared bus. Since the bandwidth of a single bus is limited to the sequential fulfillment
of only one request at a time, busses reach their saturation throughput faster then other,
more distributed interconnects.

Modern bus-based systems combat these frequency and bandwidth issues by imple-
menting multiple busses according to component types, message class, and other system
characteristics. For example, ARM’s AMBA bus protocol [5] specifies a high-performance
bus (AHB) and peripheral bus (APB) to separate the latency and bandwidth requirements of
performance critical components (e.g., cores and memories) from less latency critical com-
ponents (e.g., timers and UARTs). The AXI and ACE extensions to AMBA also specify
separate busses for control, data request, data response, and even cache coherency. Addi-
tionally, bus protocols also extract parallelism from the interconnect by allowing compo-
nents to send bursty traffic (i.e., multiple packets in sequence), pipeline transactions, and
complete requests out-of-order [88].

Although split-transaction [35] and hierarchical [101] bus architectures have led to in-
creased bus performance, the implementation of high-performance busses typically does
not constitute a power-efficient interconnect. The overheads of wiring complexity and en-
ergy become prohibitive as the demand to drive arbitration and data lines at high frequen-
cies increases as more components are added to the bus. As such, power issues as well as
the previously mentioned contention issues threaten the future scalability of busses beyond

8-16 cores [25].

2.3 Crossbars

Crossbars, often referred to as just “Switches”, are similar to busses in that there is a
central connection between communicating components. Also similar to a bus, components
must be granted access to the crossbar before they are allowed to drive their data across

the interconnect. The key difference is that all components connected to a crossbar are

22

Matrix Crossbar

e

7’

Outo Out, Out; Outs

~
N o e e —

Fi 2.5:
eure High-level view of a (a) 8x8 crossbar interconnect and an (b) 4x4 matrix cross-

bar connecting cores to memory. A separate crossbar connecting memory to
cores would be needed to complete the circuit in (a).

available as separate channels to other components. Each channel contributes to the radix
of the crossbar, such that a crossbar with 128 ports (i.e.,. 1 per separate component channel)
is referred to as a radix-128 crossbar. As long as the crossbar has no requests with the
same destination channel, messages on a crossbar can be processed in parallel. Using
Figure 2.5b as an example, Core, can send a message to Memory, on the same cycle as
Core; sends a message to Memory,. Consequently, the crossbar can maintain the the same
zero-load latency that a bus achieves despite having multiple components request access to
the crossbar on the same cycle. Additionally, the independent output channels of a crossbar
allow for higher bisection and aggregate bandwidth of crossbar interconnects relative to
busses of the same channel size.

The increase in input and output ports on a crossbar can cause significant arbitration
overheads as well as affect the critical path of the crossbar. Passas [90] implemented a
radix-128 crossbar and found that the arbitration/scheduling area for his design was 60% of
the total crossbar area. Thus, the frequency of a crossbar is degraded as the radix increases
and the logic to needed to arbitrate amongst increasing components becomes more and

more complex.

23

Core Core Core

Core . Core . Core . Core
Core . Core . Core .
Core . Core . Core . Core

e m

Figure 2.6: A Mesh Network-on-Chip Topology.

Since interconnect power is also adversely affected as the crossbar radix increases,
many researchers have published that crossbars are simply infeasible for systems with a
large number of components that need to be connected [66]. Although wiring complexity,
area, and power are all concerns for the feasibility of high-radix crossbar, commercial
chips like the Niagara2 [54] and IBM BlueGene/Q [43] use a crossbar for 16 and 18 cores
respectively.

This work shows how a optimized crossbar using integrated arbitration and a a SRAM-
like layout can scale to high-radices and support many-core systems. Chapter III will elab-
orate further on challenges and solutions to the high-radix switch problem. Chapter IV will

present a system-level design for a high-radix crossbar system.

2.4 Network-on-Chip

The bandwidth issues in busses combined with the prohibitive implementation over-
heads of crossbars has led many architects toward Network-on-Chip interconnects when
searching for a scalable on-chip communication fabric. While busses and crossbars cen-
tralize their communication logic, NoCs distribute the communication between compo-
nents through the use of intermediate routing elements. Figure 2.6(a) shows an example of

a NoC with Mesh topology. Each of the tiled components on the Mesh (core+memory) are

24

connected to it’s own router. Within each router is a crossbar-like switch, which connects
to it’s home tile and at most 4 other routers. However, since the radix of these switches
is small, the Mesh avoids the wiring complexity and power overheads that are seen in a
monolithic crossbar system while maintaining high aggregate bandwidth throughout the
interconnect. Because of these advantages, the tiled Mesh topology has been implemented
in both the Intel TeraFlops [45] and the Tilera Tile64 [120] processors. Rings [40, 103] and
spidergon [22] interconnects have also been used in commercial NoC chips.

While the distributed nature of a NoC enhances scalability, it also brings the issue
of non-uniform communication amongst components. In cases where each NoC compo-
nent has a slice of shared memory, this Non-Uniform Memory-Access (NUMA) can cause
problems when the communicating components are far away from each other. In Fig-
ure 2.6(a), consider the situation in which the uppermost-left tile (A) requests data located
in the bottom-right tile (B). No matter what path the requests take, there will be at minimum
6 routers that the request needs to traverse through to reach it’s destination. Consequently,
issues like quality-of-service enforcement can become significant as NoC systems continue
to increase in number of components. Recent work has proposed solutions to these prob-
lems that map thread and data in a NoC aware fashion [42] as well as provide guarantees
on QoS fairness [39, 71].

Since the ideal interconnect can vary greatly even within application domains, param-
eters such as topology and routing are of great importance when deciding what type of
NoC to implement. The following subsections examine these details closer while acknowl-
edging that an exhaustive look at all relevant NoC parameters is beyond the scope of this

chapter.

2.4.1 Topologies

The choice of NoC topology has a direct effect on the performance and power tradeoffs

of the system. In particular, the desired number of nodes (i.e., components), zero-load

25

A —*

(a) Aring (b) A mesh (c) A torus

Figure 2.7: Common on-chip network topologies. Illustration from [52].

latency, and bandwidth are first-order constraints when building a NoC topology.

Systems with a small number of nodes may opt for a fully connected interconnect like a
bus or crossbar (note: busses and crossbars can be viewed as a subset of the NoC domain),
while systems with a large number of nodes tend to invite a more distributed NoC topol-
ogy. Similarly, the required zero-load latency and bandwidth to and from arbitrary nodes
provides a constraint on the the distance between any two nodes as well as the width of the
NoC'’s channels.

The aforementioned design constraints manifest themselves into topology-specific char-
acteristics such as degree, hop count, path diversity, and maximum channel load. The
degree of a topology refers to the number of channels that a particular routing element con-
nects. For example, the ring in Figure 2.7 has routing nodes of degree 2 and the torus has
routing nodes of degree 4.

The hop count is the number of routing elements a flit must traverse in order to get from
source to destination node. Zero-load latency is directly effected by hop count as even with
no contention on the NoC, a message still must spend the required cycles to route from one
node to the next. Maximum hop count and average hop count are typical metrics used when
evaluating a topology. Computing the maximum hop count is typically straightforward: it

is the largest manhattan distance from source to destination node. The average hop count is

26

Figure 2.8: A 2-ary, 3-fly butterfly network. Illustration from [52].

defined as the average minimum hop count for all possible source to destination node pars
in the NoC.

Path diversity refers to the number of shortest paths (i.e. minimum hop counts) that is
available between any two nodes in the systems. Path diversity typically allows for greater
routing flexibility as a system with high path diversity will have the ability to route around
highly contended or faulty routing elements.

Finally, the maximum channel load represents the highest amount of offered traffic that
a particular channel can accept before it reaches it’s saturation throughput. For any channel
in the system, an analysis similar to the one showed in Figure 2.3 can be done to identify
the maximum channel load for the interconnect.

Once all design constraints are known, a NoC architect can select a direct or indirect
topology to satisfy network requirements. Direct topologies are networks in which each
routing element connects to a destination (or terminal) node whereas indirect topologies
have an intermediate routing elements that connect to other routing elements but no termi-
nal nodes. The Mesh, Ring, and Torus topology from Figure 2.7 are examples of direct

networks and Butterfly network in Figure 2.8 illustrates an indirect network topology.

27

Credits Out Credits In

. VC Allocator
Computation
.’ Switch Allocator

¢

Route

”

56
-

e

Oulpyl 1

2]
w

Ial
&

Input buffers e

I
-

i}

Ial
o

Input 5 Output 5

Ial
@

Input buffers

Crossbar switch

Figure 2.9: .))) .
£ The Microarchitecture for a credit-based, virtual channel router found in a

Mesh Topology (note: 5 inputs and 5 outputs). The circled numbers represent
router pipeline stages.

2.4.2 Router Microarchitecture

Figure 2.9 illustrates the contents of typical NoC routing element. From a high-level,
each router accepts an input flit, implements a routing algorithm, and uses the crossbar
switch to send a flit to it’s the next output port along it’s routing path. Ideally, NoC routing
would minimize the hop count between source and destination node in an area and energy-
efficient manner. The example in Figure 2.9 also notes the 5 logical stages in NoC router:
Buffer Write (BW), Route Computation (RC), Virtual Channel Allocate (VA), Switch Al-
locate (ST), and Switch Traversal (ST).

In the BW stage, an incoming flit is written into buffer space reserved for that input.
That space can be in the form of a single queue for all incoming flits or multiple queues
known as virtual channels (VCs). Providing virtual channels per input port assists the

router in deadlock avoidance [26], Head-of-Line (HoL) blocking prevention [25], and in

28

providing dynamic routing algorithms [30].

Additionally, the BW stage provides the first level of flow-control to a NoC router. Flow
control mechanisms determine how much buffer space is reserved per router and when
messages can leave the router. The tracking of credits in Figure 2.9 supports flow control
by allowing upstream routers to process information (e.g., buffer space) from downstream
routers. Message-based (or circuit-switched) flow control is bufferless as the necessary
routing resources (links and router switch) are reserved before the message is sent from
the source nodes. Store-and-Forward flow control [25] reserves enough buffer space for a
packet in the router and will only send that packet to the next node (or router) once all the
flits for that packet are first stored in the current router. Virtual-Cut Through [56] optimizes
Store-and-Forward flow control by allowing the packet to start sending to the next routing
node as long as that next routing node has sufficient resources to buffer the complete packet.
Wormhole [27] flow control becomes more useful as packet-sizes become large and the
requirement of a reserving a full-packet at a time decreases network utilization. Wormhole
routing will transmit a flit to the next node as long as there is buffering for that single flit in
the downstream router.

The output port for an incoming packet is determined in the RC stage. Most of the
routing algorithms outlined in the Section 2.4.3 use a table-based routing scheme where
a packet can find it’s output port by using it’s destination node as a index. Table-based
schemes also are easily updated for use in dynamic (i.e., adaptive) routing algorithms.
Route computation can also be computed using a combinational circuit at each routing
node or calculating the complete route at the initial sending node (source routing).

The VA stage starts the arbitration process for the router by choosing a ready Virtual
Channel (VC) from each input port. Once a VC is selected, a flit from that input port’s VC
can vie for access to the crossbar switch.

Arbitration for the crossbar switch is done in the SA stage. Flits from each input port

request access to the switch and a grant signal is sent back to indicate that a particular input

29

port can now send it’s data through the crossbar.

The ST stage represents the cycles taken for a flit to pass through the crossbar and onto
the appropriate output port. Once a flit reaches it’s output port in the router it is then free to
be traverse the link to either it’s destination node or the next downstream router (note: this
process is also be referred to as the Link Traversal (LT) stage in some literature).

Router pipeline optimizations include eliminating the routing stage via lookahead rout-
ing [34], bypassing buffer writing if there are no flits ahead in the input VC, and processing
the VA and SA stages in parallel [91, 84, 85]. Since these optimizations can significantly
increase the complexity of the router, their implementation is often dependent on target
frequency of the network and whether the pipeline can satisfy critical path constraints. Ad-
ditionally, performance from speculative optimizations is limited by the amount of offered

traffic and contention at a particular router node.

2.4.3 Routing

Routing algorithms can broadly be classified as either deterministic, oblivious, or adap-
tive. Deterministic algorithms always traverse the same path from source to destination
node. A commonly used deterministic algorithm is a dimension-ordered routing (DOR)
algorithm. DOR algorithms are both simple to implement and deadlock free. For example,
the X-Y DOR algorithm will always travel in the x direction first and then the y dimension.
The Tilera Tile64 is an example of a system that uses DOR routing.

Oblivious algorithms select a path without regard to any dynamic network conditions
(e.g., congested or faulty routers). The implementation of these algorithms is often low-
complexity (no network information is needed) and can often implicitly load-balance the
network. A routing algorithm that randomly selects it’s path would be considered oblivious
as well as load-balancing. Valiant’s algorithm [116] randomly selects a intermediate node
between source and destination to achieve this effect. The average hop count between

any two nodes would be increased in such routing methods as the shortest path between

30

two nodes is usually disregarded in favor of the random destination node. Nesson [86]
optimizes Valiant’s by restrict the randomization to minimal paths only. This “Minimal

2

Valiant’s” sees the dual benefits of load-balanced traffic and reduced average hop-count.
Adaptive routing algorithms can choose a message’s path dynamically. For instance,
if the routing algorithm detects traffic along a particular path it can route around the con-
gested nodes [106, 24]. The downside of adaptive routing algorithms is the complexity of
implementation. Resources (e.g., logic and buffers) must be maintained to monitor net-
work conditions and the adaptive routing algorithm also must ensure deadlock-free opera-
tion. Typically, turn model routing [37, 21] is used to avoid this deadlock. These schemes
specify a ordering of legal turns along any message’s path that will prevent cyclic depen-
dency and in turn prevent deadlock. Alternatively, there has been work by Duato [31] that

allows for full-routing adaptivity but ensures deadlock free operation through flow-control

mechanisms.

2.5 Related Works

The paradigm shift toward many-core systems has led to a renewed interest in intercon-
nect research and a transition from traditional bus-based systems [66] to more sophisticated
topologies, including hierarchical bus models [11, 28], rings [1, 117, 40, 103], spidergon
networks [13], mesh network-on-chips [7, 120], flattened butterfly on-chip networks [61],
express cube on-chip networks [38] and crossbars [54, 3, 78, 127]. The ability to provide
uniform cache access latency makes crossbars an appealing option because predictable
cache access latencies allow for quality-of-service guarantees and ease of programming.
In addition, previous research has shown that crossbars can enable performance benefits
in coherence protocols [20] as well as the construction of cache hierarchies [72]. While
some studies have noted that link latency can increase to a point that it would be intolerable
compared to an NoC system [14, 117], this thesis proves through detailed floorplans and

spice analysis that this is not always the case.

31

The Swizzle-Switch Network proposed in this thesis optimizes the crossbar intercon-
nect allowing for high performance many-core systems with minimal power and area over-
heads readily scaling to support 64-core systems. This work demonstrates the benefits
of a crossbar-based architecture for systems that are required to support a wide range of
communication patterns.

Additionally, this thesis evaluates the future scalability of crossbar and bus architectures
in the presence of 3D-stacking technology. There have been many works that research 3D
technology for use in logic circuits [92], memory optimizations [113, 75] and full-system
architectures [57]. However, this work focuses on the use of 3D integration technology for
scalable, high-radix interconnects.

Related works have also leveraged the benefits of high-radix switches by using nar-
row channels to increase crossbar radix and build larger systems from these high-radix
building blocks [62] [102]. Additionally, there has been similar work analyzing crossbar
interconnects for large-scale CMPs. Some assume idealized crossbars with minimal laten-
cies to calculate best-case performance [96], others use crossbars to connect small clusters
of cores in a hierarchical system [118], and yet others study pipelined/buffered crossbar
systems [89, 64]. The Swizzle-Switch Network differs from these systems because it uses
a flat, non-buffered interconnect based on detailed floor-planning, SPICE simulation, and

measured silicon results of the Swizzle-Switch crossbar.

32

CHAPTER III

Swizzle-Switch: A High-Radix, Self-Arbitrating Crossbar

Chapters I and II motivate the performance-scaling needs of many-core systems as well
as discuss the inability of bus-based interconnects to support scaling from multi- to many-
core. This thesis makes the case that high-radix interconnects are needed to support future
many-core architectures and in Chapter IV designs a crossbar-connected 64-core system,
the Swizzle-Switch Network, to prove that such a interconnect is both feasible and advanta-
geous to traditional Network-On-Chips.

This chapter focuses on the Swizzle-Switch, an essential building block of the Swizzle-
Switch Network (SSN). The SSN is a high-radix crossbar system built using a number of
Swizzle-Switch components. Each Swizzle-Switch component employs several techniques
to reduce the area and power overhead of high-radix crossbars. After this chapter explains
the theory of operation for the Swizzle-Switch, it is then scaled to 32nm using measured
crossbar power and performance from 65nm and 45nm test chips. The research conducted
was done in collaboration with Sudhir Satpathy, Nathaniel Pinckney, Ronald Dreslinski,
and Reetuparna Das and portions of this chapter are published in [99, 98, 100, 97].

After detailing the Swizzle-Switch crossbar circuit, the key architectural challenges of
building a MOESI-coherence, 64-core chip multiprocessor using Swizzle-Switches are fur-

ther described in Chapter IV.

33

3.1 Overview

Arbitration/
~_Control.

In 1 In2
In3 :ng
In5 n
In7 In8
In9 : In10
In N . In N-1

RO K A = B

555555 =

666666 43

Out 2
Out 4
Out 6
Out M-1

S In 2
|n 1 \/\ Y \
In3 17 \ In 4
In 5| 41 In6
In7 In8
In 9 . \\y/ |n 10

Out 1
Out 3
Out 5
Out M

(c)
Figure 3.1: __ .) . .
High level view of (a) bus interleaving required for mux-based crossbars; (b)
a traditional matrix style crossbar with arbiter/controller consuming space and
requiring additional input wires; (c) the proposed Swizzle-Switch design that
reuses input/output busses for programming/arbitration of the crossbar with the
arbitration logic placed under the dense metal interconnect.

Conventional mux-based crossbars suffer from a layout challenge at high bus widths
because of complex wire interleaving within the crossbar itself. Figure 3.1(a) shows how
four buses each with four bits must be interleaved to connect to a mux-based crossbar. To
avoid these interleaving structures, more recent crossbars use matrix-style structures.

Figure 3.1(b) shows a typical matrix-style crossbar, where the connection to each output

34

Bus width = 128 j<
-@—SSN
3.2 O Convaer:t?onal area 13-2
— —A-SSN delz?y R
2 24 —O~- Conventional delay 12.4 E
> E
® 116 @®©
T 161 /A @
3 <
(m)]
A 40.8
08, LA
_829 0.0
0 16 32 48 64

Dimension

Figure 3.2:
g Scaling trends of the Swizzle-Switch Interconnect in 32nm vs. a conventional

crossbar (Simulated).

is made at a crosspoint inside the crossbar, the inputs can be in any order and no interleaving
of bits from buses is required. Conventionally, these matrix-style interconnects consist
of a crossbar that routes data and a separate arbiter that configures the crossbar. This
decoupled approach poses two hurdles to scalability: (1) the routing to and from the arbiter
becomes more challenging as the number of sources and destinations increase and (2) the
arbitration logic grows more complex as the radix of the crossbar increases. Consequently,
the conventional matrix-style crossbar suffers from poor scalability in delay, area and power
when scaled to large core counts.

To overcome these limitations, the proposed Swizzle-Switch crossbar can be used to
replace conventional matrix-style crossbars. Although the Swizzle-Switch has the same
asymptotic behavior as the matrix-style crossbar, O(n?), it uses circuit techniques to re-
duce the multiplicative constants of that behavior to readily scale to at least 64 cores. The
Swizzle-Switch combines the routing-dominated crossbar and logic-dominated arbiter by
embedding the arbitration logic within the router crosspoints. Furthermore, it reuses in-
put/output buses for arbitration, producing a compact design. Figure 3.1(c) shows a high-

level Swizzle-Switch design. To reduce power, the Swizzle-Switch uses SRAM-like technol-

35

ogy with low-swing output wires and a single-ended thyristor-based sense amplifier [99].
To understand the scalability of the Swizzle-Switch interconnect compared to a conventional
crossbar design, a series of layouts across a wide range of radices is generated. Figure 3.2
shows the results of this analysis. The Swizzle-Switch design scales far better to higher

radix designs, consuming 2.7x less area and performing 2.6x faster at a radix of 64.

3.2 Layout and Data-Transmission Phase

Output Channel T TRequest Line In[1])
\ .
= ¢ Logic
e % N &
T O o
c < RIS
c o L8
© £ S
<5 &
S XA o
a _g 3] > Wiring
£3s . N
= L]
N 0
Read Buffers S |3
=) D D N,)
. L | . | 3 3 3 3
‘ Output 0 ‘ ‘ Output 1 ‘ ‘OutputSS‘
Figure 3.3:

Circuit implementation of the Swizzle-Switch Interconnect. Each output col-
umn in the interconnect uses the same request bit from each input bus. Each
input row uses the same bit from each output bus to perform arbitration. The
expanded view of the crosspoint shows the stored configuration and crosspoint
connections for each bit. It also shows the programming of priority bits using
the output bus. Because the crosspoint is for Input Row 0, the arbitration sense
amp is on output wire 0. Similarly, because it is Output column 1, the request
line is drawn from input wire 1.

As shown in Figure 3.3, the Swizzle-Switch’s input and output buses run perpendicular,
creating a matrix of crosspoints each containing a storage element to designate connectivity.
Along a column (output), at most one connection can be made, allowing each output to
connect to at most one input. Along a row (input), multiple connections can be made. This
allows a single input to multicast to a subset of outputs, or broadcast to all outputs.

Every output channel operates independently in one of two modes, data-transmission

36

or arbitration. When an output channel is not allocated, it enters arbitration mode until an
input is granted access to the output channel. Once the output channel has been granted,
it transitions to data-transmission mode. Data transmission can continue for several cycles
as the input channel transfers the complete payload. Once the input is finished transmitting
data, it releases the channel and allows the output channel to move back into arbitration
mode.

The circuit details of the data transmission phase are illustrated in Figure 3.3. During
data transmission, the output buses are pre-charged to ‘1’. The input channel then drives
the horizontal wires with the data. At crosspoints where the “Granted FF (Flip Flop)” stores
a ‘1’, the input bitlines are coupled to the pre-charged output bitlines with a pass gate. If
the input bitline is ‘0’, the output bitline will discharge and the sense amplifier at the read-
buffer will sense the data. The “Granted FF” uses a thyristor-based sense amplifier to set
the enabled latch, which only enables the discharge of the output bus for a short period of
time, reducing the voltage swing on the output wire. This reduced swing coupled with the
single-ended sense amplifier helps to increase the speed, reduce the crosstalk, and reduce

the power consumption of the Swizzle-Switch.

3.3 Arbitration Phase

Any output channel that is not in the data transmission phase is in arbitration phase. In
this phase, each output channel will grant a single input channel access to transmit data. The
input channel with highest priority is granted access. The Swizzle-Switch uses an inhibit-
based approach to accomplish this arbitration. When an output channel is requested, input
channels will inhibit other inputs with lower priority. Consequently, managing the priorities
of each input allows for the implementation of various priority schemes. There are two
novel aspects of the arbitration design: (1) The priority bits stored in each crosspoint are

used to determine the winner of the arbitration. (2) Each input re-purposes a particular

37

bit of horizontal input bus to assert a request signal and is assigned a particular bit of the

vertical output bus to use as an inhibit line.

3.3.1 Arbitration Mechanism

Inhibits (X)
| \
Xo X X, X3 X4 Priority
Ing| X ' 1,0 0 0 1
S|l In,O X 0 0 0 0
£ my 1 1 X 0|0 2
Sl g1 11 x| 1 4
Ing| 11 1 0 X 3

Figure 3.4: . . o .
Conceptual example of Swizzle-Switch Arbitration. A matrix represents one

complete output column. Each output column arbitrates and transmits data
independently of other output columns.

The conceptual view of inhibit-based arbitration of a single output column for a 5-input
Swizzle-Switch is shown in Figure 3.4. The arbitration for an output channel can repre-
sented by a matrix (M) of requests (/n) and inhibits (X'). A row of bits in M correspond to
the storage elements labelled “priority bits” in the expanded crosspoint view in Figure 3.3.
An input In; inhibits an input /n; if and only if the entry My; ;) is 1, indicating that In; has
priority over In;. In this example, if input /ng and In,; are both arbitrating for the output
channel then Iny would inhibit In,; (since My)=1) and win the arbitration between the
two requesting inputs. However, if Iny and Ins were in arbitration with each other, then
Iny would win the arbitration by inhibiting /1 (since Mz g)=1). The priority for an input
is then the number of other inputs that it can inhibit.

Figures 3.5 and 3.6 illustrates the operation of the arbitration circuit. The same priority
scheme from Figure 3.4 is used. The vertical output Out K bit-line is repurposed as inhibit

line X; during the arbitration phase. The input channel /n3 has 1’s stored in all its priority

38

GNTO C

Pre-Charge Module

Request) Ing[K SA+) !

(Request) nO[]é Grant <-Z>‘2

In FF
o .

L e o~ ©
X X P

T memdEgog

64

SA +
(Request) In [K]_> Grant |< oeeees :
Iny /{ FF i :

P PP

GNT 2 ;
Request) Ino[K SA+\ !
(Request) n2[! Grant |<
. [FF ;
Ny :

64

) o

GNT 3

(Request) Ing[K]

Ing / | FF
64

GNT 4

LG

Xa

; sA+) :

(Request)‘ln4[K] i A

In4 / H
64

Legend

i

Priori

- }Discharge

1Y w
Discharge

Outy [1]
Outy [2]
Outk B

Outy (1

Outy [5:63]

OutK

Figure 3.5:

39

A 5x3 crossbar showing arbitration circuits. Each output column arbitrates and
transmits independently.

bits M3 ; and hence has the highest priority. The input channel /n, has priority over only
inputs Ing and In, (because only these priority bits are set). At the start of arbitration, all
inhibit lines are precharged. Then, for each competing input channel, if the priority bit (i