US008407537B2

a2 United States Patent 10) Patent No.: US 8,407,537 B2
Flautner et al. 45) Date of Patent: Mar. 26,2013
(54) ERROR RECOVER WITHIN PROCESSING FOREIGN PATENT DOCUMENTS
STAGES OF AN INTEGRATED CIRCUIT EP 0366 331 5/1990
EP 0374 420 6/1990
(75) Inventors: Krisztian Flautner, Ann Arbor, MI Continued
(US); Todd Michael Austin, Ann Arbor, (Continued)
MI (US); David Theodore Blaauw, Ann
Arbor, MI (US); Trevor Nigel Mudge, OTHER PUBLICATIONS
Ann Arbor, MI (US) Notice of Allowance mailed Dec. 16, 2011 in co-pending U.S. Appl.
(73) Assignees: ARM Limited, Cambridge (GB); The No. 12/285,517.
Regents of the University of Michigan, (Continued)
Ann Arbor, MI (US)
N . b disclai b fthi Primary Examiner — Stephen M Baker
e e e 33 (74) Attorney, Agent, or Firm — Nixon & Vanderhye PC.
U.S.C. 154(b) by 205 days. (57) ABSTRACT
(21) Appl. No.: 12/923,908 An integrated circuit includes a plurality of processing stages
. each including processing logic 1014, a non-delayed signal-
(22) Filed: Oct. 13,2010 capture element 1016, a delayed signal-capture element 1018
(65) Prior Publication Data and a comparator 1024. The non-delayed signe.ll-capn.lre ele-
ment 1016 captures an output from the processing logic 1014
US 2011/0126051 Al May 26, 2011 atanon-delayed capture time. At alater delayed capture time,
Related U.S. Application Data the delayed signal-capture element 1018 also captures a value
. . L. from the processing logic 1014. An error detection circuit
(63) iontu;lianzo&)gf apph;attloill Noé (1)2842 } 2‘740’hﬁ1§d. on 1026 and error correction circuit 1028 detect and correct
colil%inua,tion o I’“ ;;;}licaatién Io\fo ’1 1 6’3 6 7’1\)6V ;icle dl Sora1 random errors in the delayed value and supplies an error-
Dec. 11. 2006. now Pat N'O 818 5’]1 2’ and a checked delayed value to the comparator 1024. The compara-
cont.inuat,ion-in-,p art of apﬁlicati.on ,No ’ 11 /’l 10.961 tor 1024 compares the error-checked delayed value and the
’ B non-delayed value and if they are not equal this indicates that
(Continued) the non-delayed value was captured too soon and should be
replaced by the error-checked delayed value. The non-de-
(51) Int.CL layed value is passed to the subsequent processing stage
GOGF 1/08 (2006.01) immediately following its capture and accordingly error
GO6l 11/30 (2006.01) recovery mechanisms are used to suppress the erroneous pro-
(52) U..S. Cl ... e 714/708; 713/300; 713/503 cessing which has occurred by the subsequent processing
(58) Field of Classification Search 714/708, stages, such as gating the clock and allowing the correct
ication fil 1714/ 745518145 81 9i1 1711 3/300, 503 signal values to propagate through the subsequent processing
See application file for complete search history. logic before restarting the clock. The operating parameters of
(56) References Cited the integrated circuit, such as the clock frequency, the oper-

U.S. PATENT DOCUMENTS
3,893,070 A 7/1975 Bossen et al.
(Continued)

ating voltage, the body biased voltage, temperature and the
like are adjusted so as to maintain a finite non-zero error rate
in a manner that increases overall performance.

45 Claims, 30 Drawing Sheets

FLIE-FLOP

STORED
STATE
INFD

US 8,407,537 B2

(60)

(56)

Page 2
Related U.S. Application Data 6,799,292 B2 9/2004 Takeoka et al.
6,802,033 B1 10/2004 Bertin et al.
filed on Apr. 21, 2005, now Pat. No. 7,320,091, which 6,831,496 B2 12/2004 Gardner

is a continuation-in-part of application No. 10/779,

6,834,367 B2 12/2004 Bonneau et al.

805, filed on Feb. 18, 2004, now Pat. No. 7,162,661, 6.907,553 B2 6/2005 Popplewell et al.

6,931,565 B2 8/2005 Hirabayashi

which is a continuation-in-part of application No. 6,944,067 B2 9/2005 Mudge et al.

10/392,382, filed on Mar. 20, 2003, now Pat. No.

6,944,468 B2 9/2005 Okumura

7,278,080. 6,958,627 B2 10/2005 Singh et al.
6,977,910 B1 12/2005 Hosur et al.
Provisional application No. 60/760,399, filed on Jan. 6,985,547 B2 1/2006 Uht
20. 2006 7,002,358 B2 2/2006 Wyatt
’ : 7,010,074 B2 3/2006 Nakamura
7,023,235 B2 4/2006 Hoff
References Cited 7,046,056 B2 5/2006 Kizer et al.
7,061,294 B1 6/2006 Talledo et al.
U.S. PATENT DOCUMENTS 7073080 B2 72006 Lou 1
... 7,085,993 B2 8/2006 Goodnow et al.
3,905,023 A 971975 Perpiglia 7,096,137 B2 82006 Shipton et al.
4227175 A 10/1980 Newman 7,096,402 B2 82006 Yano et al.
AiaesT A Joss Lamonetal 7,116,744 B2 10/2006 Saze etal.
4633465 A 121950 Fichetal TI666 By 1000 Mdae et al.
4635223 A V1987 Booneetal. 7,188,284 B2 3/2007 Mitra et al.
4,669,092 A 5/1987 Sari et al. ’ ’
’ ’ 7,236,555 B2 6/2007 Brewer
4,756,005 A~ 7/1988 Shedd 7257,173 B2 82007 Wood et al.
4,833,635 A 5/1989 McCanny et al. 7,260,742 B2 82007 Czaijkowski
4,885,715 A 12/1989 McCanny et al. 7278074 B2 102007 Mitra etal.
4918709 A 4/1990 Fitch 7.278,076 B2 10/2007 Zhang et al.
‘S"gz‘g’ggg i %}gg?]S)I(l)*i“e’t " 7,278,080 B2 10/2007 Flautner et al.
’ » ' 7,310,755 B2 12/2007 Mudge et al.
5,203,003 A~ 4/1993 Donner 7320091 B2 1/2008 Blaat et al.
g%?’ggg i é?}ggj ii%ifeaiﬁ wtal 7323.946 B2 1/2008 Seefeldt et al.
E ’ : 7,337,356 B2 2/2008 Mudge et al.
5311070 A~ 5/1994 Dooley 7382366 B1* 6/2008 Klock etal. oo 345/213
5313,625 A 51994 Hessetal. 7401273 B2 7/2008 Leeetal.
2%5’333 i g;}gg‘s‘ gﬁgld etal. 7482,831 B2 1/2009 Chakraborty et al.
’ » 7,546,519 B2 6/2009 Agarwal
5402273 A 3/1995 Tucker 7,594,150 B2 9/2009 C}%akrabony et al.
gﬁ?ﬁ%gg i ‘S‘;}ggg %‘)11111113; 7,650,551 B2 1/2010 Flautner et al.
’ ’ X . 7,671,627 Bl 3/2010 Somani et al.
R
’ > : 7,797,575 B2 9/2010 Clark et al.
5463351 A 10/1995 Marko etal. 2001/0016927 Al 8/2001 Poisner
5,504,703 A 4/1996 Bansal 2002/0038418 Al 3/2002 Shimamura
5,504,859 A 4/1996 Gustafson et al. 2004/0130351 Al 7/2004 Hazucha et al.
5,509,076 A~ 4/1996 Sprunk 2004/0199821 Al 10/2004 Flautner et al.
oo A g;}ggg Esﬂﬁﬁ};ﬁ;ﬁm' 2005/0162185 Al 7/2005 Satsukawa
5’572’662 A 11/1996 Ohta et al : 2006/0050550 Al 3/2006 Petersen et al.
’ ’ N 2006/0126376 Al 6/2006 Plants
SO0 A ooT aakahashi 2007/0028157 Al 2/2007 Drake et al.
5,630,154 A 5/1997 Bolstad et al. 2008/0180153 Al 7/2008 Sachdev et al.
5,737,369 A 4/1998 Retzer 2009/0066386 Al 3/2009 Lee
5,859,551 A 1/1999 Ohishi et al. 2009/0141536 Al 6/2009 Gonzalez et al.
5,862,141 A 1/1999 Trotter 2010/0080072 Al 4/2010 Krueger et al.
5,870,446 A 2/1999 McMahan et al. 2010/0088565 Al 4/2010 Chandra
5,872,907 A 2/1999 Griess et al. 2011/0126051 Al 5/2011 Flautner et al.
5,896,391 A 4/1999 Solheim et al.
5,914,903 A 6/1999 Kanma et al. FORFIGN PATENT DOCUMENTS
6,076,175 A 6/2000 Drost et al. JP 60-20398 2/1985
6,078,627 A 6/2000 Crayford JP 62-24498 2/1987
6,127,864 A 10/2000 Mavis et al. SU 809350 2/1981
6,148,423 A 11;2000 Le 11\/[01161 et al. WO WO 00/54410 9/2000
6,188,610 Bl 2/2001 Kakizoe et al.
6,222,660 Bl 4/2001 Traa
6,282,661 Bl 8/2001 Micol OTHER PUBLICATIONS
6,453,431 Bl 9/2002 Bernstein et al.)
6,476,643 B2 11/2002 Hugues et al. A. Goel et al, “Low-Overhead Design of Soft-Error-Tolerant Scan
6,523,201 Bl 2/2003 De Michele Flip-Flops with Enhanced-Scan Capability” Design Automation,
6,538,471 Bl 3/2003 Stan et al. : : .
6.650.66] BI 11/2003 Buchanan et al. 2006, .As.la and South Pacific Conference, Jan. 200.6., pp.. 665. 670.
6,693,985 B2 2/2004 Li et al. R. Oliveira et al, “A TMR Scheme for SEU Mitigation in Scan
6,741,110 B2 5/2004 Roisen Flip-Flops” Proceedings of the 8 International Symposium on Qual-
6,772,388 B2 8/2004 Cooper et al. ity Electronic Design (ISQED’07), Mar. 2007, pp. 905-910.

US 8,407,537 B2
Page 3

M. Zhang et al, “Sequential Element Design With Built-In Soft Error
Resilience” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, No. 12, Dec. 2006, pp. 1368-1378.

S.V. Devarapalli et al, “SEU-hardened Dual Data Rate Flip-Flop
Using C-elements” 2010 IEEE 25" International Symposium on
Defect and Fault Tolerance in VLSI Systems, Oct. 2010, pp. 167-171.
Final Office Action mailed Dec. 7, 2010 in co-pending U S. Appl. No.
11/636,716.

Office Action mailed Jul. 13, 2011 in co-pending U.S. Appl. No.
11/636,716.

Office Action mailed Jun. 19, 2012 in co-pending U.S. Appl. No.
13/064,207.

Office Action mailed Aug. 3, 2011 in co-pending U.S. Appl. No.
12/923,911.

U.S. Appl. No. 12/923,911, filed Oct. 13, 2010, Flautner et al.

U.S. Appl. No. 12/926,084, filed Oct. 25, 2010, Flautner et al.

U.S. Appl. No. 11/636,716, filed Dec. 11, 2006, Das et al.

U.S. Appl. No. 12/078,189, filed Mar. 27, 2008, Chandra et al.

U.S. Appl. No. 12/285,517, filed Oct. 7, 2008, Chandra.

U.S. Appl. No. 12/461,740, filed Aug. 21, 2009, Blaauw et al.

U.S. Appl. No. 13/064,207, filed Mar. 10, 2011, Choudhury et al.
Office Action mailed Aug. 29, 2011 in co-pending U.S. Appl. No.
12/078,189.

S. Mitra et al, “Logic Soft Errors in Sub-65nm Technologies Design
and CAD Challenges” DAC 2005, Jun. 2005, pp. 2-4.

P.Hazucha et al, “Measurements and Analysis of SER-Tolerant Latch
in a 90-nm Dual-V, CMOS Process” IEEE Journal of Solid-State
Circuits, vol. 39, No. 9, Sep. 2004, pp. 1536-1543.

S. Mitra et al, “Robust System Design with Built-In Soft-Error Resil-
ience” IEEE Computer Society Feb. 2005, pp. 43-52.

M. Keating et al, “Low Power Methodology Manual For System-on-
Chip Design” p. 216.

A.J. Drake et al, “A Self-Correcting Soft Error Tolerant Flop-Flop”
12" NASA Symposium on VLSI Design, Oct. 2005.

V. Chandra et al, “Impact of Technology and Voltage Scaling on the
Soft Error Susceptibility in Nanoscale CMOS” DFTVS ’08, IEEE
International Symposium on Defect and Fault Tolerances of VLSI
Systems, 2008.

Hill et al. “An Accurate Flip-Flop Selection Technique for Reducing
Logic SER”, Dept. of Electrical and Computer Engineering—Univ.
of Wisconsin, No Date, pp. 1-9.

Rockett, “An SEU-Hardened CMOS Data Latch Design”, IEEE
Transactions on Nuclear Sciences, vol. 35, No. 6, Dec. 1998, pp.
1682-1687.

Karnik et al., “Characterization of Soft Errors Caused by Single
Event Upsets in CMOS Processes”, IEEE Transactions on Depend-
able and Secure Computing, vol. 1, No. 2, Apr. 2004, pp. 128-143.
Li et al., “Low Power Dissipation SEU-hardened CMOS Latch”,
PIERS Online, vol. 3, No. 7, 2007, pp. 1080-1084.

Dabiri et al., “Soft Error-Aware Power Optimization using Gate
Sizing”, Computer Science Dept.—Univ. of California, No Date, pp.
1-10.

Zhang et al., “Design for Resilience to Soft Errors and Variations”,
IEEE Computer Society, 2007, 6 pages.

Huang et al., “A New Radiation Hardened by Design Latch for

Ultra-Deep-Sub-Micron Technologies”, [EEE Computer Society,
2008, pp. 175-176.

Das et al., “Razorll: In Situ Error Detection and Correction for PVT
and SER Tolerance”, IEEE Journal of Solid-State Circuits, vol. 44,
No. 1, Jan. 2009, pp. 32-48.

Jagirdar et al., “A Robust Architecture for Flip-Flops Tolerant to
Soft-Errors and Transients from Combinational Circuits”, IEEE
Computer Society, 2008, pp. 39-44.

Calin et al., “Upset Hardened Memory Design for Submicron CMOS
Technology”, IEEE Transactions on Nuclear Science, vol. 43, No. 6,
Dec. 1996, pp. 2874-2878.

Naseer et al., “DF-DICE: A Scalable Solution for Soft Error Tolerant
Circuit Design”, ISCAS 2006, pp. 3890-3893.

Jargirdar et al., “Efficient Flip-Flop Designs for SET/SEU Mitigation
with Tolerance to Crosstalk Induced Signal Delays”, Rutgers Uni-
versity, 24 pages.

Giacomotto et al., “Energy Efficiency of Power-Gating in Low-
Power Clocked Storage Flements”, PATMOS Proceedings, No Date,
9 pages.

Goel et al, “Low-Overhead Design of Soft-Error-Tolerant Scan Flip-
Flops with Enhanced-Scan Capability”, IEEE, 2006, pp. 665-670.
S. Das, “Razor: A Variability-Tolerant Design Methodology for Low-
Power and Robust Computing”, Computer Science and Engineer-
ing—Univ. of Michigan, 2009, pp. 1-122.

K. Seshadri, “Reduction of Architecture Vulnerability Factor using
Modified Razor Flip-flops™, Dept. of Electrical and Computer Engi-
neering—Univ. of Maryland, 2007, pp. 1-61.

Calin et al, “Upset-Tolerant CMOS SRAM Using Current Monitor-
ing: Prototype and Test Experiments”, International Test Conference
IEEE 1995, pp. 45-53.

A. Venkatraman et al, “A Robust, Fast Pulsed Flip-Flip Design”
GLSVLSI’08, May 2008, pp. 119-122.

S. Mitra et al, “Built-In Soft Error Resilience for Robust System
Design” IEEE, 2007, pp. 1-6.

S. Mitra “Built-In Soft Error Resilience for Robust System Design”
power point presentation pp. 1-34 & 36-45 www.ewh.ieee.org/r6/
scv/rl/articles/ser.talk.grid.v1.pdf.

Office Action mailed Jun. 23, 2010 in co-pending U.S. Appl. No.
11/636,716.

N. Kanekawa et al, “Fault Detection and Recovery Coverage
Improvement by Clock Synchronized Suplicated Systems with Opti-
mal Time Diversity” Fault-Tolerant Computing, Jun. 1998, pp. 196-
200.

“ARM?710 Data Sheet” Dec. 1994, Advanced RISC Machines Ltd.
(ARM).

F. Worm et al, “An Adaptive Low-Power Transmission Scheme for
On-Chip Networks” ISSS’02, Oct. 2002, pp. 92-100.

Enomoto et al, “A low-power, high speed 0.25um GaAs D-FF” Pro-
ceedings of the 23" European Solid-State Circuits Conference, 1997,
ESSCIRC "97, Sep. 16-18, 1997, pp. 300-303.

UK Search Report dated Jul. 18, 2012 in GB 1203249.6.

Office Action mailed Dec. 6, 2012 in co-pending U.S. Appl. No.
13/064,207.

* cited by examiner

U.S. Patent Mar. 26, 2013 Sheet 1 of 30 US 8,407,537 B2

7 3
—
=
> Flip-flop N E D—e
4 m _g
*
s
. o~ o £
Flip-flop N N % N ——]
[3 m -
t
~—
Q .
()]
S O
LL
.r—{A ©
< —3 ¢
G o
> Flip-flop < § }‘.'} ——
4 ‘r -
1
)
©
L2
b3 o~
-

12 A

U.S. Patent Mar. 26, 2013 Sheet 2 of 30 US 8,407,537 B2

Clock 4 Latch data out
Ve . ;
eta-
Data D Main FF Q stability
Restore Restore detector Local_error_1
data control OR
XOR |— AND
del_clockl ‘
Clk é
LD Shadow Q
latch 8 del_clock_bar
Clockl Clockl
102
C C
Pos Pos
—1D skewed @ u D skewed Q@
latch latch
100
Pani
C!ock[Clock [XOR |-—20c
C C
Neg Neg
OR g D skewed QD skewed @
. global_erro latch latch
Clockl Clock]
;g‘::l VCik Veik B_“b'el
_ signa
D Flush Q >— D Buble Q
FF FF

FIG. 2

US 8,407,537 B2

Sheet 3 of 30

Mar. 26,2013

U.S. Patent

€ Old (e

.~

u
:So

1307 @ ‘
M¥vd 130 M0

ouy

¥va 30193 _

..OA@

S
340183

Hva o

= O 340LS3Y
M,_Wﬂq 130701
—+—C]
{
g
=
i, |
=
i
V81307010
o——)
65 110 gz uva M10
z= 25 TAU
'
53 S=M,
g l— g ‘V— NIQ
é : |
= Sy |
2=1 / =1
t 14 t
mu“s HvE 1D mNuR_ _vIAUv:nV

U.S. Patent Mar. 26, 2013 Sheet 4 of 30 US 8,407,537 B2

Processing logic from stage i
produces output signal attime T,

!

Non-delayed latch captures output
signal at time T,

b 4

Value from non-delayed latch

passed to stage i+1 30

Processing logic from stage i 32
produces output signal at time T.+d

Delayed latch captures output 34

signal at time T.+d

Delayed latch vaiue =
non-delayed latch value?

Continue _~37

FIG. 4A

U.S. Patent Mar. 26, 2013 Sheet 5 of 30 US 8,407,537 B2

Forward pipeline bubble to
succeeding pipeline stages

!

Stall all stages up to stage i+1 -—~40
Re-execute stage i+1 with delayed
latch value as input

!

Modify operating conditions ~44

4

Continue I-/\46

FIG. 4B

42

U.S. Patent Mar. 26, 2013 Sheet 6 of 30 US 8,407,537 B2

104

_ 108 , 108
2 f1c))2 /102 ﬂ 1026

1 1

13

DECODER 2

CLK

116

FIG. 5

118

U.S. Patent Mar. 26, 2013 Sheet 7 of 30 US 8,407,537 B2

Couple selected memory cell
122 to adjacent bit line by
activating word line

A

Values of selected memory
124— cells and their complements
driven onto bit lines

v
Fast data reading mechanism

126 samples data value at time t +§,,

h

128 Fast-r‘ead' value V¢, passed t‘o other
circuits for further processing

A 4

Slow data reading mechanism

130 samples data value at time t +5,
to give slow-read data value Vslow
1 :34
132 Vslow = Vfast ? v » Continue

Issue suppression signal
136~ to circuits which Vfast

has been passed F ' G . 7

U.S. Patent Mar. 26, 2013 Sheet 8 of 30 US 8,407,537 B2

140
Cd 144
142 142 142 148)

DSP
147,
» R » R
3 3 ; FIG. 8
146 146 146
Non-delayed latch captures 150

bus signal at time Tn

Y
Value_from non-delayed
latch passed to next bus —~—152

pipeline stage

Delayed latch captures

bus signal at time Tn + § 154

158

Delayed latch value=

non-delayed latch value? Continue

160

Delay clock and replace

non-delayed latch value
with delayed latch value F l G . 9

U.S. Patent Mar. 26, 2013 Sheet 9 of 30 US 8,407,537 B2

r 162 164 166
rom
instruction L 2
register
—_— t+—— Control

————— signals

»> ROM >

168

FIG. 10

U.S. Patent

Mar. 26, 2013 Sheet 10 of 30

170~

Read multiply - accumulate
control signal from
memory at time Tk and store
in non-delayed latch

A 4

172~

Output multiply - accumulate
signal to processing logic

4

174~—

Read multiply operands
from register and initiate
multiply operation

y

Read multiply control signal

176— from memory at time Tk + § and

store in delayed latch

178

Delayed value =
non-delayed value?

Has multiply operation
completed yet?

186~ Reset adder to cancel accumulate

r

188~

Output result of
multiply operation

US 8,407,537 B2

180

Continue

184

Reset

U.S. Patent Mar. 26, 2013

Sheet 11 of 30 US 8,407,537 B2
Sleep R Vv ~VR
controller supply g
192 Vo
4
l | l I N L nY N N Ocik
i
r OCLKr i
Vol MVo Vo Vo v

180 Q 190 Q

—U—L Rewk Rewk ‘ Rek |

U.S. Patent

Mar. 26, 2013 Sheet 12 of 30

US 8,407,537 B2

IC is set to operational mode

194

;

Processing logic from stage j

produces output signal at time Tj

—~—196

y

Non-delayed latch captures
output signal at time Tj

—~—198

:

Value from non-delayed latch
passed to stage) + 1

~—200

:

Processing logic from stage j
produces output signal attime T, + d

~—202

j
:

Low power mode controller
initiates switch to standby mode

~—204

!

Delayed latch captures'
output signal at time Tj +d

—~—206

.

Non-delayed latch is powered down
and stored value of output

signal at time T. is lost

—~—208

j
}

Low power mode controller
switch from standby mode
back to operational mode

—~—210

!

IC initialised such that value
stored by delayed latch passed
as input value to stage j + 1

—~~212

FIG. 13

U.S. Patent Mar. 26, 2013 Sheet 13 of 30 US 8,407,537 B2

—
-
L_j 1016 1020 1030
L-' Channel Channel
- or logic or logic
1018
§ T N-1022
L R
Error Error
FIG 1 4 detect correct 1028
1026
Redundancy
Data bits bits
LT T)
D G
Channel —~—1114

!
Error detection
Error correclion

A

Ve N

I OIn
FIG. 15

—~1116

U.S. Patent Mar. 26, 2013 Sheet 14 of 30 US 8,407,537 B2

Xmod 7 X Ymod?7 Y

(T O 111 OI0 O Il
__|._. 1210 + 1230
MOD 7 ~—1220 MOD 7 ~—1240
1250
(T T TT] 7= BERENER
Xmod7+Ymod7 (X+Y)mod?7

FIG. 16

U.S. Patent Mar. 26, 2013 Sheet 15 of 30 US 8,407,537 B2

Input error correction encoded input value | 1310
to processing logic stage i
v
Non-delayed latch captures 1320
output signal at time Ti ‘
Captured value forwarded to 1330
subsequent processing logic stage i + 1
Delayed latch captures 1340
output signal attime Ti + d
!
Error correction logic captures 1350
output signal at time Ti + (d + d) e

Error detected in
output signal?

1380

Issue control signal
| indicating that delayed value
uncorrectable

Error correciable?

Correct emror and supply corrected

delayed value to comparator 1390

Error-checked delayed
value = non-delayed value?

FIG. 17

Continue

U.S. Patent Mar. 26, 2013 Sheet 16 of 30 US 8,407,537 B2

Clock
| Phase ~—2004

|_______ Control
@c

Detected
Error
Derived
@ @ Control

Lo Le Le \2000
2002 2002 2002

iLAILC lLAILC lLAILC
On=Oc=0y |le-ood-fI 182]
t
] . .
1
lLB lLB lLB
et | n

FIG. 18

U.S. Patent Mar. 26, 2013 Sheet 17 of 30 US 8,407,537 B2

—
IF w]—r ID p{ups EX —b]—»MEM—rU- ST~&—N w8
™ w T™ w T "5 (reg/
2 ol 1 Lmem

© o] © © Q

o |Error o |Error o |Error o {Error %

N N N "zsj
Clock Recover Recover Recover Recover

Razor latch gets Correct value
correct EX value provided to MEM

Time (in cycles)

T T T T Y T T T T
@l IF | ID | EX ,MEM | ST/, stali /' WB | : :
K] 1 1 1 % ! %! |] 1)
5 v IF 0 ID 1T EXT T MEMTYMEM 1 ST 1+ WB |
E] [} 1 | [} [! [)
B } E IFEIDEEXEstaIIEMEMESTEWBE
. : | IF | ID | stall | EX | MEM | ST |
| 1 | [} 1 [! | I
v

U.S. Patent Mar. 26, 2013 Sheet 18 of 30 US 8,407,537 B2

ST || | We
o E’ (regl)
Nl | mem
o Bubble| 5
Error %
Recover
Flush | Q‘___
| control fush 1D
Razor detects fault,
forwards bubble toward WB, Pipeline flush
. i initiates flush toward IF completes
Time (in cycles)
| H I ! i i i i T
gl ¥ o ID:EX:MEM,ST/:WB: | ! ! ;
\
5 1 IF 4+ ID 1 EX* 1bubblet MEM 1 ST « WB 1 N \
L O O N TR T A
g : ! IF : ID : EX :ﬂushex:ﬂush,o:ﬂush":: IF : ID !
1 : , Fo Dy : | : v P
| 1 | | |] | 1 1]
4

FIG. 20

U.S. Patent Mar. 26, 2013 Sheet 19 of 30 US 8,407,537 B2

clk ck_b

l>: Q

Meta-stability detector

To scan in: assert Scan_EN and Error_L

Scan_In
2100

FIG. 21

Shadow Latch

US 8,407,537 B2

Sheet 20 of 30

Mar. 26, 2013

U.S. Patent

77 '
N anos
QNI NG "
VIS A¥3M0)39 40 ~
g3yas| QGQE~{ Y0¥
090% N T
gL H30 yaN3130 NUREIEY
zuo:_ﬁﬁk NOLWISNVEL | NOLLISNVL
hsos~ 7505~ 0505~
= o 2
T v i .
2 (-Com 3 (e pt g oy
= a) °
77 azos g Qlo¢
MT)
,mon\.\

US 8,407,537 B2

Sheet 21 of 30

Mar. 26,2013

U.S. Patent

AT

09}

-[o]

houe

_J&]

H o o o

—| =

C-me | 7-Tie

7:<

31V1S
od | HSN14 153130 |
GIWHIINOD [-
1353¥ 3023 INNIdId || HOuM3
A A J/ J
0618 081t 0918
0118~ ims e
ANVE ¢0i¢
> ¥318193Y
JALLVINO3dS
OMS (—
10\¢
Y
11E~ N ———
o | b zavis|iavis
!Z(ﬂ b3 PELT]
Y318193y asmHring?)
a3WHI4NOD L S-u h-v
ot e P NS
Oﬂ’m)\ -l WOILIND
oT\C
1 T 7
haig (44}’

€X3 | X3 1X3

US 8,407,537 B2

Sheet 22 of 30

Mar. 26,2013

U.S. Patent

vhg OU
4743 (4143
OLze L 09z€ 0sz€ /
ya ALVIS L /
A3 TT0ULING) od QENYIANOD | | HSN 10814a A .
Y3Vl 19STd JHA0DTS ANTTAdId [S] yowud 93 ‘1 N NULSNI
“wNoU ¥ ¥340 7 ”
w\ €4 ‘0¥ INYISNI
chie
0vZE~ 4O
;_q_
0ETE] al \ dlL al ﬁ.\—.QMNm
A#4) ozze ¢-oeze | z-0gze 01z¢
1M 7 2 2 N
JNVHE J21INd qa44ind
YALSIONY CARARY 4LVvIS gvis |1aGVIS | GM | €XH | IXH | IXd | «ee| DEQ
AINATINQD JINNIINOD A<Um_b_0
oMmO f } -) j N .
Z61€ ST A 2 T 2 u \
f N 08Z¢
| w 62E
967€
4
062€

U.S. Patent

Mar. 26, 2013 Sheet 23 of 30

— 3294

PROCESS ‘
* NexT CvolE |

ERROR

12
YES 32

FLUSH PIPELINE
OF NON-CONFIRMED | 529 9
STATE

Y

RESET PC TO INSTR
FOLLOWING LAST | 3300
CONFIRMED INSTR

330]
NO

PC VALUE EQUALTO
AST RESET PC VALUE?

TEMPORARILY
ADJUST 0P PARAMS (~. 4 3 0/
TO PREVENT
POSSIBLE DEADLOCK

l

DETECTION

1303

STORE PC VALUE FOR
FUTURE DEADLOCK .q____J

US 8,407,537 B2

ERROR DETECTION AND RECOVERY PROCESS

F‘B 2LR

U.S. Patent Mar. 26, 2013 Sheet 24 of 30 US 8,407,537 B2

3304

SAMPLE ERROR RATE [

Y w0

cRROR RATE WITHIN YES .

ACCEPTABLE BOUNDS?

ADJUST
OPERATIONAL
PARAMETERS

OPERATIONAL PARAMETER TUNING PROCESS

Fiu 240

US 8,407,537 B2

Sheet 25 of 30

Mar. 26, 2013

U.S. Patent

— —— at — — —— — o — — —— S— — ——— —— — — —— — — — — ——— ——— =

<t

£13Q7viva

RREL
_ 1307 Y1YQ

£1307v1vd
i
¥N uvm;_ =

91307viva u_ u u

- _ LI 91 SI° PI
B

U G
I
|
|
|
I
|
{
f
|
|
{
|
|
|
|
|
!
!
[
|
|
{
|
i
|
|

ON _Plesernz 80153130 NOILISNVYL
0see
llllllllllllllllllllllll €1
MU %109 1
14 | a1
%199 N19u _
w194 ¥Tou | 1L
1 e |
) 0 zs 18 e N T j
- 79l 191 |
¥19u %104 “

o~ d013-di1d NIVA

oige e e o e e ——————— o e

AY130

viva

U.S. Patent Mar. 26, 2013 Sheet 26 of 30 US 8,407,537 B2

TseTUP_FF

-t / o TPOS———>

DATA

T
|- DELAY DATA_DEL3

FIG. 26

U.S. Patent

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

27C

27D

27E

27F

27G

Mar. 26, 2013 Sheet 27 of 30 US 8,407,537 B2
CLOCK
TC1 Tcz
\I DATA1—= 0
TD
DATA_DEL3 = N1 INPUT
/: N1 ON
N1 OFF |
|
| T3
N3 ON !
: \ N3 OFF
|
Lo\ DATA_DEL4 = N3 INPUT
) T
: E\TI4
| | DATA_DEL5
T t
o/
1/
i I
| |
| I
N2 ON P
b ’ N2 OFF
| |
L DATA_DEL6 = N2 INPUT
) T Iﬁ T.
L BRRE
L | DATA_DELT = N4 INPUT
: | ! i
L VLT
N4 OFF P : T
N1x N1v| N1V N1V | N1V
N2V N2V N2V N2x | N2x
N3V N3V| N3x N3x | N3x
N4 x N4x| N4x N4x | N4V

U.S. Patent

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

28C

28D

28E

28F

28G

Mar. 26, 2013 Sheet 28 of 30 US 8,407,537 B2
CLOCK
Teq Teo
DATA 0—=1 TRANSITION
TD2
~—— N1ON \ N1 OFF
N1 OFF) I\ DATA_DEL3 = N1 INPUT
7 T
eval(l)| |
T 1 Trza
! DATA_DEL4 = N3 INPUT
evgll(IS) !
N3 OFF : < N3 ON
| ;\
: " Tran
! !
I
L
! | DATA_DEL5
i evél('Is)
|
,' ! DATA_DEL6 = N2 INPUT
{ I leval(T;)/,
N2 OFF : i : N2 ON
i I .
T l T
E ! E\TIGA
L |
N4 ON — i T N4 OFF ——
| ! |\ T17a
| , eval(Ig\ f DATA_DEL = N4 INPUT
N1V N1x |N1x N1x [N1x
N2 x N2x [N2x N2V N2V
N3 x N3x |N3V N3V N3V
N4 v N4V N4V N4Y |N4x

US 8,407,537 B2

Sheet 29 of 30

Mar. 26,2013

U.S. Patent

VY6C Ol

pye|qeIsw]

—

J} dnjasy -

py ajdwes|
mmN mu_.l._ MOUONIM
1031330
NOILISNVYL
= 108.1100U1 | v\tsm_psmc;v Asm_ WA J981100)
A10
-) dnjes| -

US 8,407,537 B2

Sheet 30 of 30

Mar. 26,2013

U.S. Patent

A0

JUAgQ10113jBQO|D)

0€ Old

NOILVZINOHHONAS 1VNOIS J0Hd3

M10

12401

ANAS lo113(eqoj)

44013

ovoe

/

NJo.13

E

T]

ziong

BE

US 8,407,537 B2

1
ERROR RECOVER WITHIN PROCESSING
STAGES OF AN INTEGRATED CIRCUIT

This application is a continuation of U.S. Ser. No. 12/461,
740 filed 21 Aug. 2009 now U.S. Pat. No. 8,060,814 which is
a continuation of U.S. Ser. No. 11/636,716 filed 11 Dec. 2006
now U.S. Pat. No. 8,185,812 which claims the benefit of U.S.
Provisional Application No. 60/760,399 filed 20 Jan. 2006
and is a continuation-in-part of U.S. Ser. No. 11/110,961,
filed 21 Apr. 2005, now U.S. Pat. No. 7,320,091, which is a
continuation-in-part of U.S. Ser. No. 10/779,805, filed 18
Feb. 2004, now U.S. Pat. No. 7,162,661 and which in turn was
a continuation-in-part of U.S. Ser. No. 10/392,382, filed 20
Mar. 2003, now U.S. Pat. No. 7,278,080, the entire contents of
each of which are hereby incorporated by reference in this
application.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of integrated circuits.
More particularly, this invention relates to the detection of
operational errors within the processing stages of an inte-
grated circuit and recovery from such errors.

2. Description of the Prior Art

It is known to provide integrated circuits formed of serially
connected processing stages, for example a pipelined circuit.
Each processing stage comprises processing logic and a latch
for storing an output value from one stage which is subse-
quently supplied as input to the succeeding processing stage.
The time taken for the processing logic to complete its pro-
cessing operation determines the speed at which the inte-
grated circuit may operate. The fastest rate at which the pro-
cessing logic can operate is constrained by the slowest of the
processing logic stages. In order to process data as rapidly as
possible, the processing stages of the circuit will be driven at
as rapid a rate as possible until the slowest of the processing
stages is unable to keep pace. However, in situations where
the power consumption of the integrated circuit is more
important that increasing the processing rate, the operating
voltage of the integrated circuit will be reduced so as to reduce
power consumption to the point at which the slowest process-
ing stage is no longer able to keep pace. Both the situation
where the voltage level is reduced to the point at which the
slowest processing stage can no longer keep pace and the
situation where the operating frequency is increased to the
point at which the slowest processing stage can no longer
perform its processing will give rise to the occurrence of
processing errors that will adversely effect the forward-
progress of the computation.

It is known to avoid the occurrence of such processing
errors by setting an integrated circuit to operate at a voltage
level which is sufficiently above a minimum voltage level and
at a processing frequency that is sufficiently less than the
maximum desirable processing frequency taking into account
properties of the integrated circuits including manufacturing
variation between different integrated circuits within a batch,
operating environment conditions, such as typical tempera-
ture ranges, data dependencies of signals being processed and
the like. This conventional approach is cautious in restricting
the maximum operating frequency and the minimum operat-
ing voltage to take account of the worst case situations.

US Patent Application Publication No. US2004-0199821,
discloses a system in which an integrated circuit is arranged to
operate so as to maintain a non-zero rate of errors in operation
by dynamically controlling at least one performance control-
ling parameter, such as frequency, operating voltage, or tem-

20

25

30

35

40

45

50

55

60

65

2

perature. This system enables forward progress of the com-
putation, despite the presence of timing errors, by the use of a
delayed latch that captures data at a point later in time than the
main latch of the associated processing stage of the integrated
circuit. The data value captured by the delayed latch is used in
the event of detection of an error to replace the value captured
by the main latch at a point in time before the output of the
processing stage was stable. By deliberately operating the
integrated circuit at a non-zero error rate, an individual inte-
grated circuit can be tuned to obtain the fastest possible pro-
cessing speed or the lowest possible energy consumption as
required by the particular processing application. However,
the requirement to modify the processing circuit by providing
a delayed latch for each main latch of the processing stages
can in certain circumstances be inflexible. For example, if
operational errors are not restricted to the datapath of the
central processing unit (CPU), but also occur in the control
logic itself or in other critical paths of the integrated circuits
then a considerable number of delay latches would have to be
added to the integrated circuit to implement the error detec-
tion and recovery. Furthermore, in embodiments of US-2004-
0199821 that use existing pipeline sequencing logic to imple-
ment error recovery by reading data values from the delayed
latches it may be difficult to ensure that the pipeline sequenc-
ing logic itself is not affected by errors in operation, either
directly due to a critical path in the control logic itself or
indirectly by feeding back a metastable value from the data-
path into the control logic.

Thus, there is a need for a technique that enables improved
performance to be derived from an integrated circuit yet does
not require extensive modifications to existing integrated cir-
cuit design to accommodate error recovery operations.

SUMMARY OF THE INVENTION

Viewed from one aspect the present invention provides an
integrated circuit for performing digital data processing, said
integrated circuit comprising:

an error detection circuit operable to detect a transition in a
signal value in a predetermined time window within said
integrated circuit indicative of an error in operation of said
integrated circuit;

an error-recovery circuit responsive to said error detection
circuit and operable to enable said integrated circuit to
recover from said error in operation;

an operational parameter controller operable to control one
or more performance controlling operational parameters of
said integrated circuit;

wherein said operational parameter controller dynamically
controls at least one of said one or more performance con-
trolling parameters in dependence upon one or more charac-
teristics of errors detected by said error detection circuit to
maintain a non-zero rate of errors in operation, said error-
recovery circuit being operable to enable the integrated cir-
cuit to recover from said errors in operation such that data
processing by said integrated circuit continues.

The present technique recognises that the operation of
processing stages can be directly monitored to find the limit-
ing conditions in which they fail. When errors are detected an
error recovery circuit is responsive to detection of an error to
initiate error recovery so that incorrect operation overall is not
produced. The advantages achieved by the avoidance of
excessively cautious performance margins in the previous
approaches compared with the direct observation of the fail-
ure point in the present approach more than compensates for
the additional time and power consumed in recovering the
system when a failure does occur. Deliberately allowing such

US 8,407,537 B2

3

processing errors to occur such that critical paths fail to meet
their timing requirements I highly counter-intuitive in this
technical field where it is normal to take considerable efforts
to ensure that all critical paths always do meet their timing
requirements.

Although the error recovery circuit could operate in a num-
ber of different ways, in one embodiment a storage unit is
provided to store a recoverable state of the data processing
apparatus and the error recovery circuit uses the stored recov-
erable state to enable the integrated circuit to recover from the
errors in operation.

The stored recoverable state comprises at least a subset of
architectural state variables corresponding to a programmers
model of the integrated circuit. Using the stored recoverable
state the error detection can be performed without the require-
mentto capture a delayed value from each processing stage or
the requirement to reload the correct values into the process-
ing logic in the event of an error in operation. This enables
integrated circuits to be relatively easily modified so that the
error detection and recovery can be applied to any critical path
within the integrated circuit including both CPU data paths
and control logic.

The recoverable state stored by the storage unit (which may
be multiple storage elements dispersed throughout the inte-
grated circuit) could comprise at least a subset of architectural
state variables corresponding to the programmer’s model,
such as register values, flag values and processing modes.
However, in one embodiment the recoverable state comprises
at least a subset of micro-architectural state variables that are
not part of the programmer’s model such as, for example,
information on variables stored in cache. This arrangement
provides flexibility in the error recovery capability of the
integrated circuit since different errors in operation will
require different subsets of recoverable state in order to return
the integrated circuit to a state from which forward-progress
of the computation can be reliably performed. It will be
appreciated that some errors in operation will have effects
that propagate to more state variables and different types of
state variables than other errors in operation.

It will be appreciated that the error detection circuit could
detect the error in operation in a number of different ways.
However, in one embodiment the error detection circuit is
arranged to detect a transition in a data value by calculating a
difference between an input signal value at a first sampling
time and the same signal at a second, subsequent sampling
time. Thus, any difference in the signal value within a time
period when no difference in output is expected if the circuit
is operating reliably, enables straight-forward detection of an
error. In another embodiment the error detection circuit is
arranged to detect a transition in the data signal by detecting
any change of state in the signal value within a predetermined
time window. This contrasts with the embodiment that
involves two distinct sampling points by detecting a glitch in
the signal value between two sampling points that would not
otherwise be detected. Thus the detection of the transition the
signal value is effectively continuous rather than discrete.

In one embodiment, the error detection circuit is operable
to detect an error in an output signal of an associated process-
ing circuit element of the integrated circuit. This enables
effective correlation between the processing stage and the
occurrence of an error. In alternative arrangements a detec-
tion circuit may be shared between a number of processing
stages.

In one embodiment the integrated circuit has an error
detection circuit having a metastability window that is mutu-
ally exclusive with a setup window of the associated process-
ing circuit element (e.g. main flip-flop). This enables detec-

20

25

30

35

40

45

50

55

60

65

4

tion of an error in operation even when the input data
transitions in the setup window of the main flip-flop. Arrang-
ing the metastability window of the error detection circuit
such that it is non-overlapping with the setup window of the
main latch associated with the processing stage obviates the
need to provide a power-hungry metastability detection cir-
cuit and enables sensing of transitions in the data signal both
during the set up window of the main latch of the processing
stage and during the hold window of the clock signal that is
the positive phase of the clock signal.

It will be appreciated that the integrated circuit could be a
non-pipelined integrated circuit, but in one embodiment the
integrated circuit is a pipelined integrated circuit comprising
a plurality of serially connected processing stages.

Although the particular processing circuit element with
which an error detection circuit is associated could be any
circuit element capable of storing the processing value, for
example a latching sense-amp, in one embodiment the pro-
cessing circuit element is a latch for passing data between
consecutive ones of a plurality of pipeline stages. A latch is a
simple circuit element and association of an error detection
circuit with a latch provides for efficient error-detection that is
easy to implement.

In one embodiment the error detection circuit comprises at
least one error delay element arranged to delay an input
digital signal to enable detection of a transition occurring
during a set-up time of the processing circuit element. This
avoids the possibility of an error in operation being missed
when a data transition occurs during the set-up time of the
main processing circuit element, since in such a case the logic
state of that processing element would otherwise be unre-
solved. Delaying the digital signal has the effect of aligning
the data transition for the input to the error detection circuit
such that the sampling window of the error detection circuit
overlaps the setup window of the main processing element
causing signal transitions in the setup window of the main
processing element to be reliably detected as errors in the
error detection circuit.

It will be appreciated that the error detection circuit could
take many different forms but in one embodiment the error
detection circuit comprises at least one of a zero-to-one tran-
sition detector and a one-to-zero transition detector. These
transition detectors could be distinct detectors or could be a
single circuit operable to detect transitions of both orienta-
tions.

Although the integrated circuit could recover from errors in
operation by flushing the pipeline of erroneous values and
restoring a previous state directly from the reusable state
store, in one embodiment the error recovery circuit comprises
at least one stability pipeline stage operable to enable a veri-
fication of output values of the plurality of pipeline stages in
the pipelined integrated circuit prior to commitment of those
output values as stored state variables of the integrated circuit.
The stability pipeline stages allow sufficient time to deter-
mine whether an error has occurred in the production of
output values of the pipeline states and this reduces the like-
lihood that committed state variables will be corrupted.

Although inclusion of at least one stability pipeline stage in
the error recovery circuit may involve delay in committal of
calculated pipeline values, in one embodiment the integrated
circuit comprises data forwarding circuitry operable to sup-
ply a value calculated by a particular one of the plurality of
pipeline stages directly from the particular pipeline stage to
another different one of the plurality of pipeline stages foruse
as an input value. This reduces the impact of read-after-write
hazards that could potentially arise from provision of the
extra stability pipeline stages. The forwarding circuitry

US 8,407,537 B2

5

enables the value calculated by a previous processing stage to
be supplied to a subsequent processing stage currently in the
pipeline before that value has been committed to a register.
This prevents the subsequent processing stage from using an
incorrect input value.

It will be appreciated that the storage unit could be any type
of memory, such as stack memory, but in one embodiment the
storage unit includes a register bank. Although the register
bank could be operable to store state variables before those
state variables have been confirmed as being free of errors, in
one embodiment the register bank is operable to store only
confirmed state variables, the confirmed state variables hav-
ing been confirmed to be free of timing violations. Thus, the
state variables stored in the register bank are reliable state
variables and can be used to recover from a subsequent
detected error in operation of the integrated circuit.

It will be appreciated that the integrated circuit could com-
prise a single storage unit comprising a single register bank.
However, in one embodiment the integrated circuit comprises
a speculative register bank operable to store speculative state
variables whose values have not been confirmed as being free
of timing violations in addition to a confirmed register bank
operable to store confirmed state variables whose values have
been confirmed as being correct (stable) values. This enables
aportion of the error recovery to be performed in parallel with
the main processing. Thus, values in the speculative register
bank are corrected using values from the confirmed register
bank only in the event of the detection of an error in operation
of the integrated circuit. At any one time the speculative
register bank stores state variables for more advanced pro-
cessing stages than the currently stored state variables in the
confirmed register bank. In the event of an error, the error
recovery circuit is operable to replace a subset of the specu-
lative state variables in the speculative register bank by cor-
responding ones of the confirmed state variables from the
confirmed register bank so that the processing can return to a
previous stage at which the detected error in operation has not
yet effected any of the state variables. This ensures forward-
progress of the computation despite the occurrence of a pro-
cessing error.

It will be appreciated that the operational parameter con-
troller could be operable to adjust the performance control-
ling parameters in response to detection of an error in opera-
tion of the integrated circuit. The parameter adjustment could
be performed immediately in response to detection of an
error. For example the operating frequency could be reduced
or the operating voltage increased to ensure that the likeli-
hood of errors in operation is decreased. These adjustments
could be performed at least temporarily. However, in one
embodiment of the invention the response of adjusting the
operational parameters by the operational parameter control-
ler is damped so that the there is a time delay following
detection of at least one error in operation before the adjust-
ment of one or more of the performance controlling param-
eters. This allows the integrated circuit to assess the likeli-
hood of the increased error rate persisting since such an
increase may not be systematic and could be dealt with out
adjustment of the operational parameters by simply re-ex-
ecuting the relevant sequence of processing operations. How-
ever, temporary adjustment of one or more operational
parameters may be performed to prevent deadlock.

According to a second aspect the present invention pro-
vides a method of controlling an integrated circuit for per-
forming digital data processing, said method comprising the
steps of:

5

20

25

30

35

40

45

50

55

60

65

6

detecting a transition in a signal value in a predetermined
time window within said integrated circuit indicative of an
error in operation of said integrated circuit;

responding to said detection of an error in operation by
enabling said integrated circuit to recover from said error in
operation;

controlling one or more performance controlling opera-
tional parameters of said integrated circuit;

wherein at least one of said one or more performance
controlling parameters is dynamically controlled in depen-
dence upon one or more characteristics of errors detected in
said detecting step to maintain a non-zero rate of errors in
operation, said errors in operation being recovered from such
that data processing by said integrated circuit continues.

The above, and other objects, features and advantages of
this invention will be apparent from the following detailed
description of illustrative embodiments which is to be read in
connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a plurality of processing
stages to which the present technique is applied;

FIG. 2 is a circuit block diagram schematically illustrating
a circuit for use in the present technique;

FIG. 3 is a circuit diagram schematically illustrating a
non-delayed latch and a delayed latch together with an asso-
ciated comparator and error-recovery logic;

FIGS. 4A and 4B are a flow diagram schematically illus-
trating the operation of the circuit of FIG. 1;

FIG. 5 schematically illustrates a memory circuit including
a fast read mechanism and a slow read mechanism;

FIG. 6 illustrates an alternative circuit arrangement for a
portion of the circuit of FIG. 5;

FIG. 7 is a flow diagram schematically illustrating the
operation of the memory circuit of FIG. 5;

FIG. 8 illustrates a pipelined bus including non-delayed
latches and delayed latches between the bus stages;

FIG. 9 is a flow diagram schematically illustrating the
operation of the pipelined bus of FIG. 8;

FIG. 10 schematically illustrates the generation of control
signals for controlling a microprocessor that are subject to
both non-delayed latching and output and delayed latching
and output;

FIG. 11 is a flow diagram schematically illustrating one
example of the operation of the circuit of FIG. 10;

FIG. 12 illustrates a processing pipeline including non-
delayed latches and delayed latches with those delayed
latches being reused as data retention latches during a lower
power of operation;

FIG. 13 is a flow diagram schematically illustrating the
operation of the circuit of FIG. 12;

FIG. 14 schematically illustrates a plurality of processing
stages to which error correction and delayed latches have
been applied;

FIG. 15 schematically illustrates error correction for data
passing through a channel that simply passes the data value
unchanged from input to output if no errors occur;

FIG. 16 schematically illustrates how error correction is
performed for a value-changing logic element such as an
adder, multiplier or shifter;

FIG. 17 is a flow chart schematically illustrating the opera-
tion of the circuit of FIG. 14;

FIG. 18 schematically illustrates how delayed and non-
delayed latches can be used to control the relative phases of
clock signals within a processing pipeline;

US 8,407,537 B2

7

FIGS. 19 and 20 schematically illustrate respective uses of
stalls and bubble insertion in recovering from errors; and

FIG. 21 illustrates a non-delayed and delayed latch for use
between processing stages with the delayed latch being
reused as a serial scan chain latch.

FIG. 22 schematically illustrates one example of a plurality
of processing stages of an integrated circuit to which the
present technique is applied;

FIG. 23 schematically illustrates a pipeline in which error
recovery is performed using a confirmed register bank
together with a speculative register bank;

FIG. 24 A schematically illustrates a pipeline arrangement
in which error recovery is performed using state variables
stored in a single register bank;

FIG. 24B is a flow chart schematically illustrating how the
circuit of FIG. 3A recovers from a detected error;

FIG. 24C is a flow chart schematically illustrating an
operational parameter tuning process;

FIG. 25 schematically illustrates a transition detection
D-flip-flop according to the present technique;

FIG. 26 schematically illustrates a functional timing dia-
gram that illustrates how detection of a transition of datain a
set up window of the main flip-flop of FIG. 4 is detected;

FIGS. 27A to 27G schematically illustrate functional tim-
ing diagrams for signals passing through the circuit of FIG. 4
when detection of a transition from logic level one to logic
level zero is performed;

FIGS. 28A to 28G schematically illustrate a functional
timing diagram for the signals in the circuit of FIG. 4 when
detecting a data transition from the logic level zero to the logic
level one;

FIGS. 29A to 29B schematically illustrate how the meta-
stability windows of the main flip-flop and the transition
detector of FIG. 4 are non-overlapping; and

FIG. 30 schematically illustrates error synchronisation of
error signals derived from transition detectors.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 illustrates a part of an integrated circuit, which may
be a part of a synchronous pipeline within a processor core,
such as an ARM processor core produced by ARM limited of
Cambridge, England. The synchronous pipeline is formed of
aplurality of like processing stages. The first stage comprises
processing logic 2 followed by a non-delayed latch 4 in the
form of a flip-flop together with a comparator 6 and a delayed
latch 8. The term latch used herein encompasses any circuit
element operable to store a signal value irrespective of trig-
gering, clock and other requirements. Subsequent processing
stages are similarly formed. A non-delayed clock signal 10
drives the processing logic and non-delayed latches 4 within
all of the processing stages to operate synchronously as part
of a synchronous pipeline. A delayed clock signal 12 is sup-
plied to the delayed latches 8 of the respective processing
stages. The delayed clock signal 12 is a phase shifted version
of'the non-delayed clock signal 10. The degree of phase shift
controls the delay period between the capture of the output of
the processing logic 2 by the non-delayed latch 4 and the
capture of the output of the processing logic 2 at a later time
performed by the delayed latch 8. If the processing logic 2 is
operating within limits given the existing non-delayed clock
signal frequency, the operating voltage being supplied to the
integrated circuit, the body bias voltage, the temperature etc,
then the processing logic 2 will have finished its processing
operations by the time that the non-delayed latch 4 is trig-
gered to capture its value. Consequently, when the delayed

20

25

30

35

40

45

50

55

60

65

8

latch 8 later captures the output of the processing logic 2, this
will have the same value as the value captured within the
non-delayed latch 4. Accordingly, the comparator 6 will
detect no change occurring during the delay period and error-
recovery operation will not be triggered. Conversely, if the
operating parameters for the integrated circuit are such that
the processing logic 2 has not completed its processing opera-
tion by the time that the non-delayed latch 4 captures its value,
then the delayed latch 8 will capture a different value and this
will be detected by the comparator 6 thereby forcing an error-
recovery operation to be performed. It will be seen that the
error-recovery operation could be to replace the output of the
non-delayed latch 4 which was being supplied to the follow-
ing processing stage during the time following its capture
with the delayed value stored within the delayed latch 8. This
delayed value may additionally be forced to be stored within
the non-delayed latch 4 replacing the previously erroneously
captured value stored therein.

A meta-stability detector 7 serves to detect meta-stability
in the output of the non-delayed latch 4, i.e. not at a clearly
defined logic state. If such meta-stability is detected, then this
is treated as an error and the value of the delay latch 6 is used
instead.

On detection of an error, the whole pipeline may be stalled
by gating the non-delayed clock signal 10 for an additional
delayed period to give sufficient time for the processing logic
in the following processing stage to properly respond to the
corrected input signal value being supplied to it. Alterna-
tively, it is possible that upstream processing stages may be
stalled with subsequent processing stages being allowed to
continue operation with a bubble inserted into the pipeline in
accordance with standard pipeline processing techniques
using a counterflow architecture (see the bubble and flush
latches of FIG. 2). Another alternative is that the entire pro-
cessing pipeline may be reset with the delayed latch values
being forced into the non-delayed latches of each stage and
processing resumed. The re-use of the delayed latch value in
place of the erroneous value rather than an attempted recal-
culation ensures that forward progress is made through the
processing operations even though an error has occurred.

There are constraints relating to the relationship between
the processing time taken by the processing logic within the
processing stages and the delay between the non-delayed
capture time and the delayed capture time. In particular, the
minimum processing time of any processing stage should not
be less than the delay in order to ensure that the delayed value
captured is not corrupted by new data being outputted from a
short delay processing stage. It may be necessary to pad short
delay processing stages with extra delay elements to ensure
that they do not fall below this minimum processing time. At
the other extreme, it needs to be ensured that the maximum
processing delay of the processing logic within a processing
stage that can occur at any operational point for any operating
parameters is not greater than the sum of the normal non-
delayed operating clock period and the delay value such that
the delay value captured in the delay value latch is ensured to
be stable and correct.

There are a number of alternative ways in which the system
may be controlled to tune power consumption and perfor-
mance. According to one arrangement an error counter circuit
(not illustrated) is provided to count the number of non-equal
detections made by the comparator 6. This count of errors
detected and recovered from can be used to control the oper-
ating parameters using either hardware implemented or soft-
ware implemented algorithms. The counter is readable by the
software. The best overall performance, whether in terms of
maximum speed or lowest power consumption can be

US 8,407,537 B2

9

achieved by deliberately operating the integrated circuit with
parameters that maintain a non-zero level of errors. The gain
from operating non-cautious operating parameters in such
circumstances exceeds the penalty incurred by the need to
recover from errors.

According to an alternative arrangement, a hardware
counter is provided as a performance monitoring module and
is operable to keep track of useful work and of error recovery
work. In particular, the counter keeps count of the number of
useful instructions used to progress the processing operations
being executed and also keeps count of the number of instruc-
tions and bubbles executed to perform error recovery. The
software is operable to read the hardware counter and to use
the count values to appropriately balance the overhead of
error recovery and its effects on system performance against
the reduced power consumption achieved by running the
integrated circuit at a non-zero error rate.

FIG. 2 is a circuit block diagram schematically illustrating
a circuit for use in the present technique. The top portion of
FIG. 2 illustrates circuit elements provided within each pro-
cessing stage, namely the non-delayed latch 4, the delayed
latch 8 and the comparator 6. A meta-stability detector 7
serves to detect meta-stability in the output of the non-de-
layed latch 4 and this also triggers generation of an error
signal. Error signals from a plurality of such stages are sup-
plied to respective inputs of an OR gate 100 where a global
error signal is generated if an error is detected in any proces-
sor stage. The global error signal can be used to trigger flush
and bubble insertion signals as illustrated. The circuits 102
detect whether the error signal itself is meta-stable. The error
signal is latched with a positively skewed latch, referencing at
a higher voltage and a negatively skewed latch, referencing at
a lower voltage. If the two disagree in their latched value, this
indicates that the error signal was meta-stable and the panic
signal is pulled. By latching the error signal and waiting for an
entire clock cycle before it sampled (i.e. two latches in series),
the probability of the panic signal being meta-stable is neg-
ligible. It is significant that if the panic signal is pulled, then
the restored value from the delayed latch could be corrupted
due to the meta-stability of the error signal. In this case, the
instruction is also invalidated and there is no forward
progress. Hence flush the pipeline restart the instruction and
lower the clock frequency to ensure that the error signal will
not be meta-stable on the retry of the same instruction (which
could otherwise cause an infinite loop of retries).

FIG. 3 is a circuit illustrating in more detail the non-de-
layed latch, the delayed latch, the comparator and at least part
of'the error-recovery circuitry. The non-delayed latch 4 can be
seento be in the form of a flip-flop provided by the two latches
14,16. The delayed latch 8 is in the form of a single feedback
element. An XOR gate 18 serves as the comparator. An error
signal 20 emerges from the circuit of FIG. 3 and may be
supplied to the error counter circuit as previously discussed or
to other operational parameter adjusting circuits or systems.
The error signal 20 serves to switch a multiplexer 22 that
forces the delayed value stored within the delayed latch 8 to
be stored within the latch 14 of the non-delayed latch 4.
Meta-stability detecting circuits 24 serve to detect the occur-
rence of meta-stability within the non-delayed latch 4 and
also use this to trigger an error signal which will cause the
erroneous meta-stable value to be replaced by the delayed
value stored within the delayed latch 8.

FIGS. 4A and 4B are a flow diagram schematically illus-
trating the operation of the circuits of FIGS. 1, 2 and 3.

At step 26 the processing logic from a stage i produces its
output signal at a time T,. At step 28 this is captured by the
non-delayed latch and forms the non-delayed value. At step

20

25

30

35

40

45

50

55

60

65

10

30 the non-delayed value from the non-delayed latch starts to
be passed to the following processing stage i+1 which com-
mences processing based upon this value. This processing
may turn out to be erroneous and will need recovering from
should an error be detected.

Step 32 allows the processing logic to continue processing
for a further time period, the delay time, to produce an output
signal at time Ti+d. This output signal is latched in the
delayed latch at step 34. The values within the delayed latch
and the non-delayed latch are compared at step 36. Ifthey are
equal then no error has occurred and normal processing con-
tinues at step 37. If they are not equal, then this indicates that
the processing logic at time T, had not completed its process-
ing operations when the non-delayed latch captured its value
and started to supply that value to the subsequent processing
stage i+1. Thus, an error condition has arisen and will require
correction. At step 38 this correction is started by the forward-
ing of a pipeline bubble into the pipeline stages following
stage i. At step 40 the preceding stages to stage i+1 are all
stalled. This includes the stage i at which the error occurred.
At step 42, stage i+] re-executes its operation using the
delayed latch value as its input. At step 44 the operating
parameters of the integrated circuit may be modified as
required. As an example, the operating frequency may be
reduced, the operating voltage increased, the body biased
voltage increased etc. Processing then continues to step 46.

If an insufficient number of errors is detected, then the
operating parameter controlling circuits and algorithms can
deliberately adjust the operating parameters so as to reduce
power consumption and to provoke a non-zero error rate.

FIG. 5 illustrates a memory 100 containing an array of
memory cells 102. In this example, a single row of memory
cells is illustrated, but as will be familiar to those in this
technical field such memory cell arrays are typically large
two-dimensional arrays containing many thousands of
memory cells. In accordance with normal memory operation,
a decoder 104 serves to receive a memory address to be
accessed and to decode this memory address so as to activate
one of the word lines 106. The word lines serve to couple the
memory cells 102 in that line to respective bit line pairs 108.
Depending upon the bit value stored within the memory cell
102 concerned this will induce an electrical change (e.g. a
change in voltage and/or a current flow) in the bit lines 108
now coupled to it and the change is sensed by a sense ampli-
fier 110. The output of the sense amplifier 110 is stored at a
first time within a non-delayed latch 112 and subsequently
stored at a delayed time within a delayed latch 114. The
non-delayed value stored within the non-delayed latch 112 is
directly passed out via a mutliplexer 116 to a further process-
ing circuit 118 before the delayed value has been stored into
the delayed latch 114. When the delayed value has been
captured within the delayed latch 114, a comparator 120
serves to compare the non-delayed value and the delayed
value. If these are not equal, then the delayed value is
switched by the multiplexer 116 to being the output value
from the memory 100 for the particular bit concerned. A
suppression signal is also issued from the comparator 120 to
the further processing circuit 118 to suppress processing by
that further processing circuit 118 based upon the erroneous
non-delayed value which has now been replaced. This sup-
pression in this example takes the form of controlling the
clock signal CLK supplied to the further processing circuit
118 to stretch the clock cycle concerned and to delay latching
of'the new result by that further processing circuit until a time
when the delayed value has had a chance to propagate through
the processing circuit concerned to reach the latch at the
output of that further processing circuit.

US 8,407,537 B2

11

It will be seen that the sense amplifier 110 and the non-
delayed latch 112 form part of the fast read mechanism. The
sense amplifier 110 and the delayed latch 114 form part of the
slow read mechanism. In most cases, the fast read result
latched within the non-delayed latch 112 will be correct and
no corrective action is necessary. In a small number of cases,
the fast read result will differ from the slow read result latched
within the delayed latch 114 and in this circumstance the slow
read result is considered correct and serves to replace the fast
read result with processing based upon that fast read result
being suppressed. The penalty associated with a relatively
infrequent need to correct erroneous fast read results is more
than compensated for by the increased performance (in terms
of'speed, lower voltage operation, lower energy consumption
and/or other performance parameters) that is achieved by
running the memory 100 closer to its limiting conditions.

FIG. 6 illustrates a variation in part of the circuit of FIG. 5.
In this variation two sense amplifiers 110", 110" are provided.
These different sense amplifiers 110", 110" are formed to have
different speeds of operation with one 110" being relatively
fast and less reliable and the other 110" being relatively slow
and more reliable. These different characteristics can be
achieved by varying parameters of the sense amplifier 110,
110", e.g. construction parameters such as transistor size,
doping levels, gain etc. A comparator 120' serves to compare
the two outputs. The output from the fast sense amplifier 110'
is normally passed out via the multiplexer 116' prior to the
output of the slow sense amplifier 110" being available. When
the output of the slow sense amplifier 110" is available and the
comparator 120 detects this is not equal to the output of the
fast sense amplifier 110", then it controls the multiplexer 116’
to switch the output value to be that generated by the slow
sense amplifier 110". The comparator 120 also triggers gen-
eration of a suppression signal such that downstream process-
ing based upon the erroneous fast read result is suppressed.

FIG. 7 is a flow diagram illustrating the operation of the
circuit of FIG. 5. At step 122, an address is decoded resulting
in respective memory cells being coupled to their adjacent bit
lines using a signal passed by a word line. At step 124, the bit
values stored within the selected memory cells and their
complements and driven onto the bit line pairs. This causes
current flows within the bit lines and voltage changes in the bit
lines. The sense amplifiers 110 are responsive to detected
currents and/or voltage level changes.

At step 126, the fast data read mechanism samples the
value being output from the memory cell at that time. At step
128 this fast read data value is passed to subsequent process-
ing circuits for further processing upon the assumption that it
is correct. At step 130, the slow data reading mechanism
samples a slow read data value. Step 132 compares the fast
read value and the slow read value. If these are the same, then
normal processing continues at step 134. However, if the
sampled values are different, then step 136 serves to issue a
suppression signal to the further circuits to which the fast read
value has been passed and also to issue the slow read value in
place of the fast read value to those further circuits such that
corrective processing may take place.

FIG. 8 illustrates the use of the present techniques within a
pipelined bus 140. The pipelined bus 140 contains a number
of latches 142 which serve to store data values being passed
alongthe bus. As an example of such a pipelined bus 140 there
is known the AXI buses designed by ARM Limited of Cam-
bridge, England. In this arrangement the destination for the
data value being passed along the pipelined bus 140 is a
digital signal processing circuit 144. This digital signal pro-
cessing (DSP) circuit 144 does not in itself implement the
non-delayed latching and delayed latching techniques dis-

5

20

25

30

35

40

45

50

55

60

65

12

cussed previously. In alternative arrangements the destination
for the data value being passed along the pipelined bus could
be a device other than a DSP circuit, for example, a standard
ARM processor core that does not itself implement the
delayed and non-delayed latching techniques.

Associated with each of the non-delayed latches 142 is a
respective delayed latch 146. These delayed latches 146 serve
to sample the signal value on the bus at a time later than when
this was sampled and latched by the non-delayed latch 142 to
which they correspond. Thus, a delay in the data value being
passed along the bus for whatever reason (e.g. too low an
operational voltage being used, the clock speed being too
high, coupling effects from adjacent data values, etc) will
result in the possibility of a difference occurring between the
values stored within the non-delayed latch 142 and the
delayed latch 146. The final stage on the pipeline bus 140 is
illustrated as including a comparator 147 which compares the
non-delayed value and the delayed value. If these are not
equal, then the delayed value is used to replace the non-
delayed value and the processing based upon the non-delayed
value is suppressed such that the correction can take effect
(the bus clock cycle may be stretched). It will be appreciated
that these comparator and multiplexing circuit elements will
be provided at each of the latch stages along the pipeline bus
140, but these have been omitted for the sake of clarity from
FIG. 8.

As the DSP circuit 144 does not itself support the non-
delayed and delayed latching mechanism with its associated
correction possibilities, it is important that the data value
which is supplied to the DSP circuit 144 has been subject to
any necessary correction. For this reason, an additional buft-
ering latch stage 148 is provided at the end of the pipelined
bus 140 such that any correction required to the data value
being supplied to that latch and the attached DSP circuit 144
can be performed before that data value is acted upon by the
DSP circuit 144. The buffering latch 148 can be placed in
sufficient proximity to the DSP circuit 144 that there will be
no issue of an insufficient available progation time etc. caus-
ing an error in the data value being passed from the buffering
latch 148 to the DSP circuit 144.

It will be appreciated that the bus connections between the
respective non-delayed latches 142 can be considered to be a
form of processing logic that merely passes the data unal-
tered. In this way, the equivalence between the pipelined bus
embodiment of FIG. 8 and the previously described embodi-
ments (e.g. FIG. 1) will be apparent to those familiar with this
technical field.

FIG. 9 is a flow diagram illustrating the operation of FIG.
8. At stage 150 a non-delayed signal value is captured from
the bus line. At step 152 the non-delayed value is then passed
to the next bus pipeline stage. At step 154 the corresponding
delayed latch 146 captures a delayed bus signal. At step 156
the comparator 147 compares the delayed value with the
non-delayed value. If these are equal, then normal processing
continues at step 158. If the two compared values are not
equal, then step 160 serves to delay the bus clock and replace
the non-delayed value with the delayed value using the mul-
tiplexer shown in FIG. 8.

FIG. 10 illustrates a further example embodiment using the
present techniques. In this example embodiment an instruc-
tion from an instruction register within a processor core is
latched within an instruction latch 162. From this instruction
latch 162, the instruction is passed to a decoder 164 which
includes a microcoded ROM serving to generate an appropri-
ate collection of processor control signals for storage in a
non-delayed control signal latch 166 and subsequent use to
control the processing performed by the processor core in

US 8,407,537 B2

13

accordance with the instruction latched within the instruction
latch 162. The control signals output from the decoder 164 are
also latched within a delayed control signal latch 168 at a later
time to when they were latched within the non-delayed con-
trol signal latch 166. The delayed control signal values and
the non-delayed control signal values can then be compared.
Ifthese are not equal, then this indicates that corrective action
is necessary. A suppression operation is triggered by the
detection of such a difference and serves to stop subsequent
processing based upon the inappropriate latch control signal
values. It may be that in some circumstances the only effec-
tive recovery option is to reset the processor as a whole. This
may be acceptable. In other situations, the error in the control
signals might be such that a less drastic suppression and
recovery mechanism is possible. As an example, the particu-
lar erroneous control signal may not yet have been acted
upon, e.g. in the case of a multi-cycle program instruction
where some processing operations do not commence until
late in the overall execution of the multi-cycle instruction. An
example of this is a multiply-accumulate operation in which
the multiply portion takes several clock cycles before the final
accumulate takes place. If there is an error in the control
signal associated with the accumulate and in practice an accu-
mulate is not required, but merely a pure multiply, then it
would be possible to suppress the accumulate by correcting
the control signal being applied to the accumulator before the
adder had sought to perform the accumulate operation.

FIG. 11 illustrates one example of the operation of the
circuit of FIG. 10. At step 170, a multiply-accumulate control
signal is read from the decoder 164 (microcoded ROM). At
step 172, this multiply-accumulate control signal is latched
within the non-delayed control signal latch 166 and output to
the various processing elements within the processor core. At
step 174, the multiply operands are read from the register file
and the multiply operation is initiated. At step 176, the control
signals output by the instruction decoder 164 are re-sampled
by the delayed control signal latch 168. At step 178, the
non-delayed control signals and the delayed control signals
are compared. If these are equal, then normal processing
continues at step 180. However, if these are not equal, then
processing proceeds to step 182 where a determination is
made as to whether the multiply operation has yet completed.
If the multiply operation has completed, then the erroneous
accumulate operation will have started and the best option for
recovery is to reset the system as a whole at step 184. How-
ever, if the multiply operation is still in progress, then step 186
can be used to reset the adder and cancel the accumulate
operation with the desired multiply operation output result
being generated at step 188, as was originally intended by the
program instruction stored within the instruction latch 162.

FIG. 12 illustrates a modification of the circuit illustrated in
FIG. 1. In this embodiment the delayed latches 190 serve the
additional function of data retention (balloon) latches for use
during a standby/sleep mode of operation (low power con-
sumption mode). The function of the delayed latches 190
during normal processing operations is as previously
described. However, when a sleep controller 192 serves to
initiate entry into a low power consumption mode of opera-
tion it stops the non-delayed clock and the delayed clock such
that the delayed latches 190 are all storing data values corre-
sponding to their respective non-delayed latches. At this
point, the voltage supply to the non-delayed latches and the
associated processing circuits is removed such that they are
powered down and lose their state. However, the voltage
supplied to the non-delayed latches 190 is maintained such
that they serve to retain the state of the processing circuit
concerned. When the system exits from the low power con-

5

20

25

30

35

40

45

50

55

60

14

sumption mode, the processing logic and the non-delayed
latches are powered up again when the comparator detects a
difference in the values in the non-delayed latch and the
delayed latch 190 it triggers replacement of the erroneous
value within the non-delayed latch with the correct value held
within the associated delayed latch 190. It will be appreciated
that since the delayed latches 190 are subject to less stringent
timing requirements than their non-delayed counterparts they
can be formed in a way where they may have a lower speed of
operation but be better suited to low power consumption
during the low power consumption mode (e.g. high threshold
voltages resulting in slower switching but with a reduced
leakage current). In this way, the error correcting delayed
latches which are used during normal processing can be
reused during the low power consumption mode as data reten-
tion latches thereby advantageously reducing the overall gate
count of the circuit concerned.

FIG. 13 is a flow diagram schematically illustrating the
operation of the circuit of FIG. 12. At step 194, the integrated
circuit is in its normal operational processing mode. At step
196, the processing logic stage produces an output signal at a
non-delayed time. At step 198, the non-delayed latch captures
that output signal. At step 200 the non-delayed signal within
the non-delayed latch is passed to the next processing stage.
At step 202, the output from the processing stage at a delayed
time is generated and is available for capture by the delayed
latch. At step 204, the integrated circuit is triggered to adopt
alow power consumption mode and the speed controller 192
serves to initiate the power down of the processing circuits
while maintaining the power to the delayed latches 190. At
step 206, the delayed latch 190 captures the delayed signal
value. It may be that the capture ofthe delayed signal value by
the delayed latch at step 206 takes place before the switch to
the low power mode at step 204. At step 208, the non-delayed
latch is powered down and its stored value is lost. The inte-
grated circuit can remain in this state for a long period of time.
When desired, step 210 triggers the sleep controller 192 to
exit the low power consumption mode and revert back to the
operational mode. At step 212, power is restored to the non-
delayed latches and the associated processing logic with the
delayed data values within the delayed latches 190 beingused
to repopulate the pipeline stages as necessary to restore the
system to its condition prior to the low power consumption
mode being entered.

FIG. 14 schematically illustrates a plurality of processing
stages to which error correction control and delayed latches
have been applied. The processing stages form part of an
integrated circuit that may be part of a synchronous pipeline
within a processor core, part of a communication bus or part
of a memory system. The first processing stage comprises
either a channel for communication of data or processing
logic 1014, a non-delayed latch 1016, a delayed latch 1018, a
comparator 1024 that compares outputs of the delayed latch
and the non-delayed latch and outputs a control signal to a
multiplexer 1020 determining whether the delayed signal
value or the non-delayed signal value is supplied as input to a
subsequent processing stage or channel 1016. The channel/
logic 1014 and the non-delayed latch 1016 are driven by a
non-delayed clock signal whereas the delayed latch 1019 is
driven by a delayed clock signal which is a phase-shifted
version of the non-delayed clock signal.

If the comparator 1024 detects a difference between the
non-delayed signal value and the delayed signal value this
indicates that either the processing operation was incomplete
at the non-delayed capture time in the case that element 1014
represents processing logic or that the signal from the previ-
ous pipeline stage had not yet reached the present stage in the

US 8,407,537 B2

15

case of the element 1014 representing a data channel. In the
event that such a difference is in fact detected, the value stored
in the delayed latch 1018 is the more reliable data value since
it was captured later when the processing operation is more
likely to have been completed or the data from the previous
stage is more likely to have arrived via the data channel. By
supplying the result from the delayed latch to the next pro-
cessing stage 1030 and suppressing use of the non-delayed
value in subsequent processing stages, forward progress of
the computation can be ensured. However, the reliability of
the delayed signal value stored in the delayed latch 1018 can
be compromised in the event that a single event upset
occurred and corrupted the delayed value. The single event
upset is effectively a pulse so it may well be missed by the
non-delayed latch but picked up by the delayed latch. Such a
single event upset will result in the comparator detecting a
difference between the delayed and non-delayed values as a
direct result of the single event upset and will then propagate
the corrupted delayed value to subsequent processing stages.
A single event upset that corrupts the non-delayed value will
not be problematic since it will result in suppressing use of the
erroneous non-delayed value and propagating the delayed
value to subsequent stages.

The arrangement of FIG. 14 reduces the likelihood of a
corrupted delayed value progressing through the computation
by providing a cross-check of data integrity by provision of an
error detection module 1026, an error correction module 1028
and a multiplexer 1022 that is controlled by the error detec-
tion module 1026 to supply either the delayed value from the
delayed latch directly to the comparator 1024 or alternatively
to supply an error corrected value output by the error correc-
tion module 1028. Upstream of the channel/logic unit 1014 a
data payload of eight bits is error correction encoded and four
redundancy bits are added to the data payload to form a
twelve-bit signal. The twelve-bit signal passes through the
channel/logic unit 1014 and its value is captured by both the
non-delayed latch 1016 and the delayed latch 1018. However,
a delayed value of the signal derived from the delayed latch
1018 is also supplied as input to the error detection module
1026, which determines from the 12-bit error-correction
encoded signal whether any errors have occurred that affect
the delayed value. In an alternative arrangement a further
latch could be provided to supply a signal value to the error
detection module 1018, that captures the signal value at a time
slightly later than the delayed latch 1018. The error-checking
must be performed on a value captured at the same time as the
delayed value is captured or slightly later to ensure that any
random error that occurred between capture of the non-de-
layed value and capture of the delayed value is detected.

A given error correction code is capable of detecting a
predetermined number of errors and of correcting a given
number of errors. Thus the error detection module 1026
detects whether any errors have occurred and, if so, if the
number of errors is sufficiently small such that they are all
correctable. If correctable errors are detected then the signal
value is supplied to the error correction module 1028 where
the errors are corrected using the error correction code and the
corrected delayed value is supplied to the comparator 1024. If
it is determined by the comparator 1024 that the corrected
delayed value differs from the non-delayed value then the
error recovery procedure is invoked so that further propaga-
tion of the non-delayed value is suppressed in subsequent
processing stages and the operations are instead performed
using the corrected delayed value. On the other hand, if the
comparator 1024 determines that the corrected delayed value
is the same as the delayed value then there are two alternative
possibilities for progressing the calculation. Firstly, the error

20

25

30

35

40

45

50

55

60

65

16

recovery mechanism could nevertheless be invoked so that
the non-delayed value is suppressed in subsequent processing
stages and replaced by the corrected delayed value. Alterna-
tively, since the non-delayed value is determined to have been
correct (as evidenced by the equality ofthe non-delayed value
and the corrected delayed value), the error recovery mecha-
nism could be suppressed (despite the detection of an error in
the delayed value) thus allowing the non-delayed value to
continue to progress through the subsequent processing
stages. However, if uncorrectable errors are detected in the
delayed value by the error detection module 1026 then a
control signal is supplied to suppress use of the corrupted
delayed value. In this case forward progress of the computa-
tion cannot be achieved. The type of error correction encod-
ing applied differs according to the nature of the channel/
processing logic 1014.

Processing logic can be categorized as either value-passing
or value-altering. Examples of processing logic that is value-
passing are memory, registers and multiplexers. Examples of
value-altering processing logic elements are adders, multipli-
ers and shifters. Error detection and correction for value-
altering processing logic elements is more complex than for
value-passing processing logic elements because even when
no error has occurred the value output by the logic stage 1014
is likely to be different from the input twelve-bit signal 1013.

FIG. 15 schematically illustrates error correction for data
passing through a channel that simply passes the data value
unchanged from input to output if no errors occur. In the case
of'such value-passing processing logic it is convenient to use
a linear block code such as a Hamming code for error correc-
tion and detection. Linear block codes typically involve form-
ing a codeword in which the original data payload bits remain
in the codeword unchanged but some parity bits (or redun-
dancy bits) are added. Hamming codes are simple single-bit
error correction codes and for an (N, K) code, N is the total
number of bits in the codeword and K is the number of data
bits to be encoded. The presence and location of an error is
detected by performing a number of parity checks on the
output codeword. The Hamming code comprises N-K parity
bits, each of which is calculated from a different combination
of bits in the data. Hamming codes are capable of correcting
one error or detecting two errors. The number of parity bits (or
redundancy bits required is given by the Hamming rule K+p+
1=27, where p is the number of parity bits and N=K+p.

As illustrated in FIG. 15 input to the channel is a 12 bit
codeword comprising eight data bits and four parity or redun-
dancy bits. Parity checks are performed by an error detection/
correction module 1116 on the output from the channel 1114.
Any single-bit error in the 12-bit codeword is detected and
corrected prior to output of the codeword by the error detec-
tion/correction module 1116. If detected errors are uncorrect-
able the error detection/correction module 1116 outputs a
signal indicating that this is the case. Although simple codes
such as Hamming codes have been described in relation to
FIG. 11 for use with value-passing processing logic, it will be
appreciated that other error correction codes such as convo-
Iutional codes could alternatively be used.

FIG. 16 schematically illustrates how error correction is
performed for a value-changing logic element such as an
adder, multiplier or shifter. In the case of value-altering pro-
cessing logic arithmetic codes such as AN codes, residue
codes, inverse residue codes or residue number codes may be
used to detect and correct random errors in the output of the
processing logic.

US 8,407,537 B2

17

Arithmetic codes can be used to check arithmetic opera-
tors. Where ® represents the operator to be checked the
following relation must be satisfied:

Code(X® Y)=code X®@ code ¥

AN codes are arithmetic codes that involve multiplying the
data word by a constant factor, for example a 3N code can be
used to check the validity of an addition operation by per-
forming the following comparison:

3N(X)+3N(Y)I=3N(X+Y)

3X+3Y?=3(X+Y).

A further example of a class of arithmetic codes are residue
codes, in which a residue (remainder of division by a con-
stant) is added to the data bits as check bits e.g. a 3R code
involves modulo (MOD) 3 operations and the following
check is applied:

XMOD 3+YMOD 3?7=(X+Y)MOD 3

Consider the numerical example of X=14 and Y=7:

14 MOD 3=2 (codeword 111010, with last two bits as
residue);

7 MOD 3=1 (codeword 011101);

X+Y=21 (10101,

and 21 MOD 3=0;

sum of residues MOD 3=(2+1)MOD 3=0=residue of
(X+Y).

FIG. 16 schematically illustrates use of a 7R arithmetic
code for checking of an addition operation in the channel/
logic units 1014 of FIG. 10. The addition operation to be
checkedis X+Y, where X andY are eight-bit data words. Each
data word has a four check bits having values X MOD 7 and
Y MOD 7 respectively. X MOD 7 and Y MOD 7 are supplied
as operands to a first adder 1210 and the output of this adder
is supplied to logic that determines the value (X MOD 7+Y
MOD 7) MOD 7 and supplies the result as a first input to a
comparator 1250. A second adder 1230 performs the addition
(X+Y), supplies the result to a logic unit 1240 that calculates
(X+Y) MOD 7 and supplies the result as a second input to the
comparator 1250. If the comparator detects any difference
between the two input values then an error has occurred.

FIG. 17 is a flow chart that schematically illustrates the
operation of the circuit of FIG. 14 that comprises error cor-
rection control of the delayed latch value. At stage 1310 a
twelve-bit error correction encoded signal value is input to the
channel/logic unit 1014. Next, at stage 1320, the non-delayed
latch 1016 captures the output from the channel/logic unit
1014 at time Ti and the captured value is forwarded to sub-
sequent processing logic stage [+1 at stage 1330. At stage
1340 the delayed latch 1018 captures the output signal at time
Ti+d. At stage 1350, the error detection logic captures the
output from the channel/logic unit 1014 at time Ti+(d+9).
Although 9 in preferred arrangements 9 is zero so that value
output by the delayed value itself is actually error checked,
the output may alternatively be captured a short after the
delayed latch captures the output signal at Ti+d. The capture
of the value for supply to the error detection circuit is appro-
priately timed to ensure that any random error in the delayed
value is detected. At stage 1360, the error detection module
1026 determines whether the delayed output signal has an
error using the redundancy bits. If an error is detected it is then
determined whether the error is correctable at stage 1370,
which will depend on how many bits are affected. For
example, a Hamming code can only correct a single bit error.
If it is determined at stage 1370 that the error is correctable
then the process proceeds to stage 1390, whereupon the error

20

25

30

35

40

45

50

55

60

65

18

is corrected and the corrected delayed value is selected at the
multiplexer 1022 and supplied to the comparator 1024. How-
ever, if it is determined at stage 1370 that detected errors are
not correctable then a control signal is generated indicating
that an uncorrectable error has occurred. In this case forward
progress of the computation cannot be reliably performed. At
stage 1392 the comparator 1024 determines whether the
error-checked delayed value is equal to the non-delayed value
and if so forward progress of the computation continues.
Otherwise the process to the sequence of steps described in
relation to FI1G. 4B, involving suppression of the non-delayed
value and its replacement by the delayed value in subsequent
processing stages is carried out.

FIG. 18 illustrates the use of the present technique to
dynamically adjust the relative timing between processing
stages. Itis known that in a pipelined processing environment,
the processing stages may take different times to complete
their respective operations. Ideally the processing stages
would all be balanced to take the same time and for their
respective times to vary in the same way with changes in
surrounding conditions. However, this is not practical in
many cases and it may be that a collection of processing
stages that are balanced at one operational voltage or tem-
perature are not balanced at another operational voltage or
temperature. Furthermore, manufacturing variation and other
characteristics may result in considerable differences
between processing stage timings which upsets the designed
balance therebetween. In these cases, the clock frequency and
other operational parameters are chosen with respect to a
worst-case scenario such that the processing stages will be
sufficiently closely balanced so as to be operational under all
conditions.

The present technique allows a more selective and indeed
dynamic approach to be taken. A pipelined processing circuit
2000 includes delayed latches 2002 which can be used to
detect the occurrence of errors in the signal values being
captured by the non-delayed latches. The occurrence of these
errors is fed back to a clock phase control circuit 204 which
serves to adjust the relative phases of the clock signals being
supplied to respective latches within the main path, i.e. the
non-delayed latches. In this way, an adjustment is made
whereby time is effectively borrowed from one processing
stage and allocated to another processing stage. This may be
achieved by tapping the clock signals to be used by the respec-
tive non-delayed latches from selectable positions within a
delay line along which the basic clock signal is propagated.

The illustrated example, the processing logic between latch
L, and latch Ly is slower in operation than the processing
logic in the subsequent stage. Accordingly, the clock signal
being supplied to the non-delayed latch Lz can be phase
shifted so as to delay the rising edge of that clock signal
(assuming rising edge latch capture) and thereby to extend the
time available for the slow processing logic. This reduces the
time available for the processing logic within the subsequent
processing stage assuming that this is operating on the same
basic clock signal as the other stage elements excluding the
latch Lg.

This timing balancing between processing stages can be
performed dynamically during the ongoing operation of the
circuit using feedback from the errors in operation detected
using the delay latches. Alternatively, the balancing can be
performed as a one-off operation during a manufacturing test
stage or during a “golden boot” of the integrated circuit. The
delayed latches shown in FIG. 18 are used for the purpose of
timing balancing between processing stages and can thereaf-
ter be used for the control of operating parameters and error
correction as discussed above, e.g. inrelation to FIG. 1. In this

US 8,407,537 B2

19

way, the provision of the delayed latches is further used to
also control relative clock timings.

FIG. 19 illustrates a simple approach to pipeline error
recovery based on global clock gating. In the event that any
stage detects an error, the entire pipeline is stalled for one
cycle by gating the next global clock edge. The additional
clock period allows every stage to recompute its result using
the delayed latch as input. Consequently, any previously for-
warded errant values will be replaced with the correct value
from the delayed latch. Since all stages re-evaluate their result
with the delayed latch input, any number of errors can be
tolerated in a single cycle and forward progress is guaranteed.
If all stages produce an error each cycle, the pipeline will
continue to run, but at /> the normal speed.

It is important that errant pipeline results not be written to
architectured state before it has been validated by the com-
parator. Since validation of delayed values takes two addi-
tional cycles (i.e., one for error detection and one for panic
detection), there must be two non-speculative stages between
the last delayed latch and the writeback (WB) stage. In our
design, memory accesses to the data cache are non-specula-
tive, hence, only one additional stage labelled ST for stabilise
is required before writeback (WB). The ST stage introduces
an additional level of register bypass. Since store instructions
must execute non-speculatively, they are performed in the
WB stage of the pipeline.

FIG. 19 gives a pipeline timing diagram of a pipeline
recovery for an instruction that fails in the EX stage of the
pipeline. The first failed stage computation occurs in the 47
cycle, but only after the MEM stage has computed an incor-
rect result using the errant value forward from the EX stage.
Afterthe error is detected, a global clock stall occurs in the 6%
cycle, permitting the correct EX result in the Razor shadow
latch to be evaluated by the MEM stage. IN the 7% cycle,
normal pipeline operation resumes.

In aggressively clocked designs, it may not be possible to
implement global clock gating without significantly impact-
ing processor cycle time. Consequently, a fully pipelined
error recover mechanism based on counterflow, pipelining
techniques has been implemented. The approach, illustrated
in FIG. 20, places negligible timing constraints on the base-
line pipeline design at the expense of extending pipeline
recovery over a few cycles. When a non-delayed value error is
detected, two specific actions must be taken. First, the errant
stage computation following the failing non-delayed latch
must be nullified. This action is accomplished using the
bubble signal, which indicates to the next and subsequent
stages that the pipeline slot is empty. Second, the flush train is
triggered by asserting the stage ID of failing stage. In the
following cycle, the correct value from the delayed latch data
is injected back into the pipeline, allowing the errant instruc-
tion to continue with its correct inputs. Additionally, there is
a counterflow pipeline whereby the flush train begins propa-
gating the ID of the failing stage in the opposite direction of
instructions. At each stage visited by the active flush train, the
corresponding pipeline stage and the one immediately pre-
ceding are replaced with a bubble. (Two stages must be nul-
lified to account for the twice relative speed of the main
pipeline.) When the flush ID reaches the start of the pipeline,
the flush control logic restarts the pipeline at the instruction
following the errant instruction. In the event that multiple
stages experience errors in the same cycle, all will initiate
recovery but only the non-delayed error closest to writeback
(WB) will complete. Earlier recoveries will be flushed by
later ones. Note that the counterflow pipeline may not be the
same length as the forward pipeline so that, for example, the

20

25

30

35

40

45

50

55

60

65

20

flush train of the counterflow pipeline could be two pipeline
stages deep whereas the forward pipeline may be twelve
stages deep.

FIG. 20 shows a pipeline timing diagram of a pipelined
recovery for an instruction that fails in the EX stage. As inthe
precious example, the first failed stage computation occurs in
the 47 cycle, when the second instruction computes an incor-
rect result in the EX stage of the pipeline. This error is
detected in the 5 cycle, causing a bubble to be propagated
out of the MEM stage and initiation of the flush train. The
instruction in the EX, ID and IF stages are flushed in the 6%,
7% and 8" cycles, respectively. Finally, the pipeline is
restarted after the errant instruction in cycle 9, after which
normal pipeline operation resumes.

Recall from the description of FIG. 2 above, that in the
event that circuits 102 detect meta-stability in the error signal
then a panic signal is asserted. In this case, the current instruc-
tion (rather than the next instruction) should be re-executed.
When such a panic signal is asserted, all pipeline state is
flushed and the pipeline is restarted immediately after the
least instruction writeback. Panic situations complicate the
guarantee of forward progress, as the delay in detecting the
situation may result in the correct result being overwritten in
the delayed latch. Consequently, after experiencing a panic,
the supply voltage is reset to a known-safe operating level,
and the pipeline is restarted. One re-tuned, the errant instruc-
tion should complete without errors as long as returning is
prohibited until after this instruction completes.

A key requirement of the pipeline recover control is that it
not fail under even the worst operating conditions (e.g. low
voltage, high temperature and high process variation). This
requirement is met through a conservative design approach
that validates the timing of the error recovery circuits at the
worst-case subcritical voltage.

FIG. 21 schematically illustrates the re-use of a delayed
latch 2100 as a serial scan chain latch. This is achieved by the
provision of a multiplexer 2102 controlled by the scan enable
signals which allow a serial scan data value to be written into
the delay latch or serially read from the delayed latch as
required. Furthermore, the normal mechanism which allows
the delayed latch value to replace the non-delayed latch value
is exploited to allow a serial scan chain value to be inserted
into the operational path.

FIG. 22 schematically illustrates part of an integrated cir-
cuit, which may be part of a synchronous pipeline within a
processor core, such as an ARM processor core designed by
ARM Limited of Cambridge, England. A synchronous pipe-
line is formed of a plurality of processing stages. The first
stage comprises logic module 3010 followed by a latch 3020
in the form of a flip-flop. The output of the logic module 2010
is supplied to a transition detector 3030, which is operable to
detect a transition in the logic signal value, which occurs in a
predetermined time window and is indicative of an error in
operation of the integrated circuit. Such errors in operation
are likely to arise if the operating parameters for the inte-
grated circuit are such that the logic module 3010 has not
completed its processing operation by the time the flip-flop
3020 captures its value.

The operating parameters of the integrated circuit include
the clock-signal frequency supplied by a clock 3031, an oper-
ating voltage supplied to the integrated circuit, the body bias
voltage, the temperature etc. In particular, if the clock fre-
quency is set to be so rapid that the slowest of the processing
data stages is unable to keep pace, or if the operating voltage
of the integrated circuit is reduced so as to reduce power
consumption to the point at which the slowest of the process-
ing stages is no longer able to keep pace, then systematic

US 8,407,537 B2

21

processing errors will occur. Subsequent processing stages of
the integrated circuit are similarly formed of a logic module
that leads into a transition detector and a flip-flop that captures
the output value of the associated logic module.

In FIG. 22 three stages of processing are illustrated and
there are three corresponding transition detectors 3030, 3032
and 3034. The outputs of these transition detectors are each
supplied to an OR gate 3040. A high output from the OR gate
3040 indicates that a processing error has occurred in at least
one of the associated logic modules. This indication of an
error is supplied as an output of the OR gate 3040 and as an
input to an error recovery logic module 3050, which is
responsive to each of the transition detectors and is operable
to enable the integrated circuit to recover from an error in
operation. Recovery from an error in operation is achieved by
the error recovery logic 3050 by using stored state informa-
tion 3060. The stored state information 3060 allows the inte-
grated circuit to recover from the error in operation by
enabling a return to a previous state of processing from which
to re-commence the calculation. The state information may
include both architectural state variables and micro-architec-
tural state variables.

Architectural state variables correspond to those variables
that would be specified in a programmer’s model of the inte-
grated circuit, for example register values, instruction flags,
program counter values etc. An example of micro-architec-
tural state variables is cache content. For example, for an
ADD instruction with a flag set, execution of the instruction
ADDS R0 R0 R1 would involve storage of state variable R0,
the flags associated with the flag set operation and the pro-
gram counter value associated with this instruction. Other
examples of state variables are the particular operational
mode of'the processor, such as privileged mode or user mode.

The error recovery logic 3050 enables forward progress of
the computation in the presence of errors in operation of the
integrated circuit. This is achieved by detection of timing
errors by the transition detectors 3030, 3032, 3034 and the use
of' the error recovery logic 3050 to recover from the detected
error using the stored state information 3060. The stored state
information 3060 used for error recovery will be the values
that have been confirmed to be unaffected by errors in opera-
tion and most recently stored to registers. Such stored values
correspond to the architectural state of the integrated circuit
prior to the detection of an error in operation.

FIG. 23 schematically illustrates an arrangement accord-
ing to one example of the present technique that uses a con-
firmed register bank in addition to the speculative register
bank to recover from an error in operation. The arrangement
comprises: a main processing pipeline 3100; a speculative
register bank 3110; a plurality of stability pipeline stages
3120; a critical state buffer 3122; a confirmed state buffer
3124; a confirmed register bank 3130; an array of transition
detectors 3142-1 to 3142-4; an OR logic gate 3150; error
detection logic 3160; pipeline flush logic 3170; confirmed
state recovery logic 3180; and program counter reset logic
3190. The main processing pipeline 3100 comprises four
distinct pipeline stages, a first execution stage n, a second
execution stage n—-1, a third execution stage n-2 and a write-
back stage n—3. Outputs from a processing pipeline stage are
passed to the subsequent pipeline stage via a latch (such as a
flip-flop 3020 of FIG. 22). The output of the writeback pipe-
line stage n-3 is supplied to the speculative register bank
3110 via the signal paths 3101 and 3103, which lead respec-
tively to the two write ports SW0 and SW1 of the speculative
register bank 3110. In the particular arrangement illustrated
in FIG. 23 the writeback stage of the main pipeline corre-
sponds to processing stage n—3 and thus the last state that has

20

25

30

35

40

45

50

55

60

65

22

been stored in the speculative register bank 3110 in this
arrangement corresponds to the processing stage n—4.

Output from the first execution stage n is output to the
transition detector 3142-1; output from the second execution
stage n—1 is output to the transition detector 3142-2; output
from the third execution stage of the main pipeline n-2 is
output to the transition detector 3142-3; and finally output
from the writeback stage WB of the main pipeline 3100 is
output to the transition detector 3142-4. Each of these transi-
tion detectors 3142-1 to 3142-4 is capable of indicating an
error in operation of the processing circuitry. The outputs of
all four transition detectors are supplied with inputs to the OR
logic gate 3150, whose output is supplied to the error detec-
tion logic 3160. Thus if any transition is detected in any one
of'the four main pipeline states n, n—1, n-2 or n-3 then the OR
logic gate will output a value indicative of an error in opera-
tion. The error detection logic 3160 is responsive to the output
of'the OR logic gate 3150 to initiate error recovery processes
performed by the pipeline flush logic 3170, confirmed state
recovery 3180 logic and program counter reset 3190 logic so
that the detected error in operation does not affect any of the
values stored within the confirmed register bank 3130. Thus
in response to a detected error in operation the pipeline flush
logic 3170 initiates a pipeline flush to clear the pipeline of any
potentially erroneous values. The pipeline flush logic 3170 is
connected both to the critical state buffer 3122 and to the
stability pipeline stages 3120. In the event of a detected error
in operation all of the values in the main pipeline are flushed
in addition to the values in the stability stages of the pipeline
3120 and all of the values currently stored in the critical state
buffer 3022 which have not yet been stored in the confirmed
register bank 3130. Once the pipeline has been flushed the
confirmed state recovery logic 3180 initiates a series of pro-
cessing operations whereby the data processing apparatus is
returned to a previous state in which the instruction whose
values have most recently been stored in the confirmed reg-
ister bank 3130 has just been executed. Re-execution starting
from this instruction is commenced after the program counter
reset logic 3190 has reset the program counter from the cur-
rent instruction to the instruction following that for which
values have most recently been stored to the confirmed reg-
ister bank 3130.

Normal processing operations involve execution of a plu-
rality of instructions each of which may involve the update of
a number of different types of architectural state variables.
For example execution of a single given instruction may
require that one or more general purpose registers, flags, a
program-status register, or a program counter be updated.
However, the physical elements that store these updated vari-
ables will not necessarily be updated in one and the same
clock cycle, even though they relate to the same given instruc-
tion. For example, in the ARM® instruction set a load instruc-
tion is not capable of changing the flags and thus it is possible
to store the updates to the flags in a processing cycle earlier
than that in which the updates to the general purpose registers
are stored. Note that the general purpose registers cannot be
updated until it is known that a load instruction has not gen-
erated a memory-stage related exception, such as a permis-
sion fault. It will be appreciated that an error in operation
could happen in any processing cycle. Thus, in the arrange-
ment of FIG. 23 it is necessary to ensure that updates to the
confirmed register bank 3130 are “synchronised” to ensure
that recovery is possible using instruction re-execution. This
is achievable only if a certain critical sub-set of architectural
state-variables have been stored in the confirmed register
bank 3130. To ensure that all of the critical sub-set of archi-
tectural state variables are available to enable re-execution,

US 8,407,537 B2

23

the critical state buffer 3122 of FIG. 23 is provided to hold
updated values associated with a given instruction until it is
known that all of the values for critical state updates associ-
ated with that particular instruction are available and that all
of the non-critical state updates have either already been
stored to the confirmed register bank 3130 or are present in
the confirmed state buffer 3124. Only once all of the values
associated with the given instruction are available are the
critical variables associated with that instruction be stored in
the confirmed register bank 3130. The confirmed register
bank 3130 has two write ports indicated as CW0 and CW1.
Similarly, the speculative register bank has two write ports
SW0 and SW1.

Note that the actual physical update of values associated
with a given instruction to the confirmed register bank may
not happen immediately. This will be the case for example, if
more critical state updates are required than can be performed
in a single processing cycle due to the limited number of write
ports on the register bank (in this case two write ports). The
output of the critical state buffer is supplied to the confirmed
state buffer 3124 before being supplied to the confirmed
register bank 3130. The confirmed state buffer 3124 is simply
a write-buffer for the confirmed register bank 3130. This is
provided to avoid stalling the entire pipeline in the event that
there are more than two confirmed values to be written to the
confirmed register bank 3130 in a given processing cycle (e.g.
due to the re-ordering of the critical state updates).

The output of the stability pipeline stages 3120 is supplied
both to the critical state buffer 3122 and to the confirmed state
buffer 3124. The stability pipeline stages 3120 allow suffi-
cient time for errors in operation in the main pipeline to be
detected by the error detection logic 3160 prior to those
values being stored in the confirmed register bank 3130.

Consider the case where the transition detector 3142-3
indicates that an error has occurred in the third execution state
of'the main pipeline corresponding to instruction n—2. In this
case, the program counter resetting logic 3190 will reset the
program counter from the instruction n to the instruction n-5,
since the last confirmed state of the integrated circuit corre-
sponds to the instruction n-6. The confirmed state corre-
sponding to the instruction n—-6 is recovered by copying the
data pertaining to the critical sub-set of state variables asso-
ciated with instruction n-6 from the confirmed register bank
3130 into the speculative register bank 3110 via data path
3111. Execution of the processing operations then proceeds
from stage n—-5 onwards so that the error in operation of the
integrated circuit does not affect the outcome of the calcula-
tion. The last processing state to be stored in the confirmed
register bank 3130 is the state information for processing
stage n-6.

The state variables stored in the confirmed register bank
3130 have a greater mean time between failures (and are thus
much less likely to be erroneous) than the state variables
stored in the speculative register bank 3110. Accordingly
state variables from the confirmed register bank 3130 are used
to recover from the detected error in operation in the main
pipeline 3100 by restoring the last confirmed state n—6 when
an error in operation is detected. Thus the system is able to
recover from operation errors by using the last confirmed
state of the integrated circuit.

Note that the arrangement of FIG. 23 is a simplified
arrangement provided for the purposes of illustration. In other
arrangements according to the present technique there will
not be a one-to-one correspondence between instructions and
pipeline stages since a single instruction can potentially span
several pipeline stages. Accordingly, in such alternative
arrangements the program counter corresponding to the

20

25

30

35

40

45

50

55

60

65

24

instruction whose critical variables were last stored to the
confirmed register bank 3130 is not simply derived from the
current program counter and the length of the pipeline.
Rather, the program counter corresponding to the last suc-
cessfully executed instruction is obtained from a separate
pipeline of program counter values that shadows the main
execution pipeline.

FIG. 24A schematically illustrates an arrangement accord-
ing to the present technique comprising a number of stability
pipeline stages appended to the end of the main pipeline. The
arrangement comprises a plurality of pipeline stages 3210
including two stability stages 3220 and 3222 at the end of the
pipeline; an array of transition detectors 3230-1 to 3230-4; an
OR gate 3240; an operational parameter controller 3242;
error detection logic 3250; pipeline flush logic 3260; con-
firmed state recovery logic 3262; program counter resetting
logic 3270; a decode pipeline stage 3280; a score card file
3282, forwarding logic 3290; a critical state buffer 3292; a
confirmed state buffer 3294 and a confirmed register bank
3296.

As in the example embodiment of FIG. 23, the pipeline
3210 comprises three execute stages corresponding to
instructions n, (n—1), (n-2) and (n-3). Appended to the end of
this pipeline are the two stability stages 3220 and 3222 cor-
responding respectively to two instructions (n—4) and (n-5).
Appending the additional stability stages directly to the end
of the main pipeline in this way causes the output to the
register bank to be slightly delayed but these extra stability
stages give the integrated circuit the opportunity to detect the
occurrence of an error in operation before output of data to the
register bank 3296. This means that the error detection pro-
cess will have completed by the time the output of the pipeline
is supplied to the register bank 3296. Again the outputs of
each of the processing stages of the main pipeline are supplied
to transition detectors 3200-1 to 3200-4, which in turn supply
their outputs to the OR gate 3240. In the event of detection of
an error, error recovery is initiated via the error detection logic
3250 using the pipeline flush logic 3260, the confirmed state
recovery logic 3262 and the program counter reset logic
3270, similarly as described above with reference to FI1G. 23.
The occurrence of an error in operation is also signalled to the
operational parameter controller 3242, which is operable to
adjust at least one of the clock frequency, the operating volt-
age, the body biased voltage or the temperature in depen-
dence upon one or more characteristics of detected errors in
operation so as to maintain a finite non-zero error note in a
manner that increases overall efficiency. As mentioned above
with reference to FIG. 24A, it will be appreciated that in
alternative embodiments, there is not a one-to-one correspon-
dence between pipeline stages and instructions.

In this example the two stability stages correspond to
instruction numbers (n-4) and (n-5) respectively, which
means that the last committed state variables in the register
bank correspond to instruction number (n-6). Thus, for
example, in the event of an error at pipeline stage (n-1) the
transition detector 3230-2 is triggered, which in turn triggers
a high output from the OR gate 3240. A recovery sequence is
initiated and the pipeline is flushed to eliminate any pipeline
values affected by the error. The program counter is reset by
the logic 3270 from instruction n to the instruction (n-5) to
enable forward progress of the calculation. Since the addi-
tional stability stages 3220 and 3222 incur some delay in the
instruction execution in the pipeline it is appropriate to pro-
vide forwarding logic 3290 that connects output of one pipe-
line stage to the input of earlier pipeline stages corresponding
to later executed instructions. In this case the output of pipe-
line stage (n-2) is fed as input to a pipeline stage associated

US 8,407,537 B2

25

with execution of instruction n. Forwarding logic (not shown)
is also provided from pipeline stages (n-5), (n-4), (n-3) and
(n-1) and from the critical state buffer 3292 and the con-
firmed state buffer 3294. This enables non-committed values
from later pipeline stages that have not yet been saved to the
register bank 3292 to be supplied as input to subsequent
processing instructions where appropriate.

The integrated circuit uses the score card file 3282 to keep
track of which instruction writes to which register number(s).
The score card file is written to by an earlier stage of the
pipeline, in particular the decode stage 3280 of the pipeline
3210. The score card 3282 need only keep track of which
instruction writes to which register and not of which instruc-
tion reads from which register since only the instruction
writes are likely to affect input values to the various pipeline
stages. For example, if the instruction at stage (n-2) writes to
the register R3 and the subsequent instruction executed at
pipeline stage n reads from register R3 as an input before the
output of instruction (n-2) has been committed to the register
bank, it is necessary to provide the output corresponding to
the value to be written to register R3 as an input to the pipeline
stage corresponding to instruction n.

Note thatin the arrangements of both FIG. 23 and F1G. 24A
the stages of error detection, pipeline flushing, program
counter resetting and recovery of the last confirmed state can
be performed in a number of different orders and the present
technique is not restricted to the particular ordering of these
logic modules as illustrated in these Figures.

In the arrangement of FIG. 24A if an error should occur at
processing stage (n-1), the state variables of the integrated
circuit will be restored to the value corresponding to the last
instruction that was committed to the register bank 3296. In
storing the state variables used for recovery from an error,
account is taken of instruction dependencies to help deter-
mine which state updates are critical. This helps to determine
the ordering of writes required to leave the register bank in a
consistent state, such that if an error occurs, then recovery is
possible. Thus the state variables that must be restored by
recovering values from the register bank will vary according
to the particular error. The manner and ordering in which the
state variables are stored to the register bank aids identifica-
tion of a particular subset of architectural and/or micro-archi-
tectural state variables that are used by the error recovery
circuits in order to recover from the error in operation.

FIG. 24B schematically illustrates a sequence of opera-
tions involved in error detection and recovery as performed
by the circuits of FIG. 23 and FIG. 24A. At stage 3297 the
processing circuitry begins processing associated with the
next processing cycle and subsequently at stage 3298 it is
determined whether or not an error in operation has occurred.
Ifat stage 3298 no error in operation has been detected by one
of' the transition detectors then the process continues by pro-
cessing the subsequent cycle at stage 3297. However, if an
error in operation has been detected, then the process pro-
ceeds to stage 3299 whereupon the entire pipeline is flushed
of' non-confirmed state variables. In alternative arrangements
only a subset of values currently stored in the pipeline need be
flushed. The process then continues to stage 3300 where a
program counter is reset to the instruction following the last
confirmed instruction. This instigates re-execution of instruc-
tions to eliminate any effects of the error in operation. At stage
3301 it is determined whether the program counter value reset
at stage 3300 is equal to the last reset program counter value.
This stage of the process serves to detect a deadlock in the
computation whereby a given instruction repeatedly executes
resulting in an error in operation.

20

25

30

35

40

45

50

55

60

65

26

If at stage 3301 the current program counter value is deter-
mined not to be equal to the last reset program counter value,
then the process proceeds directly to stage 3303 where the
program counter value is stored for future deadlock detection.
However, if it is determined at stage 3301 that the program
counter value is equal to the last reset program counter value
this is indicative of a deadlock. Accordingly, the process
proceeds to stage 3302 where one or more operating param-
eters of the processor are adjusted to prevent continuation of
any deadlock. In this particular arrangement the adjustment
of operational parameters involves reducing the clock rate
temporarily. However, it will be appreciated that in alternative
arrangements the voltage could be adjusted to achieve the
same result. Once the clock rate has been temporarily reduced
at stage 3302, the process proceeds to stage 3303 where the
program counter value is stored for future deadlock detection.
The process then returns to stage 3397 whereupon the next
processing cycle is executed.

Although in the arrangement according to FIG. 24B, dead-
lock is actively detected and a temporary change to the opera-
tional parameters is made in response to a deadlock, in alter-
native arrangements the operational parameters are
temporarily changed in response to every error detection e.g.
by slowing the clock rate. In this case there is no need to
actively detect deadlock.

FIG. 24C schematically illustrates a flow chart showing an
operational parameter tuning process according to the present
technique. The operational parameter tuning process is a
separate process from the error detection and recovery pro-
cess of FIG. 24B. The operational parameter tuning process
as illustrated in FIG. 24C is a three stage process that begins
at stage 3304 with sampling the error rate associated with
processing operations. It is subsequently determined at stage
3305 whether the error rate is within acceptable bounds and if
this is the case then no adjustments are made to operational
parameters but the error rate continues to be sampled. How-
ever, ifitis determined that the error rate is not within accept-
able bounds then the process proceeds to the next stage 3306
whereby the operational parameters are adjusted. If this
adjustment of the operational parameters does not return the
sample error rate to within the acceptable bounds, then further
adjustments are made as required. The operational parameter
modification process of FIG. 3C can be performed entirely in
hardware or using a combination of hardware and software
such that the error rate information is recorded in either hard-
ware registers or in memory. This error rate information is
subsequently read by software, which uses software program-
mable register to modify the operational parameters.

FIG. 25 schematically illustrates a transition detection
D-type flip-flop according to the present technique. The
arrangement comprises a standard master-slave positive edge
triggered flip-flop 3310 and a transition detector circuit 3350.
The flip-flop 3310 corresponds to the flip-flop 3020 of FIG.
22 that connects the pipeline stages. In alternative arrange-
ments the flip-flop could be replaced by any circuit element
operable to store a signal value irrespective of triggering and
other requirements. The processing of the circuit arrangement
of FIG. 25 is driven by a clock signal CLK. The clock signal
nCLK corresponds to the clock signal after it has been passed
through a single inverter element whereas the clock signal
bCLK corresponds to the clock signal after it has been passed
through two inverter elements. Input data is supplied to the
main flip-flop and is also supplied to the transition detector
3350 via an arrangement of three inverters 1, I, and 1;. The
delay induced by the combination of three inverters is equal to
the set up time of the main flip-flop. The set-up time is a

US 8,407,537 B2

27

characteristic of the flip-flop and represents the time required
for the flip-flop circuit to stabilise at a definite logic value.

Within the transition detector 3350 the input signal is sup-
plied to a series of four inverters 1, I, I and 1. Outputs from
various points in the inverter array are supplied to the transis-
tor array comprising transistors N1, N2, N3, N4, N5 and N6.
Transistor N1 is driven by an output derived from the signal
corresponding to the input of the inverter L; the transistor N2
is driven by the output of the inverter I; the transistor N3 is
driven by the output of the inverter 1, and the transistor N4 is
driven by the output of inverter I,. The transistor N5 is on only
when the clock signal is high. The transistor N6 is associated
with a dynamic node ERR_DYN. The ERR_DYN node is
robustly protected from discharge due to noise by back-to-
back inverters I; and I, and an error output signal is output
from the circuit via inverter I,,. The error signals from each
individual error detection circuit are supplied to a control
state machine (not shown), which is responsive to the error
signals to output a global error reset signal Err_reset. This
signal pre-charges the ERR_DYN node for the next error
event. This conditional pre-charge scheme significantly
reduces the capacitive load on a pin associated with the clock
3032 and provides a low power overhead design. It also
precludes the need for an extra latching element that would
otherwise be required to hold the state of the error signal
during a pre-charge phase. The circuit arrangement of FIG. 25
is operable to flag an error in operation of the integrated
circuit when the input data transitions either in the set up time
window of the main flip-flop 3310 or during the clock phase
following the sampling edge as shown in FIG. 26. A data
transition in either the setup window or the following clock
phase is indicative of a late transitioning input.

An alternative to the transition detector of FIG. 25 would
be to use a delayed latch, to capture the output of the process-
ing logic at a later time than performed by the flip-flop 3020.
A comparison between the delayed value and the non-delayed
value stored by the flip-flop 3020 can be used to determine
occurrence of an error. This error detection system was
described in US Application Publication No. US2004-
0199821. This system involves detecting a transition by cal-
culating a different between a signal value at a first sampling
time and at a second, subsequent sampling time. However, the
transition detector 3350 of FIG. 25 is arranged to detect any
change of state in the signal within a predetermined time
window.

FIG. 26 schematically illustrates a functional timing dia-
gram for a data transition occurring within the set up period of
the main flip-flop 3310. The set up time of the main flip-flop
Tsgrup ppisindicated in the upper most portion of FIG. 26 in
relation to the clock edge and it can be seen that the set up time
immediately precedes the clock edge. The time for which the
clock edge remains positive is indicated by the time period
T 5os. It can be seen that the transition in the input data occurs
in the set up period of the main flip-flop in this case. However,
as a result of the delay elements 1, I, and I; of FIG. 25,
through which the input data must pass prior to input to the
transition detector 3350, the transition in the data is shifted to
alater time such that it occurs within the time T, s but outside
the period Tggryp g The data profile DATA_DELS3 corre-
sponds to the input to the first of the inverters I, in the tran-
sition detector 3350. This data profile is inverted with respect
to the input data transition profile since it has passed through
an odd number of inverters I, I, and 1.

FIGS. 27A to 27G schematically illustrate functional tim-
ing diagrams representing how the circuit of FIG. 25 acts to
detect a data transition from logic state one to logic state zero.
The circuit of FIG. 25 detects such a transition when the

20

25

30

35

40

45

50

55

60

65

28

transistors N1, N2 and N5 are all ON. As shown in FIG. 27A
the clock signal goes from low to high at time T, and returns
from a high state to a low state at time T,. FIG. 27B shows
a data transition from high to low at a time T, which is within
the period of when the clock signal is high. FIG. 27C shows
the profile of the signal DATA_DEL3 of FIG. 25 which is the
output of the inverter 1,, and controls the transistor N1. This
signal goes from low to high at a time T, 5, which is slightly
later than the data transition time T . FIG. 27D shows the data
profile of data signal DATA_DEL4, which controls the tran-
sistor input N3. This data signal transitions from high to low
atatime later again than T 5, that is, at the time T, ,. FIG. 27E
shows the data profile of data signal DATA_DELS5, which is
output by delay element I, and does not supply an input to any
transistors of the transistor array. FIG. 27F shows the profile
of the data signal DATA_DEL#6, which controls the N2 tran-
sistor input and transitions from high to low at a time T4
which is later than the time T, ,. Finally, FIG. 27G shows the
profile of DATA_DEL7, which controls the input to the tran-
sistor N4 and which transitions from low to highatatime T -,
which is later again than time T, ;. Transistor N1 is off before
the point in time T, ; and on after that time. Transistor N3 is on
prior to thetime T, , and off after that time. Transistor N2 is on
prior to the time T ; but is off after that time and the transistor
N4 is off prior to the time T,, and is on after that time.
Accordingly it can be seen that there is a time window in
which both transistors N1 and N2 are simultaneously
switched on but there is no time window in this functional
timing diagram in which both the transistors N3 and N4 are
switched on.

In the time window starting at T=0 and finishing at T ; the
transistors N1 and N4 are switched oft whereas the transistors
N2 and N3 are switched on, since both the signal controlling
N1 and the signal controlling N3 are high within that time
window. In the time window between T, ; and T, the transis-
tors N1, N2, and N3 are all switched on whereas the transistor
N4 is switched off. In the time window between T, and T4
the transistors N1 and N2 are both switched on whereas the
transistors N3 and N4 are both switched off. In the time
window between T, and T, the transistor N1 is the only
transistor that is switched on and in the time window between
T,,and T, the transistors N1 and N4 are switched on whereas
the transistors N2 and N3 are switched off. Accordingly for
the duration when the clock pulse is high (when the transistor
N5 is switched on) and from the time T/ 5 to the time T, 5 the
transistors N1, N2 and N5 are all switched on. This will result
in the detection of a transition since a conduction path is
provided from the array of transistors to the latch node Err_
dyn.

FIGS. 28A to 28G schematically illustrate a functional
timing diagram for the circuit of FIG. 25 for detection of a
data transition from logic value zero to logic value one. FIG.
28A shows the clock signal, which is positive for a period
from T, to T,. The data transitions from zero to one as
shown in FIG. 28B after time T,,, which is just within the
positive phase of the clock signal. FIG. 28C shows the profile
of the data signal DATA_DEL3, which drives the input of
transistor N1. This data signal transitions from one to zero at
the time T, ,, which is later than the time T,, by a time
corresponding to the evaluation time of the inverter I;. FIG.
28D schematically illustrates the profile of the data signal
DATA_DEL4 which drives the input of the transistor N3. This
signal transitions from low to high at a time T, ,, which is
later than the time T,;, by a period corresponding to the
evaluation time of inverter 1,. FIG. 28E shows the profile of
the data signal DATA_DELS5 corresponding to the output of
the inverter L. FIG. 28F shows the data profile of the data

US 8,407,537 B2

29

signal DATA_DEL6, which drives the transistor N2 input and
this signal transitions from zero to one at the time T, ,, which
is later than the time T,,, by a time corresponding to the
evaluation time of inverter 15 and the evaluation time of
inverter I . Finally, FIG. 28G shows the data profile of the data
signal DATA_DEL7, which drives the input of the transistor
N4. This data signal transitions from one to zero at the time
T, ,. The output of the inverter [, , will transition from high to
low only in this case if transistors N3, N4 and N5 are all on. As
can be seen from FIGS. 28A to 28G there is a time window in
which this is the case. In particular, the time window starting
atT,,, when the transistor N3 switches on until the time T, ,
when the transistor N4 switches off. There is no time window
in which the transistors N1, N2 and N5 are all switched onin
this case. Thus it can be seen that a transition in the data from
zero to one is indicated by the circuit of FIG. 25 when the
transistors N3, N4 and N5 are all high.

FIG. 29A schematically illustrates the functional timing
diagram for the main flip-flop 3310 of FIG. 25 whereas FIG.
19B schematically illustrates a functional timing diagram for
the transition detector circuit 3350 of FIG. 25. Together, the
functional timing diagrams of FIGS. 8 A and 8B illustrate how
the metastability window of the transition detector is aligned
such that it does not overlap with the setup window of the
main flip-flop 3210. It is required that the transition detector
should detect a transition in either the setup window of the
main flip-flop 3310 or in a time window following the rising
edge of the clock. Such a transition is indicative of a late
signal, such that the main flip-flop may not be outputting the
correct value at the specified time. The clock signal illustrated
in FIG. 29A is associated with the main flip-flop and shows a
setup window Tsetup_ff, which precedes the rising clock
edge. There are two requirements that define this setup win-
dow for the main flip-flop. The first requirement is that the
correct data values should always be reliably sampled and the
second requirement is that the output timing (i.e. the clock to
data out time) is deterministic and can be characterised. Of
these requirements, typically the output timing requirement is
(marginally) more stringent than that of sampling the correct
value. Accordingly, the setup time Tsetup_{f for the main
flip-flop can be sub-divided into two time windows. The first
of'these time windows is Tlate (see FIG. 29 A) and in this time
window if a signal transition occurs although the correct
value is always sampled. The output timing is not within the
specified bounds. The second window within the setup time
of the main flip-flop is labelled in FIG. 29A as Tmstable-ff,
which is the metastability window of the main flip-flop. In the
window Tmstable-ff the correct data value cannot be sampled
and the time taken for the output to resolve to a defined value
is likely to be non-deterministic.

Referring back to the main flip-flop as illustrated in the
circuit diagram of FIG. 25, in the main flip-flop 3310 it is
possible that when a transition gate TG1 closes, the voltage
levels at nodes M1 and M2 on either side of an invertor
situated at the output of the transmission gate TG1 are such
that a tri-state invertor F1 arranged in parallel with the inverter
at the output of the transmission gate TG1 will always feed
back the correct value. However, the time taken for the value
to pass through a subsequent transmission gate TG2 and
through the nodes S1 and S2, which are on either side of a
further inverter subsequent to the output of TG2 and the time
taken for the value to pass through the subsequent inverters
labelled by Qbar and Q will be longer than the time that would
be taken if M2 was at “full-rail” (either Vdd for logic state 1
or GND for logic state 0).

Referring now to FIG. 29B, which is a functional timing
diagram associated with the transition detector 3350 of FIG.

20

25

30

35

40

45

50

55

60

65

30

25, the transition detector 3350 does not have a setup time to
the rising edge of the clock in the same way as the flip-flop
3310 does (and as illustrated in both FIG. 26 and FIG. 29A).
Rather, for the transition detector 3350 there is a time window
for which a transition in the data input can be reliably detected
and this time window is referred to as the “sampling win-
dow”. In FIG. 29B the sampling window is labelled by Tsam-
ple_td. In FIG. 29A the sampling window Tsample_td has
been sub-divided into three distinct sub-windows. The first
two sub-windows correspond to the sub-windows Tlate and
Tmstable-f of the main flip-flop as described above. A third
sub-window Tincorrect, which is adjacent to the window
Tmstable_ff forms together with Tlate and Tmstable_{f the
full time window Tsample_td in which a transition in the data
signal must be detected by the transition detector 3350. If the
data signal transitions in the sub-window Tlate, then the Q
output of the flip-flop 3310 of FIG. 25 will be correct but the
transition will be late. If the data transition occurs in the time
window Tmstable_ff, then the master latch part of the flip-
flop 3310 may become metastable thus leading to an incorrect
and/or late value being output by the circuit. Finally if the
transition occurs in the sub-window Tincorrect then the out-
put will have an incorrect value and the transmission gate
TG1 in FIG. 25 will have completely shut before the new
signal value arrives. The portion of the cycle subsequent to
Tincorrect in FIG. 29A and indicated by Tcorrect represents
the remainder of the timing cycle during which a transition is
not indicative of an error. Note that the operational parameters
of'the device of FIG. 25 are arranged such that an input signal
to the main flip-flop 3310 will never evaluate later than in the
Tincorrect window. This arrangement also imposes a con-
straint on the hold time of the input to the main flip-flop 3310,
such that the earliest input to the main flip-flop can change is
the start of the Tcorrect window.

The transition detector 3350 also has a metastability win-
dow, which is indicated as Tmstable_td in FIG. 29B and this
time window precedes the time window Tsample_td. If a
transition occurs in the time window Tmstable_td then the
Err_dyn mode shown in FIG. 25 may become metastable
resulting in the error output becoming unknown (i.e. logic 1,
logic 0 or some intermediate value). However, by designing
the circuit such that Tmstable_td occurs within the window
Tcorrect as shown, yet does not overlap with Tlate,
Tmstable_ff or Tincorrect, then it is known that if the meta-
stability does occur in the transition detector 3350 then the Q
output of the main flip-flop 3310 both have the correct value
and output timing. This enables the use of standard synchro-
nising logic to be applied to the output of logic driven by the
error signal. This is illustrated in FIG. 30.

FIG. 30 schematically illustrates error synchronisation of
error signals derived from transition detectors. The arrange-
ment of FIG. 30 comprises the OR gate 3040 (corresponding
to that illustrated in FIG. 22), a first flip-flop 3042 and a
second flip-flop 3044 to which the output of the OR gate 3040
is supplied in succession. The first flip-flop 3042 is designed
specifically for fast metastability resolution and has very high
gain in the feedback loop, which is the cause of metastability.
A standard flip-flop typically has less gain in the feedback
loop than the flip-flop 3042 since there are design tradeoffs
between the gain and the other parameters of the flip-flop such
as setup time and area. The second flip-flop 3044 is a standard
flip-flop. As shown in FIG. 30 the number of error signals,
error 1, error 2, error 3, . . . error N, which are derived from
individual transition detectors are ORed together to form
GlobalError signal. If any one of the individual error signals
that are input to the OR gate 3040 is metastable then this can
also result in metastability or non-deterministic timing of the

US 8,407,537 B2

31

output GlobalError signal. The GlobalError signal is passed
through a standard arrangement for synchronising a signal to
aparticular clock domain consisting of the two flip-flops 3042
and 3044. The output of the second flip-flop 3044 is a syn-
chronised version of the GlobalError signal since it has a
voltage level corresponding to a definite logic value and has
deterministic timing. This signal is labelled GlobalErrorSync
in FIG. 30.

In the situation where the GlobalError signal is metastable
then the GlobalErrorSync signal may be either a logic O or a
logic 1. The GlobalErrorSync signal is used by the error
recovery logic 3050 of FIG. 22 to determine when an error in
operation has occurred. Since the metastability window of the
transition detector 3350 lies entirely within the Tcorrect time
window (refer to FIGS. 29A and 29B), in the event that the
transition detector 3350 becomes metastable then the result-
ing value of the GlobalErrorSync signal will correspond to a
“don’t care” condition. In the event of a GlobalErrorSync
signal indicating the logic value 1 in this case, the error
recovery process will be initiated although this is benign.

Although illustrative embodiments of the invention have
been described in detail herein with reference to the accom-
panying drawings, it is to be understood that the invention is
not limited to those precise embodiments, and that various
changes and modifications can be effected therein by one
skilled in the art without departing from the scope and spirit of
the invention as defined by the appended claims.

The invention claimed is:

1. An integrated circuit for performing data processing,
said integrated circuit comprising:

an error detector configured to detect errors in operation of

said integrated circuit;

error-repair circuitry configured to repair errors in opera-

tion of said integrated circuit; and

an operational parameter controller configured to control

one or more performance controlling operational param-
eters of said integrated circuit; wherein

said operational parameter controller controls at least one

of'said one or more performance controlling parameters
in dependence upon one or more characteristics of errors
detected by said error detector such that a gain in one or
more performance characteristics of said integrated cir-
cuit from operating with said one or more performance
controlling parameters having values resulting in errors
in operation of said integrated circuit exceeds a loss in
said one or more performance characteristics from
repairing errors in operation of said integrated circuit
with said error-repair circuitry.

2. An integrated circuit as claimed in claim 1, wherein said
operational parameter controller applies feedback control to
adjust said at least one of said one or more performance
controlling parameters in dependence upon said one or more
characteristics of errors detected by said error detector.

3. Anintegrated circuit as claimed in claim 1, wherein said
one or more characteristics of errors detected by said error
detector comprise at least one of:

an error rate of said errors detected by said error detector;

and

a reduction in computational throughput resulting from

repair by said error-repair logic of said errors detected by
said error detector.

4. An integrated circuit as claimed in claim 1, wherein said
one or more performance controlling parameters include at
least one of:

an operating voltage;

an operating frequency;

20

25

30

35

40

45

50

55

60

65

32

an integrated circuit body bias voltage; and

temperature.

5. An integrated circuit as claimed in claim 1, wherein said
one or more performance characteristics comprise one or
more of: computational throughput, energy consumption and
power.

6. An integrated circuit as claimed in claim 1, wherein said
error detector detects errors by double-sampling data signal
values within said integrated circuit, a difference between
sampled values being indicative of an error.

7. An integrated circuit as claimed in claim 6, wherein said
double-sampling is detecting a signal value at a sampling
point at respective different times.

8. An integrated circuit as claimed in claim 1 comprising:

a plurality of processing stages, a processing stage output
signal from at least one processing stage being supplied
as a processing stage input signal to a following process-
ing stage, wherein said at least one processing stage
comprises:

processing logic configured to perform a processing opera-
tion upon at least one processing stage input value to
generate a processing logic output signal;

a non-delayed latch configured to capture a non-delayed
value of said processing logic output signal at a non-
delayed capture time, said non-delayed value being sup-
plied to said following processing stage as said process-
ing stage output signal following said non-delayed
capture time; and

a delayed latch configured to capture a delayed value of
said processing logic output signal at a delayed capture
time later than said non-delayed capture time;

wherein said error detector comprises a comparator oper-
ableto compare said non-delayed value and said delayed
value to detect a change in said processing logic output
signal following said non-delayed capture time indica-
tive of said processing logic not having finished said
processing operation at said non-delayed capture time;
and

said error-repair logic is configured when said comparator
detects said change to perform an error-repair operation
suppressing use of said non-delayed value by said fol-
lowing processing stage.

9. An integrated circuit as claimed in claim 8, comprising a
meta-stability detector operable to detect meta-stability in
said non-delayed value and trigger said error-repair logic to
suppress use of said non-delayed value if found to be meta-
stable.

10. An integrated circuit as claimed in claim 8, wherein
when said comparator detects said change said error-repair
logic is operable to force said delayed value to be stored in
said non-delayed latch in place of said non-delayed value.

11. An integrated circuit as claimed in claim 8, wherein
said plurality of processing stages are respective pipeline
stages within a synchronous pipeline.

12. An integrated circuit as claimed in claim 8, wherein a
maximum processing time taken for said processing opera-
tion is less than a sum of a time separating said delayed
capture time from said non-delayed capture time and a time
between non-delayed capture times such that said processing
logic will have completed said processing operation by said
delayed capture time.

13. An integrated circuit as claimed in claim 8, wherein
said processing stages are part of a data processor.

14. An integrated circuit as claimed in claim 8, wherein
when said comparator detects said change, said error-repair
logic is operable to replace said non-delayed value with said
delayed value as said processing stage output signal.

US 8,407,537 B2

33

15. An integrated circuit as claimed in claim 14, wherein
supply of said delayed value to said following processing
stage forces forward progress through processing operations.

16. An integrated circuit as claimed in claim 8, wherein a
minimum processing time taken for said processing operation
is greater than a time separating said delayed capture time
from said non-delayed capture time such that said delayed
value is not influenced by a processing operation performed
upon different input values.

17. An integrated circuit as claimed in claim 16, wherein
said processing logic includes one or more delay elements to
ensure said minimum processing time is exceeded.

18. An integrated circuit as claimed in claim 8, comprising
an error counter circuit operable to store a count of detection
of errors corresponding to said change.

19. An integrated circuit as claimed in claim 18, wherein
said count may be read by software.

20. An integrated circuit as claimed in claim 8, wherein
processing operations within said processing stage and said
following processing stage are driven by a non-delayed clock
signal.

21. An integrated circuit as claimed in claim 20, wherein
when said comparator detects said change said error-repair
logic is operable to gate said non-delayed clock signal to
provide time for said following processing stage to recover
from input of said non-delayed value and instead use said
delayed value.

22. An integrated circuit as claimed in claim 21, wherein
said non-delayed capture time is derived from a predeter-
mined phase point of said non-delayed clock signal, a phased
delayed version of said non-delayed clock signal is used as a
delayed clock signal and said delayed capture time is derived
from a predetermined phase point of said delayed clock sig-
nal.

23. A method of controlling an integrated circuit for per-
forming data processing, said method comprising the steps
of:

detecting errors in operation of said integrated circuit;

repairing detected errors in operation; and

controlling one or more performance controlling opera-

tional parameters of said integrated circuit; wherein at
least one of said one or more performance controlling
parameters is controlled in dependence upon one or
more characteristics of detected error such that a gain in
one or more performance characteristics of said inte-
grated circuit from operating with said one or more
performance controlling parameters having values
resulting in errors in operation of said integrated circuit
exceeds a loss in said one or more performance charac-
teristics from repairing errors in operation of said inte-
grated circuit.

24. A method as claimed in claim 23, wherein said step of
controlling applies feedback control to adjust said at least one
of said one or more performance controlling parameters in
dependence upon said one or more characteristics of detected
errors.

25. A method as claimed in claim 23, wherein said one or
more characteristics of detected errors comprise at least one
of:

an error rate of detected errors; and

a reduction in computational throughput resulting from

repair of detected errors.

26. A method as claimed in claim 23, wherein said one or
more performance controlling parameters include at least one
of:

an operating voltage;

an operating frequency;

20

25

30

35

40

45

50

55

60

65

34

an integrated circuit body bias voltage; and
temperature.
27. A method as claimed in claim 23, wherein said one or
more performance characteristics comprise one or more of:
computational throughput, energy consumption and power.
28. A method as claimed in claim 23, wherein said step of
detecting errors detects errors by double-sampling data signal
values within said integrated circuit, a difference between
sampled values being indicative of an error.
29. A method as claimed in claim 28, wherein said double-
sampling is detecting a signal value at a sampling point at
respective different times.
30. A method as claimed in claim 23 comprising the steps
of:
supplying a processing stage output signal from at least one
processing stage of a plurality of processing stages as a
processing stage input signal to a following processing
stage, said at least one processing stage operating to:

perform a processing operation with data processing logic
upon at least one processing stage input value to gener-
ate a processing logic output signal;

capture a non-delayed value of said processing logic output

signal at a non-delayed capture time, said non-delayed
value being supplied to said following processing stage
as said processing stage output signal following said
non-delayed capture time; and

capture a delayed value of said processing logic output

signal at a delayed capture time later than said non-
delayed capture time;

wherein detecting errors comprises comparing said non-

delayed value and said delayed value to detect a change
in said processing logic output signal following said
non-delayed capture time indicative of said processing
logic not having finished said processing operation at
said non-delayed capture time; and

said step of repairing detected errors comprises suppress-

ing use of said non-delayed value by said following
processing stage.

31. A method as claimed in claim 30, comprising detection
meta-stability in said non-delayed value and triggering sup-
pression of use of said non-delayed value if found to be
meta-stable.

32. A method as claimed in claim 30, wherein when said
change is detected, replacing said non-delayed value with
said delayed value as said processing stage output signal.

33. A method as claimed in claim 30, wherein supply of
said delayed value to said following processing stage forces
forward progress through processing operations.

34. A method as claimed in claim 30, wherein when said
change is detected, forcing said delayed value to be stored in
place of said non-delayed value.

35. Amethod as claimed in claim 30, wherein said plurality
of processing stages are respective pipeline stages within a
synchronous pipeline.

36. A method as claimed in claim 30, wherein a maximum
processing time taken for said processing operation is less
than a sum of a time separating said delayed capture time
from said non-delayed capture time and a time between non-
delayed capture times such that said processing logic will
have completed said processing operation by said delayed
capture time.

37. A method as claimed in claim 30 wherein said process-
ing stages are part of a data processor.

38. A method as claimed in claim 30, wherein a minimum
processing time taken for said processing operation is greater
than a time separating said delayed capture time from said

US 8,407,537 B2

35

non-delayed capture time such that said delayed value is not
influenced by a processing operation performed upon difter-
ent input values.

39. A method as claimed in claim 38, wherein said pro-
cessing logic includes one or more delay elements to ensure
said minimum processing time is exceeded.

40. A method as claimed in claim 30, comprising the step of
storing a count of detection of errors corresponding to said
change.

41. A method as claimed in claim 40, wherein said count
may be read by software.

42. A method as claimed in claim 30, wherein processing
operations within said processing stage and said following
processing stage are driven by a non-delayed clock signal.

43. A method as claimed in claim 42, wherein when a
change is detected at said comparing step said error-repair
operation comprises gating said non-delayed clock signal to
provide time for said following processing stage to recover
from input of said non-delayed value and instead use said
delayed value.

44. A method as claimed in claim 42, wherein said non-
delayed capture time is derived from a predetermined phase
point of said non-delayed clock signal, a phase delayed ver-
sion of said non-delayed clock signal is used as a delayed

5

20

36

clock signal and said delayed capture time is derived from a
predetermined phase point of said delayed clock signal.
45. An integrated circuit for performing data processing,
said integrated circuit comprising:
error detecting means for detecting errors in operation of
said integrated circuit;
error-repair means for repairing errors in operation of said
integrated circuit; and
operational parameter controlling means for controlling at
least one of said one or more performance controlling
parameters of said integrated circuit; wherein
said operational parameter controlling means controls at
least one of said one or more performance controlling
parameters in dependence upon one or more character-
istics of errors detected by said error detecting means
such that a gain in one or more performance character-
istics of said integrated circuit from operating with said
one or more performance controlling parameters having
values resulting in errors in operation of said integrated
circuit exceeds a loss in one or more performance char-
acteristics from repairing errors in operation of said
integrated circuit with said error-repair means.

#* #* #* #* #*

