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ABSTRACT
Just-in-time compilation with dynamic code optimization
is often used to help improve the performance of applica-
tions that utilize high-level languages and virtual run-time
environments, such as those found in smartphones. Just-
in-time compilation introduces additional overhead into the
instruction fetch stage of a processor that is particularly
problematic for user applications—instruction cache invali-
dation due to the use of self-modifying code. This software-
assisted cache coherence serializes cache line invalidations,
or causes a costly invalidation of the entire instruction cache,
and prevents useful instructions from being fetched for the
period during which the stale instructions are being invali-
dated. This overhead is not acceptable for user applications,
which are expected to respond quickly.

In this work we introduce a new technique that can, us-
ing a single instruction, invalidate cache lines in page-sized
chunks as opposed to invalidating only a single line at a
time. Lazy cache invalidation reduces the amount of time
spent stalling due to instruction cache invalidation by re-
moving stale instructions on demand as they are accessed,
as opposed to all at once. The key observation behind lazy
cache invalidation is that stale instructions do not necessar-
ily need to be removed from the instruction cache; as long as
it is guaranteed that attempts to fetch stale instructions will
not hit in the instruction cache, the program will behave as
the developer had intended.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; C.0 [Computer Systems Organization]: Hard-
ware/software interfaces; C.1.3 [Processor Architectures]:
Other Architecture Styles—High-level language architectures
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1. INTRODUCTION
Instruction fetch is a critical component for achieving high

performance in modern microprocessors, if there are no in-
structions to execute, progress cannot be made and the
complex structures of out-of-order processors will not be
efficiently utilized. Nearly two decades ago it was shown
that real-world applications suffer from excessive instruction
cache miss rates and fetch stalls [23]. More recent studies
have shown that, for both smartphone and server workloads,
instruction fetch performance has not improved, despite in-
creasing instruction cache sizes and improved branch predic-
tor accuracy [13, 18]. Real-world applications have become
increasingly reliant on high-level languages, shared libraries,
OS support, just-in-time (JIT) compilation and virtual ma-
chines. And, while the use of these modern programming
constructs has made programmers more efficient and appli-
cations more portable, their use has led to increased code
size and complexity, which stresses instruction fetch and
memory resources.

Smartphone application developers in particular rely on
portability and rapid development to ensure their appli-
cations are relevant and profitable. Similarly, smartphone
manufacturers rely on the most popular applications be-
ing available on their platform to drive sales. This sym-
biotic relationship has led both application developers and
smartphone manufacturers to rely on platforms that sup-
port high-level languages and virtual machines. Google’s
Android platform [12], which is currently the most popu-
lar smartphone OS on the market today [10], relies on the
Dalvik virtual machine [9]. Android applications are written
in Java and the Dalvik virtual machine now supports JIT
compilation [5].

To overcome some of the performance loss incurred by the
use of high-level programming constructs, JIT compilation
with dynamic code optimization is often used [2]. JIT com-
pilation uses dynamic code profile information to optimize
and recompile code as it runs. This use of self-modifying
code requires that the instruction cache be kept explicitly
coherent. However, most systems, particularly mobile sys-
tems, do not support hardware coherence in the instruction
cache. The cost of allowing the instruction cache to snoop
the bus on every memory write is inefficient, because most
memory writes are data, not instruction writes. To ensure
that the instruction cache is kept coherent, and that stale
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instructions are not fetched, JIT compilers use software-
assisted coherence. In other words, the JIT compiler is
responsible for managing the invalidation and writeback of
the affected cache lines. There are two mechanisms by which
stale instructions can be invalidated in the instruction cache:

• Invalidate the entire instruction cache. The ben-
efit of this approach is that all stale instructions are in-
validated with a single instruction, making this a very
simple approach. The downside is that many useful
instructions will be needlessly invalidated from the in-
struction cache, thus increasing instruction miss rates.

• Invalidate a single line at a time. This approach
has the benefit of keeping most of the useful instruc-
tions in the instruction cache, which prevents excessive
instruction cache miss rates. The downside of this ap-
proach is that the invalidations are serialized, which
prevents useful work from being performed for the pe-
riod during which invalidation occurs.

The pseudo code shown in listing 1 shows how software-
assisted cache coherence is performed on most modern ar-
chitectures that have Harvard caches and no hardware co-
herence for the instruction cache. Each instruction cache
line in the range is invalidated in serial. Each invalidate also
accesses the cache and performs tag lookups for each line in
the range. No useful instructions can be fetched or executed
during this period, primarily because of the possibility of
fetching an instruction that is meant to be invalidated.

Listing 1: Serial invalidation algorithm.

i n v a l i d a t e r a n g e ( s ta r t , end ) {
addr = s t a r t

while ( addr < end ) {
dcache c l ean ( addr )
addr += l i n e s i z e

}

// ensure dcache c l ean () comple tes
b a r r i e r ( )

addr = s t a r t
while ( addr < end ) {

i c a c h e i n v ( addr )
addr += l i n e s i z e

}

// ensure i c a c h e i n v ( ) comple tes
b a r r i e r ( )

// f l u s h p i p e l i n e to remove any
// s t a l e i n s t r u c t i o n s
f l u s h p i p e l i n e ( )

return
}

As noted above, both of these approaches have their strengths
and weaknesses. Invalidating the entire instruction cache
trades off invalidation precision for simplicity and very fast
invalidation. Single line invalidation trades off simplicity

and fast invalidation for very precise instruction invalida-
tion. As shown in [14] evicting blocks from the code cache in
medium sized chunks often leads to the best performance for
the systems hardware caches. Thus, it is desirable to have
a technique that can provide very fast invalidation, e.g., by
using a single instruction, and that can do so without in-
validating the entire instruction cache. However, it should
be noted that we are not proposing to replace single line or
full cache invalidation; we are proposing a new technique
that gives more flexibility when choosing the granularity at
which to invalidation cache lines.

In this work we make the following contributions:

• We analyze several benchmarks that make heavy use
of JIT compiled code: the DaCapo benchmarks [4],
a suite of open-source Java benchmarks, as well as
BBench [13, 11], a web-page rendering benchmark. We
show that these benchmarks invalidate a large number
of cache lines and that they do so frequently.

• We develop a technique that provides the speed of
entire instruction cache invalidation (it can be done
with a single instruction), but gives much better pre-
cision (invalidations are on a per-page basis as opposed
to invalidating the entire instruction cache), thus pre-
venting long periods when useful work cannot be com-
pleted because cache maintenance operations are being
performed.

Our analysis of BBench and the DaCapo benchmarks re-
veals that cache line invalidations frequently come in large
bursts, always in multiples of an entire page, and that they
happen frequently; a burst can happen as frequently as ev-
ery 1,100 instructions for some benchmarks. We show that
the fraction of time during which cache line invalidations
occur can be decreased significantly ,which allows the CPU
to more quickly resume doing useful work.

In section 2 we detail the design of our lazy cache invali-
dation hardware. In section 3 we discuss our experimental
methodology. Section 4 outlines our experimental results.
Finally, section 5 discusses related works and section 6 con-
cludes and discusses future work.

2. LAZY CACHE INVALIDATION
In this section we outline our lazy cache invalidation tech-

nique. In particular, we describe a new instruction, which we
call pginv, that can be used to invalidate an entire memory
page instantaneously. We also describe the baseline hard-
ware on which our design is implemented, as well as the
additional hardware we introduce to support the pginv in-
struction.

2.1 Code Version Numbering
Lazy cache invalidation associates a version number with

each piece of instruction data. Whenever new code is written
its version is incremented. The version number is stored
both per cache line and per TLB entry. The version number
of a cache line is compared with the version number in its
corresponding TLB entry in parallel with its tag lookup, and
if the versions do not match, the access is considered a miss
and the line will be fetched from memory.

The version number is maintained in the TLB; any time
a new cache line is brought into the cache it is given the
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Figure 1: Lazy cache invalidation hardware and implementation. The CPU writes the virtual address to the pginv
register. This increments the version in the TLB. If a page fault occurs the system waits until the new entry is loaded in the
TLB before incrementing the version. If the version number overflows, the entire instruction cache will be invalidated.

version number of its corresponding TLB entry. If the ver-
sion number rolls over the entire cache must be invalidated;
this is to prevent the version number from rolling over to
a version that matches a stale cache line. It is possible to
avoid flushing the entire cache when the version number rolls
over by using the existing page invalidate methodology, i.e.,
by invalidating each line serially. However, this option is
not explored in this work because version number rollover is
rare, even for small version number sizes as we will show in
section 4.

The use of a TLB entry allows for more efficient instruc-
tion cache invalidation, primarily because each TLB entry
is associated with an entire page of memory (typically 4kB).
This allows a reasonable amount of code to be written with-
out having to invalidate the entire cache or invalidate 4kB
of data serially. Because JIT compilers often optimize at
the granularity of basic blocks [2, 15], the instructions they
write exhibit high spatial locality, making all lines written
by self-modifying code likely to be on the same page.

Maintaining the version number in the TLB implies that
the version number values do not need to be unique across
TLB entries. Because physically tagged cache lines are as-
sumed, each cache line maps to exactly one page thus, mis-
reading stale data due to version aliasing is impossible. Stor-
ing the version number in the TLB has the added benefit of
allowing the version number to be stored in the page table
along with its corresponding TLB entry when it gets evicted;
this prevents lazy cache invalidation from having to need-
lessly invalidate each line contained within the page pointed
to by a new TLB entry, or in the worst case invalidate the
entire cache.

2.2 Page Invalidate Instruction
To implement the lazy cache invalidation technique we

propose a simple ISA modification, the introduction of a
new instruction we call pginv, to perform page invalidation.

The pginv instruction operates in a similar fashion to an in-
struction that invalidates a single cache line, such as the
ARM mcr icimvau [1] system control instruction, i.e., it
takes as an argument the virtual address of a memory lo-
cation to be invalidated. However, unlike the mcr icimvau
instruction it is meant to invalidate the entire page that
contains the line for the given address.

Because the pginv instruction is responsible for invalidat-
ing an entire page, the virtual address it receives must be
aligned with a page boundary. It can be left up to the JIT
compiler to ensure that the address it sends to the pginv
instruction is page aligned but, for our implementation we
make it the responsibility of the pginv instruction to align
the address properly. This is typically done by masking off
certain bits of the virtual address, making page alignment
simple.

The instruction operates by accessing the TLB and, if
the corresponding entry is present, it increments the version
number in the TLB entry. If the TLB entry is not present
a page fault is triggered, just as it would on any TLB miss,
and once the fault is handled it attempts to increment the
version number again. This effectively invalidates all cache
lines contained within this page because their versions will
no longer match. Note that existing invalidation techniques,
such as using mcr icimvau also require a TLB lookup, and
can also cause a page fault, because they also use the virtual
address of a cache line.

2.3 Baseline Hardware
Lazy cache invalidation is most applicable when the base

architecture uses Harvard style caches, separating data and
instructions, with no hardware coherence for the instruc-
tion cache. In addition, the system should use virtual mem-
ory with physically tagged caches. TLBs must be used to
cache virtual address translations. These features describe
the vast majority of modern architectures. The JIT com-
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Figure 2: Instruction cache invalidations in the DaCapo benchmarks. The number of i-cache invalidation instructions
are sampled every 100,000 instructions. Most of the DaCapo benchmarks perform cache invalidations throughout the entire
course of the execution, and they do so in bursts.
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Frequency 1GHz
Cache Line Size 32 bytes
L1 Cache Size 32kB split I/D
L1 Associativity 4-way set associative
L2 Cache Size 1MB shared L2
L2 Associativity 8-way set associative

Table 1: Hardware parameters. The memory system pa-
rameters for our simulation framework. The memory system
is modelled after an ARM Cortex-A9 processor, a current
state-of-the-art smartphone core.
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Figure 3: Invalidation rates. The rate of invalidate in-
structions per 1,000 instructions.

piler must issue invalidate instructions manually whenever
it writes new code to the cache. This is typically how JIT
compilers behave because most systems use Harvard caches
with no hardware coherence in the instruction cache.

3. EXPERIMENTAL METHODOLOGY
In this section we describe our simulation framework and

detail our experimental methodology. We first describe and
analyze the benchmarks, in particular their use of cache in-
validation instructions. Finally we describe the kernel mod-
ifications necessary to support lazy cache invalidation, as
well as our implementation of lazy cache invalidation in the
gem5 simulator.

3.1 Benchmarks
For our experiments we use several JIT compiled bench-

marks. The DaCapo benchmarks [4] and BBench [13, 11],
which we describe in further detail in the following sections.
These benchmarks represent realistic and diverse user ap-
plications. They are primarily written in Java, make heavy
use of shared libraries, OS support, JIT compilation, and
state-of-the-art virtual machines.

3.1.1 BBench
BBench [13, 11] is a new web-page rendering benchmark

that is designed to automate web browsing in such a way
that makes a browser a useful interactive workload. It com-
prises several of the most popular web-pages, all of which
utilize modern web technology such as CSS, HTML, flash,
and multi-media. We run BBench on the native Android
browser using Android version 2.3, Gingerbread [12], using
version 2.6.35.8 of the Android kernel from Linux-ARM [17].
The version of Android we use has only simple modifications
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Figure 4: Instruction cache invalidations in BBench.
The number of i-cache invalidation instructions are sampled
every 100,000 instructions. BBench continuously performs
cache invalidate operations and cache invalidations appear
in repetitive bursts.

made to it, thus it is interactive and contains a full graphical
user interface, which is accurately rendered by gem5.

Because the Android browser is part of the Android file-
system large portions of it are written in native C code; how-
ever, it still exhibits a fairly large amount of self-modifying
code as we will show. Android applications are typically
written entirely in Java and so we expect that most An-
droid applications will exhibit even larger amounts of self-
modifying code than our BBench results show.

3.1.2 DaCapo Benchmarks
The DaCapo benchmarks [4] are an open-source collec-

tion of realistic Java applications. We run all of the Da-
Capo benchmarks on Ubuntu 11.04 using version 2.6.38.8 of
the Linux kernel. The Ubuntu disk image we used for our
experiments is a modified version of a disk image created
using the RootStock utility [22]. The disk image is headless,
meaning it does not utilize a graphical user interface.

We installed the client side embedded Java runtime en-
vironment version 1.6.0.30 from Oracle [19] on our Ubuntu
disk image and all DaCapo benchmarks were run on this
virtual machine. We attempted to run the DaCapo bench-
marks on the OpenJDK version of the Java virtual machine
however, because of a known bug in OpenJDK for ARM,
most of them were not able to run.

3.2 Simulation Environment
We use the gem5 [3] full-system simulator for all of our

experiments. Our system parameters are shown in table 1.
All of our experiments are run in full-system mode using
the ARM ISA. We use the simple timing CPU model to
obtain traces of all invalidation instructions executed. We
use the ARM ISA because it is the most popular architec-
ture used in modern smartphone and tablet devices. gem5
supports a large portion of the ARMv7 ISA; however, it
does not currently provide support for the ARM mcr icim-
vau instruction, as well as several of the associated cache
maintenance operations and registers. We first needed to
provide support for the cache maintenance portions of the
ARMv7 ISA relevant to our study. This includes the mcr
icimvau instruction and the mcr icialluis instruction (these
instructions invalidate a single cache line by its virtual ad-
dress and the entire instruction cache respectively) as well as
the cache size identification register CCSIDR and the cache
type register CTR [1]. These registers provide information
about cache line sizes in the system, which is necessary for
the proper execution of the cache invalidation instructions.
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3.3 Analysis of JIT Compiled Codes
We collected instruction traces from both the DaCapo

benchmarks and BBench to determine how frequently they
perform cache maintenance instructions. Figure 3 reports
the overall number of invalidation instructions per 1,000 in-
structions executed. As can be seen in this figure some of
the benchmarks execute cache line invalidate instructions as
often as 1 for every 1,000 instructions executed, and on aver-
age 0.48 instructions per 1,000 are invalidations. This may
not seem like a large number, but when you consider that
these instructions are not performing useful work related to
program execution this number is significant. And as we
will see, these instructions often come in large bursts, which
stall instruction fetch for a significant period of time.

In figure 2 we show the rate of invalidations per instruction
sampled over time. The samples are taken for every 100,000
instructions executed. This graph shows that for many of
the DaCapo benchmarks invalidations come in bursts, and
that invalidation happens continuously throughout the en-
tire run of the benchmark. Figure 4 shows the same data for
BBench. Similar to the DaCapo benchmarks, BBench per-
forms invalidations continuously throughout the entire run.
However, unlike the DaCapo benchmarks, it happens less
frequently (note the different y-axis values for the BBench
graph).

From our analysis we discover that invalidations always
happen in multiples of 128, which is exactly the size of a
page. It is also shown that over 99% of the time invalidations
occur in bursts of exactly 128, or one page. There are very
few bursts of 2, 3, or more pages occurring. This shows that
JIT compilers typically invalidate an entire page at a time,
making lazy cache invalidation an ideal solution to speed up
the invalidation process. Even if JIT compilers invalidate
at granularities that are different than a page our technique
is still useful; we are proposing that our technique offers a
useful complement;

Figure 5 reports the median number of instructions be-
tween bursts of invalidations. This figure shows that for the
DaCapo benchmarks bursts of invalidations occur as often
as every 1,300 instructions, and for BBench every 20,000
instructions. We report the median, as opposed to the aver-
age, because a few very long periods without invalidations
skew the average.

To quantify the effect that cache invalidation has on per-
formance we define a segment of program execution we call
a work segment, which we further divide into two segments,
a useful work segment, and a cache maintenance segment.
Based on our analysis we discover that for the DaCapo
benchmarks the median size of a cache maintenance seg-
ment is roughly 30% of the work segment, and for BBench it
is around 2.5%. As we will see in section 4, lazy cache invali-
dation reduces the fraction of time the work segment spends
in a cache maintenance segment to almost nothing for both
the DaCapo benchmarks and for BBench. In effect, lazy
cache invalidation makes the effect of cache maintenance
negligible.

3.4 Implementation of Lazy Cache Invalida-
tion

The implementation of lazy cache invalidation required
some modification to the Linux kernel source as well as
gem5. In the following sections we describe the changes

we made to our simulation framework to support lazy cache
invalidation.

3.4.1 Kernel Source Modifications
We had to add support for our pginv instruction into the

Linux kernel source. We profiled our benchmarks and dis-
covered that all of the cache invalidation instructions exe-
cuted were called from the v7 coherent user range() func-
tion. This function is defined in the ARM specific kernel
assembly source and operates identically to the code shown
in listing 1.

Because this function always invalidates a page at a time,
we only needed to remove the loop around the i-cache in-
validate instruction and insert our pginv instruction. We
use the start address given to the v7 coherent user range()
function as the input to the pginv instruction.

Although we never observed anything other than page-
sized chunks being invalidated in the benchmarks we ran, it
is possible for some codes to invalidate at some other gran-
ularity. There are two possibilities for ranges that do not
invalidate only a single page:

• The range is less than a page and all lines in the range
are contained within the same page.

• The range is greater than a page, or spans multiple
pages.

In both cases we invalidate every page (using our lazy cache
invalidation technique) touched by the range of addresses
given. We do this by aligning the addresses to a page and
calculating how many pages are touched by using the size
of the range. This may cause needless invalidations, thereby
increasing cache miss rates slightly, but it keeps implementa-
tion overhead low. Misaligned ranges are unlikely however,
as is evident from the fact that we never observed a single
occurrence of a misaligned range invalidation.

3.4.2 ISA Modification in gem5
To add support for lazy cache invalidation we needed to

add a new instruction called pginv to the ISA. To do this we
modified gem5 to add the functionality for the pginv instruc-
tion. We mimicked our implemenation of the mcr icimvau
instruction by making pginv an ARM mcr system control
register instruction [1].

When the instruction is encountered it triggers a write to
the pginv control register. The value written to the register
is the virtual address of the page being invalidated. Once the
value is written the system control mechanism takes control
and is responsible for aligning the virtual address to a page,
looking up the corresponding TLB entry, and incrementing
the version number of the page. If a page fault is encoun-
tered the instruction waits until it is handled and, once the
proper entry is brought into the TLB, the version number is
incremented. The pginv instruction automatically detects a
version number overflow and is responsible for invalidating
the entire instruction cache.

4. RESULTS
In this section we discuss the results of our lazy cache

invalidation technique. In particular we discuss how lazy
cache invalidation reduces the time spent performing cache
maintenance segments. We also examine how frequently
the entire instruction cache needs to be invalidated due to
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Figure 5: Number of instructions between invalidation periods. The CDF of the number of useful instructions
executed between each invalidation period. The number of instructions between invalidation periods is small. In most cases
fewer than 1,300 instructions are executed between cache maintenance segments for the DaCapo benchmarks. For BBench
around 20,000 instructions are executed between cache maintenance segments.
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(b) Number of Instructions Between Overflows

Figure 7: Sensitivity of overflows to counter size. The bars represent, from left to right, version counter sizes of one
through eight bits respectively. Note that the y-axis is logarithmic. For BBench, overflows never occur for a version counter
size of seven or eight bits, therefore the distance between overflows is essentially infinite. This figure shows that overflows do
not occur often, even for modest sized version counters. When overflows occur they happen far apart.
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Figure 6: Ratio of useful instructions to cache main-
tenance instructions. The median size of a cache main-
tenance segment is reduced by around 30% for the DaCapo
benchmarks, and around 3% for BBench.

version number overflow, as well as how close overflows occur
in time.

4.1 Cache Invalidation Speedup
Figure 6 shows the fraction of time a work segment spends

executing a cache maintenance segment. Again, we report
the median segment sizes because a few very large data
points skew the average. As can be seen from this figure
the common case is to spend a significant fraction of time
executing cache invalidate instructions. Because we are re-
placing segments of 128 instructions with a single instruc-
tion cache maintenance segments practically vanish.

During the cache maintenance segment the CPI for ap-
plication instructions is essentially zero. Because the cache
maintenance segments are always multiples of 128, and these
periods are frequent, this can hinder the responsiveness of
the application. As the authors in [20] have shown user sat-
isfaction is highly correlated to application responsiveness.
In [20] the authors used frequency as the metric by which to
judge performance, but CPI and frequency are highly corre-
lated.

4.2 Sensitivity of Overflows to Counter Size
One possible overhead of the lazy cache invalidation tech-

nique is forced invalidations caused by version number over-
flow, therefore the size of the version number counter is a
critical design decision. Because of power and area con-
straints in smartphones, the version numbers cannot be too
large. We measure how often each page is invalidated by
a pginv instruction to determine how many times an over-
flow occurs. We also calculate how many instructions occur
between version number overflows. If overflows occur too
often, or if they occur in bursts, the benefits of lazy cache
invalidation will be negated.

Figure 7a shows the median number of version number
overflows for each benchmark and figure 7b reports the me-
dian number of instructions between version number over-
flows. For each benchmark the bars in the graph repre-
sent, from left to right, the results for counter values of one
through eight bits respectively. As can be seen from these
graphs, version number overflows are rare even for modest
counter sizes. Forced cache invalidations are sparse, and in-
frequent enough that a version number size of five bits does
not affect performance. Assuming 32kB caches with 32B
lines, a five bit version counter would incur less than 2%
overhead in the instruction cache.

5. RELATED WORK
This sections discusses previous work on software-assisted

cache coherence. Techniques that propose efficient methods
of cache coherence, as well as methods to speed up invalida-
tion are discussed.

5.1 Software-Assisted Cache Coherence
Much of the previous work on software-assisted cache co-

herence focuses on using software as the primary means for
maintaining cache coherence. This work was relevant in an
era where hardware-based cache coherence was impractical
and inefficient for large numbers of cores. However, mod-
ern technology scaling has led to multiple CPUs on a single
chip and very fast and efficient busses, which makes snoopy-
based hardware coherence the primary means for providing
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cache coherence in modern microprocessors. However, be-
cause data are not written to the instruction cache in Har-
vard architectures, and because instruction writes are not
as common as data writes, snoopy-based coherence for in-
structions is still not efficient for instruction caches. Due to
energy constraints, mobile systems in particular cannot af-
ford to allow the instruction cache to snoop the bus on every
write. The lack of efficiency for snoopy-based coherence in
instruction caches makes software-assisted coherence ideal
for self-modifying codes.

5.1.1 Compiler Directed Techniques and Reference
Marking

Knowing which lines to invalidate, and when to invali-
date is of particular interest in software-assisted cache coher-
ence techniques. Reference marking [16] is a compile-time
method that segments program into chunks called epochs.
Each memory reference in an epoch is marked as uncacheable
if it is read by more than one processor and it is written by
by at least one processor. To ensure that no stale data are
read the cache is flushed at the end of every epoch. The
work in [6, 8] improves on this approach by selectively inval-
idating marked references, as opposed to indiscriminately in-
validating all marked references. Compile-time information
is used to determine whether or not a reference is guaran-
teed to be up-to-date. These techniques reduce the overhead
of cache invalidation by removing unnecessary cache invali-
dations; however, they do not speed up cache invalidations
when they must occur (invalidations will still be carried out
serially in these implementations).

5.1.2 Coherence Based on Data Versioning
Versioning has also been used to speed up the invalidation

process and to dynamically identify which cache lines need to
be invalidated [7, 21]. In [7] the authors propose associating
each cache line with two counters. One is called a birth
version number (bvn) and is stored on the cache line, the
other is called a Current Version Number (CVN), which is a
global (per CPU) counter that represents the current version
of the line. The bvn counter is checked against the CVN
on each access, if the bvn is less than the CVN the access
misses.

The bvn is set to the CVN when it is loaded from global
memory and is incremented on each write. Compile-time
analysis is used to determine when a CVN can change and
it is updated based on this analysis and with minimal hard-
ware and CPU communication. The CVN values are stored
in global storage called the version manager and are ob-
tained by indexing into the version manager with a unique
ID number that is associated with each cache line. If any
single CVN overflows all CVNs must be reset and the cache
must be flushed; this ensures that a CVN doesn’t rollover
and match an invalid bvn.

In [21] the authors proposed using a version number, called
a one time identifier (OTI), for each line and its associated
TLB entry. They have a global counter called the OTI regis-
ter that contains the current value of the OTI. Each time a
TLB entry is loaded into the TLB it reads from the OTI reg-
ister and the OTI register is incremented. On every cache
access to a page marked as shared the OTI value for the line
is compared with the OTI value for the associated TLB en-
try. If the OTI values do not match the access is considered
a miss and the line is fetched from memory.

It is assumed that the OS provides functionality to detect
when a page is write-shared and when control is passed,
e.g., by marking a page as shared when a lock within it
is acquired, and marking it as not shared when the lock is
released. After a page is released, the corresponding TLB
entry must be marked as invalid, which implicitly changes
its OTI value, to ensure that all subsequent accesses to this
page are fetched from memory; this guarantees that no stale
data are read. If the OTI register ever rolls over the en-
tire cache must be flushed to prevent stale data from being
misread as valid.

Our lazy cache flushing technique differs from these ver-
sioning approaches in both how we control updating of the
version and how the version affects invalidation. In partic-
ular [7] increments the counters much more frequently, i.e.,
any time it is possible that a shared variable is modified.
It also requires significantly more storage dedicated to ver-
sion counters because it requires two counters per cache line,
and they are typically larger than the counter values we use
(to prevent frequent overflows), whereas we require only one
counter per cache line and one per each TLB entry (which
typically has far fewer entries than the cache). This over-
head is not efficient for the instruction cache because it is
not written to nearly as much as the data cache.

In [21] an entire page is invalidated each time a new TLB
entry is brought into the TLB. This does not necessarily
happen due to writes to a shared region, it could also hap-
pen when a TLB entry is evicted due to a conflict with
another TLB entry. This increases needless invalidations
and also accelerates counter rollover. Because the counter
is global it also gets updated more frequently, which re-
quires it to be larger. Because lazy cache invalidation tar-
gets self-modifying code, we only need to invalidate a page
when instruction data are being written. Also, because lazy
cache invalidation allows each TLB entry to maintain its
own counter, the counters need not be as large. With lazy
cache invalidation the counter for each TLB entry gets in-
cremented only when that specific page is touched and not
when any TLB entry is touched.

6. CONCLUSIONS
Software developers often make use of high-level languages

and other advanced features when designing their software.
The use of these high-level constructs improves the entire
software development design flow. Smartphone sales are
driven by the availability of applications that users care
about, so the use of these high-level features will become
more prominent going forward. Because of this fact, it is
important for architects to design their CPUs with support
for such high-level features.

In this work we have profiled several realistic user applica-
tions and we have demonstrated that these applications per-
form frequent, lengthy bursts of cache maintenance instruc-
tions. We have developed a new technique for fast cache
invalidation, which we call lazy cache invalidation, that is
shown to reduce the fraction of time a JIT compiler spends
performing cache maintenance operations, and it does so
with negligible overhead. By allowing a JIT compiler to in-
validate an entire page with a single instruction we reach a
good balance between the selective invalidation of the sin-
gle line invalidation approach, and the speed of the entire
cache invalidate instruction. We complement single line and
whole cache invalidation and provide JIT compilier develop-
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ers another option for cache invalidation that is often more
efficient.

There are areas where further optimizations can be made
to support self-modifying code. One effect of cache line in-
validation is increased cache misses. The JIT compiler is
responsible for writing back the newly written instructions
out of the data cache into the second level cache—or memory
if there is no second level cache. One of the consequences of
this is that instruction fetch will miss on these instructions.
However, because these instructions are being rewritten by
the JIT compiler it is likely that they are frequently exe-
cuted and will be fetched in the near future. Instruction
pre-fetching of lines frequently written by the JIT compiler
could reduce some of these instruction fetch misses.

The writeback of new instructions from the data cache
is a serial, two-step process. The JIT compiler first writes
the new instructions to the data cache, then it writes them
back. Because the JIT compiler knows when it is writing
instruction data, one possible optimization to this process
is to require that instruction writes be write-through. This
would allow the the JIT compiler to avoid the second step
in the process, i.e., writing the instructions back.
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