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ABSTRACT
As the effective limits of frequency and instruction level par-
allelism have been reached, the strategy of microprocessor
vendors has changed to increase the number of processing
cores on a single chip each generation. The implicit expecta-
tion is that software developers will write their applications
with concurrency in mind to take advantage of this sudden
change in direction. In this study we analyze whether soft-
ware developers for laptop/desktop machines have followed
the recent hardware trends by creating software for chip
multi-processing. We conduct a study of a wide range of ap-
plications on Microsoft Windows 7 and Apple’s OS X Snow
Leopard, measuring Thread Level Parallelism on a high per-
formance workstation and a low power desktop. In addition,
we explore graphics processing units (GPUs) and their im-
pact on chip multi-processing. We compare our findings to a
study done 10 years ago which concluded that a second core
was sufficient to improve system responsiveness. Our results
on today’s machines show that, 10 years later, surprisingly
2-3 cores are more than adequate for most applications and
that the GPU often remains under-utilized. However, in
some application specific domains an 8 core SMT system
with a 240 core GPU can be effectively utilized. Overall
these studies suggest that many-core architectures are not a
natural fit for current desktop/laptop applications.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms
Measurement

Keywords
Benchmarking, Multi-core, Thread Level Parallelism, Desk-
top applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

1. INTRODUCTION
Ten years ago the idea of chip multi-processing was still

being explored primarily in research labs with projects such
as the Stanford Hydra [38] and the Compaq Piranha [29].
The first commercial chip multi-processor, the POWER4 [6]
was still a few years away. Meanwhile, Intel and AMD were
engaged in the megahertz war as chips from these two lead-
ing vendors were approaching 1GHz and looked to continue
well beyond. Consumer PCs were almost exclusively built
as uni-processor systems. Multi-processor systems were a
niche product relegated to high performance workstations
and, of course servers. At that time Flautner et al. [33] pre-
sented a study of “Thread Level Parallelism” (TLP) on in-
teractive desktop applications for modest Symmetric Multi-
Processor (SMP) workstations of 2-4 CPUs. These were still
not chip multi-processors as each CPU was on its own die.
The original work was performed to gauge whether multi-
processors provided any advantages to desktop applications.
They found that two processors improved responsiveness of
general interactive programs and larger systems were benefi-
cial only for domain specific applications like video encoding.

Approximately five years ago chip manufactures began to
reach the limits of frequency scaling as a result of power con-
straints. At that point, Intel and AMD turned to making
multi-core chips for the desktop market. These were dual-
core chip multi-processors [7, 8]. Since then, chip multi-
processors have become the flagship products for the two
leading desktop chip makers [23, 25, 17], currently using
upwards of eight cores per die. In addition low power chip-
multiprocessors for small sub-notebooks have been created.
Examples include Intel’s Atom [12] with 2-cores, Intel’s Con-
sumer Ultra Low Voltage (CULV) [28] chips with 2-cores,
and Qualcomm’s Snapdragon processor with 2 ARM v7 ISA
based cores [27]. Chip multi-processor systems are now
poised to enter the mobile phone market to run applications
on smart phones, e.g., TI’s OMAP4 [21]. Historically mobile
phone chips had one application core and many accelerators.

Current chip multi-processing systems are more complex
than the original SMP systems studied 10 years ago. They
may include simultaneous multi-threading (SMT) support,
cores sharing caches on chip, multiple chips in a system,
and advanced GPUs that function as offload engines for
highly parallel general purpose code, such as those from
AMD [9] and NVIDIA [11]. Future desktop/laptop chips
in advanced development now include heterogenous chip-
multiprocessors, for example AMD’s Llano [15] and Intel’s
Sandy Bridge [24] architectures that integrate programmable
GPU cores onto the die with several regular general purpose
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CPU cores. Manufacturers are designing these systems with
increasing numbers of cores expecting application develop-
ers to write code that makes profitable use of them. This
belief that wide-spread parallel software will materialize is
reminiscent of the movie “Field of Dreams”, where the pro-
tagonist is compelled to build a baseball diamond in the
middle of a corn-field by a mysterious voice that says: “If
you build it, they will come”.

Now that multi-processor systems are the norm rather
than the exception, we present this study to determine to
what extent the growth in number of cores has been accom-
panied by an increase in software parallelism. We repeat the
experiments of Flautner et al. [34, 33] investigating a broad
range of desktop applications under two desktop/laptop op-
erating systems: Microsoft Windows 7 and Apple’s OS X
Snow Leopard. In addition to the original study, we look
at the impact of SMT, GPUs and the effects of moving to
a low power architecture by performing the same tests on
an embedded processor based desktop. One of the outcomes
of our study is to provide a ten year perspective on desk-
top multi-processing. Our goal is to answer the following
questions:

• To what degree does the overall system leverage con-
currency, and how has that changed from 10 years ago?

• What impact does SMT have on parallel performance?

• How are GPU’s being used to improve system perfor-
mance, and do opportunities exist to further exploit
them?

• How does architectural sophistication and clock fre-
quency impact TLP?

In the original study, Flautner et al. showed that desktop
applications leveraged TLP very sparingly, and the majority
of gains came from improving user perceived responsiveness
with one additional core. We have also chosen TLP as a
metric because it indicates how efficiently we are using par-
allel resources when at least one core needs to do work, and
indicates how many cores would be needed to fully support
the parallel portions of an application. In our study we find
that the number of cores that can be profitably used now ap-
proaches 3. In addition we find that SMT can be beneficial,
the GPU is often under-utilized (although it has potential
for providing additional parallelism), and TLP is insensitive
to processor speed.

The rest of the paper is organized as follows: In Section 2
we present background from the original work and discuss
other related work. Section 3 describes our measurement en-
vironment and metrics. In Section 4 we present the bench-
marks used. Section 5 presents and analyzes the results for
the mainstream desktop. Section 6 presents our results for
our experiments on the low power desktop. In Section 7
we discuss the implications of the results and present our
concluding remarks in Section 8.

2. BACKGROUND AND RELATED WORK
We base our work on the original studies done by Flaut-

ner et al. [34, 33] in early 2000. The authors investigated
whether a modest SMP system of 2 to 4 desktop processors
offered advantages for interactive applications over a single
processor. Their work was performed on the commodity op-
erating systems of the time: Windows NT 4.0, Linux, and

BeOS. They found that developers had programmed their
applications with threads, but the behavior was still pri-
marily single threaded. Only in a few domain specific appli-
cations, such as Adobe Photoshop for image manipulation,
used more than two processors. The final conclusion was
that the majority of benefit came from the increased respon-
siveness provided by two processors. This responsiveness
came from running the graphical user interface (GUI) por-
tion of the program concurrently with the processing back
end.

Other studies have been done in a similar vein. Works
from Zhou et al. [48], Lee et al. [43] Endo et al. [32] and
Chen et al. [31] from the mid to late 1990’s all looked at pro-
filing applications in the desktop environment. They note
that the workload characteristics of this environment is very
different from server or scientific workloads, where accesses
to memory and disk are more random and latency is a more
important metric. More recent sources for desktop applica-
tion evaluation has come from non-academic sources such
as enthusiast web sites like XBit Labs [30], or TomsHard-
ware.com. These sites provide insight into how desktop ap-
plications (primarily games) perform on modern hardware,
and their results reflect the results of Flautner et al. in that
a two processor system is sufficient for most applications.

Work by Hauser et al. [39] looks at the programming para-
digms for threads used in interactive applications. They
found that threads are used primarily to structure programs
into a comprehensible organization rather than for perfor-
mance. This was confirmed by Flautner et al. when they ob-
served that the GUI thread was separate from the back end
of the application. Work by Giacaman et al. [37] proposes
the restructuring of desktop applications using threads to
gain performance from modern chip multi-processors. Work
in parallelizing web browsers for desktops and mobile devices
was investigated by Jones et al. [42].

Other works by Hung et al. [40], Frachtenberg et al. [36,
35], Nguyen et al. [45] look at multiprocessor applications
for the desktop from an Operating System (OS) perspective.
They all seek to characterize these applications in order to
improve OS schedulers to provide better quality of service.
For example if the OS detected a multimedia playback appli-
cation is in focus, it could give it priority over a background
task in order to reduce frame drops seen by the user.

3. METHODOLOGY
For this study we required a system profiling method that

would allow us to observe the entire system and measure
how effectively threads were being used on a modern chip
multi-processor. Statistics currently provided by the OS
are insufficient in characterizing the effectiveness of chip-
multiprocessing. For example, machine utilization is a poor
metric for interactive applications due to the large periods
of idle time. Statistics about the number of threads cre-
ated or the number of threads active in a system, like those
presented in Table 1, illustrate that programmers do pro-
gram with threads, but these statistics offer no insight into
whether the observed threads execute concurrently. In the
following sub-sections we present our metrics, tracing utili-
ties and system setup.

3.1 Metrics
The principle metrics we are interested in for this study

are the GPU Utilization and Thread Level Parallelism (TLP).
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Benchmark Created Avg Live
Handbrake 0.9 22511 24
Call of Duty 4 77 44
Photoshop CS4 82 75
Adobe Reader 9 239 24
Quicktime-HD 53 52
Firefox 3.5 522 38

Table 1: Summary of number of threads created and
average that were being used by a benchmark from
each category of applications tested.

Hardware Software
2009 Mac Pro OS X 10.6.2
2x Intel Xeon E5520 Snow Leopard
6GB RAM Dual boot
NVIDIA GTX285 -or- Windows 7
NVIDIA GT120 Enterprise
ASUS ASRock Windows 7
1x Intel Atom 330 Enterprise
4GB RAM
NVIDIA ION
Intel X-25M SSD

Table 2: Benchmark environment system setup

GPU utilization is merely the average of GPU use over time.
Thread Level Parallelism is a variation of machine utiliza-
tion that factors out idle time and accurately describes usage
of the parallel resources for the entire system.

Because there is a large amount of idle time in interactive
applications, as illustrated in Figure 1, we use the metric
Flautner et al. term as TLP. TLP is calculated by summing
up ci’s that are the fraction of time that exactly i = 0, ..., n
(where n is the number of thread contexts in the machine)
threads are executed concurrently. That number is then di-
vided by fraction of non-idle time, 1 − c0, to get the TLP.
TLP characterizes the average amount of concurrency exhib-
ited by the program during its execution when at least one
core is active. The formula for TLP is given in Equation 1.

TLP =

∑n
i=1 cii

1 − c0
(1)

We have chosen TLP as our metric because it is an in-
dication of efficiency in using the resources in a chip mul-
tiprocessor. A low TLP does not necessarily indicate that
performance or responsiveness of the application is poor, it
provides information about what portion of the machine is
idle. Alternatively, it indicates the minimum number of pro-
cessors needed to support an applications parallel workload.
We seek not to measure the idle time, but how much of the
system is utilized when at least one core is performing work.
As more cores are added to a chip multi-processor, it is im-
portant to gauge how we are using them and TLP remains
the best metric for determining this.

3.2 Trace Collection
We collect system wide traces of thread context switch

activity and GPU utilization which are then processed to get
the final TLP and GPU utilization statistics. We found that
our collection techniques had minimal impact on our test
system and therefore easily factored out of the final results.
The details are presented in the following sub-sections.

3.2.1 Processor Context Switches
To profile whether threads are being used concurrently we

use existing functionality in the two-targeted operating sys-

Figure 1: Figure qualitatively describing the utiliza-
tion differences between automated desktop work-
loads and “realistic” runs performed by a user
from [33]

tems to track when a context switch happens on any pro-
cessor. By tracing context switches we get very detailed
information on how the parallel resources are used.

On OS X, we use DTrace [10], which was first implemented
by Sun Microsystems in the Solaris OS. DTrace works by
dynamically modifying the OS binary (and even user space
binaries) with hook instructions at user specified points any-
where in the kernel. This gives us immense flexibility, but
presents the problem of determining where to trace. We
found two functions in the OS X kernel that provided us with
sufficient information to trace all context switches in the
system: timer_switch and thread_dispatch. The DTrace
data we gather contains a timestamp, CPUID, ProcessID,
ThreadID and executing image name.

On Windows we use Event Tracing for Windows(ETW) [41,
46]. It is similar to DTrace, but limited in comparison. In-
stead of tracing function calls by modifying the kernel binary
like DTrace, it records specific events exposed and reported
by the OS. This is less flexible than DTrace, but more intu-
itive as the events provided are well documented. We traced
the CSwitch, Thread and Process events provided by the
Windows kernel using ETW. These events gave us the same
information as DTrace.

3.2.2 GPU Utilization
We also trace GPU usage, as they are now very capable

general purpose chip multi-processors in their own right. To
accomplish this we employ two similar methods.

On OS X we use the functionality in the Apple I/O Kit [19]
interface to probe performance statistics present in the GPU
driver. Because we were limited to a small set of statistics,
and by the interface to the GPU driver, we could only mea-
sure GPU utilization by polling. For OS X we measured
GPU utilization every 10 milliseconds to minimize the over-
head from calling into the driver through the I/O Kit. We
then used DTrace to instrument our executable that polled
the GPU driver statistics to combine it with the CPU trace
so we could correlate CPU and GPU activity.

In Windows we use the NVPerfKit [13] to collect simi-
lar statistics that were available in OS X. In the NVPerfkit,
we gain access to the onboard GPU counters. We used the
GPU idle cycle and clock cycle counters to derive GPU uti-
lization. As in OS X, we could only poll the GPU (the
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polling frequency was again 10ms). Similarly to OS X, the
binary that polled the GPU also registered with the Win-
dows ETW subsystem. This provided an additional ETW
event that we collect to enable correlation of GPU and CPU
activity.

3.3 System Setup
The system setup we use is substantially different from

the original work by Flautner et al. In the ten years that
have passed, major advances in manufacturing technology
and years of incremental improvements to the x86 architec-
ture and GPUs have given us a system that is an order of
magnitude faster than the original tested system. In 2000,
a standard consumer system ran at around 1GHz and had a
3-way out-of-order processor (Intel Pentium III [4] or AMD
Athlon [3]) with 256kB-512kB of last level cache. Our sys-
tem runs at 2.26GHz, has four cores per chip, is 4-way out-of-
order, has 8MB of last level cache and uses two chips. The
amount of RAM commonly used then was about 256MB,
whereas this system has 6GB. In terms of GPU, the in-
crease is more astounding, NVIDIA’s first GPU, the GeForce
256 [5] was a fixed graphics pipeline ASIC with 32MB of
memory. NVIDIA’s GTX285 is a fully programmable 240-
core chip multi-processor with 1GB of onboard memory. We
also test NVIDIA’s GT120 [20] GPU which is a 32-core chip
multi-processor. In ten years we have progressed from small
2-4 processor SMP machines running around 1GHz to very
powerful many-core (100+ cores) heterogeneous machines.

In contrast to the very powerful desktop we tested, we
also tested an Intel Atom based desktop system. We did
so to gain insight into the effects on leveraged parallelism
when the processor architecture looks more like the future
chip-multiprocessors slated to be used in smart phones. The
Atom is a 2-way superscalar in-order design that is reminis-
cent of the original Intel Pentium [2] processor. The Atom
architecture also trends toward what academic researchers
believe will represent future many-core chip-multiprocessors:
a large number of simple processor tiles [18]. The Atom
tested runs at 1.6Ghz, has 2 cores with 2-way SMT. The
Intel Atom desktop also uses an NVIDIA ION low power
GPU which has 16 fully programmable cores. In this study
we were unable to report GPU numbers for the ION as it is
currently unsupported by the NVPerfKit.

For software, we test Windows 7 Enterprise and OS X
Snow Leopard on the Mac Pro. For the Atom machine,
only Windows 7 Enterprise was available to test. We de-
cided to use these desktop/laptop operating systems to be
able to test a wide range of free and commercial programs
that consumers would be likely to use. Our exact system
specifications are shown in Table 2.

The three video cards we test are from NVIDIA and sup-
port CUDA [11] enabled applications. CUDA allows gen-
eral purpose programs to offload kernels of execution to the
GPU. The kernels can be any type of general purpose code
that could benefit from massive parallelism offered by our
tested GPUs that have 16, 32, and 240 cores respectively(for
the ION, GT120 and GTX285). In our tests we study two
CUDA enabled applications and evaluate real-world results
obtained from using low-end GPUs and a high-end GPU.

Both systems we test also have 2-way SMT for each core
that exposes up to 16 hardware thread contexts to the OS
on the Mac Pro and 4 hardware contexts for the Atom. We
also had the ability in both OS’s to turn individual cores on

and off to experiment with different core counts on the same
setup. In Windows we could turn cores on and off at boot
time, but only had SMT available when all eight cores were
activated. In OS X we were able to try all combinations of
cores and SMT support.

4. BENCHMARKS
We performed a variety of experiments for interactive pro-

grams on both the Windows and OS X operating systems.
We tried to pick our benchmarks to have as much overlap as
possible between Windows and OS X to provide insights to
the effective use of TLP on modern day chip multi-processor
machines. All the tests were carried out by hand where the
user worked on the program with a strict set of timing, input,
and usage constraints to allow for repeatable tests. No user
interface (UI) automation tool we found was able to handle
the nature of the interactive sessions because timings can
experience subtle changes between runs—such as differing
latencies for loading web pages or different play outcomes in
game scenarios. Neither could any UI automation tool han-
dle events such as frequently changing web content. Accord-
ingly we elected to do the tests with a real user. Because of
the possible impacts of human interaction and the variabil-
ity in some of the benchmarks we ran each test a minimum
of 5 times to obtain a measure of variance. The test results
proved to be repeatable as the measured standard deviation
was low. For the sake of brevity we briefly describe each
benchmark, but each test is documented in detail at [26].
Unless otherwise noted, all benchmarks were tested on both
operating systems.

4.1 3D Games
3D games have long been a driver for faster hardware.

Game developers continually strive for more realistic graph-
ics, artificial intelligence, physics, and immersive game play.
Games were primarily single threaded until around 2005
when chip multi-processors were released on both PC and
the current generation gaming consoles.
Activision Call of Duty 4: Modern Warfare- Is a tac-
tical first person shooter (FPS) game that showcases high
definition graphics with lots of enemies and background ac-
tivity on screen. This game was originally developed for the
Xbox360 and Playstation 3 game consoles which both use
chip multi-processing.
2K Games Bioshock1- A slower paced action-adventure
FPS game. This game was originally developed for the
Xbox360 and Playstation 3.
EA Crysis1- Is a standard FPS from EA. It showcases ad-
vanced graphics, AI, and physics. It was originally devel-
oped for the PC.

4.2 Image Authoring
Image authoring has been known to use multiple proces-

sors effectively and a large amount of TLP was present in
the original study. We test a 2D image authoring program
and a 3D modeling program for these tests.
Adobe Photoshop CS4- Photoshop is an advanced image
authoring and composition tool. We tested Photoshop by
applying 5 hand picked filters in succession to a 20 mega-
pixel photograph.

1Only available on Windows platform
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Autodesk Maya 3D 2010- Maya 3D is a three-dimensional
modeling tool. The test consisted of opening up a complex
model, rotating, zooming and panning the workspace cam-
era. Then the user smoothed the model and rendered the
scene using the rasterizing renderer and the raytracing ren-
derer.

4.3 Office
For the Office productivity tests we selected applications

that are commonly used by users for basic office tasks.
Adobe Reader 9- We tested Adobe Reader 9 by opening
up an eight megabyte PDF file, browsing and searching for
phrases in it.
Microsoft Excel 2007/2008- Microsoft Excel was tested
with a large 10,000 row spreadsheet to make commands
like calculating the standard deviation take an appreciable
amount of time. The test consisted of performing common
operations on the data, such as calculations and plotting.
Microsoft PowerPoint 2007/2008- Microsoft PowerPoint
was tested on a large presentation with a large amount of
illustrations and animation. We performed common opera-
tions such as adding/deleting slides, previewing animations,
inserting pictures and changing the slide formatting.
Microsoft Word 2007/2008- The Microsoft Word test
involved adding/deleting text, changing format, and insert-
ing/deleting/moving embedded images.
Microsoft Streets and Trips 20101- Microsoft Streets
and Trips is a full featured mapping and route planning
application. The user was tasked with navigating the user
interface briefly and planning a cross country trip to fifteen
randomly selected cities in the United States.

4.4 Multimedia Playback
For multimedia playback we picked two media players that

are popular and common across both platforms: iTunes and
QuickTime player.
iTunes 9- The iTunes test consisted of searching and play-
ing an MP3 files from a local database and also searching
and playing videos from the same database.
QuickTime Player- We tested QuickTime by playing a
480p video and a 1080p high definition video encoded in the
H.264/AVC format.

4.5 Video Authoring
Video authoring is becoming an increasingly popular ap-

plication on the desktop as consumer grade camcorders can
now shoot high definition video and transferring video to a
user’s machine for editing is as simple as putting the flash
card in a reader. Video authoring is also important because
users now want to transcode their personal videos to multi-
ple different formats to put on YouTube.com or share on a
DVD.
CyberLink PowerDirector v81- PowerDirector v7 from
CyberLink is a full featured video editor and production
program. It also leverages CUDA for the video transcoding.
For testing PowerDirector we imported some video clips and
composed them into a short video complete with transitions
and titles and rendered it with and without CUDA support.
Handbrake 0.9- Handbrake is an open source licensed video
transcoder that can take many input formats and convert it
to numerous other formats. It does not have any editing
capability. We tested Handbrake by encoding a portion of a
source DVD to a high profile H.264 format.

Elemental Badaboom1- Badaboom is another video trans-
coder. It uses CUDA to do the video transcoding. To test
Badaboom we repeated the Handbrake test as it is a trans-
coder with no editing ability.

4.6 Web Browsing
In the past ten years web browsing has become a very com-

mon workload for desktop users so we do a variety of tests on
multiple web browsers. Web browsers are now very compli-
cated pieces of software, having to support many standards
such as Flash, Java etc to display rich content. Because of
this we perform four distinct types of tests to profile the se-
lected browsers. All the tests take approximately 5 minutes
to perform.

The first test (Tabs) has the user first watch a video on
YouTube.com, then browse to ESPN.com, go to CNN.com,
browse the BestBuy.com site, and finally play a flash game.
Each new page is visited by creating a new tab in the browser.
An additional test (Sequential) is to perform the Tabs test,
but without using tabs and simply leaving the current site
for the next in succession. The final two browser tests are
to see the difference between sites with lots of active content
like Java and Flash and one without much active content.
One test was to browse ESPN.com, and the other to browse
a Facebook.com profile. We test two browsers: Mozilla’s
Firefox 3.5, and Apple’s Safari 4.0.

5. RESULTS: INTEL XEON SYSTEM
In this section we present our analysis of the data we col-

lected from our experiments. We will cover overall results,
present breakdowns for certain applications, and present an
analysis of GPU usage characteristics.

5.1 Overall Results
A summary of all the 8 Core simulations with SMT sup-

port and the GTX285 GPU are presented in Table 3. The
TLP data is summarized in three fields. The first field
shows what percentage of total execution time (ci) that ex-
actly i=0, ...,n threads are executed concurrently, where n
is the number of thread contexts in the machine. Corre-
spondingly, c0 specifies the amount of idle time experienced
by the benchmark. The second field shows the measured
amount of thread-level parallelism of the entire system aver-
aged over at least 5 runs of the test. The third field reports
the standard deviation. The small values indicate the tests
are reproducible and insensitive to the variations induced by
a real user. The fourth field presents GPU utilization per-
centages of the system. At the end of the table an average
TLP and average GPU utilization is calculated for each of
the benchmark categories.

The first thing to note is that every benchmark shows
some portion of time with concurrent execution but in many
cases this concurrent execution is a small percentage. Mean-
ing programmers are writing applications with threads that
can use a multi-processor machine. However, in many cases
the applications do not have a high percentage of concurrent
execution. For instance, in Office and Web Browsing the av-
erage TLP is between 1 and 2 for our test system. Some web
tests show a surprising amount of concurrency with numbers
above 2. Even for more compute intensive applications like
Games, Playback and Image Authoring the average TLP,

1Only available on Windows platform
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8 C S SIdle GPU Average GPU8 Core SMT - System Wide TLPIdle GPU Average GPU8 Core SMT  System Wide TLP

Application OS C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 TLP � Utilization Average TLP UtilizationApplication OS C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 TLP � Utilization Average TLP Utilization
Bi h k Wi d 1% 57% 31% 7% 1% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 6 0 05 75%Bioshock Windows 1% 57% 31% 7% 1% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.6 0.05 75%
Call of Duty 4 Windows 0% 12% 35% 20% 14% 8% 7% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 2 1 0 21 86%Call of Duty 4 Windows 0% 12% 35% 20% 14% 8% 7% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 2.1 0.21 86%Game 1 6 69%
Call of Duty 4 OS X 6% 77% 16% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.02 29%

Game 1.6 69%
Call of Duty 4 OS X 6% 77% 16% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.02 29%
C 1% 2% 23% % 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 4 0 0 8 %Crysis Windows 1% 72% 23% 4% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.4 0.07 84%y
Maya3D 2010 Windows 55% 34% 6% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 2% 2 4 0 53 18%Maya3D 2010 Windows 55% 34% 6% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 2% 2.4 0.53 18%
Maya3D 2010 Mac 57% 32% 5% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 2.2 0.14 12% 12%I A h i 2 1Maya3D 2010 Mac 57% 32% 5% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 2.2 0.14 12%

2 0
12%Image Authoring 2.1

Photoshop CS4 Windows 43% 43% 7% 1% 0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 1% 2.0 0.56 17%
12%Image Authoring 2.1

p
Photoshop CS4 Mac 50% 38% 7% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 1% 1 9 0 19 1%Photoshop CS4 Mac 50% 38% 7% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 1% 1.9 0.19 1%
Adobe Reader 9 Windows 65% 25% 8% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.3 0.05 23%Adobe Reader 9 Windows 65% 25% 8% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.3 0.05 23%

1 2Adobe Reader 9 OS X 70% 24% 6% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.02 4%dobe eade 9 OS 0% % 6% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0 0 %
Excel 2007 Windows 72% 23% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 2 0 02 10%Excel 2007 Windows 72% 23% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.02 10%
Excel 2008 OS X 57% 38% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.1 0.01 2%Excel 2008 OS X 57% 38% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.1 0.01 2%

1 2 11%Offi PowerPoint 2007 Windows 69% 25% 5% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.03 16% 1.2 11%Office PowerPoint 2007 Windows 69% 25% 5% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.03 16%
PowerPoint 2008 OS X 66% 30% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 1 0 01 7%PowerPoint 2008 OS X 66% 30% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.1 0.01 7%
Streets & Trips 2010 Windows 68% 23% 7% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 4 0 01 14%Streets & Trips 2010 Windows 68% 23% 7% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.4 0.01 14%
Word 2007 Windows 74% 22% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.04 16%Word 2007 Windows 74% 22% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.04 16%
Word 2008 OS X 70% 27% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 1 0 01 3%Word 2008 OS X 70% 27% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.1 0.01 3%
iTunes 9 Windows 71% 23% 5% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 3 0 16 22%iTunes 9 Windows 71% 23% 5% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.3 0.16 22%
iTunes 9 OS X 79% 18% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.02 5%iTunes 9 OS X 79% 18% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.2 0.02 5%
Q icktime 7 6 Windo s 50% 38% 10% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 3 0 01 43%Quicktime 7.6 Windows 50% 38% 10% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.3 0.01 43%Playback 22%1 5
Quicktime X OS X 79% 14% 6% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 4 0 01 0%

Playback 22%1.5
Quicktime X OS X 79% 14% 6% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.4 0.01 0%
Quicktime 7.6 - HD Windows 66% 22% 5% 1% 1% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 2.1 0.06 40%Quicktime 7.6  HD Windows 66% 22% 5% 1% 1% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 2.1 0.06 40%
Q i kti X HD OS X 67% 13% 17% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 7 0 02 19%Quicktime X - HD OS X 67% 13% 17% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.7 0.02 19%
Badaboom Windows 54% 35% 9% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1 3 0 03 95%Badaboom Windows 54% 35% 9% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.3 0.03 95% 62%2.2CUDA
PowerDirector v8 Windows 42% 20% 12% 6% 5% 4% 3% 2% 3% 1% 0% 0% 0% 0% 0% 0% 0% 3.2 0.52 28%

62%2.2CUDA
PowerDirector v8 Windows 42% 20% 12% 6% 5% 4% 3% 2% 3% 1% 0% 0% 0% 0% 0% 0% 0% 3.2 0.52 28%
H db k 0 9 Wi d 1% 0% 0% 0% 1% 3% 9% 17% 22% 20% 14% 8% 4% 1% 0% 0% 0% 8 4 0 02 8%Handbrake 0.9 Windows 1% 0% 0% 0% 1% 3% 9% 17% 22% 20% 14% 8% 4% 1% 0% 0% 0% 8.4 0.02 8%
Handbrake 0 9 OS X 1% 0% 0% 0% 1% 3% 8% 16% 21% 20% 15% 9% 4% 1% 0% 0% 0% 9 0 0 44 0% 9%7 4Video Authoring Handbrake 0.9 OS X 1% 0% 0% 0% 1% 3% 8% 16% 21% 20% 15% 9% 4% 1% 0% 0% 0% 9.0 0.44 0% 9%7.4Video Authoring
PowerDirector v8 Windows 27% 20% 11% 6% 4% 3% 2% 6% 8% 5% 5% 3% 0% 0% 0% 0% 0% 4.8 0.15 18%PowerDirector v8 Windows 27% 20% 11% 6% 4% 3% 2% 6% 8% 5% 5% 3% 0% 0% 0% 0% 0% 4.8 0.15 18%
Fi f 3 5* Wi d 66% 24% 6% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1 5 0 05 24%Firefox 3.5* Windows 66% 24% 6% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1.5 0.05 24%
Firefox 3 5* OS X 49% 33% 10% 3% 1% 0% 0% 0% 0% 0% 1% 1% 1% 1% 0% 0% 0% 2 2 0 12 10%Firefox 3.5* OS X 49% 33% 10% 3% 1% 0% 0% 0% 0% 0% 1% 1% 1% 1% 0% 0% 0% 2.2 0.12 10% 16%2.0Web Browsing
Safari 4.0* Windows 50% 34% 11% 3% 1% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1.6 0.06 24%

16%2.0Web Browsing
Safari 4.0 Windows 50% 34% 11% 3% 1% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1.6 0.06 24%
S f i 4 0* OS X 50% 27% 10% 3% 1% 1% 0% 0% 1% 1% 1% 1% 1% 1% 1% 0% 0% 2 5 0 19 6%Safari 4.0* OS X 50% 27% 10% 3% 1% 1% 0% 0% 1% 1% 1% 1% 1% 1% 1% 0% 0% 2.5 0.19 6%

Table 3: Table of System TLP and GPU Utilization results. Concurrency values less than 1% are not
displayed.

though higher, is still approximately 2. Only in the domain
specific application of Video Authoring do we observe a high
amount of TLP, in this case an average of approximately 7.
Because of the average TLP being primarily just below or
above 2, this leads to the conclusion that a small multi-
processing machine of 2-3 cores is adequate for all but a few
domain specific applications like Video Authoring. The fol-
lowing subsections will provide more detailed studies of the
applications run on our test system.

In terms of GPU usage only a handful of applications,
Games and CUDA, fully exploit the GPU with average uti-
lizations near 70%. All the other benchmarks leave it pri-
marily under-utilized, offering a wealth of resources for fu-
ture parallel programmers. A more detailed discussion of
the GPU can be found in Section 5.6.

5.2 Ten Year Perspective
A comparison of similar applications from the 2000 study

and our study is presented in Figure 2. The biggest gains
made in the past ten years has been in Video Authoring.
This type of application has high computation requirements,
and is inherently parallel, making it a prime target for par-
allelization. In fact, the ParallelMPEG decoder from the
original study was only a research project at the time, but
this type of code has now found itself in mainstream video
players. On the other hand, some applications have shown
only modest improvements, such as the Web Browsing and
Office areas. For Office applications the major improvement
has come from the virus scan interface of the system, suc-
cessfully leveraging the additional cores, but in all cases it

can be concluded that current single-threaded performance
is adequate for Office applications. For Web Browsing it
appears that there are benefits to be gained by moving to
parallel code, but little progress has been made with TLP
approaching 2 on average for these applications. There has
been some improvement in 3D image rendering but it is off-
set in the Image Authoring applications by the decrease in
2D rendering (Photoshop). The decrease in both the Pho-
toshop and Quicktime applications can be attributed to the
gains of single core performance in terms of both frequency
and architectural features.

5.3 OS Threading Support
OS X and Windows are two substantially different oper-

ating systems. OS X is derived from a combination of the
BSD Unix [44] and Mach [47] operating systems. Because of
its Unix heritage it natively supports the POSIX [1] threads
(pthreads) interface for concurrency. Windows has a pro-
prietary kernel and uses its own custom threading interface.
These subtle differences mean that some applications, when
written for one OS, may perform sub-optimally when ported
to the other OS.

For all applications that run both in Windows and OS X a
TLP comparison is made in Figure 3. The interesting trend
to note is that OS X is better at Video Authoring, Playback
and Web Browsing. The Quicktime and Safari applications
are developed by Apple and tuned for OS X, which is a main
contributor to why their performance is better in OS X and
also use more features of the system. For instance, Quick-
time X leverages the onboard video decode ASICs found on
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Idle GPU Average GPU

Test OS C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 TLP σ Utilization Average TLP Utilization
Tabs Windows 55% 29% 11% 3% 1% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1.7 0.06 29%
ESPN Windows 67% 26% 5% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1.4 0.04 23%
Facebook Windows 77% 19% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.3 0.05 15%
Sequential Windows 66% 24% 6% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1.7 0.05 28%
Tabs OS X 29% 41% 15% 5% 1% 0% 0% 0% 0% 1% 1% 1% 1% 1% 1% 1% 0% 2.7 0.13 13%
ESPN OS X 60% 33% 6% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.6 0.13 7%
Facebook OS X 71% 25% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.3 0.06 7%
Sequential OS X 36% 33% 14% 5% 1% 0% 0% 0% 1% 1% 2% 2% 3% 2% 1% 0% 0% 3.3 0.14 13%
Tabs Windows 37% 38% 16% 5% 1% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1.7 0.05 31%
ESPN Windows 53% 34% 9% 2% 1% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 1.5 0.07 20%
Facebook Windows 64% 29% 6% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.3 0.09 16%
Sequential Windows 45% 37% 12% 3% 1% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 1.7 0.02 30%
Tabs OS X 26% 32% 18% 7% 3% 1% 1% 1% 1% 1% 2% 2% 2% 2% 1% 0% 0% 3.2 0.33 9%
ESPN OS X 64% 26% 6% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.9 0.18 3%
Facebook OS X 76% 20% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1.4 0.10 2%
Sequential OS X 34% 30% 15% 5% 2% 1% 1% 1% 1% 1% 1% 2% 2% 2% 2% 0% 0% 3.5 0.14 10%

8 Core SMT - System Wide TLP

Safari 4.0

Firefox 3.5

6%

24%

10%

24%

1.5

1.6

2.5

2.2

Table 4: Table of System TLP, and Graphics Utilization results for Web Browser workloads. Concurrency
values less than 1% are not displayed.
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Figure 2: System TLP comparison for 2000 vs. 2010.

��

��

��

	�


�

��

��

�

��

��

���

��
���
��
��
��
��

�

�
��
�	
�
��
��
��

��
��
��
��
��
��

�

�
��
��
� 
��
��
!�
��

"#
$�
��

��
%
�!
��
&'
��

(
�!
��

&)
�'
��
��
�

*
�&
$+
,
-
��

*
�&
$+
,
-
��
.�/

�
�

/
�'
��
!�
+�
��
0�
�

1&
!�
��
#�
	0
��

��
��
!&
�

0�
�

2�-�� 3-�4�� 56$�� 7&���� (���

)8
��

(&'��%��

5��9�

Figure 3: System TLP of 8 Cores w/ SMT on appli-
cations in both Windows and OS X.

current generation NVIDIA GPUs, as shown by 0% GPU
utilization for the 480P resolution test. The Handbrake
benchmark is an open source benchmark developed mostly
on Linux and is tuned well to work using pthreads, which
OS X supports natively and Windows emulates. On the
other hand, Games and Office applications are initially de-
veloped for Windows, yielding better performance than on
OS X. The port of these applications to OS X has not lever-
aged the parallelism realized in its Windows counterpart.
For example, Call of Duty 4 has a TLP of 2 on Windows
whereas the port to OS X exhibits significant single-thread
behavior. In addition, the Windows Office applications gain
in overall TLP by invoking the virus scan application in a
separate thread. Overall, the trend is that applications show
slight preference to one or the other OS, typically the one
they were initially developed for.

With the introduction of Windows 7 and Mac OS X Snow
Leopard, there has been considerable effort to push high
level parallel programming initiatives and include them as
integral parts of the OS. These initiatives include: Direct-
Compute [14] for Windows to leverage GPUs; OS X Snow
Leopard supports OpenCL [22] for GPUs and introduces
Grand Central Dispatch (GCD) [16] for the main multi-
core CPU. OpenCL and DirectCompute style parallel pro-
gramming are targeted towards data-parallel applications
like video transcoding, which as shown in this study is al-
ready taking advantage of such parallelism with CUDA and
threads. GCD targets general applications such as web brows-

ing, which while heavily threaded still exhibits primarily sin-
gle threaded behavior. It remains to be seen whether these
new programming initiatives will be used heavily in the fu-
ture.

5.4 Core Scaling
The TLP performance as the system scales from 2 to 8

cores is another important trend to consider. Figures 4 and 5
show how TLP and GPU utilization changes over time for a
subset of the benchmark run. First, the Handbrake applica-
tion in Figure 4 illustrates the scalability of a highly parallel
program which heavily utilizes the system. From the graph
it can be seen that the TLP is at a maximum for most of
the run on 2,4, and 8 core systems. When SMT is enabled
on an 8 core system the resultant TLP fluctuates around
8. The theoretical maximum would be a TLP of 16, but
in the case of Handbrake the algorithm used for the H.264
encoding has reached the peak of its scaling—it appears the
code as written has bottlenecks that prevent scaling past
8-9 concurrent threads on average. This was confirmed by
reading the developer notes present for Handbrake’s H.264
encoder. It is also important to note that the transcoding
rate of this application in frames-per-second (fps) scales up
linearly with the number of cores until more than 8 thread
contexts become available.

The second trend is illustrated by the Photoshop bench-
mark in Figure 5. In this case the benchmark is often filled
with idle time as the user navigates menus, and configures
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4 Cores: 26 fps

8 Cores: 53 fps
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Figure 4: System TLP and GPU Utilization over
time for the Handbrake benchmark in Windows for
differing numbers of cores. Note as cores increase
the benchmark takes almost full advantage showing
good scalability for video transocde workloads.
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Figure 5: System TLP and GPU Utilization over
time for the Photoshop benchmark in Windows for
differing numbers of cores. Note that as cores in-
crease, the peaks of the filtering operations become
taller and narrower, yielding a shorter runtime. As
SMT is enabled a large improvement is seen.

filters. The plot shows the user performing several filter
operations, these correspond to the peaks seen in the 8 core
graph. In the 2 core system the runtime is long and the TLP
is flat between 1 and 2. As the number of cores is increased
the peaks where the filters are performed grow both higher,
due to increased resources for the parallel part, and nar-
rower, due to the decrease in runtime from the parallelism.
Overall, this reduces the runtime to complete these filters
and the shortened total execution time can be observed in
the figure.

In summary, there are two trends that increased resources
provide: 1) for non-interactive applications where the sys-
tem can be fully utilized, application performance increases,
in this case fps was increased; and 2) for interactive appli-
cations, the time a user waits for small tasks to complete—
responsiveness of the application—can be improved and to-
tal execution time reduced.

5.5 Simultaneous Multi-Threading
The impact of SMT on parallelism is another important

feature to evaluate when examining concurrent architectures
for desktop applications. Figure 7 shows the resulting fps of
the transcoding of the Handbrake benchmark in Windows,
OS X, and OS X with SMT support. It also shows the per-
formance of a CUDA offload application, Badaboom, that
will be discussed in Section 5.6. The Handbrake benchmark
transcoding rate increases with the addition of cores. The
graph is not ideally linear due to the way the cores are in-
terconnected. In particular, some cores share cache on-die
while others need to communicate between chips in different
sockets. In our SMT 4 core system all 8 thread contexts are
on the same die and can communicate through the shared
on-die cache. While our non-SMT 8 core system needs to
communicate between the two sockets, increasing latency
to complete the operations. This is illustrated in Figure 7
where the SMT 4 core system outperforms the non-SMT 8
core system. This shows that SMT is beneficial for parallel
applications when cache can be shared and is fast to access.
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Figure 6: A time plot of a subsection of the PowerDi-
rector benchmark, transcoding begins around 50s.
The three plots show the non-CUDA enhanced ver-
sion, and CUDA enhanced for a low-end GPU and
a high-end GPU. Note the improvement in trans-
coding rate with CUDA enhancements on the high
end graphics card.

5.6 Graphics
One of the main questions this work wanted to answer was:

“Are GPU’s being used to improve system performance, and
what opportunities are there to further use them?” The
following subsections will break down the measurements of
our CUDA applications and typical GPU utilization. These
will show there remains potential to leverage the additional
computational resources of the GPU.

5.6.1 Graphics Offloading
CUDA support is a promising new programming tech-

nique where the goal is to offload highly parallel work to
the GPU. For this study the PowerDirector and Badaboom
benchmarks offer two video transcoding applications with
CUDA support that can be compared to non-CUDA trans-
coders. First the transcoding rate, fps, of the Badaboom
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Figure 7: Transcoding Rate of Handbrake and
CUDA Application Badaboom for 1 to 8 Cores. Il-
lustrating the performance afforded by GPU offload-
ing, and the impact of SMT on performance.
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Figure 8: Frequency of GPU Utilization Peaks above
10% of various durations for the Firefox and Photo-
shop Benchmarks.

benchmark is shown in Figure 7. It is plotted both for the
low-end graphics card, GT120, and the high-end graphics
card, GTX285. From the graph it can be seen that the sys-
tem (running the non-CUDA Handbrake application) easily
outperforms a low-end graphics card for core counts greater
than 2. However, a high end card is capable of transcoding
at 125% the speed of even an 8 core system with SMT.

Figure 6 shows a time breakdown of the TLP and graphics
utilization of the PowerDirector benchmark with and with-
out CUDA support. The first thing to note is the trans-
coding rate achieved by each application, and the trends are
similar to the Badaboom application. In terms of graphics
utilization it can be seen that the non-CUDA version uses
almost no graphics support during the transcoding phase
of the application. When the GT120 is used with CUDA
the graphics utilization reaches 100% and the transcoding
becomes GPU limited. Once the graphics card is improved
to the GTX285 the utilization of the GPU falls off and the
TLP of the system increases to 8 leaving the transcoding
once again core limited because the graphics card has enough
resources to match the transcoding rate of the cores.

In conclusion CUDA is promising when high-end GPUs
with many cores are available. For low-end GPUs, CUDA
may not offer much improvement, and may even perform
worse than a typical 2 or 4 core chip multi-processor.

5.6.2 Graphics Utilization
In Table 3 the GPU column presents the average utiliza-

tion of the GPU for each benchmark. It is noteworthy that
for most applications the GPU utilization is low. The ma-
jority of the time there are short spikes when the screen
needs to be updated, e.g. moving a window. The typical
spike in utilization for the Firefox benchmark in Windows is
approximately 20ms in length and 40% utilization. Figure 8
shows a breakdown for the length of GPU utilization spikes
higher than 10% for the Photoshop and Firefox applications.
It shows that for these applications there is plenty of paral-
lel resources being under-utilized in the GPU. If GPU off-
loading enhancements could be made for the benchmarks,
there is significant opportunity to further utilize the GPU.
There are, however, a couple of application classes, Play-
back and Game, where the GPU is already highly utilized
and there are less opportunities for off-loading. The other

area with high utilization is the CUDA applications, this is,
of course, due to the fact that they are already leveraging
off-load capabilities.

5.7 Web Browser Workload
A detailed breakdown of the individual web browser tests

is presented in Table 4. The interesting observation from
the results is that the sequential page access test actually
observes a higher TLP than the tab based page access un-
der OS X. The tab based approach is keeping alive pages,
including some that are streaming content, and does exhibit
higher TLP for that portion of the run. However, in the se-
quential version of the tests a garbage collection thread runs
each time a site is navigated away from. This garbage collec-
tion thread is used to reduce the memory footprint of each
web browser by cleaning up allocated memory and writing
back cacheable items to the file cache, e.g., pictures. The
information still resides in the system so it is faster to ac-
cess compared to retrieving the site again over the network.
The tab based version keeps the memory alive, and the tabs
can be thought of as a user controlled cache of the sites
likely to be revisited soon. Overall, web-browsing is a more
CPU intensive application than it previously was 10 years
ago. Then, it was primarily network dominated, but now
network bandwidth is plentiful and the amount of content
present takes appreciable cpu time to render. Behavior is
still primarily single threaded, as indicated by the low TLP.
Jones et al. [42] see the same behavior where the browser is
CPU dominated instead of waiting idle for the network and
are working towards developing methods to parallelize web
browsing.

6. RESULTS: INTEL ATOM SYSTEM
We tested the Atom to see if decreasing the overall per-

formance of the cores made an appreciable difference in the
observed TLP. The hypothesis was: The Intel Xeon system
has very high single thread performance therefore individual
tasks may be completing quickly enough that they were not
running concurrently. The Intel Atom’s single thread per-
formance compared to the Intel Xeon is very low and could
lead to increases in TLP. This performance differential is
seen in the Handbrake video transcoder, a single core of the
Xeon processor can maintain a 10fps average encode rate
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Idle

Application C0 C1 C2 C3 C4 TLP � Average TLP
Bioshock 2% 25% 35% 27% 11% 2.2 0.04
Call of Duty 4 1% 37% 27% 26% 10% 2.1 0.05
Crysis 0% 39% 44% 14% 2% 1.8 0.02
Maya3D 2010 20% 41% 13% 5% 21% 2.1 0.05
Photoshop CS4 8% 59% 17% 6% 10% 1.6 0.11
Adobe Reader 9 40% 36% 19% 5% 1% 1.5 0.03
Excel 2007 45% 40% 12% 2% 0% 1.3 0.01
PowerPoint 2007 38% 42% 16% 4% 1% 1.4 0.01
Streets & Trips 2010 39% 34% 20% 5% 2% 1.6 0.02
Word 2007 35% 49% 13% 3% 0% 1.3 0.01
iTunes 9 24% 45% 24% 6% 1% 1.5 0.09
Quicktime 7.6 4% 28% 39% 23% 6% 2.1 0.10
Quicktime 7.6 - HD 11% 19% 22% 22% 26% 2.6 0.01
Badaboom 68% 23% 9% 1% 0% 1.3 0.04
PowerDirector v8 8% 17% 20% 23% 32% 2.8 0.07
Handbrake 0.9 0% 0% 2% 10% 88% 3.8 0.04
PowerDirector v8 3% 8% 11% 19% 58% 3.3 0.04
Firefox 3.5* 25% 42% 19% 9% 5% 1.6 0.04
Safari 4.0* 23% 35% 21% 12% 8% 1.8 0.08

1.7

Video Authoring

Web Browsing

Game

Image Authoring

Office

Playback

CUDA

2.1

2.0

3.6

System TLP

2.0

1.9

1.4

Table 5: Table of System TLP for the Intel Atom
machine on Windows 7 only. Concurrency values
less than 1% are not displayed.

while the Atom processor averages 3fps. Therefore a single
Atom core is roughly 30% of the performance of a Xeon core.

The overall experiment results are presented in Table 5.
The tests were carried out in the exact same manner as the
tests reported in Table 3, but only numbers for Windows
7 are reported, OS X is not supported on the atom plat-
form. We are also not able to report GPU statistics for the
NVIDIA ION chip as the version of NVPerfKit we used did
not support it.

The first major difference between the Atom results and
the Xeon results is the marked decrease in idle time between
the two platforms, except for Games. This further reinforces
that the Atom’s single thread performance is inferior to the
Xeon. Further confirmation of this lack of performance was
reported by the human tester as almost all the tests pro-
duced poor user experiences with long wait times.

The Playback test sees an increase in TLP to around 2 on
average, but the idle time is very small on the Atom. The
Games tests have TLP results that are almost identical be-
tween the two platforms. The similar TLP numbers indicate
that the software is the main factor in the low amount of par-
allelism exposed. This can be seen in Figure 9 which shows
an execution trace for both the Xeon and Atom on the Call
of Duty 4 test. For both architectures, the amount of idle
time is large with one main thread appearing to spawn mul-
tiple small tasks, which explains why the TLP is relatively
low.

The Office tests show the same TLP as the Xeon tests
with averages between 1 and 1.5. The idle times are surpris-
ing as they are much lower than the Xeon tests. This em-
phasizes that single-thread performance is still important.
The tester noted that Office applications were particularly
sluggish. Interestingly, the results for performing Video Au-
thoring or Image Authoring on the Atom are the same as on
the Xeon; these applications are able to successfully leverage
all the contexts available.

The Web Browsing tests are again interesting. The idle
time is less than one quarter of the execution time on the
Atom whereas on the Xeon it was more than one half. This
implies web browsing is more CPU limited than commonly

Intel�Xeon�System

CP
U
s

Intel�Atom�System

t0 t;

CP
U
s

t0 t;

Figure 9: Trace of 1 second of execution for the
Call of Duty 4 benchmark for the Xeon and Atom
systems on Windows 7. Black is active processing,
and Gray is idle time. Each bar corresponds to a
logical CPU visible to the OS.

perceived, as the network link used was low latency and high
bandwidth. This is especially apparent the for Tabs and
Sequential tests where the user is going to many content
and feature rich sites. The idle time for these tests was close
to zero, but the TLP only approached 2. This also indicates
the software is the main cause of low TLP.

The Atom results show that low single-thread performance
can have a small impact on the TLP observed. The Xeon
did hide some TLP as it completed tasks very quickly com-
pared to the Atom. But overall, this effect was small. The
main observation was that the software is the main limiting
factor, even on a “small” chip-multiprocessor with 2 cores
and 4 hardware thread contexts.

7. DISCUSSION
Most modern designs have adopted multi-cores in an at-

tempt to further increase performance. However, there has
been surprisingly little increase in actual concurrency for
desktop/laptop applications since the original study by Flaut-
ner et al. ten years ago. This is true in spite of the fact that
programmers create a large number of threads in their pro-
grams. It appears that these threads exist primarily to struc-
ture code to be comprehensible and that desktop/laptop ap-
plications are mainly single threaded in behavior. This lack
of parallelism in desktop applications such as games and
web browsing may be inherent, but if it is not, then pro-
grammers must find significantly more parallelism to take
advantage of future many-core chip multiprocessors. If the
past is a predictor of the future, this seems unlikely.

In the scientific and server application domains, leverag-
ing multi-processing is well understood and is backed by a
large body of literature. As a product of this research and
development, current architectures are well suited for these
two areas. Multi-core SMP systems on a chip work very well
for servers, and current GPUs work well for scientific appli-
cations that need abundant floating point performance. Un-
fortunately, as shown by our results, applications from the
desktop/laptop space fit very poorly with these architectures
because of their low TLP and GPU utilization. The only ex-
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ception is applications like video transcoding which are very
similar to scientific applications.

The apparent lack of progress in creating usable concur-
rency in the desktop/laptop application domain points to a
lack of deeper understanding of the applications. To yield a
more applicable design, architects should consider more rel-
evant workloads, e.g. web browsing as benchmark choices.
Future designs may require different characteristics from
than those of server or scientific architectures to continue
allowing increases in performance and energy efficiency. The
tests with the Atom platform further indicate that software
is the main factor in the lack of parallelism. The continued
progression to larger chip-multiprocessors with less capable
cores may be applicable for scientific computers and some
servers, but seems less of a viable path to follow for desk-
top/laptop computers that value latency over throughput.

8. CONCLUSION
In the time since the original study, much has changed in

the computing landscape. Architectures have become radi-
cally different and multi-processing is now the norm on the
desktop from low power processors like the Intel Atom to
the high performance Intel Xeon, offering up to hundreds
of threads. On the other hand, as shown in the results, lit-
tle has changed from the software perspective. In domain
specific applications like video transcoding, many-core pro-
cessors are being fully utilized, whether it be the general
purpose cores with Handbrake, or the GPU with its hun-
dreds of cores for Badaboom. However, in general purpose
applications the average TLP 10 years later has shown only
a modest improvement to ∼2, and continuing to add cores to
either the GPU or CPU may not be the answer for this ap-
plication space. For the desktop/laptop environment multi-
core processor hardware is out-stripping software developers
ability to keep up even for low performance systems like the
Intel Atom. For 3D games, they seem to be able to use just
over 2 processors. For web browsing, it can utilize multiple
cores, though only up to about four as rendering a web page
requires lots of threads to gather the content to render. In
other areas like office productivity, multiple cores are hardly
used as the level of parallelism has changed little in the last
10 years.

Our final conclusion is that software developers are still
playing catch up, perhaps as a result of the relatively abrupt
transition from high performance single-thread machines to
chip multi-processors. In practice software developers use
large numbers of threads in most applications in the desk-
top/laptop application space. However, they have not made
appreciable steps in exploiting chip multi-processors, be-
cause the threads rarely run in parallel or the work dis-
tributed among threads is very unbalanced. This imbalance
in work leads to Amdahl’s effects resulting in the low TLP
seen. Similar problems plague GPU vendors, because they
are developing massive chip multi-processors with the ma-
jority of the silicon being left under-utilized. Developers
have started to test the waters by writing multi-threaded ap-
plications that leverage both CPUs and GPUs, but have yet
to take the plunge into the many-core chip multi-processing
era. If many-core is to be the solution for future desk-
top/laptop applications, then programmers and algorithm
designers must discover much greater levels of balanced par-
allelism. Our ten years perspective suggests this may be a
significant challenge.
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