
Low-Power Scientific Computing

Ganesh Dasika Ankit Sethia Trevor Mudge Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan

Ann Arbor, MI
{gdasika, asethia, tnm, mahlke}@umich.edu

Introduction: Scientists and mathematicians are increas-
ingly realizing the computational benefits of using modern,
multi-core architectures. In response to this, manufacturers
of traditional desktop graphics-processing units (GPUs) have
evolved their architectures to create desktop and server GPG-
PUs (General Purpose Graphics Processing Units). These
GPGPUs are quickly becoming the platform of choice for
many high-performance, highly parallel applications. GPG-
PUs are also commodity hardware products commonly avail-
able in many desktop and laptop computers, making them
rather inexpensive. The tools to program them are eas-
ily available as well; Nvidia’s Compute Unified Device Ar-
chitecture (CUDA) package, for example, provides a small
set of extensions to the C programming language, allowing
for straightforward implementation of parallel algorithms on
GPGPUs. Individual cores in Intel’s up-and-coming Larrabee
processor implement the ubiquitous x86 ISA, allowing users
to use a host of already-existing development tools to port
their applications to it. Server products like the Nvidia Tesla
S1070 with even more compute power are also available.

Several applications, from a wide variety of domains,
including medical imaging, electronic design automation,
physics simulations, and stock pricing models, observe re-
markable speed-ups on GPUs – at times, over 300X. Based
on these dramatic performance increases, GPGPUs seem like
an ideal computing substrate for high-performance, scientific
computing. However, there are two major problems with
GPGPUs – power consumption and an unbalanced ratio of
compute ability to memory bandwidth.

The disadvantages of GPGPUs: As shown in Figure 1,
the GTX280 consumes over 200W of power resulting in
low power-efficiency at peak performance. Other solutions
like the Tesla S1070 can consume over 1kW. Other general-
purpose solutions from IBM, Intel and ARM, while con-
suming significantly less power, have similar, or worse,
performance-per-Watt efficiency.

Though power is not necessarily a significant drawback for
video game graphics acceleration, requiring powerful cool-
ing systems is a significant impediment for more portable
platforms. Some of the applications that are sped-up with
GPUs use them to accelerate underlying algorithms that are
often deployed in systems where portability or power con-
sumptions is a critical issue. For instance, polynomial mul-
tiplication is used in very advanced cryptographic systems,

1

10

100

1,000

10,000

1 10 100 1,000

B
e
tte

r 

P
o
w

e
r E

ffic
ie

n
c
y

0.1 Mops/mW

1 Mops/mW

10 Mops/mW

100 Mops/mW

Pentium M

IBM Cell

P
e

rf
o

r
m

a
n

c
e

 (
G

F
L

O
P

s
) 

Power (Watts)

GTX 295

GTX 280

Core2
Core i7

S1070

Ultra-

Portable
Portable with 

frequent charges
Wall Power

Dedicated

Power Network

eco-GPGPU

Cortex-A8

Figure 1: Peak performance and power characteristics of several
high-performance commercial processors and GPGPUs are pro-
vided: ARM Cortex-A8, Intel Pentium M, Intel Core 2, Intel i7,
IBM Cell, Nvidia GTX 280, Nvidia GTX 295, and Nvidia Tesla
S1070. eco-GPGPU is the architecture template proposed in this
work.

real-time FFT solving is required for complex GPS receivers,
and low-density parity-check error correcting codes are used
in WiMAX and WiFi. Monte Carlo Recycling algorithms for
computational finance, are often deployed in dense urban ar-
eas like Manhattan where, while portability is not an issue,
power and cooling certainly is an important cost concern.

Further, There is a large disparity between GPGPUs’ com-
pute abilities and the amount of memory bandwidth they sup-
port. For instance, the latest generation of Nvidia GPGPUs,
the GTX285, has a peak performance of 1,063 GFLOPs but
can transfer only up to 159 GB/s of data – an average of 0.15
bytes of data per FP operation. For graphics applications,
such a ratio is sustainable, but several of the applicationsthat
are using GPUs in this manner have a much higher bandwidth
requirement. Portable medical imaging applications, for in-
stance, require on the order of 1 byte/instruction.

eco-GPGPU: To create an architecture best suited for sci-
entific computation, four different benchmarks were initially
analyzed:acfdtd2d, which implements the electrodynam-
ics modeling method finite-difference time-domain;sde, a
stochastic differential equation solver;volatility, which
measures the volatility of a common stock market index; and
mbir, a model-based iterative reconstruction technique for
CT scanners using ultra-low doses of x-ray radiation. These

1



Scalar Pipeline

Mem.

Banks

L1
Program

Memory

Controller
SIMD

Register Files

Scalar 
Memory 
Buffer

Multiple Independent Vector AGUs

DMA

To 
Inter-PE 

Bus

SIMD FPUs

Shuffle/Swizzle 
Network

Math 

Functions

ASICs/
Controllers

Figure 2: eco-GPGPU processor PE architecture template.

Figure 3: Instruction type breakdown showing the % of instructions
used for integer ALU (I-ALU) control-flow (CF), address genera-
tion (AGU), loads and stores (Mem), special math library functions
(SFU), and general floating-point computation (FPU). Note the rel-
atively large % of memory instructions in all of the benchmarks.

benchmarks were chosen as they are representative of pro-
grams that use GPGPUs to improve performance.

Figure 3 characterizes the type and frequency of instruc-
tions in each benchmark, showing the percentage of inte-
ger arithmetic, control-flow, address-generation, load/store,
special-function floating-point library functions (e.g. loga-
rithms, trigonometry) and FP arithmetic, respectively. Ascan
be seen from this graph, the computation in these benchmarks
is predominantly FP arithmetic, though there are some integer
operations as well. In most cases, the control-flow instruc-
tions are those to check the terminating condition of the loop.
Benchmarks with a high % of control-flow instructions have
if-else conditions within the loop kernel, which can be incor-
porated into arithmetic instructions using techniques such as
predication. One very important aspect of these applications
that is not shown in this figure is that they are comprised pri-
marily of fully-parallelizable, do-all loops. They are, there-
fore, quite easily modified to run on wide, SIMD-parallel ar-
chitectures.

Based on our analysis of these applications, we designed
the eco-GPGPU processor to effectively perform low-power,
scientific computing by utilizing the following architectural
features:

1. A wide SIMD machine to effectively exploit the paral-
lelism available in most scientific applications.

2. A floating-point multiply-accumulate execution unit to

efficiently support commonly occurring computation
subgraphs while minimizing accesses to the large vec-
tor register file.

3. An intricate shuffle and swizzle network for efficient
inter-lane operand-passing.

4. Special function units for infrequently-occurring, yet
necessary, math library functions such as sine, cosine
and divide.

Overall, eco-GPGPU achieves 1,024 GFLOPs while con-
suming 36W of power on a 65nm process.

However, provided the same off-chip memory bandwidth
and an off-chip memory latency of several hundred cycles as
that of the Nvidia GPGPUs, eco-GPGPU will, too, offer only
a fraction of its peak performance, leading to power wasted in
stall cycles. Therefore, while eco-GPGPU’s power consump-
tion is still less than that of GPGPUs, computation ability is
still potentially being wasted.

There are a few different alternatives to mitigate problems
with off-chip memory latency. Large caches offer a dense,
lower-power alternative to register contexts, either to store
data required in future iterations of the program kernel or in
order to cache infrequently accessed register thread contexts.
Even though modern GPUs have very large caches, these are
often in the form of graphics-specific texture caches, and not
easily used for other applications. Further, our analysis indi-
cates that many scientific computing benchmarks access data
in a streaming nature – loaded values are located in contigu-
ous memory locations. Computed results are also stored in
contiguous locations and are rarely ever re-used. This allows
for creating a memory system that can easily predict what
data is required and at what time and can operate indepen-
dently of address-generation and explicit load/store instruc-
tions issued by the processor core.

Insufficient off-chip bandwidth can be addressed in two
ways. 3D-stacked DRAM, especially in newer processes that
support several layers of DRAM, allow for placing gigabytes
of data directly above the processor, with a through-silicon
bandwidth in the terabytes/second regime. Latency is miti-
gated using this technique as well, as transfer times between
the 3D-stacked DRAM and the processor layer is usually only
tens of clock cycles. Data compression, based on the nature
of the application data, is another viable alternative. Ourex-
periments have shown that scientific benchmarks that process
sparse matrices, especially medical image reconstruction, can
have their data compressed to 10% of their original size, ef-
fectively increasing the off-chip bandwidth by 10X.

Conclusion: Based on our analysis and initial architecture,
eco-GPGPU is a viable alternative to modern-day GPGPUs
as a platform for scientific computing. Further, the same level
of performance as current GPGPUs can be delivered at sig-
nificantly reduced power. With an ever-increasing emphasis
on reducing power density in computers and also increasing
their portability, studying and building processors like eco-
GPGPU should be an important aspect of future computer
architecture research.

2


