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ABSTRACT

LogTM is a transactional memory (TM) implementation
that is very promising. It requires moderate augmentation
of existing hardware and uses software handlers to support
complex operations such as rolling back the transactional
memory state. LogTM has shown it offers good perfor-
mance, usually outperforming lock based code while improv-
ing programmability.

Currently, research in LogTM and TM in general make
simplifying assumptions about how a real system will be-
have by abstracting away details. One such simplification is
to abstract away the OS. In this paper we duplicate LogTM
in the M5 simulator which models operating system inter-
actions with hardware rigorously, which disallows us to ab-
stract the OS away from the TM system. We find the OS
needs intimate knowledge of the TM extensions to properly
share the system with transactional and non-transactional
threads. Because we do not abstract away the OS in M5, the
OS is able to cause interference in the TM system by abort-
ing transactions. We quantify this OS interference, and find
it to be benchmark dependent. The OS causes very few
aborts the majority of the time but can cause up to 42%
of all aborts. In this paper we also investigate the pub-
lished performance results from LogTM and find them to
be correct when the transactions are assumed to be small.
We extend the results using new benchmarks that do not
assume small transactions, and find our new benchmarks
expose pathological behavior in LogTM with up to 98% of
the transactions aborting.

1. INTRODUCTION

Recent trends in microprocessor design have moved from
implementing longer and wider pipelines to adding extra
cores in order to achieve additional performance. Multi-core
processors are now becoming very common in all segments
of the industry from embedded devices to the desktop[l],
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meaning programmers must now concentrate on writing par-
allel code to extract performance.

Writing parallel code can be difficult with the tools cur-
rently available to programmers, i.e., locks and semaphores|8].
Locks and semaphores are difficult to use because the pro-
grammer must have very intimate knowledge of the program
being written to properly protect shared data structures
with the correct mutexes. Programmers also have to fol-
low the proper locking order to prevent deadlock. To ease
the job of the programmer, Herihly and Moss[13] proposed
transactional memory, a technique that commits groups of
memory accesses as one atomic unit. Transactional mem-
ory systems take the responsibility of checking transactions
against each other to find true dependencies, relieving the
programmer from having to explicitly find and protect de-
pendencies with the correct combination of locks. Because of
the benefits offered by TM, significant amounts of research
have been published recently with particular emphasis on
hardware transactional memories (HTMs). HTMs are inter-
esting because they offer the most flexible, general and low-
est overhead form of TM and so it has been pursued heavily
in many directions. Examples include Stanford’s TCC[10],
Wisconsin’s LogTM[17] and Illinois’ Bulk[7]. These com-
peting ideas have shown that TM is a viable solution to
providing critical section atomicity and isolation as well as
providing better performance.

Currently, little work has been pursued in deconstructing
exactly the OS requirements for a user level HTM implemen-
tation. Many systems abstract away the OS and concentrate
on developing more complex semantics for their TM sys-
tem, for example, complex nesting. Current work abstracts
away the OS in the following ways: Bulk[7] runs on a sim-
ulator that only supports user code, and does model the
OS. TCCJ10] relies on trace based simulations and also does
not model the OS. LogTM][17] uses a simulator environment
that runs OS code as well as user code, but this implemen-
tation makes LogTM visible only to the underlying memory
model to avoid having to modify the OS. There has also been
little work in the way of benchmarks that would be repre-
sentative of future applications that will use TM. Currently
the benchmarks used for study are small and are primar-
ily database or scientific workloads optimized for older SMP
systems. These benchmarks have been shown to work very
well with TM because of very small transactions, leading to
low conflict rates, but this may not be the case with future
applications.
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Figure 1: CPU Register Additions and Cache Line
Additions

In this paper we deconstruct and duplicate the LogTM
implementation of transactional memory in the M5 simu-
lator. We deconstruct the OS requirements needed for a
user level HTM implementation and quantify the interfer-
ence the OS creates with transactional threads, leading to
aborts. In our investigations we find the OS interference
is highly benchmark dependent, with the OS causing little
or no aborts in the majority of our benchmarks and up to
42% of aborts in one of our benchmarks. We add one new
benchmark based on the JM H.264 decoder[21] using larger
transactions which exposes pathological behavior in the cur-
rent LogTM implementation. We find that over 98% of the
transactions abort in this benchmark due to a very large
read and write set size. The SPLASH2 benchmarks used in
the original LogTM paper, however, exhibit 5% or less of
transactions aborting.

The rest of this paper is organized as follows. Section 2
covers our implementation of LogTM in the M5 simulator
and the necessary OS modifications we made to the Linux
kernel. Section 3 gives an overview of the benchmarks we
ran and analyzes the results we obtained. Section 4 briefly
covers related work in the field and lastly, Section 5 covers
future work we plan on pursuing and concludes the paper.

2. IMPLEMENTATION

Our implementation of LogTM consists of two parts. The
first part is the hardware support implemented in M5 that
provides conflict detection and logging. The second part is
the OS support required for LogTM. This section describes
in detail our version of LogTM including the similarities and
differences from the original version[17].

2.1 Hardware Implementation

To model the hardware we use the M5 Full System Sim-
ulator[4] developed at the University of Michigan. M5 is
unlike the GEMS[14] simulation environment used by the
creators of LogTM in several ways. First, the GEMS simu-
lation environment uses the Virtutech Simics ISA simulator
to run code, and then uses a back end timing accurate mem-
ory simulator called Ruby. In this setup LogTM is visible
only to Ruby, but not to Simics. On the other hand, M5
is a monolithic simulation environment, modeling the entire
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Figure 2: Original LogTM log structure and the dual
log structure used in this implementation.

system including the OS and peripherals. This is a key dif-
ference because M5 can simulate all the interactions between
the OS and hardware allowing us to quantify the effect the
OS has on a TM system transparently, whereas the GEMS
system cannot. Secondly the original LogTM was created
for a SPARC ISA system, and our version is implemented
on a Alpha ISA. This has implications regarding unaligned
memory accesses that will be discussed later in section 2.2.
Another key difference between GEMS and M5 is that M5
actively moves the data around its simulated memory hierar-
chy, allowing us to verify the coherence protocol and TM ex-
tensions are properly manipulating the memory state. Ruby
in this case deals just with modeling the timing of memory
accesses and Simics keeps its own internal memory state[14].

2.2 Processor additions

To duplicate LogTM we use many of the same hardware
constructs as in LogTM[17]. Figure 1 shows the extra hard-
ware needed in the CPU to implement our TM system. Our
additions to the core, as was done in LogTM, include a regis-
ter checkpoint that saves off all the user mode register state
when a begin_transaction instruction is encountered. We
also have the BeginPC register which stores the PC of the
begin_transaction instruction, and the AbortHandler regis-
ter that contains the address vector to the software handler
for doing an abort.

To maintain the logs we use four registers, because, unlike
LogTM, our version has two logs instead of one. Each pair of
registers points to the base and end of their respective logs.
The reason for two logs is a result of memory alignment is-
sues in the simulated Alpha hardware. The Alpha has no
hardware support for unaligned memory accesses. There-
fore the 64-byte cache line in our simulated hardware and
the 8-byte wide virtual address must be stored in different
logs, because the Alpha hardware can not store a 72-byte
block in contiguous memory without causing a trap to its
unaligned access handler. Alternatively, we could have built
the support in for writing 72 bytes contiguously, but de-
cided against this for the simpler two log solution. Figure
2 shows how our log is organized in comparison to the orig-
inal LogTM implementation. So when a write occurs in a
transaction, the write is split into three memory operations,



the original store, a store of the old cache line to the data
log, and a store of the virtual address of the saved line to
the address log. We model these operations as taking place
concurrently in the L1 cache, making our cache triple ported
internally. This is identical to the original LogTM. An al-
ternative is to break up the transactional write and make it
take multiple cycles to complete. We chose not to pursue
this alternative so as to duplicate LogTM as fully as possi-
ble. As in LogTM the whole cache line is stored in the data
log due to the way the cache coherence mechanism works.
The logs are stored in a private section of each thread’s vir-
tual memory, so in theory the logs can be as large as needed
and are not dependent on cache size. Because the logs are
in virtual memory, a transactional write can potentially lead
to three separate page faults meaning our LogTM can incur
extra OS overhead when in a transaction.

The XactionState register is similar to its analog in LogTM,
but it has more than just two states, inside or outside of a
transaction, as in LogTM. Our version has four states as fol-
lows: State 0: No transaction, State 1: In transaction, State
2: Aborting, State 4: Suspended transaction. The first two
states are self explanatory, but the other two are necessary
for subtle reasons pertaining to the operating system. Abort
mode is used to detect and guard against recursively enter-
ing the abort routine and executing it multiple times. This
is illustrated with the pseudo-code in Ezample 1. When a
kernel handler begins, its first action is to call the abort rou-
tine in the case of exceptions, faults or interrupts. When a
conflict is detected between transactions we issue a system
call, calling the abort routine directly. When entering the
abort routine, it checks to see if the CPU is already in abort
mode executing the handler, and returns immediately if this
is true. This check is needed because we can enter the rou-
tine multiple times due to page faults from loads or stores
that are accessing user memory from the kernel. Example 1
shows we execute two loads and one store to user space to
roll back the log. If either of these page fault, the kernel will
trap to its page fault handler, which will attempt to run the
abort routine again. Therefore the abort mode is necessary,
either implemented in hardware or software, to prevent us
from running the abort routine multiple times. When in the
abort state reads and writes behave the same as when no
transaction is active. While the abort mode could be set as
a flag in part of the user address space, we kept it in the
state register because all the other states need to be kept
in the state register to modify behavior of load, stores, and
the hwrei instruction as is described in the paragraph be-
low. We viewed it as being simpler to encode all the states
into the same state register, and not have it split up into
different locations. Mode 4 is a special mode to take care of
escape actions[18] in the system. Escape actions are special
cases where a transaction is not aborted due to an OS event.
In the Alpha architecture, PAL code takes care of many of
the faults experienced by the CPU. TLB fills are an example
where the CPU traps to PAL code but does not enter the
OS. We do not want to abort for the cases where the CPU
briefly enters PAL code and returns, so we allow the CPU to
enter mode 4 upon entering PAL code, and then transition
back to mode 1 upon returning to user code. With the Alpha
hardware, we perform the transition from mode 4 back to
mode 1 when executing a modified hwrei instruction. The
modified instruction checks the XactionState register and
the program counter value being jumped to, when in mode

Example 1 Pseudo-code for the abort routine and example
kernel handler function.
kernel_handler() {

abort_routine();

handler();
return;
}
abort_routine() {
SET_NO_INTERRUPTS (true) ;
READ_XACTIONSTATE(state) ;
if (state == Abort)
SET_NO_INTERRUPTS (false);
return;

else if (state == Suspended)
MODIFY_RETURN_ADDRESS () ;

SET_XACTIONSTATE (Abort) ;

log_ptr = READ_LOGBASEQ);
end_log = READ_LOGPTRQ);
addr_ptr = READ_ADDRLOGBASEQ) ;
end_addr = READ_ADDRLOGPTR() ;

while (addr_ptr != end_addr)

address = LOAD(addr_ptr);

for (i = 0; i < sizeOfCacheBlk; i++)
data = LOAD(log_ptr);
STORE(data, address);
address+8;
log_ptr+8;

addr_ptr+8;

RESET_LOG_POINTERS() ;
SET_XACTIONSTATE (NoXaction) ;
SET_NO_INTERRUPTS (false);
return;

}

4 and jumping back to a user code address we reset Xac-
tionState to 1. When in mode 4, reads and writes behave as
if there is no transaction active.

2.3 Memory System additions

As seen in Figure 1, the cache also has some added hard-
ware. Each cache line in the L1 cache has three additional
state bits. These bits are R, W, and A. The R and W bits
are from the original LogTM implementation while we have
added the A bit to ours, being used in conjunction with the
XactionState state register set equal to 2. The R bit sig-
nifies a transaction has read this line. The W bit signifies
a transaction has speculatively written into the cache line.
The A bit signifies a cache line with the W bit set is rolling
back. On commit, the cache clears all the R, W, and A bits,
setting them to false. The R bits are set to false and the
A bits are set to true for any W bits set to true when the
CPU detects the XactionState register transitioning from
any state to the abort state. The A bit is used to allow the
cache to release a cache line early during the abort routine.



Example 2 Pseudo-code for example PAL code routine.
PAL_routine() {

if (CanHandleInPal);
handleInPALQ);
return;

else
switch_protection(Kernel);
kernelHandler();
switch_protection(User);
return;

Since the cache only sees loads and stores as either trans-
actional or non-transactional as stated in section 2.2, the A
bit is used. When the cache writes to the last word in the
cache line, if the A bit is set, the cache will clear the W bit
and A bit, releasing it early from the aborting read/write
set. As can be seen in Ezample 1, the use of the A bit is
implicit, when the inner loop is finished, the cache will au-
tomatically release the line. We decided to do this over the
alternative, which is to use an instruction to force the cache
to clear all its transaction state bits when executed. Due to
time constraints we did not investigate if this early release
mechanism offers any improvement.

For conflict detection, we use the coherence protocol just
as in LogTM. We use the MOESI cache coherence protocol
in our implementation as in the original LogTM. There are
three types of memory operations the caches can snoop: reg-
ular memory accesses, regular memory accesses to another
transaction’s read/write set, and transactional memory ac-
cesses. The cases and responses are summarized in Table 1.
For the case where a regular memory access is snooped by a
remote cache to a non-transactional line, the normal MOESI
mechanism is used. For the case when a regular memory
access snoops a transactional line we nack the request and
make it retry later in all cases where the remote cache would
supply the data. The reason for nacking the access is to not
allow the non-transactional part of the program to see any
speculatively accessed and modified data. This method of
nacking could lead to starvation in a pathological case where
a transaction prevents another thread not in a transaction
from making progress because the non-transactional thread
is attempting to read from a transaction’s read/write set,
but we ignore this pathology for now. For the case when
one transactional memory access hits to a line in another
transaction, we have to determine if there is a conflict that
would cause one of the transactions to roll back. If a trans-
action requests a read that hits another transaction’s read
set, then there is no conflict and both transactions will pro-
ceed. If a transaction requests a read that hits in another
transaction’s write set, there is a conflict and we need to
cause a rollback in one of the transactions. Similarly a con-
flict is present if a write hits in another transaction’s read
set. The last case is when a write tries to write to a line in
another’s write set. To deal with conflict management, our
current method is to force the transaction that generated
the request to rollback if any other cache raises the conflict
line. This contention management scheme can possibly lead
to live lock. We believe smarter conflict arbiters can prevent
live lock, but leave exploring this for future research.

Example 3 Pseudo-code for system call stub in user TM
program.
abort_sys_call_stub() {
SETXACTIONSTATE (NoXaction) ;
syscall_trap(abort_routine);
RESTORE_CHECKPOINT() ;
}

Currently, unlike LogTM, we do not support stalling con-
flicting transactions or allow transaction state spilling from
the L1. The reason for not supporting spilling transactional
state from the L1 is because we currently use a snoopy bus
protocol and interconnect instead of a mesh network inter-
connect with a directory protocol. In LogTM, the directory
protocol allowed for “Sticky” M bits[17] to indicate data had
spilled from the L1 because the L2 contains the tag directory
to map all the tags present in the cache hierarchy. With a
snoopy protocol, we do not have “sticky bits”. While we
could have a implemented a spilled bit to indicate data had
spilled, we would have no way to resolve what has spilled.
This would potentially lead to one transaction with spilled
data being allowed to lock out all the other transactions until
it completed. The “sticky” M bits on the other hand allow
for transactions to determine which lines were spilled from
the L1. For future work we will be moving to signatures
such as the ones in LogTM-SE[24] which greatly simplifies
dealing with transactions that may spill from than the L1
cache. Not supporting spilling for this paper was not an
issue though, as we sized our caches appropriately which is
explained in section 3.1.

2.4 Linux OS Modifications

We found when duplicating LogTM in M5 we needed to
make two major changes to the Linux operating system for
the correct operation of our TM extensions. The largest
modification we made was putting the transaction abort rou-
tine code into the kernel itself. We do this primarily because
of the nature of the trap hardware in the Alpha. All events
that can lead to entering the kernel first appear as escape
actions. We are not able to determine if the hardware will
actually enter the kernel until the code jumps to it because
it first attempts to handle the trap in PAL mode as shown in
the pseudo code in Example 2. Once in the kernel, we run
the rollback routine to detect if we were in a transaction.
We do this as shown in Ezample 1, by checking if the sus-
pended state is set. If the suspended state is set, we modify
the return address the kernel will return to. We set the re-
turn address to point at the RESTORE_CHECKPOINT()
routine as shown in Ezample 3 at the end of our new system
call stub function, from there the transaction will then be
restarted. We need to rollback whenever we enter the ker-
nel because we can not safely handle any kernel events in a
transaction. Examples include preemptive context switches
due to interrupts, and page faults, which is similar to the
original LogTM. System calls are also kernel events, but we
make sure to strictly avoid using system calls in a transac-
tion. A benefit and second reason for putting the rollback
code in the kernel is to let it run without interrupts en-
abled. This allows us to guarantee the rollback completes,
because otherwise the system could take an interrupt and
leave lines in the cache indicating they are still part of a



Local State Bits Response

Remote Requester | Request RWA Conflict? | to Requester
Non-Transaction Read TFF Yes Nack
Non-Transaction Read XTX Yes Nack
Non-Transaction Write TFX Yes Nack
Non-Transaction Write XTX Yes Nack
Transaction Read TFF No None
Transaction Read XTX Yes Abort
Transaction Write TXX Yes Abort
Transaction Write XTX Yes Abort
Transaction or Read/

Non-Transaction Write FFF No None

Table 1: Snoop responses to transactional and non-transactional memory operations. (T = True, F = False,

X = Don’t care)

transaction. This can cause other transactions to conflict
and abort, leading to a convoying effect of all the conflict-
ing transactional threads. These threads would then spin
waiting for the aborting thread to be swapped back in and
complete its abort before the others can continue. This con-
voying effect is something TM is supposed to avoid, which is
a strong argument for placing the abort routine in the ker-
nel as well. It is possible to have the abort routine in user
space for the common case of aborts, but the kernel would
still need to have semantics to complete an in progress abort
if it interrupted a thread doing an abort. With the abort
handler now in the kernel, we also add a new system call
for user code to access the abort routine when the thread is
forced to abort from outside the kernel.

The second modification needed to the kernel is just as
important but not not as subtle as needing the abort han-
dler in the kernel. The kernel also needs to be modified
to save the transactional state to the kernel thread context
data structure. If this is not done, a context switch from
the application to another process will corrupt the transac-
tional state or worse, potentially leading to multiple threads
writing to the same rollback logs.

3. RESULTS

To test our implementation of LogTM we ran a mixture of
benchmarks. We used two hand written micro-benchmarks,
four SPLASH2[23] benchmarks converted to use transac-
tions and one new benchmark which is a hand coded parallel
version of the JM H.264/AVC decoder. All these bench-
marks were run on the M5 simulator. Although we can not
compare directly to the results of LogTM since our version
of LogTM has a some differences, we do compare general
trends and conclusions made by the original authors.

3.1 Simulator Setup

The simulation environment is set up as specified in Table
2. Each CPU is modeled as a single instruction, single cycle
simple core running at 2GHz. The overall system is modeled
as a CMP with a single shared L2, with separate Lls for
each CPU. We use relatively large and highly associative L1
caches to prevent transactions in our particular benchmarks
from spilling. Even though LogTM can handle spilling and
we can not, this difference does not matter because the larger
L1s can hold even our largest transactions. We did not see
any evidence of the results being skewed by doing this. The

L1 caches are connected by a shared bus running at 2GHz,
the same as the CPU cores. The main memory is connected
to the L2 and has a latency of 100 cycles.

3.2 Benchmarks Overview

The benchmarks we use are drawn from the pool of bench-
marks commonly used in current TM research. We use
two micro-benchmarks that provide some insight into the
overheads and pathologies inherent in TM in comparison
to locks. We also use four SPLASH2 benchmarks modified
to use transactions. Our last benchmark is a hand modified
version of the H.264 decoder from the JM group[21]. A brief
description of each benchmark is included below.

Shared Counter: This micro-benchmark creates ten threads
that all compete to increment four global counters one mil-
lion times each. This benchmark is designed to test how
well transactions work when contending for data locations
that are accessed constantly by many other threads.
Sorted Linked List Insert: This micro-benchmark cre-
ates ten threads that all attempt to insert into a sorted
linked list about 500 hundred times each. Each thread ran-
domly creates values for its nodes and then calls the insert
function for the linked list object which protects the entire
list with a transaction.

Number of cores 4
Frequency 2GHz
L1 DCache Private 64kB,

8-way associative,
64-byte line size
L1 ICache Private 64kB,

8-way associative,
64-byte line size

L1 Latency 1 cycle
Interconnect Shared bus running at 2GHz
L2 Cache Shared 2MB,

16-way associative,
64-byte line size

L2 Latency 10 cycles
Main Memory 1024MB
Main Memory Latency 100 cycles

Table 2: M5 Simulator Setup Parameters
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Figure 3: Normalized speedup of TM versions com-
pared to lock versions of the benchmarks

Raytrace: This benchmark spawns multiple threads that
then render a scene using the raytrace algorithm. For our
tests we use the teapot model as the input into this bench-
mark.

Barnes-Hut: This benchmark simulates the gravitational
attraction forces experienced between many bodies in a three
dimensional space and computes each body’s new velocity
and position during each step of the simulation. The main
shared structure in this benchmark is a multidimensional
tree that divides up the search space the bodies are present
in. We run this benchmark using a reduced input set of
512 bodies and four simulation steps just as in the original
LogTM publication.

MP3D: This benchmark simulates a virtual wind tunnel.
It models particles of air flowing over a CAD model. The
main shared data structure is the 3D space of the wind tun-
nel divided up into cells, as the particles move the cells are
updated with which particles they contain. This benchmark
was originally part of the SPLASH benchmark suite. This
benchmark is run using 4096 particles and 50 time steps.
Radiosity: This benchmark is like raytrace, it renders a
scene by computing the way light interacts with the geome-
try in the scene. The main shared data structure is a binary
space partitioning tree that holds the geometry, and the ge-
ometry itself by having the amount of light being emitted
by it updated on each iteration of the algorithm. We use
the built in room model when running this benchmark.
H.264 Decoder: This benchmark is still being actively de-
veloped, and only the deblocking filter has been parallelized.
The deblocking filter does make up a large portion of the
serial runtime[2] and it displays inherent parallelism so we
concentrated on augmenting this part of the decoder first.
We are including it because it is an example of a potential
real life application that would benefit from using multiple
processing cores. This benchmark decodes four frames of a
H.264 compressed video stream.

3.3 Analysis

The results are presented in Figure 3 and Table 3. Figure
3 presents the normalized speedup of the benchmarks com-
pared to their lock based versions. Table 3 breaks down the
characteristics of the transactions for each benchmark. This

includes the percentage of transactions that aborted, the
percentage of aborts caused by conflicts with other transac-
tions, percentage of aborts caused by the OS and the average
read and write set size measured in bytes.

The results we obtained for the SPLASH2 benchmarks
exhibits the same trends and general speedup as in the orig-
inal LogTM paper. Raytrace has a very low conflict rate
and very small transactions as can be seen in Table 3, and it
obtains a sizable speed up over its original lock based code
as seen in Figure 3. Radiosity has a relatively high conflict
rate, but shows a slight speedup, which is different from the
original LogTM paper. The original LogTM had a very low
percentage of conflicts. This may be due to the fact we do
not support stalling, and could be leading to higher abort
rates, we may also be seeing this behavior due to the fact we
simulate with 4 cores instead of 32. MP3D shows a signifi-
cant speedup over its locking counterpart, but it has essen-
tially no conflicts at all. Suggesting that the performance
gains may be due to the fact that only one instruction is
needed to begin a transaction instead of many to obtain a
lock. Barnes exhibits the same trends with a small abort
rate, just like raytrace and MP3D. It compares favorably to
its lock based code, performing within 10%. The slow down
experienced can in part be due to the conflicts experienced
between transactions and the OS forcing more aborts. It
is interesting to note that Barnes has 42% of aborts being
caused by the OS. During our investigation we discovered
that Barnes causes a high degree of page faults, which in
turn cause the high percentage of aborts. We believe these
page faults are being caused from the way Barnes is coded.
Barnes also rebuilds its shared tree data structure on every
iteration of the algorithm. The tree occupies a large por-
tion of memory, and the building of the tree is done using
transactions. Since the bodies move around inside the 3D
space represented by the tree, on every iteration of the al-
gorithm each processor can be touching a different part of
memory when inserting its bodies into the tree. We believe
this is the main cause of the page faults and why we are
seeing a high percentage of the aborts being caused by the
OS. This is in contrast to the other benchmarks seeing 1%
or less of aborts being caused by the OS. Since we rollback
every time we enter the kernel as described in section 2.4,
we repeat more computation than we would otherwise with
just locks.

For the micro-benchmarks, we get interesting results. The
counter micro-benchmark, even though it should have a high
conflict rate, does not. The OS in this case also has no effect
on the aborts experienced. This is due to the fact that the
transactions are small and complete quickly. For the list in-
sert benchmark we see that it has a rather large 25% conflict
rate. Even with this large conflict rate, it still performs bet-
ter than its locking version primarily due to the extremely
low overhead transactions incur compared to pthread mu-
texes. Pthread mutexes are rather expensive on the Alpha
hardware, requiring multiple load locked and store condi-
tional instructions to grab the lock. Still it is interesting
to note that the transactions abort often, and this means
that the list insert benchmark is experiencing pathological
behavior in LogTM. This is due to the current contention
management technique, and the very large read set size.
When the linked list grows large, any thread attempting to
insert a node and write to part of the list has a high proba-
bility of conflicting with a another transaction. A solution to



Benchmark Percent of | Percent of | Percent Avg  Write | Avg Read Set
Transactions | Aborts that | of Aborts | Set Size in | Size in Bytes
Aborted Conflicted caused by OS | Bytes

Barnes-Hut 2.0 57.8 42.2 378.1 455.5

Raytrace 0.7 99.7 0.3 127.0 395.4

Radiosity 36.1 99.9 0.1 103.9 213.1

MP3D 0.4 98.1 1.9 180.3 258.6

Counter 6.7 100.0 0.0 256.0 256.0

List Insert 25.5 98.8 1.2 191.6 11575.3

JM 98.8 99.9 0.1 1795.3 5758.1

H264/AVC

Table 3: Breakdown of transaction characteristics of the tested benchmarks into percentage of transaction
aborts, percentage of aborts caused by other transactions, percentage of aborts caused by OS interference,
average write set size in bytes and average read set size in bytes.

this is either to allow the programmer to release part of his
read/write set early, knowing it will not be touched again,
which is similar to open nesting[18], or devise a smarter con-
tention manager. Which solution will ultimately be better
needs to be investigated in future work.

The last data point in Table 3 is for the parallel version
of the H.264 decoder. We threaded the deblocking filter by
breaking up the main loop that filters each block of pixels
into separate threads. We put transactions around the sec-
tions of the loop body that worked on the block of pixels
assigned to each iteration. For future work we will pursue
a more aggressive parallelization of the H.264 decoder by
threading other parts of the decoder. We will also consider
alternatives such as functional parallelization instead of do-
ing a speculative loop parallelization as we do here. It has
attributes that are very different from the SPLASH2 bench-
marks presented and the database benchmarks used in past
literature. It has a very large average read and write set
size, as can be seen, about an order of magnitude larger
than any of our other workloads, except for list which has
an even larger read set. This means it is not an entirely ac-
curate assumption that transactions are going to be small in
future applications. The benchmark also incurs a very large
abort rate, primarily because the transactions are long run-
ning as evidenced by the large read and write set and the
current method to decide which transaction to abort. This
again implies the need for a much smarter contention man-
ager to break out of this pathological case being seen here.
Because of this pathological performance, no runtime data is
presented because the simulations never finish due to them
being live locked. We were able to gather runtime results for
the lock based version. By threading the deblocking filter,
we are able to increase the performance over the original sin-
gle threaded code by 20%. We believe TM can also attain
this performance by using a smarter contention manager.
Even though this benchmark is just a single data point, we
believe this is a truer representation of future applications
that will use TM to extract performance from multi-core
processors. We believe this to be true because future paral-
lel programs will most likely protect data conservatively, us-
ing larger transactions. Also, currently sequential programs
being ported to work with multi-cores will not be as likely to
have the optimized parallel data structures and algorithms
as found in current scientific and database benchmarks.

4. RELATED WORK

There has been substantial work in the field of trans-
actional memory lately that runs the full spectrum, from
purely software implementations to hardware implementa-
tions and versions combining both. The first style of TM
was proposed by Herihly and Moss[13], this is a hardware
technique using the cache coherence policy to facilitate con-
flict detection while using a side cache to buffer speculative
writes. Transactional Consistency and Coherence (TCC)[10]
was proposed by Stanford and it is very similar to Moss’ ver-
sion of TM. TCC puts speculative writes in a side buffer but,
it differs by getting rid of cache coherence and instead uses
a two stage commit arbitration protocol to decide which
thread gets to commit its transaction. Contrary to TCC,
Wisconsin has developed LogTM and offers a different view
on TM. It uses cache coherence for conflict detection like
Moss, but unlike Moss, it eagerly writes values into main
memory and saves old values to the side. LogTM assumes
aborts happen rarely. This version of TM uses a software
handler to process aborts, and needs less hardware than
TCC. Similarly to LogTM, there are other types of TM that
use the coherence scheme to detect conflicts. UTM][3] is sim-
ilar to LogTM in that it uses eager conflict detection and
eager version management. VTM][19] uses lazy version man-
agement instead, but still uses the cache coherence protocol
to do eager conflict detection.

Software TM (STM) research has also been very active
with many implementations being proposed. This type of
TM is very attractive because it requires no hardware sup-
port, but it is usually very slow due to the requirement for a
very heavy handed runtime to detect conflicts[12][20]. STMs
also suffer from not being able to compose arbitrary critical
sections very well, because of the need to tie the transac-
tions to a specific data structure or object. One STM]11]
does offer a solution to these problems and performs rather
well, but it needs to instrument every read and write in the
program leading to high overhead.

Other proposals exist that attempt to combine the best
of both STM and HTM into hybrid systems [16][5]. These
systems use HTM techniques until the transactions get too
large or call system code and then gracefully fall back to a
software technique for cases hardware can not handle. The
biggest challenge for hybrid systems is maintaining isolation
between software only and hardware only transactions effi-
ciently in these systems.



S. CONCLUSION AND FUTURE WORK

In this paper we have duplicated the LogTM HTM in
the M5 simulator and investigated the similarities and dif-
ferences between our implementation and the original. We
also have detailed the OS support needed and have discov-
ered it involves extending parts of the kernel. From the
results we have seen that TM still has many areas to im-
prove in with respect to some benchmarks, especially the
H.264 benchmark. This benchmark in particular is contrary
to the assumptions made by previous TM papers about the
nature and size of transactions, with the read and write set
in the thousands of bytes. It is also contrary to the as-
sumption the percentage of conflicts is small, instead 98%
of the transactions conflict. This points to the need to de-
velop more parallel benchmarks to determine what should
be the next step to make TM truly viable for unlocking
the power of future multi-core chips. Another surprising
benchmark is the sorted linked list insert benchmark that ex-
hibits a very high conflict rate of 25%. It is surprising to see
this simple benchmark exhibiting such pathological behav-
ior. Other than these two benchmarks, the others track the
trends shown in LogTM with the transactions being small
and having a very low conflict rate of approximately 5% or
less, with the exception of Radiosity. We have also quanti-
fied the interference an OS can cause in a TM system. We
find that the OS very rarely causes transactions to abort
due to interrupts or faults. About 1% of aborts were caused
by the OS. However, with Barnes from SPLASH2, 42% of
aborts were caused by the OS showing that the OS can have
a significant impact on aborts. These results have exposed
some of the problems inherent in HTMs and pointed to some
of the future directions HTMs needs to pursue, such as more
representative benchmarks and smarter conflict handlers.

In future work we plan on investigating further into op-
erating system support for TM and also on better conflict
resolution schemes to prevent TM from entering some of
the pathological cases we have seen exhibited in our bench-
marks. We also want to work further on developing bench-
marks that will be representative of future applications that
will take advantage of multiple cores that are not scientific
applications like the SPLASH2 suite, or database applica-
tions. Such future applications will likely be concentrated in
multimedia applications in particular, similar to our H.264
benchmark.
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