
Abstract

Recently, a new Dynamic Voltage Scaling (DVS)

scheme has been proposed that increases energy efficiency

significantly by allowing the processor to operate at or

slightly below the minimum supply voltage even if occa-

sional errors result. To determine which technique can

reliably and efficiently detect such failures, it is necessary

to understand the manner in which digital designs fail at

critical voltages.  In this paper, we report hardware mea-

surements of the failure modes of a multiplier circuit under

voltage scaling.  We show that even at small error rates, it

is necessary to deal with multiple errors where bits are

flipped from both 0 to 1 and 1 to 0. Intra- and inter-die

variations make the exact nature of these flips unpredict-

able. This suggests that conventional single and unidirec-

tional error detectors will not work. We conclude that the

most suitable solution is a simple delay-error tolerant flip-

flop that detects and corrects errors by double sampling

signals.

1. Introduction

Recent work on low-power computer processor pipe-

lines has identified that operation at voltages below the

point of timing failure can yield significant energy sav-

ings. Razor [1] is one such example. By speculating on

circuit propagation delays, aggressive voltage scaling

below conventional safety margins may cause circuit-tim-

ing errors, which are recovered using the proposed pipe-

line design of [1] that guarantees forward progress.

The trends are towards increasing intra- and inter-die

process variation, increasing noise susceptibility and

lower reliability. Many of these effects are counteracted

with more padding in the operating voltage, which in turn

increases the energy consumption of designs.

Since operating margins are used to make the circuits’

operation safe under a wide variety of conditions, reducing

the margins will cause failures under some circumstances.

Fault detection and correction techniques can be used to

find the point where some or all operating margins are

eliminated at run-time. However, not all error-correction

codes can detect the resulting class of errors. To under-

stand the error correction requirements better, we report on

a set of experiments to measure the type and frequency of

errors when scaling the voltage of a set of FPGA multipli-

ers. Although real microprocessors often employ pipelined

structures to increase throughput, our experiments, which

model a single stage in a pipeline whose delay is data

dependent, are sufficient to enable a comparison between

candidate fault-tolerance techniques.

As we will show the experiments illustrate the effects

of intra- and inter-die variation and motivate the needs for

alternative approaches to error correction than is cost-

effectively attainable using conventional error correcting

codes. In particular, our work shows that faults induced by

low-voltage operation involve multiple bidirectional out-

put faults even at low error rates. Conventional single

error and unidirectional fault detection techniques are

therefore ineffective under such conditions. More complex

codes that can deal with multiple bidirectional errors are

not practical.

This paper is organized as follows. Section 2 dis-

cusses related background material. In Section 3, the

experimental set-up is explained along with details of the

test procedures used. Results are presented in Section 4

and analyzed in Section 5. Section 6 concludes this paper

and discusses implications of the error results.

2. Background and related work

In this section we will survey some common propos-

als for error detection and comment on the kind of cover-

age that they offer. 

In [2], three fault-secure multiplier designs are pre-

sented and compared. These are representative of conven-

tional fault-tolerant design and can detect single faults, but

they do not provide the multiple bidirectional fault detec-

tion we require. 
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A ripple-carry adder with fine-grained adaptive volt-

age scaling is presented in [3]. Although effective for

energy saving, the design cannot tolerate errors, and other

adder architectures (e.g., Kogge-Stone) provide higher-

performing alternatives.

In [4] Lo presents floating-point arithmetic algorithms

for residue and Berger encoded operands. Residue codes

can detect all single-bit errors, and Berger codes can detect

all unidirectional errors [5]. The former provide a check

using modulo arithmetic. Berger code-words include a

count of the number of 0’s in a word, adding ceil(log2 n)

extra bits. Circuits were presented for these techniques,

whose area overheads were estimated at around 8% and

46% respectively for a single-precision floating-point mul-

tiplier—the large overhead for Berger codes is due to their

being unsuitable for modeling arithmetic operations. For

voltage scaling applications, the checker circuits must be

guaranteed to fail at lower voltages than the main logic. In

addition, they do not provide the multiple bidirectional

fault detection we require. 

Mitra and McCluskey [6] analyze concurrent error

detection techniques with regard to common-mode failure

vulnerability. Their results indicate that diverse duplex

systems provide the best protection against multiple fail-

ures. Parity prediction, Berger and Bose-Lin codes have a

greater area overhead and less effective protection than

this full-redundancy technique. Bose-Lin codes are similar

to Berger codes except that they detect t-bit unidirectional

errors in the code-word. However, redundancy provides

no guarantee against multiple failures at critical voltages.

The NanoBox [7] implements logic functions as truth

tables containing error correcting codes. Faulty logic is

corrected at the function output. Using triple-mode redun-

dancy allows high fault tolerance for a 1.9x area overhead.

Again, redundancy provides no guarantee against multiple

failures at critical voltages.

On-chip critical path emulation [8] is a DVS tech-

nique whereby logic and interconnect delays for the criti-

cal path are estimated. While accurately modelling the

circuit critical path, this scheme cannot take advantage of

data-dependent variation of the actual critical path at the

point of execution. Critical path emulation is a viable tech-

nique for removing some of the headroom in voltage-set-

ting but it cannot eliminate all of it. Replicating a critical

path also brings up the question of how closely a replica

can track the original when on-chip silicon variation is

high.

Figure 1 shows a simple delay-error tolerant Razor

flip-flop that detects and corrects errors by double sam-

pling signals. The standard positive edge triggered flip-

flop is augmented with a shadow latch which samples at

the negative clock edge. Timing errors are detected by

comparing the main flip-flop data with that of the shadow

latch. Clearly it detects multiple bidirectional errors pro-

vided the timing for the shadow latch is guaranteed to be

correct. Because it is clocked much later than the main

flip-flop this requirement is usually straightforward to sat-

isfy. The Razor flip-flop has a relatively low overhead—a

few percent of total area in a pipelined prototype [1]. 

The delay-error tolerant flip-flop is not universally

better than conventional error detection. It is not a solution

to single event upsets caused by energetic particle strikes,

and it is not a solution to errors resulting from component

failures. Traditional checkers are more suitable. The

delay-error tolerant flip-flop is most suited to cases that

result in delay errors. Examples arise from voltage scaling

(the path to the main flip-flop fails), temperature and envi-

ronmental effects, and transient noise. They are character-

ized by multiple bidirectional errors.

3. Experimental methodology

Analysis in [1] recorded error rates for a multiplier

block in a Xilinx XC2V250 FPGA [9][10]. Two half-

speed multipliers were used to check the result from a fast

multiplier when pseudo-random input vectors were sup-

plied by a Linear Feedback Shift Register (LFSR). The

error rates were recorded and energy savings were mea-

sured relative to estimated voltage margins. At a 1.3%

error rate, an energy saving of 33% was obtained. The

point to note is that the 1.3% error rate is considerably past

the point of first error, thus detection will require a tech-

nique that identifies multiple bidirectional errors. The

experiment is explored further in this paper. The emphasis

here is on the failure modes as the voltage is reduced. 
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Figure 1: Delay-error tolerant or Razor flip-flop
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Figure 2 illustrates the FPGA configuration used for

the experiment. Two ‘fast’ 17x17 bit multipliers running at

the full clock speed (90 MHz) are provided with the same

pair of operands. The operands themselves alternate

between a pseudo-random ‘preload’ value from an LFSR

and the next pair of ‘sequential’ test vectors. The sequen-

tial values represent all possible combinations of oper-

ands, as illustrated in Table 1. The total number of test

vectors is given by:

Their results are fed into a sequence of four latches.

As the supply voltage is reduced errors will appear and be

recorded in the latches. In parallel with these units, two

‘slow’ multipliers are alternately selected to calculate the

product of each pair of input operands. The slow multipli-

ers should continue to give correct results after the fast

ones fail. Preload values are not checked so the slow mul-

tipliers have four times as long as the fast ones for the

result to propagate to the output pins. The purpose of the

preload is to mitigate the effects of previous state depen-

dency on error rate statistics. Whenever there is a differ-

ence between a fast and slow multiplier output after the

four-cycle delay, an error signal is asserted and FPGA

state is logged on a PC. Operands are also latched so that

they may be recorded during logging. 

A finite state machine is employed to perform asyn-

chronous transfer of data to a PC-based data logging unit

when an error occurs. The data recorded when an error

occurs includes the input operands producing the incorrect

result, the number of errors observed so far, number of

elapsed clock cycles and the outputs from all fast multipli-

ers. In addition, the ‘correct’ result from the selected slow

multiplier is recorded and compared with the product cal-

culated on the PC. This ensures that the slow product is

not the source of error.

Care was taken during synthesis to ensure that circuits

involved in error checking were not on the critical path for

any part of the experiment. This was achieved through the

use of timing constraints as well as retiming within the

design. Table 2 below shows the synthesized static timings

used for the tests (Mn indicates which ‘fast’ multiplier is

involved). The comparator, slow multiplier and error-

PRELOAD SEQUENTIAL PRELOAD SEQUENTIAL

FastOpA FastOpB SlowOpA0 SlowOpB0

Asaved Bsaved

STATE MACHINE

ASYNCHRONOUS I/O

PC DIO INTERFACE

REGISTER

= =

SlowOpA1 SlowOpB1

SLOW (CORRECT) RESULT

TO COMPARATORSerror

Figure 2: FPGA test configurations
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Table 1: Sequence of multiplier operands

Sequence Operand A Operand B

1 0 0

2 1 0

3 1 1

4 2 0

5 2 1

6 2 2

7 3 0

8 3 1

9 3 2

10 3 3

...

nMAX 2
17

1– 2
17

1–
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counter paths were sufficiently short to cover a useful volt-

age range. By using two operating modes it was possible

to measure error rates beyond the point at which the data-

logging state machine failed. In full-logging mode, the

state machine was used to record all errors at low voltage.

In statistics-only mode which fails at 1.02V, the values of

the error counters for each multiplier were logged at the

end of each test at nominal voltage. In the results section,

error rates recorded in each mode are shown to be consis-

tent.

FPGA routing fabric delay was minimized relative to

multiplier delay to ensure that most timing errors were

occurring within the multiplier blocks. Approximately

70% of total delay was due to the multiplier blocks. The

experiment was reduced to only 2 fast multipliers to

achieve this goal since routing delay became excessive

with more multipliers.

Results were gathered for a set of different FPGA

core voltages below the nominal 1.5V operating point. A

test at a given voltage recorded errors for all input combi-

nations. Each test was re-run in statistics mode and com-

pared for consistency. The tests were then repeated on

three different FPGA chips.

4. Circuit Timing Error Analysis

4.1 Intra-Die Variation

Figure 3, Figure 4 and Figure 5 show the relationship

between voltage and error rate for each FPGA at a range of

voltages. MUL0 and MUL1 were placed in physically

adjacent multipliers on the FPGA by the Xilinx synthesis

tool.

Data points represent error rates for the full set of test

inputs at each voltage level. Mul0 and Mul1 are the two

fast multipliers. Lines Mul0F and Mul1F (F = full) repre-

sent results from a separate experiment where all the error

data is logged. Note that full error logging is stopped at
around 1.1V since the data transfers were time consuming

and we only require error analysis at low rates.

Path Max. delay

Fast multiplier M0 operands to output 7.690 ns

Fast multiplier M1 operands to output 7.385 ns

Error comparator M0 to state machine 5.192 ns

Error comparator M1 to state machine 5.973 ns

Error comparator M0 to error counter 3.948 ns

Error comparator M1 to error counter 3.670 ns

Table 2: Static timing analysis
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Figure 3: Error rates for FPGA 1
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Figure 4 Error rates for FPGA 2
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Figure 5 Error rates for FPGA 3
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4.2 Inter-Die Variation

Figure 6 and Figure 7 show the absolute differences in

error rate between FPGAs 2, 3 and FPGA1, which has the

lowest error rate. Figure 6 shows error rate differences for

MUL0 and Figure 7 for MUL1.

4.3 Error Characteristics

Figure 8 categorizes bit flips by direction (0 to 1 indi-

cated by 01 or 1 to 0 indicated by 10) for all FPGAs and

multipliers. F denotes the FPGA and M denotes the multi-

plier. Each point on Figure 8 represents the total number of

incorrect bits observed on the multiplier output for the full

set of input operands tested at that voltage.  Figure 9 and

Figure 10 show the number of input vectors which caused

N incorrect bits in the multiplier output.   Due to the page

limit, only FPGA1 MUL0 is shown.

5. Analysis

The intra-die variation shown in Figure 3, Figure 4

and Figure 5 show both the final error counts generated in

statistics mode, and error counts obtained from full log-

ging mode. There is an exponential increase in error rate

as voltage is reduced. This characteristic was also seen in

[1]. MUL0 fails earliest at around 1.24V in all cases and

also has the highest error rates. MUL1 fails at around

1.15V. This difference is due to a 0.305 ns variation in

maximum routing delay (see Table 2). 
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Figure 7: Error rate relative to FPGA1 for MUL1
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Figure 8: Incorrect bit counts
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Differences in error rates between FPGAs provide a

more accurate picture of process variation since the same

statically characterized routing delays are present on each

chip. There is an order of 10 magnitude difference

between FPGA2 and FPGA3 for MUL0. There is an expo-

nentially increasing difference between these multipliers

and MUL0 as voltage is reduced. For MUL1 however,

there is no smooth exponential relationship. This shows

that the voltage corresponding to a given error rate is not

deterministic, even if the input data set is consistent.

Therefore, for low error coverage techniques, process vari-

ation margins must still be added to the supply voltage.

High error coverage techniques such as [1] allow the com-

plete removal of these margins.

Regarding the 2-way bit flip occurrences, it should be

noted that at 1.1V the error-rate is less than 0.004% (from

Figure 10). Ten input vector combinations cause errors

where a total of 14 output bits require correction. Some of

these bits flip from 0 to 1 and others from 1 to 0. This is

significant because it rules out the use of many single error

detection codes that also correct unidirectional errors.

Hamming and Berger codes are examples. To correct mul-

tiple bidirectional errors using traditional error correction

techniques requires logic that is significantly more com-

plex and expensive. The error rate that corresponds to the

minimum power dissipation occurs below 1.1V, where the

error rates are between 0.01% and 2.67% [1].

6. Conclusions

Our experiments show that when pushing the limits of

voltage scaling, multiple-bit errors often occur. The delay-

error tolerant flip-flop technique is one method for suc-

cessfully dealing with this situation. This was successfully

employed it in the Razor pipeline described in [1]. More-

over, it can take advantage of data-dependent changes in

the critical path, work in the presence of high on-chip sili-

con variation, and may reduce the need for overly accurate

voltage regulator by being able to tolerate a sustained non-

zero error rate. Our studies in this paper show that it is a

cost effective solution when compared to other error

detection techniques.
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