
Abstract

Error-oriented functional design verification attempts to uncover
functional bugs by applying test sequences to the design that are
targeted at instances of synthetic design error models. Conditional
error (CE) models have recently been shown to be powerful error
models for such an approach. Practical use of higher order CE
models has been impeded by the computational cost associated with
test generation and error simulation as the number of error
instances is superlinear in the size of the circuit.

This paper presents a new algorithm CESIM for efficient error sim-
ulation with CE’s. Experiments using the ISCAS’89 benchmarks
are presented that show the improved performance of CESIM com-
pared with a state-of-the-art fault simulator.

Keywords: High Level Design Validation, High Level Design
Error Modeling, High Level ATPG/Fault, Validation of Micropro-
cessors, Simulation-based Verification, Error models and verifica-
tion test.

1.   Introduction
Design verification is considered one of the most serious bottle-

necks for multimillion-gate microprocessor designs. There are two
broad approaches to hardware design verification: formal and simu-
lation-based. Formal methods try to verify the correctness of a sys-
tem by using mathematical proofs. Simulation-based design
verification tries to uncover design errors by detecting a circuit’s
faulty behavior when deterministic or pseudo-random tests (simula-
tion vectors) are applied [Ahar91, Chan95, Tayl98]. The effective-
ness of verification test suites is quantified by coverage metrics that
include code coverage measures from software testing [Bez90],
finite-state machine coverage [Ho96], architectural event coverage
[Tayl98], and observability-based metrics [Fall98]. A shortcoming
of all these metrics is that the relationship between the metric and
the detection of classes of design errors is not well specified or
understood.

An alternative verification approach draws on the similarity
between hardware design verification and physical fault testing
[Abad88, AA95, VC98]. In this approach, synthetic error models
are derived from empirical design error data, and physical fault test-
ing techniques are adapted to generate test sets for the synthetic
errors. 

The problem addressed by error simulation is as follows. Given
a design, a set of (synthetic) design errors, and a sequence of test
vectors, determine which errors are detected by the test sequence.
Fault simulation addresses a similar problem in physical fault test-
ing, but differs in the error/fault models. Whereas physical fault
testing is concerned with SSL faults, bridging faults, open faults,
our design verification methodology needs to consider other errors,
such as the conditional errors introduced in [VC98]. In this section

we address error simulation with conditional errors. First, we moti-
vate error simulation.

Augmenting targeted test generation with error simulation can
reduce overall run times. Test generators typically target one error
at a time. A targeted test may detect errors other than just the tar-
geted error. These errors can be identified by an error simulator so
that they do not need to be considered by the test generator any
more.

A stand-alone use of error simulation is the computation of
design error coverage of a given test suite. This is useful in regres-
sion testing, where one might be interested in selecting a subset of a
given set of test sequences that provides coverage of design errors
similar to those of the complete test set. Error simulation can also
reveal areas of the design that are not sufficiently tested by a given
test suite, and hence spur further targeted test generation.

Error simulation needs to be efficient. Not only the length of test
suites, which is extremely large for pseudo-random tests, but also
the nature of the error models, and the number of error instances to
be considered affect the size of the task. It is clear that better meth-
ods are required than simple serial error simulation, which simu-
lates the erroneous designs for the complete test suite one by one.

Conditional error models. A conditional error (C, E) [VC98]
consists of a condition C and a basic error E; its interpretation is
that E is only active when C is satisfied. In general, C is a predicate
over the signals in the circuit during some time period. To limit the
number of error instances, we restrict C to a conjunction of terms
(yi = wi), where yi is a signal in the circuit that is not in the transitive
combinational fanout of the basic error1, and wi is a constant of the
same signal-width as yi and whose value is either all-0’s or all-1’s.
The number of terms (condition variables) appearing in C is said to
be the order of (C, E). Specifically, we consider the following con-
ditional error (CE) types:

• conditional single-stuck line error of order n (CSSLn)
• conditional bus order error of order n (CBOEn)
• conditional bus source error of order n (CBSEn)
Figure 1 gives an example of a CSSL1 error, (x = 1, y / 0). If the

condition does not hold, x ≠  1, the erroneous circuit operates as the
error-free. If the condition holds, x = 1, line y is stuck at 0.

The number of instances defined by a conditional error model
(C,E) is given by the product of the number of basic errors and the
number of conditions:

#CSSLn = O(2n+1Nn+1)
#CBOEn = O(2nNn+1)
#CBSEn = O(2nNn+2)

1.  The requirement that condition signals are not to be part of the transitive
combinational fanout of the basic error, eliminates problems of combina-
tional feedback, and thus ensure that all conditional errors are well defined.
This requirement also facilitates efficient error simulation, as we will see in
Section 3.
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For n = 0, a conditional error (C,E) reduces to the basic error E
from which it is derived. Higher-order conditional errors enable
the generation of more specific tests, but lead to a greater test gen-
eration cost due to the larger number of error instances. For exam-
ple, the CSSL1 model defines a number of instances quadratic in
the size of the circuit. Although the total set of all signals we con-
sider for each term in the condition can possibly be reduced,
CSSLn errors where n > 1 are probably not practical. Experimen-
tal work presented in [VC98, VC99] shows that test sets that
are complete for CSSL1 errors provide a higher coverage for actual
errors than test sets that are complete for CSSL0 errors only.

We review relevant previous work in Section 2. Our error simu-
lation algorithm is presented in Section 3. We present experimental
results in Section 4, and give some concluding remarks in Section
5.

2.   Related Work
Representative approaches to fault simulation for sequential

circuits [Abra90, Nier91a] are parallel, concurrent, deductive, and
differential fault simulation. Parallel fault simulation takes advan-
tage of the word-level parallelism of the computer used. On a 32-
bit computer, 32 faulty machines can be simulated in parallel. This
method lacks the ability to drop errors. The other methods are
motivated by the observation that as long as a fault is not detected,
the good and faulty circuit differ in only a fraction of the number
of signals present. For this purpose, such methods process the
complete set of faulty machines one vector at a time. Both concur-
rent and deductive fault simulation compute the node values of a
faulty machine for the current vector, based on the good circuit’s
node values for the current vector, and the faulty machine’s node
values for the previous vector. A drawback of both methods is high
memory requirement. Differential fault simulation, a variant of
concurrent fault simulation, addresses the memory problem, but
suffers from the inability to drop detected faults. 

Niermann, Cheng and Patel [Nier90, Nier91a] described a fault
simulator, called PROOFS, that combines ideas of concurrent, dif-
ferential and parallel fault simulation. As our error simulation
method for conditional errors derives from PROOFS, we briefly
describe its main features, referring to Figure 2.

Given is a gate-level sequential circuit, a fault list, and a test
vector sequence, PROOFS maintains two sets of signal values: one
for the good, and one for a faulty machine. For each undetected
fault, PROOFS also stores the difference in present state between
the good machine and the corresponding faulty machine.

The outermost loop of PROOFS processes one test vector at a
time. First, the good machine is simulated for the current vector.
Next, faults that are active for the current test vector are identified.
A fault is considered active if one or both of the following two
conditions holds: 1) the present state of the faulty machine is dif-
ferent from that of the good machine; 2) the fault is excited by the
current vector, and the faulty line is sensitized through the first two

levels of logic. Checking condition 1 is straightforward since we
have saved the faulty circuit’s state while processing the previous
vector. If condition 1 does not hold, that is, if the faulty circuit’s
present state is identical to that of the good circuit, checking
condition 2 is inexpensive too, as it is very localized and requires
only the good circuit’s values.

Faults that are not active for the current vector have the prop-
erty that they are not detected by the current vector and the next
states of the corresponding faulty machines are identical to the next
state of the good machine. Consequently, there is no need to simu-
late these faulty machines for the current vector.

Each active fault is processed as follows: First, the fault is
injected into faulty circuit. The event list is initialized to reflect the
fault injection and the present state lines whose values differ in the
good and the faulty machine. The event-driven simulation of the
faulty machine in PROOFS typically has a very low event activity,
as in concurrent fault simulation. If the fault is detected by the cur-
rent vector, it is dropped. Otherwise, the difference between the
next state of the faulty machine and that of the good machine is
saved.

The basic algorithm, as discussed above, can be augmented to
take advantage of the word-level parallelism available on the com-
puter executing the fault simulator. On a 32-bit machine, up to 32
iterations the simulation step 1.4.3 of loop 1.4 can be executed in
parallel. This is done by assigning the values of different faulty
machines to different bit positions within a word. The other steps
of loop 1.4 still have to be executed serially. A more detailed
description of one implementation is given in [Nier90, Nier91a].

3.   CESIM

It is straightforward to modify PROOFS to handle conditional
errors, such as CSSL1. For a given circuit and a given test
sequence, the average run time per error for CSSL1 error simula-
tion is very close to that for SSL error simulation. As the number
of CSSL1 errors is quadratic in the size of the circuit, the cost of
error simulation for CSSL1 may be prohibitively large. To address
this, we develop an error simulation algorithm for conditional
errors, called CESIM, that exploits the close relationship among
CSSL1 errors derived from the same CSSL0 error. Its key features
are processing of sets of conditional errors, and the injection of
basic (instead of conditional) errors. We will demonstrate that this

Figure 1. CSSL1 error (x = 1, y / 0): a) error-free design; b) 
erroneous design with x ≠ 1; c) erroneous design with x = 1.
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Figure 2. PROOFS’ error simulation algorithm

PROOFS(circuit, faultList, testVectorSequence)

1. while (vectors left) {
1.1 read next vector
1.2 simulate good circuit
1.3 determine which faults are active
1.4 for each active fault {
1.4.1 inject fault
1.4.2 add faulty node events
1.4.3 simulate faulty circuit 
1.4.4 drop detected faults
1.4.5 store faulty next state
1.4.6 remove fault
1.5 }
2. }



leads to improved performance over the naive extension of
PROOFS.

First, we define two equivalence relations on conditional errors.
Two conditional errors are PS-equivalent with respect to the cur-
rent vector iff the present states of the corresponding erroneous
machines are identical. Two conditional errors are PSBE-equiva-
lent with respect to the current vector, iff they are derived from the
same basic error and the present states of the corresponding errone-
ous machines are identical. The two equivalence relations define a
hierarchical partition on the set of conditional errors; PSBE-equiv-
alence refines the partition defined by PS-equivalence. CESIM
maintains the set of undetected errors in partitioned form.

We redefine the activity criterion of PROOFS as follows: A
conditional error is active for the current vector iff 1) its condition
holds in the erroneous circuit, and 2) the corresponding basic error

is excited in the erroneous machine for the current vector, and 3)
that basic error is sensitized through the first two levels of logic.

The inner loop 1.4 of PROOFS (Figure 2) that iterates over
individual active faults is replaced in CESIM, outlined in Figure 4,
by one that iterates over sets of PS-equivalent conditional errors:

Given is a set S1 of undetected PS-equivalent conditional
errors, we process this set of errors for the current vector as fol-
lows. First, we simulate the erroneous machine1 with no errors

Figure 3. Example execution of CESIM for a 3-vector test sequence: a) PS- and PSBE-partitions of errors, b) corresponding state transition
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1.  Note that CESIM uses a single copy of the circuit structure but associ-
ates two values with each signal, one corresponding to the error-free
machine, the other to an erroneous machine. Hence by simulating the erro-
neous machine we mean simulating the circuit using the set of erroneous
values.



injected, starting from the present state associated with S1 for the
current vector (steps 2.3.1 and 2.3.2 of Figure 4). 

For each conditional error in S1, we check if it is active. Activa-
tion is determined by three conditions (see above). Conditions 2
and 3 only depend on the basic error, and hence are identical for all
E-equivalent errors. We therefore check conditions 2 and 3 first
(one check for each class of PSBE-equivalent errors). Only if both
conditions hold do we have to check condition 1 (one check per
individual conditional error). Note that lines appearing in the con-
dition of a conditional error are not part of the transitive combina-
tional fanout of the basic error. Therefore, the activation conditions
can be evaluated using the values computed in step 2.3.2. This par-
titions S1 into a subset A of the active conditional errors, and a sub-
set D of dormant (not active) errors (step 2.3.3).

If any outputs computed in 2.3.2 differ from those of the good
circuit (step 2.2) all errors in D are detected and can be dropped.
Otherwise, we record the erroneous next state corresponding to D,
and insert D into the nextU, the set of undetected errors for the next
vector.

For each set S2 of PSBE-equivalent errors in A, we inject the
basic error corresponding to S2, apply the erroneous present state
corresponding to S2, and simulate the erroneous circuit. If any out-
puts differ from those in the good circuit, all errors in S2 are
dropped. Otherwise, we record the erroneous next state for S2, and
insert S2 into nextU.

Example. Figure 3 illustrates CESIM. Consider sets of condi-
tional errors derived from three basic errors , , and . Ini-
tially, the corresponding erroneous machines are all in the same
present state, namely the unknown state . The initial PS-parti-
tion has a single class, which is further partitioned with respect to
PSBE-equivalence. First, the error-free machine is simulated for
the first vector; the next state is . This allows us to separate
those conditional errors that are active (shaded in the figure) for the
first vector from those that are not. For the dormant errors no fur-
ther work is required: none of them is detected, and the next state
of the corresponding erroneous machines is . For each PSBE
class that contains active conditional errors, the corresponding
basic error is injected and the erroneous circuit is simulated for the
current vector. In the example, none of these errors is detected, and
the next states  and  are distinct. This process is repeated for
the next vector. In the example, the active errors in PSBE class

 are detected by the second vector; all other errors
remain undetected. Note that there is a one-to-one correspondence
between a single transition in the state transition diagram in
Figure 3 and a circuit simulation step in the algorithm (steps 2.2,
2.3.2, or 2.3.8.3 in Figure 4).

Analysis. CESIM minimizes the overall computational cost by
exploiting PS- and PSBE-equivalence of conditional errors. We
now analyze the algorithm’s complexity. The two major compo-
nents of the cost of one iteration of the top-level loop (step 2) are
the simulation cost of steps 2.2, 2.3.2, and 2.3.8.3, and the partition
cost of step 2.3.3. The partition cost is proportional to the number
of conditional errors for which we have to check activation
condition 1, which is typically a small fraction of the total number
of conditional errors. The event-driven simulator is called as many
times as there are PSBE partition classes on all sets A; this is a
fraction of the number of PSBE partition classes of U. In summary,
the cost of one iteration has one component with complexity sub-
linear in the size of the error list (partition cost), and a second com-
ponent proportional to the size of the circuit and the product of the
number of basic errors and the number of distinct states (simula-
tion cost). In our experiments, we observed that 90% of the execu-
tion time is due to partitioning, while only 10% is due to
simulation. The algorithm requires maintaining both partitions (PS
and PSBE) on the set of undetected errors. All partitions are imple-
mented using hash tables, which allow for constant time insertions
of error sets.

Initially, all errors are undetected and the corresponding errone-
ous machines all start from an unknown present state. Hence all
errors are PS-equivalent initially, and all errors derived from the
same basic error are PSBE-equivalent. In the partition step (2.3.3),
the number of error sets (PSBE equivalence classes) may increase.
The worst case occurs when 1) neither A nor D is empty, 2) neither
of them is detected, and 3) the next states generated in steps 2.3.8.3
and 2.3.2 are all distinct. For this case, the number of error sets can
double in a single iteration of step 2, leading to an exponential
growth in the number of vectors. However, the total number of
PSBE-equivalence classes can never exceed the total number of
individual conditional errors we started with. Our experimental
results (see below) show that, in practice, the number of error sets
remains fairly constant.

Optimizations. As in PROOFS we take advantage of the word-
level parallelism of the host computer; hence multiple iterations of

Figure 4. CESIM error simulation algorithm for conditional 
errors

CESIM( circuit, errorList, testVectorSequence)

1. U = errorlist  /* hierarchically partitioned set of undetected errors 
*/
2. while (vectors left) {
2.1 read next vector
2.2 simulate good circuit
2.3 for each set S1 of PS-equivalent condit. errs. in U {
2.3.1 add the erroneous present-state events
2.3.2 simulate erroneous machine (no errors injected)
2.3.3 partition S1 into an active/inactive subsets, A/D.
2.3.4 if error effect is exposed {
2.3.4.1 drop all errors in D
2.3.5 }
2.3.6 else {
2.3.6.1 save next state for D
2.3.6.2 insert D in nextU
2.3.7 }
2.3.8 for each set S2 of PSBE-equiv. condit. errs. in A {
2.3.8.1 inject the corresponding basic error
2.3.8.2 add the erroneous node events
2.3.8.3 simulate the erroneous circuit
2.3.8.4 if basic error is detected {
2.3.8.4.1 drop all errors in S2
2.3.8.5 }
2.3.8.6 else {
2.3.8.6.1 save the erroneous next state for S2
2.3.8.6.2 insert S2 in nextU
2.3.8.7 }
2.3.8.8 remove the error
2.3.9 }
2.4 }
2.5 U = nextU
3. }

e1 e2 e3

s0
0

s0
1

s0
1

s1
1 s2

1

s2
1 e2,( )



2.3.2 and of 2.3.8.3 are executed in parallel. To further reduce exe-
cution time, static dominators [Nier91a] could be used to identify
redundant errors during a preprocessing step.

4.   Experiments
We used the ISCAS’89 benchmarks to evaluate the perfor-

mance of CESIM. We generated test sequences for SSL faults
using HITEC [Nier90, Nier91a]. The parameters that determine
when to abort a fault were set as follows: the backtrack limit was
set to 10,000; the state backtrack limit was set to 10,000; the time
limit per fault was set to 2 seconds. We separately fault simulated
the obtained test sequences using PROOFS [Nier90, Nier91a]. Test
generation and fault simulation were performed on a Fujitsu HAL-
Station/300; the results are summarized in Table 1. We did not try
to improve fault coverage further by increasing the abort limits. 

We error-simulated the same test sequences using CESIM for
CSSL0 and CSSL1 errors. The error list for CSSL0 errors is identi-
cal to the collapsed SSL fault list from before. The CSSL1 error
list was constructed as follows. For each CSSL0 error, we consid-
ered a maximum of 500 lines to condition the error. The smaller
circuits have less than 500 lines, so every line in the circuit is con-
sidered as the condition line. This leads to a maximum of 1000
CSSL1 errors per CSSL0 error. However, some CSSL1 errors are
rejected because their condition is part of the transitive fanout of
the error site. The results of error simulation using CESIM are
summarized in Table 2. In the analysis that follows, we exclude
benchmarks for which the test sequence achieves an SSL coverage
less than 0.1. 

Comparing the results of CSSL0 error simulation using CESIM
in Table 2 with the results of SSL fault simulation using PROOFS
in Table 1, we conclude the following. Fault/error coverages for

Table 1. Test generation and fault simulation of ISCAS’89 circuits using HITEC

Circuit Detected
faults

Redundant
faults

Aborted
faults Vectors Efficiency Coverage HITEC

CPU[s]
PROOFS

CPU[s]

s27 32 0 0 21 1.0000 1.0000 0.12 0.03
s208.1 18 146 53 12 0.7558 0.0829 164.07 0.07
s298 265 26 17 220 0.9448 0.8604 48.18 0.25
s344 321 9 12 89 0.9649 0.9386 32.38 0.15
s349 329 11 10 106 0.9714 0.9400 31.57 0.17
s382 281 2 116 881 0.7093 0.7043 267.70 1.45
s386 314 70 0 273 1.0000 0.8177 5.52 0.22
s400 331 9 86 1,228 0.7981 0.7770 215.72 1.20
s420.1 28 151 276 20 0.3934 0.0615 635.98 0.15
s444 254 16 204 316 0.5696 0.5359 777.90 0.88
s526 51 14 490 34 0.1171 0.0919 1,167.25 0.15
s526n 55 13 485 37 0.1230 0.0995 1,162.57 0.18
s641 404 63 0 203 1.0000 0.8651 3.97 0.35
s713 476 105 0 196 1.0000 0.8193 5.55 0.40
s820 811 29 10 940 0.9882 0.9541 96.17 1.52
s832 813 46 11 962 0.9874 0.9345 99.63 1.78
s838.1 48 515 368 28 0.6047 0.0516 849.52 0.40
s953 89 990 0 14 1.0000 0.0825 38.68 0.28
s1196 1,239 3 0 439 1.0000 0.9976 2.95 0.80
s1238 1,283 72 0 472 1.0000 0.9469 4.77 0.97
s1423 578 11 926 89 0.3888 0.3815 2,100.88 0.85
s1488 1,368 20 98 778 0.9341 0.9206 325.48 2.30
s1494 1,447 32 27 991 0.9821 0.9608 118.78 2.93
s5378 3,146 159 1,298 894 0.7180 0.6835 2,941.93 14.68
s9234 18 3,916 0 6 1.0000 0.0046 1.38 1.05
s9234.1 366 181 3,391 38 0.1389 0.0929 7,562.58 3.62
s13207 557 8,218 672 76 0.9289 0.0590 2,266.77 16.08
s13207.1 858 7,583 1,148 106 0.8803 0.0895 3,475.12 28.25
s15850 85 11,407 21 8 0.9982 0.0074 60.15 2.97
s15850.1 4,374 1,229 5,920 2,493 0.4862 0.3796 16,302.12 383.82
s35932 34,868 3,984 242 300 0.9938 0.8919 2,350.30 45.47
s38417 1,088 356 29,016 51 0.0474 0.0357 96,335.17 46.05
s38584 7,798 6,759 21,744 1,593 0.4010 0.2148 54,293.70 1,293.65
s38584.1 20,589 1,948 13,766 4,383 0.6208 0.5671 38,090.13 1,535.40



corresponding circuits are identical, as expected. We can deduce
that CESIM is on average 4.5 times slower than PROOFS. The
actual slowdown varies between 0.3 and 7.7; for the largest bench-
mark it is 5.6. CESIM does not include any optimizations that are
specific to CSSL0 errors.

The last two columns in Table 2 compare error simulation for
CSSL1 errors to error simulation for CSSL0 errors. We observe
that the ratio of coverage of CSSL1 errors to coverage of CSSL0
varies between 0.58 and 0.94; its average is 0.76. We also com-
puted the ratio of CPU time per error for CSSL1 errors to CPU
time per error for CSSL0 errors. This ratio attempts to measure the
speedup of CESIM for CSSL1 errors compared to a naive
approach. We observe an average speedup varies between 2 and

78, its average is 34, and for the largest benchmark a speedup of 43
was obtained. 

The efficiency of CESIM can best be seen by plotting the CPU
time per test vector versus the total number of errors simulated for
each benchmark, as in Figure 5. There are two sets of data: the first
concerns CSSL0 error simulation, the other CSSL1 error simula-
tion. The plot also shows a least square fit (linear regression) for
each data set. The execution time of CSSL0 error simulation is
dominated by event-driven simulation of faulty circuits. However,
when simulating the CSSL1 errors, checking whether the condition
of each CSSL1 error holds dominates the execution time. Least-
square analysis shows that the CPU time per test vector is propor-
tional to the number of CSSL0 errors to the power 1.33. This
superlinear behavior reflects the fact that those data with a larger

Table 2. Error simulation of ISCAS’89 circuits using CESIM

CSSL0 CSSL1

Circuit Vectors No. Coverage CPU [s] No. Coverage CPU [s]

s27 21 32 1.0000 0.01 664 0.7289 0.10 0.7289 2.08
s208.1 12 217 0.0829 0.11 44,492 0.0228 0.67 0.2750 33.66
s298 220 308 0.8604 0.63 75,468 0.7103 7.80 0.8255 19.79
s344 89 342 0.9386 0.39 114,294 0.7598 5.09 0.8095 25.61
s349 106 350 0.9400 0.32 117,484 0.7796 5.20 0.8294 20.66
s382 881 399 0.7043 5.61 130,656 0.5830 60.35 0.8278 30.44
s386 273 384 0.8177 1.30 93,060 0.6040 12.60 0.7387 25.00
s400 1,228 426 0.7770 7.77 144,628 0.6275 74.47 0.8076 35.42
s420.1 20 455 0.0615 0.28 199,616 0.0180 3.60 0.2927 34.12
s444 316 474 0.5359 3.44 175,616 0.4185 42.15 0.7809 30.24
s526 34 555 0.0919 0.65 218,816 0.0656 7.15 0.7138 35.84
s526n 37 553 0.0995 0.69 219,166 0.0704 7.54 0.7075 36.27
s641 203 467 0.8651 1.31 349,832 0.7219 24.87 0.8345 39.46
s713 196 581 0.8193 1.39 452,256 0.6742 32.78 0.8229 33.01
s820 940 850 0.9541 6.30 442,758 0.6456 160.27 0.6767 20.48
s832 962 870 0.9345 6.72 445,274 0.6355 165.86 0.6800 20.74
s838.1 28 931 0.0516 1.02 821,774 0.0158 17.72 0.3062 50.81
s953 14 1,079 0.0825 0.63 879,540 0.0321 12.95 0.3891 39.66
s1196 439 1,242 0.9976 5.75 1,058,844 0.7483 151.78 0.7501 32.30
s1238 472 1,355 0.9469 7.49 1,140,402 0.6969 186.76 0.7360 33.75
s1423 89 1,515 0.3815 5.44 1,287,036 0.2695 72.08 0.7064 64.12
s1488 778 1,486 0.9206 10.18 1,142,374 0.6615 272.48 0.7186 28.72
s1494 991 1,506 0.9608 10.74 1,151,208 0.6993 327.06 0.7278 25.10
s5378 894 4,603 0.6835 94.80 4,517,276 0.5418 1,753.33 0.7927 53.06
s9234 6 3,934 0.0046 2.11 3,850,188 0.0004 43.25 0.0870 47.75
s9234.1 38 3,938 0.0929 21.70 3,854,738 0.0490 147.79 0.5274 143.73
s13207 76 9,447 0.0590 77.66 9,325,456 0.0132 638.82 0.2237 120.00
s13207.1 106 9,589 0.0895 115.96 9,453,928 0.0363 1,167.80 0.4056 97.90
s15850 8 11,513 0.0074 11.92 11,197,872 0.0021 151.72 0.2838 76.42
s15850.1 2,493 11,523 0.3796 2735.14 11,186,886 0.2574 33,994.54 0.6781 78.11
s35932 300 39,094 0.8919 170.70 38,708,548 0.8400 4,541.98 0.9418 37.21
s38417 51 30,460 0.0357 249.88 30,222,794 0.0109 1,981.77 0.3053 125.11
s38584 1,593 36,301 0.2148 6233.05 36,124,976 0.1244 122,142.85 0.5791 50.78
s38584.1 4,383 36,303 0.5671 8,656.32 36,124,758 0.4423 199,346.07 0.7799 43.21
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number of CSSL0 errors correspond to larger circuits, and hence
the execution time of each event-driven simulation increases. For
the CSSL1 execution time we find that the CPU time per test vec-
tor is proportional to the number of CSSL1 errors to the power
1.13. This near-linear behavior is because checking if CSSL1
errors are active, which is independent of the size of the circuit,
dominates the execution time. Further analysis is provided in
[VC99].

Table 5 also allows us to compare CESIM with the straightfor-
ward extension of PROOFS for CSSL1 error simulation, which we
will refer to here as CPROOFS. CPROOFS treats CSSL1 errors
the same way CESIM treats CSSL0 errors. The increase in execu-
tion time of CPROOFS for CSSL1 errors compared to the execu-
tion time of PROOFS for CSSL0 errors is therefore proportional to
the ratio of the number of CSSL1 errors to the number of CSSL0
errors. The figure shows the execution time of CPROOFS for only
one benchmark (s1423); the speedup for that circuit is 64. We can
see that the speedup is roughly equal to the vertical distance
between the linear regression lines for CSSL0 and CSSL1 datasets.
We conclude that CESIM outperforms the CPROOFS by a wide
margin.

We further analyze the behavior of CESIM for a representative
circuit, s1238. This circuit has 14 inputs, 14 outputs, 18 D-type
flip-flops, 80 inverters and 428 gates. Figure 6 shows the error
coverage as a function of the number of test vectors applied. The
ratio of coverage of CSSL1 errors to coverage of CSSL0 errors
varies between 0.49 and 0.72. 

Figure 7 shows the number of distinct states as a function of the
number of test vectors applied. For CSSL0 error simulation, the
number of states rapidly drops; after vector 300 there are at most
five distinct states among the present states of the remaining unde-
tected erroneous machines. For CSSL1 error simulation, we
observe that the number of states hovers around 20 but never
becomes larger than 35 (about twice the number of flip-flops in the
circuit).

Figure 8 details the number of error sets occurring during the
execution of CESIM. We show both the total number of error sets,
and the number of error sets in use. Both are normalized with
respect to the total number of errors. The number of error sets in
use is the number of PSBE-equivalence classes of the set of unde-
tected errors U in loop 2.3 of Figure 4. The total number of error
sets is the number of error sets in use plus the number of errors sets
detected by previous vectors (those error sets are dropped in steps
2.3.4.1 and 2.3.8.4.1 of Figure 4). For CSSL0 simulation, the total
number of error sets remains constant at the number of errors,
whereas the number of error sets in use drops as coverage
increases. For CSSL1 simulation we observe that the total number
of error sets increases steadily, as coverage increases. However,
the number of error sets in use remains fairly constant and hovers
around the total number of basic errors, which is about 1000 times
smaller than the total number of errors. 

5.   Conclusions

Higher-order conditional error models, such as the CSSL1
model, define a number of error instances superlinear in the size of
the circuit. Although state-of-the-art fault simulation methods,
such as PROOFS, can easily be extended for conditional error
models, the large number of error instances may result in prohibi-
tively large computational cost for error simulation with these error
models. To address this problem, we have developed a new error
simulation algorithm CESIM that exploits the nature of conditional
errors.

We have conducted experiments using the ISCAS’89 bench-
marks that demonstrate that error simulation with CSSL1 errors is
practical for moderately sized circuits. On average CESIM gained
a 34x improvement in execution time compared to CPROOFS,
which is a straightforward extension of PROOFS for CSSL errors.

However, as the run time of our algorithm is linear in the num-
ber of errors, for very large circuits the quadratic number of
CSSL1 errors becomes prohibitive. For those circuits restrictions
on the general CSSL1 model may be appropriate. For example,
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when deriving CSSL1 errors from a given CSSL0 error, one could
restrict the condition signals to those signals appearing in the same
hierarchical module as the CSSL0 error.
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Figure 7. Error simulation on s1238 with CSSL0 and 
CSSL1: number of distinct states
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