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Abstract

The importance of accurate branch prediction to future
processors has been widely recognized. The correct prediction
of conditional branch outcomes can help avoid pipeline bubbles
and attendant loss in performance. In order to achieve high
prediction accuracy, numerous dynamic branch prediction
schemes that exploit branch correlation have recently been
proposed. Several of the best predictors are the gshare, agree,
JSilter; skewed and bi-mode predictors.

However, despite the intensive research work to propose
these new schemes, there is no direct and comprehensive
performance comparison among them. Such comparison is
essential 10 guiding the design of Suture microprocessors.
Therefore, in this paper, we conduct extensive experiments to
calibrate the performance of each prediction scheme.
Furthermore, we discuss the design philosophy and underlying
mechanism for these schemes, and contrast their relative
advantages and disadvantages. Among the schemes examined,
we find that the skewed predictor performs the best for small
budgets, while the bi-mode predictor outperforms others Jor
large budgets.

Keywords: Dynamic Branch Predictor, Gshare, Agree, Filter,
Skew, Bi-mode.

1. Introduction

As the design trends of modern MmiCroprocessors move
toward wider issue and deeper pipelines, accurate branch
prediction becomes essential to exploring the full performance
of microprocessors. A good branch prediction scheme can
increase the performance of a microprocessor by eliminating
the instruction fetch stalls in the pipelines. As a result, different
styles of branch prediction schemes have been proposed and,
among them, the global history dynamic branch predictors have
been shown to achieve high accuracy [10]. To make predictions,
these global history branch predictors exploit the correlation of
combined outcomes from neighboring branches (which form a
global history of branch outcomes), Nevertheless, the global
history predictors are still limited by destructive interference
that occurs when two branches have the same global history, but
opposite biases. To reduce this destructive interference, many
variations of global predictors have been designed and
proposed. Several of the best predictors are the gshare, agree,
filter, skewed and bi-mode predictors.
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However, regardless of all the research efforts to design
these new branch prediction schemes, there is no direct
comparison to measure their performance. In order to assess the
relative performance of each scheme, this comparison has to be
made under the same set of benchmarks, input data sets,
instruction sets, and hardware budgets. Such comparison is
essential to guiding microprocessor designers in selecting the
most appropriate branch prediction schemes. To provide this
comprehensive comparison, we conduct extensive simulations
to calibrate the performance of each prediction scheme.
Moreover, to contrast their advantages and disadvantages, we
discuss the design philosophy and underlying mechanism for
these schemes.

This paper is organized into five sections. In section 2 we
describe the design philosophy and underlying mechanism of
various global history dynamic predictors. In section 3 we
describe our simulation environments and benchmarks used.
Section 4 presents simulation results and discussion. Finally, we
present some concluding remarks in section 5.

2. Description of global history dynamic
predictors

2.1 Gshare predictor

McFarling [5] proposed a variant of global history branch
predictors, referred to as gshare, in which the global history is
xor-ed with the low-order address bits of a branch to form an
index, as shown in Figure 2. This index is then used to select a
two-bit saturating up-down counter from the second-level table.
Depending on the sign bit of the selected two-bit counter, the
branch is either predicted as taken or not aken.

The gshare scheme attempts o reduce interference by
randomizing the index to the second-level table using xor-ing.
By xor-ing the global history pattern with branch addresses, the
gshare scheme can produce new distinct indexing values for the
counters, each associated with a static branch. This XOr-ing can
reduce interference between branches while retaining the
advantages of using long global history to exploit branch
correlation. However, this scheme offers limited benefits,
because randomization can only “blindly” separate aliased
branches. Consequently, this process may reduce destructive
interference simply by chance.
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Figure 1: Diagram for the gshare predictor

2.2 Agree predictor

The agree predictor, proposed by Sprangle et al. [8],
attempts to reduce interference for the global history predictors
by changing the usage and interpretation of two-bit counters in
the second-level table.

In original dynamic branch predictors, such as the gshare
scheme, the value of a two-bit counter in the second-level table
is directly used to predict whether a branch is taken or not.
When the branch outcome is resolved, the counter value is
updated with the true outcome. For example, the counter is
increased by one if the outcome is taken and is decreased by
one if it is not-taken. Then, if the counter value is greater than or
equal to half of the maximum value, the branch is predicted
taken; otherwise, the branch is predicted not taken.

The authors of the agree predictors realized that if two
oppositely biased branches are aliased to the same counter, the
counter value will bounce back and forth between two saturated
values. To reduce this aliasing, they proposed the agree
predictor, as shown in Figure 2. In the agree predictor, each
static branch is assigned a biasing bit, which is stored in the
branch target buffer (BTB) or in the cache. In addition, the
meaning and usage of two-bit counters have also changed:
instead of predicting the direction for a branch, the two-bit
counters predict if the branch will go in the direction indicated
by the biasing bit. In other words, the counter in the second-
level table has now to agree whether or not the biasing bit
should be used for predicting the outcome of the current
dynamic branch instance. In effect, the counters measure the
confidence on the validity of the biasing bits. If the branch
outcome matches with the biasing bit, the counter is increased
by one; otherwise, the counter is decreased by one. Depending
on the sign bit of the counter, the branch is either predicted to
g0 in the direction indicated by the biasing bit or in the opposite
direction.
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Figure 2: Diagram for the agree predictor

In the agree predictor, if two strongly but oppositely biased
branches alias to the same counter, they may no longer cause
destructive interference. This is because, if the biasing bits for
both branches are set correctly, the aliased counter should agree
that both biasing bits are correct.

However, good prediction now depends on setting the
biasing bits correctly. Ideally, the biasing bit should indicate the
direction that the corresponding branch takes most of time
during program execution. Obtaining the optimal value for this
biasing bit requires profiling the program with the same data
set. Since the optimal value is difficult to obtain, Sprangle er al.
have suggested a more general technique in which the biasing
bit can be estimated by the first outcome of each static branch.
In this paper, we also use the same technique for the biasing bit
estimator in the agree predictor.

2.3 Filter predictor

Chang er al. have also proposed a scheme to reduce
interference for the global scheme [1]. Their idea is based on
the observation that most branches are predicted accurately by
their last outcomes without the need of using a global predictor.
They proposed a scheme, shown in Figure 3, which adds an »-
bit counter for each static branch to record the number of times
the same outcome is repeated. If a branch has 2% repeating
outcomes that are the same, it is simply predicted by its last
outcome without consulting or updating the global history
predictor; otherwise, it is predicted by the global history
predictor. In effect, this scheme uses n-bit counters to separate
and filter out easy-to-predict branches (whose last 2" outcomes
are the same) from the rest, so that interference in the global
history predictor can be significantly reduced. The interference
in the global history predictor is greatly reduced because a large
percentage of branches are predicted using the last outcome and
thus only the remaining branches are actually used to update the
global history predictor. In addition, Chang er al. showed that,
usually 3-bit or 4-bit counters can deliver good prediction
accuracy.

One requirement for this design is that it needs to identify
the ownership of the n-bit counters, because each counter is
counting the repeating times of the same outcome for a
particular branch, and thus it should not be polluted by other
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Figure 3: Diagram for the filter predictor
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Figure 4: Diagram for the skewed predictor

branches. As a result, the scheme requires extra hardware for
storing the branch address, or the scheme has to be
implemented in the branch target buffer (BTB) so it can use the
branch address tags for this purpose. This may limit the
flexibility of the scheme.

2.4 Skewed predictor

Another scheme to reduce interference, referred to as the
skewed branch predictor, has been proposed by Michaud et al.
[6]. Michaud er al. found that the interference in the second-
level table is similar to the conflict miss in a cache system. To
reduce conflicts in the predictor, they proposed a reorganization
of the second-level table. Specifically, the original second-level
table is divided into three sub-tables, all three of which record
counts for the histories and make prediction for every branches,
as shown in Figure 4. The final prediction of the predictor is
then based on the majority vote among the three sub-tables, The
key ingredient in this predictor is that the three sub-tables use
three different indexing functions so that the chance for two
branches to collide in all three sub-tables at the same time is
littte. A potential drawback is that using three sub-tables to

record history for each branch may reduce the effective capacity
of the second-level table in a skewed predictor.

To compensate for this capacity loss, Michaud er al. adopted
a partial update policy that will not update the incorrect sub-
table when the final prediction is found to be correct. In other
words, when the final prediction is known to be correct (so at
least two of the three sub-tables voted correctly) and there is a
sub-table which made an incorrect vote, the incorrect sub-table
will not be updated with the branch outcome. Michaud er al.
realized that when a final prediction is correct, the sub-table
which made an incorrect vote may actually be recording the
history for another branch. Therefore, this sub-table should
remain unchanged so that it can keep the history information for
other branches. They showed that this partial update policy can
compensate for the capacity loss and thus improve the
prediction accuracy significantly.

The skewed predictor has been shown to be an improvement
over the conventional global history schemes. However, the
three indexing functions need to be carefully selected to achieve
the goal of reducing interference. Michaud ef al have found a
set of indexing functions that are not costly to implement but
may still lengthen the clock cycle because of the address
decoder for the sub-tables. The indexing functions used for the
skewed predictor examined in this paper will be the same as
those proposed by Michaud, which are described next.

Supposed there is a 2n-bit index vector, V, which is formed
by concatenating the address (c bits) and history bits (r bits, c+7
= 2n). This V is decomposed into two n-bit vectors, V7 and V2.
V1 is the low-order half of V, while V2 is the upper half, i.e.,
both V1 and V2 are n-bit vectors and one of them can contain
address and history bits if ¢ and r are not equal to n. V is then
equivalent to the concatenated vector (V2, VI). Let ( Yoo Yl oor
¥1) be the bit representation of an n-bit vector. A hash function,
H, is defined as follows,

He (Y Yot o0 Y1) = (0 XOT Y 1), Y Vet s Y30 V2

and its inverse, H'., is defined as:

-1,
H*: (Y Yn-b o Y = Oy Yn-2s 2 Y22 ¥, (0 XOT ¥y, 1))

Three indexing functions are then defined as follows, using
bit-wise xors as mappings of 2n-bit vectors to n-bit vectors,

fI: (V2, VI) = H(VI) xor H(V2) xor V2

J2:(V2, V1) - H(V1) xor HY(V2) xor VI

B:(V2, VD) = H(VI) xor H(V2) xor V2

In these three indexing functions, some index bits require
three xor operations. This may increase the access time to the
second-level table.

Though three different hashing functions are important to
reduce chances of interference, the partial updating of the sub-

tables is key to the performance of the skewed predictor. When
the branch outcome is resolved and the predictor is correct, only
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Figure 5: Diagram for the bi-mode predictor

the sub-tables that make correct predictions are updated. In
contrast, when the prediction is not correct, all sub-tables are
updated. This selective update policy is crucial to the prediction
accuracy of the skewed predictor, but it may complicate the
logic design.

Michaud et al. have also proposed an enhanced skewed
predictor, in which the fI hashing function is replaced with
partial branch address bits [6]. This enhanced scheme can
further increase the prediction accuracy, so it will be used in the
comparison throughout this paper.

2.5 Bi-mode predictor

To further reduce destructive interference in global history
schemes, Lee er al. proposed the bi-mode branch predictor [3].
The bi-mode predictor splits the second-level table of a gshare
into two halves, shown in Figure 5. Given a history pattern, two
counters, one from each half, are selected. These counters are
referred to as the direction predictors. Another two-bit counter
table, indexed by the branch addresses only, is used to provide a
final selection for these two counters. This counter table
providing selection is referred to as the choice predictor. The
final prediction is then made by the state of the counter selected
from the direction predictors and, equally importantly, only the
selected counter will be updated with the branch outcome; the
status of the un-selected one, will not be altered. The choice
predictor is always updated with the branch outcome.

The bi-mode scheme delivers high prediction accuracy
because, although the behavior of global history patterns are
still kept in the second-level table, they are dynamically
classified before being stored to reduce destructive interference.
The global history patterns are classified by a preliminary
prediction from the choice predictor which is simply a
conventional two-bit counter scheme, and, as such, typically
can provide 80% or better prediction accuracy with relatively
modest cost. Thus, the bi-mode scheme divides branches into
two groups according to the per-address bias of the choice
predictor, and then uses the global history patterns to identify
the special conditions for each of two groups separately. These
two groups of branches correspond to the strongly-taken and
strongly-not-taken cases, and each group is sent to its own half
of direction predictor respectively. The effect of the choice

Static

branches
Dynamic Static constituting
Benchmarks | conditional | conditional | 90% of total

branches branches dynamic
conditional

branches
compress| 10,114,353 482 25
§ xlisp 25,008,567 636 50
% per! 39,714,684 1,974 156
8 vortex 27,792,020 6,599 354
&l oo 17,873,772 5,112 1,021
gce 26,520,618 16,035 3,244
nroff 22,574,884 5,249 228
groff 11,901,481 6,333 459
v sdet 5,514,439 5,310 508
§ mpeg_play| 9,566,290 5,598 532
g video_play] 5,759,231 4,606 757
- verilog 6,212,381 4,636 850
gs 16,308,247 12,852 1,160
real_gcc | 14,309,867 17,361 3,214

Table 1: Benchmarks characteristics

predictor is to separate the destructive interference streams
while keeping the harmless interference streams together.

3. Simulation Environment and Benchmarks

To assess the performance for each scheme, we conduct
trace-driven simulation using the SPEC CINT95 and the Ultrix
version of the Instruction Benchmark Suite (IBS). The
characteristics of these benchmarks are listed in Table 1.

SPEC CINT95 [7] programs were compiled on an Alpha
21064-based workstation with the OSF/1 C compiler using the
-O optimization. We employed DEC’s ATOM instrumentation
tool [2] to capture all user-level instructions for the CINT95
traces, including shared libraries.

The IBS-Ultrix benchmarks are a set of applications running
under Ultrix 3.1. The traces were collected through hardware
monitoring of a MIPS R2000-based workstation by Uhlig er al.
[9]. These traces include both instructions executed from the
user applications and the operating system.

The main difference between these two set of benchmarks is
their footprint sizes. By examining the number of static
branches constituting 90% of dynamic conditional branches
shown in Table 1, we can see that IBS-Ultrix benchmarks on
average have more static branches than SPEC CINT95. This is
because IBS also include branches from the operating system.
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Table 2: The gshare configurations that yield
the best average prediction accuracy

4. Simulation results and discussion

In this section, we provide cost-effective performance
comparisons for all schemes discussed in section 3, in which
cost is measured by the amount of storage in bytes that each
requires. The average results are summarized in Figure 6. This
figure compares the average misprediction rates for the SPEC
CINT95 and IBS suites among the gshare, agree, filter,
enhanced skewed, and bi-mode schemes. Figure 7 details the
performance comparison for each individual benchmark. For
each of the five schemes, we exhaustively examined all possible
pair-wise combinations of history length and address length for
each hardware budget. Then, we present the best result for each
scheme. For example, given 2'! counters, the second-level table
of the gshare scheme has 12 different configurations (of varying
history and address lengths). The best configurations of the
gshare scheme for the range of budget examined are listed in
Table 2.

As can be seen from the figures, the filter, enhanced skewed
and bi-mode schemes perform the best. Comparing these three
schemes, we can see that the enhanced skewed predictor
achieves the highest accuracy for small budgets, showing the
advantage of employing complicated XOR index functions in
small predictors. As the budget becomes larger, the bi-mode
and filter schemes perform the best, and the bi-mode scheme
eventually outperforms all other schemes for the largest budget.
Note that the bi-mode scheme is naturally easier to implement

than the filter scheme. The filter scheme proves to be an
effective way to filter out the strongly-biased branches for
global history predictors. However, to determine the best value
of the n for the n-bit filtering counter is difficult, because
different benchmarks require different values to achieve the best
performance. This is not an issue with the bi-mode scheme; a
choice predictor that uses two-bit counters can always deliver
the best performance. Moreover, identifying the ownerships of
the filtering counter is crucial to the performance. We have
studied a filter scheme in which the BTB has no tags [4]. In this
scheme, the filtering counter may be shared by several
branches. The results showed that if there is no tag available to
identify the ownership of the counters, the performance of the
filter scheme can be significantly degraded. Since the filtering
counters need to be associated with the BTB, the filter scheme
may limit the design flexibility of high-speed microprocessors.

It is interesting to compare closely the mechanism of the bi-
mode and enhanced skewed predictors. Each predictor has its
own advantages and disadvantages. The enhanced skewed
predictor treats all three banks equally; when the address-
indexed bank does not do a good job, the predictor can still rely
on the other two banks to make the final prediction. In contrast,
the bi-mode scheme always relies on its address-indexed choice
predictor to select a bank for the final prediction. The choice
predictor may not be able to make good selections all the time,
thus limiting the overall prediction accuracy. This limitation
occurs when the choice predictor has relatively high
interference as in the case of small budgets.

The bi-mode scheme, on the other hand, has shorter training
periods for new branches, compared to the skewed predictor. In
the bi-mode scheme, one bank of the second-level table is
mostly biased in the not-taken direction, while the other bank is
biased in the taken direction. Since most branches in realistic
programs are strongly biased, the bank selected by the choice
predictor has typically been trained by some other similarly
biased branches; it is enough for Jjust the choice predictor to
capture the bias of a new branch for the bi-mode predictor to
start making accurate predictions. In contrast, the skewed
predictor requires at least two of the banks to be well trained for
new branches to make good predictions.
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Figure 7: Comparison between gshare, agree, skewed, and bi-mode schemes — SPEC CINT95

The agree predictor does not perform as well as expected; it
even performs worse than the best of gshare schemes for large
budgets. This performance degradation is partly due to the
capacity limitation in the buffer storing biasing bits. To explore
its potential prediction accuracy, we increased the buffer size to
infinite and observe that the agree predictor can deliver
comparable performance to the best schemes [4]. Since an
infinite size buffer is unrealistic for implementation, one possible
approach is to profile branches and encode biasing bits along
with the instructions during compilation. However, this
compilation approach is beyond the scope of this paper and thus
is not discussed.

5. Conclusion

Global history based dynamic branch predictors have been
shown to achieve high prediction accuracy. Nevertheless, this
type of predictors still suffer from severe interference, which
restricts the accuracy. To reduce this interference and thus
improve the performance, many novel variations of global
predictors have been proposed, including gshare, agree, filter,
skewed and bi-mode predictors. However, there is no direct
comparison among these predictors.
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To provide a fair and direct comparison among these
schemes, this paper examined and evaluated each scheme using
the same set of benchmarks, input data set and instruction set. A
cost-effective comparison is performed, in which cost is
measured by the amount of storage in bytes used by each
scheme.

Our simulation results show that the filter, enhanced skewed
and bi-mode predictors perform the best. Comparing these three
schemes, we find that the enhanced skewed predictor achieves
the highest accuracy for small budgets, showing the advantage
of employing complicated XOR index functions in small
predictors. As the budget becomes larger, the bi-mode and filter
predictors perform the best, and the bi-mode predictor
eventually outperforms all other schemes for the largest budget
due to the short training period it needs. Note that the bi-mode
predictor is inherently easier to implement than the filter
predictor, and hence the bi-mode predictor may overall be the
best choice for large budgets.
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