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Abstract

Instruction prefetching can effectively reduce in-
struction cache misses, thus improving the performance. In
this paper, we propose a prefetching scheme, which em-
ploys a branch predictor to run ahead of the execution unit
and to prefetch potentially useful instructions. Branch pre-
diction-based (BP-based) prefetching has a separate small
fetching unit, allowing it to compute and predict targets au-
tonomously. Our simulations show that a 4-issue machine
with BP-based prefetching achieves higher performance
than a plain cache 4 times the size. In addition, BP-based
prefetching outperforms other hardware instruction fetch-
ing schemes, such as next-n line prefetching and wrong-
path prefetching, by a factor of 1 7-44% in stall overhead.

1. Introduction

Instruction prefetching is an important technique for
closing the gap between the speed of the microprocessor
and its memory system. As current microprocessors be-
come ever faster, this gap continues to increase and be-
comes a bottleneck, resulting in the loss of overall system
performance. To close this gap, instruction prefetching
speculatively brings the instructions needed in the future
close to the microprocessor and, hence, reduces the transfer
delay due to the relatively slow memory system. If instruc-
tion prefetching can predict future instructions accurately
and bring them in advance, most of the delay due to the
memory system can be eliminated. '

In this paper we propose an efficient instruction
prefetching scheme that makes use of current advanced
branch prediction mechanisms that are often already part of
the architecture. The branch predictors are built into current
microprocessors to reduce the stall time due to instruction
fetching and, in general, can achieve prediction accuracy as
high as 95% for SPEC benchmarks [SPEC95]. With such
high prediction accuracy, the instructions needed in the fu-
ture can also be predicted accurately and be prefetched in
advance. Furthermore, this approach is inexpensive because
it applies and shares the existing branch predictors with lit-
tle additional hardware cost.
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Prefetching based on branch prediction (BP-based
prefetching) can achieve higher performance than a cache
of 4 times the size in all the benchmarks and configurations
we examined. BP-based prefetching achieves such high
performance by speculatively running ahead of the execu-
tion unit at a rate close to one basic block per cycle. With
the aid of advanced branch predictors and a small autono-
mous fetching unit, this type of prefetching can accurately
select the most likely path and fetch the instructions on the
path in advance. Therefore, most of the prefetches are use-
ful and can fetch instructions before they are needed by the
execution unit.

The paper is organized into five sections. In Section 2 we
introduce some related prefetching schemes and BP-based
prefetching. Section 3 describes our simulation environ-
ment and the benchmarks used. In Section 4, we present
BP-based prefetching simulation results and provide some
qualitative analysis. Finally, we present summary and con-
clusions in Section 5.

2. Description of Prefetching Schemes

2.1 Related prefetching schemes

The concept of a Look Ahead Program Counter (LA-PC)
has been proposed by Chen and Baer {Chen95). This is a
pseudo-program counter that runs several cycles ahead of
the regular program counter (PC). The LA-PC is then used
to look up a Reference Prediction Table to prefetch data in
advance. Although the concept is similar to our proposed
scheme, the LA-PC scheme is more conservative; it only
advances one instruction per cycle and is restricted to be, at
most, a fixed number of cycles ahead of the regular PC. The
studies in [Chen95] focused on data prefetching rather than
instruction prefetching, and did not evaluate the effects of
speculative execution, multiple instruction issue, and the
presence of advanced branch prediction mechanisms. Some
other data prefetching schemes extending their work can be
found in [Liu96, Pinter96].

Another scheme, the next-n line prefetching scheme
[Smith82], prefetches the next n sequential cache lines fol-
lowing the current program counter. This scheme is effec-
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Figure 1: Organization of BP-based prefetching
scheme.
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tive because it exploits the characteristic that most
programs tend to execute sequentially by fetching sequen-
tial lines in advance.

A third scheme, wrong-path instruction prefetching has
been proposed by Pierce et al. [Pierce96). The wrong-path
scheme prefetches along both paths of a branch instead of
simply prefetching along the predicted correct path. The
wrong-path scheme is based on the observation that pro-
grams eventually execute instructions along the not taken or
“wrong path.” Wrong-path prefetching has been shown to
be more accurate and cost-effective than hybrid schemes
[Smith92], which are table-based schemes.

2.2 Branch prediction-based prefetching

Conceptually, the instruction prefetching scheme we
propose is similar to the look-ahead program counter
[Chen95], yet with much more aggressive prefetching poli-
cies. The prefetching unit is an autonomous state machine,
which speculatively runs down the instruction stream as fast
as possible and brings all the instructions encountered along
the path. When a branch is encountered, the prefetching unit
predicts the likely execution path using the branch predic-
tor, records the prediction in a log, and continues. In the
meantime, the execution unit of the microprocessor routine-
ly checks the log as branches are resolved and resets the
program counter of the prefetching unit if an error is found.

The hardware needed for prefetching includes a small
subset of the main fetching unit: a program counter (PC), a
branch history register (without the associated expensive 2-
bit counter table), an adder to compute branch targets, and
a return address stack. The branch predictors discussed in
this paper are two-level branch predictors and return ad-
dress stacks, which are already found in various commer-
cial microprocessors, such as, Intel Pentium Pro and DEC
Alpha 21264. Figure 1 shows a block diagram of the orga-
nization of BP-based prefetching scheme.
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Figure 2: Flowchart of BP-based prefetching.

Figure 2 shows the detailed operation of our proposed
prefetching scheme. Initially, the program counter (PC) of
the prefetching unit is set to be equal to the PC of the exe-
cution unit. Then the prefetching unit spends one cycle to
fetch the desired cache line.

The prefetching unit examines an entire cache line as a
unit, and quickly finds the first branch (either conditional or
unconditional) in that cache line using existing predecoded
information or a few bits from the opcode. During the same
cycle, the prefetching unit also predicts and computes the
potential target for the branch in one of three ways: first, for
a subroutine return branch, its target is predicted with a re-
turn address stack, which has high prediction accuracy
[Kaeli91]. The prefetching unit has its own separate return
address stack. Second, for a conditional branch, the direc-
tion is predicted with a two-level branch predictor and the
target address is computed with the dedicated adder in the
same cycle. A dedicated adder is used instead of a branch
target buffer, because the first time the branch is encoun-
tered it will not yet be recorded in the target buffer. Also
note that the two-level branch predictor used in the
prefetching unit has its own small branch history register
but shares the same expensive pattern history table with the
execution unit (a gshare scheme is used—see Section 4).
The prefetching unit only speculative updates its own
branch history register, but does not update the pattern his-
tory table. Third, for an unconditional branch, its direction
is always taken and its target is calculated using the same
adder used for conditional branches. However, for an indi-
rect branch, the prefetching unit stalls and waits for the ex-
ecution unit because this type of branch can have multiple
targets. '

The cache line prefetched depends on the predicted di-
rection of a branches. When a branch is predicted to be tak-
en, the cache line containing its target is prefetched;
otherwise, the prefetching unit examines the next branch in
the cache line. The prefetching unit continues to examine
successive branches until the end of the current cache line
is reached, then the next sequential cache line is prefetched.
The entire process is repeated again for the newly




prefetched cache line.

To verify the predictions made, when a branch is predict-
ed, the predicted outcome is recorded in alog. This log is or-
ganized as a first-in-first-out (FIFO) buffer. When the
execution unit resolves a branch, the actual outcome is com-
pared with the one predicted by the prefetching unit, which
is recorded in the log. If the actual outcome matches the one
predicted, the item is removed from the log. However, if the
actual outcome differs from the one predicted, meaning the
prefetching unit has gone down a wrong path, then the en-
tire log is flushed and the PC of the prefetching unit is reset
to the PC of the execution unit. In addition, it is also neces-
sary to reset the contents of the branch history register and
the return address stack of the prefetching unit to those of
the execution unit. ,

We must guarantee the prefetching unit always stays
ahead of the execution unit to prefetch new instructions. A
violation of this condition is detected when the execution
unit resolves a branch but the log is empty at that time. If
this occurs, we need to reset the PC and branch history in-
formation of the prefetching unit to those of the execution
unit.

BP-based prefetching can run ahead of the execution unit
because the average length of basic blocks is more than 4 in-
structions. In our experiments described later, BP-based
prefetching can advance almost one basic block per cycle (if
it is pipelined), while the execution unit can advance at most
4 instructions per cycle (4 instructions retired per cycle). If
a wider instruction-issuing machine is considered, BP-
based prefetching may employ multiple branch prediction
to enhance its speed.

Finally, we also enhanced our proposed prefetching
scheme with the next-n line prefetching. This was done by
prefetching the next n cache lines following the PC of the
prefetching unit rather than from the PC of the execution
unit. This enhancement is very effective because it reduces
the delay by fetching the sequential cache lines in advance.
These next-n line prefetches are given the lowest priority,
and are executed when the bus is free (not used by the exe-
cution unit or the prefetching unit).

3. Simulation Environment

3.1 Simulation of speculative execution

Due to the speculative nature of prefetching, the normal
trace-driven simulation is not enough to capture the behav-
ior of the microprocessor that we are interested in, because
it records the actual execution path of a program, and, thus,
only contains the instructions executed by the program.
However, if there is incorrect speculation, the prefetching
activity may bring redundant instructions not used by the
program. These redundant instructions are not recorded in
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the traces, yet they are important in the evaluation of the
pollution effect in the memory system. Therefore, to evalu-
ate the effect of incorrect speculation and pollution, we add
an instruction-fetching engine. This instruction-fetching en-
gine enables us to fetch any instruction in the program. This
engine is implemented in the following way: it first disas-
sembles the binary program to get all the instructions. Then
the engine reads all the instructions and keeps them in an in-
ternal data structure for future access. When the engine re-
ceives an address requesting for an instruction, it searches
in the data structure and returns the corresponding instruc-
tion. With this addition, the instructions examined are not
limited to the ones recorded in the trace-driven simulation;
the redundant instructions due to incorrect speculation can
also be accessed and included in the final simulation.

~To simulate speculative execution, our final simulation
combines both the trace-driven simulation and the instruc-
tion-fetching engine. The traces from the trace-driven sim-
ulation are used to guide the correct execution path of the
program, while the instruction-fetching engine is responsi-
ble for the speculative behavior of prefetching activities.
More specifically, our simulated microprocessor will exe-
cute the correct instructions from the traces; our prefetching
mechanism will guess the instructions needed in the future
and fetch them speculatively using the instruction-fetching
engine. In this way, we can correctly model the execution of
a program as well as the speculative behavior of prefetch-
ing.

3.2 Description of benchmarks

To assess the performance of the BP-based prefetching,
we used the SPEC CINT95 benchmarks [SPEC95] to mea-
sure its performance against other prefetching schemes.
However, some of the benchmarks in SPEC CINT95 have
very small instruction footprints, such as compress and
ijpeg, hence, we exclude these benchmarks because they
hardly miss at all for the cache sizes examined.

For the SPEC CINT95 benchmark, we used ATOM
[Eustace95], a code instrumentation interface from Digital
Equipment Corporation, to generate and capture address
traces. The benchmarks were first instrumented with AT-
OM, then executed on a DEC Alpha workstation running
OSF/1 3.2 to generate traces. These traces contained in-
structions from user code and shared libraries. The statistics
of traces from the SPEC CINT95 are summarized in
Table 1.

33 Hardware assumption

For the execution engine, we assume instruction fetching
is the only source of stalls. We simulated a 4-issue machine
and the instruction fetching stops only at the boundary of a
cache line or a branch. Under this model, all instructions are




SPEC CINT 95 benchmarks
Benchmarks | ACRES | BCCURS | instroctions
gce 26,521,090 | 92.18% | 191,548,351
g 17,873,434 | 84.15% | 136,898,927
i 25008567 | 93.45% | 248,490,436
perl 39,714,631 | 96.61% | 365,938,737
vortex | 27,792,013 | 98.72% | 282,462,328

Table 1: Statistics of the benchmarks used
Input to the SPEC95 benchmarks was a reduced input
data set; each benchmark was run to completion.

executed within one cycle after they are fetched. This sim-
plified assumption adds more pressure to the instruction
prefetching.

For the memory system, we assume 1 cycle access time
for a level-1 instruction cache hit, and 6 cycles for a miss.
We also assume a perfect level-2 instruction cache, so it will
always have the instructions needed.

The branch predictor used in all the following simulation
is a variation of two-level dynamic branch predictor, gshare
[McFarling93], with 15 address bits and 9 global history
bits. This predictor has a hardware cost of about 8K bytes of
storage.

34 Bus arbitration pelicy

We assume the bus to the level-2 cache can only take one
request per cycle, so a bus arbitration policy is needed be-
tween the execution engine and the prefetching unit. All re-
quests are serviced in a prioritized order: First, requests
from the execution engine are serviced, since these requests
result from cache misses and directly affect total execution
time. Second, prefetches based on branch prediction are ser-
viced, because they are more accurate than sequential
prefetches. Finally, sequential prefetches are serviced when
neither of the above is present, otherwise they are postponed
and stored in a first-in-first-out queue.

To avoid redundant bus traffic, all requests are compared
against requests in transit on the bus, and any duplicated re-
quests are canceled.

4. Simulation Results and analysis

In this section, we compare our scheme with the best of
next-n line prefetching scheme, and wrong path prefetch-
ing. For the next-n line scheme, we examined the perfor-
mance of next 1 to 4 lines, and selected the best
configuration, next-2 lines, as representative. We also plot-
ted the best configuration for BP-based prefetching, the ba-
sic BP-based scheme (a look ahead program counter) plus
the sequential next-2 lines of the look ahead PC, denoted as

BP-2 in the legends.

The metric we use to measure the performance is the to.
tal execution time in cycles. To measure how much im.
provement can be achieved, we further compute the
percentage of stall time (stall overhead), as follows:

stall overhead % = total execution time — perfect execution time
perfect execution time

X100

Here the perfect execution time assumes a perfect cache
with zero miss rate. Therefore, this perfect execution time is
the best possible lower-bound we can ever achieve.

In Figure 3 to Figure 6, we compare the performance of
the best configuration of next-n line prefetching, wrong
path prefetching, and the best configuration of BP-based
prefetching.

Figure 3 shows that BP-based prefetching outperforms
both next-n line prefetching and wrong path prefetching in
all benchmarks and cache sizes examined. The y-axis indi-
cates the stall overhead, hence a lower bar indicates a better
scheme. Averaging across benchmarks, BP-based prefetch-
ing is better by a factor of 17-32% in stall overhead than
next-2 line prefetching, and by a factor of 34-44% than
wrong-path prefetching.

To study the sources of improvement, we measure the
number of prefetches generated per 100 instructions. In
Figure 4, two cache configurations are shown for each
benchmark: small (4K) and large (16K). Each bar indicates
the total prefetches generated by each scheme, and these
prefetches are further classified into three categories. Help-
ful prefeiches (shown in black) are the prefetches that are
actually used by the program and, hence, improve the total
execution time. Neutral prefetches (shown in white) are the
prefetches that were not used by the program, yet they do
not cause any harmful effects either. Harmful prefetches
(shown in gray) are the ones that replace useful data (pollute
the cache), and, hence, lower the performance. These harm-
ful prefetches cause misses that would not occur in a cache
without prefetching.

In Figure 4, we can see that BP-based prefetching has
more helpful and more total prefetches than other schemes.
These extra helpful prefetches improve the total execution
time. Also note that the portion of harmful prefetches in BP-
based prefetching is slightly smaller than other schemes.
and this fact helps to improve the execution time too.

To analyze the nature of useful prefetches, we further
classify the useful prefetches into two categories: prefetches
causing hits, and prefetches reducing miss penalties, as
shown in Figure 5. The prefetches causing hits are prefetch-
es early enough such that instructions are already in the
cache by the time the program needs them (hit in cache).
These prefetches completely reduce the penalty to zero. On
the other hand, the prefetches reducing miss penaities are
also correct prefetches, but they are not generated early
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Figure 3: Performance measure: stall overhead for different schemes. Stall overhead measures
the extra execution time needed over a perfect cache with zero miss rate.

enough. By the time the program needs the instructions, penalties associated with these prefetches, but the penalties
these prefetches have not brought the instructions into the are smaller than normal cache misses.

cache vet (hit in transfer). Therefore, there are still some As shown in Figure 5, BP-based prefetching has more
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RV Y TEE AL R

prefetches causing hits than other schemes (hit in cache, mance. ; V
shown in black). This means that BP-based prefetching is To study the impact of prefetching on the overall memo-
able to generate useful prefetches earlier, in addition to gen- ry traffic on the bus to level-2 cache, we plot the utilization
erating more useful prefetches, leading to better perfor- of the bus in Figure 6. The y-axis represents the percentage
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. cache, and late prefetches generate hits being transferred.

of bus utilization, which is computed as: (total bus busy cy-
cles)/(total execution cycles)x100. Here the traffic that
keeps the bus busy includes the miss requests generated by

the execution unit as well as the prefetching requests. Even
though BP-based prefetching generates more prefetches,
the overall bus utilization is only slightly higher than next- -
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2 line prefetching. This is because most of the prefetches are
helpful in BP-based prefetching and, thus, reduce the miss
Tequests generated by the execution unit. Therefore, BP-
based prefetching is very economical in bus traffic by being
selective and accurate. Also note that the total execution
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time for BP-based prefetching is shorter than other
schemes, so the percentage would appear higher even with
similar level of traffic. Averaging across benchmarks, the
bus utilization of BP-based prefetching is about 28%.
Finally, to get the big picture on the performance of BP-
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Figure 7: A cache with BP-based prefetching
achieves lower execution time than a plain
cache of 4 times the size.

based prefetching, the total execution time of BP-based
prefetching is compared with a plain cache without
prefetching. As shown in Figure 7, a cache with BP-based
prefetching achieves lower execution time than a cache of 4
times the size. In particular, a 2K BP-based prefetched
cache even outperforms a 16K cache without prefetching.

To gain further understanding, we compare BP-based
prefetching scheme with other schemes. Unlike table-based
schemes, the BP-based prefetching scheme is able to reduce
the first time compulsory misses by pre-computing target
addresses. This ability to independently compute target ad-
dresses eliminates the need for expensive tables and the
awkward situation of having no initial history information
at first. Furthermore, using advanced dynamic branch pre-
dictors offers much more accurate target-prediction than
simple table-based schemes. Therefore, BP-based prefetch-
ing, like wrong-path prefetching, is more effective than ta-
ble-based prefetching schemes.

By reducing stalls on taken branches, BP-based prefetch-
ing also outperforms wrong-path prefetching. Our prefetch-
ing scheme runs ahead of the real program counter,
allowing it to compute and fetch targets in advance, even
before they are requested by the execution unit. In contrast,
wrong-path prefetching calculates target addresses at de-
code stage, too late to produce any useful prefetches when
branches are actually taken.

From the above analysis, we can see the benefit of BP-
based prefetching lies in the ability to run ahead of the real
program counter. :
5. Summary and Conclusions

In this paper, we present an effective instruction
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prefetching method, branch prediction-based prefetching,
which applies branch prediction information and specula-
tively runs down the instruction stream. BP-based prefetch-
ing can achieve higher performance than a cache of 4 times
the size. Examining other hardware instruction prefetching
schemes, we see that BP-based prefetching is better by a
factor of 17-32% in stall overhead compared to the best
next-n line prefetching, and by a factor of 34-44% com-
pared to wrong-path prefetching. BP-based prefetching is
able to generate more useful prefetches than other schemes
and generate them earlier. In addition, these prefetches are
generated selectively, thus, the bus utilization is very close
to next-n line prefetching, averaging 28% for SPEC95
benchmarks.
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