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Abstract

Per-address two-level branch predictors have been
shown to be among the best predictors and have been im-
plemented in current microprocessors. However, as the cy-
cle time of modern microprocessors-continues to decrease,
the implementation of set-associative per-address two-level
branch predictors will become more difficult. Instead, di-
rect-mapped designs may be more attractive. In this paper,
we investigate an alternative implementation of the per-ad-
dress two-level predictor referred to as the tagless, direct-
mapped predictor, which is simpler and has faster access
time. The tagless predictor can offer comparable perfor-
mance to current set-associative designs since removal of
tags allows more resources to be allocated for the predictor
and branch target buffer (BTB). Removal of tags also de-
couples the per-address predictors from the BTB, thus al-
lowing the two components to be optimized individually.
Furthermore, our results show that this tagless implemen-
tation is more accurate because it handles conflict misses in
the branch history table better.

Finally, we examine the system cost-benefit for tag-
less per-address predictors across a wide design space us-
ing equal-cost contours. We study the sensitivity of
performance to the workloads by comparing results from
the Instruction Benchmark Suite (1BS) and SPEC CINT95.
Our work provides principles and quantitative parameters
for optimal configurations of such predictors.

1. Introduction

As microprocessor designs move toward wider instruc-
tion issue and deeper pipelines, effective branch prediction
becomes essential to exploiting full performance. A good
branch prediction scheme increases the performance of a
microprocessor by eliminating instruction fetch stalls in the
pipelines. As a result, numerous high performance branch
prediction schemes have been proposed, such as two-level
adaptive branch predictors [Yeh91], correlation-based pre-
dictors [Pan92], and hybrid branch predictors
[McFarling93, Chang94].

Among different predictors proposed, the per-address
two-level branch predictor has been shown to be one of the
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best and has been implemented in the Intel Pentium Pro pro-
cessor [MReport95]. Typically, the two-level per-address
predictor is coupled with a branch-target buffer (BTB)
through the sharing of common tags [Yeh92, Calder94].
Both components benefit from tags and, thus, cost can be
reduced by sharing. In particular, the tags enable high hit-
rate set-associative design for the predictor and the BTB.

However, as the clock frequency of modern micropro-
cessors continues to increase, the coupled set-associative
design using tags may no longer be the best choice. This is
because set-associative designs require longer access time
than direct-mapped designs and, thus, may become a criti-
cal path in a high clock rate microprocessor. Therefore, we
re-evaluate an alternative tagless direct-mapped version of
two-level per-address predictors [Yeh91].

A tagless direct-mapped per-address predictor can offer
performance comparable to current implementations. Typi-
cally the tagless predictor does not have hit-rates that are as
high as a set-associative design, but it offers two advantag-
es. First, by removing tag storage, more resources can be al-
located to the predictor and BTB to improve performance.
Second, by decoupling the BTB from the predictor, the tag-
less design offers the flexibility to optimize the BTB and
predictor individually. In particular, the predictor can have
a different number of entries than the BTB. Thus, the BTB
need only store taken branches instead of all branches
[Smith81, Calder94]. Also note that the removal of tags
does not prevent the identification of branch instructions,
because branches can still be identified using predecode in-
formation, which is already commonly employed in com-
mercial microprocessors.

To justify the tagless implementation, we conduct per-
formance evaluation and show that, for the prediction pro-
cess, tagless predictors in general perform better, or no
worse, than direct-mapped tagged predictors. To analyze
the improvement, we break down the total errors into tran-
sitional-state and steady-state errors. We found that tagless
predictors have lower transitional errors and, consequently,
have higher performance. Moreover, the tagless predictor is
simpler and faster than the tagged version.



history._bit : o address_bit
%,__,mm<
BHT_en;try history_bit |oZa oo oo <o
g 2 Lo Zola
BHT Table of ;wo»bit counters

Figure 1: Schematic for a per-address
two-level branch predictor

To develop general design principles for optimal config-
urations, we exhaustively search the design space of tagless
per-address predictors. Our study shows the sensitivity of
the optimal configurations to various program characteris-
tics. To conclude, we derive general principles for selecting
the best parameters. When given a specific budget and
benchmark suite, these principles can help designers to se-
lect the best configurations.

The rest of this paper is organized as follows. In
Section 2 we briefly review the per-address two-level pre-
dictor, and discuss the tagless per-address prediction
scheme. In Section 3 we explain why the tagless scheme
can have a better prediction accuracy thanm a traditional
tagged scheme. Section 4 develops a cost analysis proce-
dure to identify optimal tagless predictor designs. We
present some concluding remarks with Section 5.

2. Per-address two-level branch predictors

The two-level per-address adaptive branch predictor is a
variation of two-level branch predictors proposed by Yeh
and Patt [Yeh92, Yeh93]. As shown in Figure 1, a two-level
per-address adaptive branch predictor consists of two ta-
bles. The first-level table, called the branch history table
(BHT), has multiple shift-registers called branch history
registers (BHRs). Each of these registers is used to record
past branch outcomes for a single static branch. The branch
outcome patterns recorded in the first-level table are then
used to index a set of counters in the second level. The col-
umn index into the counters is usually some part of the ad-
dress of the branch being predicted. Although there are
many options for the counters, the best performance has
been observed when the counters are two-bit saturating up-
down counters [Nair95, Chen96a].

Since the counters are typically organized as a two-di-
mensional array, there can be many configurations for the
second-level table. If a configuration has multiple rows and
columns, then it is generally referred to as a PAs scheme ac-
cording to the taxonomy by Yeh and Patt [Yeh93]. If the ta-
ble has a single column. it is a PAg scheme. If the table 1s a
single row, the predictor is equivalent to the traditional two-
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Figure 2a: Tagged per-address two-level
branch predictor
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Figure 2b: Tagless per-address two-level
branch predictor

bit counter scheme proposed by Smith [Smith81] because
the counters are exclusively indexed by the branch address.
This design space has been thoroughly studied by Sechrest
et al. [Sechrest96].

The two-level per-address predictor has been shown to
be among the best predictors currently in use. It has also
been adopted in industry for high performance micropro-
cessors. For example, the Intel Pentium Pro employs a two-
level per-address predictor with a 512-entry 4-way BHT,
where each BHT entry records 4-bit per-address history
[MReport95].

2.1 Tagless implementation

In a typical two-level per-address scheme, the predictor
is coupled with a branch target buffer (BTB) through the
sharing of common tags [Yeh92, Calder94], as shown in
Figure 2a. This coupling of predictor and BTB is cost effec-
tive since the predictor and BTB share a single copy of the
tags. The presence of tags also allows set-associative pre-
dictors, which provide a high hit rate for both predictor and
BTB.

Unfortunately, as the cycle time of microprocessors con-
tinues to decrease, the coupled-set-associative design using
tags may no longer be the best choice. Set-associative im-
plementations require longer access time than direct-
mapped designs, and may become a critical path in a micro-
processor with short cycle time. In addition, the coupling of
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Figure 3: An example comparing the flush and no-flush policies

This example illustrates the difference between the flush and no-flush miss handling policies for a conflict miss in the
branch history table (BHT). In this example, each BHT entry, i.e. the branch history shift-register, can store an 8-bit per-
address history of the branches that index it; O represents not-taken and 1 represents taken. R represents an old branch
being replaced, and N represents the new incoming branch. As illustrated, the incoming branch, N, happens to index the
same shift-register that R does, so a miss occurs. The flush policy changes the register content to all 1’s and shifts in the
new outcome, which is 0, after outcome of N is resolved. In contrast, the no-flush policy simply shifts in the new outcome,
0, without flushing the old history of R.

predictor and BTB degrades performance in two ways. In the next section, we will show that, because of better
First, the BTB needs to allocate space to record not-taken miss handling policy, the tagless scheme is actually superior
branches, since the predictor needs information for all to the direct-mapped tagged predictor.

branches. This wastes BTB resources [Calder94]. Second, .

the number of history entries in the predictor is limited to be 3, Performance analysis for the tagless
the same as the number of BTB entries, restricting the de- predictors

signer's freedom to fully explore the design space. As cycle
times become shorter, we believe that decoupled, direct-
mapped per-address schemes, as shown in Figure 2b, de-
serve closer inspection.

Note that the removal of tags does not prevent the iden-
tification of branch instructions. Branch instructions can
still be identified using predecoded information stored in
the cache, which is already commonly employed in com-
mercial microprocessors. 3.1 Miss handling policies

In a decoupled, direct-mapped per-address scheme de- When misses occur, the branch history shift-register has

sign, tags for the branch predictor are redundant. Tags are the option of flushing or not flushing its old history con-

crucial for a set-associative BHT to distinguish branches in tents, as shown in Figure 3. Tagless predictors must employ

the same set. In contrast, in a direct-mapped BHT, no such the no-flush policy since they do not have tags to detect a
distinction is needed, so tags only affect the miss handhng “miss.” Tagged predictors, on the other hand, can imple-
policy. More specifically, if there is a miss (or conflict), the ment the flush policy, where the history is flushed and reset
predictor needs to decide whether to use the history from to a default reset value. The old history is discarded, and the
old branch, or flush the history register and restart with incoming branch starts accumulating its own history. This

some predefined “reset value.” The former scheme does not miss handling policy has intuitive meaning and takes advan-
need tags at all, and we refer it as the tagless branch predic- tage of the tags.

tor in this paper. As an aside, we note that the tagless imple- . .

mentation of per-address predictors can be categorized as a 3.2 Simulation Methodology

per-set history scheme, according to [Yeh93], because sev- To fairly compare the tagged and the tagless predictors,

eral branches may share one history register. the best tagged predictor must be determined and used for
comparison. We exhaustively simulated all possible 256 re-
set values for 8-bit history patterns and sampled 256 reset
values for 14-bit predictors to find the best reset value for

In this section, we investigate how tags affect the predic-
tion mechanism, excluding the hit rate factor. Tags have no
effect when a branch hits in the history shift-register; tags
only affect prediction accuracy when misses or conflicts oc-
cur. Tagged schemes can employ different miss handling
policies which in turn can yield different prediction accura-
cies.
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gec 15,647 24,048,381
2 go 4,742 18,168,554
o ipeg 902 40,854,598
& I 345 24,977,690
perl 1,576 31,309,305
vortex 5.963 _ 24,979,201
gron 6,333 11807487
gs 12,852 16,307,247
mpeg_piay 5,598 9,566,290
o nroft 5,249 22,574,884
2 real_gce 17,361 14,309,867
sdet 5310 5,514,439
verilog 4,636 6,212,381
video_play 4,606 5,759,231

Table 1: Static and dynamic conditional branch
counts in SPEC CINT95 and IBS programs

each benchmark. Since the best reset value is different for
each benchmark, we present results using the best value for
each benchmark!, instead of applying one common value
for all. This creates an unreachable upper bound for the per-
formance of the tagged predictor.

To focus on the prediction mechanism, we use direct-
mapped schemes for both tagless and tagged predictors to
isolate the effect of hit rate. For simplicity, we select PAg
predictors of 8-bit and 14-bit history for our comparisons.

To assess the performance of tagless and tagged predic-
tors, we conduct a trace-driven simulation. As input for the
simulation, we use the Instruction Benchmark Suite (IBS)
benchmarks [Uhlig95] and the SPEC CINT95 benchmarks
[SPEC95]. The branch statistics for both benchmark suites
are summarized in Table 1.

The IBS benchmarks are a set of applications designed to
reflect realistic workloads. The traces of these benchmarks
are generated through hardware monitoring of a MIPS
R2000-based workstation. These traces were collected un-
der Ultrix 3.1 and include both kernel-level and user-level
addresses. ‘

For the SPEC CINT95 benchmark, we used ATOM
[Eustace95], a code instrumentation interface from Digital
Equipment Corporation, to generate address traces. The
benchmarks are first instrumented with ATOM, then exe-
cuted on a DEC 21064 workstation running OSF/1 3.0 to
generate traces. These traces contain only user-level in-
structions.? :

1. As an aside, we noticed that the best reset value is the least frequently
occurring history pattern in the benchmark, because it causes least interfer-
ence in the normal prediction process. This “best” reset value differs for
each benchmark.

2. Input to the SPEC9S benchmarks was a reduced input data set; each
benchmark was run to completion.
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3.3 Simulation results

Figure 4 shows the average misprediction rates for tag-
less and tagged predictors for the IBS benchmarks. PAg
predictors with 8-bit history are used in this simulation.
Since the y-axis represents the misprediction rate, a lower
bar indicates better performance. The x-axis represents the
number of history shift-registers. Within each pair of bars,
the left bar represents the tagged predictor, and the right bar
represents the tagless predictor. The meaning of the gray
and dark components will be explained in section 3.4. As
shown in Figure 4, the tagless predictor outperforms the up-
per bound of tagged predictor in a 128-entry branch history
table, while both predictors have similar misprediction rates
in 1K- and 4K-entry configurations. Similar conclusions
can be drawn for SPEC CINT95 benchmarks, as Figure 5
shows.

When the length of history is increased from 8 bits to 14
bits, the misprediction rates for IBS are shown in Figure 6.
In this case, the tagless predictor outperforms the upper
bound of the tagged predictor for both 128 and 1K history
shift-registers configurations, and they perform very closely
to each other in 4k configuration. Similar conclusions can
be drawn for SPEC CINT9S5 as Figure 7 shows.

Although we presented the averaged results, the tagless
predictor is better than the tagged predictors in almost all
the benchmarks. Detailed data for each benchmark can be
found in [Chen96b].

In conclusion, the tagless predictors perform better when
the number of entries in branch history table is small or
when history length is long; tagless predictors have compa-
rable performance as tagged predictors in other configura-
tions. Furthermore, tagless predictors are both simpler and
cheaper.

3.4 Analysis using transitional-state and steady-
state error

To explain the superior performance of tagless predic-
tors, we broke down the total error into transitional-state er-
ror (black portion of the bars), and steady-state error (gray
portion of the bars), shown in Figures 4 to 7. Since tagless
and tagged predictors differ in the miss handling policy
(flush or no-flush), which affects the transitional state, we
classify the error into these two categories to identify the
sources of prediction error.

At any time, each of the history shift-registers, i.e. each
BHT entry, is either in a transitional state or in a steady
state. In a transitional state, the history of a branch does not
fill up the entire history shift-register. In other words, only
part of the history information belongs to the current branch
and the rest of the history information is either part of the re-
set value (flush policy), or history left from the replaced
branch (no-flush policy). The transitional state occurs on
the first few references right after a miss, and is, in a sense,
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similar to “cold starts” for caches. On the other hand, the
steady state is reached when a history shift-register is filled
up with branch outcomes exclusively from the current
branch.

For example, an 8-bit branch history shift-register isin a
transitional state during the first 8 references right after a
miss, since it takes 8 references (branch outcomes) to up-
date and fill up the history shift-register. From then until the
next miss occurs to the same shift register, the branch histo-
ry shift register is in its steady state.

We observed that the tagless predictors have less transi-
tional error than the tagged predictor. The transitional-state
error is due to the partially correct history which is likely to
index to a wrong 2-bit counter, resulting in incorrect predic-
tion. As can be seen in Figures 4 to 7, the transitional-state
errors for tagless predictors are smaller for configurations
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with a small branch history table (128 entries), and long his-
tory length configurations (14 bits).

To explain why tagless predictors have smaller transi-
tional errors, we examine the miss handling process of
tagged predictor. Every time a miss occurs, a tagged predic-
tor flushes the old contents of the history shift-register, re-
sets it to a default value, then starts accumulating the history
information from the new branch. However, if misses occur
too often, the contents of the history shift-register will be
flushed constantly and, thus, never reach a steady state. In
this case, most of the transitional state predictions only use
the 2-bit counter indexed by the reset value, resulting in
large transitional-state error. This situation gets worse when

history length is long, because it takes longer to reach
steady state.
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In contrast, a tagless predictor does not flush old history
when misses occur. On a miss, depending on the character-
istics of the previous branch, old history information may
not always be harmful. For example, if a mostly-taken
branch (e.g., loop branch) is replaced by another mostly-
taken branch, the old history information would be the same
as that of new coming branch and, thus, resulting accurate
prediction. In another situation, consider the case that a fre-
quently occurring branch X is only briefly interrupted by an-
other branch Y. When the branch X comes back, most of the
old history information would still belong to X, which helps
the prediction. This also explains why tagless predictors
perform better when history length is long.

The steady-state error 18 essentially independent of the
miss handling policy, and hence prediction accuracy for
steady state should be almost the same for both tagless and
tagged predictors. Indeed, the steady-state errors (shown as
the lower gray bars in Figures 4 to 7) are about the same for
both predictors. The prediction accuracy during the steady
state is high, because all the history used for prediction be-
longs to the current predicting branch. Therefore, the differ-
ence between tagless and tagged schemes lies in the error
during the transitional state.

In summary, tagless predictors can have better overall re-
sults than tagged predictors, in addition to its simpler imple-
mentations with more design flexibility.

4. Cost-benefit analysis for tagless predictors

After having shown the effectiveness of tagless per-ad-
dress two-level predictors, we present a cost-benefit analy-
sis for a wide range of configurations in its design space.
There have been some previous studies for per-address
schemes [Yeh93, Sechrest96]. However, their work mainly

focused on the design trade-off for the second-level table,

while we incorporate the first-level table cost for a complete
analysis. We examine hardware budgets ranging from 512
bytes to 16K bytes. The three parameters considered in our
design space are: the number of entries in branch history ta-
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ble (BHT), the number of address bits indexing 2-bit
counters, and the number of history bits in the branch histo-
ry registers. These three parameters are labeled as
BHT _entry, address_bit, and history_bit, respectively; see
Figure 1 for a pictorial representation. The estimated cost in
bits for the tagless per-address scheme is given as follows:

Cost = (BHT _entry) * (history_bit) +
2( history_bit + address_bit + 1)

Based on this cost function, we can derive equal-cost
contour lines for a fixed number of branch history entries in
the BHT. Note that history bits are inherently more expen-
sive than address bits, because history bits require extra re-
sources (BHT) to record them. Figure 8 and 9 show the
equal-cost contour lines for 128 and 8K BHT entries respec-
tively.

In Figure 8, equal-cost contours are diagonal straight
lines. This implies that, when the budget is fixed and the
BHT entries are few, substituting one address bit with one
history bit will incur almost no extra cost. In other words,
the costs of each history bit and address bit are almost equal.

However, when the number of BHT entries is large, as
shown in Figure 9, the equal-cost contours are almost paral-
lel to the x-axis for small budgets. This implies that with the
same budget, we can have more address bit than history bits.
This is because when the number of BHT entries is large,
the cost of each additional address bit is insignificant to that
of each additional history bit.

4.1 Cost/performance analysis

Figure 10 shows the optimal points for different budgets
and configurations for the SPEC CINT9S benchmarks. Var-
jous configurations with the same budget are grouped as a
clusters of bars, where each bar represents the best point for
a fixed number of BHT entries. The two-bit counter scheme
is shown as a line. The best per-address two-level predictor
consistently outperforms the 2-bit counter scheme.

However, for the IBS benchmarks (Figure 11), the two-
bit counter scheme outperforms the per-address two-level
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predictor with small budget (512 bytes). This is because IBS
have relatively large number of static branches to be distin-
guished and predicted. These branches can be distinguished
and predicted using either address bits or history bits (pat-
terns). History bits require extra resources (BHT) to record
them, while address bits can be obtained from the program
counter and, thus, are essentially free. Consequently, when
the budget is small, history information cannot effectively
distinguish large number of static branches, because there
are not enough resources to build a large BHT to record his-
tory information. In this particular case, the two-bit counter
scheme can outperform a two-level predictor, because it
does not need any history. However, as budgets increase,
the two-bit counter scheme improves only 2 litde. In con-
trast, the per-address two-level predictor improves and out-
performs the two-bit counter scheme.

To study the optimal designs for two-level predictors, we
plot the misprediction rates for different budgets and num-
bers of BHT entries, shown in Figure 12 and 13. The x-axis
indicates the number of entries in the BHT, and the y-axis
indicates the misprediction rate. The dotted horizontal lines
represent two-bit counter schemes (2bc). Each curve line in
the figure represents a fixed budget, ranging from 5 12 bytes
to 16k bytes. In addition to the number of BHT entries la-
beled in the x-axis, the optimal configuration for each bud-
get is labeled with its two other parameters, formatted as
(history bits, address bits).

When the budget is small, the address bits are very im-
portant. This is because, as previously explained, address
bits are cheaper than history bits since they do not need ex-
tra storage resources. Therefore, when the budget is small,
it is relatively more efficient to use address bits instead of
history bits. This fact can be verified for SPEC, shown in
Figure 12. Labeled as the right number in each ordered pair,
the number of address bits for the optimal configuration is
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relatively large when the budget is small. IBS exhibits sim-
ilar behavior, as shown in Figure 13. The only difference is
that the number of address bits is even larger for IBS, since
IBS has more static branches to be distinguished than the
SPEC benchmarks.

However, as budgets increase, the importance of address
bits rapidly decreases and is replaced by history bits. At
first, it may seem to be counter-intuitive that, when budgets
increase, the number of address bits decreases, instead of in-
creasing correspondingly or at least remaining constant.
This is because the increase in history bits (patterns) can
also replace the function of address bits, which is to distin-
guish branches. Therefore, as the budget increases, the his-
tory bits gradually takes place of address bits and become
more important. This trend can be seen for both SPEC and
IBS, shown in Figure 12 and 13. Note that the number of ad-
dress bits in SPEC decreases more rapidly because they
contain less static branches.

The importance of history bits quickly becomes domi-
nant as budgets increase. In addition to distinguishing static
branches like address bits, history bits can distinguish and
better predict different patterns within the same branch.
Thus, history bits can offer additional benefit over the ad-
dress bits. This benefit is particularly important for branch-
es that are hard to predict. Moreover, this benefit becomes
more significant as budgets increase, since more resources
can then be allocated to record history information. This
trend of increasing address bits can be verified in both the
SPEC and IBS benchmarks, shown in Figure 12 and 13. As
the optimal points move downward (budgets increase), the
number of history bits increases (left numbers in the paren-
theses). We also notice that the number of history bits in-
crease faster for SPEC, because branches in SPEC are
relatively harder to predict (Sechrest96).
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Also note that as budgets increase, the number of entries
in the branch history table also increases with the number of
history bits. This trend can be explained by the increasing
importance of history information. As described in the pre-
vious paragraph, history information becomes important
when the budget is large. However, to effectively increase
history information, increasing the number of history bits
alone is not enough. Although by adding more history bits,
more history information can be recorded in a longer branch
history register, this information can easily be replaced and
lost due to misses. Therefore, the number of entries in the
BHT must be increased accordingly to improve the hit-rate.
Since the number of BHT entries affects the hit rate, the
number of entries needed is mostly determined by the num-
ber of static branches in the benchmarks. To see this trend,
notice that the optimal configuration gradually moves to-
ward the right along the x-axis (more entries in branch his-
tory table) as they move downward from one curve to
another (greater budget), as shown in Figure 12 and 13.

As an aside, throughout the design budgets we exam-
ined, ranging from 512 bytes to 16KB, the tagless PAg
scheme was never an optimal configuration. The tagless
PAg is not cost-effective because it only uses expensive his-
tory bits, instead of relatively cheap address bits.

4.2 Design principles

The principles for designing tagless per-address predic-
tors can be summarized as follows. When the budget is
small, address information should be emphasized first. In
other words, the number of address bits should be much
larger than history bits (e.g., 8 address bits versus only 2 his-
tory bits). The number of address bits is determined by and
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proportional to the number of static branches in the bench-
marks.

As the budget increases, address bits should decrease ac-
cordingly; at the same time, resources should be allocated
for more history bits as well as the number of branch history
entries. Concerning the rate at which address bits should be
replaced with history bits: more aggressive replacement
should be adopted when branches are hard to predict, or
when the number of static branches is small. For example,
when the budget is small, the SPEC benchmarks achieves
the best performance when the number of address bits is 4
times the number of history bits. However, when the budget
is large, the best performance is achieved when the number
of address bits is reduced to less than half the number of his-
tory bits.

In addition to increasing with the budget, the number of
branch history entries is determined by the number of static
branches in the benchmarks. A large number of branch his-
tory entries should be allocated if the number of static
branches is large, e.g., 4k to 8k entries are needed for the
benchmarks we examined.

When the numeric values for design parameters are
needed, computer architects can first measure the statistics
of the targeted benchmarks, which including the number of
static branches and the misprediction rate for a baseline pre-
dictor within the budget. Then, to fine-tune the design pa-
rameters, these statistics can be compared to those of IBS
and SPEC CINT9S, as shown in Table 1, Figure 12, and
Figure 13. Depending on how close the statistics are to
those of IBS and SPEC, the parameters we have provided
can either give a good estimate or, at least, significantly re-
duce the design space.



5. Concluding remarks

In this paper, we first evaluated the benefits of tagless
per-address two-level branch predictors and then examined
the design principles and cost/performance trade-off for a
system with such a predictor.

To illustrate the benefits of tagless per-address predic-
tors, we argued that they have faster access time, lower
power, and simpler implementation than tagged predictors.
At the same time, tagless predictors can offer performance
comparable to the traditional tagged predictors by allowing
additional resources to be allocated to the predictor and
BTB and allowing these two components to be optimized as
separate entities.

We also showed that the prediction accuracy of tagless
predictors is better than direct-mapped tagged predictors.
By characterizing the sources of prediction errors, we dem-
onstrated the tagless predictor outperforms the direct-
mapped tagged predictor due to the better capability of han-
dling transitional-state branches.

We further evaluated cost and performance trade-off
across a wide range of the design space. Equal-cost contour
is the criteria for determining the best configuration. Based
on the simulation results from the SPEC CINT95 and IBS
benchmarks, we concluded that the number of address bits
indexing into the second level table is the most important
parameter when the available budget is small (e.g., 8 bit ad-
dress bits versus only 2 history bits). However, the impor-
tance of address bits quickly diminishes as the budget
increases. With a larger budget, history bits and the number
of branch history entries should increase accordingly, but
the number of address bits should be reduced. In addition,
we noticed that the PAg scheme is never an optimal config-
uration over the budgets and configurations we examined.

Finally, we present a set of design principles for tagless
per-address two-level predictors. First, we can measure the
statistics of target benchmarks, which include the number of
static branches and the misprediction rate for a base config-
uration. Then, we can compare these statistics with those
from IBS and SPEC. The quantitative data collected from
IBS and SPEC can provide a rough idea of how an optimal
implementation should be. By carefully examining the in-
teraction among different parameters, we also outlined the
principles on how to fine-tune these parameters for better
design.

Acknowledgment

This work was supported by DARPA contract DAA
HO04-94-G-0327.

96

References

Calder, B. and Grunwald, Dirk. Fast & accurate
instruction fetch and branch prediction. Proc. 21st
Int. Symp. Comp. Arch., 1994.
Chang, P, Hao, E., Yeh, T. and Patt, Y. Branch
classification: a new mechanism for improving
branch predictor performance. Proc. 27th Int.
Symp. Microarchitecture, Nov. 1994,
Chen, I-C. K., Coffey, J.T. and Mudge T. Analysis
of branch prediction via data compression. Proc.
7th Int. Conf. Arch. Support for Prog. Lang. and
Op. Sys., Oct. 1996.
Chen, I-C. K., Lee, C-C., Postiff M. and Mudge T.
Tagless two-level branch prediction schemes.
Tech. Report CSE-TR-306-96, University of
Michigan, 1996.
Eustace, A. and Srivastava, A. ATOM: A flexible
interface for building high performance program
analysis tools. Proc. Winter 1995 USENIX Tech-
nical Conf. UNIX and Adv. Comp. Sys., Jan. 1995.
[McFarling93] McFarling, S. Combining branch predictors. WRL
Tech. Note TN-36, June 1993.
Microprocessor Report, Sebastopol, CA: Mi-
croDesign Resources, March 1995.
Nair, R. Optimal 2-bit branch predictors. IEEE
Trans. on Computers, Vol. 44, No. 5, May 1995.
Pan, S-T., So., K. and Rahmeh, J.T. Improving the
accuracy of dynamic branch prediction using
branch correlation. Proc. 5th Int. Conf. on Arch.
Support for Prog. Lang. and Op. Sys., 1992.
Sechrest, S., Lee, C-C. and Mudge, T. Correlation
and aliasing in dynamic branch predictors. Proc.
23rd Int. Symp. on Comp. Arch., May 1996.
Smith, 1.E. A study of branch prediction strategies.
Proc. 8th Int. Symp. Comp. Arch., May 1981.
SPEC CPU’95, Technical Manual, August 1995.
Uhlig, R., Nagle, D., Mudge, T., Sechrest, S. and
Emer, J. Instruction Ferching: Coping with Code
Bloat. Proc. 22nd Int. Symp. Comp. Arch., June
1995.
Yeh, T-Y. and Patt, Y. Two-level adaptive training
branch prediction. Proc. 24th Int. Symp. Microar-
chitecture, Nov. 1991.
Yeh, T-Y. and Patt, Y. A comprehensive instruc-
tion fetch mechanism for a processor supporting
speculative execution. Proc. 25th Int. Symp. Mi-
croarchitecture, December 1992.
~ Yeh, T-Y. and Patt, Y. A comparison of dynamic
. branch predictors that use two levels of branch his-
tory. Proc. 20th Int. Symp. Comp. Arch., May
1993.

[Calder94]

[Chang94]

[Chen96a)

[{Chen96b]

[Eustace95]

[MReport95]

[Nair95]

[Pan92]

[Sechrest96]
{Smith81]

[SPEC95]
[Uhlig95]

[Yeh91]

[Yeh92]

[Yeh93]



