ACM Transactions on Modeling and Computer Simulation. vol 7, no 1. January, 1997. pp. 7-41.

Trap-driven Memory Simulation with Tapeworm I

RICHARD UHLIG, DAVID NAGLE, TREVOR MUDGE, and STUART SECHREST

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, Ml 48109-2122

Trap-driven simulation is a new approach for analyzing the performance of memory-system compo-
nents such as caches and translation-lookaside buffers (TLBs). Unlike the more traditional trace-
driven approach to simulating memory systems, trap-driven simulation uses the hardware of a host
machine to drive simulations with operating-system kernel traps instead of with address traces. As a
workload runs, a trap-driven simulator dynamically modifies access to memory in such a way as to
make memory traps correspond exactly to misses in a simulated cache structure. Because traps are
handled inside the kernel of the host operating system, a trap-driven simulator can monitor all com-
ponents of multi-task workloads including the operating system itself, Compared to trace-driven sim-
ulators, a trap-driven simulator causes relatively little slowdown to the host system because traps
occur only in the infrequent case of simulated cache misses. Unfortunately, because they require spe-
cial forms of hardware support to cause memory-access traps, trap-driven simulators are difficult to
port, and they are not as flexible as trace-driven simulators in the types of memory configurations that
they can model.

Several researchers have recently begun to use trap-driven techniques in their studies of mem-
ory-system design tradeoffs, but little is know about how the speed and accuracy of the technique
varies with the type of simulations conducted, or about the nature of its drawbacks with respect to
portability and flexibility. In this paper, we use a prototype trap-driven simulator, named Tapeworm
I1, to explore these issues. We expose both the strengths and the weaknesses of trap-driven simulation
with respect to speed, accuracy, completeness, portability, flexibility, ease-of-use, and memory over-
head. Although the results are drawn from a specific implementation of trap-driven simulation, we
believe that many of our results from Tapeworm hold true for trap-driven simulation in general.

Keywords: memory system, cache, TLB, simulation, trace-driven simulation, trap-driven simulation

1. INTRODUCTION

Trace-driven simulation is one of the most popular methods for evaluating mem-
ory-system architectures consisting of caches and translation-lookaside buffers
(TLBs) [Smith82, Holliday91]. With trace-driven simulation, a stream of memory
references generated by some workload of interest is first collected from an exist-
ing host machine, and then passed to a simulator that emulates the behavior of
some yet-to-be-built cache or TLB. At its core, a trace-driven simulator executes a
loop similar to that shown on the left side of Fig. 1. The processing steps include
obtaining the next address in the trace, searching for that address in a simulated
cache, and then invoking a replacement policy in the event of a miss. The trace
addresses can come from a file created by a trace-extraction tool, or they might be

"This article is an expanded version of a paper that originally appeared at the Sixth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS-VI), 1994. This work was supported by ARPA Contract #DAAH04-94-G-0327, by NSF Con-
tract #CISE9121887, and by a National Science Foundation Graduate Fellowship.

To appear in the ACM Trans. Modeling and Computer Simulation,

trev
Typewritten Text
ACM Transactions on Modeling and Computer Simulation. vol 7, no 1. January, 1997. pp. 7-41.

2 « Uhligetal.

Trace-driven Simulation Trap-driven Simulation
while (addr = next_addr (trace)){ traps invoke trap_handler (addr) :
if (search(addr))
hit++; trap_handler (addr) {
else { miss++;
miss++; set_access(addr, fullAccess);
replace (addr) ; replAddr = replace(addr);
} set_access (repladdr,
} noAccess) ;

Fig. 1. Trace-driven versus Trap-driven Simulation Algorithms. The core execution loops of trace-
driven and trap-driven simulators. This code omits many details of actual simulation, such as the
treatment of writes and assigning penalties for different types of misses (e.g., in a critical-word-first
cache). Simulators that evaluate multiple memory configurations in a single trace pass also have 3
more complex structure [Mattson70; Hill87; Thompson89; Sugumar93].

generated on-the-fly by an annotated workload [Agarwal86, Borg90, Eggers90,
Holliday91, Smith91, Cmelik94]. The search procedure involves indexing a data
structure that represents the cache and then, depending on the associativity of the
cache, performing one or more comparisons to test for a hit. Though a simple
operation, the search and test must be performed for every address in the trace.

Trace-driven simulation has worked well in the design of memory systems sup-
porting single-task applications such as those found in the SPEC benchmark suite
[SPEC91, SPEC93, Gee93]. However, a growing body of work is revealing that
memory systems tuned to such workloads do not perform well on more complex,
multi-task workloads that frequently invoke operating-system services
[Agarwal88, Anderson91, Chen93, Cvetanovic94, Mogul91, Nagle93, Nagle94,
Uhlig95, Ousterhout89]. Unfortunately, most trace-driven simulation tools are ill-
suited to analyzing workloads of this type because they are often limited to single,
user-level tasks [Holliday91, Cmelik94]. Trace-collection tools that can monitor
multi-task and OS-kernel activity rely either on expensive hardware monitoring
equipment, or require a cumbersome preprocessing step to statically annotate all
executable files that a multi-task workload might use [Mogul91, Sites96]. The
resulting annotated-executable files consume additional disk space as well as
physical memory, and thus typically require a special host machine loaded with
extra storage. Another problem common to trace-driven simulators is speed; trace-
driven simulations are slow because every memory reference, whether or not it
causes a change in simulated cache state, must be collected and processed.

One way to overcome some of the limitations of traditional trace-driven simula-
tion is to directly drive a simulator with memory-access traps caused by a work-
load as it runs on a host machine [Reinhardt93, Nagle93, Talluri94]. A trap-driven
simulator begins by restricting access to all memory locations in a workload’s
address space. These inaccessible locations represent regions of memory that are
not currently resident in some pre-defined, simulated cache structure. As the
workload executes, the first reference to each location causes a trap (correspond-
ing to a simulated cache miss), which is directed to a trap handler (see the right
side of Fig. 1). The handler counts the miss and then makes the required memory
location accessible. This action effectively caches the memory location in the sim-

Trap-driven Memory Simulation with Tapeworm Il « 3

ulated cache structure because subsequent references to this location will proceed
at full hardware speed without trapping. As the simulated cache fills, new cache
lines will begin to conflict with lines already held in the cache (as occurs in an
actual hardware cache). Therefore, in a final step, the handler emulates cache con-
flicts by restricting access to a displaced memory location, in accordance with
some replacement policy.

This paper is about a trap-driven simulator, named Tapeworm II, that offers two
principal advantages: (1) completeness and (2) speed. Tapeworm simulations are
complete because traps originating from any user task, as well as those generated
by OS kernel activity are captured. Tapeworm simulations are fast because its trap
handlers are invoked only in the uncommon case of a simulated TLB or cache
miss. Tapeworm offers other advantages as well: it requires no pre-processing of a
workload before monitoring begins, and it adds little memory overhead.

Despite these advantages, trap-driven simulation does suffer some drawbacks.
Although capable of simulating TLBs and caches with a range of sizes, associativ-
ities, and replacement policies, trap-driven simulation is generally less flexible
than trace-driven approaches with respect to the simulation of other architectural
structures, such as write buffers or instruction pipelines. Tapeworm, for example,
is able to simulate a range of TLBs and instruction caches, but is unable to simu-
late data caches because it lacks the necessary support from the particular host
machine on which it runs.! A second problem is portability; trap-driven simula-
tion requires some mechanism for controlling access to memory on the host
machine, a feature that may not be fully supported (especially at a fine-grained
level) by the host hardware. Finally, a trap-driven simulator’s presence in a system
can introduce new forms of measurement bias and variability. Though not strictly
a disadvantage, trap-driven simulations are more sensitive to inherent variations in
memory performance in an actual running system, an effect that is generally not
accounted for in trace-driven simulation studies.

The remainder of this paper examines the pros and cons of trap-driven simula-
tion in greater detail. Section 3 gives a detailed description of the design and
implementation of the Tapeworm II trap-driven simulator, which will serve in
Section 4 as our prototype for examining the strengths and weaknesses of trap-
driven simulation in general. We begin with a discussion of related work in the
next section.

2. RELATED WORK

Trace-driven simulation has been used to evaluate memory systems for decades.
In his 1982 survey of cache memories, A. J. Smith gives examples of trace-driven
memory-system studies that date as far back as 1966 [Smith82]. Holliday has sur-
veyed trace-driven simulation methods for both uniprocessor and multiprocessor
memory-system design [Holliday91], Stunkel et al. have studied trace-driven sim-
ulation in the specific context of multiprocessor design [Stunkel91], and a more-
recent survey of trace-driven tools and techniques can be found in [Uhlig96].

1. 'We explain in Section 4.4 the problems that we encountered simulating data caches in our proto-
type implementation of Tapeworm I1. It should be noted, however, that there are noinherent limi-
tations to trap-driven simulation that prevent data-cache simulation (as work on the Wisconsin
Wind Tunnel has shown [Reinhardt93]).

4 + Uhligetal.

Early work on trace-collection tools that capture complete system activity gen-
erally involved designing special monitoring hardware for an existing machine, or
modifying its microcode [Clark83, Alexander§s, Agarwal86]. Similar approaches
have been adopted in some more recent tools [Flanagan92, Nagle92, Torrellas92],
but researchers have noted that these hardware-based approaches are typically
costly to implement and suffer from problems of portability. Recent work over-
comes these limitations by extending software-based code-annotation techniques
[Eggers90, Smith91, Srivastava94] to include multi-process and OS activity
[Mogul91, Chen94, Sites96]. A promising new approach, used by SimOS, makes
OS monitoring easier by running the kernel executable inside a user-level process
that acts as a virtual hardware platform [Rosenblum95]. When combined with fast
emulation techniques that use dynamic binary translation [Cmelik94], SimOS is
able to drive memory-system simulators with address traces that include complete
system activity [Witchel96].

A few simulators avoid memory-reference traces altogether and are driven,
instead, by kernel traps. An early example of this approach is the first generation
Tapeworm, which performs TLB simulation [Nagle93]. This system intercepts
kernel traps to the software-managed TLB miss handlers of an R2000-based
workstation to drive a TLB simulator. Because all user and kernel misses are inter-
cepted, Tapeworm is able to fully consider multi-task and OS effects. Talluri
describes a similar trap-driven TLB simulator that runs on SPARC-based worksta-
tions [Talluri94]. Another early trap-driven simulator, the Wisconsin Wind Tunnel
(WWT) simulator causes traps by modifying the error-correcting code (ECC)
check bits in a SPARC-based CM-5 [Reinhardt93]. Unlike Tapeworm, which per-
forms only uni-processor simulations but includes multi-task and OS kernel refer-
ences, WWT is designed to investigate multi-processor cache coherence
algorithms but is limited to user-level activity of a single task.

Other work shares properties of both trace-driven and trap-driven simulation
[Martonosi92, Cmelik94, Lebeck95]. Like traditional annotation-based trace col-
lectors, these hybrid approaches annotate a program to invoke simulation handlers
on every memory reference. They differ from standard annotation in their support
for an optimization where a null handler is called on memory references known to
be satisfied by a simulated cache or TLB.

This paper advances previous work in two significant ways. First, it describes
the design of a second-generation Tapeworm which combines the OS-capable fea-
tures of the original Tapeworm TLB simulator with a WWT-like mechanism for
setting fine-grained memory traps. The resulting simulator is capable of both
instruction-cache and TLB simulation and captures multi-task and OS kernel
activity. Second, using Tapeworm II as a prototype, we investigate the pros and
cons of trap-driven simulation in general. We cover, in particular, the flexibility,
speed, accuracy, and portability of trap-driven simulation, issues that have not
been well explored by early work on this new memory-simulation method. We use
a benchmark suite (described in Section 4) to illustrate certain points in our com-
parisons with trace-driven simulation, but a detailed report of simulation results
obtained with Tapeworm I1 is beyond the scope of this paper. Tapeworm and Tape-
worm II have, however, been used in several case studies of interactions between
operating-system structure and memory architecture [Nagle93, Nagle94,
Uhlig95].

Trap-driven Memory Simulation with Tapeworm il « 5

Table I. Hardware-dependent Tapeworm Primitives. This is an idealize interface. For reasons
discussed below, the prototype implementation of Tapeworm II does not support the full
functionality of this interface.

Routine Description

tw_set_access{pa, size, state)

Set the access state of the memory region containing pa (a physical address). The
operation is performed on memory boundaries that align t0 size bytes, starting at (pa
div size) and extending for exactly size bytes. All subsequent references to memory
locations in this range are checked against the frap state, which may be one of three
values: noaccess, readaccess OF fullAccess. Memory accesses that violate the
access rights on a given memory location should result in an OS kernel trap that
passes control to Tapeworm with a call to tw_trap() (see below), while valid
accesses should proceed at full hardware speed.

tw_get_access(pa)

Return the access state for the memory location at physical address pa.

tw_trap({pa, va, type)

This routine, the entry point to the Tapeworm trap handler, is invoked by the host
hardware whenever an access violation occurs. The host hardware should provide
the physical address (pa) and virtual address (va) of the violating memory reference,
and the type of memory reference (type), which can be a dataLoad, & dataStore OF
an instrFetch.

tw_get_counts (type)

Returns a count of occurrences of a given type of event (e.g., dataLoad, dataStore,
instrFetch, instrExec). Only references to pages added to the Tapeworm domain
should be counted (see tw_add_page () and tw_remove_page () in Table m.

3. TAPEWORM Il DESIGN AND IMPLEMENTATION

We outlined the essential ideas behind trap-driven simulation in the introduction.
In this section we expand our description of trap-driven simulation by describing
the Tapeworm II design in detail. In particular, we will cover how Tapeworm con-
trols memory access, how it handles traps, and how it interacts with the host oper-
ating system.

3.1 Hardware-dependent Tapeworm Primitives

We begin by describing a collection of primitive functions that Tapeworm
requires from the host hardware that it runs on. To enhance portability, Tapeworm
collects these functions together into a single interface, shown in Table I. This
interface is ideal, in the sense that if a given port of these primitives is fully sup-
ported, then Tapeworm will be able to simulate the full range of memory configu-
rations that it was designed for. For some hosts, however, it many not be possible
to support the full semantics of the interface without modifications to the host
hardware (this was the case with our prototype implementation of these primitives
on a DECstation 5000/200). A partial implementation of the primitives still
proved useful, although the range of simulations we could perform was somewhat
restricted (e.g., Tapeworm II supports TLB and I-cache simulation, but cannot
simulate D-caches).

6 e+ Uhligetal.

The first three routines, tw_set_access (), tw_get_access (), and
tw_trap (), form the core of this interface; they enable Tapeworm to control the
trapping mechanisms of the host hardware. To support the maximum flexibility in
memory simulations, an implementation of tw_set_access () should support
a wide a range of values in the pa, size, and state parameters. To enable
multi-task and OS memory simulations, values of pa referring to any user or ker-
nel memory location should be permitted. To enable both TLB and cache simula-
tions, values of size ranging from as small as a cache line (4 or 8 words) to as
large as a page (4 KB or 8 KB) should be supported. Finally, all three access (trap)
states,” noAccess, readAccess, and fullAccess, should be supported to
enable both I- and D-cache simulations.

Because most host hardware does not directly support fine-grained access con-
trol, implementing the full functionality of these primitives is difficult. We have
experimented with three different ad-hoc approaches: (1) flipping page-valid bits
in the OS page-table structure (to cause page-fault traps), (2) dynamically replac-
ing/restoring instruction breakpoints in a workload’s text segment (to cause pro-
gram-debugging traps), and (3) modifying error-correcting code (ECC) bits in the
host machine’s main memory (to force memory-error traps). The latter method
was first proposed and implemented by Reinhardt et al. [Reinhardt93]. Each of
these approaches has its limitations. Although page-valid bits enable access con-
trol to both data and text (program) memory, they can only control access at the
granularity of a page. Breakpoints enable finer-grained access control, but they
only work on text memory and they require some mechanism for saving the origi-
nal breakpointed instructions. Finally, ECC-bit modification is very platform-
dependent, and not all machines support error-correcting memory. Despite their
limitations, these techniques for controlling memory access enabled us to build a
prototype trap-driven simulator without requiring the design of any additional
hardware.

The final routine in the interface, tw_get_counts () is used to obtain event
counts, which are combined with the base metrics obtained Tapeworm’s trap han-
dlers (i.e., miss counts), to compute a variety of other performance metrics. To
support the computation of a range of performance metrics, this routine should
report counts of memory load and store references, as well as instruction fetches
and number of instructions executed. As with the access-control routines, we were
forced to use ad-hoc methods (a logic analyzer connected to the host machine run-
ning the Tapeworm II prototype) to obtain the event counts necessary for imple-
menting the tw_get_counts () routine.

These hardware-dependent primitives form an interface that is very similar to
the memory-protection model supported by most microprocessor memory-man-
agement units. The important difference is that protection is provided at a finer
granularity. Similar fine-grained access-control interfaces have been proposed for
systems that implement distributed shared memory [Appel91; Reinhardt94]. This
interface differs slightly in its orientation to trap-driven simulation, including the
addition of the event-counting routine tw_get_counts ().

L. Access states refer to those set by a trap-driven simulator using tw_set_access (). These lev-
els of access are always a lower than the page-level access rights granted to a workload by the host
VM system.

Trap-driven Memory Simulation with Tapeworm Il « 7

Btag
V Tags LineData Physical Memory Lines
oo[1)[2 0x0000..F _|[0x1000..F |[0x2000..F |[0x3000.F
o110 — 0x0010..F |/0x1010..F | 0x2010.F | Ox3010.F
02 1 0x0020..F |[0x1020..F | 0x2020.F | Ox3020.F
03 8 || 0x0030.F_|[0x1030.F |[0x2030..F || 0x3030.F
BT
FF |1 |~ [FF1—0x0FF0.F |[0x1FFO.F |[0x2FFO.F |[OX3FFO.F | --
=]
Memory Address
Btag | 8set | Boffset |

Hit/ Miss

Cache Line Aline

L’ To CPU

Fig. 2. Direct-mapped Cache Hardware. A 4-KB cache with 16-byte lines.

3.2 Tapeworm Trap Handling

With the hardware-dependent primitives defined, we can now present a more
detailed description of the Tapeworm trap handlers for a simple simulation case.
Fig. 2 shows the hardware for a simple direct-mapped cache. The address (a) that
is used to access cache is divided into three parts. The middle part (ag,) is used to
select a cache set, the high-order bits of the address (arg) are used to compare
against the cache tags, and the low-order bits (aoffser) are used to select the appro-
priate instruction from the cache line. Notice that the combination of bits ay,, and
ase completely define the memory line. We therefore sometimes refer to the con-
catenation of these bits as aj,.. The memory equivalence class of an address,
denoted by [a], is:

[a] = {all addresses, b, such that (ag, = beer)} (Eqn 1)

The cache in Fig. 2 has 256 (FF in hex) memory-equivalence classes, the ele-
ments of which are shown as a row of memory locations to the right of each cache
set. The concept of a memory equivalence class is important because it specifies
precisely the subset of memory locations that a given cache structure can hold. A
direct-mapped cache, for example, is constrained to hold at most one line from
each memory-equivalence class at a time, while a set in an N-way set-associative
cache may hold up to N lines from a given memory-equivalence class.

With these definitions in place, we can now explain how a trap-driven simulator
models a direct-mapped cache. Fig. 3 shows that Tapeworm represents a direct-
mapped cache with a simple data structure (cache[]) that holds the starting
addresses of cached memory lines, and a variable (misses) that counts the num-
ber of references that miss the simulated cache during the run of a workload.

Tapeworm’s main task is to continually update these data structures so that they
mirror what the state of an hypothetical hardware cache would be, if it were run-
ning the same workload. Tapeworm accomplishes this by constraining access to
the host memory in a way that causes a trap to occur whenever the workload
makes a memory reference that would result in a change of simulated cache state.

8 e« Uhligetal.

Physical Memory
of Host Machine

: Pages in the
Simulation , All memory references to pages
Data Structures Tapeworm Domain I in the Tapeworm domain are checked
/ \‘ \ N/ againstaccess (trap) bits in memory...
cache() 01t 2 3 456 7 8 9 ARB
0o | 2000 | —[00]— [o]] ~_ Eachrow represents a
—j01]— memory equivalence
R 4 class defined by the
02 | 1020 | —I02j~! |l@ 4~ cache size and line size.
—[03] — | ®
03 | 8030 oy t;d = Each square represents
Cache : el el el b el el a span (line) of memory
Sets H A I S S A I guarded by trap bits:
e G- - OO
[] No Access
nisses oxB020 / (@] Full Access
t
96375 tw_trap (0x }
/ In a direct-mapped cache Memory references that violate
N a direct-map, cne, access state result in a kernel
Tapeworm records the at most one l_ine from each trap and a call to tw_trap().
state of the simulated memory equivalence class
cache in its data may reside in its associated
structures. cache set.

Fig. 3. Data Structures and Host Memory for Direct-mapped Cache Simulation, This figure shows
the data structures and host physical memory required for trap-driven simulation of the direct.
mapped cache shown in Fig. 2. In a direct-mapped cache, at most one line from each main-memory
equivalence class may be held in the cache at any point in time. Tapeworm emulates this constrain
by permitting access to at most one line in each main-memory equivalence class.

In the simplest case, references that hit a cache do not change its state, but refer-
ences that miss a cache do change its state because they are followed by a line
refill that overwrites one of the cache sets.

Fig. 3 shows how a trap-driven simulator can detect changes in cache state. The
figure represents memory as a collection of pages, which in this example are each
divided into 16-byte regions on which access levels of no access or full access’
can be set. Notice that the current setting of full access on the 16-byte regions
starting at 0x2000, 0x1020, 0x8030 and OxAFFO, correspond exactly to the type
of accesses that would result in hits for the cache shown in Fig. 2. References that
would miss the simulated cache, however, are marked as not accessible in the
memory of the host machine and would cause a trap into the simulator if refer-
enced. Notice that the simulator permits access to at most one line in each mem-
ory-equivalence class, in keeping with the constrained way that a direct-mapped
cache can hold memory lines.

Fig. 3 shows the state of the simulator data structures and the host memory at
one particular point in time during the run of the workload. We can see by inspec-
tion that the particular pattern of traps that have been set for this particular cache

L. Full access means the maximum access given to the page of the memory location by the host
operating system. For text pages, full access is typically read-only, while for data pages it may be
read-write access.

Trap-driven Memory Simulation with Tapeworm|ll « 9

structure at this particular point in time will have the desired effect: the next refer-
ence to a memory location that is not in contained in the simulated cache will
cause a trap. But what happens after the trap? That is, what actions must be taken
by the trap handler to ensure that future references that change the state of the
simulated cache will also cause traps? We need a more precise specification of the
pattern of access rights on memory that are permitted throughout an entire work-
load run for a given cache configuration. To this end, we introduce the concept of
access constraints.

We model the host physical memory system as a set of elements, P, that consists
of the byte addresses of all memory locations in the host machine. The size of this
set, denoted by IPI, is the total number of physical memory locations that are sub-
ject to the simulator’s access controls. The subset C — P represents the memory
locations that may be accessed without causing a trap. We can now express the
access constraints for the simulation of a direct-mapped cache as follows:

The cache-size constraint:

|C] € cacheSize (Eqn 2)
The line-size constraint:

Y(a,be P){(alme::bline):(ae Cebe O)} (Eqn 3)
The direct-mapping constraint:

V(ae P){|[a]l N C| £ lineSize} (Eqn 4)

The cache-size constraint says that at most cacheSize memory locations in the
domain of the trap-driven simulator can be accessed without causing a trap. The
line-size constraint says that all the memory locations in the same memory line
must all be accessible or not accessible as a group. Finally, the direct-mapping
constraint says that at most one line from each memory equivalence class is
accessible at a time. The set C is exactly the set of memory locations that can be
accessed by the workload without causing a change of cache state and a corre-
sponding kernel trap. The operation of the trap handler can now be simply stated
as follows: A trap handler maintains the validity of some set of access constraints
during the run of a workload.

We now give a detailed example of how a trap handler responds to an incoming
trap in a way that satisfies the access constraints of Eqn 2 - Eqn 4. Fig. 4 shows
the trap that occurs after a reference to location 0xB024. This trap corresponds to
the cache miss that would occur in an actual cache like the one shown in Fig. 2. In
an actual cache, the required line, starting at 0xB020, would be loaded from mem-
ory and inserted in cache set 02, displacing the line starting at 0x1020. The trap
handler invoked by tw_trap () simulates this change in cache state by rearrang-
ing the access rights of the host physical memory in accordance with the access
constraints and then records the new line in its cache data structures. These
actions are depicted in Fig. 4, which shows the trap handler removing access to
region (0x1020 to 0x102F), the displaced cache line, and permitting access to
region (0xB020 to 0xBO2F), which represents the newly accessed line. The trap
handler updates the cache data structure, counts the miss, and when it returns to
the running workload, the access state of the host memory will be in conformance
with all three access constraints. That is, no more than 4 KB of physical memory
addresses can be accessed without a kernel trap (Eqn 2, the cache-size constraint),

10 « Uhlig et al.

Memory Reference: 0xB024 U

Data structures and memory before trap:
misses cachel] 1 2 3 45 6 7 8 9 A B

0
| 96375 | 00| 2000 |—[00] —
01| — |—o1]— '
02| 1020 |—[02] — ® [|
03| 8030 |~—[03]— g %

™™™
H /_\‘/1 (\4 : N ‘ : : H : M N : . H N)
= T A 3
4’”/

Trap handler actions: - Ew_trap (0xB024)
Make region 0xB020 to 0xBO2F accessible ———® tw_set_access(0xB020, 16, fullAccess)
Remove access to region 0x1020 to Ox102F ™ tw_set_access(0x1020, 16, noAccess)
Update cache data structures T3 cgched {02] = OxB020; misseg++

Return to workload

Data structures and memory after trap:

misses cachel] 01 2 3 4 5 6 7 8 9 A B
[96376 00 |_2000 |—[00] — [o |
01{ — -0t —
02| Bo20 |—I[02] — L
03| 8030 |—[03] —
SR S [) E

e RN e o i i

Fig. 4. An Example Trap in Detail

addresses belonging to the same memory line all have the same access rights
(Eqn 3, the line-size constraint), and at most one line from each memory equiva-
lence class can be accessed (Eqn 4, the direct-mapping constraint).

Trap handlers can be written in a flexible way that supports a range of cache
configurations. Fig. 5, for example, shows a trap handler that can simulate a vari-
able cache size and a variable line size (specified by the parameters cacheSets
and lineSize). Changing these trap-handler parameters changes, in effect, the
access constraints that they enforce, and thus automatically re-partitions memory
into a new set of equivalence classes. Note that the size of the simulated cache is
not constrained by the cache(s) of the host machine; they may be larger or smaller
than the actual caches of the host.

3.3 OS-dependent Tapeworm Primitives

At the beginning of a Tapeworm simulation, the simulated cache is empty, a con-
dition that Tapeworm models by initially setting traps on all workload memory
locations. To accomplish this, Tapeworm works with the OS virtual-memory
(VM) system. When a task faults on the first access to one of its pages, the VM
system registers the page with Tapeworm using tw_add, _page () (see Table II),
which restricts access to each memory location in the page. As the workload
begins to access the new page, the first reference to each location causes a trap

Trap-driven Memory Simulation with Tapeworm Il ¢ 11

int cache[cacheSets];
int misses;

tw_trap(pa) {
tw_set_access(pa, lineSize, fullAccess);

if (tw_get_access(pa) != noAccess))

tw_set_access (cachelpag..], lineSize, noAccess);
cache[pagee] = Pajinei
misses++;

}

Fig. 5. A Trap Handler for Direct-mapped Cache Simulation,

into the kernel, which is directed to the Tapeworm trap handlers. A parallel rou-
tine, tw_remove_page (), is used by the VM system to remove pages from the
Tapeworm domain when they are unmapped due to task termination or paging to
secondary storage. tw_remove_page () clears all traps on a page and flushes
the contents of the page from the simulated cache. This mimics the same actions
performed by the VM system on the host machine’s real cache.

If the VM system maps more than one virtual page to a given physical page,
Tapeworm increments a reference count for that physical page, but does not other-
wise change access rights to the page. This enables a new task to benefit from
shared entries brought into the cache by another task, as would happen in a real
system. Similarly, tw_remove_page () decrements the reference count, and
flushes the page from the simulated cache when the reference count reaches zero.

Tapeworm supports cache simulation for workloads consisting of multiple
tasks. To control which tasks are included in a given simulation, each is assigned
two Tapeworm attributes (simulate and inherit), which are set by calling
tw_attributes (), and are stored in an extended version of the OS task data
structure. If simulate is zero (the default value), the task runs without any
intervention from Tapeworm. When non-zero, simulate causes all current
and future pages used by the task to be added to the Tapeworm domain via a
tw_add_page () call. A second attribute, inherit, defines the initial value
of simulate for all children of the task. After a task fork, a child task inherits
the Tapeworm attributes of its parent as follows:

child.simulate <-- parent.inherit
child.inherit <-- parent.inherit

Different settings of the (simulate, inherit) pair are useful for common
simulation situations. For example, if the attribute pair (simulate=0,
inherit=1) is set on a shell task, then any workload that is started from this
shell, and all of the workload’s children will be registered with Tapeworm. The
shell task itself, however, is excluded from the simulation. This inheritance mech-
anism simplifies the simulation of workloads with complex task fork trees, such
as sdet, kenbus (see Table III), or a multi-stage optimizing compiler. Another
common attribute pair, (simulate=1, inherit=0)is used when only the task
itself, but not its children, are to be simulated. This combination is useful for reg-
istering kernel pages with Tapeworm.

12 e« Uhligetal.

Table II. OS-dependent Tapeworm Routines

Routine Description

tw_add_page(tid, p, v)

Add a page to the Tapeworm domain. The page is added by restricting access to all
of its physical memory locations starting at the page address p. The task ID (tid)
and the virtual-to-physical page mapping defined by (p,v) are recorded by Tape-
worm to enable forward and reverse address translations.

tw_remove_page{tid, p, v)

Remove the page define by (tid, p, v) from the Tapeworm domain. The page is
removed by flushing it from the simulated cache and by clearing all traps on its mem-
ory locations.

tw_attributes(tid, simulate, inherit)

Set Tapeworm attributes for the task identified by tid. A tid of zero signifies the ker-
nel. A non-zero value of simulate registers a task with Tapeworm. A non-zero value
of inherit indicates the initial value of the simulate attribute for children of the
task.

3.4 Design Summary

Embedding Tapeworm II inside a running system so that it can interact with the
host trapping hardware and operating system is an essential characteristic of its
design, one that distinguishes it from other trap-driven simulators. By running in
kernel mode, the Tapeworm code can control access to all physical memory, and
can thus capture the complete activity all user-level tasks in the system, as well as
the OS kernel itself. By interacting with the VM code in the host OS, Tapeworm
can start the monitoring process just at the moment that a workload begins to exe-
cute, avoiding the need to manually pre-process or annotate workload executable
files. Finally, because Tapeworm understands task creation, forking, and termina-
tion, it can flexibly and dynamically control which tasks in a running system are
monitored, and which are ignored.

4. TAPEWORM EVALUATION

We have implemented the Tapeworm II design for TLB and instruction-cache
simulation in the Mach 3.0 operating system kernel running on a MIPS R3000-
based DECstation 5000/200.! In the remaining sections of this paper, we will use
this prototype to draw some general conclusions regarding the flexibility, speed,
accuracy and portability of trap-driven simulation.

To validate the accuracy of Tapeworm results we use a hardware-monitoring
system, called Monster, based on a DAS 9200 logic analyzer [Nagle92]. This Sys-
tem allows us to unobtrusively count total instructions and stall cycles. For com-
parisons with trace-driven simulation, we use the Cache2000 memory simulator
[MIPS88] driven by Pixie-generated traces [Smith91]. Note that Pixie generates
only user-level address traces for a single task, which limits to some extent our
ability to compare results with Tapeworm.

1. Ports of Tapeworm also exist for the DECstation 3100 and for x86-based PCs.

Trap-driven Memory Simulation with Tapeworm Il 13

Table [II. Workload Summary. Benchmarks were compiled with the Ultrix MIPS C compiler
version 2.1 (level 2 optimization).

Workload Description
xlisp Lisp interpreter written in C. Configured to solve the 8-queens problem. A SPEC92 benchmark.
espresso Boolean function minimization. A SPEC92 benchmark.
eqntott Translates logical representation of boolean equation to a truth table. A SPEC92 benchmark.

mpeg_play mpeg_play V2.0 from the Berkeley Plateau Research Group. Displays 610 frames from a com-
pressed video file [Patel92].

ipeg play The xloadimage program written by Jim Frost. Displays four JPEG images.

ousterhout | John Ousterhout's benchmark suite from [Ousterhout89].

sdet A multiprocess, system performance benchmark which includes programs that test CPU perfor-
mance, OS performance and /O performance. From the SPEC SDM benchmark suite.

kenbus Simulates user activity in a research-oriented, software development environment. From the
SPEC SDM benchmark suite.

Throughout this evaluation, we use the workloads summarized in Table III and
Table IV. With the exception of the SPEC92 benchmarks xlisp, espresso
and egntott, the common characteristic of each of these workloads is that they
consist of multiple tasks and/or spend a significant fraction of their time executing
OS services.

4.1 Flexibility

In the previous section, we showed how to count only misses in direct-mapped
cache simulations. To be useful, trap-driven simulation methods must, of course,
be able to determine the performance of a much broader range of memory struc-
tures (defined by cache size, line size, associativity, replacement policy, indexing
policy, etc.) in terms of a variety of other metrics (such as miss ratios, misses per
instruction, etc.). Trap-driven simulation methods can, in fact, be used to simulate
these other cases, as well as other more general monitoring and simulation optimi-
zations.

In showing how other memory configurations can be simulated, it is helpful to
recall the concept of access constraints, introduced in Section 3.2. Simulating
other aspects of caching structures — associativity, for example — can be accom-
plished by defining a new set of access constraints, and then implementing a trap
handler that enforces the new constraints. We can replace the direct-mapping con-
straint of Eqn 4 with a new constraint that enables multiple lines in a given mem-
ory-equivalence class to occupy a given cache set;

The set-associativity constraint:

V(ae P){|[a]l N C| < (cacheAssoc - lineSize)} (Eqn 5)
The trap handler that enforces this constraint would set cacheAssoc = 2 to allow 2
memory lines to occupy the same cache set, thus implementing a 2-way set-asso-
ciative cache.

Adding associativity requires a new policy decision to be made: which line
should be replaced when a given cache set becomes full? For some common
replacement policies, such as Random or first-in-first-out (FIFO), no changes to

14 « Uhligetal

Table IV. Workload Characteristics. The Monster monitoring system was used to obtain instruction
counts and the fraction of time spent in different tasks. All experiments were performed on a Mach
3.0 kernel (version mk77) with a user-level BSD UNIX server (version uk38) and the DECstation X
display server (version 7, release 5). Run Time is the total elapsed time in seconds. User Task Count
is the total number of tasks created (not including the X or BSD server) during the execution of the

workload.
Instr Run BSD X User User
Workload (108 Time | Kernel | Server | Server | Tasks Task

(secs) Count
xlisp 1,412 67.52 7.3% 7.1% 0.0% 85.6% 1
espresso 534 26.80 2.9% 1.8% 0.0% 95.1% 1
egntott 1,306 60.98 1.5% 1.2% 0.0% 97.2% 1
mpeg_play 1,423 95.53 24.1% 27.3% 4.0% 44.6% 1
jpeg_play 1,793 89.70 9.1% 9.4% 2.6% 78.8% 1
ousterhout 567 37.89 48.0% 31.4% 0.0% 20.6% 15
sdet 823 4370 43.7% 35.5% 0.0% 20.8% 281
kenbus 176 23.13 48.9% 29.1% 0.0% 22.0% 238

the access constraints are required. For others, such as least-recently-used (LRU)
or not-most-recently-used (NMRU), a somewhat more restrictive set of access
constraints are required to obtain information about access order.

We have used the access-constraint method to define and implement Tapeworm
trap handlers that support a flexible range of cache sizes, line sizes, associativities,
replacement policies, and indexing policies (virtual or physical), as well as multi-
level caches. We have also implemented set (congruence-class) sampling as
defined by Puzak and Kessler [Puzak85; Kessler91], as well as the single-pass,
multi-configuration stack algorithms first proposed by Mattson et al. [Mattson70].
We compute other performance metrics given miss counts from the trap handlers
and data from the tw_get_counts () call. For example, we compute misses
per instruction by dividing miss counts with the value returned from a call to
tw_get_counts (instFetch). More detailed descriptions of the access
constraints and trap handlers required to implement these and other simulation
configurations and performance metrics can be found in [Uhlig95b].

Although we have achieved a high degree of flexibility in trap-driven simula-
tions with our implementation of Tapeworm II, there are some cases that cause
difficulties. In particular, Tapeworm has trouble simulating memory structures that
require an accurate accounting of time, such as write buffers. Although our proto-
type of Tapeworm II does not support data-cache simulation, this is not an inher-
ent limitation of trap-driven simulation as work by Reinhardt et al. has shown
[Reinhardt93].

4.2 Speed

We compare the speed of simulators using a slowdown metric, which we define as
the ratio of simulation overhead to the run time of an un-instrumented workload.
Depending on the simulator, we compute slowdown as follows:

Trap-driven Memory Simulation with Tapeworm il 15

" - v 40
Cache Size | Miss Ratio GO Pixie + Cache2000 (Single mpeg_play Task)
1K 0.118 L G—8Tapeworm (All References)
. &9 Tapeworm (Single mpeg_play Task)
2K 0.097]
30
4K 0.064
8K 0.023 §
Q
16K 0.017 g 20 -
3
32K 0.002 «
64K 0.002
10 -
128K 0.000
256K 0.000
512K 0.000 o =
1024K 0.000 1 2 4 8 16 32 64 128 256 512 1024

I-cache Size (K-bytes)

Fig. 6. Comparison of Trace-driven and Tapeworm Slowdowns. Tapeworm slowdowns compared
with slowdowns of a Cache2000 simulation driven by Pixie-generated instruction address traces. The
simulation is of mpeg_play for different sizes of direct-mapped instruction caches with 4-word
lines (4 bytes/word). Two different Tapeworm simulations are shown: one with user-only references
from just the mpeg_play task and another with references from all workload components,
including the kernel and user-level servers (BSD and X). The Pixie + Cache2000 combination can
measure only a single-task workload. In all cases, slowdowns were computed relative to the total
wall-clock run time for all workload components.

The Pixie + Cache2000 simulations were performed under Ultrix 4.1 on a DECstation 5000/133. The
Tapeworm simulation were performed under Mach 3.0 on a DECstation 5000/200. Slowdowns in
each case were computed relative to the respective host machine to make them comparable.

Slowdown = (Tapeworm Overhead) / (Normal Workload Run Time) (Eqn 6)
Slowdown = (Cache2000 Overhead) / (Normal Workload Run Time) (Eqn7)

where Overhead is the time added to a workload run by Tapeworm or Cache2000.
In the case of Cache2000 simulations, this overhead includes the time to generate
addresses from a pixie-annotated workload. Normal Workload Run Time is for an
unmodified workload running on a host machine.

Fig. 6 plots Tapeworm and Cache2000 slowdowns against cache size for the
mpeg_play workload.! Because the Pixie and Cache2000 combination can
measure only a single-task workload, Tapeworm was configured to set traps only
on memory locations in the mpeg_play task to enable a fair comparison.2 For
both simulators, slowdowns decrease as cache sizes increase. Cache2000 slow-
downs are approximately 30 for the smallest caches and decrease to just under 25
for the largest caches, while Tapeworm slowdowns start at about 3-4 for small
caches and decrease to 0 as cache size is increased. To understand this behavior,
consider the following expression for the overhead of the Cache2000 simulations:

I. The other workloads in our suite exhibit similarly-shaped slowdown curves, although their posi-
tion against the y-axis (i.e., their absolute slowdowns) vary. The mpeg_play slowdowns are
among the highest in our workload suite.

2. The plot also shows Tapeworm slowdowns when all workload components are monitored. The
resulting slowdowns are about 2 to 2.5 times greater.

16 « Uhlig et al.

Table V. Tapeworm Miss Handling Time. This table shows the instructions required to handle
different components of a Tapeworm trap for the simulation of direct-mapped caches with 4-word
line sizes. A 25-MHz DECstation 5000/200 required 299 cycles to execute the 188 instructions in the

handler.
Task Instructions

Kernel Entry and Exit 59
Obtain Faulting Address 33
Direct-mapped Cache Simulation 45
Set Trap 48
Clear Trap 5

Total 188

Cache2000 Overhead = (Miss ;oyn,) (MiSSgime) + (Hitooyne) (Hity,e) (Eqn 8)

where Miss . and Hity,, represents the number of simulated cache misses and
hits, while Miss;;;.. and Hity;,,,, are the average amount of time required to process
simulated cache hits and misses, respectively. These processing times are different
because a simulated cache hit requires only an address generation and search
operation (about 60 cycles in Cache2000), but a simulated cache miss also
requires data structures to be updated with the missing cache line (about 260
cycles in Cache2000). This explains why the Cache2000 slowdowns decrease
with increasing cache size; larger caches exhibit more hits than misses, and hits
require less time to process. In contrast, Tapeworm adds overhead only when exe-
cuting its trap handler:

Tapeworm Overhead = (Trapcoun) (Trapiime) (Eqn 9)

where Trap, .y, is the number of Tapeworm traps and Trapy;,,,. is the average time
to process a single trap. The Tapeworm trap handler, can displace workload
instructions from the host I-cache, thus increasing the number of workload I-
cache misses. We include the cost of host I-cache pollution as part of the average
time to handle a Tapeworm trap. Pollution of the host D-cache is also included as
part of the average trap-handling time, but this effect is minor.

The original implementation of the Tapeworm miss handler was written entirely
in C and required over 2,000 cycles per miss to execute, similar to the 2,500
cycles required for the same operation in the Wisconsin Wind Tunnel Simulator
[Lebeck94]. This cost was so high in comparison with the trace-driven hit and
miss times that Tapeworm slowdowns were comparable to Cache2000 slowdowns
when simulating small cache structures that frequently trapped.

To improve performance, the handler was optimized by re-writing it entirely in
assembly code and by bypassing the usual kernel entry and exit code. The new
code uses no execution stack and saves fewer registers, requiring approximately
300 cycles to handle simulated misses in direct-mapped caches with 4-word line
sizes (see Table V for the components of this time).

The expression for Tapeworm overhead explains the shape of the Tapeworm
slowdown curves shown in Fig. 6. Small caches frequently miss, resulting in a
change of cache state and a Tapeworm trap. The resulting overall slowdowns for a

Trap-driven Memory Simulation with Tapeworm |l o 17

1-KB cache are about 3 to 4. As the number of misses decreases for larger caches,
the number of traps also decrease to negligible amounts, and slowdowns approach
zero for caches as small as 8-KB to 16-KB.

Large fractions of the time in the Tapeworm trap handler could be further
reduced with the help of better host hardware support. The 59 instructions
required by the kernel entry and exit consist mostly of instructions that save and
restore registers and that redirect a trap from the general-exception vector to the
Tapeworm trap handler. This cost could be reduced if the host hardware supported
a dedicated vector for access-fault traps. The 33 instructions required to obtain a
faulting address and the 46 instructions required to set an access trap are due
mostly to an awkward interface to the ECC diagnostic logic on the DECstation
5000/200, and could be reduced substantially with a cleaner design. An additional
benefit of a cleaner design is that it would reduce the number of working registers
required by the trap handler, thus further reducing the cost of kernel entry and
exit.

We have introduced a simple model to explain Cache2000 and Tapeworm slow-
downs. In the following sections, we use this model to explain Tapeworm slow-
downs in greater detail over a broader range of simulated cache and TLB
configurations. Because the following sections do not include comparisons with
Cache2000, Tapeworm slowdowns for the remainder of this chapter include all
system activity (the mpeg_play task, the Mach 3.0 kernel and the user-level
BSD and X servers).

4.2.1 Line Size and Slowdown. The slowdowns show in Fig. 6 are for the sim-
ulation of a direct-mapped cache with a 4-word line size. Simulating larger line
sizes increases the amount of time in the handler because access must be changed
on larger clusters of memory. On the other hand, increasing the line size decreases
the number of cache misses because larger lines better exploit the temporal and
spatial locality in memory-reference streams. These two opposing effects are
shown in the upper-left graph of Fig. 7, which shows that each doubling of the
line size reduces the number of cache misses by 30% to 45%, with diminishing
reductions in misses as the line size increases. On the other hand, each doubling
of line size increases the miss-handling time by 25% to 80%, with larger relative
increases in time as line size increases. Changing memory access on a cluster of 4
words requires about 100 cycles. For small line sizes, this is a relatively small
component of the miss-handling time, which is dominated by the kernel entry and
exit code. However, as line sizes grow large, the fraction of miss-handling time
spent changing memory access begins to dominate, and each doubling of the line
size nearly doubles the time to handle a miss.

Recall that the overall Tapeworm overhead is the product of the number of traps
and the time required to handle each trap. For direct-mapped caches, traps occur if
and only if a reference misses the simulated cache. The resulting slowdowns are
shown in middle-left graph of Fig. 7, which shows that initially, increasing the
line size reduces overall simulation slowdowns because the number of misses is
substantially reduced, but the relative increase in miss handling times is relatively
small. However, for the largest line sizes, slowdowns begin to increase because

18 ¢ Uhligetal.

15 T T i 1200 7.0 T T T T 440
é\}e Misses (1KB Cache)
— <1000 — 1430
2 2
210+ 0 26.5 - 4203
= 800 & b =8 Cycles Per Miss =
& @ < &
@ 16002 | @ 1410
= 400 = &0 Misses (4KB Cache) 7400
B8 Cycles Per Miss
0 4 8 16 32 200 55 i-way 2-way 4-way 8-way 390
10 T T T T T T T

4
KB 6r GKB\@—“‘@h@ |
8+ a
w
6F = J

16KB
4r O\Q—————’/ -
64KB
2y e e 0\9\—«@—“_0
256KB 56KB
LT Y
1 i 0 L

i i
0 4 8 16 32 1-way 2-way 4-way 8-way
Line Size (in 4-byte Words) I-cache Associativity

Stowdown
Stowdown
H
(|
X
@

nN
T
2
X
o

8r 0O No Sampling -
8 1/2 Sampling
0 1/4 Sampling
&4 1/8 Sampling
Br 7
2
3
e |
73]
2 - -
1 i i L k)
0 1 2 4 8 16 32
I-cache Size (K-bytes)

Fig. 7. Tapeworm Slowdowns for Different Simulation Configurations. The figures to the left show
Tapeworm slowdowns for direct-mapped caches with varying line sizes, while those to the right
show different degrees of associativity (with a line size fixed at 8 words). The top plots superimpose
miss counts and cycles per miss on the same graph, while the middle plots show the combined effect
of these terms on overall slowdown. The bottom, center plot shows slowdowns for different sampling
ratios when simulating small, direct-mapped I-caches with a line size of 8 words

the relative reduction in misses begins to diminish, while the cost of handling a
miss increases geometrically. The “U-shape” of these Tapeworm slowdowns ver-
sus line size is very similar to those of the performance of actual hardware caches
that exhibit cache pollution due to large lines [Przybyliski90].

4.2.2 Associativity and Slowdown. For a very simple replacement policy, such
as Random, the simulation of cache associativity does not appreciably change
trap-handling times in the Tapeworm II prototype. However, caches with higher

Trap-driven Memory Simulation with Tapeworm Il ¢ 19

degrees of associativity typically exhibit fewer cache misses, resulting in overall
decreases in simulation slowdowns.These effects are show in the top and middle
graphs on the right side of Fig. 7. Trap-handling times and number of traps
(misses) for caches ranging in associativity from 1-way (direct-mapped) to 8-way
are shown. The product of these two terms show that trap-driven slowdowns
decrease with increasing simulated associativity. Because the greatest reductions
in miss counts come from 2-way, set-associativity, overall slowdowns do not
decrease substantially for associativities of 4-way or greater.

4.2.3 Set Sampling and Slowdown. Many researchers have shown that it is
possible to obtain good estimates of overall performance by sampling only a sub-
set of all references made by a workload [Puzak8s, Laha88, Kessler91, Wood91].
Trap-driven simulation supports very efficient implementations of sampling
because memory locations that are not in a time or set sample never cause any
traps. The bottom plot of Fig. 7 illustrates the benefits of set sampling as imple-
mented by Tapeworm. Notice that sampling 1/N-th of the cache sets reduces slow-
downs by a full factor of N. This same reduction in simulation time is difficult to
achieve with trace-based tools that use code annotation techniques. In an imple-
mentation of time sampling in MemSpy, for example, Martonosi shows that a
sampling ratio of 10% results in a speedup of only 2 due to the base overhead of
static code annotations that slow a running workload both when sampling is
enabled and disabled [Martonosi93].

When 1/8-th set sampling is used, Tapeworm overheads for even the smallest 1-
KB I-caches result in less than a doubling of workload run times. Larger caches (>
32-KB) add less than 20% to 30% to run times. Slowdowns that are this low make
it possible to monitor cache performance while the host workstation is in actual
use, opening up new possibilities for real-time memory-system analysis.

Although set sampling improves simulation speeds, it also increases the amount
of measurement variance. We examine this effect in greater detail in later sections
on simulation accuracy.

4.3 Completeness and Accuracy

Measurements of performance delivered by a memory-system simulator are typi-
cally subject to two basic types of error: variance and bias. Variance refers to dif-
ferences in measured performance over multiple trial runs of the same workload
on the same memory-system configuration, while Bias refers to consistent, sys-
tematic over- or under-estimates of true performance during multiple experimen-
tal trials. Memory-system simulators are subject to many sources of measurement
variation and bias, some of which are due to natural effects occurring in real sys-
tems, while others are induced by the method of instrumentation and simulation
itself. An ideal memory-system simulator is sensitive to the real, naturally-occur-
ring effects, but avoids the induced, artificial sources of measurement error. In this
section, we will show that trap-driven simulation is not inherently any more or
less accurate than trace-driven simulation, but it is more sensitive to certain real-
system effects that can cause true variability in performance.

20 + Uhligetal.

Table VI. Variation in Measured Memory System Performance. These measurements include 16
trials apiece, were taken using 1/8 set sampling and consider all activity including the kernel and
servers. The simulations are of 16 K-byte, 4-word line, direct-mapped, physically-indexed caches.x
is the mean number of misses, and s is the standard deviation of the trial set. Numbers in parenthesis
are the percent of the mean value for s and Range, and the percent difference from the mean value
for Minimum and Maximum.

X s Minimum Maximum Range

Workload | (x 10%) (x 10%) (x 10°) (x 10%) (x 10%)
eqgniott 4.42 2.53 (57%) 3.25 (26%) 1313 (197%) 9.88 (223%)
espresso 4.91 2.93 (60%) 345 (30%) 13.72 (180%) 10.28 (209%)
jpeg_play 18.58 134 (7%) 16.26 (13%) 21.96 (18%) 571 (31%)
kenbus 20.89 530 (25%) 1710 (18%) 36.37 (74%) 19.27 (92%)
mpeg_play 58.48 701 (12%) 47.34 (19%) 68.95 (18%) 2161 (37%)
ousterhout 31.50 2.61 (8% 27.09 (14%) 35.03 (11%) 7.94 (25%)
sdet 41.28 877 (21%) 32.58 (21%) 63.48 (54%) 30.90 (75%)
xlisp 41,55 31.78 (76%) 15.16 (64%) 104.48 (151%) 89.32 (215%)

4.3.1 Sources of Measurement Variation. With trace-driven simulations, the
same trace from a given workload is typically used repeatedly to obtain perfor-
mance measurements for different memory configurations. As a result, trace-
driven simulations exhibit no variance if the simulation for a given memory con-
figuration is repeated. The precise sequence of traps that drive a Tapeworm simu-
lation, however, are impossible to reproduce from run to run because of dynamic-
system effects. For example, the distributions of physical page frames allocated to
a task are different from run to run, which changes the sequence of traps to the
simulator. This is precisely the same effect that causes performance variations in
actual, physically-indexed caches [Kessler92, Sites88]. Measurement variance can
also be caused by Tapeworm itself when it employs set sampling; cache-miss esti-
mates vary depending on the number and selection of cache sets that are included
in a given sample.

Table VI shows the combined effect of page allocation and set sampling on the
measured performance of our workload suite. The table summarizes measure-
ments from 16 trial simulation runs of a 16 K-byte, physically-indexed cache
when sampling 1/8th of the cache sets. Standard deviations of the different mea-
surement trials are rather large, ranging from about 10% to as high as 70% of the
mean values. In some cases, minimum and maximum values differ from the mean
by as much as a factor of two.

To isolate the measurement variation caused by set sampling, we removed page-
allocation effects by simulating a virtually-indexed, rather than a physically-
indexed cache. The memory references applied to a virtually-indexed cache from
run to run of the same workload are unaffected by virtual-to-physical page alloca-
tion. After removing variation due to page allocation, new trials were performed
with and without set sampling. The results are shown in Fig. 8 for espresso.
Results without sampling show zero variance over multiple trials of the experi-

Trap-driven Memory Simulation with Tapeworm Il « 21

Size Misses (x 10%) 20 — , ,
(KB) | x [s ‘ %
Wit Sameling g — G-© With Sampling |
4 172 | 013 8% 2 | .)
- T — — E 1.5 8] Without Sampling
16 038 | 002 6% 103 : 1
32 013 | 001 | 11% ;_ﬂ"
64 0.02 | 000 3% 5 107 1
128 002 | 0.00 5% g]]
Without Sampling E
4 180 | 000 | 0% $05 - :
8 093 | 0.00 0% :% |
16 041 | 000 0%
a2 014 | 000 0% 0.0 , (‘ o
64 0.03 0.00 0% 4 8 16 32 64 128
128 0.02 0.00 1% Cache Size (KB)

Fig. 8. Variation due to Set Sampling. This table isolates measurement variance due to set sampling
Tapeworm removed all other sources of variation by considering only activity from theespresso
process (no kernel or servers) and by simulating virtually-indexed caches (4-word line, direct-
mapped). The two sets of data points are for measurements with and without sampling and consist of
16 trials each. The error bars on the plot represent one standard deviation.

ment. Notice that results without sampling consistently predict slightly higher
miss counts than those with sampling. This measurement bias, discussed more
completely in the next section, is due to an increased time dilation effect from the
higher slowdown of the non-sampled experiments.

Fig. 9 shows how page allocation, working in isolation, can vary cache perfor-
mance. We removed sampling variation and then simulated the same workload
(mpeg_play in this example) in both a physically-indexed and a virtually-
indexed cache. Simulations of the virtually-indexed cache exhibited zero variation
because the sequence of references to the cache is independent of the distribution
of physical page frames assigned by the OS from run to run. This is essentially the
assumption made by most trace-driven cache simulators. Note that the 4 K-byte,
physically-indexed cache simulation results do not vary. This is because the page
size on this machine is 4 K-bytes; any page allocation will appear the same
because all pages overlap in caches that are 4 K-bytes or smaller.

With the physically-indexed cache, the greatest degree of variation (as a per-
centage of the mean) appears at a cache size of 32 K-bytes, which is roughly the
size of the program text used by mpeg_play. This observation is consistent
with Kessler’s probabilistic model of cache conflicts [Kessler91]. Kessler’s model
predicts that with random page allocation, the probability of cache conflicts peaks
when the size of the cache roughly equals the address space size of the workload,

22 « Uhligetal.

Size Misses (x 10°) 40.0 —— : : . : :
(KB) X } s] % (-© Physically-Indexed Cache
Physically Indexed ’@ Ut Virtually-Indexed Cache
4 3781 | 009 | 0% 2

= 30.0 - i
8 2238 | 589 | 26% =
16 1207 | 484 | 40% @ - :

[723
32 9.01 5.62 62% 2

Z 200}]
64 5.83 5.96 10% B <
128 292 | 460 | 15% é]]
Virtuaily Indexed 3
4 37.75 | 0.00 0% % 10.0 F 1
8 1403 | 000 | 0% g
16 10.20 0.00 0%)
32 1.90 0.00 0% ‘

0.0 ' ; &

64 1.38 0.00 0% 4 8 16 32 64 128
128 0.28 0.00 1% Cache Size (KB)

Fig. 9. Variation Due to Page Allocation. This table shows how page allocation alone can vary cache
performance. Tapeworm removed all other sources of variation by considering only activity from the
mpeg_play process (no kernel or servers), and by not sampling. The two sets of data points are
for a physically- and virtually-indexed cache (4-word line, direct-mapped). Each data point is the
average of 4 trials. The error bars on the plot represent one standard deviation.

and decreases for larger and smaller caches. Fig. 10 illustrates this effect more
clearly for other workloads and over a wider range of cache sizes and associativi-
ties. The plot shows that increased cache associativity reduces performance varia-
tion. This happens for two reasons. First, increased associativity increases the size
of cache required for page allocation to have any affect at all.! Second, associativ-
ity reduces cache conflict misses, which are the type of cache misses that are
affected by page-allocation decisions [Kessler91].

Variation due to page allocation is comparable to, if not larger than, that of set
sampling. This suggests that the error introduced by sampling is a reasonable
trade for increased speed when simulating physically-indexed caches. Of course,
the combined effect of both sources of variance is greater than either in isolation,
which may require a larger number of trials to be performed to increase the level
of confidence in the mean value. Even when few experimental trials are con-
ducted, sampling can be an effective method for quickly approximating the cache
requirements of a workload when some experimental error is considered to be
acceptable.

1. Increased associativity increases cache size, but does not increase the number of cache sets.
Therefore, an 8-KB, 2-way set-associative cache is indexed in the same way as a 4-KB, direct-
mapped cache.

Trap-driven Memory Simulation with Tapeworm Il ¢ 23

spim gee
0.05 T T i T T T T i 1] T T T T T 7 T T 7
0.04 |- 1
0.03 -
0.02 - = N

001 F 1L i
0.00 g=8=—g 5 5 p5 pog g 3
16 32 64 128 256 512 1024 4 8 16 32 64 128 256 5121024

verilog eqgntott

e
1

T
i

CPlingyr (std dev)

»
©

0.05
0.04
0.03
0.02
0.01 |
0.00

T
I

T
1

T

CPlingtr (std dev)

o 589 o o oo
4 8 16 32 64 128 256 512 1024
gs espresso

0.05 j 7 T T T T T T T T T 7 T T T T T

0.04 N X [Ca0] 1-way
0.03 i~ N Gt 2-way

0.02 - [G—6 4-way
0.01 -

© 0.00

Plinet(std dev)

4 8 16 32 64 128 256 512 1024
I-cache Size (KB) l-cache Size (KB)

Fig. 10. Variability in I-cache Performance versus Size and Associativity. These plots show
variability in performance over multiple runs of the same workload in a physically-indexed I-cache
Performance varies because the allocation of virtual pages to physical cache page frames is differen
from run to run. Variability is reported on the y-axis in terms of one standard deviation of CPL g1, the
I-cache contribution to CPI.

In addition to page allocation, we have observed other sources of memory-sys-
tem performance variation due to OS effects, such as substantial increases in TLB
misses due to kernel and server memory fragmentation in a long-running system.

In summary, trap-driven simulation results, as produced by the Tapeworm pro-
totype, are subject to both artificial sources of variation (set sampling), as well as
natural sources of variation (page-allocation effects and memory fragmentation).
Because Tapeworm is part of an actual, running system, is also sensitive to other
system effects, such as link order in a system that implements dynamic linking, or
randomness in the order of task scheduling.

Tapeworm’s sensitivity to natural sources of performance variation, which may
necessitate multiple experimental trials, is not a liability. Performance variations
due to page allocation and memory fragmentation are real system effects that
should be understood and taken into account when making design decisions. If
necessary, however, Tapeworm simulations can be configured to remove these
effects and produce measurements with less variation, like those from traditional
trace-driven simulators. An example of this is shown in Table VIL

24 < Uhlig et al.

Table VII. Measurement Variation Removed. These measurement were made as in Table VI, but
with variation due to sampling and page allocation removed. This was accomplished by configuring
Tapeworm for simulation of virtually-indexed caches without set sampling.

X s Minimum Maximum Range

Workload | (x 10%) (x 109 (x 109 (x 10%) (x 10%)
eqntott 4.19 010 (2%) | 4.11 (2%) | 426 (2%) 015 (4%)
eSpresso 4.26 0.06 (1%) 4.21 (1%) 4.30 (1%) 0.09 {2%)
jpeg_play 20.60 0.06 (0%) | 2056 (0%) | 2064 (0%) 0.08 (0%)
kenbus 22.03 0.05 (0%) | 2199 (0%) | 22068 (0%) 0.07 (0%)
mpeg_play 53.16 0.06 (0%) | 5312 (0%) | 5320 (0%) 0.08 (0%)
ousterhout 34.69 1.22 (4%) | 3383 (2%) | 3555 (2%) 1.72 (5%)
sdet 41.23 0.00 (0%) | 4122 (0%) | 41.23 (0%) 0.00 (0%)
xlisp 21.67 019 (1%) | 2153 (1%) | 2180 (1%) 027 (1%)

4.3.2 Sources of Measurement Bias. With sufficient experimental trials, the
variance errors of a workload can be quantified and analyzed. In the absence of
other sources of error, the resulting mean value will provide a good estimate of
true system performance. In this section we examine more serious forms of mea-
surement error that systematically over- or under-estimates true system perfor-
mance. Sources of measurement bias are hard to correct for because they are more
difficult for the simulator to account for and remove. Nevertheless, we will use
certain Tapeworm features to isolate and identify the magnitude of sources of
measurement bias, whenever possible.

If a simulation method completely omits memory references made by certain
portions of a workload, the accuracy of the resulting simulations will clearly be
affected. The most common form of omission is to restrict memory references to a
single task. This occurs, for example, when the Cache2000 simulator is driven by
Pixie-collected traces. We illustrate the importance of including all workload
components (user, server and kernel)! by using Tapeworm to measure their indi-
vidual contributions to the total number of I-cache misses.

Table VIII shows I-cache miss counts and miss ratios for each of our workloads
in a 4 K-byte cache. The table shows the number of misses from the kernel, the
BSD and X servers, and the user tasks when each is allowed to run in a dedicated
cache.? The All Activity column gives results when each of these workload com-
ponents share a single cache. Due to cache interference among the individual
workload components, the sum of the individual miss columns is less than the All
Activity column.

1. By user task, we mean any of several tasks that are children of the shell from which the workload
was initiated. We collect tasks together in our simulations with the Tapeworm inheritance
attribute. A server task is the X display server or the BSD server, which exist prior to the initiation
of a workload. We refer to the server tasks and the kernel as the system components of the work-
load.

2. The cache is shared by multiple user tasks in the case of kenbus, sdet and ousterhout.

Trap-driven Memory Simulation with Tapeworm Il ¢ 25

Table VIII. Miss Count and Miss Ratio Contributions for Different Workload Components. This
table gives the number of misses (in millions) and the miss ratios (in parentheses) for different
workload components. The data were collected by running separate trials in which each workload
was run in a dedicated direct-mapped cache of 4 K-bytes, with a 4-word line. Whenever possible
(e.g., for the single-task workloads), From Traces gives the miss ratios predicted by a trace-driven
simulation using Pixie+Cache2000. All Activity gives total miss counts when all workload
components share the same cache. Note that because of cache interference effects, the values in this
column are greater than the sum of the individual components. This difference is shown in the last
column, entitled Interference. All miss ratios are relative to the total number of instructions in the
workload, not just the instructions in a given workload component. Hence, the miss ratios from each
individual component, plus interference, all sum to the total niiss ratio given underAll Activity.

Workload From User Tasks | Servers Kernel All Activity | Interfer-
Traces ence
eqntott 0.1 (000)| 01 (000) 25 (002)| 2.4 (002)] 84 (007)| 34 (003)
espresso 1.6 (003)| 1.8 (003)| 2.3 (.004)] 2.0 (.004) 9.5 (.018)] 35 (.007)
ipeg_play 30 (002} 3.1 (002)| 146 (008)| 9.2 (005)| 363 (020) 94 (005
kenbus | e 7.5 (043)) 119 (068)| 128 (073)| 457 (260)| 135 (.077)
mpeg_play 37.6 (027} 37.9 (027)|33.9 (024)| 19.3 (014)] 1125 (079) 214 (015)
ousterhout 1.9 (003)186 (033)) 21.7 (038)| 61.4 (108)| 19.1 (.034)
sdet . 201 (024) 252 (031} 18.1 (.022)] 1048 (.127), 413 (.050)
xiisp 85.8 (061)| 80.0 (064)| 6.3 (004)| 3.0 (002)| 1358 (.096)| 36.6 (.026)

Note, first, that the SPEC92 benchmarks eqntott and espresso exhibit
very low miss counts overall. This is consistent with previous observations that
many of the SPEC92 benchmarks require only small I-caches to run well [Gee93].
The servers and kernel contribute the majority of total misses, but even with their
contribution, the total number of misses is negligible. Other workloads, such as
mpeg_play, jpeg_play, sdet and ousterhout exhibit the same predomi-
nance of server and kernel misses, but with much higher overall miss ratios. In
ousterhout, for example, the total miss ratio is over 10%, mostly due to the
system components and interference effects. A simulator that considers only the
user-task component of ousterhout would incorrectly estimate the I-cache
miss ratio to be less than 1%. The only workload in our suite with a greater frac-
tion of misses coming from a user task is x11isp which performs much better in a
cache that is only slightly larger.

The amount of memory used by Tapeworm is small in comparison with many
trace-driven tools. In particular, Tapeworm does not cause a program to increase
in size due to code annotation, nor does it require large regions of host memory to
be reserved for trace buffers. As a result, Tapeworm does not suffer from measure-
ment bias due to memory dilation, a problem often encountered by trace-driven
simulation tools [Chen94]. Small amounts of host memory are, however, required
for the Tapeworm code and data structures. About 256 K-bytes of physical mem-
ory are allocated to Tapeworm at boot time. This removes 64 pages from the free
memory pool, resulting in a possible increase in paging activity. This effect could
be offset by adding a small amount of additional memory to the host machine.

26 e+ Uhligetal.

Table IX. Error Due to Time Dilation.
Increases in cache misses due to time
dilation were measured for the 16

mpeg_play workload including all o
system activity (kernel and servers), 14
running in a physically-addressed 4 K- 12
byte, direct-mapped I-cache with 4- /
word lines. Time dilation was varied by o 10
changing the degree of sampling. 2 8 /
o
Dilation Misses | Increase <
6 R 6
(slow- | (x 108 % 3 /m
down) 4 /
0.43 90.56 0.0% 2
0.96 91.54 1.2% 0 ,jlﬁ e ——
2.08 95.70 5.7% 0123 456 7 8 9 10
4.42 99.66 10.1%
9.29 103.57 14.4% Dilation (Slowdown)

Because Tapeworm slows execution of a system, it is subject to the same form
of time dilation errors present in memory traces. One effect of time dilation is that
it causes more clock interrupts to occur during the run of a workload, leading to
increased cache conflict misses. Table IX shows the magnitude of error induced
by time dilation. Notice that error grows most steeply from slowdowns of 0 to 2,
and then levels off for larger slowdowns. Most Tapeworm slowdowns are under 4
where bias tends to be under 10%. Because the amount of slowdown varies from
workload to workload, time dilation cannot be removed by a simple adjustment to
the clock interrupt frequency as is done in [Borg90, Chen94]. The most effective
way to remove measurement bias due to time dilation is to use set sampling to
reduce simulation slowdowns. Although multiple experimental trials may be
required, the resulting mean value will be free of time dilation bias.

Until now we have described forms of measurement bias shared by both trace-
driven and trap-driven simulators. One source of bias that is specific to trap-driven
simulation is due to the masking of certain Tapeworm memory traps. In the DEC-
station 50007200, single-bit ECC errors raise a hardware interrupt line to cause a
kernel trap. If interrupts are disabled, a kernel trap cannot occur, resulting in a
reduction of simulated cache misses seen by Tapeworm. Because only the kernel
runs with interrupts masked, this limitation affects only kernel references. Unfor-
tunately, we have no way to quantify this effect, but only a very small fraction of
kernel code (< 1%) is affected. Special code around these regions helps Tapeworm
to account for their cache effects, and better host-hardware support for controlling
memory access (see Section 3.1) would avoid this problem altogether.

4.3.3 Accuracy Summary. With respect to artificial sources of measurement
variation and bias, trap-driven simulation is subject to many of the same sources
of error as trace-driven simulation. In particular, variation due to set sampling, and
bias due to time dilation, and memory dilation are forms of error that both meth-

Trap-driven Memory Simulation with Tapeworm Il » 27

ods must contend with. The magnitude of these errors, however, is sometimes less
with trap-driven simulation (e.g., with memory dilation), and trap-driven simula-
tors are often able to employ certain techniques to minimize the effect of other
sources of error (e.g., using set sampling to reduce slowdowns and hence error
due to time dilation).

4.4 Portability

Our implementation of the Tapeworm hardware-dependent primitives exposed
one of the main weaknesses of trap-driven simulation: portability. As noted in
Section 3.1, we have explored three different methods for implementing the
access-control primitives in Tapeworm.

The first method, modifying page-valid bits, worked well. The only difficulty
was distinguishing between invalid-page traps caused by Tapeworm, and true
page faults (due to a page not being memory resident). This problem was solved
by adding an extra bit to page-table entries to indicate the true resident status of
each page.

Implementing access control with ECC bits in Tapeworm II was far more diffi-
cult. First, this trap was routed to a generic exception vector and had to be identi-
fied from among many other sources of traps, interrupts and exceptions. A clumsy
interface to the memory-control ASIC required a dozen load, shift, add and mask
instructions to piece together the memory address of an ECC error (i.e., the pa
value of the tw_trap () call). Once this value was obtained, the corresponding
virtual address (i.e., the va value) had to be found by searching an inverted page
table. These code sequences, along with the complex sequence of interactions
with a memory-controller ASIC for re-coding ECC bits and flushing cache
entries,! required several working registers. This, in turn, required the saving and
restoring additional workload registers before and after each trap, further increas-
ing the trap-handling time.

A more serious problem was caused by writes to memory locations marked
non-accessible by re-coded ECC bits. These writes caused new (valid) ECC bits
to be recomputed and stored to memory without checking the old (invalid) ECC
bit values. This behavior effectively changed a memory location’s access state
from no-access to full-access without notification to Tapeworm. Fortunately, the
ECC method could still be used on read-only text pages, but this limited simula-
tions to I-caches with two access states, no-access and read-only. As noted by
Reinhardt, it is possible to avoid this problem on a machine with an allocate-on-
write policy2 by flushing memory locations from the cache when setting their
state to no-access [Reinhardt93]. In such a system, a write to the un-cached loca-
tion causes the data to first be read (allocated) from main memory into the cache
before the write completes. The ECC bits of this allocate operation will be
checked in the same way as any other read to main memory, thus forcing a trap to
occur. Although this solution enables D-cache simulation, it still only supports
two access states: no-access and full-access.

1. On the DECstation 5000/200, ECC is only checked on cache-line refills after a cache miss.
2. The DECstation 5000/200 uses a write-though policy with no allocate-on-write.

28 e« Uhligetal.

Other problems with ECC caused difficulties when porting Tapeworm 1I to
other machines. For example, our port of Tapeworm from a DECstation 5000/200
to a DECstation 5000/240 was hindered due to differences between the way that
DMA is implemented on the two machines. Another minor limitation is that ECC
bits are checked on 4-word cache-line refills, effectively limiting the simulation of
cache line sizes to multiples of 4 words.

We have recently implemented a third method for controlling fine-grained mem-
ory access: dynamically swapping breakpoint instructions in place of original
instructions. Although its applicability is limited to text pages only, this method
substantially simplifies trap handling because instruction breakpoints are far eas-
ier to set and clear, and the breakpoint traps report the faulting instruction address
in an easily accessible hardware register. Our implementation of this method
requires about one third as many machine cycles as the ECC method, but adds
more memory overhead to store breakpointed instructions.! Because our imple-
mentation of the breakpoint method is on a different architecture (an Alpha-based
workstation) as part of a different trap-based monitoring tool, it is difficult to
directly compare these results with those obtained by the ECC method. We there-
fore report results from only the ECC method in this paper, although they do not
represent the fastest trap-driven simulations that we have measured.

Despite these various implementation problems, we were able to implement
enough of the Tapeworm primitive operations to construct a usable trap-driven
simulator prototype. Although limited to TLBs and I-caches, this prototype
enabled us to evaluate the feasibility of trap-driven simulation without resorting to
hardware modifications. We believe that the speed and accuracy obtained using
this prototype are promising enough to justify special hardware support for trap-
driven simulation.

The most useful form of support would be better fine-grained access control,
such as that provided by the Tera [Alverson90]. Such support would be useful for
other applications as well, such as debugging and distributed-shared memory
[Appel91]. Recent work by Reinhardt et al. shows that fine-grained access control
hardware can be implemented, at relatively low cost in design time, as a plug-in
board that monitors bus transactions to the host processor [Reinhard96]. More
streamlined hardware mechanisms for handling traps would provide another boost
to trap-driven simulation performance. Such support could include trap vector
addresses dedicated to memory-access traps, shadow or scratch registers for the
trap-handling code, and easier access to data such as the virtual and physical
addresses causing an access trap. Newer implementations of several microproces-
sor families provide better support of this type [Huck93; Sun94; Digital92].
Finally, on-chip performance counters, also provided by many newer micropro-
cessors, would help to implement the tw_get_counts () routine in a more
convenient way.

1. The ECC implementation does not require any extra storage because although our method for
causing a trap corrupts data (i.e., flipping a single bit), the original value can be recovered using
the SECDED (single-error correcting, double error detecting) code employed by the memory con-
troller.

Trap-driven Memory Simulation with Tapeworm |l ¢ 29

5. SUMMARY AND FUTURE WORK

Using Tapeworm II as a prototype, we have shown that cache and TLB simula-
tions driven by kernel traps can greatly simplify the problem of evaluating cache
and TLB performance under workloads including multiple tasks and operating
system loads; Tapeworm requires no pre-processing of a workload to be mea-
sured, and adds little memory overhead. Moreover, our measurements show that
trap-driven simulations can be performed with a relatively small system slow-
downs, compared with trace-driven simulation. Tapeworm slowdowns start at 10
in the worst case (with a 1-KB cache), and approach 0 for larger or more associa-
tive caches. Tapeworm can efficiently employ sampling techniques to further
reduce slowdowns in direct proportion to the sampling ratio, but at the expense of
higher measurement variance.

Unlike trace-driven simulators, which always obtain the same simulation result
with a given trace, trap-driven simulators are sensitive to dynamic-system effects,
such as page allocation and memory fragmentation, which cause variations in per-
formance from run to run. This is a positive feature of trap-driven simulation
because it provides better insight into the true behavior of real machines. One of
the most useful features of the Tapeworm II prototype is its ability to monitor all
system activity (with the exception of small regions of un-interruptible kernel
code). As a result, it is not subject to bias due to omission of workload compo-
nents. Our measurements showed that this form of error was among the most sig-
nificant.

The main weaknesses of trap-driven simulation are its portability and flexibility.
It remains an open question whether trap-driven simulation will be able to make
continued advances in these regards. The outcome will depend, in large part, on
the willingness of computer architects to make minor modifications in future
designs to better support trap-driven simulation. Even with such support, trap-
driven simulation is not suited to certain forms of architectural simulation, such as
instruction-pipeline simulation, or simulations that require detailed, cycle-by-
cycle accounting of time.

Many other applications would also benefit from fine-grained access control.
Program debugging, garbage collection, persistent storage, and distributed shared
memory could all be made faster and more efficient [Appel91; Reinhardt94;
Schoinas94]. These applications, and the promise of very fast trap-driven memory
simulation, suggest that architects should give more serious consideration to sup-
porting fine-grained access control and fast trapping support in future processors
and computer systems.

6. ACKNOWLEDGEMENTS

We thank Joel Emer and Bill Grundmann for essential information on the DECs-
tation 5000/200 and its memory-controller ASIC. Many thanks also to Alessandro
Forin for his help with Mach 3.0 and its trap handlers. Chih-Chich Lee imple-
mented the 486 Tapeworm port.

30 + Uhligetal.

7. REFERENCES

[Agarwal86] Agarwal, A., Sites, R. L. and Horowitz, M. ATUM: A new technique for capturing
address traces using microcode. In Proceedings of the 13th International Symposium on Computer
Architecture, Tokyo, Japan, IEEE, 119-127, 1986.

[Agarwal88] Agarwal, A., Hennessy, J. and Horowitz, M. Cache performance of operating system
and multiprogramming workloads. ACM Transactions on Computer Systems 6 (4): 393-431, 1988.

[Alexander85] Alexander, C. A., Keshlear, W. M. and Briggs, F. Translation buffer performance in a
UNIX environment. Computer Architecture News 13 (5): 2-14, 1985,

[Alverson90] Alverson, R., Callahan, D., Cummings, D., Koblenz, B., Porterfield, A. and Smith, B.
The tera computer system. In Proceedings of the 1990 International Conference on Supercomput-
ing, 1-6, 1990.

[Anderson91] Anderson, T. E., Levy, H. M., Bershad, B. N. and Lazowska, E. D. The interaction of
architecture and operating system design. In Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, Santa Clara, Cali-
fornia, ACM, 108-119, 1991.

[Appel91] Appel, A. and Li, K. Virtual memory primitives for user programs. In Proceedings of the
4th International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, Santa Clara, California, ACM, 96-107, 1991.

[Borg90] Borg, A., Kessler, R. and Wall, D. Generation and analysis of very long address traces. In
Proceedings of the 17th Annual International Symposium on Computer Architecture, IEEE, 1990,

[Chen93] Chen, B. and Bershad, B. The impact of operating system structure on memory system
performance. In Proceedings of the 14th Symposium on Operating System Principles, 1993.

[Chen94] Chen, B., Wall, D. and Borg, A. Software methods for system address tracing: implemen-
tation and validation. Technical Report, Carnegie-Mellon University, DEC Western Research Lab,
DEC Network Systems Laboratory. 1994,

[Clark83] Clark, D. Cache performance in the VAX-11/780. ACM Transactions on Computer Sys-
tems 1: 24-37, 1983,

[Cmelik94] Cmelik, B. and Keppel, D. Shade: A fast instruction-set simulator for execution profil-
ing. In Proceedings of the 1994 SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, Nashville, TN, ACM, 128-137, 1994.

[Cvetanovic94] Cvetanovic, Z. and Bhandarkar, D. Characterization of Alpha AXP performance
using TP and SPEC Workloads. In Proceedings of the 21st Annual International Symposium on
Computer Architecture, Chicago, I11., IEEE, 1994.

[Digital92] Digital. Alpha Architecture Handbook. USA, Digital Equipment Corporation, 1992.

[Eggers90] Eggers, S., Keppel, D., Koldinger, E. and Levy, H. Techniques for efficient inline tracing
on a shared-memory multiprocessor. In Proceedings of the 1990 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Boulder, CO, 37-47, 1990.

[Flanagan92] Flanagan, K., Grimsrud, K., Archibald, J. and Nelson, B. BACH: BYU address collec-
tion hardware. Brigham Young University Technical Report TR-A150-92.1. 1992.

[Gee93] Gee, J., Hill, M., Pnevmatikatos, D. and Smith, A. J. Cache Performance of the SPEC92
Benchmark Suite. TJEEE Micro (August): 17-27, 1993.

[Hill87] Hill, M. Aspects of cache memory and instruction buffer performance. Ph.D. dissertation,
The University of California at Berkeley. 1987,

{Holliday91] Holliday, M. Techniques for cache and memory simulation using address reference
traces. International journal in computer simulation 1: 129-151, 1991,

[Huck93] Huck, J. and Hays, J. Architectural support for translation table management in large
address space machines. In Proceedings of the 20th Annual International Symposium on Com-
puter Architecture, San Diego, California, IEEE, 39-50, 1993,

[Kessler91] Kessler, R. Analysis of multi-megabyte secondary CPU cache memories. Ph.D. disserta-
tion, University of Wisconsin-Madison. 1991.

[Kessler92] Kessler, R. and Hill, M. Page placement algorithms for large real-indexed caches. ACM
Transaction on Computer Systems 10 (4): 338-359, 1992.

Trap-driven Memory Simulation with Tapeworm Il ¢ 31

[Laha88] Laha, S., Patel, J. and Iyer, R. Accurate low-cost methods for performance evaluation of
cache memory systems. IEEE Transactions on Computers 37 (11): 1325-1336, 1988.

[Lebeck94] Lebeck, A. and Wood, D. Fast-Cache: A new abstraction for memory-system simulation.
University of Wisconsin - Madison Technical Report 1211, 1994.

[Lebeck95] Lebeck, A. and Wood, D. Active Memory: A new abstraction for memory-system simu-
lation. In Proceedings of the 1995 SIGMETRICS Conference on the Measurement and Modeling
of Computer Systems, May, 1995.

[Martonosi92] Martonosi, M., Gupta, A. and Anderson, T. MemSpy: Analyzing memory system
bottlenecks in programs. In Proceedings of the 1992 SIGMETRICS Conference on the Measure-
ment and Modeling of Computer Systems, ACM, 1992.

[Martonosi93] Martonosi, M., Gupta, A. and Anderson, T, Effectiveness of trace sampling for per-
formance debugging tools. In Proceedings of the 1993 SIGMETRICS Conference on the Measure-
ment and Modeling of Computer Systems, Santa Clara, California, ACM, 248-259, 1993.

[Mattson70] Mattson, R. L., Gecsei, J., Stutz, D. R. and Traiger, I. L. Evaluation techniques for stor-
age hierarchies. IBM Systems Journal 9 (2): 78-117, 1970.

[MIPS88] MIPS. RISCompiler Languages Programmer's Guide. MIPS, 1988.

[Mogul91} Mogul, J. C. and Borg, A. The effect of context switches on cache performance. In Pro-
ceedings of the 4th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Santa Clara, California, ACM, 75-84, 1991.

[Nagle92] Nagle, D., Uhlig, R. and Mudge, T. Monster: A tool for analyzing the interaction between
operating systems and computer architectures. University of Michigan Technical Report CSE-TR-
147-92.1992.

[Nagle93] Nagle, D., Uhlig, R., Stanley, T., Sechrest, S., Mudge, T. and Brown, R. Design tradeoffs
for software-managed TLBs. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, San Diego, California, IEEE, 27-38, 1993,

[Nagle94] Nagle, D., Uhlig, R., Mudge, T. and Sechrest, S. Optimal Allocation of On-chip Memory
for Multiple-APT Operating Systems. In Proceedings of the 21st International Symposium on
Computer Architecture, Chicago, IL, 1994,

[Ousterhout89] Ousterhout, J. Why aren't operating systems getting faster as fast as hardware. WRL
Technical Note (TN-11): 1989.

[Patel92] Patel, K., Smith, B. C. and Rowe, L. A. Performance of a Software MPEG Video Decoder.
Technical Report, University of California, Berkeley, 1992.

[Przybylski90] Przybylski, S. The performance impact of block sizes and fetching strategies. In Pro-
ceedings of the 16th Annual International Symposium on Computer Architecture, Seattle, WA,
IEEE, 160-169, 1990.

[Puzak85] Puzak, T. Analysis of cache replacement algorithms. Ph.D. dissertation, University of
Massachusetts. 1985.

[Reinhardt93] Reinhardt, S., Hill, M., Larus, J., Lebeck, A., Lewis, J. and Wood, D. The Wisconsin
Wind Tunnel: Virtual prototyping of parallel computers. In Proceedings of the 1993 SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, Santa Clara, CA,
ACM, 48-60, 1993.

[Reinhardt94] Reinhardt, S., Larus, J., and Wood, D. Tempest and Typhoon: User-level shared
memory. In Proceedings of the 21st Annual International Symposium on Computer Architecture,
Chicago, IL, April, 1994.

[Reinhardt96] Reinhardt, S., Pfile, R., and Wood, D. Decoupled hardware support for distributed
shared memory. To appear in Proceedings of the 23rd Annual International Symposium on Com-
puter Architecture, 1996.

[Rosenblum95] Rosenblum, M., Herrod, S., Witchel, E., and Gupta, A. Complete computer simula-
tion: the SimOS approach, In IEEE Parallel and Distributed Technology, Fall 1995.

[Schoinas94] Schoinas, 1., Falsafi, B., Lebeck, A, Reinhardt, S., Larus, J., Wood, D. Fine-grain
access control for distributed shared memory. In Proceedings of the 6th International Conference
on Architectural Support for Programming Languages and Operating Systems, San Jose, CA,

32 « Uhligetal.

ACM Press, 1994,

{Sites88] Sites, R. L. and Agarwal, A. Multiprocessor cache analysis with ATUM. In Proceedings of
the 15th Annual International Symposium on Computer Architecture, Honolulu, Hawaii, IEEE,
186-195, 1988.

[Sites96] Sites, R., Perl, S., PatchWrx - A Dynamic Execution Tracing Tool. Digital Equipment
Corp. Systems Research Center Technical Report. http://www.research.digital.com/SRC/per-
sonal/Dick_Sites/patchwrx/PatchWrx.html

[Smith82] Smith, A. J. Cache memories. Computing Surveys 14 (3): 473-530, 1982.

[Smith91] Smith, M. D. Tracing with pixie. Technical Report, Stanford University, Stanford, CA.
1991.

[SPEC91] SPEC. The SPEC Benchmark Suite. SPEC Newsletter. 3: 3-4, 1991.
[SPEC93] SPEC. SPEC: A five year retrospective. The SPEC Newsletter 5 (4): 1-4, 1993,

[Srivastava94] Srivastava, A. and Eustace, A. ATOM: A system for building customized program
analysis tools. In Proceedings of the SIGPLAN ‘94 Conference on Programming Language
Design and Implementation, 196-205, June 1994.

[Stunkel91] Stunkel, C., Janssens, B. and Fuchs, W, K. Collecting address traces from parallel com-
puters. In Proceedings of the 24th Annual Hawaii International Conference on System Sciences,
Hawaii, 373-383, 1991.

[Sugumar93] Sugumar, R. Multi-configuration simulation algorithms Jor the evaluation of computer
designs. Ph.D. dissertation, University of Michigan. 1993,

[Sun94] Sun Microsystems, Nested traps in UltraSPARC, http://www.sun.com/sth/Proces-
sors/UltraSPARC/WhitePapers/NestedTraps/NestedTmps.html September, 1994,

[Talluri94] Talluri, M. and Hill, M. Surpassing the TLB Performance of Superpages with Less Oper-
ating System Support. In Proceedings of the 6th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, San Jose, CA, ACM, 1994,

{Thompson89] Thompson, J. and Smith, A. Efficient (stack) algorithms for analysis of write-back
and sector memories. ACM Transactions on Computer Systems 7 (1): 78-116, 1989.

[Torrellas92] Torrellas, J., Gupta, A. and Hennessy, J. Characterizing the caching and synchroniza-
tion performance of multiprocessor operating system. In Proceedings of the Sth International
Conference on Architectural Support for Programming Languages and Operating Systems, Bos-
ton, Massachusetts, ADM, 162-174, 1992.

{Uhlig95] Uhlig, R., Nagle, D., Mudge, T. Sechrest, S., and Emer, J. Instruction Fetching: Coping
with Code Bloat. To Appear In Proceedings of the 22nd International Symposium on Computer
Architecture, Santa Margherita Ligure, Italy, June, 1995.

{Uhlig95b] Uhlig, R. Trap-driven Memory Simulation. Ph.D. Disseratation, University of Michigan,
August 1995,

{Uhlig96] Uhlig, R. and Mudge, T. Trace-driven Memory Simulation: A Survey. Submitted for publi-
cation to ACM Computing Surveys, Fall 1996.

[Witchel96] Witchel, E. and Rosenblum, M. Embra: fast and flexible machine simulation, In Pro-
ceedings of the 1996 SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems, Philadelphia, May, 1996.

[Wood91] Wood, D., Hill, M. and Kessler, R. A model for estimating trace-sampled miss ratios. In
Proceedings of the 1991 SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, 79-89, 1991,

