July 7 - 11, 1997
Vienna, Austria

Internatlonal Conference on

SUPERCOMPUTING

{ 5 5
. ;0M1¥ B Spegeer Tp

LI

‘) CONFERENCE
S‘ponsored‘ by ACM SIGARCH il / P ROC EED | N GS |

Improving Data Cache Performance by Pre-executing Instructions Under a Cache Miss

James Dundas and Trevor Mudge
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122
{dundas, tnm} @eecs.umich.edu

Abstract

In this paper we propose and evaluate a technique that
improves first level data cache performance by pre-executing future
instructions under a data cache miss. We show that these pre-
executed instructions can generate highly accurate data prefetches,
particularly when the first level cache is small. The technique is
referred to as runahead processing. The hardware required to
implement runahead is modest, because, when a miss occurs, it
makes use of an otherwise idle resource, the execution logic. The
principal hardware cost is an extra register file. To measure the
impact of runahead, we simulated a processor executing five integer
Spec95 benchmarks. Our results show that runahead was able to
significantly reduce data cache CPI for four of the five benchmarks.
We also compared runahead to a simple form of prefetching,
sequential prefetching, which would seem to be suitable for
scientific benchmarks. We confirm this by enlarging the scope of
our experiments to include a scientific benchmark. However, we
show that runahead was also able to outperform sequential
prefetching on the scientific benchmark. We also conduct studies
that demonstrate that runahead can generate many useful prefetches
for lines that show little spatial locality with the misses that initiate
runahead episodes. Finally, we discuss some further enhancements
of our baseline runahead prefetching scheme.

1. Introduction

Prefetching data into the data cache is one well-established
approach to reducing the detrimental effects memory latency has on
processor performance. Prefetching can be accomplished via soft-
ware, hardware, or a combination of both. Typical software
prefetching methods [1][2][3] allow a compiler to use its static
knowledge of a program’s behavior to generate prefetch instruc-
tions. Typical hardware prefetching methods can observe the
dynamic nature of a program, and work by either exploiting spatial
locality [4]{5], or by keeping track of the access patterns for earlier
accesses [6]{7].

Confining prefetching to software approaches means that the
hardware can be kept simple and fast, but prefetch instructions may
cause code bloat, and increase register pressure. Existing programs
may have to be recompiled to exploit software prefetching. Further-
more, the compiler cannot observe, or take advantage of, the
dynamic behavior of programs.

Hardware prefetching can take advantage of information cre-
ated at run-time and execute existing binaries, however, they can
require a significant amount of hardware in order to be effective.
The stride and reference prediction tables in [6][7], are a case in
point. The hardware requirements can be reduced if the table entries

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage. the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to regublish, 1o post on servers or to redistribute to lists, requires specific
permission and/or fee

IC’S 97 Vienna Austria

Copyright 1997 ACM 0-89791-902-5/97/7..$3.50

68

are allocated by the software. This hybrid hardware-software tech-
nique was presented in [8]. Their instruction stride table (IST) selec-
tively generates cache miss initiated prefetches for accesses chosen
beforehand by the compiler. This resulted in multiprocessor perfor-
mance for scientific benchmarks comparable in some cases to soft-
ware prefetching, with an instruction stride table as small as 4
entries. The IST concept was subsequently combined with the
prefetch predicates of [2] in [9]. Another hardware prefetching
scheme that avoids the need for significant amounts of hardware is
the “wrong path” prefetching described in {10}. This actually
prefetches instructions from the not-taken path, in the expectation
that they will be executed during a later iteration.

Most prefetching techniques, software- or hardware-based,
tend to perform poorly on an important class of applications having
recursive data structures such as linked-lists. A software technique
that overcomes this limitation was presented recently in [11], in
which software prefetches were inserted at subroutine call sites that
passed pointers as arguments. Another pointer-based approach was
described in [12]. This approach uses pointers stored within the data
structures to generate software prefetches.

The runahead prefetching approach presented in this paper is a
hardware approach, that requires only a modest amount of hard-
ware, because, when a miss occurs, it makes use of an otherwise
idle resource, the execution logic. The principal hardware cost is an
extra register file. Unlike most of the proposed hardware methods it
does not rely on any spatial locality of the data or on the history of
previous accesses. It attempts to generate accurate data prefetches
by pre-executing future instructions while data cache misses are
outstanding. Cache misses resulting from pre-executed loads and
stores create the prefetches into the data cache. Because their pre-
execution is simply a preview of their actual execution any resulting
cache misses are highly accurate, although not perfect as we shall
see. The cache misses generated during runahead are placed in a
data memory access queue, DMAQ.

We examine two variants of runahead, a conservative method
which allows pre-execution to continue only up to the point where
branches and jumps cannot be resolved, and an aggressive method
which assumes branches and jumps are correctly resolved during
runahead. In either case, stores are used as cache touch instructions.
They are not allowed to complete and write into memory during
runahead.

By waiting until cache misses occur before generating
prefetches, runahead adds a highly responsive feedback component
to the memory hierarchy: the greater the cache miss penalty, the
more opportunities there are for prefetching, which tend to reduce
the frequency of future cache misses. Conversely, if an application
enters a phase where its hit rate is high, few prefetches are gener-
ated.

The paper is organized as follows. The next section provides
more details on the mechanism of runahead prefetching. Section 3
discusses the simulator, benchmarks, and experimental results. Sec-

(ion 4 presents some concluding remarks and discussion of future
work.

2. How Runahead Works

When the processor detects an L1 data cache miss it records
{he instruction address of the faulting load or store instruction and
cnters runahead mode. It also checkpoints the register file, RF, by
copying it to a backup register file BRF. The processor then pre-exe-
cutes subsequent instructions while the cache miss is serviced.
Because the value returned from a cache miss cannot be known
shead of time, it is possible for pre-executed instructions to be
dependent upon invalid data. Rather than terminating runahead we
allow registers and data cache values to have an explicit “invalid”
state during runahead. Denoting this value, INV, requires an extra bit
associated with each register in RF as well as with each word in the
L1 data cache line (if byte addressing is allowed, each byte requires
an invalid bit). Pre-execution of most instructions consists of the
usual steps of fetch, decode, and execute, with some changes to deal
with invalid data. Also stores are treated slightly differently. The
actions associated with pre-execution can be summarized by
instruction type as follows:

1. register-to-register instructions mark their destination

register INV if any of their source registers contain an

INV. They can also replace an INV value in their destina-

tion if all sources are valid.

.load instructions mark their destination register INV if

either of three cases arises:

i. if the base register used to form the effective address
is marked INV, or

ii. if the base register is not INV but the load causes a
cache miss, or

iii.if the base register is not INvV and a cache miss does
not occur but the target word in the cache is marked
INV as a result of a preceding store during the same
runahead episode (see next case).

They can also replace an INV value in their destination if

none of the preceding three cases apply.

3. store instructions do not write data into the cache or
main memory. They do, however, mark the referenced
L1 data cache item INV, if the base register used in
address calculation is not INV and a cache miss does not
occur.

4. conditional branch instructions are resolved normally if
their branch condition is not INV. If it is, the outcome is
determined by whatever branch prediction strategy the
processor employs.

5. jump register indirect instructions (the target of the

jump is obtained from a register) in which the register

contains an INV value assume that the return stack con-
tains the address of the next instruction.

[]

The above actions were formulated from straightforward con-
siderations of read-after-write dependencies, however they do not
always accurately anticipate what occurs during actual execution.
Action 3 does not account for the case when stores cause a cache
miss or cannot compute their target addresses because their base
register has an INV value. Such stores cannot mark their destination
word INV. It thus follows that subsequent loads have a small possi-
bility of introducing apparently valid data into the RF, which should
have been marked INV. Action 4 does not account for the case when

69

an unresolvable conditional branch is mispredicted. Finally, action 5
does not account for the case when jump indirects are used to pro-
vide dynamically relocatable subroutine call linking rather than sub-
routine return linking.

To summarize, the above runahead pre-execution actions result
in values in the RF that cannot be trusted with certainty during
runahead: there is a small possibility that a valid register should be
marked INV and vice versa. Because the values in RF during
runahead are only used to create runahead data prefetches, they do
not affect the sequential state of the processor. The worst thing that
can happen is that some number of useless prefetches can be gener-
ated.

After the cache miss that started runahead mode is serviced the
processor resumes execution at the faulting instruction, and RF is
restored from its backup, BRF. Each register in the BRF need only
be connected to the one RF register that it shadows. No read or write
ports connect to the BRF, simplifying its implementation, keeping it
off of the critical path, and allowing the RF <> BRF transfers to be
done via two global signals. At most a cycle will be added to the
miss penalty. Load and store instructions, that can compute their tar-
get addresses with valid registers, can generate prefetch requests if
their target lines are not in the L.1 data cache. The valid bits in RF

and the cache are set to the valid state when the processor leaves
runahead.

2.1 Two runahead policies

We consider two runahead policies in this paper: a conserva-
tive policy and an aggressive one. If a conditional branch or jump is
pre-executed that is dependent upon an invalid register, the proces-
sor can do one of two things.The conservative policy halts runahead
until the runahead-initiating miss is serviced. The aggressive policy
assumes that the branch prediction or subroutine call return stack is
good enough to accurately resolve the branch or jump. The conser-
vative policy should generate fewer useless prefetches, but the
aggressive policy can potentially deliver superior performance if it
can continue to pre-execute the proper instructions past unresolv-
able branches and jumps. Our simulations of the aggressive
runahead policy assume that the processor always stays on the
proper path of execution during runahead.

3. Experiments

The simulator was created using ATOM [13]. The simulated
processor fetches, decodes, and executes one instruction per cycle.
It did not model pipeline stalls or penalties due to instruction cache
misses, just the effects of data cache misses and any resulting
prefetching. Thus the CPI figures obtained in the experiments is
simply the contribution due to data cache effects, deache-CPI, plus
one. Effects such as page faults and context switches were not mod-
eled, and the data caches were cold started.

A total of six benchmarks from the Spec95 suite were simu-
lated, and are described in Table 1. All of the benchmarks were
compiled using version 2.7.2 of gcc with the -O optimization level.

In the simulations an 8 entry DMAQ is used to send miss and
prefetch requests, as well as store-throughs, from an on-chip L1
data cache to an off-chip L2 data cache strictly in the order in which
they were generated. The DMAQ thus provides the functionality of
a store queue, outstanding request list {61, and miss status holding
registers [14]. It is further assumed that the DMAQ cannot coalesce
store-throughs, or allow demand fetches or store-throughs to either
pass or squash outstanding prefetches. The processor stalls for store

.

throughs and demand fetches when the DMAQ is full, while
prefetches that are generated when the DMAQ is full are dropped.
In summary, we simulate a model of the interface to the off-chip
memory hierarchy that is both simple and conservative. A descrip-
tion of the data memory hierarchy is given in Table 2.

3.1 Results of using runahead for data prefetching
Plots of data memory CPI versus L1 data cache size are shown
in Figure 1 through Figure 5. These simulations were allowed to run
for the first 500 million instructions of each benchmark.

There are three data sets shown in each of the figures. No
prefetch corresponds to the simulated processor without any data
prefetching. The other two data sets correspond to the conservative
and aggressive runahead policies. The percentage reduction of
dcache-CPI from that of the no-prefetch scheme is provided next to
each data point. (Recall that the data memory portion of the CPI fig-
ure is simply one less than the overall CPI that was measured.)

Conservative runahead reduced performance by 4% (0.016
CPI) for the larger 8KB L1 data cache on the Compress benchmark
(Figure 1). This can be attributed to the simple modet assumed for
the memory interface which allows store-throughs, demand fetches,
and a small number of runahead prefetches to compete for DMAQ
entries on an equal basis. Interestingly, while the aggressive
runahead strategy was able to consistently improve performance
over the entire range of cache sizes, conservative runahead was able
to outperform aggressive runahead for the 1IKB L1 data cache size.
The small cache results in increased opportunities for prefetching,
particularly for aggressive runahead, resulting in more competition
for DMAQ entries. Conservative runahead generates fewer
prefetches, resulting in less competition. A more advanced interface
to the off-chip memory hierarchy which prioritizes the off-chip
memory references would improve performance by reducing the
competition between prefetches, demand fetches, and store-
throughs.

The rest of the benchmarks were able to benefit significantly
from runahead prefetching. Note that the dcache-CP1 for the no
prefetch scheme is significant: all of the simulations have a dcache-
CPI of about 2 for a 4KB L1 data cache, with the exception of ljpeg.
Go (Figure 2) benefited the most from the aggressive runahead
scheme, with reductions in dcache-CPI of 58 to 43% for the aggres-
sive runahead scheme. The conservative runahead scheme delivered
performance reductions haif that of the aggressive runahead
scheme, indicating that a significant number of unresolvable
branches and jumps were encountered. Perl (Figure 3had reduc-
tions of dcache-CPI of 49 to 22% for the aggressive scheme and 35
to 15% for the conservative scheme. The dcache-CP1 reductions for
Vortex (Figure 4) were similar with 47 to 26% for the aggressive
scheme, and 33 to 18% for the conservative scheme. Ijpeg (Figure
5) was perhaps the most interesting of the integer benchmarks, with
reductions of dcache-CP1 of 44 to 31% for the aggressive scheme,
and nearly identical reductions of 43 to 30% for the conservative
scheme. This indicates that virtually all of the branches and jumps
encountered during runahead could be resolved with valid registers.
3.2 Comparison with sequential prefetching
The following simulations were performed with the L1 data
cache size fixed at 4KB, and were only simulated for the first 100
million instructions of each benchmark.

Simulations of the prefetch-on-miss and always-prefetch
sequential prefetching techniques described in {4] were performed.

70

Prefetch-on-miss generates a prefetch for line i+1 whenever an
access of line i misses in the L1 data cache. Always-prefetch gener-
ates a prefetch for line i+f whenever line i is accessed. Both tech-
niques were also simulated with the ability to generate prefetches
for line i+2 in addition to line i+, giving us a total of 4 sequential
prefetching schemes. Prefetches that hit in the L1 data cache were
dropped.

Bar graphs are shown in Figure 6 through Figure 11, which
compare the dcache-CPl reducing ability of the four types of
sequential prefetching te that of aggressive and conservative
runahead prefetching. The percentage reduction of dcache-CPI over
the baseline no-prefetch scheme is provided on top of each bar. Per-
formance degradation is indicated by enclosing the percentage in
parentheses. In general, sequential prefetching works well for scien-
tific benchmarks but poorly for integer benchmarks. Because the
benchmarks we are using are integer benchmarks, we added a scien-
tific benchmark, Tomcatv, to provide a comparison with at least one
benchmark for which sequential prefetching schemes generally
work well.

Figure 6 shows results for Ijpeg. This is the one case where
both prefetch-on-miss schemes were able to improve performance
10 a small extent (dcache-CP1 decreased by 7 and 3%), however, this
was greatly overshadowed by that of conservative and aggressive
runahead prefetching where the dcache-CPl was decreased by 26
and 27%, respectively. The always-prefetch schemes significantly
degraded performance (dcache-CPI increased by 34 and 49%).

As we expected, Tomcatv (Figure 7) benefited from sequential
prefetching. The always-prefetch and prefetch-on-miss schemes
were able to improve performance (dcache-CPl decreased by 7 and
8%) when prefetches were generated for only the immediately
sequential line. When up to two lines could be prefetched, perfor-
mance was reduced for both always-prefetch and prefetch-on-miss
(dcache-CP1 increased by 28 and 25%). The conservative and
aggressive runahead schemes were able to reduce data dcache-CPI1
significantly (dcache-CPI decreased by 25 and 24%), outperforming
all of the sequential prefetching schemes.

In the remainder of the benchmarks (Figure 8 through Figure
11) the conservative and aggressive runahead schemes were able to
reduce dcache-CPI significantly, with the exception of compress
where gains were modest. Sequential prefetching resulted in
reduced performance for all of these benchmarks.

3.3 Measurements of miss-prefetch spatial locality
In order to get a better picture of why runahead is effective for
integer benchmarks we measured the miss-prefetch spatial locality
provided by runahead for our benchmarks. Again our simulations
ran for the first 100 million instructions of each benchmark with the
L1 data cache fixed at 4 KB.

Plots of the miss-prefetch spatial locality for the aggressive
runahead policy are shown in Figure 12 through Figure 17. The x =
0 point on the x-axis represents the cache line address of each
runahead-initiating L1 data cache miss. The other points on the x-
axis represent the distance in cache lines between the address of
each runahead-initiating miss and any runahead prefetches that are
generated during the corresponding runahead episode. For example,
x = 1 represents the address of the next sequential line after the
address that caused the runahead-initiating miss. The y-axis is a
cumulative value. Its value at a particular x, say 35, represent the
fraction of all runahead prefetches that result from pre-executed
accesses to any of the 35 sequential line addresses after the address

causing the miss that initiated runahead. The negative part of the x-
axis represents addresses before the runahead-initiating miss. The
extreme data points at x = +/- 1000 lines represent the fraction of
runahead prefetches whose addresses correspond to lines that are at
least 1000 lines distant from their corresponding runahead-initiating
misses. The plots in Figure 12 through Figure 17 are aggregates of
all the runahead prefetches that are generated over the course of
running each benchmark.

For example, by looking at the data points for positive x close
to x = 0 in Figure 12, one can see that 18% of all runahead
prefetches generated for Vortex are for the 12 immediately sequen-
tial cache lines after their runahead-initiating misses. Similarly, 8%
are generated for the 12 lines preceding their runahead-initiating
misses. The cumulative distributions are relatively flat until they
reach x = 1000, at which point there are lage spikes. The spike at x
= +1000 indicates that 27% of the runahead prefetches are gener-
ated for lines whose addresses are more than 1000 lines ahead of
their runahead-initiating misses. Another 38% are generated for
lines whose addresses are more than 1000 lines before their
runahead-initiating miss. ‘

Go (Figure 13) exhibited even less miss-prefetch spatial local-
ity than Vortex. Only 15% of the runahead prefetches are generated
for addresses within 100 lines of their runahead-initiating miss, and
only 29% of the runahead prefetches are within 999 lines. The
majority of the prefetches are for lines far removed from their
runahead-initiating misses. Perl (Figure 14) exhibited somewhat
more miss-prefetch spatial locality than that for Go. 16% of the
runahead prefetches are for lines within 10 lines their runahead-ini-
tiating misses, two-thirds of which are for lines located before their
corresponding misses. The overwhelming majority of the
prefetches, 73%, are for lines far removed from their runahead-initi-
ating misses. Compress (Figure 15) exhibited by far the best miss-
prefetch spatial locality of the benchmarks that we examined, with
85% of the prefetches within 25 lines of their runahead-initiating
misses. Note that two-thirds of these prefetches were for lines
immediately preceding their runahead-initiating misses. Ijpeg (Fig-
ure 16) exhibited the least miss-prefetch spatial locality of the
benchmarks that we examined, with very few prefetches generated
close to their runahead-initiating misses. However, 85% of the
prefetches were generated within 500 lines.

Tomcatv (Figure 17) shows somewhat more miss-prefetch spa-
tial locality than Ijpeg for lines close to their runahead-initiating
misses. The majority of the prefetches generated for Tomcatv were
for lines far removed from their runahead-initiating misses.

These resuits indicate that runahead is very effective at gener-
ating cache-miss initiated prefetches that exhibit little spatial local-
ity with respect to their prefetch-initiating misses. Sequential

prefetching can only generate prefetches for lines that exhibit spa-
cial locality.

3.4 What happens to potential prefetches

Many of the pre-executed load and store instructions that
would otherwise miss in the L1 data cache are unable to generate
prefetches for a variety of reasons:

® a demand fetch or prefetch for the missing line is already
in progress, or

® the pre-executed load or store instruction could not gen-
erate its target address with valid registers, or

71

® the DMAQ was full, causing what would have been a
useful prefetch to be dropped.

A bar graph illustrating what happened to the potential prefetches
for each benchmark is shown in Figure 18. Only the aggressive
runahead policy is shown. The numbers on top of each bar represent
the total number of potential runahead prefetches (pre-executed
loads and stores whose actual target addresses would cause a miss
in the L1 data cache) for the benchmark in question. Note that since
instructions can be pre-executed multiple times in successive
runahead episodes it is possible for the number of potential
prefetches to exceed the number of instructions actually executed in
the simulation (100 million).

From the figure it can be seen that 23 to 46% of the potential
runahead prefetches were for lines that were already being fetched
by an earlier prefetch or mnahead-initiating miss. Another 12 to
37% of the potential ranahead prefetches could not compute their
target addresses with valid registers. Of the remaining potential
prefetches, up to 38% were dropped due to a lack of available
DMAQ entries. The remainder of the potential runahead prefetches,
19 to 40%, were actuaily able to become useful runahead
prefetches. This strongly suggests that separate queues are needed
for runahead prefetches and store-throughs, and that a runahead
processor should avoid dropping prefetches, perhaps with a longer
prefetch queue.

The benchmarks that had the most potential runahead
prefetches (Vortex, Perl, and Tomcatv) also lost the largest propor-
tion of them to a lack of DMAQ entries. The rest of the benchmarks
lost very few potential prefetches in this way. Tomcatv also lost the
smallest fraction of its potential prefetches to invalid registers, with
just over 33 miilion prefetches generated during the first 100 million
instructions of the benchmark. This huge number of prefetches for
Tomcatv caused by far the largest absolute reduction in deache-CPl
among the benchmarks that we examined. This suggests that
runahead may be very effective for both integer and scientific
benchmarks in general.

3.5 The effect on off-chip fetch traffic

Off-chip fetch traffic can lead to performance problems if the
memory hierarchy does not have adequate bandwidth to service the
requests in a timely fashion, or if a significant fraction of the fetch
traffic is composed of useless prefetches. Runahead prefetches are
by nature quite accurate, so any performance degradation attribut-
able to runahead is likely to arise from the sheer quantity of addi-
tional fetch traffic that may occur. A bar chart is shown in Figure 19,
which depicts the number of fetches that are generated during the
simulation of the first 100 million instructions of each benchmark.
The number of fetches for each benchmark is broken down into
three bars, which depict the number of fetches for the no-prefetch,
conservative runahead, and aggressive runahead schemes. Each bar
is broken down further into demand fetches (those that are the result
of a conventional load or store miss) and runahead prefetches.

The percentage increase in fetch traffic for each runahead
scheme over that of no-prefetch is indicated as a number on top of
each bar. Note that ali of the integer benchmarks incurred small
increases in fetch traffic due to runahead. Only one of the integer
benchmarks, Perl, suffered an increase in fetch traffic of more than
three percent for either of the runahead prefetching schemes. Fur-
thermore, the number of demand fetches was significantly reduced
for most of the benchmarks when runahead was employed.

.

The only scientific benchmark that we simulated, Tomcatv,
incurred large increases in overall fetch traffic as a resuit of
runahead (112.6 and 114.3%). However the number of demand
fetches was dramatically reduced, and Tomcatv was able to derive

the largest absolute reduction in dcache-CPI of all the benchmarks
that we examined.

4. Concluding Remarks

In this paper we present runahead pre-execution, a new method
of improving several aspects of processor performance. Our simula-
tions indicate that runahead data prefetching is effective at improv-
ing the performance of integer benchmarks. Simulations of a
scientific benchmark, Tomcatv, indicate that runahead data
prefetching may also be effective for benchmarks that work well
with traditional hardware and software data prefetching methods.
The experiments were conducted for a range of L1 data cache sizes
that are quite small, as this was the range that we were interested in
as part of our studies of the design of a very high-clock rate GaAs
processor. Clearly, experiments need to be done for L1 caches larger
than 8 KB. .

There are a number of areas where runahead has the potential
to improve performance that were not examined in this study. For
example, runahead can improve branch prediction performance by
pre-executing conditional branches. A shift register can be used to
record the outcomes of pre-executed conditional branches. A count
register is needed to keep track of how many valid outcomes are in
the shift register. A second count register and two bits of state are
needed to determine when to allow the processor to add or remove
outcomes to or from the shift register. When the processor leaves
runahead mode any outcomes that were recorded in the shift register
are used as branch predictors by shifting them out one at a time for
each conditional branch that is encountered. A similar approach can
be used to record pre-executed indirect jump targets. Pre-executed
conditional branch outcomes can also be used to train a traditional
dynamic branch prediction scheme during runahead episodes,
which is used to predict conditional branches when the shift register
is empty.

Some preliminary runahead branch prediction simulation
results were reported in [15]. Although the initial results were
encouraging, the fact that the simulator could not explore wrong
paths during runahead meant that the results were somewhat opti-
mistic. We will present more accurate results once we have a simu-
lator that can explore wrong paths.

Some performance is lost since runahead stores cannot modify
the L1 data cache, which can cause read-after-write dependencies
with subsequent loads during the same runahead episode. A small
fully associative store data cache may be used to capture store data
in runahead, which could then be used by subsequent runahead
loads. This cache can be quite small yet still deliver a noticeable
improvement in performance. This approach would be most useful
when runahead crosses procedure boundaries or whenever registers
are spilled, both of which can cause a significant aumber of stack-
based loads and stores.

Finally, a runahead processor needs a steady supply of instruc-
tions to pre-execute in order to be effective. Although instruction
cache misses that are detected during runahead are desirable in the
sense that they become instruction stream prefetches, it may be pos-
sible to obtain additional performance by continuing to pre-execute
instructions after an instruction cache miss is detected, or by initiat-

72

ing runahead on an instruction cache miss. We leave this for future
work.

5. References

[D. Caliahan, K. Kesnedy, and A. Porterfield, “Software Prefetch-
ing,” In the Proceedings of the Fourth Intemational Conference on
Architectural Suppost for Programming Languages and Operating
Systems, April 1991

2] T.C. Mowry, M.S.Lam, and A. Gupta, “Design and evaluation of
a compiler algorithem for prefetching,” In the Proceedings of the
Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October 1992.

(31 A.C. Klaiber and HM. Levy, “An Architecture for Software-Con-
trolled Data Prefesching,” In the Proceedings of the 18th Annual
International Sympesium on Computer Architecture, 1991.

(4] A.J. Smith, “Cache Memories,” ACM Computing Surveys, vol.
18, num. 3, Sepwember 1982.

5] N.P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” In
the Proceedings of the 17th Annual International Symposium on
Computer Architecture, May 1950.

61 JL. Baer and TF. Chen, “An Effective On-Chip Preloading
Scheme To Reduce Data Access Penalty,” In the Proceedings of
Supercomputing, 1991.

[71 J.W:.C. Fu and J.H Patel, “Stride directed prefetching in scalar pro-
cessors,” In the Proceedings of the 25th International Symposium
on Microarchitectare, December 1992.

8] R. Bianchini and TJ. LeBlanc, “A Preliminary Evaluation of
Cache-Miss-Initisted Prefetching Techniques in Scalable Multi-
processors,” Univessity of Rochester Computer Science Depart-
ment Technical Report 515, May 1994.

91 T.F. Chen, “An Effective Programmable Prefetch Engine for On-
Chip Caches,” In the Proceedings of the 28th International Sympo-
sium on Microarchitecture, 1995.

(10} J. Pierce and T. Mudge, “Wrong-Path Instruction Prefetching,” In
the Proceedings of the 29th International Symposium on Microar-
chitecture, 1996.

(11] M. Lipasti, W. Schmidt, S. Kunkel, and R. Roediger, “SPAID:
Software Prefetching in Pointer- and Call-Intensive Environ-
ments.” In the Proceedings of the 28th International Symposium on
Microarchitectare, 1995.

(12] C.K. Luk and T.C. Mowry, “Compiler-Based Prefetching for Re-
cursive Data Structures,” In the Proceedings of the Seventh Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, October 1996.

[13] A. Eustace and A. Srivastava, “ATOM: A Flexible Interface for
Building High Performance Program Analysis Tools,” Digital
Equipment Corporation Westem Research Laboratory Technical
Note TN-44, July 1994.

[14] D. Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache Organi-
zation,” In the Proceedings of the 8th Intemnational Symposium on
Computer Architecture, May 1981.

[15] J. Dundas and T. Mudge, “Using Stall Cycles to Improve Micro-
processor Performance,” University of Michigan Department of
Electrical Engineering and Computer Science Technical Report
CSE-TR-301-96, September 1996.

Benchmark Load/Store Data References)
(Spec9S) Data Set Description
rﬁrst 100M Instr. \ First 500M Instr.
Vortex \ reference \ 234MNT M ‘ 121.3M/85.9M Database program
Go \ play = 10 board = 13 \ 30.1M/6.4M 159.8M/36.6M Artificial intelligence program that plays Go
lipeg \ reference \ 20.0M/10.7TM 91.4M/36.4M Image compression and decompression
Perl \ reference \ 24.2M/12.6M 120.7M/62.6M Manipulates sirings and prime pumbers using Per!
Compress \ reference \ 24.8M/10.9M 124.0M/54.9M Compresses and decompresses 2 file in memory
Tomcatv \ reference \ 22.9M/10.9M Not simulated Mesh generation (scientific beachmark)
Table 1 Benchmark Descriptions
Policy \ L1 Data Cache \ 1.2 Data Cache Main Memory
Placement \ direct-mapped \ direct-mapped NA
Store-hit \ write-through (up to 8 outstandieg) \ write-back N.A.
Store-miss write-allocate \ write-allocate NA
Line / transfer size 32B \ 28 2B
Size 4KB \ 1 MB N.A.
Blocking \ Non-blocking (up to 8 outstanding) \ Hit-under-miss only NA
Maximum throughput \ 1 accesses/cycle \ 0.2 accessesicycle 001 accesses/cycle
Latencies \ Hit: O (covered by pipeline model) \ Hit: O (covered by L1 miss) Qcycles
(cycles) Miss: 24 + time in DMAQ Miss: additional 100 (200 if Dirty) (covered by L2 miss and dirty WB)

Table 2 Data Memory Hierarchy Parameters
Data cache CP! vs. cache size for COMPRESS

Data Cache CPI

Figure 1

4
L1 Data Cache Size (KB)

pata Cache CP!

i

Data cache CP1 vs. cache size for PERL

Data Cache CP!

73

Data cache CPl vs. cache size tor GO

Figure 2

2 4
L1 Data Cache Size (KB)
Data cache CPlvs. cache size for VORTEX

e

o _protecti =

Data cache CPl

Data cache CPI

Data cache CPI

Data cache CPi vs. cache size for IJPEG

a

2 4
L1 Data Cache Size (KB)

Runahead vs. sequential prefetching for UPEG

0.8 49%])
£
(34%),
]
0.6+
base ., 3%

7% =2 Figure 6
0.4 26%27%
0.2
0.0
a0 Runahead vs. sequential prefetching for GO

(31%)
(14%)(15%) -

6%)]

20 Figure 8
| 25%
1.0 49%
0.0
Runahead vs. sequential prafetching for PERL
3.0
(19%)
8% 10%]]
case T T

20r Figure 10
1.0¢ A
0.0!

”

2y,
S
%,
5

74

Runahead vs. sequential prefetching for TOMCATV

20

15

Data cache CPI

10+

(@5%) (28%)

: Figure 7
| 25%24%

3.0

Runahead vs. sequential prefetching for VORTEX

Data cache CPI

»
e

—
o

i

(5%) T2 E%)
T bt

base

] 22% Figure 9
o 30% |

0.0

Runahead vs. sequantial prefetching for COMPRESS

1.0

0.8

0.6

0.4

Data cache CPI

0.2

Figure 11

0.0

Fraction of all generated prefetches

Fraction of all generated prefetches

Fraction of all pre-executed loads and

Fraction of all generated prefetches

Miss-prefetch locality for VORTEX

0.8} .
0.6} -
0.4L

0.2

VOrWE_NONE_CRAK ~m

0

-1666

500 6 560 1000

Distance from miss (lines)

Miss-prefetch locality for PERL

Figure 12

r
pot_notwt comw

Figure 14

0.8
0.6} —
0.4} 0 O
0.2
-1000 -500 0 500 1000
Distance from miss (lines)
Miss-prefetch locahty for IUPEG
[R —
0.8t - -
0.6} - ;
0.4|- -
0.2 Lﬁ‘\ /J
0 "
-1000 -500 0 500 1000

1.0

stores that miss in the L1 data cache

Distance from miss (lines)

Breakdown of what happens to potential
prefetches during runahead

| | Generated Prefetch
|| DMAQ Fult

|| Invalid Registers
| Fetch In Progress

13.2M10.3M2.6M14.2M1.6M176.4M

Figure 16

Figure 18

75

-

Miss-prefetch locality for GO

o : wmfdo-r—-'
D i
g !
S
Bos
@
Q.
g 0.6
g Figure 13
&
204t
©
K]
ozt]
8
[T ; i
0 7560 500) 500 1600
Distance from miss (lines)
MISS -prefetch locality for COMPRESS
o 1 u!mm-a-r-..
[+
o=
8
208
@
&
B
[I — Figure 15
2
@
204
8 |
S i
§ o2} - _
[%]
£
0 Fo00 500 0 500 1000
Distance from miss (lines)
Miss-prefetch locality for TOMCATV
o ! : ———
2 :
3 i
208
&
S
2
5 08 B Figure 17
2
€&
204}
©
k-]
[~
£ 0.2 | |
o H
0 3066 560) 500 1000
Distance from miss (lines)
Fetch Traffic for the first 100M
instructions of each benchmark
bl 7,7
g FPretetches TCAT 275
£ ax107 | [liDemand Fetches
8
2 3x107
5 Figure 19
2 2x107
5 VORTEX GO
5 1x107 g 07, WPEG ,9.5\ cOoMP
€ S ﬁg og El
B P O 5, P Cn P 2 O i O, O 72 G B0 2005 2053, 6
? Qoo.g@. ;2”3?'90 o‘b ’3::0
’L
,&3&% :awf}‘»%”&%ef o

