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Abstract

Instruction cache misses can severely limit the perfor-
mance of both superscalar processors and high speed
sequential machines. Instruction prefetch algorithms
attempt to reduce the performance degradation by bring-
ing lines into the instruction cache before they are needed
by the CPU fetch unit. There have been several algorithms
proposed to do this, most notably next line prefetching and
target prefetching. We propose a new scheme called
wrong-path  prefetching which combines next-line
prefetching with the prefetching of all control instruction
targets regardless of the predicted direction of conditional
branches. The algorithm substantially reduces the cycles
lost to instruction cache misses while somewhat increas-
ing the amount of memory traffic. Wrong-path prefetching
performs better than the other prefetch algorithms studied
in all of the cache configurations examined while requir-
ing lintle additional hardware. For example, the best
wrong-path prefetch algorithm can result in a speed up of
16% when using an 8K instruction cache. In fact, an 8K
wrong-path prefetched instruction cache is shown to
achieve the same miss rate as a 32K non-prefetch cache.
Finally, it is shown that wrong-path prefetching is applica-
ble to both multi-issue and long L1 miss latency machines.

1 Introduction

Instruction cache misses are detrimental to the
performance of high-speed microprocessors. As the
differential between processor cycle time and memory
access time grows and the degree of “instruction-level
parallelism in superscalar architectures increases, the
performance degradation caused by cache misses will
become even more apparent. Designers have proposed
several strategies to increase the performance of the cache
memory systems which will be implemented in next-
generation microprocessors. The option often used is to
increase the cache size and/or its associativity. However,
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an increasingly important set of techniques are to prefetch
instructions and data into the cache [2][31{51{6][8].

In the case of instruction caches, the focus of this paper,
prefetching is an attempt to fetch lines from memory into
the cache before the instructions in the line are referenced
by the processor’s fetch unit. To be effective, the prefetch
strategy must accomplish two things. It must be able to
guess which cache lines will soon be referenced and it
must initiate the prefetch requests far enough in advance
of instruction fetch so that the miss latencies are
significantly reduced or eliminated entirely. Theoretically,
an optimal prefetch algorithm could remove all cache
misses by prefetching all instructions immediately before
they are needed. Unfortunately, non-sequential program
flow makes it impossible for the prefetcher to always
predict the correct execution direction. Much work has
been done to develop methods which anticipate the
direction of program flow and to prefetch instructions in
this direction. In this chapter, a new prefetching algorithm
is proposed which makes no attempt to predict the correct
direction. In fact, it relies heavily on prefetching the
wrong direction. This method outperforms several
previously proposed prefetching schemes, but it does so at
a lower hardware cost. It’s simplicity also makes it
suitable for combining with more sophisticated prefetch
techniques.

The work in this paper grew out of a study of
instruction prefetching in [13], where the idea of wrong
path prefetching was first proposed. It was further
discussed in [11]. Proposals have also been made for
prefetching data from data caches {1][9]{14] however, this
paper does not address data prefetching issues.

2  Prefetching Methods

Instruction prefetching can be done passively by
modifying the cache organization to promote prefetching
through line size or by including additional hardware
mechanisms to execute an explicit prefetching algorithm.



2.1 Long Cache Lines

The simplest form of prefetching is the use of long
cache lines [15]. When a line is replaced, new instructions
are brought into the cache in advance of their use by the
CPU, thereby reducing or eliminating miss delays. Longer
cache lines also reduce the amount of space required for tag
storage. The disadvantages are that longer lines take longer
to fill, they increase memory traffic, and they contribute to
cache pollution due to the larger replacement granularity.

2.2 Next-Line Prefetching

. Another approach to instruction prefetching is next-line
prefetching. It tries to prefetch sequential cache lines
before they are needed by the CPU'’s fetch unit. In this
scheme, the current cache line is defined as the line
containing the instruction currently being fetched by the
CPU. The next line is the cache line located sequentially
after the current line. If the next line is not resident in the
cache, it will be prefetched when an instruction located
some distance into the current line is accessed. This
specified distance is measured from the end of the cache
line and is called the fetchahead distance. Next-line
prefetching predicts that execution will fall-through any
conditional branches in the current line and continue along
the sequential path. The scheme requires little additional
hardware since the next line address is easily computed.
Unfortunately, next-line prefetching is unlikely to reduce
misses when execution proceeds down non-sequential
execution paths caused by conditional branches, jumps,
and subroutine calls. In these cases, the next line guess will
be incorrect except in the case of short branches and the
correct execution path will not be prefetched. Performance
of the scheme is dependent upon the choice of fetchahead
distance. If the fetchahead distance is large, the prefetch is
initiated early and the next line is likely to have been
received from memory in time for the CPU to access it.
However, increasing the fetchahead distance increases the
probability that a branch will be encountered in the current
line after the prefetch begins, rendering the next-line
prefetch ineffectual. This useless prefetch increases both
memory traffic and cache pollution. In spite of these
shortcomings, next-line prefetching has been shown to be
an effective strategy, sometimes reducing cache misses by
20-50% [7].

2.3 Target-Line Prefetching

Target-line prefetching addresses next-line prefetching’s
inability to correctly prefetch non-sequential cache lines.
When instructions in the current line are being executed,
the next cache line accessed might be the next sequential
cache line or it might be a line containing the target of a
control instruction found in the current line. Since
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unconditional jump and subroutine call instructions have a
fixed target and conditional branch instructions are often
resolved in the same direction as they were when last
executed, a good heuristic is to base the prefetch on the
previous behavior of the current line, i.e., prefetch the line
which was referenced next the last time the current line was
executed. Target-line prefetching uses a target prefetch
table maintained in hardware to supply the address of the
next line to prefetch when the current line is accessed. The
table contains current line and successor line pairs. When
instruction execution transfers from one cache line to
another line, two things happen in the prefetch table. The
successor entry of the previous line is updated to be the
address of the new current line. Also, a lookup is done in
the table to find the successor line of the new line. If a
successor line entry exists in the table and that line does not
currently reside in the cache, the line is prefetched from
memory. By using this scheme, instruction cache misses
will be avoided or at least their miss penalty will be
reduced if the execution flow follows the path of the
previous execution.

2.4 Hybrid Schemes

A hybrid scheme which combines both next-line and
target prefetching was proposed in Hsu and Smith (8]. In
this scheme, both a target line and next line can be
prefetched, offering double protection against a cache line
miss. Next-line prefetching works as previously described.
Target-line prefetching is similar to that above except that
if the successor line is the next sequential line, it is not
added to the target table. This saves table space thus
enabling the table to hold more non-sequential successor
lines. They compared the performance of this scheme with
next-line and target-line algorithms using supercomputer
reference traces and their results were impressive—miss
rates are reduced by 50-60%. In addition, they showed that
the performance gain of the hybrid method was roughly the
sum of the gains achieved by implementing next-line and
target prefetching separately.

Performing target prefetching with the help of a prefetch
target table is not without drawbacks, however. First,
significant hardware is required for the table and the
associated logic which performs the table lookups and
updates. This requires additional chip area that has the
potential to increase CPU cycle time. Secondly, the extra
hardware has only limited effectiveness in that it cannot be
used to remove certain types of misses. First time accessed
code does not profit from table-based target prefetching
since the table must first be set up with the proper links or
current-successor pairs. Thus, compulsory misses are
unaffected by target prefetching. Furthermore, unlike a .
branch prediction table, even when the correct information
does exist in the table it cannot always be utilized. Upon re-



execution of the code when the links are properly set,
prefetching will only occur if the target line has been
previously displaced from the cache. In the likely event
that the line is still in the cache, the table entry space and
lookup are wasted because prefetching is not needed. This
suggests that target prefetching using a table is best suited
for small caches with low associativity where lines are
often displaced and then rereferenced. This was the
proposed application environment in [8].

It is interesting to note several points common to the
above schemes. One is that prefetch decisions are made at
the cache line level. No instruction-specific information is
used. This makes sense because a prefetch decision must
be made early and many cycles may pass before instruction
recognition can take place in the decode stage of the
pipeline. Another point is that the above schemes try to
predict the correct execution path and then prefetch only
down the predicted path. For instance, using a small
fetchahead distance will bias the next-line prefetching
scheme toward the correct path by lowering the probability
of a control instruction being within the fetchahead
distance. Target prefetching predicts that the correct
direction in which to prefetch is the direction of the
previous execution. Even though the hybrid algorithm may
prefetch lines down the wrong path, since it sometimes
prefetches both a next line and a target line for the current
line, such actions are unintentional and rarely occur.
Prefetching the correct path satisfies intuition because only
lines soon to be executed should be prefetched. The
alternative, fetching wrong path lines into the cache, would
seem to increase memory traffic and cause cache pollution.

2.5 Wrong-Path Prefetching

We will show that the intuition expressed above is
partially false. Our earlier studies have shown that
executing instructions down mispredicted paths actually
reduced the number of cache misses occurring during
correct path execution [13). This suggests that prefetching
instruction cache lines down mispredicted paths might
have a positive result. Accordingly, we have termed this
new prefetch algorithm wrong-path prefetching. It is
similar to the hybrid scheme in the sense that it combines
both target and next-line prefetching. The next line is
prefetched whenever instructions are accessed inside the
fetchahead distance as described earlier. The major
difference is in the target prefetching component. No target
line addresses are saved and no attempt is made to prefetch
only the correct execution path. Instead, the line containing
the target of a conditional branch is prefetched immediately
after the branch instruction is recognized in the decode
stage. Thus, both paths of conditional branches are always
prefetched: the fall-through direction with next-line
prefetching, and the target path with target prefetching.
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Unfortunately, because the target is computed at such a late
stage, prefetching the target line when the branch is taken is
unproductive. In this case, if the target address is not in the
cache, a fetch miss and a prefetch request of the same line
will be generated simultaneously. Similarly, prefetching
unconditional jump or subroutine call targets is useless
since the targets are always taken and the prefetch address
would be produced too late. To reiterate, the target
prefetching part of the algorithm can only perform a
potentially useful prefetch for a branch which is not taken.
This is why the algorithm is called wrong-path prefetching.
However, if execution returns to the branch in the near
future, and the branch is then taken, the target line will
probably reside in the cache because of the prefetch.

The hardware requirements for wrong-path prefetching
are roughly equivalent to what is required for next-line
prefetching since the target prefetch addresses are
generated by the existing decoder and no target addresses
are saved. The obvious advantage of wrong-path
prefetching over the hybrid algorithm is that there is a
lower hardware cost. The performance of wrong path
prefetching might also compare favorably with other
schemes. Wrong-path prefetching can prefetch target paths
which have yet to be executed unlike the table-based
schemes which require a first execution pass to create the
cache line links. In addition, wrong-path prefetching
should perform better than correct-path only schemes when
there exists a large disparity between the CPU cycle time
and the memory speed. This is because other algorithms try
to prefetch down target paths which will be executed
almost immediately, and if memory has a long latency, the
prefetch may not be initiated soon enough. Conversely,
wrong-path prefetching prefetches lines down a path which
is not immediately taken thus it potentially has more time
to prefetch the line from a slow memory before the path is
executed.

The potential advantages of wrong-path prefetching
would not come without cost. Prefetching down not-taken
paths will put some lines into the cache that are never
accessed. This will increase both memory traffic and cache
pollution. For the algorithm to be successful, the benefits of
prefetching must overcome the added pollution misses.
The extra traffic cannot be reduced, but memory bandwidth
can be viewed as a.hardware resource to be utilized to
reduce the performance degradation caused by instruction
cache misses.

3 Experimental Method

This section details the experimental procedure used to
study the performance characteristics of the previously
mentioned prefetching algorithms. A detailed, trace-driven
memory system simulator was written to model the



performance of the instruction cache, memory bus,
prefetch unit, and processor fetch unit in typical current
and next-generation microprocessors. The simulator can
model the behavior of a wide range of system
configurations.

3.1 Memory System Model

The base model is a single issue pipelined processor
with RISC-like properties. Each instruction takes one cycle
to execute and all instructions are of uniform 4 byte length.
The CPU clock speed is assumed to be high so the disparity
between clock speed and memory access time is large.
Conventional split L1 instruction and data caches are
implemented which connect directly to memory or to a
second-level, L2, cache. Instruction cache accesses are not
pipelined and cache hits complete in one cycle. The base
cache model is a 16K direct-mapped cache with 32 byte
lines and a 16 byte/cycle refill rate. Four wait cycles are
required before the first byte is transferred into the cache.
These parameters will be varied in the experiments
described in Section 4.

To handle both instruction fetch and muitiple
outstanding prefetches, a non-blocking instruction cache is
necessary [1][10].

The prefetch unit suggests when a line should be
prefetched, computes the line’s address, and performs a
cache tag lookup to see if the line is resident in the cache. If
the line is not resident, the prefetch is initiated and a
memory request is sent to the non-blocking cache handler.
The cache tag structure can be accessed simultaneously by
both the fetch and prefetch units. This requires that the tag
structure be either dual-ported or replicated. Only one
prefetch cache tag lookup can occur per cycle. If both a
next-line and target-line prefetch is suggested in one cycle,
the target-line address takes precedence. The next-line
prefetch will be suggested during the next cycle if
necessary.

For the next-line prefetching component of all
algorithms, the default fetchahead distance is 3/4 of the line
size. For table-based target prefetching, the default target
table is direct-mapped and has 128 2-word entries. For
wrong-path prefetching, a target prefetch is suggested
during the cycle in which a conditional branch is decoded.
The instruction decoder forwards the target address to the
prefetch unit where the cache tag lookup occurs. To
summarize the changes necessary for prefetching, the
following hardware additions are required:

Structures for a non-blocking instruction cache.

Cache tag replication (or two tag ports) and tag
comparison logic.

Next-line prefetching requires logic for fetchahead
distance calculation and next address calculation.

.~
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Target-line prefetching requires next-line hardware,
target table, logic to compare and update table
entries, and data paths between table and cache tags.

Wrong-path prefetching requires next-line hardware
and a data path between instruction decoder and
prefetch unit.

Further micro-architecture details can be found in [13].

3.2 Traces Used in Simulation

The traces were taken from the IBS traces obtained by
Nagle and Uhlig using a hardware monitoring setup {12].
The platform is a MIPS R3000-based DECstation 5000/
200 running a Mach 3.0 operating system kernel. The

Trace Description Instr Misses Traffic

gee Gnu C 126M 111 16
compiler

gs PS file viewer 86M 110 16

mpeg- Video displayer 111M 94 15

play

sdet From SPEC 43M 139 16
SDM suite

verilog HDL tool 52M 115 17

Table 1 Trace Benchmark Descriptions. The miss
column is the number of misses per thousand
instructions. The traffic column is the percentage of
time the bus is active with instruction information.
The cache is 8Kbytes.

traces contain physical instruction and data addresses
gathered directly from the system bus while executing
between 40 and 130 million kernel and user mode
instructions. The benchmark programs are listed with
sample cache activity in Table 1.

3.3 Performance Measurement

Most cache studies use the number of cache misses or
miss ratio as the performance measure. However, miss
reduction is not a sufficient measure of the performance of
prefetched caches because it does not account for changes
in miss latencies produced by prefetching. For instance,
suppose the full miss latency for a processor is five cycles
and one algorithm initiates a prefetch three cycles before
the fetch while the other initiates a prefetch only one cycle
before the fetch. An instruction miss will occur in both
cases but the net result is not the same. The first prefetch
algorithm will have reduced the miss penalty by two more
cycles, thus giving better performance. Two statistics are



used to compare the algorithms: total CPU cycles and miss
cycles. The latter is the number of cycles wasted due to
instruction misses, i.e.,

Total CPU cycles = Instructions executed + Miss cycles

The measures of memory bus traffic are the total bus
cycles and the bus utilization. The former is the number of
cycles during which the bus is busy sending or receiving
memory requests. The bus is deemed not busy during wait
cycles. The bus utilization is the percentage of total CPU
cycles during which the bus is busy. The results are based
upon the sum of the cycle counts for all five of the IBS
benchmarks.

4 Comparison Experiments

This section summarizes the results of a comprehensive
empirical study of the aforementioned prefetching
algorithms using the trace driven simulator. The complete
results can be found in [13]. The first 2 subsections
compare algorithm performance for different cache sizes,
line sizes, refill rates, and cache associativity. Section 4.3
explains the reasons behind the hybrid algorithm’s
ineffectiveness and why these results differ from those
found in [8]. Section 4.4 examines the effect of increased
latency. Finally, Section 4.5 shows the effects of
prefetching on multi-issue microprocessors.

4.1 Cache Size

The left graph in Figure 1 shows the number of CPU
cycles needed to execute the system traces with no
prefetching and with different prefetch algorithms. The
right graph shows the percentage reduction in the execution
cycles due to the prefetching algorithm. Wrong-path
prefetching performed the best in terms of CPU cycles for
all cache sizes, producing up to a 16% speedup over that of

no prefetching. It performs up to 4% better than the other
algorithms.The hybrid algorithm performed only slightly
better than next:line prefetching. It seems to extract little
performance gain from its additional hardware.

It is interesting to note in the left graph that a wrong-
path prefetched 8K cache gives better performance than a
non-prefetched 32K cache and a next-line or hybrid
prefetched 16K cache.

Since prefetching can only reduce the miss latency
cycles, which in the above caches comprise 20-40% of the
total execution cycles, the prefetching algorithms must be
removing a high percentage of miss cycles. We found that
wrong-path prefetching reduces miss cycles by almost 40%
in an 8K cache.

The major disadvantage of prefetching is the additional
memory traffic it generates as can be seen in Figure 2. Two
factors combine to cause this increased bus utilization. The
first is that prefetching generates unnecessary references
which increases the bus traffic. The second is that
prefetching reduces the total CPU cycle count. More traffic
in a shorter time period translates into higher bus
utilization.

Bus bandwidth should be viewed as a resource just as a
functional unit or memory port. For instance, if the bus
bandwidth is allowed to grow by doubling the refill rate,
implementing a prefetching scheme can significantly
reduce the required cache size without greatly increasing
the bus traffic. Figure 3 shows the effect of this resource
allocation. Cache A, B, and C are non-prefetched 32K
caches with a 32 byte line size and 8, 16, and 32 byte/cycle
refill rates respectively. Cache E is a wrong-path prefetched
8K cache with a 32 byte line and 32 byte/cycle refill. Cache
E has the best CPU cycle performance and its bus traffic is
only slightly higher than that of Cache A. Caches B and C
are included in the graph to verify that the performance
improvement is a result of prefetching and not of the
increased refill rate.

B NoPrefetch
~ Next-Line
5 B Hybrid
E < Wrong-Path
FRI \ N

N N
8K 16K 3K
Cache Sizs (in bytes)

NN

12+ 7/

CPU Cycle Reduction (%)
@
-

o % 4 | N

8K 16K 32K
Cache Size (in bytes)

Figure 1 Cycle Time for Different Cache Sizes - The left graph shows total CPU cycles and the right graph

shows the cycle improvement gained by prefetching.
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Figure 2 Bus Traffic For Different Cache Sizes - The left graph is the total bus cycles and the right graph is
the bus utilization. System traces are used for simulation input.
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Figure 3 Prefetching Allows Better Performance with
Smaller Cache - Caches A, B, and C are non-prefetched
32K caches with 8, 16, and 32 byte/cycle refill rates.
Cache D is a next-line prefetched 16K cache with 32 byte/
cycle refill rate. Cache E is a wrong-path prefetched 8K
cache with 32 byte/cycle refill rate.
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4.2 Cache Associativity and Refill Size

The cache line refill rate plays an important role in the
effectiveness of prefetching. A small refill rate means that
many bus cycles are required to transfer a line from
memory to the cache. This exacerbates two detrimental
effects. First, prefetching inevitably causes unnecessary
lines to be transferred to the cache. A small refill rate puts a
high cost, in terms of bus cycles, on these wasted transfers.
Secondly, longer miss handling increases the fetch memory
request delay. When a fetch miss occurs during the service
of a prefetch request, the memory request cannot be sent
until the prefetch is completed. Increased line segment
transfer cycles, caused by the smaller refill rate, increase
the fetch delay and thus the execution time. Our results
show that the higher the prefetch rate, the better the
prefetch performance.

.~

An anticipated problem of prefetching, especially
wrong-path prefetching, is its potential to pollute the cache
with non-accessed lines. Caches with higher associativity
can absorb this pollution and will improve prefetching
performance. However, although overall performance
improved with higher associativity, miss cycle reduction
actually declines as associativity increases. Prefetching
algorithms excel at bringing lines back into the cache
which were previously displaced. Much of their
performance benefit is derived from this behavior. High
associativity takes a chunk out of the prefetch gain by
reducing the number of line displacements in the cache.
One might then suggest that higher associativity be used in
place of prefetching. We found however that prefetching
works in conjunction with increased associativity.
Furthermore, prefetching is unlikely to affect the cache hit
access times, while highly associative caches are likely to
increase the CPU cycle time or require pipelined cache
accesses which would negate its perceived advantages [4].

4.3 Prefetch Effectiveness

To summarize the results thus far, prefetching is
effective in reducing CPU cycle times in all of our studied
cache configurations obtained by varying cache size, line
size, associativity, and refill rate [13]. The cost is an
increase in bus traffic. Wrong-path prefetching performed
slightly better than next-line prefetching in all cases,
sometimes by as much as 4%, and the difference in
hardware cost difference between the two methods is small.
On the other hand, the hybrid scheme gives almost
equivalent performance to that of next-line prefetching but
at considerable additional hardware cost. This was not the
result found by Hsu and Smith in their comparison study in
which the performance gain from the hybrid algorithm was
approximately the sum of the gains individually achieved
by next-line and table-based target prefetching.
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We believe the differences in results are mainly due to
the difference in cache sizes and associativities modeled.
They studied supercomputer cache behavior with cache
sizes ranging from 128 to 2K bytes in size. To be effective,
table-based target prefetching requires a high line turnover
rate in the cache. The larger caches and high associativity
of today's microprocessor caches limit the turnover rate
and subsequently limit the effectiveness of table-based
prefetching. These conclusions are verified by several
experiments in [13]). We found that in the hybrid scheme,
the miss reduction due to table-based target prefetching
was negligible compared to that of next-line prefetching.
This is due to a combination of two factors:

+ Compulsory misses are not eliminated since a
previous execution is required to add the necessary
link in the target table. :

«  After the first miss and the table is updated, the line
will be cache resident. In order for the line to be
prefetched, the line will first have to be displaced by
the cache. This is less likely to occur in a larger
cache.

In wrong-path prefetching, target address prefetching
accounted for roughly 1/3 of the reduction in miss cycles.
Furthermore, it is interesting to note that target prefetches
in wrong-path prefetching were useful over 75 percent of
time. In other words, 75% of the lines prefetched because
they were targets of not-taken branch were referenced
before they were displaced. The affects of target table size
and fetchahead distance were also measured and recorded
in [13].

4.4 Effect of Higher L1 Miss Latency

How do the prefetch algorithms scale to increased
memory latency? As the memory Ilatency increases,
prefetching algorithms must prefetch farther in advance of
the current execution point in order to cover the latency
period. Therefore, it might be expected that the

performance advantage of prefetching will diminish as the

latency increases. Nevertheless, of the three algorithms
studied, the wrong-path algorithm might still be expected
to suffer the least from increased latency since its target
prefetching component does not prefetch immediately used
instructions. Figure 4 shows the resuits of varying the
number of memory wait cycles. As expected, the CPU
cycle time increases as the number of wait cycles is
increased. Unexpectedly, the CPU cycle reduction due to
prefetching also increases as the number of wait cycles is
increased. As memory latency increases, prefetching
becomes more effective.

The reason for this is that the reduction in the number of
instruction miss cycles becomes more visible as the portion
of total CPU cycles due to instruction misses increases.
Higher latency causes more instruction miss cycles which,
in turn, allows the prefetching algorithm to have a greater
overall effect as Figure 4 shows.

To investigate the effect of memory latency on each
prefetching component, we define the prefetch distance to
be the number of cycles between a prefetch initiation and
the first instruction fetch request to the prefetched line. By
having the simulator record these values for every next-line
and target-line prefetch gain in the wrong-path algorithm,
we verify that target-line prefetches do indeed prefetch
farther ahead of the current execution point. Figure 5
shows the results. For both a high and a low fetchahead
value, the target-line prefetch gains have statistically higher
prefetch distances.

4.5 Effect on Multi-Issue Machines

It has been shown that prefetching allows increased
performance on single issue architectures. To what extent
does it also demonstrate performance gains in superscalar
or VLIW machines with higher IPC? There are two
opposing factors which are similar to those concerning the
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Figure 5 Prefetch Distance Distribution - The graphs show the distribution of prefetch distances for all
next-line and target-line prefetch gains within the wrong-path algorithm. The caches are 16K, direct-
mapped, line size 32, and refill rate 16 bytes/cycle. In the left graph, the next-line fetchahead distance is 24

while on the right it is 8.

variation in the number of memory wait cycles. In multi-
issue machines, since the execution rate is higher, the
prefetch algorithm must prefetch farther in advance of the
current execution point. This will degrade prefetch
performance since a larger portion of the prefetches will
not arrive in time. Conversely, increasing the issue rate
reduces the time spent executing instructions and makes
the effects of misses more pronounced. In multi-issue
machines, a larger fraction of the total execution time is
due to miss latency cycles. Since prefetching removes a
portion of the miss cycles, the effects of prefetching could
be greater than in single-issue microprocessors.

Another element of design complexity which goes hand
in hand with issue rate is the number of memory ports, i.e,
the number of memory requests which can be processed
concurrently. Adding memory ports will expand the
memory-to-cache bandwidth so the seriousness of
prefetch-induced traffic should be lessened. In addition,
multiple ports will reduce the backlog of waiting memory
requests which will have two positive effects. The first is a
reduction in fetch miss request delays caused by in
progress prefetches. With only a single port, if a previous
prefetch is receiving a cache line on the bus, a fetch miss
memory request will be stalled until the line is transferred.
Multiple ports will often allow the fetch request to be
initiated immediately. Secondly, prefetches will be initiated
earlier which will increase the prefetch distance.

The effects of increasing the instruction issue rate and
adding additional memory ports to the cache are examined
in this section. Multiple instruction issue is simulated by
maintaining a fetch window which, at the beginning of
each cycle, contains the maximum number of instructions
which can be issued per cycle. Each instruction which does
not cause a fetch miss is removed from the window. At the
beginning of the next cycle, the fetch window is refilled
from the trace. This is only an approximation to that of an

actual processor since number of instructions retired per
cycle also depends upon data dependencies, exceptions,
and branch mispredictions. The model for multiple
memory ports is an interleaved memory with the same
number of banks as ports. As long as two memory requests
do not address the same bank, they can be handled in
parallel. Each port has its own memory bus so request
operations are truly independent if no bank conflicts occur.
If a conflict does occur, one request waits in the non-
blocking cache structure until the port is available. The
memory is partitioned 'into banks at the cache line level,
i.e., one memory bank contains every word in the cache
line. Consecutive cache lines are stored in consecutive
banks.
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Figure 6 Effect of Issue Rate and Memory Ports with No
Prefetching - The graph shows the cycles required to
execute the system traces for different issue rates and

The following graphs show the results of varying the
issue rate and the number of ports when using the system
traces as input to the simulator. Notice that in Figure 6
when the issue rate is doubled the CPU cycles does not
decrease by a factor of two. This is because the miss
latency cycles are not reduced. Figures 7 and 8 show that
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Figure 7 Effect of Issue Rate and Memory Ports with Next-Line Prefetching - The left graph shows the
CPU cycles required to execute the system traces. The right graph shows the percent reduction in CPU

cycles over the case when no prefetching is done.

the effectiveness of prefetching increases as the issue rate
increases. Next-line prefetching improves performance by
up to 16% and wrong-path prefetching by 21% in a
machine with an issue rate of 4.

The graphs seem to show that the number of memory
ports is rather unimportant but this is misleading. First, as
mentioned previously, multiple memory ports are probably
necessary to achieve an average IPC of 2 or 4. In addition,
multiple ports are also required to handle the memory
traffic. With superscalar execution, the same amount of
memory traffic will occur in a shorter amount of time.
Figure 9 shows the port utilization which is defined as the
percentage of CPU cycles during which the port is busy
sending or receiving information. For multiple port
configurations, the highest utilization percentage is given
but, since the requests are relatively randomly distributed
over all the banks, there is little variation in the utilizations
between the ports. It can be observed that even when no
prefetching is used, additional ports are necessary to keep

the traffic down to a reasonable level. If prefetching is
implemented, multiple ports are a must.

5 Summary and Conclusions

The work reported here sheds light on the applicability
of instruction cache prefetching schemes in current and
next-generation microprocessor designs where memory
latencies are likely to be longer. In particular, a new
prefetching algorithm is examined that was inspired by
previous studies of the effect of speculation down
mispredicted paths. The highlights of the experimental
results are:

« Prefetching achieves significant performance gains
in terms of CPU cycle reduction - up to 14%
reduction with standard cache configurations.

o Wrong-path  prefetching  achieves higher
performance than other algorithms in all studied
cache configurations. At the same time, its hardware
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Figure 8 Effect of Issue Rate and Memory Ports with Wrong-Path Prefetching - The left graph shows the
CPU cycles required to execute the system traces. The right graph shows the percent reduction in CPU cycles

over the case when no prefetching is done.




cost is equivalent to next-line prefetching. 7 Bib]iography
Somewhat surprisingly, 75% of all not-taken path

prefetches result in miss reductions. [1] T.Chen and J. Baer, “Reducing memory latency via
* The cost of prefetching is the increased bus traffic. non-blocking and prefetching caches,” In

Bus utilization rises from 12% for no prefetching to Proceedings of the 5th Int. Conf. Architectural

up to 25% for prefetching with standard cache Support for Programming Languages and Operating

configurations. Bus bandwidth may be viewed as a Systems, pp. 51-61, Oct. 1992.

resource which can be employed to reduce miss
cycles. By implementing prefetching and adding 2]
hardware to increase refill rate, equivalent memory
performance can be achieved with a much smaller

M. K. Farrens and A. R. Pleszkun, “Improving
performance of small on-chip instruction caches,” In
Proceedings of 16th Annual Symposium on Computer
Architecture, pp. 234-241, June 1989.

cache.

* Tablebased target prefetching performs poorly with (31 G, £ Grohoski and 1. H. Patel, “A performance model
current generation instruction cache sizes rendering for instruction prefetch in pipelined instruction units,”
the hybrid algorithm performance equivalent to that In Proceedings of the 9th International Symposium on
of next-line prefetching. The negligible performance Parallel Processing, pp. 248-252, Au g. 1982,
gain is not worth the cost of the additional hardware
required to implement the target table. [4] M.D. Hill, “A Case for Direct Mapped Caches,”

* Prefeiching is more effective as memory latencies Computer, pp. 25-40, 1988.
increase. Wrong-path prefetching reduced CPU .
cycles by 18% when the wait cycles rose to 16. [S] M.D.Hill, Aspects of Cache Memory and Instruction

Buffer Performance, Doctoral Thesis, Department of

* Wrong-path prefetching  becomes even more Computer Sciences, University of California,

effective as instruction issue width increases. Our Berkeley, 1987
results show a greater than 20% cycle reduction is ’ ’
Some cases. [6] M. Horowitz, M. Martonosi, T. Mowry, and M.
Smith, “Informing memory operations: Providing
6 Acknowledgments memory performance feedback in modern
processors,” In Proceedings of the 23rd Int. Symp. on
Jim Pierce was supported by a grant from the Intel Computer Architecture, pp. 260 -270, May 1996.

Corporation while pursuing this work at The University of
Michigan. The work was also supported in part by ARPA  [7] P.Hsu, “Design of the TFP microprocessor,” IEEE
under Grant DAAH04-94-G-0327. Micro, 1993.

No Prefetching Wrong-Path Prefetching

[3.]
o

B 1 Mem. Port
2 Mem. Ports
B4 4 Mem. Ports

& 2
&

Y
(=]

]

w
(4]

]

@
o

w
o

n
o

8

[
1

-
o

Max Port Utilization (%)
b

Max Port Utilization (%)
N
2]

-
7

wn
1
o
1

1 2 4 2 4
Instruction Issue Rate (instructions/cycle) Instruction Issue Rate (instructions/cycle)

[~}
!
o
[N

Figure 9 Port Utilization - These graphs show the percentage of cycles the busiest memory port spends
transferring information during the execution of the system traces. The left graph is with no prefetching, the
right graph with wrong-path prefetching.

.~

174



(8]

91

[10]

(1]

[12]

[13]

(14]

[15]

W.-C. Hsu and J. Smith, “Prefetching in
supercomputer instruction caches,” Supercomputing
‘92, pp. 588-597, Nov. 1992.

A. Klaiber and H. Levy, “An architecture for
software-controlled data prefetching,” In Proceedings
of the 18th Int. Symp. on Computer Architecture, pp.
43-53, May 1991.

D. Kroft, “Lockup-free instruction fetch/prefetch
cache organization,” In Proceedings of the 8th Int.
Symp. on Computer Architecture, pp. 81-87, May
1981.

D. Lee, J.-L. Baer, B. Calder, and D. Grunwald,
“Instruction cache fetch policies for speculative
execution,” In Proceedings of the 22rd Int. Symp. on
Computer Architecture, pp. 357-367, June 1995.

D. Nagle, R. Uhlig, and T. Mudge, Monster: A Tool
for Analyzing the Interaction Between Operating
Systems and Computer Architectures, Technical
Report TR-147-92, The University of Michigan,
1992.

J. Pierce, Cache Behavior in the Presence of
Speculative Execution—The Benefits of
Misprediction, Ph.D. Thesis, The University of
Michigan, 1995.

J. Pierce and T. Mudge, “The effect of speculative
execution on cache performance,” IPPS 94, Int.
Parallel Processing Symp., Cancun Mexico, pp. 172-
179, Apr. 1994.

A.J. Smith, “Cache memories,” ACM Computing
Surveys, pp. 473-530, Sep. 1982.

175




