Comparison of two common pipeline structures

M.Golden
T.Mudge

Indexing terms: Cache memory, Interlocks, Memory system, Pipelines, RISC

Abstract: Two pipeline structures that are
employed in commercial microprocessors are
examined. The first is the load-use interlock
(LUI) pipeline, which employs an interlock to
ensure correct operation during load-use hazards.
The second is the address-generation interlock
(AGI) pipeline. It eliminates the load-use hazard
but has an address-generation hazard, which
requires an address-generation interlock for
correct operation. The performance of these two
pipelines on existing binaries and on applications
that have been recompiled with a local code
scheduler that understands the difference in the
pipeline structures is compared. Under the
assumption of perfect branch prediction, the AGI
pipeline outperforms the LUI pipeline on the
SPEC92 integer benchmarks, even on binaries
that have been compiled for the LUI pipe. When
branch prediction is considered the AGI pipeline
performs significantly better than the LUI
pipeline if branch prediction is more than 80%
accurate and the data cache access time is greater
than two cycles. Recompiling the benchmarks
with a new local code scheduler optimised for the
AGIl pipeline provides little additional
performance improvement.

1 Introduction

Although pipelining is a widely used technique for
speeding up instruction execution the existence of
dependences between instructions means that pipelines
cannot run at 100% efficiency. Nevertheless, the
improvement in speed through pipelining usually off-
sets any loss in performance [1].

This paper examines three types of hazards that can
reduce the efficiency of a pipeline: branch, load, and
address-generation hazards. In particular we compare
two pipeline organizations employed in several com-
mercial machines that make different trade-offs
between these three hazards. The first, which we refer
to as the load-use interiock (LUI) pipeline, issues and
completes its instructions in order. It is subject to
branch hazards and load hazards, but not address-

© IEE, 1996
IEE Proceedings online no. 19960359

Paper first received 12th September 1995 and in revised form Ist
February 1996

The authors are with the Electrical Engineering and Computer Science
Department, The University of Michigan, Ann Arbor, MI 48109-2122,
USA

1EE Proc.-Comput. Digit. Tech., Vol. 143, No. 3. May 1996

generation hazards. The second, which we refer to as
the address-generation interlock (AGI) pipeline, also
issues and completes its instructions in order but differs
from the LUI pipeline in that the execute stage is
placed later in the pipeline to avoid load hazards.
However, this difference results in address-generation
hazards and increases the penalty for branch hazards.
In this paper we report on experiments to determine if
these penalties are outweighed by the benefits of elimi-
nating load hazards.

The MIPS R2000 and R3000 use a precursor to the
LUI pipeline. It did not employ hardware interlocks
for loads or branches. Instead, NOPs are inserted after
loads and branches, as required, to ensure correct oper-
ation. Load interlocks were added in the R6000, a
short-lived ECL implementation of the MIPS instruc-
tion-set architecture (ISA) [2]. Load interlocks were
also subsequently employed in the R4000, R4200, and
R4400 [3]. The AGI pipeline is used in the Intel 486
and Pentium and the Cyrix M1, as well as in the R8000
[4-7]. The R8000, which was originally referred to in
the literature as the TFP, also implements the MIPS
ISA [8] and preserves binary compatibility with its LUI
counterparts. Considerable amounts of software exists
in the form of binaries optimised for the LUI pipeline
structure, and it is not known how much performance
is degraded when these binaries are run on the rear-
ranged pipeline. To be acceptable, any reduction must
be small to avoid the cost of recompiling applications.

There are two questions that this paper attempts to
answer:

— How does the AGI pipeline affect performance on
binaries created for an LUI pipeline?

Does the AGI pipeline improve performance if the
compiler performs local code scheduling specifically for
this organisation?

2 Pipeline hazards and previous work

2.1 Branch hazards

We define the scope of a branch to be the number of
instructions that can be issued before the branch is
resolved. A branch hazard occurs when an instruction
in the scope of the branch depends on the outcome of
the branch. Although a processor may stall the issue of
new instructions until it resolves a branch instruction,
the introduction of pipeline bubbles caused by this
approach can reduce performance to an unacceptable
level.

Branch hazards can be eliminated statically by hav-
ing the compiler schedule independent instructions in
the scope of a branch. Alternatively, the pipeline may
dynamically eliminate branch hazards by predicting the
outcome of the branch, allowing control-dependent

161

instructions to enter the pipeline and squashing them if
the branch has been mispredicted [9]. These approaches
are not mutually exclusive and it is not unusual for
some combination to be employed.

Both approaches to removing branch hazards have
shortcomings. It is not always possible to eliminate
branch hazards by reordering code. It may be necessary
to insert NOPs so that any instructions that cause
branch hazards are moved beyond the scope of the
branch. As noted, this is the solution taken by the R2/
3000. However, the presence of NOPs in the execution
stream reduces efficiency. Branch prediction can also
introduce inefficiency when a prediction fails and
instructions that execute as a result of mispredictions
must be squashed.

2.2 Load hazards

Load hazards are a result of data dependences rather
than control dependences. They occur when the
instructions immediately following a load depend on
the value retrieved by the load instruction. We define
the scope of a load to be the number of instructions
that can be issued before the data retrieved from mem-
ory by the load becomes available to later instructions.
A load hazard occurs when an instruction in the scope
of a load uses the value read by the load.

In a pipeline that supports out-of-order execution, an
instruction that depends on an outstanding load opera-
tion can simply be buffered at a reservation station
until all of its operands are available and it can be sent
to a function unit. In a pipeline that only allows in-
order execution of instructions, there are three
approaches to tolerating a load hazard: reorder instruc-
tions so that there are no instructions that cause load
hazards after the load (NOPs may have to be added);
stall the pipeline when an instruction that causes a load
hazard is fetched until the load is completed (load-use
interlock); and use some form of load prediction to
prefetch load data and effectively remove dependences
that arise from the load.

All three approaches to removing load hazards have
shortcomings. It is not always possible to eliminate
load hazards by reordering code. It may be necessary
to insert NOPs so that dependent instructions that
cause hazards are moved beyond the scope of the load
(the processor must still have some interlock mecha-
nism to handle cache misses). The presence of NOPs in
the execution stream reduces efficiency. The use of
load-use-interlock stalls avoids the code expansion of
NOPs, but it too reduces efficiency. Finally, loads are
much more difficult to predict than branches and the
last method is rarely used [10]. Again these approaches
are not mutually exclusive.

2.3 Address-generation hazards
Address-generation hazards occur when a value is com-
puted for a register that is used to form the address of
the data retrieved by a load instruction. For the pur-
poses of this discussion we consider only the base-regis-
ter-plus-offset address mode for load instructions. In
this case, the scope of address generation is the number
of instruction slots between an instruction that modi-
fies a register and its earliest availability for use as a
base register in an address calculation.

As in the case of any data hazard, a machine that
supports out-of-order execution of instructions can
simply buffer the dependent instruction until all oper-

162

ands become available. For a pipeline that does not
allow this model of execution, there are two
approaches to tolerating an address-generation hazard:
insert instructions so that there is sufficient time to fin-
ish modifying the address register before its use by the
load instruction; and stall the pipeline until address
generation is completed (address-generation interlock).
In principle, address generation could also be predicted
but it is never done. Removing address-generation haz-
ards by stalling is, as with the other hazards, a source
of inefficiency.

2.4 Other hazards

In addition to the hazards that we are concerned with
in this paper, there are others that have only a small
impact on the performance of LUI or AGI pipelines,
or that are avoided altogether in the LUI and AGI
pipelines. In the first category are instructions that
store values to memory. During a store operation, the
memory system does not return a value to the CPU, so
subsequent instructions can usually be issued without
delay. A hazard can occur if, before the store com-
pletes, a load instruction is issued that retrieves data
from the memory location that is the target of the
store. Microarchitectural features such as write buffers
or write caches with hazard detection logic have been
used to solve this problem [I1]. In this paper, the
effects of store hazards are ignored.

In the second category are hazards resulting from
true data dependences on instructions that perform
ALU operations: if the results of an instruction are
required by a succeeding instruction, and if the second
instruction issues before the first instruction computes
its result, then a hazard occurs. The LUI and AGI
pipelines avoid this class of hazards by implementing
ALU operations that only require one cycle and by
employing bypass paths that send a value from one
pipeline stage directly to another stage.

In this paper we are not be concerned with machines
that issue more than one instruction at a time, typified
by superscalar or VLIW architectures. Of course, their
individual execution pipes are likely to be of the LUI
or AGI type, and future studies might investigate their
relative merits in this setting where the matter of
instruction dependence becomes much more complex.
For two excellent discussions on this the reader is
referred to [12, 13].

2.5 Previous work

Previous work has proposed both static and dynamic
techniques of eliminating the hazards that instructions
dependent on load instructions cause. Static techniques
involve code scheduling in which the compiler attempts
to hide the latency of load instructions by scheduling
them well before their results are needed. In [14],
Krishnamurthy presents a survey of techniques for
local code scheduling. Global code scheduling tech-
niques, such as superblock [15] and hyperblock [16]
scheduling, allow code motion between basic blocks.
Dynamic techniques involve some form of hardware
support; they may also require compiler support too.
Work in this area includes the fast address calculation
technique of Austin, et al. [17]; Hliffe’s ‘forward look-
ing’ architecture that attempts to issue a memory load
early [18]; Sohi and Davidson’s structured memory
access architecture [19] that has an address processing
unit capable of prefetching from all addresses having a

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 3, May 1996

common address pattern; and Golden and Mudge’s
load target buffer (LTB) [10], which predicts load
addresses much like a branch target buffer.

3 Two pipeline organisations

3.1 Load-use interlock pipeline

The LUI pipeline is shown in Fig. 1. This has been
referred to as the ‘classic five-stage RISC pipeline’ [20].
Each box represents a single machine cycle and a list of
the functions that are performed during that cycle.
Fig. 1 labels the five stages with their primary func-
tion: IF, instruction fetch; RD, register read and
decode; EX, execute the ALU operation; MEM, data
cache access; and WB, write back to the register file.
The bypass paths are also shown. The number of cycles
spanned by the path indicates how long the bypass
operation takes.

load-use bypass

IF RD EX MEM wB
supdate |finish oCdledlate Lo - writeback
program instruction ggfgcl;gvg occes;y toregister
??:fnft'i]rlfln ff?tchh |rl1f «execufe _ file
i execute
cle GEY | performALy
fetch |*decode Operation
instruction | instruction |* resolve
;_?cffeconld and read branchesin
cycle | from register| f; F half
file inseegcond 'fc'%e
half cycle -

t |

branch resolution bypass

o
increased to N cycles
for the LUI-N pipeline

ALU bypass

Fig.1 The LUI pipeline

Five stages and bypass paths are shown. Underlined actions in EX stage are
moved into MEM stage in AGI pipeline, Fig. 2. Load-use bypass spans N+1
stages in LUI-N case

Fig. 1 shows that conditional branches are not
resolved until the end of the first half of the EX stage.
This results in a branch scope of one cycle, during
which a branch hazard can occur. This is solved by the
inclusion of a branch-delay slot in the MIPS ISA. Cor-
rect operation requires that the instruction in the
branch-delay slot must be able to execute independ-
ently of the result of the branch. If an independent
instruction cannot be found, a NOP is inserted into the
branch-delay slot.

During a load instruction, the effective memory
address is computed during the EX stage and sent to
the memory system. If the request hits in the first level
cache, the result is available at the end of the MEM
stage, where it may be forwarded back to the EX stage.
The forwarding path spans two cycles, indicating that
the MEM stage result is not available to the instruction
that immediately follows it in the pipeline, but to the
second instruction after the load. Any instruction
immediately after a load that uses the result of that
load creates a load hazard. In such cases, the pipeline
stalls for one cycle. Of course, if the instruction misses
in the cache, the delay is much greater and the pipeline
stalls for many cycles.

In the early MIPS machines (R2000 and R3000), as
noted earlier, the absence of a load-use interlock is
handled by requiring that the compiler guarantee that
the instruction after a load is not dependent on the
load. This instruction occupies the load-delay slot. If
the compiler cannot find an independent instruction, it
puts a NOP instruction in the load-delay slot [3].

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 3, May 1996

In high clock rate microprocessors, even the on-chip
primary cache can take more than one cycle to access.
This paper will also consider a generalisation of the
LUI pipeline to systems with multiple-cycle data cache
access times. These pipelines will contain additional
MEM stages. A data cache with an access time of N
cycles will be paired with a LUI pipeline with N MEM
stages, and will be referred to as an LUI-N pipeline. In
an LUI-N pipeline, the scope of a load is N instruc-
tions and its load-use interlocks can last from 1 to N
cycles. If the first dependent instruction in the load
scope is k instructions after the load, then the interlock
will stall the pipeline for (N-k) + 1 cycles.

3.2 Address-generation interlock pipeline
The AGI pipeline is shown in Fig. 2. In this pipeline,
the load-use interlock has been eliminated by delaying
the EX stage by one cycle and combining it with the
MEM stage. Combining the EX and MEM stages
requires an extra adder, which is dedicated to comput-
ing the target address of memory operations. This
address calculation is performed in the AD stage before
the EX/MEM stage. In contrast, the LUI pipeline has
only a single adder in the EX stage, which is used for
both integer arithmetic instructions and address calcu-
lations. In the AGI pipeline, when an instruction that
depends on a load in the previous cycle reaches the EX/
MEM stage, the results of the load are available from
the ALU bypass. However, branch resolution now
occurs one stage later because a conditional branch
instruction may require a result from the instruction
that immediately precedes it. This result will not be
available until the end of the EX stage.

address -generation bypass increased to N

cycles for
,_L the AGI-N
A pipeline
IF RD AD EX/MEM WB
«update |- finish _ bcalculate |*execute - |*writeback
program instruction | effective orm ALUj to register
counterin | fetchin address | gperation | file
first half grifeha(f * resolve
cycle sdecode branchesin
Afetch i i rsf_hal
¢ . instruction nrs
instruction | and rea 8 cycle
insecond | from register e memory
half cycle | filein second access
half cycle
F S
branch resolution bypass
ranc 'on BYPASS AU bypass

Fig.2 AGI pipeline

Five stages and bypass paths are shown. Underlined actions in EX/MEM stage
are moved from EX stage in LUI pipeline, Fig. 1. Address-generation bypass
spans N+1 stages in AGI-N case. EX stage remains in last of N MEM stages,
and ALU bypass still spans only one stage

There are two disadvantages to this arrangement.
First, an address-generation interlock is required when
a load instruction requires the register result of an
uncompleted instruction to calculate the target address
in memory. Secondly, the branch scope is now two
cycles because branch resolution occurs in the first half
of the EX/MEM stage of the pipeline. This means that
in addition to the branch-delay slot, a second instruc-
tion will issue before the branch is resolved. We assume
that this instruction is chosen by a prediction scheme,
and that it may have to be squashed if the branch has
been mispredicted. This contrasts with the LUI pipeline
which, because of the branch-delay slot, needs no
branch prediction strategy.

As cache access time grows beyond a single cycle,
delay stages can be added to the AGI pipeline between

163

the AD and EX/MEM stages. A processor that takes N
cycles to access the cache will require N-1 extra MEM
stages. We refer to this as an AGI-N pipeline. In an
AGI-N pipe, N instructions must be squashed every
time a branch is mispredicted, and address-generation
interlocks can last from 1 to N cycles. If the first
dependent load instruction is issued k cycles after the
instruction that generates its base register, the interlock
will stall the pipeline for (N-k) + 1 cycles.

The code fragment written in MIPS assembly lan-
guage shown below further illustrates the difference
between the two pipeline organisations:

move the value in register
a0 into register a3

I1: move a3, a0

I2: 1w vl, 4(a3) # use it as the base register
to load register vl
I3: beq vl, zero, 0x400328 # conditionally branch
on vl ==
nop

vl ! =0, so put the value
in vl into a0

I5: jal copy_bnode # and call copy bnode (a0)

NOPs in load-delay slots have been removed; load-use
interlocks are modelled instead. The code is taken from
the program eqntott, a SPEC92 integer benchmark. In
this example, instruction 13 depends on instruction 12,
which in turn depends on instruction Il. Because the
branch instruction I3 depends on 12, a load-use inter-
lock will occur in an LUI pipeline. This interlock does
not occur in the AGI pipeline. Instead, an address-gen-
eration interlock will stall the pipeline since Il calcu-
lates a value for the base register of the load instruction
I12. In addition to the address-generation interlock, the
AGI pipeline may face an additional possible perform-
ance loss if the branch is mispredicted. In the case of
the LUI pipeline, the NOP in the branch-delay slot
covers the branch penalty. For every memory access
stage in the AGI pipeline, an additional instruction
must be squashed after a mispredicted branch. For
example, in an AGI-2 pipeline, both I4 and IS5 would
be squashed if the branch instruction I3 were incor-
rectly predicted not-taken. Note that for both the LUI
and the AGI pipeline, the instruction after the branch
occupies a branch-delay slot. Only the additional
instructions in the branch scope for the AGI pipeline
are speculatively executed.

I14: move a0, vl

4 Compiler and simulator

This paper considers programs compiled for the MIPS
I instruction set architecture — the version of the
architecture that does not support load-use interlocks.
This architecture was chosen for several reasons:

» The MIPS architecture has been implemented with a
LUI pipeline and with an AGI pipeline. The R-series
machines all have LUI pipelines and the TFP has an
AGTI pipeline.

* The Gnu C Compiler (GCC) is available for the
MIPS architecture [21]). GCC is in the public domain
and the source codes are easily available, so the com-
piler may be modified.

« The MIPS is a load/store architecture, so all memory
operations are contained in explicit load and store
instructions. This simplifies the creation of compilers
that optimise for the two different pipeline structures.

164

The experiments use the SPEC 92 integer benchmarks,
summarised in Table 1. All of the benchmark programs
are executed to completion using one of the ‘reference’
input files provided by SPEC except xlisp, which uses
the SPEC-provided ‘short’ input file owing to simula-
tion time considerations. When several SPEC reference
input files are available the experiments use the file
listed in the table. The base execution time is the time
required to execute the benchmark to completion on a
processor with a zero-cycle cache access time. The
benchmarks are compiled three times. The MIPS C
compiler creates one version of each program. The
MIPS C compiler heavily optimises the code and
assumes a single load-delay slot. In effect, this provides
a binary that is optimised for load instructions that
have a scope of one cycle on a cache hit. GCC is used
to create two versions of each benchmark: one opti-
mised for the AGI pipeline and one optimised for the
LUI pipeline. The versions differ in the cost function
given to GCC’s scheduling algorithm.

Table 1: SPEC92 integer benchmarks and their character-
istics

Base execution Average basic

Benchmark Input file time in cycles block size
compress reference 78 192 765 5.1
eqgntott reference 1381970 038 3.0
espresso bca.in 4383 384 704 5.6
gcc stmt.i 133778 490 5.0
SC loadda1 436 172 261 4.6
xlisp short 1171528 797 3.0

GCC’s scheduler assigns a priority to each instruc-
tion in a basic block. Instructions with high priorities
are scheduled first. Several factors determine the prior-
ity of an instruction, but the most important is the
scope of an instruction. An instruction with a large
scope that produces results used by a later instruction
is assigned a high priority equal to the number of
instructions in its scope. Once the instructions are pri-
oritised, GCC attempts to schedule each instruction so
that the pipeline will never interlock.

To provide a binary that optimises for load-use haz-
ards, one version of each benchmark is produced in
which GCC is told that two instructions are required
between a load and its use for interlock-free execution.
To create a version optimised to reduce address-genera-
tion hazards, the scheduler is told that the scope of
address generation is two cycles. The study includes the
MIPS C compiler version because it is the standard
compiler for systems using the MIPS processors. A
comparison of the code produced by GCC with the
MIPS C compiler, provides a confidence check that the
code that is produced by GCC for the AGI pipeline is
equally well optimised.

Each version of the program is then instrumented to
produce an instruction and data trace by pixie. A simu-
lator based on the xsim tool developed by Smith con-
sumes the trace [22]. The simulator models a machine
with the following characteristics:

» There are no load-delay slots. Other delay slots,
mainly those required by the MIPS architecture for
integer multiply and divide instructions, are present in
the machine model. This includes a single branch-delay
slot for both the AGI-N and the LUI-N pipeline.

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 3, May 1996

» All operations except data cache accesses complete in
a single cycle.

» There is a single execution pipeline.

» All memory references hit in the instruction and data
caches.

» Instruction fetch requires a single cycle.

Load-delay slots have been eliminated in newer RISC
architectures, such as the Alpha, in favour of load-use
interlocks. As cache access times get longer, code
expansion caused by NOPs in unfilled delay slots
becomes a problem [23]. Typical RISC integer instruc-
tions complete in a single cycle, except integer multipli-
cation and division, which usually take more than one
cycle. The MIPS ISA requires delay slots in the scope
of these instructions, which must be filled by independ-
ent instructions or NOPs.

5 Experimental results

5.1 Experiments on an ideal pipeline

In the Figures in this Section, the x-axis shows the
access time of the data cache in cycles. The y-axis
shows an execution time that is normalised to the run
time of code compiled by the MIPS C compiler for a
machine with an LUI pipeline and a zero-cycle cache
access time (N = 0). In other words, all memory refer-
ences are immediately available so there are no load-
use hazards or address-generation hazards in the refer-
ence machine. The third column of Table | lists these
base execution times for each benchmark in cycles. The
harmonic means of the experimental results for all
benchmarks are shown in Fig. 3. Results for individual
benchmarks can be found in [24]. High numbers indi-
cate poor performance.

20
1.6

@

£

c

RS

=

v

@

>

o

1 2 3 4 5
data cache access time, clock cycles

Fig.3 Harmonic mean of all benchmarks, I-cycle I-cache

Figure assumes perfect branch prediction. Improvement between GCC-LUI
and GCC-AGI-Perfect is similar to the improvement between LUI and AGI-
Perfect. Informing GCC'’s local scheduler of need to avoid address-generation
interlocks has little effect. AGI pipeline shows better performance than LUI
pipeline in all cases

B LUI

H AGI-Perfect

B GCC-LUI

0O GCC-AGI-Perfect

The first experiment compares how the benchmarks
perform on code compiled by the MIPS C Compiler
for the MIPS R2000 performs on an LUI and an AGI
pipeline for varying cache access times. The results
assume perfect branch prediction in the AGI case.
These bars are labelled LUI and AGI - Perfect in
Fig. 3. For low cache access times there is very little
difference between the two pipeline organisations. As
the access time increases beyond about three cycles the
performance benefit of the pipeline with an address-
generation interlock begins to appear. The AGI-3 pipe-

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 3, May 1996

line completes the benchmarks almost 10% faster than
the LUI-3 pipeline. The performance gap continues to
grow as the cache access time gets larger.

This first experiment answers the question about the
performance of existing binaries. For our sample set of
benchmarks the AGI pipeline actually performs slightly
better than the LUI pipeline on binaries compiled for
an LUI pipeline.

The next set of experiments considers code compiled
by GCC for LUI pipelines against code compiled by
GCC for AGI pipelines. The programs are run on the
pipelines for which they were compiled with the
assumption of perfect branch prediction. In Fig. 3,
these experiments are labelled GCC-LUI and GCC-
AGI-Perfect. Once again a small benefit is seen
through the use of AGI pipelines for small cache access
times. As cache access times increase, AGI pipelines
again provide a larger speedup.

Informing GCC’s local scheduler of the new pipeline
structure does not seem to affect execution time to a
large extent. The percentage change between the GCC-
LUI experiments and the GCC-AGI experiments are
similar to those between the LUI and the AGI-Perfect
experiments. This may be because GCC’s scheduler
works only within a single basic block. For the bench-
marks under consideration, the basic block size tends
to be small, as small as three in the case of xlisp, so
modifying the code scheduling costs may not have a
large effect. The limited improvement obtained from
the compiler suggests that more aggressive global
scheduling techniques may be needed. However, the
performance of the Gnu C compiler against the MIPS
C compiler (compare LUI against GCC-LUI) makes it
clear that, for our machine model, GCC is as good as
one of the best commercial compilers. This gives sup-
port for our remaining results with GCC.

This set of experiments gives a limited answer to the
second question posed in the introduction. Simply
altering the local scheduling algorithm does not signifi-
cantly improve the compiler’s ability to produce effi-
cient code for the AGI pipeline. However, the
performance of the AGI pipeline is already better, as
shown. More sophisticated compiler techniques may
provide further improvement.

2.0
18 A
e P
qJ10
08

1 2 3 4 5 6 7

data cache access time, clock cycles

Fig.4 Harmonic mean of all benchmarks, I-cache access time = I cycle
Figure shows results when branch prediction is taken into account. AGI pipe-
line suffers from reduced performance when accurate branch prediction is not
available
—Ml— GCC-LUI

-@— GCC-AGI-Perfect
—A— GCC-AGI-95%
—&— GCC-AGI-90%
—J— GCC-AGI-80%
—O— GCC-AGI-70%

165

The final set of results, labelled GCC-AGI-X% repre-
sents AGI pipelines with X% branch prediction over all
branches, including unconditional jumps and calls.
These results are summarised in Fig. 4. Because the
MIPS branch delay slot is included in the simulator, all
of the results for LUI pipelines are valid for any
branch prediction accuracy. The branch penalty is
accounted for by the instruction in the delay slot,
which may be a NOP. In contrast, an AGI-N pipeline
must squash N extra instructions when a branch is mis-
predicted. A branch penalty is approximated by assess-
ing a fixed number of cycles for each mispredicted
branch and adding it to the total execution time of the
benchmark. The penalty for machines with LUI and
AGI pipelines are calculated with the following for-
mulas:

penalty; ;; = (N; —1) x (1 =b) x C}

penalty sq; = (Ng+ N; — 1) x (1 =) x C}
where N, is the date cache access time and N, is the
instruction cache access time in machine cycles, b is the
branch prediction accuracy expressed as a probability,
and Cj is the dynamic branch count of the program. In
accordance with the pipeline structures described, N, =
1 for both pipelines.

For machines with accurate branch prediction the
AGI pipeline still outperforms the LUI pipeline. Once
the accuracy of branch prediction drops down to
around 80% the two types of machines perform equiva-
lently. At lower levels of branch prediction accuracy
the early branch resolution of the LUI pipeline allows
it to run programs more quickly.

2.1

N

normalised execution time
Q

—_
~

oo T

01 2 3 4 5 6 7
cache access time, cycles
b

Fig.5 Harmonic mean of all benchmarks, I-cache access time = D-cache
access time
Results labelled MCC have been compiled by MIPS C compiler. Results
labelled GCC have been compiled by Gnu C compiler. AGI pipeline still
requires good branch prediction to outperform LUI pipeline
a Perfect branch prediction
b 90% branch prediction
—#— LUI-MCC
—@®— AGI-MCC
~A— LUI-GCC
—&— AGI-GCC

5.2 Pipelines with multicycle instruction
cache access time

The experiments so far assume that the instruction
cache can be accessed in a single cycle; the pipelines
described in Section 3 have a single IF stage. As the I-

166

cache latency increases, the penalty for a mispredicted
branch increases because more time is required to fetch
the correct instruction from the memory system. In
other words, the scope of a branch instruction grows.

In an LUI system with a multicycle I-cache access
time, the branch penalty is no longer completely hidden
by a single branch delay slot. As a consequence, the
requirement that an AGI pipeline have accurate branch
prediction to outperform an equivalent LUI pipeline
may be eased. Figs. 5 and 6 show this is not the case.
The I-cache access time has been set to equal the D-
cache access time. The LUI pipeline experiences a
branch penalty in this experiment but it is less affected
by poor branch prediction than the AGI pipeline.
Branch prediction still must be better than about 80%
accurate for the AGI pipeline to have a performance
advantage for machines with slow caches. On machines
that have fast caches or poor branch prediction both
pipelines have similar performance.

21

_.
w

o
)

o
—
N
w
o
[$)]
[4)]
~3

N

normalised executiontime
Q

N
.\

w

0.9

01 2 3 4 5 6 7
cache access time,cycles
b

Fig.6 Harmonic mean of all benchmarks, I-cache access time = D-cache
access time

Results labelled MCC have been compiled by MIPS C compiler. Results
labelled GCC have been compiled by Gnu C compiler. AGI pipeline still
requires good branch prediction to outperform LUI pipeline

a 80% branch prediction

b 70% branch prediction

—B— LUI-MCC

—@— AGI-MCC

—A— LUI-GCC

—&— AGI-GCC

6 Conclusions

A number of processors have recently been announced
that eliminate the load-use interlock by overlapping the
execute stage of the pipeline with cache access rather
than address generation. Some of these AGI machines
are designed not only to execute code compiled specifi-
cally for them, but also to run codes compiled for older
LUI implementations of similar architectures. When
good branch prediction methodologies are available the
rearranged pipeline provides improved performance for
machines with moderate to large cache access times,
even if existing binaries are used. When a branch-delay
slot can hide instruction cache latency in an LUI pipe-
line, high branch prediction accuracy is required for the
AGI pipeline to have a performance benefit. As the I-
cache access time grows this trend remains the same.

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 3, May 1996

Simply modifying the compiler’s local scheduler
shows only a small increase in the benefits of the AGI
pipeline. Because basic blocks can be quite short in
nonscientific programs the local scheduler does not
have many instructions to work with. Global schedul-
ing techniques may be able to further improve the per-
formance of the AGI pipeline structure because these
methods make more instructions available to be placed
between the dependent instructions that cause the inter-
lock.

Several questions remain unanswered. First, in the
experiments described in this paper, perfect caches are
assumed. In the presence of cache misses, the average
time to fetch an instruction and operate on data mem-
ory will increase. Cache misses may be distributed such
that the effect on these experiments is merely to
increase the effective latency to the cache. However,
they may be distributed such that pipeline behaviour
changes noticeably as cache access time and miss rates
change.

Secondly, we have simulated machines that have a
single execution pipeline. In a processor with multiple
pipelines, each stall cycle can delay the completion of
many instructions rather than just one. This may also
affect the performance difference between the two pipe-
lines. We leave the study of these two issues as future
work.

7 Acknowledgment

This work was supported by Defense Advanced
Research Projects Agency under DARPA/ARO con-
tract DAAL03-90-C-0028.

8 References

I OLUKOTUN, O.,, MUDGE, T., and BROWN, R.: ‘Performance
optimisation of pipelined memory caches’. Proceedings of 19th
annual international symposium on Computer architecture, Gold
Coast, Australia, May 1992, IEEE Computer Society Press, pp.
181-190

2 ‘MIPS chip set implements full ECL CPU’, Microprocess. Rep.,
December 1989, 3, (12). pp. 1, 14-19

3 KANE, G, and HEINRICH, J.. ‘MIPS RISC architecture’
(Prentice-Hall, Englewood Cliffs, NJ, 1992)

4 CASE, B.: ‘Intel reveals Pentium implementation details’, Micro-
process. Rep., 1993, §, (23), pp. 9-17

1EE Proc.-Comput. Digit. Tech., Vol. 143, No. 3, May 1996

CRAWFORD, J.H.: ‘The i486 CPU: executing instructions in
one clock cycle’, IEEE Micro, February 1990, 10, (1), pp. 27-36
GWENNAP, L.: ‘Cyrix describes Pentium competitor’, Micro-
process. Rep., October 1993, 7, (14), pp. 1, 6-10

GWENNAP, L.: ‘Intel reveals Pentium implementation details’,

Microprocess. Rep., March 1993, 7, (4), pp. 9-17

HSU, P.Y.T.: ‘Designing the TFP microprocessor’, IEEE Micro,

April 1994, 14, (2), pp. 23-33

SECHREST, S, LEE, C.-C., and MUDGE, T.: ‘Correlation and

aliasing in dynamic branch prediction’. Proceedings of 23rd inter-

national symposium on Computer architecture, Philadelphia,

USA, May 1996, IEEE Computer Society Press

10 GOLDEN, M., and MUDGE, T.: ‘Hardware support for hiding
cache latency’. Technical report CSE-TR-152-93, University of
Michigan, Department of Electrical Engineering and Computer
Science, Ann Arbor, MI, 48109-2122, USA, 1993

11 JOUPPI, N.P.: ‘Cache write policies and performance’. Technical
report, Digital Equipment Corp. Western Research Laboratory,
250 University Ave., Palo Alto, CA 94301, December 1991

12 JOHNSON, M.: ‘Superscalar microprocessor design’ (Prentice—
Hall, Englewood Cliffs, NJ, 1991)

13 RAU, B.R,, and FISHER, J.A.: ‘Instruction-level parallel
processing: history, overview, and perspective’, J. Supercomput.,
1993, 7, (1/2), pp. 9-50

14 KRISHNAMURTHY, S.M.: ‘A brief survey of papers on sched-
uling foro%ipelined processors’, SIGPLAN Not., July 1990, 25, (7),
pp. 97-1

15 HWU, WW., MAHLKE, S.A.,, CHEN, W.Y., CHANG, P.P,
WARTER, NJ., BIRMINGHAM, R.A.,, OULLETTE, R.G,,
HANK, R.E,, KIYOHARA, T., HAAB, G.E., HOLM, J.G., and
LAVERY, D.M.: ‘The superblock: An effective technique for
VLIW and superscalar compilation’, J. Supercomput., 1993, 7,
(1/2), pp. 229-248

16 MAHLKE, S.A., HANK, R.E,, McCORMICK, J.E,,
AUGUST, DI, and HWU, W.W.: ‘A comparison of full and
partial predicated execution support for ILP processors’. Proceed-
ings of 22nd annual international symposium on Computer archi-
tecture, Italy, June 1995, IEEE Computer Society Press

17 AUSTIN, T.M., PNEVMATIKATOS, D.N., and SOHI, G.S.:
‘Streamlining data cache access with fast address calculation’.
Proceedings of 22nd annual international symposium on Compu-
ter architecture, June 1995, (IEEE Computer Society Press)

18 ILIFFE, J.K.: ‘A forward looking method of cache memory con-
trol’, Comput. Archit. News, September 1987, 15, (4), pp. 4-10

19 SOHI, G.S., and DAVIDSON, E.S.: ‘Performance of the struc-
tured memory access SMA architecture’. Proceedings of 1984
international conference on Parallel processing, Bellaire, M,
August 1984, pp. 506-513

20 SMITH, J.E., and WEISS, S.: ‘PowerPC 601 and Alpha 21064: a
tale of two RISCs’, Comput., June 1994, 27, (6), pp. 46-58

21 STALLMAN, R.M.: ‘Using and porting GNU CC’ (Free Soft-
ware Foundation, Boston, NA, 1993, 2.4.5 edn.)

22 SMITH, M.D.: ‘Tracing with pixie’. Center for integrated sys-
tems, Stanford University, Stanford, CA 94305-4070, 1.1 edition,
April 1991

23 SITES, R.L.: ‘Alpha architecture reference manual’ (Digital Press,
Maynard, MA, 1992

24 GOLDEN, M.: ‘Reducing the penalty of branch and load haz-

ards in pipelined microprocessors’. PhD thesis, Univeristy of

Michigan, Ann Arbor, 1995

O 00 N A

167

