- FAST
SIMULATION

-~ OF COMPUTER
'ARCHITECTURES

edited by
THOMAS M. CONTE
CHARLES E. GIMARC

46 CHAPTER 2

[73] The SPARC Architecture Manual, Version Nine, SPARC International,
Incorporated, 1992.

[74) “SPEC Newsletter,” Standard Performance Evaluation Corporation.
[75] Amitabh Srivastava, Personal communication, January 1995.

[76] Amitabh Srivastava and Alan Eustace, “ATOM: A System for Building
Customized Program Analysis Tools,” Proceedings of the 1994 ACM Con-

ference on Programming Language Design and Implementation (PLDI),
June 1994, pp. 196-205.

[77] Craig B. Stunkel and W. Kent Fuchs, “TRAPEDS: Producing Traces for
Multicomputers via Execution Driven Simulation,” ACM Performance
Evaluation Review, May 1989; pp. 70-78.

[78] Craig B. Stunkel, Bob Janssens and W. Kent Fuchs, “Address Tracing for
Parallel Machines,” IEEE Computer 24(1), January 1991, pp. 31-38.

[79] “SunOS Reference Manual,” Sun Microsystems, Incorporated, March 1990.
[80] “SunOS 5.0 Reference Manual,” SunSoft, Incorporated, June 1992.

[81] Richard Uhlig, David Nagle, Trevor Mudge and Stuart Sechrest, “Trap-
driven Simulation with Tapeworm II,” Sixth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS-VI), San Jose, California, October 5-7, 1994.

{82] Jack E. Veenstra, “Mint Tutorial and User Manual,” University of
Rochester Computer Science Department, technical report 452, May 1993.

[83] Jack E. Veenstra and Robert J. Fowler, “MINT: A Front End for Effi-
cient Simulation of Shared-Memory Multiprocessors,” Proceedings of the
Second International Workshop on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS), January 1994,
pp- 201-207.

INSTRUMENTATION TOOLS
Jim Pierce*, Michael D. Smitht, Trevor Mudge-

* Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor

t Division of Applied Sciences

Harvard University, Massachusetls

1 INTRODUCTION

The instrumentation of applications to generate run-time information and
statistics is an important enabling technology for the development of tools that
support the fast and accurate simulation of computer architectures. In addi-
tion, instrumentation tools play an equally important role in the optimization
of applications, in the evaluation of new compilation algorithms, and in the
analysis of operating system overhead. An instrumentation tool is capable of
modifying a program under study so that essential dynamic information of in-
terest is recorded while the program executes. The instrumentation process
should not affect the original functionality of the test program, although it will
slow down its operation. In a typical situation, a computer architect uses an
instrumentation tool to produce an instruction or data trace of an application.
The architect then feeds that trace to a trace-driven simulation program. The
usefulness of instrumentation tools is obvious from a quick glance at current
research publications in the area, where a significant number .of authors use
traces generated by two of the most popular instrumentation tools: pixic
[23] and spixtools [6]. These tools are popular because of their applicability

to many architectures and programs, their _.o_ws<a_<_oio<o_._.owa.w:.:.ror
simplicity of use. .

This chapter’s focus is the design of instrumentation tools. Section 1 describes
how instrumentation tools fit into the broad range of techniques available for the
collection of run-time information. Section 2 lists the points in the compilation
process at which we can instrument an application. It goes on to discuss the
advantages and disadvantages of performing instrumentation at these points.
noting that the basic structure of an instrumentation tool and the problems

48 o.=>3,m= 3

faced are common to all of the approaches. Section 3 then discusses the specifics
of instrumentation tool design, and Section 4 presents the important character-
istics of some existing instrumentation tools. Finally, an appendix is included
to illustrate the use of two existing instrumentation tools.

1.1 Methods for collecting run-time
information

Before we discuss the design of instrumentation tools in detail, we first de-
scribe other approaches that provide the ability to collect run-time informa-
tion. In general, we can classify 2 run-time data collection method as either a
hardware-assisted or a software-only collection scheme. Each type of approach
has advantages and disadvantages to consider.

A hardware-assisted collection scheme involves the use of hardware devices that
are added to a system solely for the purpose of data collection. These mon-
itoring devices are not necessary for the proper functioning of the computer

system under test. Many different hardware methods exist for unobtrusively -

monitoring system-wide events. They include: 1) specially designed hardware
boards, such as the BACH system {9], which observe and record bus activity;
2) off-computer logic analyzers, such as the University of Michigan’s Monster
system [21], that monjtor the activity of the system bus; and 3) special on-
chip logic, such as the performance monitoring counters on the DEC ALPHA
21064 microprocessor chip, which summarize specific run- time events [7). The
two main advantages of a hardware-assisted collection scheme are that one can
build hardware to capture almost any type of event and that a hardware mon-
itor can theoretically collect dynamic information without slowing down the
application under test. Unfortunately, there are a nuimber of disadvantages to
these schemes too. First, since a huge amount of data can be gathered in a
short time, the monitoring hardware is built either to summarize events (eg.,
a counter that only counts the number of cache misses and not their addresses)
or to record disjoint segments of program operation (e.g., a hardware monitor
with a large memory that accepts the run-time information at the full execution
rate and then later dumps this data to a backing store). In either case, less
than the full amount of information is gathered which could lead to a distorted
picture. To minimize the amount of unwanted data collected, researchers have
combined hardware-assisted approaches with software instrumentation of ap-
plications to signal when the hardware should start and stop monitoring [21]-
another compelling reason to understand software instrumentation methods.
Finallv. hardware-assisted collection schemes are costly and highly dependent

Instrumentation Tools 49

upon the characteristics of the monitored machine; thus, they are not a prac-
tical alternative for many users.

Software-only collection schemes, on the other hand, are relatively inexpensive
and more portable than hardware-assisted collection schemes because the soft-
ware schemes use only the existing hardware to gather the desired run-time
information. In general, we can divide the software-only schemes into two ap-
proaches: 1) those which simulate, emulate, or translate the application code
and 2) those which instrument the application code. Chapter 2 presented a
detailed description of the first approach. Briefly, a code emulation tool is a
program that simulates the hardware execution of the test program by fetching,
decoding, and emulating the operation of each instruction in the test program.
SPIM [12] and Shade [5] are examples of tools in this category. One of the
major advantages of emulation tools is that they support cross-simulation and
the ability to execute code on hardware that may not yet exist. Compared
to instrumentation tools though, an emulated binary, even with sophisticated
techniques such as dynamic cross-compilation [5], is noticeably slower than an
instrumented binary when capturing the same run-time information.

An instrumentation tool works by rewriting the program that is the target of

the study so that the desired run-time information is collected during its execu-
tion. The logical behavior of the target program is the same as it was without
instrumentation, and the native hardware of the original application still exe-
cutes the program, but data collection routines are invoked at the appropriate
points in the target program’s execution to record run-time information. Over-
all, researchers have proposed the following three distinct mechanisms to invoke
the run-time data collection routines: microcode instrumentation, operating
system (OS) trapping, and code instrumentation.

Agarwal, Sites, and Horowitz [1] describe a microcode-instrumentation tech-
nique called ATUM (Address Tracing Using Microcode) that supports the cap-
ture of application, operating system, intertupt routine, and multiprogram-
ming address activity. Instead of instrumenting the individual applications,
their technique “instruments” the microcode of the underlying machine so that
the microcode routines record, in a reserved portion of main memory, each
memory address touched by the processor. This approach is effective because,
typically, only a small number of the microcode routines are responsible for
the generation of all memory references. This approach is gerieral because it
is independent of the compiler, object code format, and operating system- as
Agarwal states [2], ATUM is “tracing below the operating system.” In fact,
any information visible to the microcode can be instrumented. Agarwal, Sites,
and Horowitz report that the overhead of this approach causes applications to

50 CHAPTER 3

run about ten times slower than normal when used to collect address traces [1].
Of course, microcode instrumentation is only applicable to hardware platforms
using microcode and even then the user must have the ability to modify the

code. Furthermore, since most processors today have hardwired control, this
approach has limited applicabilijty.

A more widely applicable approach is to collect run-time information using OS

traps. For instance, data address traces can be collected by replacing each ..

memory operation in the target program with a breakpoint instruction which
traps to.a routine that records the effective address. A disadvantage of using
OS traps is that, if many events must be recorded, the cumulative OS over-
head of handling all the traps is significant. However, there are a number of
exception mechanisms in operating systems that can bé utilized to improve
the efficiency of this method. Tapeworm 11 [28] is an example of an efficient
software-based tool that drives cache and TLB simulations using information
from kernel traps. It utilizes low-overhead exceptions and traps of relatively
few events. The applicability and efficiency of the OS-trap approach depends
upon the accessibility of certain OS primitives. With proprietary operating
systems, this can be a problem.

The most generally applicable approach is the direct modification of the pro-
gram's code. This approach, called instrumentation, inserts extra instructions
into the target program to collect the desired run-time information. Data col-
lection occurs with minimal overhead because the application runs in native
mode with, at most, the overhead of a procedure call to invoke a data collec-
tion routine. Most instrumentation tools can create instrumented binaries that
run at less than a ten-times slowdown in execution time when collecting an ad-
dress trace. Some instrumentation tools such as QPT [18] rely on sophisticated
analysis routines and post-processing tools to reduce this overhead even more.
This approach is generally applicable because it is independent of the operating
* system and underlying hardware, it has been implemented on systems ranging

from Intel architectures [22] to the DEC ALPHA architecture [18][24]. Fur-
thermore, most code instrumentation tools require only the executables, not
" the sources files, so a user can instrument a wide range of programs.

There are a number of shortcomings to code instrumentation, however. It is
most suited to the instrumentation of application programs. Furthermore, most
code instrumentation tools only instrument single-process programs; kernel
code references and multiple process interactions are not typically included.
Therefore, address traces generated by these tools are often incomplete and
of limited utility for TLB or cache simulations that require the monitoring of

Instrumentation Tools 51

system-wide events. Recently however, there have been tools written that do
instrument kernel code and multitasking applications [4](8][19].

Overall, software-only collection schemes are less expensive to implement and
easier to port from system to system than hardware-assisted schemes. Software-
only schemes, however, do impose some overhead on the system under test and
often are restricted in the type of runtime information that they can gather.
Even so, the robustness and simplicity of code instrumentation tools makes
them a popular choice by today’s computer architects. The remainder of this
chapter focuses on the-design of code instrumentation tools.

2 WHEN TO INSTRUMENT CODE

Code instrumentation can be performed at any one of three points in the compi-
lation process: after the executable is generated, during object linking, or dur-
ing some stage of the source compilation process. Although different problems
arise depending upon when the code is instrumented, the general procedure
of instrumentation is the same at all levels. In general, code instrumentation
involves four steps:

)

. preparing the code for instrumentation - code extraction, disassembly,
and/or structure analysis,

2. adding instrumentation code - selecting instrumentation points and insert-
ing code to perform the run-time data collection,

3. updating the original code to reflect new code addition - reassembly, relo-
cation information update, or control instruction target translation,
4. constructing the new executable.

We now turn to the issues involved in instrumenting code at the different stages
in the compilation process.

2.1 Executable instrumentation

Instrumenting the executable or late code modification is of the greatest util-
ity to the user. However, it is also the most difficult for the instrumentation

52 | CHAPTER 3

tool since code structure information is not available. The tool is responsible
for recognizing and disassembling the code sections, instrumenting the code,
and then relocating the code while rebuilding the executable. The missing in-
formation affects the tool’s ability to perform all three actions. Without the
structure information, the tool must invoke compiler knowledge or code struc-
ture heuristics to accomplish the tasks which can result in both performance
and reliability problems. When the tool cannot accurately predict code be-
havior statically, runtime overhead is incurred to adjust the behavior during
execution. In addition, instrumentation can fail or worse, produce incorrect
code, due to invalid code structure assumptions. These issues will be discussed
more fully in the next section.

Sophisticated tools which can overcome these obstacles present many advan-
tages to the user such as the following:

O Source code independence - This makes to a wide range of programs avail-
able for tracing.

O Program generation independence - Binaries produced by different com-
pilers of various languages can be instrumented.

O Automatic library module instrumentation - Full tracing of user-level ex-
ecution is easy since statically linked library code is included in the exe-
cutable.

O Fast and efficient - No source code recompilation or assembly is required.
The user is not required to maintain instrumented library modules.

0 Code creation details hidden - The user need not be familiar with the”

compile-assembly-link process needed to create the application. In partic-
.. ular, details such as the necessary library modules or flags, non-standard

linking directives, or intermediate assembly code generation are of no con-
cern.

Late code modification tools have various requirements for the information
necessary in the binary file. The most general tools can instrument a stripped
binary- a binary without a symbol table. At the other extreme are tools which
require the compiler to include additional symbol table information. These
tools usually require the source to have been compiled with the -g option
which includes profile and debugging information in the symbol table. Late

code modification tools exist for many microprocessors and several of them are
discussed in Section 4.

Instrumentation Tools 53

2.2 Link-time instrumentation

If one is willing to give up source code independence, a convenient time to
instrument a program is after the objects have been compiled but before the
single executable has been created and the relocation and module information
has been removed. Instrumentation can be done by a sophisticated linker which
includes an object rewriter. During the linking process each object is passed to
the rewriter which performs the necessary code modifications. It handles code
and data relocation by just noting location changes in the object’s relocation
dictionary and symbol table. The modified objects are then passed back to
the linker proper and are combined into one executable in the normal manner.
Recompilation of the source code is unnecessary. The presence of the relocation
information and the symbol table make relocation straightforward. Postponing
modification until the executable stage when this information is missing makes
relocation much more difficult and sometimes impossible.

There are several tools which perform link-time modification. Mahler is a back-
end code generator and linker for Titan, a DECWRL experimental workstation
[30]. The module rewrite linker can perform intermodule register allocation,
instruction pipeline scheduling, and the insertion of code for basic block count-
ing and address trace generation. Code and data relocation is done as described
above. Another tool, epoxie, relies on incremental linking which produces an
executable containing a combined relocation dictionary and symbol table [29].
Its advantages over Mahler are that the standard linker can be used and data
sections remain fixed so data relocation is not necessary. Epoxie produces
address traces and block statistics. An extension of epoxie has been created by
Chen which can instrument kernel-level code [4]. It is described in Section 4.8.

Link-time instrumentation is not automatic like late code modification and
requires input from the user. The user must have the application object files
and know the application’s linking requirements. In addition, the source files
are probably necessary to generate the object files.

2.3 Source code modification

The-earliest time to instrument the code is while it is being compiled. This is
also perhaps the most straightforward time since the tool has maximal knowl-

edge about the code. Unfortunately, it has several drawbacks from the user
perspective:

_% | CHAPTER 3

O Source files are required.

O Compiler limited - Most tools are either incorporated into one compiler or
based upon a particular language or intermediate level generated by one
compiler. This further restricts the traceable applications.

O Instrumentation speed - Each time the application is instrumented the
source must be recompiled. This also implies that the user must be familiar
with the application’s compilation procedure.

O Limited code instrumentation - Library modules are not instrumented au-
tomatically because they are not included in the source files. It is possible
to create separate instrumented copies of all library modules and link them
to the instrumented source objects but this requires obtaining the module
source code and maintaining multiple versions of modules. Kernel code is
difficult if not impossible to instrument with this method.

A major advantage of source-level instrumentation is that the binary creation
phase of the instrumentation is greatly simplified. Often the unmodified system
assembler and linker can be used to create the binary. Furthermore, the large
amount of information available at this stage permits types of instrumentation
to be done which are not feasible at later times. For instance, most source-level
tools take advantage of compiler control-flow knowledge to reduce the amount

o:__m..::saseﬂso:noma..H__mmaom_..nnmvo»reroaxoozzo:saow:m_dm:_s:m
trace size. ‘

AE (Abstract Execution) is a tracing system developed by Larus and Ball which
is incorporated as part of the Gnu C compiler [3]. Its goal is to generate very
small traces which can be saved and then reused for multiple simulation runs.
The modified compiler actually produces two executable programs. The first is
" the modified application. In addition to normal compilation, the compiler uses
the notion of abstract execution to insert tracing code in the application code.
Abstract execution is based upon control-flow tracing to reduce the amount
of trace code necessary. The resulting trace produced by the modified appli-
cation is only a tiny part of the full trace. This allows traces representing
long execution runs to be saved on disk. The compiler also produces an ap-
plication specific trace regeneration program. The regeneration program is a
post-processing tool which accepts the compacted trace and outputs the full
exécution trace. The tracing overhead, including the cost of saving the com-

pacted trace to disk, is 1-12 times the unmodified program’s execution time
.

Instrumentation Tools 55

MPtrace is a source-level instrumentation tool developed by Eggers et al. to
generate shared-memory multiprocessor traces (8). Their goals were to develop
a tool which was highly portable, caused minimal trace dilation, and generated
accurate traces, i.e., complete traces which closely resemble those gathered us-
ing non-intrusive techniques. Dilation describes the increases in execution time
that result from code expansion due to instrumentation. Minimizing program
dilation is critical in multiprocessor tracing since a change in execution time
effects the coordination of multiple processes and thus the overall execution be-
havicr of the program. Source-level instrumentation allows MPtrace to achieve
those goals. MPtrace is more closely tied to a parallel C compiler than to
an atchitecture. Thus, its portability depends tupon the compiler’s portability.
MPtrace was initially created for Sequent ix86-based shared-memory systems
and only twenty five percent of the tracing system was machine dependent,
most of that being a description of the instruction set.

MPtrace attempts to limit execution time dilation by employing compiler flow
analysis techniques to reduce the amount of added instrumentation code. It
instruments the code by adding assembly instructions to the assembly-level
output of the compiler which will ptoduce a skeletal trace. At the same time,
program details are encoded in a roadmap file used for later trace expansion.
The modified assembly-level sources are assembled and linked using the respec-
tive unmodified system tools. A compacted trace is produced upon the execu-
tion of the instrumented application. Using a post-processing program and the
roadmap file, the full multiprocessor trace can later be generated. MPtrace can
achieve a time dilation of less than a factor of 3 but the usual execution time
increase is around a factor of 10 [8]. Library module code is not traced.

In summary, there are three times at which code instrumentation can take
place. Late code modification does not require source files, library code is
automatically instrumented, and the binary creation details are hidden from
the user. However, due to the lack of information available in the binary file,
late code modification tools are the most complex and the resulting binaries
can suffer performance and reliability problems. Link-time modification takes
advantage of some code information to simplify binary creation. It retains use
of the system linker, can instrument module code, but the application source is
likely to be required. Finally, source-level instrumentation utilizes substantial
code information to simplify the code instrumentation process and to produce
coriiplex traces. It requires application sources and usually more information
from the user. Library module code is not easily instrumented. The remainder
of the chapter will focus on late code modification tools.

56 CHAPTER 3

3 HOW LATE CODE MODIFICATION
TOOLS ARE BUILT

An instrumentation tool must insert tracing instructions into the executable
without altering the logical behavior of the program. At no point can the
added instructions change the program state. For trace generation, the events
which need to be recorded are the execution of basic blocks and all data mem-
ory references. With this information, an execution profile, memory reference,
or full execution trace can efficiently be produced. The usual way these events
are recorded is by adding code segments prior to each event. The code stores
the information in a trace buffer which is periodically checked during program

execution and flushed to backing store when full. The four tasks of the instru-
mentation tool are to: .

=

. Find the section(s) of the executable file which contain code and disassem-
ble them to obtain program structure information,

2. Insert instructions to record events thereby expanding the original code
section,

3. Translate all addresses which were changed because of the code expansion,

-

. Put parts back together to make a new executable.

The next four subsections describe the problems faced and the specific actions
required of the tool during each of the above stages. The final subsection
discusses some architectural properties which facilitate or frustrate late code
instrumentation. To assist in describing problems and the methods used to
overcome them, we use several existing instrumentation tools as examples: 1D-
“trace for the Intel architecture, pixie for the MIPS architecture, and QPT for
both MIPS and SPARC architectures. These tools will be discussed in detail
in Section 4. IDtrace is used most often as an example due to the authors’
- familiarity with the tool. However, it should be noted that all late code in-
strumentation tools encounter similar instrumentation problems and rely on

similar solutions.
3.1 Code extraction and disassembly

The first steps of the instrumentation tool are to locate and then disassemble
the code sections of the executable. Unix executables come in a variety of

Instrumentation Tools 57

flavorst ELF, COFF, ECOFF and the BSD a.out format [10](14), but
their structure is basically the same. They all begin with tables containing
information such a8 the number, type and location of sections in the file, if and
whete the sections are to be loaded into memoty, and where to begin program
execution. Most executables contain one text section, one data section, and
one BSS section. The text section contains code. The BSS section allocates
space for uninitiated data and is actually empty in the file. Once the text
section is located, it must be disassembled. During disassembly the code is split
into basic blocks and & telocation table is created which stores the locations
of these blocks. This table will be needed later to instrutnent the code and
update the target addresses of control instttictions. Since instructions will be
insetted into the code, almost all insttuctions will have their locatlon shifted in
memoty and so the branch and jump insttuction targets must be translated to
reflect this. For most instructions this is straightforwatd since the targets are
known at instrumentation time. For data objects, however, addtess translation
is difficult, and without the symbol table, impossible, 1t is important that
all data locations remain unchanged during instrumentatlon. Therefore, data
sections are not modified and are loaded into memory in theit original positions.

In some cases, data can be found within the code segment, and this can present
several problems for disassembly. There are two reasons a compiler might put
non-instruction bytes in the text section. One is to insure constant data can-

" not be written and to allow the data to be shared by multiple processes. The

other source of non-instruction bytes are in-lined indirect jump tables which
are created by the compiler for switch or case statements. The obvious problem
associated with data in the text section is that, without additional information,
the disassembler treats the data words as instructions and tries to disassem-
ble them. These “non-instructions” could mistakenly define basic blocks, be
instrumented, or even be modified. Even if the data were not mistakenly mod-
ified by instrumentation, earliet code expansion would cause it to be moved
within the section. As stated before, data addresses cannot be relocated. so
this cannot be allowed to happen. The solution is to create & new text section
which contains the instrumented code and to treat the complete original text
gection as a data section. It might be thought that modifying or adding er-
roneous instructions would lead to incorrect execution. This will not happen
because these “bogus” instructions will never be executed. Since control was
never passed to data in the text gection in the original program, control will
not pass to the instrumented data in the new program.

Another, more subtle, problem is more serious and affects ISAs with variable-
length instruction. 1t is highly likely that after a disassembler blindly disas-
sembles through non-instruction bytes, it will be out of alignment with the

58 CHAPTER 3

following real instruction bytes. For instance, suppose a disassembler creates
meaningless instructions from a block of constant data and it needs one byte
past the end of the data block to complete the last instruction. Again, these
bogus instructions are of no concern because they will never get executed. How-
ever, because of the one byte used earlier, disassembly will be out of alignment
with the beginning of the true instruction bytes after the constant data and
will continue to-generate meaninigless instructions. To combat this problem, the
disassembler must know where non-instruction bytes are located in the text sec-
tion and skip over them. Constant data locations can be found in the symbol
table but locations and sizes of jump tables can only be deduced by knowing
compiler code generation behavior. Thus, instrnmentation tools like IDtrace
which run on ISAs with variable-length instruction must be compiler depen-
dent and could require the executable to contain the symbol table to assist in
disassembly. Fortunately for IDtrace, most compilers for the Intel architecture
put constant data in the data section and the symbol table is not necessary.
However, 1Dtrace’s disassembler is compiler dependent and will not properly
instrument programs with unrecognizable jump table code.

3.2 Code insertion

Once the code is disassembled, the instrumentation code is added in binary form
since there is no later assembly phase. Actual code insertion is not difficult.
The only requirement is that the added code cannot alter the functionality of
the program. Most instrumentation tools add short code sequences at the be-
ginning of each basic block. If a memory reference trace is required, instruction
sequences are also added prior to each memory referencing instruction.

For instance, during profile instrumentation, 1Dtrace labels each basic block
.'with a unique number. Instrumentation produces two new files: the new exe-
cutable and a .blk file. The latter holds information about each block such as
its size, beginning address, and label number. During runtime, an array exists
in memory which holds the execution count of each block. A code sequence is
inserted before each basic block which will increment the proper array position
for that block. When the program exits, this array is dumped to the .cnt file.
Figure 1 is an example of 1Dtrace basic block instrumentation code. The block
count array variable that is incremented is checked for overflow, and the trace
buffer is checked and emptied if close to full. Even though each count array en-
try is a 32-bit unsigned integer value, it could still overflow if the program were
sufficiently long. Using a command line option, IDtrace adds code to check for

Instrumentation Tools 59

push status_flag._reg
push temp_reg
temp_reg <- block_number
M[ctab+(4etemp_reg))
<- M[ctab+(4¢temp_reg)] + 1
temp_reg <- tbuf_ptr
(temp_reg > tbuf_near_full)
. it not goto EHD
“ call flush_butfer

save status flag register
save temp register

put block label in register
update basic block execution
count table

check if trace buffer is
nearly full
it full, flush trace buffer

END: pop temp_reg

restore temp register
pop status_flag_reg

restore status flag register

Figure 1 Instrumentation code inserted béfore each basic block by IDtrace
in profile mode.

overflow and do sequential saves to the .cnt file. This adds extra instructions
to each basic block sequence and will slow execution.

Original Instruction
regl <- regl + Mlreg2+100]
Instrumented Instruction

push status_flag_reg

push temp_regi

push temp_reg2

temp_regl <~ reg2+100
temp_reg2 <- trc_buf_ptr
M[temp_reg2] <- load_tag
M{temp_reg2+1] <- temp_regi
trc_buf_ptr <- trc_buf_ptr + §
pop temp_reg2

pop temp_regl

pop status_flag_reg

regl <- regl + Hlreg2+100]

save status flag register
save temp registers

compute effective address
load trace buffer pointer
record reference type tag
record reference address
step trace buffer pointer
restore registers

; restore status flag register
; original instruction

Figure 2 Instrumentation code inserted before a data reference instruction
by IDtrace in memory reference mode.

60 .o=>3m= 3

Memory reference code is similar. It calculates the effective address of the data
reference and sends it to a trace buffer. Figure 2 shows the code added by
IDtrace to record a data reference.

3.3 Address translation

As the new code is added to the instrumented text monzo?. m—_a control in-
struction targets must be translated. This is easy for .no__.m_so:w_ branches
and most jump and call instructions because they contain o;_._o_. the absolute
target address or its relative offset. Most tools create a relocation table :.v per-
form address translations during instrumentation. The n.wc_o holds Eo original
and corresponding new addresses of all control instructions and their n.wnmopm.
IDtrace accomplishes address translation using two code passes. .U:::w.nro
first pass through the code, the original _onwsoq_.m of all control _=m9=mn=o=m
and their targets are entered into the table. During the second pass, instru-
mentation instructions are inserted in the code and s:.w new addresses of the
targets are added in the table. When a control m__m:m.nso: is encountered and
the new location of target is already in the table (this would occur for w.vwn_?
ward branch), the new relative distance can be calculated w.:._ entered in the
instrumented code immediately. When a forward branch is osno._:na_.o.m the
new location of the target will not be in the table and the new _Onws.o: n.v..
the branch must be noted in the table. Later, when the target _.=m$.=oso=._m
instrumented and its new location is known, the relative offset in the eatlier
branch instruction is adjusted.

Unfortunately, there are some control instructions for which the target nm.::ﬂ
be calculated at instrumentation time. The most difficult ones to _z:m&o ate
indirect call instructions where the target address is ..9.:&.:. a -om_mao_.. or
- “memory location. Since the data values are unknown m:::m instrumentation,
the target cannot be calculated. Furthermore, msmn.EBo.:pwso: does not m@.oan
data values, so execution of the unaltered instruction s..___ v._.om:no the original
‘target address rather than the new address. To maintain correct program
behavior the address translation must be performed at zmsn_:._o. As n.:m code is
being instrumented, a translation table is created which is a list of o:m:._w_ and
new address pairs corresponding to the beginning of each procedure. ..H_:m table
is included in the instrumented file and is loaded into memory at runtime. Each
indirect call instruction is replaced by a group of instructions that noEvzmom
the original target address and then passes this address to 3 aaz.raa.aw.:.e
routine. This routine performs a translation table lookup using the o_.._m:_w_
target address to find the associated new address. If a target translation is

Instrumentation Tools 61

found, control is passed to the translated address and the indirect call works

as intended. If, however, the target is not found, an error message is reported
and execution halts.

Without the use of the symbol table, some heuristic is necessary to detect
procedure beginnings. For example, IDtrace marks all instructions following a
return or nop instruction as potential procedure beginnings. If the code con-
tains procedures with other instructions endings or if the target of an indirect
call is the middle of a procedure, the table lookup scheme will fail. Even if ex-
ecution progresses correctly, this method incurs substantial runtime overhead

for each indirect call executed and significant memory space is required to hold
the table.

Indirect jump instructions also pose a translation problem but can be handled
in a similar manner to indirect calls. The jump instruction is replaced by
code which computes the original target address and passes the address to
the runtime lookup routine. This scheme has two drawbacks however. One
disadvantage is the increase in overhead due to more runtime translations. The
other is that the translation table requires more entries. Not only procedure
beginning addresses but all basic block beginning addresses must be included in

the table. This increased table size requires more space and increases address
lookup time. .

If instrumentation can be based upon compiler code generation knowledge, in-
direct jumps can be handled in a more efficient manner. In compiled code,
indirect jumps are used in two situations. One is in conjunction with a jump
table produced for switch or case statements. A jump table is a list of absolute
addresses and the target of the indirect jump is found by using a register value
as an index into the table. 1f the jump table can be identified, the absolute
addresses can be translated at instrumentation time and the unaltered indirect
jump instruction will work correctly at runtime. IDtrace translates the jump
table addresses during instrumentation since it can find the location and size
of the jump tables during disassembly. The other use of indirect jumps is for
procedure returns in many RISC processors, such as the MIPS and ALPHA
architectures. These too can be translated during instrumentation if assump-

tions about the compiler are utilized. The discussion of nixie in Section 4.2
degcribes how this can be done.

QPT cleverly stores the translation table in the location of the original text
section [18). Instead of being an opcode, the word at the original instruc-

:tion addtess is the translated address. This allows QPT to load a complete

translation table, one which holds the translation for every original instruction

62 CHAPTER 3

address, without using any additional memory or file space. This succeeds only
because 1) there is not constant data in the text section, and 2) instructions
are a fixed 4-byte length.

A final issue in branch translation is branch target distances. Some ISAs such
as the Intel architecture, include both short and long target length branch
instructions. Usually, code expansion moves the targets out of range of the
original short branch instructions. The simplest solution is to convert all short
branches to long branches. In MIPS code, all branches targets are 24 bit long
but it is still possible for code expansion to push target distances beyond this
distance. Pixie can adjust for this if -branchcounts is given as a command-
line option. .

3.4 Rebuilding the executable

After the code has been instrumented and target translation is completed, the
file sections must be combined to make a new executable. There are now the
original text, data, and BSS sections, a new text section, and some tables
and buffer space. The original sections must be loaded into memory in their
original locations since they contain data. The optimal solution would be to
either extend the téxt section to include the new text and translation table
or to create a new text section. Space would be added to the BSS section to
include the trace and block count buffers. The executable file format tables
would be updated to reflect these changes and to point to the new text section
as the location to begin execution. For various reasons, the optimal solution is
not possible on many platforms.

The main problem encountered is that many 0S loaders do not make full use
o the information found in the load format tables. Most formats allow the
user to specify the number of text and. data sections, the location of where
they are to be loaded into memory, and at what address execution is to begin.
Unfortunately, to facilitate faster loading, most OS loaders load an application’s
sections into memory in the same positions in which they reside in the file,
ignoring the position information in the format tables. Furthermore, Unix
System V loaders only accept one file structure. It must contain one text
section, one data section, and one BSS section, in that order. Execution must
begin at a fixed address in the text section. The data section must immediately
follow the text section. Obviously, special tricks are required to create the new,
instrumented binary.

Instrumentation Tools 63

Original memory configuration

M originat Text

H Original Data

m New Text . New Data

BB originai BSS
New BSS

Figure 3 Original and new binary file configuration.

The solution used by IDtrace is illustrated in Figure 3. It combines the original
data and the zero-filled BSS sections along with the new text section m_.mno
v:.n.mr and other tables into one big data section. Execution must cmmm-m in the
original text section so the first few instructions there are modified to transfer
control Rw the beginning of the new code found in the middle of the expanded
data mwnso:.. Another dummy BSS section is added to the end to satisfy the
loader’s requirement of one BSS section. Note that if the first msm?:nsoﬂm of

the text section were not chan
. i ged the program would run exactly as
since the original text and data sections are unmodified. Y 80 before

Owﬂ has similar problems on SPARC processors because the text and data
sections abut one another leaving no room to expand the text section. In this
case, the OW.H designers had two choices: add a new text section after .nro BSS'
section, which would require explicitly represent zero-filled data in the binar

file; or, add a new text section between the data and BSS sections; S__moﬂ
would create relocation problems with BSS data since the addresses .Om BSS
A_wg.. s.m:_a then point to new text code. They compromised. The new text
section is added between the data and BSS sections. Then, mB.Bo&wnm_v. :v”:

execution, the new text copies itself to a locati
the ne on abov
fills the uninitialized memory space. © the BSS data and gero

64 . CHAPTER 3

Rebuilding methods which expand the data space must allow for correct dy-
namic memory allocation (i.e., malloc). For example, on Intel platforms, the
last address of the data space is stored in the _curbrk variable found in the
application program. It is accessed by sbrk, a routine called by C’s malloc
function to position dynamically allocated memory. The _curbrk value must
be updated with the last address of the expanded data space s0 that memory
will not be allocated over top of the new code. IDtrace must know the loca-
tion of _curbrk to make this change. Since IDtrace does not depend upon
the symibol table, it finds the location of _curbrk by pattern matching disas-
sembled instructions with the known sbrk instruction sequence. From those
instructions, it extracts the location and updates _curbrk to reflect the data
section’s expanded size. If IDtrace cannot find _curbrk a warning message is
produced. This is not always an error, however, since _curbrk is not included
in all programs. .

There are several other small issues which must be handled before the new
binary will run correctly. First, the exit call must be modified so that the
trace and basic block count buffers can be dumped to a file before control is
returned to the OS. Most instrumentation tools modify the exit routine to
call a new routine which performs these cleanup functions and then exits. The
address of the exit procedure can be found in several ways:

O Lookup up the address in the symbol table. This method, of course, re-
quires the binary to contain the symbol table.

O Pattern matching the disassembled code for the known sequence of exit
procedure instructions. This method relies upon code knowledge.

O Knowing the location of a call to the exit procedure in the program and
extracting the address from the instruction bytes. This is not too difficult
because the initialization library code, crt0.o, contains an exit call and
this code is always positioned at the beginning of the text section. This
method also relies upon code knowledge.

The start code must also be modified to initialize instrumentation buffers and
perhaps open trace files. If the OS loader cannot be told to begin execution at
a non-default location, the original start code must also jump to the beginning
of the new code section.

As the above sections have described, many problems are encountered when
trying to modify an application at the executable stage. Actually inserting the

Instrumentation Tools 65

H—%a@.ﬂv—mﬁm m:.ww :Mw_._w wmm&ao:_a as translating control instruction targets
ng the binary. Some tools rely on compiler-based as: i

4 - sumptions t
overcome these problems. Others require significant information in arm mvﬁ‘_vn“

table. Still other tools, such ixi i i
) as pixie, sacrifice execution i i
be almost compiler independent. _ effciency fn order to

3.5 ISA properties

wmm.a _:w.ro_.mi wwor:mogmw_ features simplify instrumentation. Others pose
A_m .o: ties or add complexity to the resulting code. Some of these properties are
iscussed below. In general, RISC processor code is more easily instrumented

and the resulting code is shorter and f:
aster. Howev i :
problems are unique to RISC code. er, some instrumentation

Load-store vs. Memory-to-memory architectures

”H._.m major factor in the size and consequently the execution time of a program
msm_wn:::.wi_mm to trace memory references is the number of instructions Sm ui

ing Su.a:.m code. Thus an instruction set that includes EoEoJ.-_wo.Eam.o”-
wvmwwsoam such as the Intel architecture will have many more instruction ev.
instrument 2.5: does a load-store architecture which usually retrieves ovawwm:mo
?o—.: the _.am_me.a_. file. Memory-to-memory architectures often have a small \
register set which forces local variables to be stored in memory locations w,zam
2_9.508.. memory operands can often be used as a source and %ms:ms.o: m_.

M._M same Em_:.coao:. thereby generating two trace entries from one mzms.:oaoss
! of W_rmmm Eovmwm_mm o—.. 5m50¢...3.5m50&. architectures contribute to :_m
arge size mda runtime dilation of instrumented code. The i486 has approxi

.Bm.am_w wmo instructions which can address memory. In addition, man nm.v_w%x_-
:._ms.znsoam can perform both a load and a store and some :o:..m_isw inst ue.
tions ~&..m8=8 two different addresses [13]). In contrast, the MIPS %uoco_.nn-
only 14 instructions which can reference memory. Each A.ums only perform in.
gle read or write and no instruction can access more than one memory wmﬂ“ﬂ

[15].

- Multi-reference instructions

Some processor instruction sets such as the i486 and the RS/6000 include string
omﬁwo._ozm which can vo.l.o:: an indeterminate number of references per in-
struction. One example in the i486 ISA is the rep instruction prefix which can

66 CHAPTER 3

cause one string instruction to repeatedly access sequential memory addresses
until a condition is satisfied. 1t is impossible to ascertain the number of it-
erations at instrumentation time. To record an accurate reference trace, the
single instruction must be replaced by a sequence of instructions which out-
put the reference, perform the string operation, check the condition, and loop
back if the condition is not satisfied. "This emulation code adds to the size and
execution time of the instrumented binary.

Register allocation

As seen in the sample code in Figure 1 and Figure 2, registers used in the trace
code segments must be first saved and then restored so that the inserted trace
code will not alter the current state of the application. If the processor has a
large register set, tricks can be performed to eliminate these time consuming
operations. For instance, pixie scans the original code prior to instrumentation

and utilizes the three least referenced registers as dedicated instrumentation .

registers. The original code instructions which referenced these registers are
replaced with memory referencing instructions. Pixie then uses the registers
exclusively as instrumentation registers holding buffer pointers and effective ad-
dress calculations. They are used in instrumentation segments throughout the
program without having to continually save and restore their values [29]. QPT
relies on the caller-save procedure register convention to scavenge instrumenta-
tion registers. QPT finds registers which were saved by the calling procedure
but unused in thé current procedure. This assumes that the program obeys
the calling convention, and QPT tries to use symbol table information and
optional command-line arguments to verify this. If it cannot be assured, the

register values are saved and restored as described earlier. Because their target .

processors have 32 registers, pixie and QPT are able to contain code expansion.

Condition codes

Condition code values are part of the state of the computer and so should not
be altered by actions in the tracing code.” The Intel architecture has special
instructions which push and pop the status flag register and these instructions
are used by IDtrace to hide any effect the tracing code might have on the flags.
The SPARC processor has four condition code registers. While the processor
does not have user mode instructions which save and restore the registers, two
types of arithmetic instructions are implemented: one which affects condition
codes and one which does not. QPT’s tracing code uses the non-affecting
arithmetic instructions in all places except for the trace buffer overflow check.

Instrumentation Tools 67

In this case, it either inserts the check instructions where the condition codes

are not live or performs the check with a more expensive code sequence which
does not affect the codes.

Variable instruction lengths

Variable length instructions in combination with data located within the text
gection ¢an wreak havoc with code disassembly. The disassembler must use
information in the symbol table to skip constant data and use compiler specific
knowledge to recognize and pass over jump tables. This was an unexpected
and serious problem with IDtrace. Instruction length also affects the length of
the output trace. When instructions are of uniform length, the trace need not
contain the address of each instruction in order to quickly.derive an execution
trace. 1t is sufficient only to output each executed basic block beginning and
data reference addresses. The position of data references relative to instruction
references can be denoted using only a small integer offset. The offset represents

the number of instructions executed since the last basic block beginning or data
reference.

Delayed branches

Delayed branches in some RISC processors necessitate careful instrumentation.
An instruction in a delayed branch slot succeeds a branch instruction in assem-
bly code order but will get executed regardless of the branch direction. It is
important that no instrumentation code get inserted between the branch and
the delay slot instruction. The easiest way to handle this situation is to move
any delay slot instruction which requires instrumentation to a location prior to

the branch. It must be verified that this movement does not affect the outcome
of the branch.

Indirect addressing

Finally, ISAs with heavy dependence upon indirect addressing will suffer from
the overhead caused by the runtime address translation. In the MIPS architec-
ture for instance, procedure returns are done with the jump register instruction
(jx). ‘The call instruction stores the return address in a general purpose register
(usually r31) and jr indirectly finds the return address in that register. Thus,
every return causes an address table lookup thereby adding to the execution
time of the instrumented program. A method to avoid this overhead which is
based upon compiler knowledge is described in Section 4.2. .

68 CHAPTER 3

.

4 CURRENT INSTRUMENTATION
TOOLS

Late code instrumentation tools can be found for most of the popular current
microprocessor. The following is a description of a selection of tools for use on
various platforms. i

4.1 IDtrace

IDtrace is an instrumentation tool for Intel architecture Unix platforms (22]. 1t
instruments SysV R4 ELF binaries compiled using Intel/AT&T C, USL 0.0m
C, and gec compilers. Currently, it cannot automatically process code compiled
by Intel’s Proton compiler developed for the Pentium. IDtrace can E.om:nm a
variety of trace types including profile, memory reference, and full execution
traces. Primitive post-processing tools which read output files, view traces, and.
compute basic profile data are included in the IDtrace package. IDtrace can
instrument stripped binaries, i.e., the symbol table is not needed. However, the
executable must be statically linked and kernel code references are not included
in the trace. Using full execution trace instrumentation, IDtrace will produce
a executable which jis about 5 times larger and runs 10-12 times slower than
the original.

Primatrily due to the need to recognize jump table code for disassembly pur-
poses, IDtrace is compiler-dependent. To help alleviate problems due to non-
compiler generated code, IDtrace can accept hints from the user on how to
instrument a binary. The location or size of a jump table or the location of the-
beginning of a procedure are examples of such hints. IDtrace reads the hint
information from an input file and uses it to assist in disassembling the code
and translating addresses. As an example, execution of an instrumented pro-
gram might abort with a message stating that a particular indirect call target

. address could not be translated at runtime. This could occur if IDtrace did
not recognize the address as a procedure beginning and add it to the runtime
transition table. The user could add this address to the hint file and reinstru-
ment the program. 1Dtrace will then include the address and its enwzm_wmmoz
in the translation table so that runtime lookup can occur during re-execution.
While this process is tedious, it does allow the execution of handwritten or
other non-compiled assembly code.

Instrumentation Tools 69

4.2 pixie and nixie

Pixie was the first binary instrumentation tool which received widespread use.
Pixie is a full execution trace generation tool which runs on MIPS R2000,
R3000 and R4000 based systems [23]. The tool is included in the perfor-
mance/debugging software package of most systems based upon the MIPS ar-
chitecture. Versions are available which instrument ECOFF and ELF file for-
mats. With newer versions of pixie, if pixified dynamic libraries exist, they can
be linked into the instrumented application to generate traces of dynamically-

linked as well as statically linked code. Pixie does not, however, record kernel
activity.

The default instrumentation option is to record only basic block execution
counts. An informative post-processing tool, pixstats, can interpret the output
to present a wide-array of runtime statistics. Using command line arguments,
pixie will also instrument the application to produce an instruction and/or data
trace. The reference trace output is written to a file descriptor. Using another
tool called makepipe, the trace can be piped directory to a trace consumer
program such as a memory simulator. Program expansion and time dilation
depend upon the type of instrumentation used. When tracing both instruction
and data references, the new executable is roughly 3 times larger and 4 to 5

times slower. The time dilation does not count the time required to save or
pipe the trace.

Pixie is virtually compiler-independent. Constant data in the text section does
not cause disassembly problems because the MIPS architecture has fixed-length
instructions. It avoids having to recognize and decipher jump tables by perform-
ing all indirect jump address translations at runtime. Thus, switch generated
indirect jumps, procedure returns effected by jump-to-register-value instruc-
tions, and indirect calls, all incur the overhead of a runtime table lookup to
perform the target address translation. While pixie is not as restrictive as ID-
trace, it does have some limitations. Like, IDtrace, it must use some heuristic
to decide upon basic block separation. These heuristics are based upon MIPS
compiler generated code. Hand assembled code could cause errors in separation
and lead to inaccurate results. In addition, pixie cannot trace past fork calls
and will fail on some special library routines.

In an attempt to lower the runtime overhead of pixie, another tool called nixie
was created [29]. At the cost of becoming compiler-dependent and operating
on a smaller set of application binaries, it makes assumptions about the bi-
nary code structure in order reduce runtime address translations. One of the

70 _ CHAPTER 3

main sources of these translations is the use of indirect jump instruction, jr,
to perform procedure returns in MIPS code. The compiler convention for a
procedure call is to use jal or jalr and put the return address in r31. The
return code convention is to use jr r31. Nixie avoids the runtime translation
for the return by translating during instrumentation the return address found
in the jal instruction. Then, nixie assumes that jr via r31 is a return and the
value in £31 has already been translated. The jalr instructions are treated
as indirect calls and are translated using the runtime lookup table as before.
When the new address is found, the new return address is put in x31. The
remaining jr instructions (the ones not using r31) are assumed to be indi-
rect jumps produced by case or switch statements. Nixie recognizes the code
patterns the compiler uses to begin a jumnp table and deciphers the size and
memory location of the jump table. The entries in the table are translated at
instrumentation time so they do not require runtime translation. The devel-
opers found about two dozen places in standard library code where the above
assumptions were incorrect. Fixes for these exceptions were built into nixie so
that most code can be instrumented without error.

Because nixie makes compiler-based assumptions about code structure, it can
only instrument a subset of the pixie instrumentable applications. However,
results from benchmark tests showed that the runtime of nixie instrumented
binaries were up to 30% faster than pixie-instrumented ones [29].

4.3 Goblin

Goblin is a trace generation tool which instruments IBM RS/6000 applications
[26]. 1t annotates code on the basic block level, i.e., code is added prior to each
basic block to report block execution. Goblin has characteristics of both a late
code and link-time modification tool. It accepts as input an executable with a
detailed symbol table yet performs instrumentation separately on each object.
The instrumented objects are reassembled and linked into a new executable
by .the system’s assembler and linker programs. Goblin’s first step is to use
the descriptive symbol table to separate and disassemble the executable into
assembly code objects. It then annotates the assembly code, records static data
about the blocks in the objects, and updates the symbol table to reflect the in-
strumentation changes in each object. The regular system assembler and linker
are then used to create an instrumented executable from the instrumented ob-
jects. The profile routines are introduced at the link stage as a profile library
to be included in the image. The user can select different kinds output traces
by linking in different trace libraries. Several libraries exist. One generates a

Instrumentation Tools 71

complete basic block trace. Another allows the generation of a full memory
reference trace. Finally, since storage of large traces is difficult, there is library
which performs on-the-fly basic block statistic calculations so that the whole
trace need not be saved.

4.4 SpixTools

[

SpixTools comprises geveral programs that implement late-code modification of
SPARC application binaries to produce instruction-level statistics [6]). The two
main tools in the SpixTools distribution are spix and spixstats. Spix accepts
an executable program and generates an instrumented executable. When run,
this instrumented executable produces, in addition to its normal output, in-
formation indicating the number of times that each basic block in the original
program was executed. By default, this information is directed to file descrip-
tor 3, but the user can change this default through the use of the -td option
in spix. Unlike pixie, spix does not generate instruction or data traces; it only
generates basic block counts! :

Spixstats uses the basic block counts to summarize the behavior of the in-
strumented program. This tool creates tables of (static and dynamic) opcode
usage, branch and delay slot statistics, register and addressing mode usage,
distribution of constants in immediate and displacement fields, and gprof-like
per-function information. The ranking of functions is based on the total num-
ber of instructions executed in that function and not on the total number of
cycles spent in that function. Exact cycle counts would require specific pipeline
and memory system information which is not available to spixstats.

Spix handles the problems with executable instrumentation in similar fash-
ion to the tools already discussed. For instance, when spix cannot correctly
identify the targets of a register-indirect jump instruction, it simply has the in-
strumented executable print a diagnostic message indicating the address of the
undiscovered target instruction and then terminate abnormally. Through the
use of the —jaddr option in spix, the user then re-instruments the executable
with this extra piece of information. This method is not unlike the hint in-
formation in the IDtrace approach. Furthermore, like the previous tools, spix
works only with static code (no support for gelf-modifying code or dynamic
libraries), and it is not capable of instrumenting the kernel. :

10lder versions of spix were capable of generating instruction and data traces. These
capabilities have been removed since other SPARC tools (such as Shade) replaced them.

72 CHAPTER 3

For the SPEC89 benchmarks, spix roughly quadruples the size of the executa-
bles. For the integer benchmarks where the average basic block size is small,
the spix-instrumented executables run approximately 2.5-times slower. On the
floating-point intensive benchmarks where instrumentation code execution can
be overlapped with long latency floating-point operations and the basic block

size is larger, the spix-instrumented executables run anywhere from 6% to 50%
slower [6].

45 QPT

Like its predecessor AE [16], the design goal of QPT is to produce compact
traces which can be stored for later simulations (18]. The difference between
‘the two tools is that QPT instruments the executable while AE is part of a C
compiler. This allows QPT to be applicable to many applications created by
various compilers. As noted in the last section, QPT must overcome the dis-

assembly and relocation obstacles common to all late code modification tools. :

In addition, QPT performs control flow analysis to reduce the amount of in-
serted tracing code. Therefore, it must rely heavily on symbol table information

and code structure knowledge in order to reconstruct the exact code structure.

QPT processes the code on a procedure basis. The address of each procedure
is found in the symbol table and a control flow graph (CFG) is constructed
with a basic block at each node. Using heuristics to decide the likeliest execu-
tion path, optimal code insertion points are located on CFG edges rather than
nodes (blocks) and trace instructions are added to the original code.

The trace regeneration process is another unique feature of QPT. The trace

output by the instrumented program is a compact trace which needs expansion :

before it can be used by a trace consumer program. Most tools supply stati-
cally created information files which can be read by a post-processor program
to .mwi:m the trace. The AE system creates an application-dependent trace
regeneration tool for each instrumented application. In both these cases the
mx.vm:aom trace would then be piped to the consumer program. QPT instead
creates a regeneration program object file which can be linked into the com-

piled consumer program. Thus, the consumer program can read the compacted
trace directly from disk [17].

The performance of the abstract execution instrumentation depends upon the
reguldrity of the program’s control flow and memory reference patterns. Nu-
meric programs with sequential access patterns and few conditional branches
require less instrumentation and therefore produce a more compact trace than

Instrumentation Tools 73

do non-numeric programs with more irregular behavior. Statistics reported by
Larus in [17] show that the runtime of traced programs ranges from 1.4 to 12.3
times that of the non-traced program. These numbers include the time to store
the trace to disk. The compact traces are between 13 and 250 times smaller
than the expanded full execution trace. Larus states that regeneration costs
are insignificant since the regeneration routine can produce the full trace at a
rate of 200,000 to 500,000 addresses per gecond while most memory simulators
consume addresses at the rate of tens of thousands per second. QPT does not
currently instrument dynamically-linked shared libraries but could be modified
to do so.

4.6 ATOM

ATOM [24] is a tool that allows the user to build his/her own customized in-
strumentation and analysis tools. For example, using ATOM, a few small C
routines can be written to emulate the functionality of pixie and pixstats on
a DEC ALPHA machine. On the other hand, if the trace information gener-
ated by pixie is not adequate, ATOM can be directed to gather and analyze a
customized set of trace information.

Within ATOM, the authors have defined a set of instrumentation primitives

" common to all instrumentation programs. These primitives separate the tool-

specific part of an instrumentation program from the common infrastructure
required by all instrumentation tools. As a user, you write C routines using
ATOM?s instrumentation library which indicate the parts of the application
program that interest you. For instance, ATOM provides library routines that
allow you to have access to each procedure in an application, each basic block
in that procedure, and each instruction in that basic block. By appropriately
indicating where instrumentation code should go (e-g., before or after a partic-
ular set of program structures) and by indicating the particular information to
be gathered at this instrumentation point, you can use ATOM to access all of
the dynamic information in an application.

In addition to instrumentation routines, an ATOM user can also write analy-
sis routines (e.g., cache simulation routines that use the instrumentation data)
that become part of instrumented program. In this way, both the instrumented
code and the analysis code run in the same address space and thus experience
lower communication overhead of a simple procedure call rather necessitating
context switching, file piping, or inter-process communication. The ATOM
system guarantees correct operation by ensuring that the instrumented rou-

T4 CHAPTER 3

tines and the analysis routines do not share library procedures or data. Still,
incorporation of the analysis routines into a single executable with the instru-
mented application program can perturb the output trace. For instance, if an
analysis routine dynamically allocates memory, the trace of the heap addresses
in an instrumented application will be different from the addresses used in the
uninstrumented version of that application. ATOM employs several techniques
and urges the user to avoid certain programming constructs to make certain

that the behavior of the application is unchanged by the instrumentation and
analysis routines.

ATOM is implemented on top of a link-time modification system called OM [25).
ATOM works by translating an ALPHA executable into OM’s RISC-like sym-
bolic intermediate representation. Through some extensions to OM, ATOM
inserts instrumentation procedure calls at the appropriate points in the applica-
tion code, optimizes the instrumentation interface, and transiates the symbolic
intermediate representation back into an ALPHA executable.

Since ATOM starts with an executable file, it can be considered a late-code
modification tool. It, however, is not as robust an approach as a tool such
as pixie, since ATOM requires relocation information in the éxecutable image
in order to work. This relocation information simplifies the work required to
adjust branch targets due to the insertion of instrumentation code.

Another advantage of the ATOM approach is that the underlying OM system
can efficiently support an approach that does not steal registers from the ap-
plication program. ATOM (like QPT and unlike pixie) uses the typical register
save and restore mechanisms of a procedure call at each instrumentation site.
This approach is desirable because it means that ATOM works on programs’
that use signals and setjmp-program features which are difficult to correctly
handle under an approach that steals registers. The downside of a procedure
«call approach is that it incurs a greater overhead for each instrumentation ac-
tion, especially if one does not have exact information on the register require-
ments of the instrumentation routines. Since the instrumentation routines can
" be quite complex in the ATOM system (remember that ATOM allows the user
to use the instrumentation information immediately in an analysis routine),

ATOM relies on sophisticated heuristics and techniques to reduce the proce-
dure call overhead.

The’ performance of ATOM is related to the granularity of instrumentation
and the complexity of the analysis routines. Srivastava and Eustace [24] report
performance numbers for several different analysis tools built with ATOM. To
summarize, for an analysis tool that instruments each memory reference and

Instrumentation Tools 75

simulates a direct-mapped 8 kilobyte cache, Srivastava and Eustace found that
it took an average of approximately 120 seconds to instrument each program
in the SPEC92 benchmark suite and that each instrumented program ran an
average of nearly 12-times slower than the uninstrumented version. On the
other hand, for an analysis tool that simply instrumented each system call
site and summariged this information, they found that it still took only 120
seconds on average to instrament the SPEC92 suite but each instrumented
program now ran only 1.01-times slower. Overall, ATOM is a powerful tool for
building customized analysis programs.

4.7 Spike

Spike is an instrumentation tool which, like AE, was built into a compiler (GNU
CC) [11]. Unlike AE, it is optimized for on-the-fly trace consumption rather
than trace storage. This is performed by linking the original program with an
instrumentation library. The library contains a procedure that'is invoked for
every trace event. This procedure can implement any kind of simulator or trace
collector. In many ways, this is similar to ATOM.

Spike can trace data, instruction addresses, and an instruction behavior trace
used for processor simulation. This last kind of trace is a dynamic list of abstract
machine architecture insiructions, or amai. Each amai is described by a type
(e.g., integer add, floating-point multiply), and a list of source and destination
operands. Any memory accessing instruction includes the memory address as
well. The format and content of the amai are based on the RTL intermediate
code language of the GNU C compiler. :

Spike causes execution time dilation from a factor of 3-9 times. Because Spike
operates on the compiler’s intermediate representation of a program, it is largely
machine-independent. Spike has been implemented for the Motorola 68000
family, the SPARC, and the HP PA-RISC instruction set architectures.

4.8 Multitasking and kernel tracing tools

Most code instrumentation tools simply record user-level events within a sin-
gle thread of control. Recently though, researchers have implemented tracing
systems that extend existing code instrumentation tools so that they are able

to capture multitasking traces and kernel actions. We briefly describe two such

systems that illustrate the key issues related to the gathering of an accurate

=1

CHAPTER 3

interleaving of application and operating system reference traces within a mul-
titasking environment. As will be seen, one could further extend these tools so
that they could record other types of dynamic information.

The basic action of any multitasking tool is the sequenced collection of trace
data from each instrumented application into a single global trace buffer. Recall
that the act of instrumenting an individual application involves the placement
of instrumentation code around the points of interest in the program and the
inclusion of extra support routines which provide initialization, trace buffer
management, and other support functions. In general, the instrumentation of
each program in a multitasking workload is identical to the instrumentation of
a single program except that the support routines change to reflect the manage-
ment of the shared trace buffer. On the other hand, the trace of a multitasking
workload is slightly different than the trace produced by a single application
because the multitasking trace must include extra process information to distin-
guish the trace items of one process from the trace items of another process. For
efficiency and practicality reasons, the existing multitasking tracing tools add
extra support code into the operating system kernel to help gather this process
information and ensure the consistent writing of the global trace buffer.

For the most part, the operating system is just another instrumented applica-
tion. However, the portions of the operating system that are required to support
the tracing system must be runnable with tracing turned off. The dumping of
the global trace buffer to disk, for instance, is not part of the normal operation
of the system and thus should not be traced. Furthermore, several portions
of the operating system are too delicate to instrument automatically. For ex-
ample, standard basic block instrumentation techniques will fail to instrument
properly an operating system routine which flushes the CPU write buffer.

Chen [4] describes one such multitasking tracing tool based on the epoxie instru-
mentation tool [29] that modifies executables prior to linking. Chen’s modified
epoxie tool instruments code written for the MIPS instruction set architecture
and thus, like pixie [23], uses register scavenging to select registers for use by
the instrumentation code. Ideally, one would like to share the pointer into the
global trace buffer indicating where the last trace item was written among all
of the instrumented applications. Unfortunately, register scavenging precludes
the direct mapping of a single global buffer into each application, since it is
impossible to guarantee that one single register is available in all instrumented
applications at all times. As a result, Chen’s system maintains a trace buffer
for each traced process, and at every entry into the kernel, the kernel copies
the contents of the current process’s trace buffer into the global trace buffer.

Instrumentation Tools T

The tracing of system activity is more sensitive to software 9..@8 distortic
than the user-level tracing of a single application. Chen’s :.vo_ illustrates hiov
one can minimize the problems of memory and time dilation. _ws.w: thoug!
epoxie creates instrumented executables with very little code expansion due t
its link-time optimizations, these instrumented executables are mmEoﬁBm_. | :
9-times larger and run approximately 15-times slower than the uninstrument«
versions of the executables [4].

Compensation for memory dilation in epixie is accomplished in _',.io ways. Firs!
traces are collected on a system with a large amount of physical memory
that page misses due to limited memory capacity do not oceur, and second, th
traces are used to simulate the TLB behavior of an uninstrumented systei
Time dilation is only partially compensated for; in vw_..a._mc_.wr the _.m.:.o of th
system clock interrupt is reduced by 1/15, and the idle activity- the time m?.____
in the operating system idle loop— is scaled by a mmgoﬁ. of 15. These rone

compensations are adequate because the research mOoc.m is on memory systci
behavior, and Chen claims that memory system behavior is largely unaffect:

by errors in these areas. The other operating m%mgﬂ oss.n% wmooﬂoa by tit
dilation is the process scheduler, and the effects of time .m:wa_os on moroﬂ___. _._
policy is minimized by focusing on single-process and client-server workloa:
where context switches are driven by the applications and not by the schednl
policy. Similar techniques were employed by Agarwal (2] and Mogul and Be
[20].

Mazieres and Smith [19] describe another multitasking tracing ﬂ.oo_ vmmo.___
the QPT instrumentation tool [18] that vo_.%.o_..am late oomm modification.
like Chen [4], their research is interested in .aro.m:w_ua_m and o<w_=w:o__.
1/0-bound applications such as network wvv:owsocm.. .Hr.m..&..o_..o. they ort
nized their multitasking tool to reduce the effects of time dilation. mm.mmzp
Mazieres and Smith attack the problem of time &_ma._o.s in two ways. First, th
chose QPT as their base instrumentation R.vo_m since it uses abstract exec ___
(3] to minimize the amount of instrumentation overhead .armﬂ occurs 9:.:._ I
execution of an instrumented application. Second, they implemented their
on a SPARC architecture where they could take advantage of several unu
registers that are reserved by the m_u>wh.u ABI [27]. They use one of :_._
reserved registers as the single, global, _.o%mam?.vg&.,.r.woo-vcm.o_. vo::.l. |
is shared by all instrumented executables. .Hr_m decision removes the nee
the copying of the per-process trace buffers into the m_.ov.w_ E..moo buffer n.,,_ i
in Chen’s system. They also describe a few other optimizations that have
potential to further reduce instrumentation overhead.

78 CHAPTER 3

Overall, the systems by Chen and by Mazieres and Smith prove that it is possi-
ble to gather useful multitasking traces using code instrumentation techniques.
However, there are several problems that make the gathering of accurate mul-

e;m.mizm traces significantly more difficult that the gathering of a single appli-
cation trace.

Instrumentation Tools 79
Exercises
3.1 Different computer architectures will schedule the same event at differ

3.2

33

34

3.5

3.6

3.7

ing times. One goal of simulation is to determine the bottlenecks in this
schedule. Based on this observation, consider the following statement:
hardware-collected traces are more valuable than software-collected traces
for simulation. Is this correct? Why or why not?

Many architectures provide a “block move” multi-reference instruction that
copies one block of memory to another. An example would be:

copy.w Ri, R2, R3 ; copy R3 words from M[R1] to M[R2]

This instruction poses a serious problem when creating a data trace (as
described in Section 3.5: Multi-reference instructions). Only the starting
addresses are found in the registers specified by the copy instruction, but
this single instruction accesses the data cache many times. This chapter
proposed changing the copy into a small loop to solve the problem.

Suggest an instrumentation method that does not require replacing tlie
copy instruction. Put your answer in the form of pseudo code, such as
Figures 1 and 2. (Hint: You may consider assigning some of the work (o
the simulator, instead of the instrumentation tool.)

Instrumented code runs slower than non-instrumented code. The slow-
down is due to many factors. One is the execution time of the additional
instructions. Explain two other, additional reasons for slowdown.

There are many solutions to the _curbrk dynamic memory allocation prob
Jem that IDtrace must face. Describe another solution besides the one that
the designers of IDtrace developed. Compare your solution with theirs.

There are several reasons that gathering a trace in a multitasking cnvi
ronment is more difficult than in a normal, single-threaded environmernt
List two such reasons. Give an example for each where the normal, single
threaded approach breaks down.

Should compiler-based tools such as AE and Spike use the same solution
to the address translation problem (see Section 3.3) as do late code modi
fication tools? Explain why or why not.

IDtrace labels each basic block with a unique number. Explain how thes
numbers can be used to generate a trace of instruction addresses.

80 CHAPTER 3

3.8 Operating system calls reveal much about a program: its 1/0O behavior, its
use of system resources, etc. One method to obtain a system call Smo_m is
by use of OS traps. It is also possible to use software techniques alone.

(a) Develop a software-only instrumentation technique to record system
call events. (One detail that may help: Unix I/O system calls re-

_::.1 the number of bytes read/written by the call in a pre-specified
register.)

(b) .cmmzm 2.5 trace obtained in part (a), along with a trace of data and
Em_:.sop._o.s address references, describe a technique to measure all
I/0 activity generated by a program. Be sure to consider all activity.

(For simplicity, you may assume that only one process is executing
on the system at a given time.)

3.9 Obtaining a trace of a real-time application, such as an interactive database
or the kernel, is difficult with late code modification instrumentation tech-
niques. One reason is the slowdown that these techniques incur interferes
s:.pr the time-critical nature of the application. Explain how trace sam-
pling can be incorporated to solve these problems (see Chapter 6: Sampling
\3.. cache n:.m processor simulation). Be specific about the modifications
to inserted instrumentation code that are required to implement sampling.

3.10 This chapter concerns itself with tracing compiled languages such as C
and FORTRAN. Interpreted languages such as LISP or BASIC can also
be traced by instrumenting the interpreter. Unfortunately, the same pro-
gram will have considerably different traces when used with different in-
terpreters. Develop an instrumentation technique that measures the data
wmmo_,o:omm due to the interpreted-language program itself, without measur-
ing the extra data references generated by the interpreter.

Instrumentation Tools 81

REFERENCES

[1] A. Agarwal, R. Sites, and M. Horowitz, “ATUM: A new technique for
capturing address traces using microcode,” Proceedings of 13th Annual
Symposium on Computer Architecture, (Tokyo, Japan), Jun. 1986, pp.
119-127.

(2] A. Agarwal, Analysis of Cache Performance for Operating Systems and
Multiprogramming. Kluwer Academic Publishers: Norwell, MA, 1989.

[3] T. Ball and J. Larus, “Optimally profiling and tracing programs,” Pro-
ceedings of the 19th Annual Symposium on Principles of Programming
Languages, Jan. 1992.

[4] J. Chen, “The Impact of Software Structure and Policy on CPU and Mem-
ory System Performance,” Technical Report CMU-CS-94-145, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 1991.

[5] B. Cmelik and D. Keppel, “Shade: A fast instruction-set simulator for
execution profiling,” Proceedings of 1994 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, (Nashville, TN), May
1994, pp. 128-137.

[6] B. Cmelik, “SpixTools Introduction and User's Manual,” Technical Report
SMLI TR-93-6, Sun Microsystems Laboratory, Mountain View, CA, Feb.
1993.

[7] Digital Equipment Corp., Alpha Architecture Handbook, 1992.

(8] S. Eggers, D. Keppel, E. Koldinger, and H. Levy, “Techniques for efficient
inline tracing on a shared-memory multiprocessor,” Proceedings of 1991)
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, (Boulder, CO), May 1990, pp. 37-47.

[9] K. Flanagan, K. Grimsrud, J. Archibald, B. Nelson, “BACH: BYU Address«
Collection Hardware,” Technical Report TR-A150-92.1, Department ol
Electrical and Computer Engineering, Brigham Young University, Provo.
UT, Jan. 1992.

[10] G. Gircys, Understanding and Using COFF, O'Reilly & Associates, Sc-
bastopol, CA.

[11] M. Golden, “Issues in Trace Collection Through Program Instrumenta
tion,” MS Thesis, Department of Electrical and Computer Engineering.
The University of Illinois, Urbana-Champaign, 1991.

82 CHAPTER 3

(12] J. Hennessy and D. Patterson, Computer Organization and Design: The
Hardware/Software Interface, Morgan Kaufmann Publishers: San Mateo,
CA, 1993.

[13] Intel Corp., i486 Microprocessor Programmer’s Reference Manual, 1990.

(14] Intel Corp., UNIX System V Rel. 4.0 Programmer’s Guide, Order
#465800-001, 1990.

(15] Kane, Gerry, MIPS R2000 RISC Architecture, Prentice Hall: Englewood
Cliffs, NJ, 1987.

(16] J. Larus, “Abstract execution: A technique for efficiently tracing pro-

grams,” Software Practice and Ezperience, Volume 20, Number 12, Dec.
1990, pp. 1241-1258.

(17] J. Larus, “Efficient program tracing,” IEEE Computer, Volume 26, Num-
‘ber 5, May 1993, pp. 52-60.

[18] J. Larus and T. Ball, “Rewriting executable files to measure program be-
havior,” Software Practice and Ezperience, Volume 24, Number 2, Feb.
1994, pp. 197-218.

(19] D. Mazieres and M. Smith, “Abstract Execution in a Multitasking En-
vironment,” Technical Report 31-94, Center for Research in Computing
Technology, Harvard University, Cambridge, MA, Nov. 1994.

[20] J. C. Mogul and A. Borg, “The effect of context switches on cache perfor-
mance,” Proceedings of the International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, (Santa Clara,
CA), 1991, pp. 75-84.

(21] R. Uhlig, D. Nagle, T. Stanley, T. Mudge, S. Sechrest and R. Brown, “De-
sign tradeoff for software-managed TLBs,” ACM Transactions on Com-
puter Sysiems, Volume 12, Number 3, Aug. 1995, pp. 206-235.

[22] J. Pierce and T. Mudge, “IDtrace: A Tracing Tool for 1486 Simulation,”
Technical Report CSE-TR-203-94, Dept. of Electrical Engineering. and
Computer Science, University of Michigan, Jan. 1994.

[23] M. Smith, “Tracing with Pixie,” Technical Report CSL-TR-91-497, Center
for Integrated Systems, Stanford University, Nov. 1991.

[24] A. Srivastava and A. Eustace. “ATOM: A system for building customized
program analysis tools,” Proceedings of the SIGPLAN 1994 Conference on
Programming Language Design and Implementation, (Orlando, FL), Jun.
1994, pp. 196-205.

Instrumentation Tools 83

[25] A. Srivastavaand D. Wall, “A Practical System for Intermodular Code Op-
timization at Link-Time,” Research Report 92/6, DEC Western Research
Laboratory, Palo Alto, CA, Dec. 1992.

inlei “Instruction
26] C. Stephens, B. Cogswell, J. Heinlein, G. Palmer, and J. Shen, .
26l level profiling and evaluation of the IBM RS/6000,” Proceedings of 18th
Annual International Symposium on Computer Architecture, (Toronto,
Canada), May 1991, pp. 180-189.

[27] Sun Microsystems, The Sparc Architecture Manual, 1989.

(28] R. Uhlig, D. Nagle, T. Mudge, and S. Sechrest, a.H.E..v-an?m: simulation
with Tapeworm II,” Proceedings of the 6th International Oo_:.om.o:nm on
Architectural Support for. Programming Languages and Operating Sys-
tems, (San Jose, CA), Oct. 1994.

[29] D. Wall, “Systems for late code modification,” In Code Generation-
Concepts, Tools, Techniques, Springer-Verlag, 1992, pp. 275-293.

(30] D. Wall, “Link-Time Code Modification,” Research Report 89/17, DEC
Western Research Laboratory, Palo Alto, CA, Sept. 1989.

84 CHAPTER 3

Appendix: Instrumentation Tool Use Examples
This appendix gives two examples of how late code modification tools can be

used to gather dynamic information. We assume that the user is familiar with
Unix and can create a statically-linked executable on a Unix system.

Runtime statistics

vtrace / simulators

Figure 4 [Dtrace programs and files - Rectangles are executables, ovals are
data files produced by IDtrace, boldface names are IDtrace tools.

Suppose one wanted to compare to frequency of usage of certain instructions
between several architectures. In particular, suppose one wanted to compare
the most frequently used instructions in a typical RISC processor (R3000) with
that of a CISC-like processor (1486). This could easily be done using two in-
strumentation tools: pixie on a MIPS R3000-based DECstation running Ultrix
and IDtrace on a 1486-based SysV Unix system. Suppose ccl, the major part
of the C compiler gcc, is used as a benchmark program. The program ccl must
be statically linked but neither the symbol table in the binary nor the sources
are necessary. The steps required to use IDtrace are show in Figure 4. The use
of pixie is similar. First, we instrument the i486 version of ccl by typing

idt cci

The will produce the instrumented binary cc1.idt, and the basic block infor-
mation file cc1.blk. Then typing

ccl.idt stmt.i

Instrumentation Tools 85

will execute the instrumented version of ccl and also produce the basic block
execution count file cc1.cnt. The post-processing tool vcount can then be run,

vcount ccl

to produce some basic runtime statistics. Part of the list of statistics is shown
in Table 1.

Table 1 486 profile information gathered using IDtrace and vcount.

Instruction Usage Percentage Other Information

mov 19,306,218 29.7% Dynamic instruction count: 65,081,680

cmp 9,642,978 14.8% Dunamic block count: 17,257,218
push 4,211,418 6.5% Average inst. per block: 3.8
je 4,166,722 6.4% Static block count: 41,807
jne 3,309,404 5.1% Largest block (# of inst.): 95

Pixie works in a similar manner. First the executable is instrumented by typing
pixie ccil

which creates the files cc1.pixie and cc1.Addrs. Then the new program is
run,

ccl.pixie stmt.i
to produce the cci.Counts file. Finally, pixstats reads the output files to

calculate an extensive list of runtime information part of which is shown in
Table 2.

Memory simulation trace
Now suppose one needs memory reference traces for some type of memory sys-
tem simulation. The method to generate the trace is similar to that explained

above. To create a reference trace using pixie, type

pixie -idtrace ccl

86 CHAPTER 3

Table 2 MIPS R3000 profile information gathered using pixie and pixstats
on ccl.

Instruction Usage Percentage Other Information
spec 27,615,307 33.19%
Iw 13,027,613 15.66%
addu 7,676,940 9.23%
addiu 7,363,426 8.85%
sw 7,357,767 8.84%

84,450,624 (1.015) cycles (3.38s @ 25.0MHz)
83,199,619 (1.000) instructions

17,272,839 (0.208) basic blocks

13,217,812 (0.159) branches

4.8 instructions per basic block

6.3 instructions per branch

which modifies the binary to record both instruction and data references. Using
-itrace or ~dtrace will give just instructions or just data respectively. Typing

idt -c cci

will instrument an.Intel architecture binary to record a cache line trace. In
this trace, all data references will be output, but only one instruction reference
will be output per cache line. This reduces the number of instruction reference
entries which must be recorded. The cache line size can be adjusted using the
-1 option. When cc1.pixie is executed, the trace is sent to a file descriptor.
Using a program called makepipe, the trace can be piped directly to a cache
simulator. IDtrace will send the output trace to a file, in this case ccl.tre.
The trace can be send directly to a simulator by using standard csh pipe com-
mands. Technical reports for both tools give trace format descriptions as well
as complete descriptions of command-line options and trace piping methods

[22](23].

STACK-BASED SINGLE-PASS
CACHE SIMULATION
Thomas M. Conte

Department of Electrical and Computer Engineering
University of South Carolina, Columbia, South Carolina

1 INTRODUCTION

Memory systems composed of cache memories are so crucial to high-performance
computer architecture design that performance evaluation of cache memories
has received phenomenal attention. In 1991, Smith catalogued 487 technical
papers and reports that dealt with some aspect of caching [11]. This chapter
and the following chapter address the problem of simulating cache-based mem-
ory systems. To do this optimally requires measurement of the performance of
a large number of cache designs. This process is called memory system proto-
typing here, since this process uses software to construct a prototype memory
system. The performance of the prototype is then tested for a set of bench-
marks. This software performance evaluation process must be fast yet accurate.
A fast method is important so that memory address traces from long-running
benchmarks can be used to explore a large design space of potential prototypes.

Researchers have devised analytic models and novel simulation approaches to
measure cache performance [9],(1],[6]. Analytic cache models achieve mod-
erate accuracy and are useful for qualitative comparisons. Of the simula-
tion approaches, the direct approach is to simulate the cache at the register-
transfer level. This approach is called the traditional cache simulation approach
throughout this chapter. Prototyping demands simulation of a large number of
cache designs, limiting the usefulness of traditional cache simulation. To elimi-
nate the number of required simulations, single-pass cache simulation is often
used. Such methods simulate multiple cache designs in a single pass through
the benchmark traces by exploiting the inclusion property of stacking replace-
ment algorithms (least-recently used is the most common member of this class
of replacement algorithms {9]). This method has been extended to include rigid

