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Abstract

Seeking high branch–prediction accuracy, architects are ntak-
ing use of the extended history of individual branches. One

approach is to divide the branch prediction task into two levels:
the first records the results of previous branches; the second

makes predictions based upon previous instances in which par-
ticular patterns arose. PAg predictors use simple state machines
in the second level to provide adaptive predictions.

We show that this adaptive level benefits from a high level of

hysteresis. Wefurther show that, if the predictions for this second
level are jixed rather than adaptive, i.e. a PSg organization, the
pe~ormance can be superior to that of PAg predictors for short
branch histories and close to PAg pe~ormance for longer predic-
tors. The patterns of errors among these schemes provide insight
into the workings of a wide varie~ of two-level schemes.

Key words: dynamic branch prediction, two-level branch

prediction, PAg, PSg.

1 Introduction

Yeh and Patt [YehPatt91, YehPatt93] demonstrated that a two-
level branch predictor, organized as shown in Figure 1, can

achieve high accuracy. The predictor stores the outcomes of each

branch for the most recent n executions in a Branch History
Table (BHT). The recent history of a branch therefore serves to
place the succeeding instance of the branch in one of 2’ classes.
The first level, therefore, serves to divide the branch instances in

the program execution stream into 2’ substreams, mixing
together instances of separate static instructions, on the assump-
tion that branches having similar histories will have similar

behaviors. At the second level, a set of Moore machines, each
associated with a single substrearn, are used to generate predic-
tions for the substreams produced by the first level. These states
of these machines, and hence their predictions, are determined by

the results of previous branch instances in the associated stream.
Yeh [Yeh93] investigated several alternative predictors requiring
one or two bits of storage for this second-level. He found that a

two-bit saturating counter to be the best predictor for a sub-
stream.

While most work on two-level branch prediction has focused
on adaptive schemes, such as the scheme just described, early
work by Lee and Smith [Lee84] showed that a scheme using
fixed prediction tables based upon training runs or the program

under consideration could achieve high prediction accuracy as
well. Yeh and Patt [YehPatt93] refer to these adaptive and fixed
schemes as PAg and PSg, respectively. As Figure 2 shows, a PSg

predictor is essentially a PAg predictor from which the ability to
adapt has been removed. Both schemes use an n-bit branch his-
tory table to dynamically divide the program execution stream
into 2’ substreams. However, while a PAg scheme uses a Moore
machine to adapt its prediction, a PSg scheme commits itself to a

single fixed prediction for each substream.
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In this study we examine the role of adaptation in two-level

branch prediction using per-address branch history tables. We

show that adding hysteresis to the second level adaptive predic-

tors improves performance; a PSg scheme with no ability to

adapt can sometimes perform better than a PAg scheme using

two-bit saturating counterv while the ability to adapt can be ben-

eficial, the magnitude of this benefit can be overstated by the

commonly used SPECint92 benchmarks.

In Section 2 of this paper we discuss the benchmark programs

used in this study. Section 3 presents results of simulations of

several PAg and PSg schemes. Section 4 analyzes the interaction

between benchmarks and prediction schemes. Section 5 contains

our conclusions.

2 The Benchmarks

We conducted this study using the six integer programs from

the SPEC92 benchmark suite [SPEC92] and eight IBS-Ulttix

benchmarks [Uhlig95]..The SPECint92 programs were compiled

for a MIPS R2000-based workstation and traced while executing

their largest inputs. The resulting traces include only code exe-

cuted at the user-level. The IBS-Ultrix benchmarks are a set of

traces of applications running under Ultrix 3.1, collected through

the hardware monitoring of a MIPS R2000-based workstation.

These traces include not only the user-level instructions of the

application, but kernel-level instructions and instructions exe-

cuted by auxiliary processes such as the X server.

Table 1 shows some important statistics regarding the bench-

mark traces. The number of conditional branches contained

within the traces varies from nearly five million to more than

three hundred million, and constitutes anywhere from a tenth to a

quarter of the instructions executed within a given trace. The

benchmarks vary widely in the number of distinct branch instruc-

tions that they exercise. While all of the III S-UItrix benchmarks

contain thousands of distinct conditional branches, some of the

SPECint92 benchmarks contain only hundreds. Even more strik-

ing is the fact that while the executions of the IBS-Ultrix bench-

marks and of the SPECint92 gcc benchmark tend to exercise a

large number of branches, the other SPECint92 benchmarks are

dominated by a small population of branches. In compress,

em tot t and Xl i SP, in particular, the vast majority of dynamic

branches are attributable to only a handful of instructions.

This work was supported by Advanced Research Projects Agency under
ARPA/ARO Contract Number DAAH 04-94-G-0327.
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Figure 1: PAg organization

A typical PAg dynamic branch predictor organization. The
front part is a Branch History Table (BHT), which stores the
results of previous executions of a branch. In this paper we
assume that the size of the BHT is unbounded. The back
part is a group of two-bit Moore machines, each associated
with a particular history pattern. The current branch’s history
selects a Moore machine, whose state, through a fixed map-
ping, determines the prediction. The actual branch result is
used to update both the BHT entry and the state of the
selected Moore machine.
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Figure 2: PSg organization

A PSg predictor is a dynamic predictor. Like a PAg predictor,
a PSg predictor records the branch history in a BHT and
makes predictions on the basis of the current branch’s recent
history. Rather than using the actual branch results to alter
the prediction for each pattern, a PSg predictor relies on a
fixed table.

Dynamic #of Static Branches
Conditional Static Constituting 90% of Total

Dynamic Branches (Percent of Conditional Dynamic Conditional
Benchmarks Instructions Total Instructions) Branches Branches, , I

compress 83947354 11739532(1 4.0%) 236 13

I eqntott I 1395165044 I 342595193 (24.6%) I 494 I 5

espresso 521130798 76466489 (14.7%) 1764 110
gcc 142359130 21579307 (15.2%) 9531 2020

xlisp 1307000716 147425333 (1 1.3%) 489 48

Sc 889057008 150381340 (16.9%) 1269 157

groff 104943750 118741 83(1 1.3%) 6325 461

gs 118090975 16275133 (13.8%) 12768 1142

mpeg_play 99430055 9549954 (9.6%) 5592 532

nroff 130249374 22542119 (17.3%) 5243 229

real~cc 107374368 14281721 (13.3%) 17354 3196

sdet 42051812 4965098 (11.8%) 5309 532

verilog 47055243 6195248 (13.2%) 4631 845

video~lay 52508059 5579331 (10.6%) 4603 724

Table 1: Characterization of the SPECint92 and lBS-Ultrix benchmarks

All workloads were compiled with the Ultrix MIPS C compiler version 2.1, using the -02 optimization flag. The lBS-Ultrix traces were
gathered through hardware monitoring of applications running on a MIPS R2000-based workstation running Ultrix 3.1. The traces
include both user- and kernel-mode references. The SP ECint92 traces were gathered using pixis. They contain on! y user-mode ref-

erences. The largest input files supplied were used.
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Figure 3: Misprediction rates for the SPECint92
benchmarks (Left)

This figure displays the misprediction rates for the SPECint92
benchmarks as a function of the BHT’s history length. All
bars represent the average of the misprediction rates for the
individual programs. We show results for PAg schemes with
one-, two-, and three-bit saturating counters and for PSg
schemes with two fixed tables, one derived through the sim-
ple algorithm presented, the other derived from measure-
ments of a number of actual programs. The results show the
benefits of added hysteresis for PAg schemes. The PSg
schemes performed worse than the PAg schemes for all of
the benchmarks, but particularly badly for eqntott.

Figure 4: Misprediction rates for the lBS-Ultrix
benchmarks (Right)

This figure shows the misprediction rates for the lBS-Ultrix
benchmarks. Each bar represents the average of the mispre-
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diction rates for the eight individual programs. The outcomes
of approximately 1‘%0 of the branches could not be determined
due to interrupts that occurred between the execution of the
branch and the execution of the branch target or the subse-
quent instruction. To bracket the range of possible mispredic-
tion rates, simulations were performed with both the
assumption that all of these branches were taken and that all
were not taken. The effect on the magnitude of the mispredic-
tion rate estimated is pronounced for very short histories, but
negligible for longer histories. Since the interrupts are ran-
domly distributed with respect to the branches, they do not
affect the relative merit of the algorithms. The figures here
are constructed with the assumption that the branches are
taken.

As with the SPECint92 benchmarks, the PAg schemes
improve with added hysteresis. For these programs the PSg
eehemes perform slightly worse than PAg schemes for longer
histories. For shorter histories, the PSg schemes actually
perform better than a PAg scheme with the usual two-bit
counter.

3 Experiments

We simulated two groups of predictors for branch histories
varying from 1 to 12 bits in length. For this study we assume an

unbounded BHT. The first group comprised three PAg predictors,

using one-, two- and three-bit saturating counters at the second
level to maintain the state of a substrearn. We refer to these,
respectively, as the PAg(l ), PAg(2) and PAg(3) schemes. The sec-

ond group comprised two PSg predictors. For each predictor, we
determined a table of 2“ predictions for use with an n-bit BHT.
For one predictor we used a simple algoritlyn to derive the predic-

tion tables. We refer to this as the PSg(algo) scheme. For the

other predictor we used the results of runs of a large number of
programs to produce a compromise prediction table. We refer to

this as the PSg(comp) scheme. Neither scheme uses tables specifi-
cally designed for a single program; for botlr schemes, the same

set of tables was used for all benchmarks.

The central hypothesis used in constructing a table for the
PSg(algo) scheme is that program behavior is dominated by

repeated sequences of actions, causing the behavior of individual
branches to display short repeated patterns. We construct a table

for n-bit history patterns by first identifying all of the patterns that
can be produced using cycles of at most rr/2 bits. For each of
these patterns we predict that the next branch will continue the

pattern. For example, the ten-bit pattern 10101010101 is inter-
preted as deriving from the two-bit pattern 10, while 1101101101

is interpreted as deriving from the pattern 101. In both cases, O is

predicted for the next instance.

Repeating patterns such as these, however, account for only 52

of the 1024 patterns possible with a 10-bit history. What ought

one do for the remaining patterns? One possibility is that these

patterns represent a transition between two modes of cyclic

behavior. Accordingly, we ignore the two oldest bits and make
predictions on the basis of repeated patterns in the remaining bits.

Thus one would interpret the pattern 1010101011 as four cycles of

a two-bit pattern, preceded by data that can be ignored. Conse-

quently the same prediction is made for all four of the cases cov-

ered by the pattern 10101 OIOXX, where x represents a “don’t care”

bit (provided that no prediction has bcm made using more bits).

This process continues, substituting two additional don’t care bits

with each iteration.

A number of patterns will remain after this process, all of

which differ in their two most significant bits. The pattern

IWWOOOOO is an example. For these patterns we choose to regard

each history bit as a separate sample and select the prediction O if

zeroes predominate in the pattern and 1 if ones predominate

(ignoring the oldest bit if the number of bits is even).

1. The most significant bit, the left-most bk, is the most recent branch
result
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The compromise tables were derived by measuring the out-

comes of branches with particular histories in programs drawn

from the IBS-Mach benchmark suite. These programs consist of

the same benchmark applications as IBS-Ultrix, but with the
Mach 3.0 operating system providing system services. For each

program, the most-likely outcome was noted for each history pat-
tern. The outcome that had proved most likely in the largest num-

ber of programs was chosen for the compromise table. Although

the user-level code for the IBS-Mach programs matches that for

the IBS-Ultrix programs, neither the behavior of any single pro-

gram, nor the behavior of the shared Ultrix code could determine
the content of the compromise tables. Thus, the compromise
tables cannot be regarded as tuned to the IB S-Ultrix benchmarks.

Figures 3 and 4 show the results of the simulations of the PAg

and PSg schemes for, respectively, the SPECint92 and the IBS-

Ultrix benchmarks.
For all of the benchmarks and for all history lengths, the pat-

tern among the three PAg schemes was the same. In every case,

the change from a single bit to a two-bit saturating counter pro-
vided a decrease in the misprediction rate in excess of one per-

cent. In every case, the change from a two-bit to a three-bit

counter provided at least a small additional improvement. Further
simulations of longer counters have shown that additional bits do
not provide any appreciable improvement over three bits, but nei-
ther do they hurt performance.

For single-level branch prediction schemes that associate a
Moore machine with a particular static branch, rather than with a
particular pattern of branch behavior, it is important to strike a

balance between adaptivity and hysteresis. Generally, two-bit sat-

urating counters have appeared to perform better in this role than
have three-bit counters [Smith 81]. For two-level predictors, how-

ever, the division of the execution streams by branch history

results in substreams with more consistent behavior than division

by branch address. Consequently, the need for adaptivity is
reduced, and greater hysteresis rewarded.

For the SPECint92 benchmarks, the two PSg schemes fare

poorly. Across the range of history lengths, the fixed prediction
tables make numerous errors. The eqntott program proves to be

particularly troublesome. For 4-bit histories, for example, the
algorithmic table and the compromise table, which are identical,
prove to make the wrong choice for seven of the sixteen patterns.
For the gcc benchmark, on the other hand, the algorithmic and
compromise tables make the right choice for all sixteen patterns

and makes fewer errors than does PAg(2) (though more than does

PAg(3)). For longer histories, the PSg schemes do slightly worse
for gcc than do either PAg(2) or PAg(3).

For the IBS-Ultrix benchmarks, the performance of the PSg

schemes proves to be quite similar to the behavior just described
for gee. For shorter histones, the performance of the two PSg

schemes tends to lie between that for PAg(2) and PAg(3), with

PSg(comp) providing a slight improvement over PSg(algo). The
PSg schemes, however, are unable to take advantage of longer his-

tories, while the adaptive schemes are, with the result that the
PAg(2) and PAg(3) schemes show better performance for history
lengths of nine bits or more.

4 Analysis
The difference between the results for the SPECint92 bench-

marks and the IBS-Ultrix benchmarks illustrates that the choice of
benchmark programs can strongly influence conclusions at which

one arrives. The two benchmarks suites differ markedly in two
respects. First, as Table 1 showed, aside from gee, the SPECint92
benchmarks are dominated by a much smaller number of branches
than are the IBS-Ultrix benchmarks. Second, as Figure 5 shows,

Im34JHdl\ \
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Figure 5: Classification of dynamic branches by
probability taken

For each benchmark we first calculated the proportion of the
time that each static branch was taken. We then determined
the proportion of the dynamic branches that were to static
branches that fell into each of five ranges. This figure shows
the average of the proportions for the programs within each
of the two benchmark suites. We see that for the lBS-Ultrix
benchmarks, a much higher proportion of the dynamic
branches fall into the more easily predicted categories. For
example, never-taken branches, such as error checks,
account for nearly 207. of the branches executed by the lBS-
Ultrix programs. Of the SPECint92 benchmarks, only sc and
gcc had any significant number of branches of this type.

the IBS-Ultrix benchmarks contain a higher proportion of rela-

tively easy to predict branches.

The difference in the number of heavily exercised branches is
significant because the first-level of both the PAg and the PSg

schemes divides the execution streams into substrearns based
upon the recent history of the individual branches. Instances of
separate branches that happen to have the same history will be
combined in a substream. This mixing of branches in a substream
will not occur if only a few branches are active. A single branch
may have a strong characteristic behavioC for example a branch
might be taken every third execution. For this particular branch,

the four-bit history 0010 indicates that the branch is about to be

taken. For most branches, however, this pattern is more likely to
indicate that the branch will not be taken. If all the instances in

the 0010 substream arise from the branch with the cycle-of-three

behavior, an adaptive second level wiil quickiy begin predicting 1.
However, in a mixed stream in which instances of the cycle-of-
three branch do not predominate, the second level wiil continue to

predict O, resulting in misprediction rates similar to the those for a

PSg scheme. Moreover, if a burst of instances from this branch
did cause a change in prediction, the subsequent instances for

other branches are likely to be misptedicted. As the length of the
branch histories used to divide the execution stream grows, how-
ever, the likelihood of that instances of branches with dissimilar

behaviors are mixed in a substream diminishes. This accounts for
the continued improvement in the PAg schemes’ prediction accu-

racy for longer histories.

The difference between the benchmark suites in the proportion

of branches that are either very frequently or very infre@rently
taken tends to make the SPECint92 benchmarks harder to predict,
Indeed, for all of the schemes, the misprediction rates for the
SPECint92 benchmarks are higher. The difference in proportions

arise from the nature of the benchmarks. The IBS-Ultrix traces
represent complete runs of significant programs. The code
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Figure 6: Misprediction rates for lBS-Ultrix using 4- and
10-bit histories

The scatter plot on the left shows the misprediction rates for
each of the sixteen possible patterns for a four-bit history. The x
and y coordinates of a point are determined by averaging,
respectively, a pattern’s PAg(2) and PSg(algo) misprediction
rates acroes all of the lBS-Ultrix benchmarks. Thus, points lying
close to the diagonal line represent patterns for which the pre-
dictive powers of the two schemes are nearly equivalent. Points
lying above this line represent patterns for which the PAg
scheme was superior, and points below the line patterns for
which the PSg scheme was superior. The points representing
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the patterns 0000 and 1111 more or less coincide near (2,2), so
only 15 points are visible.

The scatter plot on the right shows the misprediction rates using
a ten-bit history. We coalesce the 10-bit patterns sharing the
same four most recent bits into single points. As before, the
points representing the patterns OOOOXXXXXXand 1111 xxxxxx
more or less coincide near (2,2). For the other prefixes, the
additional six bits of history increase prediction accuracy over
the accuracy available using only four bits, with the PAg scheme
showing greater improvement than the PSg scheme.

includes numerous error checks that can result in branches, both

forwards and backwards, that are rarely, or even never, taken. The
SPECint92 benchmarks, on the other hand, perform limited tasks

large numbers of times. It has been shown elsewhere that the

SPECint92 benchmarks can be misleading for the design of
instruction caches [Gee93, Uhlig95]. The degree to which the
rnisprediction rates for SPECint92 benchmarks are dependent
upon a given scheme’s success in handling branches with varied
histories may be similarly misleading, since this dependence may

exaggerate the differences between schemes.

While Figure 4 shows the overall difference in misprediction
rates between the PAg and PSg schemes, Figure 6 shows a more
detailed breakdown of this rate for the PAg(2) and the PSg(algo)
schemes. We see that both schemes are highly accurate in their

predictions for branch instances that follow a sequence of four

consecutive identical decisions. The misprediction rates, how-
ever, are not nearly so low for more varied patterns. Adding addi-
tional history bits improves the misprediction rates for all of the

varied patterns. For reasons we have argued above, however, the
adaptive schemes are able to take somewhat better advantage of
additional bits.

Figure 7 shows that the contributions of the different patterns

to the overall misprediction rate are highly unequal. Although the
misprediction rates for instances following several consecutive O

or 1 decisions are low, the incidence of these patterns is so high
that they prove to be the largest contributors to the total errors.

Moreover, attempting to adapt the prediction for the patterns 0000
and 1111 is actually harmful. Although the effect on the mispre-

diction rate for the pattern is slight, the high incidence of these
patterns and the high degree of mixing of the substream mean that

any adjustment to the prediction is likely to be counterproductive.

This difficulty accounts for the superiority of the PSg schemes

over PAg(2) for short histories. The added hysteresis of a three-

bit counter counteracts this difficulty, resulting in better perfor-

mance for the PAg(3) scheme. The other patterns are far less fre-

quent, but their high misprediction rates cause them to contribute

significant numbers of errors. The greater improvements in accu-

racy for these patterns accounts for the superiority of the adaptive

scheme for longer histories.

5 Conclusions

The role of adaptivity at the second level of two-level branch

prediction schemes is more limited than has been thought. We

have shown that prediction for substrcams based upon branch his-

tory benefit from greater hysteresis than does prediction for sub-

streams based solely upon branch address. Consequently, three-

bit counters prove to be superior to two-bit counters at this level.
Further, we have shown that the predictions for this level may

even be made by a fixed table, constructed following the observed

behavior of branches in a range of programs, but constructed with-

out reference to the particular program to be run. If the program
branches follow “usual” behavior, or if many branches are exer-

cised frequently, the prediction rates using this fixed table will be

close to those of a conventional PAg(2) scheme and may actually

be superior for shorter histories. PSg schemes can suffer poor

performance in programs in which a small number of branches

dominate the execution, but a reliance on the SPECint92 bench-

marks tends to overstate the dangers of this happening.

268



30 /
/

/
25 /

/
/

20 / 9
/

/
@5 //

/
/’

10 ?/
● /

●0 /e
5 ,

$; ~o

/
o /

o 5 10 15 20 25 30

PAg

Figure 7: Distribution of errors for lBS-Ultrix using 4-
and 10-bit histories

The scatter plot on the left shows the relative number of errors
due to each of the 16 possible four -bit patterns. The number of
errors is normalized for each benchmark, with the total number
of errors made by the PAg(2) scheme on a given benchmark set
to 100. The normalized numbers were then averaged across
the benchmarks. We see that two patterns account for more
than 30% of the errors for both the PAg and PSg schemes.
These are the patterns 0000 and 1111. Despite the low mispre-
diction rate for these patterns, their high frequency make them
the most significant contributors to the total errors. We see that

The design of a branch prediction architecture for a processor
requires attention to a great variety of factors involving tradeoffs

between performance and implementation cost. We do not make

the claim that any of the mechanisms discussed belongs in an
actual design. The comparison and analysis, however, does pro-

vide insight into the functioning of a variety of two-level mecha-

nisms, and points to ways in which these mechanisms may be
improved, and to their ultimate limitations.
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