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Abstract

The microprocessor chip designer must solve
the problem of partitioning millions of tran-
sistors into an arbitrary number of hard-
ware structures within a finite chip area to-
ward achieving maximum performance. This
combinative complexity is compounded by a
lengthy performance evaluation of each pro-
posed design. We present the application of a
real-valued multiobjective genetic algorithm
on an asynchronous parallel workstation net-
work as a optimization approach well suited
to this problem. By casting design budget
constraints as multiple design objectives, the
need for penalty functions is eliminated. A
microprocessor cache memory design prob-
lem is optimized with the genetic algorithm.

1 Microprocessor Design Problem

Microprocessor chip designers now have more transis-
tors and design alternatives available to them than at
any time in the past. The chip designer’s selection
of hardware structures from many alternatives (e-g.,
adders, multipliers, memories) must maximize micro-
processor performance. The designer must solve the
combinatorial design problem of partitioning millions
of transistors into an arbitrary number of hardware
structures within a finite chip area while achieving this
goal. At the most basic level the microprocessor de-
sign problem is characterized by:

1. specifying finite chip size and power dissipation
budget constraints,
2. specifying chip performance objectives,

3. selecting and interconnecting many hardware
structures, each of which consumes area from a

real-estate budget, and power from a power bud-
get, into a chip microarchitecture,

‘4. organizing these structures to provide maximum
performance within all design budgets,

5. modeling the microarchitecture in a high-level
language and simulating its performance,

6. proposing modifications to the specifications and
microarchitecture to overcome quantified perfor-
mance shortcomings,

7. iterating this process until a balanced, near-
optimal design is identified.

Performance interactions exist between intercon-
nected hardware structures. Each microarchitectural
design iteration alters these interactions, and requires
an entire re-assessment of the utility of each hardware
structure in the context of the new design. Questions
regarding whether the hardware is best spent between
multiple competing structures must be constantly re-
evaluated, e.g., increasing the size of some on-chip
hardware structure M means that less hardware is
available for on-chip hardware structures A, @, and
P. The similarity between the microarchitectural de-
sign problem and NP-complete problems such as set
partitioning or bin packing is apparent.

The combinative complexity faced by the designer
is exacerbated by the computationally expensive per-
formance evaluation of a proposed design. As tech-
nology improvements provide more transistors and
chip area for design use, this complexity continues
to grow. Ironically, the business climate demands in-
creasingly shorter design cycles. The financial ram-
ifications of improving time to market with a better
price/performance design are substantial.

The genetic algorithm (GA) is regarded as a read-
ily parallelized global design space search method well-
suited to this problem. By casting design budget con-
straints as multiple design objectives, the need for
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Figure 1: An On-chip Cache Hierarchy and Cache Parameters.

Caches are organized into memory hierarchies. Several design parameters affect the amount of hardware
consumed by a cache, and its performance contribution. When multiple caches are being considered to build
a memory hierarchy within a finite hardware constraint, the design space is too large to explore exhaustively.

penalty functions is eliminated. We present the appli-
cation of a real-valued, multiobjective GA on a paral-
lel heterogeneous workstation network. This Genetic
Algorithm running on the INternet is called GAIN.
A microprocessor on-chip memory design problem is
optimized using GAIN.

2 Background

Computer architecture design has not tradition-
ally been treated as a classic optimization prob-
lem. Much computer architecture work in the
1980s emphasized a quantitative approach to design
[Hennessy and Patterson, 1990] over an “art and ex-
perience” approach. Early systematic attempts at
computer architecture design pruned the search space
and had difficulty distinguishing between global and
local optima [Kumar and Davidson, 1980]. More re-
cent work has partitioned the problem and used sim-
ulated annealing as a global optimizer, neglecting in-
teraction between independently optimized hardware
structures [Conte, 1992] [Conte et al., 1993]. Other
researchers have applied the GA to the specific prob-
lem of selecting optimal replacement policies for on-
chip cache memories [Altman et al., 1993].

Our early experiments with simple iterative hill
climbing show that the computer architecture design
space is multimodal, and is composed of many local
optima with similar performance. Only a sustained
global convergent search technique is appropriate for

this problem. Lengthy objective function evaluation
times demand a parallel approach. The explicit paral-
lelism embodied in the GA population maps directly
on to the coarse-grained parallelism found on a mod-
ern engineering workstation network. This suggests
that the GA is particularly well-suited to this combi-
natorial engineering design problem.

2.1 Microprocessor Cache Memories

A predominant use of chip area in contemporary mi-
croprocessor design is for cache memory. A cache is a
small fast memory structure holding the most recently
referenced instructions or data. Its contents are man-
aged by hardware and its presence is transparent to
the programmer. Memory references exhibit a prop-
erty called locality of reference. Data that is frequently
accessed over a short period of time exhibits tempo-
ral locality; a new reference that is near the address
of previously accessed data exhibits spatial locality.
Because memory references reliably exhibit locality of
reference, simple hardware controllers can capture the
most recent references in a relatively small cache, and
discard older data using a replacement policy.

Cache memories are hierarchically organized as
shown in Figure 1, each caching some specialized
subset of all memory accesses. Typically, the top of
the hierarchy is composed of the fastest (and therefore
smallest) memories, and the bottom of the hierarchy is
composed of the largest (and therefore slowest) mem-
ories. The processor generates memory requests to



the top level of the hierarchy. If the requested data is
found at a particular level (a cache kit), it is provided
at the speed of that hierarchy level. If the data is not
found (a cache miss), successive levels of the hierarchy

are queried until it is found and the data is provided'

at whatever speed the hierarchy level is capable.

Because locality of reference enables the hierar-
chy to statistically provide cache hits at the top of
the hierarchy, the average memory hierarchy speed
is approximated by the speed of the small fast top
level. In modern microprocessors, performance is
determined by the average memory access speed.
[Hennessy and Jouppi, 1991]. The partition of finite
chip area into a near-optimal cache hierarchy is criti-
cal.

The microprocessor memory hierarchy shown in
Figure 1 and the details of its architecture are more
extensively described in {Stanley and Mudge, 1995].
The 23 parameters used to describe this design space
represent over 1.6 x 10!° possible configurations.

2.2 Design Constraints and Objectives

We focus our design effort on satisfying two design
budget constraints, chip area and chip power dissipa-
tion, and one design objective, maximal performance.

The manufacturing cost of a microprocessor
chip is directly proportional to its size, or area
[Hennessy and Patterson, 1990]. As such, a design
budget for this area/cost is specified early in the de-
sign. We quantify the hardware budget in Register Bit
Equivalents, or RBEs [Mulder et al., 1991). The RBE
is a technology-independent unit-less measure of the
area consumed by an on-chip memory as a function of
its design parameters. Using this model, an 8K byte
direct-mapped cache with a line size of 32 bytes re-
quires 49,839 RBEs; a 64K byte direct-mapped cache
with a line size of 128 bytes requires 366,156 RBEs.

The microprocessor power consumption budget is
also specified in the early design stages. In contempo-
rary VLSI CMOS technologies, the power consump-
tion of a memory structure is a function of its size and
the number of times it is referenced (which in turn is
a function of its hierarchical position).

One microprocessor performance measure is cycles
per instruction or CPL. Consider a benchmark pro-
gram composed of N instructions. We want to iden-
tify a design partition satisfying the hardware con-
straint, while minimizing the number of clock cycles
required to execute those N instructions, and thus
minimize CPI. CPI is obtained by simulating the ar-
chitectural configuration, counting the number of cy-
cles consumed and instructions executed, and com-

puting CPI directly. At the same time, the number of
accesses to each level of the cache hierarchy is counted
so that the power usage can be evaluated.

A larger cache memory at any hierarchy location
consumes more RBEs and power, however, it is likely
to improve performance. It follows that a smaller
cache memory consumes less design resources, but pro-
vides less performance.

3 Casting Constraints as Objectives

A typical approach to constrained optimization
problems is the assignment of a penalty function
[Powell and Skolnick, 1993] [Smith and Tate, 1993] to
configurations with constraint violations. In our case,
microprocessor designs exceeding the chip area or
power budget constraints would be penalized.

We regard the assignment of a penalty function to
over-budget configurations as undesirable. First, iden-
tifying the degree of penalization remains problematic.
Second, we may have over-specified the constraints so
that few satisfactory points exist in the design space.
As design engineers, we remain interested in the best
solution(s) found despite any over-specification. If
slightly over-budget configurations provide significant
performance improvements, we might change the en-
gineering specifications. As such, we wish to avoid un-
conditionally discarding over-budget points. Finally,
in our experience, the GA does not perform reliably
when too much genetic material is discarded or ad-
justed due to constraint violation. To address the
constraint problem, we observe that:

o the degree of constraint violation can be readily
quantified,

e over-budget configurations represent possible,
though less desirable, points in the design space,

e optimization techniques for engineering design
problems such as ours must have the ability to
simultaneously satisfy multiple objectives.

Therefore, we cast the design constraints into mul-
tiple design objectives as follows. Given:

e a design constraint C,
e its value (our design budget) 5,

e a function f(zi,z3,...,2,) to compute amount
the budget consumed where z; are the design pa-
rameters,

we define a new function

[ (z1,22, ..., 2n) = f(z1,22,....,2n) — B (1)



to compute the degree to which the constraint is vi-
olated and a new minimizing objective function © to
replace constraint C

0 if f'(:cl, ZTa, ..., :v,.) <0,
i.e., a satisfied constraint
f(z1,22,...,2,) otherwise.
(2)

Using objective O, configurations that are close to
a constraint are regarded as better than those that are
far away. Configurations that satisfy the constraint,
are regarded as equally good. The GA's task is trans-
formed from penalizing designs that violate the con-
straints to evolving designs that satisfy the constraints,
using the new minimizing objective function ©.

0=

3.1 Multiple Objectives

Given multiple objective functions to compute chip
area, performance, and power consumption, the iden-
tification of the better of several competing configu-
rations depends on the relative priority or weight as-
signed to each objective. However, assigning weights
to each objective is problematic - how do we deter-
mine what the relative weights should be? A for-
mal method to rank such competing design points
uses the concept of Pareto optimality [Goldberg, 1989]
[Fonesca and Fleming, 1993).

Consider multiple competing points in the design
space. A point is considered nondominated if and
only if there is no other point in the design space
that better satisfies all objectives. In this prob-
lem we are minimizing chip area, CPI, and power.
From [Goldberg, 1989], a vector of objectives X hav-
ing length i is partially less than (< p) vector Y, (i.e.,
it better satisfies the. minimization objectives and it
dominates Y) when the following conditions are met:

(X<pY) & (Vi)zi <wm) A Fi)=i<m) (3)

The application of Pareto optimality provides a
partial ranking of competing multiobjective design
points. We complete the ranking by extending Gold-
berg’s nondominated sorting procedure as follows.
First, the multiple objectives are assigned a priority
order by the design engineer. The ranking procedure
sorts all competing configurations into dominated and
nondominated groups. The nondominated group is
then further ranked by how well the first priority ob-
jective is met. If the first objective of two configura-
tions is equal, the tie is broken by the second priority
objective, and so on. These nondominated priority-
ranked configurations are set aside in a ranked list.
While the dominated group is not empty, the pro-
cess is repeated. At each iteration, the ranked, non-

dominated configurations are appended to the growing
ranked list until all configurations have been ranked.

3.2 The Implications

The implications of casting budget constraints as ob-
jectives whose value is the degree of constraint vio-
lation, and a priority-based Pareto-ranking extension
are as follows:

1. The casting of constraints as additional minimiz-
ing objectives degenerates to the original objec-
tives when the constraints of two competing in-
dividuals are both satisfied, for any number of
constraints.

2. A slightly over budget, but otherwise nondomi-
nated, configuration will have its relative objec-
tive success properly rewarded with reproductive
opportunity. Specifically, cross-breeding of over-
budget configurations with at-budget configura-
tions is permitted. As [Smith and Tate, 1993]
have observed, optimal points in the design space
tend to lie at the boundary of the feasible re-
gion, i.e., where a design budget is maximally
consumed. We regard this extra searching of the
design space on both sides of the region close to
the constraint boundary as a desirable effect.

With this “constraint-as-objective” approach, we
expand the degree to which the specification of con-
straints and objectives directs the design space search.
For example, we can specify a power budget as a con-
straint that needs to be satisfied with a higher prior-
ity than performance. Or, we can specify a low-power
objective, at lower priority than performance to sys-
tematically focus the search in regions where balanced
CPI/power tradeoffs are found. It is the designer’s
specification of constraints and objectives that directs
the GA to desirable regions of the design space.

4 GAIN: Parallel Network Evaluation

Considerable research on parallel GA models has
been performed, e.g., [Gordon and Whitley, 1993).
However, our problem is that of simply distributing
one and only one chromosome per workstation and col-
lating results. Several interesting issues arise related
to the asynchronous nature of a loosely-coupled paral-
lel workstation network. Specifically, there is consider-
able variability in completion times for the evaluation
function due to several factors including:

o The workstations are of different models, config-
urations, and therefore performance.
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Figure 2: Decoupled Parallel GA Processes in GAIN.

To accommodate the asynchronous reality of the workstation network, GAIN is decomposed into gen-
erational and evaluation processes communicating through queues. The evaluation process controls the
Internet workstation communication. Between 80 and 120 workstations have been used simultaneously per
experiment to evaluate the microarchitectural objective functions.

e Proper network etiquette at the The University of
Michigan requires that a remotely-submitted GA
evaluation be automatically suspended when a
user logs into the console of the publically shared
workstation. The evaluation is restarted when the
user leaves the console.

o Fatefully, the console user has also the power to
terminate GA evaluations that have been submit-
ted to that particular workstation !,

A real-life parallel GA application must accommo-
date these vagaries; it is simply naive to expect unlim-
ited predictable access to a costly distributed comput-
ing resource composed of hundreds of machines. Two
extensions to the serial GA are needed - a method
to handle the widely varying evaluation times, and a
method to handle terminated chromosomes.

Synchronous and asynchronous solutions exist to
the problem of variable objective function evaluation
times [Zeigler and Kim, 1993]. A synchronous ap-
proach forces the GA to wait until all evaluations be-
longing to generation G complete before proceeding to
generation G + 1. This is not practical for two rea-
sons: first, generational synchronization severely cur-
tails concurrency, and second, some chromosomes will
never return from the network due to workstation con-
sole user terminations. Therefore, an asynchronous
solution is chosen. The GA is allowed to proceed to
generation G + 1 before the evaluations of generation
G,G—1,...,G — n, are completed.

To accomplish this, the GA generation process
is fully decoupled from the ewvaluation process as

!The modern computer network is a cold, cruel, and
random world with respect to survival of the fittest.

shown in Figure 2. These two cooperating processes
communicate using queues. A new GA parameter,
Mazimum Number of Pending Evaluations, is needed
by the generation process to specify the maximum
number of unevaluated chromosomes that can be out-
standing on the network at one time. When the
number of unevaluated chromosomes exceeds Maz:-
mum Number of Pending Evaluations, the generation
process sleeps. It wakes when the evaluation pro-
cess returns evaluated chromosomes through the Done
Queue.

The evaluation process communicates with indi-
vidual workstations over the Internet. If an evalua-

" tion is terminated by a console user, it is resubmitted

when the workstation becomes idle. After 5 failed re-
submissions, GAIN assumes something is catastroph-
ically wrong with' the chromosome and moves on. To
prevent deadlock from occurring between the genera-
tion and evaluation processes, the evaluation process
informs the generation process when a chromosome
has been terminated, so that the generation process
can decrement its pending evaluation count.

The decoupled nature of GAIN and the variability
in evaluation times lead to a new component of the
GA'’s behavior that must be monitored. The childhood
of a chromosome is defined as the number of chromo-
somes that have been created between its creation and
its first opportunity to become a parent. This corre-
sponds to its insertion into the Pending Queue and
its removal from the Done Queue. We expect lengthy
childhoods to adversely affect the stability and per-
formance of the GA. The new parameter, Mazimum
Number of Pending Evaluations, effectively limits the
childhood length as well as limiting the number of
workstations simultaneously utilized by GAIN.
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Figure 3: Evaluation Times and Population Characteristics.

The variance of the distribution of 13,429 evaluation completion times (wall clock) for the architectural

objective function evaluation is large.

As GAIN rewards nondominated configurations with increased reproductive opportunities, eventually, most

of the population becomes nondominated.

We expect that steady-state generational replace-
ment with a small generation gap, rather than tra-
ditional full generational replacement, would stabilize
the decoupled GA in the face of lengthy childhoods.
This is confirmed by a limited number of experiments.
For these experiments, GAIN generates two individu-
als per generation from a population size of 100. A fi-
nal refinement of the GAIN generation process is that
it does not proceed to generation G + 1 until it has
retired at least a generation gap of chromosomes (2)
from the Done Queue during generation G.

GAIN is otherwise similar to GAs in the literature.
A two-point crossover operator is used with a prob-
ability of 1.0. The probability of mutation is 0.06.
Duplicate chromosomes are not allowed in the popu-
lation. The weakest individuals in the population are
chosen for replacement each generation.

5 Experiments and Results

At this point, we can experimentally evaluate whether
GAIN’s performance remains robust despite the de-
coupled asynchronous network complexities. The Maz
Number of Pending Ewvaluations and the population
size were set to 100. The distribution of elapsed times
for 13,429 objective function evaluations from several
different experiments, running on a variety of work-
station models, is shown in Figure 3. Priority work-
station users terminated 132 chromosomes.

The objective priority was established as:

1. meeting a hardware budget of (3 x 128K) RBEs,
2. meeting a power factor budget of 0.07,

3. minimizing CPI.

The utility of Pareto-ranking is shown in the right
graph of Figure 3. Within 670 evaluations, GAIN
evolves a mostly nondominated population as defined
by Equation (3). These nondominated configurations
drive GAIN to explore the “Pareto frontier”, i.e., areas
of the design space where the multiple objectives are
best satisfied simultaneously.

When 95 % of the values of a single gene (an ar-
chitectural parameter) in the population have evolved
to the same value, that gene has converged. The en-
tire population has converged when 95 % of the pop-
ulation’s genetic material has converged according to

_this definition. The right graph of Figure 3 shows the

convergence history of the population’s genetic mate-
rial. The no-duplicate replacement policy maintains
genetic diversity and convergence proceeds slowly and
steadily. This graph indicates that GAIN’s perfor-
mance seems to have remained stable and robust after
the asynchronous parallel extensions.

GAIN’s progress at satisfying the chip area budget
is shown in Figure 4. A total of 5855 evaluations were
performed, 4831 of which were unique. Clearly, GAIN
succeeds at concentrating its exploration in the area
near the chip area budget specification.

As GAIN proceeds, it is unable to evolve an en-
tire population within the power factor budget (of
0.07) as shown in Figure 5. However, some chro-
mosomes, including the Pareto-best, satisfy the power
budget. The graph showing power factor distribution
frequency further indicates the low density of points in
the design space that satisfy the power factor budget.

While GAIN searches regions of the design space
where the design budgets are simultaneously satisfied,
it also works to minimize CPI. Through time, the pop-
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Figure 4: Constraint: Chip Area vs. Number of Evaluations and Distributions.

As GAIN optimizes the population, the number of RBEs used over the hardware budget converges to 0. As
early as 1196 evaluations, the entire upper quartile of configurations satisfy the hardware budget; by 2907
evaluations, the top 2 quartiles of the population satisfy the hardware budget.

The right graph shows the distribution frequency of chip area usage for all evaluations. GAIN concentrates
its search in the region where the RBE budget is specified.
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Figure 5: Constraint: Power vs. Number of Evaluations and Distributions.

As GAIN proceeds, it evaluates design points clustered near, but exceeding the power factor budget.
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Figure 6: Objective: CPI vs. Number of Evaluations and Distributions.

While GAIN guides the architectural search to portions of the design space where hardware usage and
power are at or near budget, it simultaneously optimizes for CPI using Pareto optimality. The Pareto-best
configuration represents a systematic tradeoff of higher CPI, for a lower, constraint-satisfying power factor.
The last Pareto-best configuration for this experiment was found at evaluation 4885.




ulation is increasingly composed of configurations with
lower CPI as shown in Figure 6, but also with an
over-budget power factor. These over-budget configu-
rations contribute by directing the search, but are not
the Pareto-best. Because GAIN does not evolve an en-
tire population of configurations that satisfy the power
factor budget, we conclude that the budget specifica-
tion is very aggressive and that the density of satis-
factory points in the design space is low.

The best Pareto-optimal point found however, was
able to satisfy both budget constraints. Given the
previously specified objective priorities, the architect
can expect to achieve a performance of 1.84 CPI
given a hardware budget of (3 x 128K RBEs) and
a power factor budget of 0.07. For the next micro-
processor design iteration, the designer would study
this Pareto-optimal design point, and the top quartile
of the Pareto-best configurations, to identify perfor-
mance shortcomings present in near-optimal designs.
The designer would use this information to propose
further design improvements and repeat the optimiza-
tion process until a satisfactory microprocessor design
is realized.

6 Conclusions

We have presented a parallel asynchronous multiob-
Jective genetic algorithm (called GAIN) and its ap-
plication to microprocessor design optimization. Qur
results show that casting design constraints as multi-
ple objectives effectively directs the search to designer-
specified regions of the design space and eliminates the
need for explicit penalty functions.

During the iterative, high-impact, early stages of
the microprocessor design process, GAIN systemati-
cally couples the specification and optimization phases
of design. From an architectural design point, we are
encouraged with the results to date. Any technique
to improve evaluation time, or reduce the number of
evaluations required would improve the iterative de-
sign process further.

Our results show that the parallel asynchronous ex-
tensions to the GA have not adversely affected its ro-
bustness or ability to optimize our objective function.
Because of the appeal of a distributed GA running on
the Internet and its ability to rapidly explore complex
design spaces, we plan to more thoroughly evaluate
the performance of GAIN as a function of degree of
workstation parallelism, generation gap, and time re-
quired to evaluate the objective function (childhood).
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