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Abstract

Computer designers now have more transistors and architectural alternatives than at any time.
Computer-aided design tools automate much of the physical design process. However, few tools have
been developed to help the computer architect specify near-optimal microarchitectural configurations
in the early design stages. Such tools are needed to systematically guide the early design specifications
subject to multiple objectives such as cost, performance, and power consumption.

This paper illustrates an objective-driven microarchitectural design methodology that couples the
specification design phase with an optimization technigue. The design of @ memory hierarchy with
maultiple performance objectives is used as a case study. This is a directed search problem with
a high dimensionality. We show that the genetic algorithm, a global optimization technique based
on the metaphor of natural selection and survivel of the fitlest, is an ideal candidate for such an
objective-driven search in a high dimensional space. The paper concludes that search techniques such
as genetic algorithms are necessary to systematically and efficiently drive architectural optimizations
for multiple objectives such as dynamic power, and performance in the early, high-impact stages of
the design process.

1: Introduction

Computer designers now have more transistors and microarchitectural alternatives than have
been available at any time. ! The hardware available to computer designers as measured by devices
on a single chip has increased thirteen orders of magnitude since 1960 (18]. Architects have eagerly
awaited the time when so many inexpensive hardware resources would be available for design [21).
However, this abundance has only served to emphasize the lack of systematic design procedures for
optimally partitioning hardware resources among many competing architectural structures.

The continued advance of CAD tools has made the design process from the microarchitecture to
chip layout highly automated - we can expect this to trend to continue. In contrast, the specification
of the microarchitecture is neither automated nor driven by traditional optimization techniques.
This is particularly unfortunate because early microarchitectural design decisions have a dramatic
impact on final system performance.

A great deal of computer architecture work in the 1980s promoted a quantitative approach to
computer architecture and design [12]. Much computer architecture research proposes a novel idea
requiring additional hardware, quantifies the value of the idea with respect to a baseline design,
and concludes that the idea has merit because the performance of the baseline improves. Questions

* This work supported by Advanced Research Projects Agency under ARPA-AASERT Contract Number
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In this paper, the words architecture and microarchitecture refer to the selection and organization of
hardware structures such as local memory and functional units used in a chip implementation.
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Computer Design Example |

[ Design Priority

Design Dimensions | system clock speed(s).

multiple function units such as adders, multipliers, dividers, load/store units.
multiple special purpose local {cache) memories having a wide variety of design
paranieters.
any number ol microarchitectures tn which to interconnect these hardware
structures.

ozens ol implementation technologies with different costs and perforinances.

Design Constraints | a hardware budget, e.g., a fixed number of transistors, or total chip real estate.
an elecirical static power budget.
a manulacturing cost budget.

Design Objectives maximizing some overall performance measurement, e.g., mininium cycles per
instruction (CPI).
mininizing dynamic power consimplion.
mintmizing reference tralfic to main memory.

Table 1. Some Computer Design Dimensions, Constraints, and Objectives.

A computer architecture design point is selected by combining multiple structures and parameters from the
design dimensions to create a configuration that satisfies the design constraints. The performance of this
design against multiple design objectivesis determined using simulation techniques.

regarding the quality of the initial baseline design, or whether the additional hardware would best. be
applied in some other way remain unaddressed. From a more global perspective, then, the validity
of the architectural idea cannot be accurately assessed.

Because changes to any aspect of an architecture can have unexpected ramifications for the rest
of the architecture, it is difficult for the architect to find an optimal design point. The problem is
illustrated in Table 1. The wide range of possible configurations under these design dimensions
demand that an efficient and systematic method be used when iteratively optimizing the design of
computer architectures.

This optimization method must be efficient because the sheer complexity of the design space,
and the iterative nature of the design problem, do not permit frivolous exploration of regions that
do not best satisfy the design objectives. The optimization approach must be systematic to free
the architect from the considerable organizational! burden of evaluating and plotting the results of
many simulations and proposing the next set of designs to evaluate. In fact, the architect may not
even have an efficient and systematic approach (heuristic, quantitative, or otherwise) to solve such
a complex optimization problem. If this part of the architectural optimization process could be
automated, the architect could more productively spend energy creatively investigating sources of
lost performance on a smaller set of near-optimal designs and proposing novel solutions to improve
performance for the next optimization iteration.

A high-level overview of a conventional computer design process is shown in Figure 1. 'The
synthesis portion of the computer design process makes extensive use of automated computer-aided
techniques to speed design time and improve design quality. However, the architectural specification
and optimization portion of the design process remains non-systematic and human-intensive. ‘The
genetic algorithm, a global optimization technique useful in other fields of research [13] [10] [6] and
based on tlie metaphor of natural selection and survival of the fittest, appears well-snited to the
architectural specification problem for the following reasons:

it can be extended to consider multiple design objectives,
it widely explores large and complex design spaces in a systematic manner,

_.
u.
u.m:mwr:oi_omm?vwm&mow_.n_:sooroa.
4. it can be highly parallelized.
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Figure 1. Computer-aided design for computer implementation.

All portions of the computer design process are iterative. Many parts are also Z_uunoiv_n..m. Architectural
specification and optimization are the only parts of the process lacking a systematic approach.

1.1: Overview of Paper

The remainder of this paper is organized as follows: Background work related to computer
architecture optimization is discussed in Section 2. The problem of optimally partitioning hardware
in computer design is reviewed. In Section 3, the genetic algorithm is described in the context of the
computer architecture problem. The experimental method used to determine architectural system
performance is described in Section 4. In Section 5, experimental results demonstrate n.ro.cma. of
the genetic algorithm optimization on a high-dimensionality cache memory hierarchy optimization
problem with multiple simultaneous objectives. Conclusions are drawn in Section 6. Based on the
problem description and the results to date, the genetic algorithm is proposed and mo—:w._mo_.w..& as
a systematic, efficient, multi-objective optimization method. Potential applications of this computer
design approach are enumerated.

2: Background and Analysis

2.1: Complexity of the Computer Architecture Design Space

Consider a contemporary computer memory hierarchy implementing any number of the local
memories ennmerated in Table 2. The design dimensions for each local memory is selected from
the list found in Table 3. The total amount of hardware expended on local memoties can not exceed
the hardware or power budget. Recently, researchers have considered the problem of optimizi ng ..__m
cache hierarchy when very large numbers of transistors ate available [15] [7] as well as "unified
strategies to do so [3]. . .

The similarity between the known NP-complete problem of bin packing and the combinatorial
problem of partitioning a finite amount of hardware into a number of hardware structures to max-

Cache Type Briefl Description

Primary (LL.1) First level of memory hierarchy. Usually on-chip in contemporary niicroproces
sor implementations. Often split for instruction- and data-stream.

| Wrile cache or bulter | Holds data writes. Decouples upper portion of memory hierarchy froin fower
portion of hierarchy. Can collate multiple writes to same line(s) [2].

Miss Cache, Victim | Holds most recent cache miss(es) of the preceding cache in the hierarchy. C
cache ceptually offers an extra degree of associativity to preceding cache with abi
to “move” this associativity to cache hot spots to reduce conflict misses [14].
Prefetch and stream | Holds prefetched data.

buffers
Secondary (L2) A larger and slower backup to the L1 caclies. Could be implemented off-chip in
SRAM, or any of the several new DRAM technologies, as well as on-chip [15].

Table 2. Partial taxonomy of local memories in microprocessor impiementations.

This list is not intended to be inclusive, merely representative of the local memories inclnded in the arcin
tecture studied in this paper. Local menories can be dedicated to the instruclion-stream, the data-stream
or unified to satisfy both streams. Further, all of the structures described above can be organized to form .
“memory hierarchy” and could reside at virtually any position in this hierarchy.

imize some objective function is obvious [8]. The architectural optimization problem is compo
of two parts. First is the NP-complete problem of enumerating all possible hardware partitic
Second is the problem of efficiently directing the search through these partitions toward an optiwal
solution based on a set of specified objectives. The exhaustive search methods often used to identify
optimal hardware partitions for small design spaces, e.g. [20], are not possible given the size of the
design space in Tables 1, 2, and 3. Rather, the architect must purposefully gravitate toward an
optimum point in the design space to study performance.

2.2: Computer-aided Design for Architecture

Considerable computer-aided design (CAD) research continues in optimal synthesis of archit
tures (e.g. [9]), i.e., given an architectural specification (cache list and parameters, functional unit
list and parameters, etc.), generate an optimally partitioned hardware representation. Far lrs«
research has been conducted on CAD techniques to optimally identify exactly what architectural
structures should be used in the starting architectural specification.

Kumar and Davidson developed a hierarchical approach to computer system design and perfor
mance evaluation [17]). These researchers noticed that computer design methods were not systenaltic
or efficient. They pruned the search space, and used a limited number of design parameters. Their
method had problems distinguishing between locally versus globally optimal design points.

Conte [4] has partitioned the computer specification problem into two parts, memory hierarchy
specification and functional unit specification. Exhaustive, single-pass simulation techniques were
applied to the memory hierarchy partition. Simulated annealing runs of 150 simulations were appl
to the functional unit partition. Performance interaction between the memory hierarchy and th-
functional units was not addressed. More recently, he has used similar techniques to investigate the
impact of power and area on processor design [5].

3: The Genetic Algorithm 2

‘The genetic algorithm (GA) {13] is a global search technique that has been successfully applie
to many real-world optimization problems [10] [6] [1] and to similar NP-complete problem spiac-
in other disciplines [16]. The GA is based on the metaphor of natural selection and survival of the

2 As applied to the computer architecture optimization problem.
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Cache Paramcter Range of values

Block sizc  (Dyles). | As small as 4 byles for on-chip caches to K+ bytes for off-chip caches.
Also called line size.

Associativity (degree) | From 1 (direct-mapped) to the number of lines in the cache. Describes the

number of cache locations where data belonging to an address could reside.
Size (bytes) From 1 line to n lines. 1{ fully associative, by increments of 1 Iine. If not fully
associative, increments by multiples of 2. On-chip caches might be 4k bytes in
size; off chip caches might be many megabytes.

Replacement Policy A cache having associativity > I needs a replacement policy to select between
blocks within a set. Popular replacement policies include:
e random,
first-in first-out (FIFO),
least recently used (LRU),
o not most recently used (NMRU),

o not most recently replaced (NMRR).

Relerence stream

Tnstruction, data, or unilied. Write caches are special type of data caches.

Table 3. Partial taxonomy of local memory design parameters.

Several parameters affect the amount of hardware dedicated to the local memory and its performance,
including size, associativity, and replacement policy. Not all parameters apply to every type of local memory.

When multiple caches (see Table 2) are being considered to build a memory hierarchy within a finite
hardware constraint, the design space is simply too large to exhaustively explore.

fittest. At the most basic level, the data structures and process flow of the genetic algorithm are
schematically shown in Figure 2. The advantage of the genetic algorithm over other methods is
that it purposefully uses information from previous optimizations attempts to direct future attempts,
much like a human architect. GAs converge upon a solution, rather than pruning the design space
[17] or partitioning the design space [4]. At the same time, the genetic algorithm explores the search
space widely and is regarded as a good global optimization technique on difficult multi-modal
solution spaces.

A splice from a computer architecture chromosome string is shown in Figure 3. Each gene in
the chromosome represents the value of one parameter in the architectural space. The GA uses a
two types of genetic operators to create offspring from highly fit parents. Figure 3 schematically
shows the creation of an offspring from two highly fit parents using the crossover operator. Mutation
operators are probabilistically employed to constantly add diversity to the genetic material present
in the population. For the experiments in this study, a population size of 100 chromosomes was used,
2 children were created per generation, the probability of crossover was 1.0, and the probability of
mutation was 0.064. To permanently maintain genetic diversity, the population replacement policy
prevents multiple duplicate chromosomes from simultaneously existing in the population.

Computer engineering environments are typically composed of many networked computers. The
coatse-grained, explicit parallelism embodied in the population of the GA, and the small amount
of communication required between population individuals makes it well suited for such networked
parallelism. This strengthens the case for its use as a computer architecture optimization method
over other less parallel alternatives.

3.1: Multiple Simultaneous Objectives

The GA used in the study considers the three following architectural objectives.

Hardware Budget. Mulder et. al. have developed an analytical model to compute the area of
an on-chip memory structure [19] as a function of its size and organization (see Table 3). This
work defines a technology-independent unit called the register bit equivalent (RBE), as the amount

e e s
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Figure 2. Genetic algorithm data structures and flow diagram.

The genetic algorithm works with a population of candidate solutions. During each generation, the (i}
combines the characteristics of the best candidates. In successive generations, good characteristics receiv
exponentially increasing reproductive opportunities leading to a convergence of the gene values. Tlis i
known as “reproduction with emphasis” [13]. As time proceeds, better candidate solutions are evolved an:
the fitness of the population increases.

of area consumed by 1 bit of a register file. Models are presented that express the area of an on-chips
memory structure in RBEs as a function of its size, associativity, and bandwidth. We use this 1131
model to compute the area consumed by the local memories as a function of their design parameters.
We have extended this model to consider the additional hardware requirements of different caclv
replacement policies.

Using this model, an 8K byte direct-mapped cache with a line size of 32 bytes wounld reqnire
49,839 RBEs; a 64K byte direct-mapped cache with a line size of 128 bytes would require 366,156
RBEs. For this study, we will assume that (3 * 128K) RBEs are available on-chip to implement. th
cache hierarchy described in Section 4.1.

Performance. One architectural performance measure is cycles per instruction (CPI). Cow:
a benchinark composed of N instructions. We want to identify a design partition satisfying th-
hardware constraint, while minimizing the number of clock cycles required to execnute those N
instructions, and thus minimize CP1. The CP1 for an architecture under consideration is obtained
by simulating the architecture running a benchmark, counting the number of cycles cousnmed
instructions executed, and computing CP1 directly.
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Figure 3. Schematic representation of the crossover operator.

To provide reproduction with emphasis, methods of combining two high-fitness parents to produce (hopefully
more highly fit) offspring are employed. One or more locations on the gene string are randomly chosen at
each reproductive opportunity. The offspring receives genes prior to the crossover point from the first parent,
and genes occurring later in the string from the second parent. A second offspring (not shown) receives the
genes not used in the first offspring.

Mechanisms must be used to ensure that the offspring gene string describes a legal configuration. In this
example, parent #1 provides the offspring with L1 victim cache 16-way associativity, while parent #2
provides no replacement policy since its victim cache was direct-mapped. Associativity > 1 requires a
replacement policy. This offspring must be supplied with randomly selected replacement policy to make it
a legal configuration.

Power Factor, The amount of power consumed by a memory structure in a CMOS technology
is a function of the number of times the transistors in that hardware structure are switched, and
the size of the structure. If the transistors are switched every cycle, due to pre-charging issues,
or organizational issues, then its power consumption is simply a function of its size. However, if
the structure is designed so that its transistors switch only when an access occurs, then power
consumption is a function of the structure’s size and the number of accesses. In this study, we
will assume that the on-chip memory structures have been designed to switch only when relevant
references are made, rather than every cycle.

The percentage of overall hardware consumed by any specific local memory is computed by
dividing its size (in RBEs) by the total amount of hardware dedicated to all memory structures in
the design. ‘The percentage of time that any specific local memory consumes power is computed by
dividing the number of cycles it was accessed by the total cycles required to exercise the benchmark.
A technology-independent power factor for each local memory is computed by dividing its RBE
percentage by its switching percentage. This unit-less power factor will be between 0.0 and 1.0.

3.2: Pareto Optimality

Given multiple objective functions to compute chip real estate, performance, and power consump-
tion of points in the design space, the identification of the better of several competing configurations
depends on the relative priority or weight assigned to each objective. However, assigning weights to
each objective is problematic - how do we determine what the relative weights should be? A formal
method to rank such competing design points uses the concept of Pareto optimality [10].

Consider multiple competing points in the design space. A point is considered nondominated if

o]

and only if there is no other point in the design space that better satisfies all of the objectives. fu
this specific problem we are minimizing real estate, CPl, and power. Mathematically, a vector of
objectives X is partially less than vector Y (i.e., it better satisfies the minimization objectives and
it dominates Y) when the following conditions hold:

(X <pY)e (Vi)(zi < ui) A(Fi)zi <) (M

This definition of Pareto optimality allows us to rigorously rank the quality of multiple competing
design points while considering multiple objectives. First, the multiple objectives are assigned a
priority order. The ranking procedure sorts all competing configurations into dominated and non
domiuated groups based on their objectives. The non-dominated group is then further ranked by
how well the first objective is met. If the first objective of two configurations are equal, the tie is
broken by the second priority objective, and so on. These non-dominated ranked configurations are
set aside in a ranked list. While the dominated group is not empty, the process is repeated. At
each iteration, the ranked, non-dominated configurations are appended to the growing ranked list.
When this procedure is done, the GA has a ranked list of Pareto-best to Pareto-worst design points
and uses this list to make reproductive decisions during each generation.

4: Methodology

4.1: The Chip Architecture

The organization of 7 local memory structures to be optimized in this study are shown in the
block diagram of Figure 4. There are 23 parameters to this cache simulation shown in Table 4. We
want to systematically identify the value of each of these parameters in a near-optimal design. The
instruction set is from the MIPS R3000, the pipeline is a single issue, 5-stage pipeline operating at
250 MHz, the secondaty cache and main memory are modelled as Rambus RDRAM devices.

4.2: Architectural Simulator and Benchmarks

An address-trace driven simulator was written to evaluate the performance of the architecture
in Figure 4 for three objectives specified in Section 3.1. Four benchmarks were chosen from the
SPEC92 benchmark suite: the C compiler gcc and the logic minimization program espresso are
integer benchmarks; the Monte Catlo simulation deduc and the highly vectorizable Navier Stokes
equation program hydro2 are floating point benchmarks. Traces from portions of these prograims
were used in a multiprogrammed mode with a quantum of 250,000 cycles. Over 174 million in
structions were simulated per architectural configuration, accounting for over 227 million memory

references.

5: Experiments and Results

5.1: Pareto Priority: Chip real estate, Performance, Power

The first experiment set the priority of the objectives as 1) meeting a hardware budget of (3 *
128K) RBEs, 2) minimizing CPI, 3) minimizing power. The Pareto-ranking of competing config
urations is established using this priority as described in Section 3.2. Fignre 5 plots the GA's
progtess at minimizing RBEs and CPl at the start of each generation. All configurations meeting
the RBE budget are regarded as equally fit.
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Flgure 4. Several locality-specific caches assembled Into a memory hierarchy.

On-chip local memories of interest are shown as shaded blocks. There are 5 caches, and 2 stream buffers.
Stream buffers have a width (0..N above), i.e., the number of concurrent streams they can prefetch.

The instruction- and data-stream primary caches are accessed in 1 cycle. The victim caches are addressed
every cycle their corresponding primary cache is addressed, however, there is an additional 1 cycle penalty
when its data must be swapped with the primary cache. The data-stream write-cache is addressed with the
data-stream primary cache and can provide read data in 1 cycle. However, write data that is not found
in the write-cache must be fetched from the memory hierarchy before the store instruction can complete.
Stream buffers are accessed only when caches higher in the hierarchy are unable to service the request, and
add 1 additional cycle penalty if they have the data.

Parameter naine Minimum | Maximum Increment

TT- and D-stream line size (bytes) 4 128 to next power of 2
Cache size (bytes) 128 64K to next power of 2
Caclie associativity (degrees of) 1 64 to next power of 2
Cache replacement policy one of: random, FIFO, LRU, NMRU, NMRR
Stream-buffer size (bytes) 128 64K to next power of 2
Stream-bufler width 1 64 to next power of 2
Stream-buffer replacement policy one of: random, FIFO, LRU, NMRU, NMRR

Table 4. Local cache parameter ranges used.

The I- and D-stream line sizes are independent. All caches serving a stream use the same line size. The five
replacement policies are enumerated in Table 3. This design space represents over 1.6 # 10"° configurations.
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Figure 5. RBEs and CPl vs. number of evaluations.

As the GA optimizes the population, the number of RBEs used over the hardware budget converges to .
As early as 309 evaluations, the entire upper quartile of best Pareto-performing configurations satisfy the
hardware budget; by 2542 evaluations, the top 3 quartiles of the population satisfy the hardware budget.

CPI is minimized as the GA optimizes the entire population. As more evaluations are performmed, the
concentration of highly fit architectural configurations in the population that satisly the hardware budget
and provide low CP1 steadily increases. Small reductions in CPI were observed until evaluation 7538.

Each evaluation represents one chromosome, i.e. one run of the simulator with a set of paranieters
to determine the configuration’s objective fitness. A total of 7574 GA evaluations were perforined
Because the GA aggressively explores high performance regions of the design space, it often considers
the same configuration multiple times. In this experiment, 5635 unique architectural simulations
were performed. Despite the focus of the search on specific regions of the design space, the GA
used in this experiment implements a population replacement policy that does not allow mnltiple
identical chromosomes to simultaneously exist in the population. This effectively maintains genetic
diversity in the population and encourages sustained search.

The utility of the Pareto ranking is shown graphically in Figure 6. Within 670 evaluations, the
GA evolves a mostly nondominated population according to the definition of Equation ( 1). These
nondominated configurations drive the GA to explore the “Pareto frontier”, i.e., areas of the design
space where the multiple objectives are best satisfied simultaneously.

The architect must extract useful design information from this set of nondominated configurations
as the GA proceeds. When 95 % of the values of a single gene (an architectural parameter) in
the population have evolved to the same value, that gene is said to have converged. The eutir~
population has converged when 95 % of the population’s genetic material has converged according
to this definition. The right graph of Figure 6 shows the convergence history of two interesting genes
The gene for the L1D-write cache size converged more rapidly than any other gene in the simulation
The architect should simply identify the converged value of that gene for design direction. Howcever,
the gene for the L1D-victim cache has converged less than the average of all genes and does no!
contain specific design information.

The architect must consider the distribution of L1D-victin cache sizes, as well as the Pareto bt
configuration, for design direction. The use of gene distribution as a design tool is illustrated in
Figute 7. When the entire population is considered, two stable, competing, non-adjacent design
space hiches are seen. However, when only the upper quartile of the population is considered, the
design decision is clarified. In this instance, the L1D-victim cache size has not definitively completel
its evolution.

The architect should not use the mean gene value to direct design choices. In Fignre 8. the
evolution of the L1D-write cache and L1D-victim cache are shown. Notice that the population™
mean value (using logs of the cache size) for the LiD-victim cache during most of the sinmiation
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The final distribution of L1D-victim cache size is shown for the enti i

| ] A entire population on the left. Two stabl
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So:E _am& the architect to conclude that a 512 byte L1D-victim cache should be selected. However
the a_mow_vzso__m show that no configuration in the final population has a 512 byte L1D-victim nwn__o.
) To :_cmr.wpo the pitfall of prematurely using the Pareto-best configuration alone for design &_.mn..
tion, nO:w&Q...—_wo the L1D-victin cache size in the Pareto-best configuration had been fairly stable
at 2K c.w.omm since evaluation 2986. As shown by the gene distribution, the genetic material in the
population reflects this history and genetic bias. The disruption of L1D-victim cache convergence
w... o<w._=wzo= 6473 reflects the point in time when the gene value of 128 began to increase in dis-
tribution. It was not until evaluation 7223 that the Pareto-best configuration finally moved to o—wo
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Figure 8. Evolution of two genes vs. number of evaluations.

The L1D-write cache rapidly and directly evolves to 32K bytes. The L1D-victim cache size evolution is much
more complex. The value of the Pareto-best configuration does not track the mean value of the population.

128 byte L1D-victim cache. As a rule of thumb, if the gene value of the Pareto best confignration
is not the most strongly expressed value in the population, the GA is still evolving the gene.

The behavior and design analysis of most genes falls somewhere between the simplicity of the
rapidly evolving L1D-write cache, and the complexity of the slowly evolving L1D-victim cache
The final fitness and configuration achieved in this experiment are shown in Table 5. Using this
information, the architect concludes that a CPI of 1.50 can be achieved within the specified hardware
budget while having a power factor of 0.16. The top quartile configurations can be used as near
optimal baseline design points for further architectural work.

5.2: Pareto Priority: Chip real estate, Power, Performance

The second experiment set the priority of the objectives as 1) meeting the same hardware bndget.
of Section 5.1, 2) meeting a power factor of 0.07 or less, 3) minimizing CPL. All configurations
meeting the power factor budget are regarded as equally fit. Figure 9 plots the GA's progress at
meeting the power factor budget and minimizing CPI at the start of each generation. The RBI
graph, not shown, is similar to that shown in Figure 5.

As the GA proceeds, the population is increasingly composed of many configurations with lower
CPI (upper quartile, right graph), but also an over-budget power factor (upper quartile, left graph).
These configurations contribute by directing the search, but are not the Pareto-best. Because the
GA does not evolve an entire population of configurations that satisfy the power factor budget, we
conclude that the budget is very aggressive and that the density of satisfactory points in the design
space is low.

At final evaluation of 5855, 4831 unique architectural simulations had been performed. Given
these objective priorities and budgets, the architect can expect to achieve a performance of 1.81
CPI given a hardware budget of (3 * 128K RBEs) and a power factor budget of 0.07.

5.3: Analysis of Two Regions in Design Space

The final near-optimal design configurations found by the two experiments for the architectnre
described in Figure 4 are summarized in Table 5. It is the priotity and specification of differeut
objectives for the two experiments that directed the GA to systematically explore two different
regions of the architectural design space.
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Figure 9. Mean power factor and CP! vs. number of evaluations.

As the GA proceeds, it is unable to evolve an entire population within the power factor budget (of 0.07).
However, some chromosomes, including the Pareto-best, satisfy the power budget.

While the GA guides the architectural search in portions of the design space where hard ware usage and power
are near budget, it simultaneously optimizes for CPI using Parelo optimality. The Pareto-best configuration
represents a systematic tradeoff of higher CPI, for a lower power factor.

The first obsetvation is that the cache sizes evolved by the GA for the two experiment differ in
only two instances. When the power budget is not specified, a 16K byte L1l-primary cache and a
512 byte L1l-stream buffer are preferred. When a power budget is specified, a 4K byte L1l-primary
cache and a 2K byte L1l-stream buffer are preferred. We regard the cache sizes as the highest impact
parameters in performance and area, and are encouraged to observe this level of GA consistency
between two independent experiments.

A major architectural observation is that a very large and associative L1D-write cache is preferred
in both experiments. This reflects the nature of the benchmark programs, and the interaction
between the caches. The power of the large write cache is due to its write-back miss policy. Also,
the high associativity of the write cache obviates the need for a L1D-victim cache. This architectural
fact is confirmed as the L1D-victim cache ultimately evolves to a very small size. In consideration
of these results, we question the utility of the L1D-write cache and victim caches in general when
substantial amounts of on-chip memory ate available. Our next experiment might be to eliminate
the L1D-write and victim caches entirely, and simply provide a single write-back L1D-primary cache.

These experiments assumed that the clock speed of the chip was not limited by the access speed
of any specific local memory structure. Future architectural work should consider impact on chip
clock speed of large and associative caches such as the L1D-write cache and use time-per-instruction
(TPI) as a performance measurement, rather than CPI.

6: Conclusions

In consideration of the rapid growth in available hardware and architectural ideas from which
to construct a computer system, computer architects need better optimization tools and techniques
to systematically direct the design space search based on the specified objectives. The genetic
algorithm has been demonstrated as an effective, multi-objective, objective-based search technique
using a multi-dimensional cache hierarchy as a case study.

Designers are not usually interested in a single near-optimal point in the design space. More
often they are interested in characteristics of near-optimal configurations in a baseline architecture
so that they can identify performance bottlenecks and propose new hardware structures to achieve

Experiment 1 Experiment 2
Parcto Pareto
Units Best Best
Objective (Fitness) Sid. dev. Std. dev.
Ww.m“m over hardware budget RBEs 0.00 0.000 0.00 18510
Performance CPI 1.50 0.128 1.84 0120
Power Factor unit-less 0.16 0.033 0.00 0.068
Cache Parameter {Gene values) Converge % Converge %
[-Stream Line Size bytes 64 100 64 wm
Primary Cache Size byles 16K 44 1K 52
Associativity degree 2 71 2 68
Repl. policy — FIFO 55 NMRR 69
Victim Cache Size bytes 256 68 256 62
Associativity degree 2 67 2 69
Repl. policy — Random 00 NMRU 31
Stream Buffer  Size bytes 512 65 2K 50
Width 1 83 2 51
Repl. policy -~ NMRR 86 NMRU 70
D-Stream Line Size bytes 32 82 32 63
Primary Cache Size bytes 8K 57 8K 51
Associativity degree 4 83 2 54
Repl. policy — Random 83 NMRR 97
Write Cache Size bytes 32K 100 32K 100
Associativity degree 8 98 8 98
Repl. policy — FIFO 53 NMRR mm
Victim Cache Size bytes 128 44 128 77
Associativity degree 4 78 2 80
Repl. policy — Random 53 NMRR Am
Stream Buffer  Size bytes 4K 100 4K 57
Width 16 99 16 66
Repl. policy — FIFO 78 NMRU 63

Table 5. Tabulated objectives and cache parameters evolved for two experiments.

A low objective standard deviation indicates that the GA has sorted through the design space w._:_._.n_..i.:;_
many Pareto optimal configurations with similar performance. A high cache parameter convergence indicates
the strength of the GAs recommendation for that parameter.

The power factor for the first experiment represents an absolute value; the power factor for the second
experiment represents over budget power.

yet higher performance. . ) |
During the iterative, high-impact, eatly stages of the architectural design process, our approach

systematically couples the specification and optimization phases of aﬂﬁ.:. We oo=o__:“a i:..r some
computer architecture design examples which can be approached only with a systematic, objective
driven approach such as ours. ) ) .
Technology-Specific Optimization of Similar Microarchitectures. Various _Sv_a-:a:mvﬂ_.o: tech
pologies (GaAs vs. CMOS, SRAM vs. DRAM) have &m.a.woi.no&m and performances. This :_:r....n
apples-to-apples comparisons difficult, since implementations in own.: ﬂm.n—Eo_wmw. =Q& ?.V v». m—so;._
ically optimized before comparisons can be made. A systematic objective-driven optimization too
is a large step toward permitting such oo_dv.w_.mmo:w. . . et
Application-Specific Optimization of Similar Z_n_.ow_.nv_emnnc_..@n. U_.a.awa:a uvv__nwnwo:v \ave AA_
ferent architectural requirements. The embedded system market is particularly cost-driven ..:.:_ typ
ically has a narrow, well-defined workload. Some vendors o_w:,:.n_._va they are capable n.u_. _.w_v:n::.:n
application-specific microprocessors for customers [11]. $.€ envision a vumm_.Ea core S_n_.c?.oﬁﬁﬁ&._q
design that is architecturally optimized Anu_o_.% MWm ma__ona_oP functional unit selection) on a rapid.
ication-specific basis using architectural tools.
uvﬂwﬂhno-ﬂwmu ement. ros.-%os.oa applications have become very important. All of the new DRAM
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technologies provide low power modes of operation. However, each has denmatically differ
formance characteristics for normal and low-power modes of operation. Systematic opliy

L]

techniques are needed to compare the perforimance of these new technologies because each technol-
ogy requires different optimal hardware support.
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