Sponsored by: in cooperation with:

® EIN)
Open Verilog

International IEEE COMPUTER SOCIETY® Electronics Industries Association, Japan

A Verilog Preprocessor for Representing Datapath Components

Brian T. Davis and Trevor Mudge

University of Michigan
Department of EECS - Advanced Computer Architecture Laboratory

Abstract

This paper describes research leading to the generation
of a preprocessor for the Verilog hardware description
language. The function of this preprocessor is to support
repeated feature instances in a Verilog description for a
digital system. Repeated features most commonly occur in
the description of datapaths, where iterative structures
like adders, multipliers and muxes are the basic building
blocks. Citations from Verilog users and industry
organizations in support of inclusion of a repeated feature
syntax are given. Several syntaxes for describing repeated
features are presented. From these proposals, a single
syntax for support of repeated feature instances is
selected. A preprocessor is described that will parse the
extended Verilog and translate it to supported Verilog. The
challenges in the generation of the preprocessor are given.
The paper concludes with a status report on the
preprocessor and thoughts for future development.

1 Introduction

Hardware description languages (HDLs) are the
preferred method of designing digital systems in modern
digital design environments. An HDL allows the designer
to specify the behavior of a digital system using an
unambiguous textual syntax. This precise description can
then serve as an entry point into the design process, as well
as being a basis for design validation. The HDL circuit
specification can also serve as documentation for the
digital system [1]. In fact, it was for documentation of
digital systems that the predecessors- of today’s modern
HDLs were first employed.

Today, there are two primary HDLs in common
commercial use, Verilog, and the VHSIC Hardware

This work was supported in part by the Advanced Research
Projects Agency under ARPAJARO Contract Number
DAAH04-94-G-0327

0-8186-7082-7/95 $04.00 © 1995 IEEE

Description Language (VHDL). Verilog is a C based
hardware description language and was originally
developed by Gateway Design Systems [2]. Gateway
Design Systems was later purchased by Cadence Design
Systems, a corporation which provides both Verilog and
VHDL based software tools. The specification for the
Verilog HDL was released into the public domain in
November of 1991. To facilitate this release, Cadence
formed Open Verilog International (OVI) in April of 1991.
OVI was created as a private corporation responsible for
maintaining the Verilog language specification [3].
Recently OVI transferred this responsibility to the Institute
of Electrical and Electronic Engineers (IEEE). Currently
IEEE working group 1364 is developing the first IEEE
version of the Verilog HDL language specification.

VHDL is an alternative HDL developed out of the U.S.
Government’s Very High Speed Integrated Circuits
(VHSIC) program, initiated in 1980 [4]. VHDL is an ADA
based hardware description language which is commonly
said to be more flexible than Verilog, and which already
contains in it’s specification and syntax many of the
capabilities being discussed in this paper.

2 Need for a Repeated Feature Extension

Computers are a tool for increasing the productivity of
engineers. They allow the user to perform a number of
tasks which would require large amounts of time without
the use of a computer, such as the preparation of this
paper. One of the ways in which a computer does this is to
perform, for the user, repetitive tasks which have little or
no variation, and can be specified in one simple directive.
This use for computers is exactly what is being talked
about in the discussion of a syntax for repeated features
within Verilog. If a large set of repetitive tasks for the
computer to perform can be easily specified, then there is
no reason to require a human user to explicitly perform
each of these tasks, occupying user time. Not allowing a
user to specify many tasks via an iterative construct is in

i4[55]
13 [55]
i2[55]
i1[55]

€—i2(56)
l@—i1([56]

oy

Compressor

Full

Adder

cr[55]

ell——
cr[54]

c_out [56 |—
-ll—
l—

s_out [56 |-—

c_out[55]
s_out[55

4[0]
3(0]
2[0]
1(0]

1

i

1

1
1

-g—i4[1]
g—i3[1]
l— i2(1])
la—i1(1]

- 4-2 -t
Compressor Compressor
er(1) - cr(0] o 1
o v o o
f=] 3 3 =]
o o o)
| | | i
[$) 2] 4] 10} Al

Figure 1. Row of a full multiplier array

direct conflict with the goal of utilizing a computer to
increase user productivity.

The following example illustrates the need for a
repeated feature syntax in Verilog. Figure 1 shows part of a
multiplier tree [5]. The first and second levels of carry-save
reduced partial products in the multiplier have already been
generated, and the required functionality is to compress
four partial products from the second level into two carry-
save compressed partial products in the third level. These
third level signals are then in turn fed into another array of
compressors. After multiple levels of compressors,
determined by the number of bits in the operands, the
product is formed with a final carry-propagate binary adder
[sl.

The source code to describe the single row of the full
multiplier array shown in Figure 1, using Verilog-XL
compatible syntax, is given in Example 1. The code
segment in Example 1 contains two module types, both of
which are used in both Example 1 and Example 2, but are
presumed to be defined elsewhere. The FTC module is a
four-two compressor, and the FA module is a full-adder.
The four-two compressor is defined to have eight one-bit
wide ports, the first five being inputs, the last three being
outputs. The function of the four-two compressor is to take
these five input bits, all of equal significance and create two
carry bits of next higher significance and one bit of the
input significance. The four-two compressor has a
characteristic which makes it extremely useful in the
generation of multiplier circuits such as the one shown in
Figure 1: one of the carry bits is independent of one of the
input bits, allowing the carry rippling for the row being
used as an example to be to be eliminated [6]. The full
adder module is defined such that the first three ports are
one bit wide inputs, and the last two ports are one bit wide
outputs. This module has the functionality of the classic

full adder. The points to notice about this example are that
the structure is highly repetitive and it would be time
consuming for the user to enter the Verilog code
representing this row. The complete description for the
multiplier tree, with multiple variations on each row, is
even worse. Clearly, any way to specify repeated features
would simplify the expression of such structures.

module RST row3(il, i2, i3, i4, s_out,
c_out);

input [56:0] i1, 1i2;

input [55:0] i3, i4;

output [56:0] s_out, c_out;

wire [55:0] cr;//non-propagating carry chain

FTC c0 (il[0], i2[0], i3([0]), i4[0],
TOP.Gnd, s_out[0], c_out[0], cx[0]),
el (ilf[1), i2[1), i3[1], i4[1], cr([0],
s_out[l], c_out[l], cr[1]),
c2 (il[2], i2[2], i3([2], i4([2], crll],
s_out[2], c_out([2], cr([2]),

¢53 (i1([53), i2[53], 13[53], i4[53],
cr([52], s_out[53]1, c_out[53], cxr([53]),
c54 (il([54], i2([54], i3([54], i4([54],
er (53], s_out[54], c_out[54], cr[54]),
c55 (il[55], i2[55], i3[55], i4[55],
cr([54], s_out[55], c_out[55], cr[55]);
FA €56 (il1[56], i2[56], cr[55], s_out[56],
c_out[56]);
endmodule

Code Example 1. Multiplier row module using
Verilog-XL Syntax

Extending the Verilog specification to support a
repeated feature instance syntax will allow hardware
designers to specify multiple instances of a gate, module or
primitive in a single statement. This is especially useful in
the specifications for datapaths where a bit-slice feature or
module, like the four-two compressor in the example
above, spanning many bit positions in an extremely regular
fashion can be instantiated across all bits of a datapath.
This full datapath in a single statement concept is in
contrast to current practice, illustrated in Example 1, where
the hardware designer must specify a feature instance with
a unique name and complete port connection list for each
bit in the datapath. The only help the designer has is to “cut
and paste” with the design entry tool. Even this is
dangerous, as it is very easy for the designer to make an
error when performing the cutting and pasting by not
changing a pasted value. Additional advantages of a
succinct repeated feature syntax beyond simply a time
savings for designers are an increased degree of readability
and a reduced likelihood of design errors.

The desire for a syntax that will allow Verilog to
generate multiple instances of a module, feature or gate is
wide spread, and recognition of this desire has been made
at a number of levels. This desire has been illustrated by
the sheer number of articles in the comp.lang.verilog
Usenet newsgroup which make reference to, or discuss this
issue [7][8][9][10][111{12]{13]. As mentioned -earlier,
IEEE working group 1364 is currently considering its
version of a Verilog language specification. From
discussions with members of this working group, it is
apparent that the need for a repeated feature extension is a
recognized issue of concern in the working group
[71[11][14]. Before IEEE working group 1364 was formed,
Open Verilog International was responsible for the Verilog
language specification. The OVI organization recognized
the need for a repeated feature extension to the extent that
they included such an extension in their last release of the
Verilog language specification, OVI Language Reference
Manual (LRM) version 2.0a [15]. Unfortunately this
document was released only shortly before IEEE working
group 1364 was formed, and no current Verilog tools
conform to OVI LRM 2.0a. Finally, in an issue of Electrical
Engineering Times preceding the 1994 International
Verilog HDL conference, an article questioned whether the
OVI LRM 2.0a array of feature instances (AOI) construct
would be maintained into the yet to be released IEEE
working group 1364 specification [16]. This article reached
no definitive conclusion, but it is worth note that the
concern over a repeated feature syntax is widely
recognized enough that it made it’s way into publications
such as Electrical Engineering Times.

92

3 Proposed Syntaxes

The array of feature instances syntax, specified in OVI
LRM version 2.0a [15], is a direct extension to the Verilog
language. Within this syntax, an instance of repeated
features, where a feature can be a gate, primitive or
module, is viewed as no more than a single dimensional
array of these features. This is consistent with the way
ports, nets, registers and wires are currently specified in
Verilog, i.e., arrays of single bit wide instances. By using
the OVI LRM 2.0a syntax for arrays of feature instances,
the segment of multiplier source code given in Example 1
could be reduced to the code segment in Example 2. The
difference illustrated here does not appear as significant as
it truly is due to the ellipses used in Example 1. However
this simple extension has a tremendous impact upon the
size of the Verilog source code required for the descriptiun
of the multiplier in [5].

module RST row3(il,
c_out)

input [56:0] i1, i2;

input [55:0) i3, i4;

output {56:0] s_out, c_out;

wire [55:0] cr;//non-propagating carry chain

i2, i3, i4, s_out,

FTC col[55:0](il{55:0], i2[55:0],
13[55:0], 14({55:0], {cr({54:0],
TOP.Gnd}, s_out[55:0), c_out[55:0],
cr([55:01):

c56(i1[56]1, i2([56]), cr{55], s_out(56],
c_out([56]);

endmodule

FA

Code Example 2. Multiplier tree module using OVI
LRM 2.0a syntax

Since only arrays of feature instances can be generated
and the arrays must have constant width specifiers, the OVI
AOI syntax is limited in that it can only be used for
generation of unconditional feature instances. This is due to
the fact that the number of features being instantiated must
be fixed at parse time. For specifying hardware, which is
the purpose of the Verilog HDL, this does not constrain the
usefulness of the syntax.

The OVI syntax allows for two types of nets to be
passed into any array of feature instances. The rules for
connections to an array of feature instances are given in the
OVILRM 2.0a as [15]:

o The bitlength of each port in the instance is compared
with the module or primitive port’s definition

e If the bitlengths are the same, the port expression is
connected to each instance.

a[31:0}
b[31:0}

control

out[31}

out[30]

Figure 2. Array of feature (MUX) instances

If bitiengths are different, each instance gets a part
select of the port expression as specified in the range,
starting with the right-hand index.

A warning message is issued if there are too many or
too few bits to connect to all the instances. If too few
bits are specified, the corresponding ports are zero
filled.

The meaning of each of these four rules will be described
using an example. The example to be used is illustrated in
Figure 2, and described in Example 3. Figure 2 shows a 32
bit wide MUX, a typical datapath element. Example 3
describes the same MUX utilizing a one-bit MUX which is
presumed to be defined elsewhere, but is self explanatory.

module mux32b(a, b, control, out);
input [31:0} a, b;

input control;

output [31:0] out;

muxlb mux_bit[31:0] (a, b, control, out);
endmodule

Code Example 3. Array of feature (MUX) instances

The first type of net allowed within the OVI array of
feature instances syntax, and described in the second OVI
rule above, will be referred to as a static net. The static net
is connected to each of the feature instances being created.
The static net is recognized by the Verilog tool as being a
net of the same width as the definition for the port into
which the net is being passed. An example of a static net is
the control line being connected to each bit slice of the 32
bit wide MUX shown in Figure 2, and illustrated in
Example 3.

The second type of net supported by the OVI syntax,
and described in the third OVI rule, will be referred to
herein as an indexed net. Indexed nets are those for which
only a portion of the entire net, referred to as a part or bit

out[1])

select, is connected to each feature instance declared in the
array. An indexed net is recognized by the Verilog tool as
being a net of width wider than the definition for the port to
which it is being connected. An example of an indexed
type net would be the datapath inputs (a and b nets)
connected to the 32 bit wide MUX shown in Figure 2, and
described in Example 3.

Typically the width of the indexed net, N, is an even
multiple of the width of the feature port, P, into which the
net is being passed. If this is not the case, i.e. N/P is not
equal to the integer number of features being instantiated,
then a warning is generated, and the port connections for
the feature instances are made starting from the right and
zero filled from the left. This is the functionality described
in the fourth OVI rule above. The AOI syntax does allow
for indexed nets where the part select being passed into
each feature contains multiple bits, but our examples in this
paper do not illustrate this capability. Indexed and static are
the only two types of nets which the OVI LRM 2.0a array

_of feature instances syntax supports [15].

93

Before construction of any preprocessor was begun,
other possible syntaxes for the support of repeated features
were examined. A number of such syntaxes have been
proposed. The first of these is the specification of a
repeated feature syntax for Verilog similar in function to
the generate syntax used within VHDL [17]. In this regard,
it is interesting to note that in 1992 Cadence studied the
task of bringing full VHDL generate functionality to
Verilog, but decided not to pursue this task for reasons of
complexity. Specifically, adding generate functionality to
Verilog would require the addition of such items as scoped
declarations and multidimensional arrays to the Verilog
language [10]. The next syntax examined for support of
repeated features was the interpreted for-loop structure.
This is an intriguing concept as it would be consistent with
both the C programming language, upon which Verilog is
based, and behavioral Verilog which currently allows the
use of a for loop. It was determined that the defining task in
making an interpreted for-loop syntax work for support of

repeated features would be generating unique feature
instance names via the index variable of the loop.
Supporting an interpreted for loop syntax using the
preprocessor was not pursued because the functionality of
an interpreted for-loop syntax for structural Verilog would
be similar to that of the OVI AOI syntax, but less compact.
Additionally, only a few functionalities could be supported
by a for loop syntax, but not by the AOI syntax. Examples
of these limitations are loops which would involve both
behavioral and structural Verilog within the same for loop,
or use of a variable within the indexing of the loop. There
is no way in which a preprocessor could support utilization
of variable within the indexing. The final possible syntax
for support of repeated features which was examined was a
metaprocessed for-loop structure which is currently in use
at some design facilities. This involves using a
programming language such as C, or a text manipulation
language such as PERL to generate the Verilog source code
from an intermediate representation before it is passed into
a Verilog tool [18]. This avenue was not pursued due to its
temporary fix appearance and the requirement of an
additional step before parsing.

Any of these proposed syntaxes could provide the
functionality desired by the hardware designers requesting
support for iterative constructs. We chose to support the
OVI array of feature instances syntax in the preprocessor
for three reasons. First, this syntax was specified by an
organization (OVI) which was at one time responsible for
the Verilog language specification and the syntax therefor
has some degree of sanctioned support. Second, the array
of feature instances syntax is consistent with other portions
of the Verilog language which are specified using range
indicators (‘[a:b]’), such as wires, ports and registers.
Third, communications with members of IEEE working
group 1364, made it clear that if any repeated feature
syntax is supported in the first version of an IEEE language
specification it would be the OVI LRM 2.0a syntax
[11][14][19]. If the array syntax were to be present in the
LRM released by IEEE working group 1364, this would
result in a situation where all Verilog code written for the
Verilog preprocessor would also be forward-compatible
with future Verilog tools.

4 Decision to Generate a Preprocessor

Extending Verilog can be handled in several ways. The
most obvious is to build a new interpreter or compiler
capable of dealing with the extended language. This has
two undesirable features: 1) it involves an enormous
undertaking; and 2) existing CAD tools designed to work
with Verilog would be rendered useless. Our solution was
to build a Verilog preprocessor, VPP. This preprocessor
will accept the OVI LRM 2.0a array of instances extension

as part of a Verilog source file, and for each source file it
examines containing this extension, it will generate a new
source file which utilizes only Verilog-XL compliant
syntax. Thus, the output of the preprocessor is Verilog and
all existing simulators and CAD tools developed for
Verilog can still be used.

The first step in the creation of a preprocessor was the
location or generation of a Verilog parser. According to the
frequently asked questions (FAQ) posting on the
comp.lang.verilog Usenet newsgroup, there are two Verilog
parsers in the public domain, both of which utilize LEX
and YACC for their parsing capabilities [20]. The first of
these is the Berkeley Verilog parser written by S.T. Cheng
at Berkeley (stcheng@ic.berkeley.edu) for automatic
generation of BLIF-MV simulation code from Verilog
code. This parser was received from Mike Riepe
(riepe @eecs.umich.edu) who performed a significant task
in separating the parsing functionality from the BLIF-MV
conversion code, and repairing memory leaks in the
original tool. The second public domain Verilog parser is a
parser which was begun, but never completed, by EW.
Bennett (fwb@hpfcso.fc.hp.com). The possibility was also
pursued of obtaining a parser from Cadence which would
not be in the public domain. However, because of the
timeframe when the Cadence parser would be available,
and because the resulting preprocessor would then be
proprietary, the choice was made not to use a Cadence
supplied parser. After analysis of the source code for the
two public domain parsers, the Berkeley parser was ~
selected because it was the furthest along towards
completion.

The Berkeley parser in the state received did not,
however, contain functionality for the full Verilog
specification. The grammars for Verilog-XL compatible
syntax were fully specified within the YACC source code,
but the underlying C functionality to support the parser was
not present. The format for the dynamically stored
representation of the described circuit was specified, and
for the most part finished. There were, however, labels at a
number of locations in the code which indicated areas
where the source code for handling Verilog had yet to be
completed. C code had to be generated for the majority of
these “TODO’ markers before the preprocessor was fully
functional.

The flow-chart for the Verilog preprocessor is given in
Figure 3. The preprocessor accepts as input Verilog source
file(s), which may or may not contain the array of feature
instances syntax, parses these file(s), and outputs to disk
new Verilog-XL compatible file(s) which will retain the
functionality of the input source file(s). These output file(s)
can then be compiled by Verilog-XL, or an equivalent
Verilog HDL simulation package and simulated or used in
the normal manner.

One difference between the preprocessor output and the
OVI LRM 2.0a specification is unavoidable. This is
because in Verilog-XL compliant syntax, which is the
requirement placed on the preprocessor output, each
instance of a feature must have a unique name. In the array
of instances syntax, all features instantiated by the AOI
statement are given the same name, followed by square
brackets containing a number. When generating Verilog-
XL compatible syntax, this naming convention can not be
used because the special case characters ‘[’ and ‘]’ would
cause a parsing error. Therefor in the preprocessor output,
the Kth instance of the array of features widget[(N-1):0] is
renamed to widget_K as opposed to widget[K] as specified
in the OVI LRM 2.0a. This renaming convention should
keep the debugging process intuitive to the designer, and
minimize the differences between the OVI specification
and the preprocessor output.

5 Creating the Preprocessor

A variety of tasks were involved in the generation of the
preprocessor. Many changes were required to the Berkeley
parser before it was useful in the generation of the Verilog
preprocessor. These changes encompass items which exist
in both Verilog-XL compliant source code, and items
which were required to be added for support of the new
OVI AOI syntax. All changes to the code were performed
using ANSI C as well as LEX and YACC. One of the next
steps in the evolution of VPP as a tool is to port this to
GCC, FLEX and BISON respectively for greater
consistency across hardware platforms.

Some of the obstacles during the creation of VPP are
quite subtle. Since the preprocessor is required to handle all
existing Verilog syntaxes, all forms, even non-typical
Verilog must be supported.

In the initial stages of building VPP, critical tasks were
the identification of the dynamic data structures used by the
Berkeley parser to represent the digital system, and the
addition of new pointers required specifically for the
preprocessor. The source representation used by the
Berkeley parser makes heavy use of three types of storage
formats: standard dynamic memory allocation using
pointers to unions and structures, the ST toolbox for
symbol tables, and the list toolbox for linked lists. Both of
these toolboxes were developed in C at Berkeley and
provide an easy interface to standard data structures in a
similar manner as the standard classes provide a easy
interface to these same data structures in C++. Once the
task of familiarization with the internal circuit
representation was complete, additional structures and
pointers for specific support of the preprocessor were
required to be added to those aiready existing.

Select standard or master file
input stream

Perform parse of Verilog source
(Berkeley Parser)

Y

Scan internal representation for AQOI
Create list of all AOI occurrences

AOI
instances
exist?

Sort AOI list by source file and order
of occurrence in file

»‘

Expand next AOI instance
Check net sizes according to OVI rules
Generate warnings or errors as required

Y

Generate new Verilog source file
Generate modified master file if required
Remove this AOI from list

Figure 3. Flowchart for VPP

The primary change to the Berkeley parser was the
addition of grammars to allow for an AQOI statement to be
successfully parsed rather than generating an error. This

95

modification involved specifying new YACC grammars, as
well as writing the C functions to handle these grammars
when they are encountered. The Berkeley parser is
essentially a two pass parser. The source is read in, and the
structures are allocated in the first pass. During the second
pass a number of characteristic value are generated, checks
for errors are made, and the internal representation may be
printed dependant upon the command line arguments. The
addition of the AOI functionality required significant
changes to the second pass of the parser in all areas
mentioned. It was also convenient to perform the net width
determination function for all net references during this
second pass. The addition of variables to the dynamic
representation, for the storage of the new information
contained in the AOI syntax, was also required.

The next change required to the Berkeley parser was the
ability of the parser to recognize hierarchically named nets.
The Berkeley parser, in the condition received, did not fully
support the usage of hierarchically named nets in Verilog
source code. The specification and grammars were present
in the YACC source code, but the supporting C functions
for these grammars were not present. The ability to specify
a net via a hierarchical name allows the user to access a net
declared in another module or source file without explicitly
passing the net through the module parameter list.
Hierarchically named nets are a widely used capability of
the Verilog language, and, consequently, VPP must support
them, and have the ability to determine the width of
hierarchically named nets to function in the manner
desired. For this reason the C functions to support the
grammars for hierarchical nets were written. The
functionality and usage of hierarchically named nets is
described in section 12.5 of the OVI LRM 2.0a, and is also
present in Verilog-XL compatible Verilog [15]. Providing
this functionality in the preprocessor required identification
of top level modules. Also the ability to follow the module
tree structure down to verify that a specified net exists, and
determine its width. This hierarchical net capability implies
that the port connection widths can not be determined until
the full Verilog source is parsed. For this reason the width
determination for all net references is performed in the
second the second pass, as mentioned earlier.

Another task encountered in the generation of VPP was
the support of explicitty named port connections in
unrolling the array of feature instances syntax. The
specification for using explicitly named port connections is
given in section 12.4.4 of the OVI LRM 2.0a, and is also
supported in Verilog-XL compatible Verilog [15]. The
routines written to analyze the port connections for an array
of instances operate on the ordered relationship between
the port definitions and the port connections. Allowing for
unordered access, i.e., using explicitty named port
connections, considerably complicates the process of

96

analyzing the port connections. The named port connection
capability required a new set of functions at the stage in the
preprocessor where the array of instances statement is
“unrolled” into multiple instances of the repeated feature.
This new functionality for unrolling named port
connections is required because some Verilog CAD tools
require port connections to be made using the named
syntax, and will fail to function if the port connections are
not made using the named port convention, regardless of
whether the connections are reordered into the correct
sequence.

The functionality to determine the width of nets was the
next challenge in the generation of VPP. The determination
of net width is required for the classification of port
connections as indexed or static. Identification of net width
is a significant task due to the variety of methods by which
a net can be both declared and referenced in Verilog. These
methods include named, bit selected, concatenated,
hierarchically named and standard nets. In the process of
adding the net width functionality to the Verilog
preprocessor, variables were added to the dynamic circuit
representation created by the Berkeley parser. These
variables insure that the time consuming task of width
determination is only carried out once for each port
connection made in the circuit description.

The most difficult task in the process of transforming
from the array of feature instances representation to the
iterative representation is in the generation of the sub-nets
when unrolling indexed net port connections. This task
involves taking an N-bit wide indexed net and subdividing
it into P (N/P)-bit sub-nets. Because of the wide variety of
methods that Verilog supports for net definition, this task
requires a substantial amount of logic to perform. Both this
task, and the similar net width determination task must
allow for recursion due to the possibility of concatenated
nets.

One of the final, and more straight forward tasks
achieved in the generation of the preprocessor was the
addition of support for the use of master files in a Verilog
project environment. The master file capability, another
commonly used feature of Verilog-XL, was not supported
by the Berkeley parser as received, and therefor it was
required that C code to provide this functionality be
generated. Master files are used where a Verilog project
contains more than a single source file. The master file
functionality allows the user to specify a set of Verilog
source files which all taken together represent a digital
circuit design. The master file also allows the user to
specify whether each Verilog source file referenced in the
master file is to be used as source or a library. This
distinction is required for determination of top level
modules. The C source code for dealing with master files
works in close conjunction with the Berkeley parser

without requiring changes to the parsing algorithm, and
essentially provides an input stream to the LEXer.

6 The Preprocessing Stages

A necessary task in the creation of a preprocessor to
transform one notation (the array of instances syntax) into
another notation (the Verilog-XL compliant iterative
syntax) is the identification of the instances to be
transformed. In this case, the only instances which need be
examined are those where a feature instance name has a
range specifier (‘[a:b]’) after it. The code to locate all
places in the source code where the array of instances
syntax is used, and create a list of all AOI statements was
written. This is the first sesgment of code to execute after
both passes of the parse of the Verilog source code is
complete. If the program is unable to locate any statements
utilizing the AOI syntax, then the preprocessor terminates.

If the list of statements utilizing the AOI syntax is not
empty, then it this list is sorted. This sorting is done in
order to simplify the later unrolling process. All AOI
instances are sorted into a single ordered list using the
source file in which they are contained as the first key item,
and the reverse of the order in which they occur in this file
as the second key.

After an instance of code utilizing the AOI syntax has
been identified, each of the nets in the port connection list
must be identified as one of the two types allowed by the
OVI specification, static or indexed. To make this
identification, the port connection and port definition lists
must be compared. If an error due to non-compatible
connection and definition widths is detected at this stage, it
must be reported. Some width problems result in warnings,
and some result in fatal errors, both must be handled
smoothly by the Verilog preprocessor. This phase uses as
input the sorted list created by the AOI location task, and
adds to this list the connection type, static or indexed, for
each port in the port list. This list is then used in the process
of unrolling each of the AOI statements.

Once the instances to be transformed have been
identified, and the nets passed into each port have been
classified as either indexed or static, then the new file, with
the array of feature instances iteratively specified can be
generated. The source files to the preprocessor are left
unchanged. The new Verilog-XL compatible source files
being generated are named by taking the file name of the
input file and concatenating a “#” on the end. The # is a
single digit integer dependant upon how many AOI
statemnents are present in the source file being renamed.

The final step in the execution of the preprocessor is the
generation of a new master file. This step occurs only if a
master file was used for the input. Much like the Verilog
source files, the original master file remains untouched, and

a7

a new master file is generated. This new master file
contains all of the changes to the Verilog source file names
which were made by the preprocessor such that running a
Verilog CAD tool on the generated master file will reflect
all changes to all source files in the project. The status of a
source file, as source or library, also remains unchanged in
the new master file. The name of the created master file is
provided to the user at termination of the preprocessor.

7 Future Extensions to VPP

With a preprocessor created to support the Open Verilog
International array of feature instances syntax, a simple"
question is what other grammars could be added to help
make the Verilog language easier to use. Another extension
to the Verilog language specification which is present in the
OVI LRM 2.0a is the addition of parameterized macros.
This capability allows the designer to specify
parameterized macros using syntax similar to the C
programming language for use in Verilog source files. This
is one possible extension which is being examined for
addition to VPP.

Also useful in the creation of Verilog source files would
be the addition of syntaxes to support not only single
dimensional arrays of instances, but also two dimensional
arrays or tree shaped repeated instantiations of features.
However there is no widely agreed upon syntax for either
of these structures, and the functionality of these structures
can be effected using the AOI syntax. For instance a two
dimensional array of 2 elements by 2 elements can be
represented as a one dimensional array of 4 elements, using
the concatenated net description in Verilog. However
having a specific grammar for support of these structures
could make the source code more descriptive for the reader.

Essentially this preprocessor could be used for
prototype testing of any new syntax which is being
considered for addition to the Verilog language. This is the
function it has served for arrays of instances, and now that
the initial learning curve has been overcome, and the
preprocessor is in place, the addition of new syntaxes to
this tool would be relatively simple.

8 Conclusions

The creation of VPP, a Verilog preprocessor provides an
important tool for HDL research. This tool will provide a
base for continuing research into the Verilog HDL at the
University of Michigan.

One unique feature of doing this type of analysis at the
parsing level is that it allows the hardware design engineer
to examine the file which is generated by the preprocessor,
to learn how the code is represented in the postprocessed
form. As mentioned earlier, this also allows for use of all

existing Verilog CAD tools without requiring modification
to their algorithms.

It is our hope that by releasing this tool into the public
domain we can increase Verilog users awareness that the
Verilog language is not static, but constantly changing. In
doing this we may be able to prompt these same users into
voicing their opinions about what additions to the Verilog
language they would find useful.

Acknowledgments

We would like to thank all of the people on the Internet
who answered our questions during the creation of the
Verilog preprocessor tool. Without their assistance and
advice, this tool would still be in the conceptual phase.

We would also like to acknowledge once again Szu-
Tsung Cheng for the development of a public domain
Verilog parser. This LEX and YACC framework was the
starting point for the Verilog preprocessor, and without this
parser available, the code generation time for the
preprocessor would have been at least doubled.

Much thanks also goes to Mike Riepe for his many roles
in the generation of this preprocessor. Primarily for his
work in preparing the code of the Berkeley parser for use in
other tools, such as this preprocessor. Also for his expert
advice while becoming familiar with the parser, and input
into the appropriate functionality for this preprocessor
during the development cycle.

Where to find VPP

The source code for the Verilog preprocessor, VPP is
available via anonymous ftp at fip.eecs.umich.edu, in the
directory people/btdavis. Any questions about this source
code should be directed to btdavis @ engin.umich.edu.

References

[1] Navabi, Zainalabedin, “A High-Level Language for
Design and Modeling of Hardware”, Journal of
Systems Software, Vol 18, 1992, p. 5-18.

[2] Goel, Prahu, “Maturing of the HDL Methodology”,
Electronic Engineering, Vol 63, Num 777, Sept.
1991, p. S15.)

[31 Personal communication (email) with
ovi@netcom.com, Tue, 6 Sep 1994 11:08:48.

[4] Ashden, Peter J., “The VHDL Cookbook”,
University of Adelaide, South Australia,
ftp @ftp.cs.adelaide.edu.au:/pub/VHDL-Cookbook.

98

[5]1 Goto, G, etal., “A 54 X 54-b Regularly Structured
Tree Multiplier”, IEEE JSSC, Vol. 27, No. 9, pp.
1229-1236, September 1992.

[6] Santoro, “Design and Clocking of VLSI
Multipliers”, Palo Alto CA: Stanford University
Technical Report CSL-TR-89-397, October 1989.

[71 Comp.lang.verilog article #625, written by
jws@chronologic.com, Wed, 16 Feb 1994 17:16:07.

[8] Comp.lang.verilog article #627, written by
steveg @cadence.com, Thu, 17 Feb 1994 14:58:01.

[9] Comp.lang.verilog article #630, written by
george @ole.cdac.com, Fri, 18 Feb 1994 18:11:16.

[10] Comp.lang.verilog article #652, written by
davidr@cadence.com, Wed, 23 Feb 1994 19:09:53.

[11] Comp.lang.verilog article #674, written by
jws@chronologic.com, Sat, 26 Feb 1994 22:25:18.

[12] Comp.lang.verilog article #675, written by
robertb@cadence.com, Mon, 28 Feb 1994 19:48:59.

[13] Comp.lang.verilog article #693, written by
leung @storage.tandem.com, Wed, 2 Mar 1994
17:33:11.

[14] Personal communication (email) with
jws@chronologic.com, Sat, 27 Aug 94 16:19:48.

[15] Verilog Hardware Description Language Referenc;
Manual (LRM) Version 2.0, Los Gatos, CA: Open
Verilog International, March 1993.

{16] Electronic Engineering Times, “Verilog Users
Demonstrate Strong loyalty”, Issue 788, pp. 1, 41,
45-47, Mar. 14, 1994.

[17] IEEE Standard VHDL Language Reference Manual,
IEEE Std. 1076-1987, The Institute of Electrical and
Electronic Engineers, Inc., Piscataway, NJ, 1988.

[18] Comp.lang.verilog article #593, written by
jwill@netcom.com, Wed, 9 Feb 1994 08:20:00.

[19] Personal communication (email) with
roberts @cadence.com (David Roberts), Wed, 2 Mar
94 16:36:08.

[20] comp.lang.verilog newsgroup frequently asked
questions (FAQ), posted regularly to newsgroup,
available via ftp@ftp.cray.com, directory: /pub/
comp.lang.verilog/.

Comp.lang.verilog article numbers are as archived at ftp.cray.com

