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Abstract

We examine two pipeline structures which are employed in com-
mercial microprocessors. The first is the load-use interlock (LUI)
pipeline, which employs an interlock to ensure correct operation
during load-use hazards. The second is the address-generation
interlock (AGI) pipeline. It eliminates the load-use hazard, but has
an address-generation hazard which requires an address-genera-
tion interlock for correct operation. We compare the performance
of these two pipelines on existing binaries and on applications
which have been recompiled with a local code scheduler that
understands the difference in the pipeline structures. When branch
prediction is more than 80% accurate and the data cache access
time is greater than two cycles, the AGI pipeline performs signifi-
cantly better than the LUI pipeline on existing binaries. Recompil-
ing the benchmarks with a new local code scheduler provides little
additional performance improvement.

Keywords: cache memory, interlocks, memory system,
pipelines, RISC

1 Introduction

Although pipelining is a widely used technique for speeding up
instruction execution, the existence of dependences between
instructions means that pipelines cannot run at 100% efficiency.
Nevertheless, the improvement in speed through pipelining usually
offsets any loss in performance[14].

This paper will examine three types of “hazards” that can re-
duce the efficiency of a pipeline: branch, load, and address-genera-
tion hazards. In particular we will compare two pipeline organiza-
tions employed in several commercial machines that make different
trade-offs between these three hazards. The first, which we shall re-
fer to as the load-use interlock (LUT) pipeline, was introduced in the
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MIPS R6000—a short-lived ECL implementation of the MIPS in-
struction-set architecture (ISA) [13]. It is subject to branch hazards
and load hazards, but not address-generation hazards. The second,
which we shall refer to as the address-generation interlock (AGI)
pipeline, was introduced in the TFP processor announced by Sili-
con Graphics Inc. The TFP also implements the MIPS ISA [4] [7].
It rearranges the LUI pipeline, moving the execute stage later in the
pipeline, so that load hazards are eliminated. However, this change
introduces address-generation hazards and increases the penalty for
branch hazards. In this paper we will report on experiments to de-
termine if these penalties are outweighed by the benefits of elimi-
nating load hazards.

A precursor to the LUI pipeline is used in the MIPS R2000
and R3000. It does not employ hardware interlocks for loads or
branches. Instead, NOPs are inserted after loads and branches, as
required, to ensure correct operation. Load interlocks were added in
the R6000 and subsequently in the R4000, R4200, and R4400{11].

The AGI pipeline is used in the Intel Pentium and the Cyrix M1',
as well as the TFP [1][5] [6]. All three processors with AGI pipe-
lines are also designed to preserve binary compatibility with earlier
LUI microprocessors. A large body of software exists in the form
of binaries optimized for the LUI pipeline structure, and it is not
known how much performance is degraded when these binaries are
run on the rearranged pipeline. To be acceptable, any reduction
must be small to avoid the cost of recompiling applications.

There are two questions that this paper attempts to answer:

1. How does the AGI pipeline affect performance on binaries
created for an LUI pipeline?

Does the AGI pipeline improve performance if the com-
piler performs local code scheduling specifically for this
organization?

This paper is organized as follows. The next section discuss-
es pipeline hazards in more detail. With this as background,
Section 3 describes the LUI and AGI pipeline organizations. The
compiler and simulation tools are described in Section 4. Experi-
mental results are presented in Section 5 followed by some con-
cluding remarks in Section 6.

1.The M1 executes the Intel instruction set, but has one extra address cal-
culation stage than the other pipclines.
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* update program |* finish instruc- |+ calculate effec- |* execute — per- |+ writeback to reg-
counter in first tion fetch in first | tive address form ALU oper- | ister file
half cycle half cycle ation
+ fetch instruction |* decode instruc- * resolve .
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Figure 3: The AGI Pipeline

The five stages and bypass paths are shown. The actions in the EX/MEM stage that are underlined are
moved from the EX stage in the LUI pipeline. See Figure 1.

address-generation bypass

“—— N —>

EX/

IF RD AD | MEM | ===- MEM wB
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branch resolution bypass

Figure 4: The AGI-N pipeline showing the bypass paths
The extra memory cycles and the corresponding increase in the address-generation bypass are shown.

instruction in the load-delay slot [11]. line, the scope of aload is N instructions and thus its load-use inter-
locks can last from 1 to N cycles. If the first dependent instruction
In high clock rate microprocessors, even the on-chip prima- in the load scope is & instructions after the load, then the interlock

ry cache can take more than one cycle to access. This paper will also will stall the pipeline for (N-k)+1 cycles.

consider a generalization of the LUI pipeline to systems with mul-
tiple-cycle data cache access times. These pipelines will contain ad-
ditional MEM stages. A data cache with an access time of N cycles
will be paired with a LUI pipeline with N MEM stages, and will be
referred to as an LUI-N pipeline (see Figure 2). In an LUI-N pipe-
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I1: move a3, a0 # move the value in register a0 into register a3
I2: 1w vl,4(a3) # use it as the base register to load register vl
I3: beqg vl, zero, 0x400328 # conditionally branch on vl == 0

nop
I4: move a0, vl # vl !'= 0, so put the value in vl into a0
I5: jal copy_bnode # and call copy_ bnode (a0)

Figure 5: A MIPS assembly language fragment
This code fragment illustrates a load-use hazard and an address-generation hazard.

3.2 The address-generation interlock
pipeline

The AGI pipeline is shown in Figure 3. In this pipeline, the load-
use interlock has been eliminated by delaying the EX stage by one
cycle and combining it with the MEM stage. Combining the EX
and MEM stages requires an extra adder which is dedicated to
computing the target address of memory operations. In contrast,
the LUI pipeline has only a single adder in the EX stage which is
used for both integer arithmetic instructions and address calcula-
tions. This address calculation is performed in the AD stage before
the EX/MEM stage. By the time that an instruction which is
dependent upon a load in the previous cycle reaches the EX/MEM
stage, the results of the load are available from the ALU bypass.
However, branch resolution now occurs one stage later because a
conditional branch instruction may require a result from the
instruction that immediately precedes it. This result will not be
available until the end of the EX stage.

There are two disadvantages to this arrangement. First, an
address-generation interlock is required when a load instruction re-
quires the register result of an uncompleted instruction to calculate
the target address in memory. Second, the branch scope is now two
cycles because branch resolution occurs in the first half of the
EX/MEM stage of the pipeline. This means that in addition to the
branch-delay slot, a second instruction will issue before the branch
is resolved. We assume that this instruction is chosen by a predic-
tion scheme, and that it may have to be squashed if the branch has
been mispredicted. This contrasts with the LUI pipeline which, be-
cause of the branch-delay slot, needs no branch prediction strategy.

As cache access time grows beyond a single cycle, delay
stages can be added to the AGI pipeline between the AD and
EX/MEM stages. A processor which takes N cycles to access the
cache will require N-1 extra MEM stages. We refer to this as an
AGI-N pipeline, as shown in Figure 4. In an AGI-N pipe, N instruc-
tions must be squashed every time a branch is mispredicted. Thus,
address-generation interlocks can last from 1 through N cycles. If
the first dependent load instruction is issued k cycles after the in-
struction which generates its base register, then the interlock will
stall the pipeline for (N-k)+1 cycles.

The difference between the two pipeline organizations is
further illustrated with the code fragment written in MIPS assembly
language shown in Figure 5. NOPs in load-delay slots have been re-
moved—Iload-use interlocks are modeled instead. The code is taken
from the program eqgntott, a SPEC92 integer benchmark. In this
example, instruction I3 depends on instruction I2, which in turn de-
pends on instruction I1. Because the branch instruction I3 depends

on I2, a load-use interlock will occur in an LUI pipeline. This inter-
lock does not occur in the AGI pipeline. Instead, an address-gener-
ation interlock will stall the pipeline since I1 calculates a value for
the base register of the load instruction I2. In addition to the ad-
dress-generation interlock, the AGI pipeline may face an additional
possible performance loss if the branch is mispredicted. In the case
of the LUI pipeline, the NOP in the branch-delay slot covers the
branch penalty. For every memory access stage in the AGI pipeline,
an additional instruction must be squashed after a mispredicted
branch. For example, in an AGI-2 pipeline, both I4 and IS5 would be
squashed if the branch instruction I3 were incorrectly predicted not-
taken. Note that for both the LUI and the AGI pipeline, the instruc-
tion after the branch is a branch-delay slot. Only the additional in-
structions in the branch scope for the AGI pipeline are speculatively
executed.

4 The compiler and simulator

This paper considers programs compiled for the MIPS 1 instruction
set architecture—the version of the architecture that does not sup-
port load-use interlocks. This architecture was chosen for several
reasons:

«  The MIPS architecture has been implemented with a LUI
pipeline and with an AGI pipeline. The R scries machines
all have LUI pipelines and the TFP has an AGI pipeline.

+ The Gnu C Compiler (GCC) is available for the MIPS
architecture [20]. GCC is in the public domain and the
source codes are easily available, so the compiler may be
modified.

o The MIPS is a load/store architecture, so all memory oper-
ations are contained in explicit load and store instructions.
This simplifies the creation of compilers which optimize
for the two different pipeline structures.

The experiments use the SPEC 92 integer benchmarks, sum-
marized in Table 1. All of the benchmark programs were executed
to completion using one of the “reference” input files provided by
SPEC except x1isp, which used the “short” input file. The bench-
marks are compiled three times. The MIPS C Compiler creates one
version of each program. The MIPS C Compiler heavily optimizes
the code and assumes a single load-delay slot. In effect, this pro-
vides a binary which is optimized for a single-cycle load-use haz-
ard. GCC is used to create two versions of each benchmark. The
versions differ in the cost function given to GCC’s scheduling algo-
rithm.
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Bench- Input Base Execu- | Average
mark Flie tion Time in Basic
Name Cycles Block

Size
compress | reference 79 192765 5.1
egntott reference 1381970038 3.0
espresso bea.in 493 384 704 56
gee stmti 133 778 490 50
sc loadal 436 172 261 4.6
xlisp short 1171 528 797 3.0
Table 1: The SPEC92 integer benchmarks

and their characteristics

GCC’s scheduler assigns a priority to each instruction in a
basic block. Instructions with high priorities are scheduled first.
Several factors determine the priority of an instruction, but the most
important is the scope of an instruction. An instruction with a large
scope which produces results used by a later instruction is assigned
ahigh priority equal to the number of instructions in its scope. Once
the instructions are prioritized, GCC attempts to schedule each in-
struction so that the pipeline will never interlock. For a discussion
of scheduling techniques for pipelined processors, see [12].

To provide a binary which optimizes for load-use hazards,
one version of each benchmark is produced in which GCC is told
that two instructions are required between a load and its use for in-
terlock-free execution. To create a version optimized to reduce ad-
dress-generation hazards, the scheduler is told that a two-cycle ad-
dress-generation hazard is present. The study includes the MIPS C
Compiler version because it is the standard compiler for systems
using the MIPS processors. Comparing the code produced by GCC
to the MIPS C Compiler’s version, provides a check that the code

which is produced by GCC for the AGI pipeline is equally well op-
timized.

Each version of the program is then instrumented to produce
an instruction and data trace by pixie. A simulator based on the
xsim tool developed by M. Smith consumes the trace [19]. The
simulator models a machine with the following characteristics:

* There are no load-delay slots. Other delay slots, mainly
those required by the MIPS architecture for integer multi-
ply and divide instructions, are present in the machine
model. This includes a single branch-delay slot for both
the AGI-N and the LUI-N pipeline.

» Al operations except data cache accesses complete in a
single cycle.

» There is a single execution pipeline.

» All memory references hit in the instruction and data
caches.

* Instruction fetch requires a single cycle.

Load-delay slots have been eliminated in newer RISC archi-
tectures, such as the Alpha, because, as cache access times get long-
er, code expansion caused by NOPs in unfilled delay slots becomes
aproblem {17)]. Typical RISC integer instructions complete in a sin-
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gle cycle, except integer multiplication and division which usually
take more than one cycle. The MIPS ISA requires delay slots in the
scope of these instructions which must be filled by independent in-
structions or NOPs.

5 Experimental results

The results of all experiments are summarized in Figures 6-12. In
these figures, the x-axis shows the access time of the data cache in
cycles. The y-axis shows an execution time which is normalized to
the run time of code compiled by the MIPS C Compiler for a
machine with an LUI pipeline and a zero-cycle cache access time
(N = 0). In other words, all memory references are immediately
available so there are no load-use hazards or address-generation
hazards in the reference machine. The third column of Table 1 lists
these base execution times for each benchmark in cycles. The har-
monic means of the experimental results for all benchmarks are
presented in Figure 6. High numbers indicate poor performance.
When the benchmarks eqntott and xlisp are simulated for
large cache access times, their run times overflow the cycle-count-
ing capabilities of the simulator. Because of this, some of the
experiments are missing from Figure 8 and Figure 12 for cache
access times of six and seven cycles. To make the comparison
between pipelines fair, x1isp and egntott are removed from the
harmonic mean calculations for these two cache access times.

The first experiment compares how the benchmarks perform
on code compiled by the MIPS C Compiler for the MIPS R2000
performs on an LUI and an AGI pipeline for varying cache access
times. The results assume perfect branch prediction in the AGI
case. These bars are labeled “LUI” and “AGI - Perfect” in the Fig-
ures 6-12. For low cache access times, there is very little difference
between the two pipeline organizations. As the access time increas-
es beyond about 3 cycles, the performance benefit of the pipeline
with an address-generation interlock begins to appear. The AGI-3
pipeline completes the benchmarks almost 10% faster than the LUI-
3 pipeline. The performance gap continues to grow as the cache ac-
cess time gets larger.



The first experiment answers the question about the perfor-
mance of existing binaries. For our sample set of benchmarks, the
AGI pipeline actually performs slightly better than the LUI pipeline
on binaries compiled for an LUI pipeline.

The next set of experiments considers code compiled by
GCC for LUI pipelines against code compiled by GCC for AGI
pipelines. The programs are nn on the pipelines for which they
were compiled with the assumption of perfect branch prediction. In
Figures 6-12, these experiments are labeled “GCC-LUI” and

where the improvements occur. Programs which rely heavily on dy-
namic data structures see a particularly large benefit from the AGI
pipeline. In the benchmark sc, the AGI pipeline outperforms the
LUI pipeline even with poor branch prediction. espressc and gcc
also realize significant performance benefits. In these programs, the
program reads from records with many fields. A base register point-
ing to the beginning of the record needs to be set up, but only once.
Once this register is initialized, the values in the fields can be load-
ed using constant offsets. Only the instruction which sets the base
register can cause an address-generation interlock, while each load

*GCC-AGI-Perfect.” Once again, a small benefit is seen through
the use of AGI pipelines for small cache access times. As cache ac-
cess times increase, AGI pipelines again provide a larger speedup.

Informing GCC'’s local scheduler of the new pipeline struc-
ture does not seem to affect execution time to a large extent. The
percent change between the GCC-LUI experiments and the GCC-
AGI experiments are similar to those between the LUI and the AGI-
Perfect experiments. This may be because GCC’s scheduler works
only within a single basic block. For the benchmarks under consid-
eration, the basic block size tends to be small, as small as 3 in the
case of xlisp—see Table 1—so modifying the code scheduling
costs may not have a large effect. The limited improvement ob-
tained from the compiler suggests that more aggressive optimiza-
tion techniques, such as those in {8] may be needed. However, the
performance of the Gnu C Compiler versus the MIPS C Compil-
er——compare LUI vs. GCC-LUI—makes it clear that, for our ma-
chine model, GCC is as good as one of the best commercial com-
pilers. This gives support for our remaining results with GCC.

This set of experiments gives a limited answer to the second
question posed in the introduction. Simply altering the local sched-
uling algorithm does not significantly improve the compiler’s abil-
ity to produce efficient code for the AGI pipeline. However, the
performance of the AGI pipeline is already betier, as shown above.
More sophisticated compiler techniques may provide further im-
provement.

The final set of results, labeled “GCC-AGI-X%" represent
AGI pipelines with X% branch prediction over all branches, includ-
ing unconditional jumps and calls. Because the MIPS branch delay
slot is included in the simulator, all of the results for LUI pipelines
are valid for any branch prediction accuracy. The branch penalty is
accounted for by the instruction in the delay slot, which may be a
NOP. In contrast, an AGI-N pipeline must squash N extra instruc-
tions when a branch is mispredicted. A branch penalty was approx-
imated by assessing a fixed number of cycles for each mispredicted
branch and adding it to the total execution time of the benchmark.
The penalty is calculated with the following formula:

Penalty = Nx (1-b) xC,

where N is the cache access time in machine cycles, b is the branch
prediction accuracy expressed as a probability, and C, is the
dynamic branch count of the program.

For machines with accurate branch prediction, the AGI pipe-
line still outperforms the LUI pipeline. Once the accuracy of branch
prediction drops down to around 80%, the two types of machines
perform equivalently. At lower levels of branch prediction accura-
cy, the early branch resolution of the LUI pipeline allows it to run
programs more quickly.

Because significant performance improvement is seen in
some of the benchmarks, even without sophisticated compiler sup-
port, one can examine the properties of the benchmark itself to see

instruction that follows it has the potential of causing a load-use in-
terlock. Using an AGI pipeline seems to be a good way to increase
performance on these “pointer-chasing™ benchmarks.

6 Conclusions

A number of processors have recently been announced which
eliminate the load-use interlock by overlapping the execute stage
of the pipeline with cache access rather than address generation.
These AGI machines are designed not only to execute code com-
piled specifically for them, but also to run codes compiled for
older, LUI, implementations of similar architectures. When good
branch prediction methodologies are available, the rearranged
pipeline provides improved performance for machines with mod-
erate to large cache access times, even if existing binaries are used.
If branch prediction is less than 80% accurate, the LUI pipeline
provides faster run times.

Simply modifying the compiler’s local scheduler shows
only a small increase in the benefits of the AGI pipeline. Because
basic blocks can be quite short in nonscientific programs, the local
scheduler does not have many instructions to work with. Global
scheduling techniques such as superblock scheduling may be able
to further improve the performance of the AGI pipeline structure
because these methods make more instructions available to be
placed between the dependent instructions which cause the inter-
lock.

Two questions remain unanswered. First, in our experiments
for the LUI-N and AGI-N pipelines, we assumed that the access
time of the instruction cache remains at one cycle—the branch de-
lay slot. In real systems it is unlikely that there would be significant
difference in the access time of the instruction and data caches. For
example, the DEC 21064 implementation of the Alpha architecture
has a two-cycle access time for both caches {2] {16]. For each addi-
tional cycle of instruction cache access time, an IF stage must be
added to the pipeline The scope of branches is increased by one in-
struction per additional IF stage. Once the extra IF stages are added,
instructions must be speculatively fetched by both the LUI-N and
the AGI-N pipelines after a branch is issued but before it is re-
solved. If the branch is mispredicted, these instructions must be
squashed in both pipelines. This may affect the comparison be-
tween the two pipelines.

Second, we have simulated machines which have a single
execution pipeline. In a processor with multiple pipelines, each stall
cycle can delay the completion of many instructions rather than just
one. This may also affect the performance difference between the
two pipelines. We leave the study of these two issues as future
work.
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