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1 INTRODUCTION

Trace-driven simulation is a widely-accepted technique
for studying the components of computer memory systems
such as caches and translation look-aside buffers (TLBs).
However, trace-driven methods are time consuming,
requiring 20 to 50 times as long to run as actual hardware,
and often cannot accurately take process interaction and
operating system effects into account.

To overcome the limitations of trace-driven simulation, we
have developed an alternative approach in which memory
simulators run in an active operating system kernel. This
method, called kernel-based memory simulation, allows
us to account for all system activity, including multiple
process and kernel interactions. Further, by using privi-
leged machine operations to cause traps into the simulator
only when a miss in a simulated memory structure occurs,
a kernel-based simulator is able to process hits at the full
speed of the underlying host hardware.

Our implementation of a kernel-based simulator, called
Tapeworm, uses a three-step algorithm:

(1) On a miss, trap to the kernel-resident simulator,
count the miss and clear the trap on the missing
memory location so that future misses can pro-
ceed uninterrupted.

(2) Invoke a replacement policy that selects an entry
to be displaced from a simulated TLB or cache.

(3) Set a trap on the displaced memory location so
that future references will miss and re-invoke the
simulator.

" Several different techniques can be used to force traps into
the kernel after misses in a simulated memory structure.
For TLB simulation, where page-size granularity is
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needed, traps can be set or cleared using page valid bits, or
by installing and removing page-table entries in a soft-
ware-managed TLB [1]. For cache simulation, where
cache-line granularity is needed, instruction breakpoints,
data breakpoints, or memory parity traps can be set [2].

Two essential features of this approach enable Tapeworm
to overcome the limitations of trace-driven simulation.
First, because Tapeworm processes only the infrequent
case of misses, it is much faster than comparable trace-
driven simulators, which consider all memory references.
Second, because Tapeworm resides in the kernel of a run-
ning operating system, it is in an ideal position to take
multiple process interaction and operating system effects
into account. A disadvantage of kernel-based simulation is
that it is less flexible than traditional trace-driven simula-
tion with respect to the TLB and cache configurations that
it can simulate. Further, this method does not work for
other forms of architectural modeling, such as instruction-
pipeline simulation.

2 EXPERIENCES

We have implemented Tapeworm TLB and instruction
cache simulators to run on a DECstation 5000/200 under
Mach 3.0 with a user-level BSD UNIX server. This
extended abstract reports primarily TLB simulation
results. For a more detailed discussion of the design and
performance of the Tapeworm I-cache simulator, see [4].

Figure | shows that typical slowdowns for Tapeworm
TLB simulation are 0.25 to 1.25. Because miss ratios tend
to be higher for caches than for TLBs, Tapeworm I-cache
simulations exhibit larger slowdowns, from close to 0 to as
high as 7. These results compare favorably with trace-
driven simulations where slowdowns are usually in the
range of 20 to 50.
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Figure 1: Tapeworm Simulation Times

This figure shows typical Tapeworm simulation times for different sizes
of TLBs. Base Time is how long the workload would run without Tape-
worm in the kernel, while Overhead is the time added by the Tape-
worm code that intercepts TLB misses. Search and Replace are the
amount of time used by Tapeworm to maintain a data structure for
simulated TLBs that are larger than that of the underlying host's TLB
(64 slots in this case).

Figure 2 illustrates the importance of including multi-pro-
cess and operating system references in TLB simulations.
For this workload (an MPEG decoder), the time is divided
between four address spaces, the MPEG process (40%), an
X display server (5%), the BSD UNIX server (30%) and
the kernel (25%), each of which compete for slots in the
TLB. In the plot, the large difference between the Single-
Process data and the Complete data show that a simulation
methodology that only takes the MPEG process activity
into account would dramatically underestimate interfer-
ence between the four address spaces, and thus the true
impact of the TLB on overall memory performance.
Because it resides in the kernel and can field a trap from
any address space, including that of the kernel itself, Tape-
worm easily takes multiple process and kernel references
into account (see the upper two lines of Figure 2).

Although Tapeworm can simulate TLB and cache configu-
rations of varying sizes, associativities and line sizes, it
does suffer some problems of flexibility. In particular,
architectural structures which require accurate accounting
of time, such as write buffers can not be simulated using
this approach.

3 FUTURE WORK

We are extending this work in several ways. We are using
Tapeworm to study architectural support for next-genera-
tion operating system technology like Mach 3.0, in work
follows our previous studies in this area [1, 3]. Addition-
ally, we are working on ways to improve the kernel-based
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TLB Size (number of slots)
Figure 2: Effects of Multi-process and OS References

This plot shows TLB performance (given as a percentage of total
memory stall cycles) for a workioad that decompresses an MPEG
wideo. The different lines correspond to the amount of workload activ-
@y taken into account. Single-process means that only references
from the MPEG decoder process were considered, while User-onfy
referts to all user processes (include X display and UNIX servers) and
Complete refers to all references, including those made by the kernel.

simulation method itself. To increase Tapeworm’s speed,
we are exploring set-sampling techniques and investigat-
ing architectural support to lower the cost of handling
misses. To enhance flexibility, we are looking at low-cost
ways to design hardware to better accommodate a kernel-
based simulator. Finally, we are studying the use of tradi-
tional statistical methods for isolating and characterizing
sources of variation between simulation results.
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