MASCOTS ’94

Proceedings of the Second International Workshop on

Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems

January 31 — February 2, 1994 Durham, North Carolina

Edited by

V. Madisetti
E. Gelenbe
J. Walrand

Sponsored by

IEEE Computer Society

Technical Committee on Computer Architecture
and
Technical Committee on Simulation

IEEE Computer Society Press
Los Alamitos, California

Washington . Brussels . Tokyo

IDtrace - A Tracing Tool for i486 Simulation

Jim Pierce

1

and Trevor Mud ge

University of Michigan

Abstract

This paper describes IDtrace, a binary instrumentation
tool which produces execution traces for the ix86 instruc-
tion set architecture. Long execution traces can be gener-
ated quickly and easily for input to a wide variety of
performance evaluation tools. Issues involved in the con-
struction of such a tool are listed along with illustrations
of the uses of different generated traces. One example
observes the behavior of a branch prediction technique
and another compares the cache behavior of the i486 with
that of the MIPS R3000.

1 Description of IDtrace

Trace driven simulation plays an important role in the
design and tuning of computer architectures. Thus tools
which can produce long traces quickly and easily are val-
ued by system designers. This paper discusses IDtrace[1],
a software tracing tool for the i486 which produces input
data for a wide variety of performance evaluation tools
including code profilers and branch prediction and cache
simulators. IDtrace instruments program code so that
traces are generated during the program’s execution. Thus
long traces can be produced quickly and easily without
additional hardware. Software tracing tools can instrument
programs at the source, object, or executable level. Modi-
fying the executable, called late code modification,
requires text disassembly, code modification and reloca-
tion, and binary file reconstruction. While this approach is
the most difficult, instrumentation does not require the
source files, the library code is automatically instru-
mented, and the tool is almost trivial to use.

IDtrace uses late code modification to instrument Unix
SysV R4 ELF statically-linked binaries created by Intel/
AT&T and USL CCS C compilers. No sources or symbol
tables are needed. Applications can be instrumented to
output profile, memory reference, or full execution traces.
The resulting binary is about twelve times larger than the
original and execution time for the instrumented program

0-8186-5292-6/94 $3.00 © 1994 IEEE

1. Jim Pierce was supported in this work by a grant from the Intel Corp.

419

ranges from two times that of the original for a profile
trace to about twelve times for a full execution trace.

2 Implementation Issues

IDtrace inserts binary code before each basic block and
data memory referencing instruction and relocates all con-
trol instructions to account for text expansion, Some inher-
ent architectural attributes of the i486 and compiler actions
combine to make binary instrumentation difficult. The
1486’s complex instruction set contributes to a large, slow
instrumented binary. The i486 has 182 memory referenc-
ing instructions and many reference memory multiple
times with different addresses. In addition, the rep prefix
allows an indeterminate number of references per instruc-
tion. Furthermore, indirection causes relocation problems.
Compiler code structure must be deciphered to derive the
location of jump tables since code relocation requires that
their lists of addresses be updated. Indirect calls cannot be
relocated at all prior to runtime since the target address is
unknown. These instructions are handled by a runtime
lookup into a table containing the original and instru-
mented function addresses. Other difficulties arise from
variable instruction lengths and the small register set of the
i486.

3 Experiments Using Traces

In this section we give a sampling of the capabilities of
IDtrace. All experiments were run on an Intel SOMHz 486
machine running USL Unix SysV R4. The programs used
are the C benchmarks from the SPEC92 benchmark suite.

3.1 Branch Prediction

The branch trace output can be used as input to a
branch prediction simulator to measure the performance of
different branch prediction algorithms. During our prelim-
inary study it was noted that most prediction misses are

caused by only a few conditional branches, i.e., while most
branches are almost always predicted correctly, a few
rarely are and cause most of the misses. The following

top of the stack is resident in the cache few of these refer-
ences will be misses.

results were generated by a prediction simulator using a Misses in thousands (% Ratio)
dynamic 2-bit saturatin £ counter prediction algorithm with 1486: 290M R3000: 134M
a history table of 1024 2-bit entries. The data in Table | references references
shows that a very small percentage of conditional branches Line Size
(usually less than 5% cause 90% of the prediction misses, (bytes) 32 64 32 64
F “rl"}elr e’;ami‘;laﬁ"“ reve;l;d “f‘a‘ ﬁe misses are iau@t:y 8K L-way | 9329 (3.2) | 8093 (2.8)|[9836 (7.4) |8371 (6.3)
:;:t:g, eta;;m;n{:is ;;::tean f::f bi;n c; essax::hzt?: ge;nl nb ad? 8K 2-way | 7038 (2.4) 1 5036 (1.7) {8310 (6.2) 16541 (4.9)
cyclical patterns which a counter cannot predict well. 8K 4-way | 6566 (2.3) | 4607 (1.6) |[71462 (5.6) |5506 (4.1)
.] 64K l-way | 1112 0.4) | 1030 (0.4) {|1892 (1.4) 1843 (1.9
32 Cache Simulation 64K 2-way | 607(02) | 551(02) [[1314 (1.0) |1204 09)
The availability of IDtrace makes jt possible to com- 64K d-way | 504 (0.2) | 447 (0.2) [[1108 (0.8) 11030 (0.8)
pare cache performance of two very different approaches
to instruction set design typified by the i486 and the MIPS TABLE2. Cache misses running espresso on 486 and
R3000. To maintain compatibility with earlier members of R3000 for different cache configurations.
the ix86 family, the i486 has variable length instructions
and fewer CPU registers (8vs.32) resulting in higher code Push Non-P/P Non-p/p
density but more memory data references. We found these Cache | Write Miss | Write Miss Pop Read | Read Miss
differences not to be as serious as might be expected Conflg. | Ratio Ratio | Miss Ratio | Ratio
because of the 1486 stack acting as an extended register file 8K 2-w 1.0% 4.3% 0.5% 2.4%
and usually residing in the cache. 8K 4-w 0.5% 3.7% 0.2% 2.1%
Program | Unique Branch Number 16K 2-w 0.4% 28% 0.2% L1%
Jees Prediction Causing 90% 16K 4-w 0.3% 24% 0.1% 1.2%
Accuracy of Misses
eqntott 333 82.8% 2 (1%) TABLE3. Miss ratios for push, pop, and non-push/pop
ear 402 94.9% 3 (%) references running espresso on the i486.
“oripress 217 84.8% § 6% To confirm this IDtrace was modified to output special
sc 1427 91.4% 4“4 %) tags for push and pop stack references and Tynero was
xlisp 425 82.9% 19 (4%) modified to record Separate counts. Table 3 shows that the
espresso 1434 84.6% 134 (9%) miss ratio of Push/pop references is far less than that of
non-push/pop references for larger caches. Thus the large
TABLE 1. Mispredicted Branch Distribution number of stack references generate few misses on the

The R3000 traces are generated by Pixie [3] on a DEC-
station 5000 and the cache simulator used is a modified
version of the multicache simulation tool, Tynero [2].
Table 2 shows some preliminary observations in that the
R3000 has roughly two to four times the miss ratio of the
i486 on most benchmarks, On smaller caches the number
of misses is about the same, however the 486 makes about
twice as many references. On larger caches the R3000 has
more misses which increases the miss ratio disparity. This
implies that the R3000 program has a larger working data
set. The factor of two reference difference is due to the
lack of registers in the i486, which results in a much
greater degree of spillage. This is handled by pushes and
pops and base pointer references off the stack. Once the

420

i486 and the number of misses on the two processors are
roughly equivalent,

4 References

[1] J. Pierce, “IDtrace: A Trace Generation Tool for the
ix86 Instruction Set,” Technical report, Intel Corp.,
Hillsboro, OR, Sept. 1992,

(21 7. Quinlan, and K. Lai, “Tynero: A Multiple Cache
Simulator,” Technical Report, Intel Corp., Hills-
boro, OR, May 1991,

(31 M. Smith, “Tracing with Pixie,” Technical Report,
Center for Integrated Systems, Stanford University.

