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_ , Overview

* Technology performance metrics
* Essential process characteristics
* GaAs circuit design

* Aurora development
Aurora l: July 1991, 60,000 trans
Aurora IT: July 1992, 160,000 trans
Aurora II: Fall 1993
CPU - 500,000 trans
FPU - 300,000 trans
MMU - 500,000 trans
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Ring Oscillator Speed as a Performance Metric

B e
Effect of process improvement on ring oscillator speed
HGaAs2 HGaAs3 %
Pulldown Tx = 60x1.0mm Pulldown Tx = 60x0.6rmm Change
Fanout = 1 82.1ps 48.2 | 413
Fanout=4 170.6 133.6 21.7
Fanout = 4 + 3mm 358.0 324.1 9.5 ‘
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Process Characteristics

* Good device switching times
* High integration levels

*  Good yields

* Reasonable power dissipation

* Dense, multilevel interconnect
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Integration Level

* MCM delay accounts for 45% to 55% of total clock cycle

* Area utilization considers gate topology and fanin/fanout

Comparison of 8x8 multipliers in three DCFL processes

Gate | Metal | Metal | Metal L’:“a' . R}:"‘t‘;"

Metal 1 2 3 you uting
Area Area
Process A 1.00 100 | 1.00 | 1.00 1.00 1.00
Process B 0.90 060 | 050 | 028 0.49 0.21
Process C 0.50 097 | 111 | 143 0.97 0.82

Courtesy of Dick Oettel, Cascade Design Automation
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Interconnect Technology

Effect of gate delay and interconnect loading on critical

path performance
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Memory Characteristics

* Dense, power-efficient caches
* Leakage currents in GaAs several orders of magnitude larger
than CMOS
No. of Bits / Column 32 64 128 256 512
Normalized SRAM Area 1.00 0.87 | 080 | 0.77 0.75
Cell Area Percentage of Total Area 70.6 81.6 88.4 92.1 93.8
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SRAM cell power vs cell size for 3 different load devices
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Gallium Arsenide Circuit Restrictions

*  Only NOR gates
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2 Input GaAs NOR Gate
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* High source resistance

* High leakage at temperature

2V .

o

* Schottky diode gates limit voltage swing

A

GaAs Inverter Transfer Function
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CAD Goals

Design time is important — automate with CAD tools

New technologies are behind the curve without comparable

CAD tools to the status quo (Si CMOS)
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Our Solution
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* Adapt existing Si based CAD tools to DCFL

Use existing commercial tools when possible

* Achieve some degree of technology independence

* Improve efficiency of all design steps

System level design tools
Synthesis from HDL descriptions
Verification

Static timing analysis

Datapath layout optimization

Agvanced Computer Architecture Lab
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Design Flow 1

SEEDT Design specification
—  Verilog
— Neted

¢ Verification
* Verily

Translation — GaAs Compiler
¢ ChipVerilog — Verilog to Cascade netlist
— Routexpand — Neted to Cascade netlist

* Physical design environment
— GaAs version of Chipcrafter

* Back translation
— Cascade to Verilog

* Physical verification
— Dracula — DRC, LVS

+« Fab and test

Advanced Computer Architecture Lab

» Aurora 1
o g

¢ Single chip CPU
=~ MIPS instruction set — no byte ops, MPY or DIVI
—  Full scan chain
— 2 phase non-overlapping clock

Test vehicle for CAD tools and testing

* Designed by 6 graduate students in about 4 months
— 60,500 transistors
- 122mmx 7.9 mm
— 282 signal pins (344 pin package)
- 11We2v

* Out of fab (Vitesse through MOSIS) December 1991

*

Tested Jan - Mar 1991
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Design Flow 2

System design
¢ Cache-UM

* Design specification
- Verilog

Verification
- Verify

* Translation — GaAs Compiler
4 ChipVerilog — Verilog to Cascade netlist

L]

Physical design environment
- GaAs version of Chipcrafter
¢ Optimal latch placement on datapath
4 Automatic delay calculation

¢ Back translation

- Cascade to Verilog
I

Advanced Computer Architecture Lab
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Design Flow 2 (cont.)

* Physical verification
— Dracula — DRC, LVS
€ Fanout and beta ratio checking
¢ Clock phase and skew checking

* Static timing analysis
¢ Prototype timing analyzer (TAN)

¢ Fab and test

Advanced Computer Architecturs Lab
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Aurora 2

* Comparison of H-GaAs II and H-GaAs I1I

Propagation Delay (ps)
Fanout
H-GaAs I H-GaAs ill
1 80 £8
120 103
3 160 144

*  MIPS R3000 architecture subset
— 5 stage pipeline

— 4 entry write buffer

— 32 word on-chip cache

* Prototype construction
— CPU and four 1K x 32 bit SRAM

1
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Aurora 2 (cont.)

* Clocks
— 2 phase non-overlapped
— 7 stage buffer tree
— 400 ps skew

* Circuit solutions
- Ground plane
—  Limited fan-in
— NOR logic
*  Mux-latch-buffer cell
— Integrates 3 common functions

— Saves 4 levels of logic
—  37% of total chip instance count

* 1/O pads
- GaAs/ECL programmable

Aavanced Computer Architecture Lab
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Prototype System

* 32 bit asynchronous MMU bus
* 4 CPU operating modes
* 3 CPU requests | D
*  MMU services request, 9 ; i

supplies data .

I D

. CI?U updates cgchf:s cache CPU |, cache

using normal pipeline
» CPU state machine handles Cache —— B3 %

pipeline stall and restart mode

32-bit h
*  MMU built from PLDs t;u: e
MMU
Turbochannel
bus |
Advanced Computer Architecture Lab 17

Critical Path

* 36 gates
= 30% longer than next most critical path
— No synthesized logic on critical path ’

* Removing critical path allows a 260 MHz clock

Advanced Computer Architecture Lab 18

329



32.10

What we learned

» Large GaAs DCFL microprocessor chips are possible

* Branch architecture is critical to performance

— More attention on minimization of path length

»  More design tool support needed for 2 phase design
— Better signal naming conventions

—  Clock phase checking program (now complete)

Advanced Computer Architecture Lab
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Density Improvement over Aurora I

*  50% due to third routing layer

*  35% through improved circuit structures

* 15% from HGaAs III process improvement

HGaAs II HGaAs 11
Transistor Density Transistor Density
Count (T ransjmmz) Count (Trans./ mmz)
Largest Control Block 582 1067 516 1364
Register File 21,910 2014 23,278 4253
|
CrPU 60,500 540 160,000 1475

|
i
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Design Flow 3

* System design

Cache-UM

Trace driven simulations for CPU & FPU decisions
In-OS simulation

Hardware monitoring

* 600

* Design specification
—  Verilog

Verification
& Verify

* Translation to layout— “GaAs Compiler”
— EPOCH — Cascade Design Automation
¢ Optimal latch placement on datapath

Back translation
— Cascade to Verilog
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Design Flow 3 (cont.)

* Functional verification
= Quickturn Enterprise system (180 K gate system)

Physical verification
= Dracula — DRC, LVS
¢ Fanout and beta ratio checking
¢ Clock phase checking

* Static timing analysis
¢ Prototype timing analyzer (TACTIC)

Fab and test

Advanced Computer Architecture Lab 22
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Aurora 3
AT |
* Complete chip set
-~ CPU — 400 MHz 500K transistors
-  FPU - 250 MHz 300K transistors
-~  MMU — 500K transistors
— SRAM — 1K x 32 for 16KB data cache
* Status
— Verilog models execute some instructions
~— Emulation of floating point functions begun
- CPU
— 2 execution units, instruction fetch, load/store unit
— Reorder buffer — precise exceptions
— High speed streaming interface
- Decoded instruction cache (2KB)
— Branch prediction — cut critical path by 30% |
— Performance: simulation on SPEC Int92 — CPI = 1.46
g ~ SPEC p92 — CPI = 1.25, 270 and >300 with reordered code
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B e Summary

* Computer-aided design

— CAD tools are essential if exotic technologies are to compete

with Si
— Logic synthesis and timing tools are worth an extra instruction
issue
* GaAs DCFL

— Large DCFL chips possible

— Power consumption compares to CMOS above 200 MHz

~ Simple process that achieves speeds only matched by
advanced submicron Si
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