Parallel Language Constructs for Efficient Parallel Processing

Russell M. Clapp

Sequent Computer Systems
15450 SW Koll Parkway
Beaverton, Oregon 97006-6063
rmc@sequent.com

Abstract

In this paper we propose some basic language exten-
sions to incorporate a parallel procedure model into the C
programming language. In order to improve on other pro-
posals, we set the goals of our design to attain increased
efficiency, flexibility, and expressiveness, and to improve
parallel program structure. We begin by discussing the
motivation for these goals, and then present an overview of
our proposed model for parallel procedures. The follow-
ing section describes the design of the run-time system that
supports the parallel procedure model. A novel scheme
for nesting parallel procedure contexts in multiple stack
frames is included in the run-time system, thus eliminating
the need for costly process control blocks. After describ-
ing the details of the language and run-time system design,
we then present detailed performance data for two parallel
programs using this system.

1 Motivation and Goals

The recent emergence of commercial multiprocessors
has provoked computer scientists and engineers to take a
closer look at parallel programming. However, practical
parallel programming systems are in a state of infancy,
and their performance leaves considerable room for im-
provement. Many commercial systems incorporate ad hoc
techniques for expressing parallelism, most involving ma-
chine dependencies (1, 2, 3, 4]. Programming languages
for parallel systems have ranged from adapting sequential
languages for parallel execution to the use of explicitly par-
allel concurrent languages such as Ada. Some success has
been achieved in implementing procedural or imperative
languages on shared-memory multiprocessors. However,
in many cases, the difficulty of the problem has led to inef-
ficient implementations.

Our approach is intended to offer a middle ground be-
tween parallelizing compilers and concurrent languages,
while eliminating any ad hoc techniques for run-time sup-
port from the language. A major goal in our design, how-
ever, is an efficient implementation. An important conse-
quence of this goal is that the language constructs for paral-
lelism must be designed with an eye toward their run-time
support requirements. 1t is critical that parallel language
constructs requiring excessive run-time system overhead
be omitted from our language proposal. Furthermore, we
require the run-time support for these new constructs to be
efficient enough to support loop-level parallelism similar

0073-1129-1/92 $3.00 © 1992 IEEE

230

Trevor N. Mudge

Advanced Computer Architecture Laboratory
The University of Michigan
Ann Arbor, Michigan 48109-2122
tnm@eecs.umich.edu

to that described in [5, 6, 7]. This last requirement en-
ables us to benefit from an existing and generally accepted
language model of parallelism while incorporating a new
model capable of greater generality.

The key problem in developing a high performance par-
allel processing system is the design of efficient run-time
support code. This support includes both the operating sys-
tem (OS) and the language specific run-time system. The
fact that low-level and ad hoc techniques have surfaced at
the language level is a symptom of the problem that current
run-time support software is inadequate. Although gains
are being made in OS design for shared-memory multipro-
cessors [8, 9, 10, 11, 12], there is still no widely accepted
standard for OS level support of parallel programs. Fur-
thermore, even with the support for parallelism provided
directly by the operating system, there is still a need for
language-specific run-time systems to support the execu-
tion of parallel programs. Because OS calls are relatively
expensive, it is inefficient to invoke the operating system
at every opportunity to exploit parallelism in a program
(see the performance figures in [12]). Instead, a user-level
language run-time system should be called to manage the
spawning and merging of program parallelism. Because
this system may be invoked with very low overhead, it
allows parallelism of both fine and coarse grains to be prof-
itably exploited.

Run-time efficiency is a key factor in the design of a
parallel processing system because it is the amount of run-
time overhead that dictates the amount of useful program
parallelism. In a simplified model where there is a constant
overhead involved in initiating a parallel execution thread
and a program may be broken up into any number of par-
allel threads, it has been shown that there is a limit on the
number of parallel threads that should be used in order to
achieve maximum speedup [6]. This model implies that
the granularity, the number of instructions executed for a
parallel thread, decreases as the program is divided up into
more and more threads. If the program is divided to the
point where the overhead is equal to the granularity, the
program’s running time is the same as it is in the uniproces-
sor case, and any further reduction in the granularity will
result in a speedup of less than 1.

This overhead/granularity tradeoff is analyzed by com-
pilers that parallelize at the loop level. Because fine grain
loop iterations must be combined in some cases to com-
pensate for overhead, other sources of parallelism within

a program are being investigated, so that more proces-
sors can be effectively used to increase speedup. Research
involving interprocedural data dependency analysis in se-
quential programs demonstrates a desire to extract more
parallelism of a larger granularity [13]. Our approach to
parallel programming also addresses this need for larger
grain parallelism.

With these points in mind, we can state our goals in
developing a parallel language model and run-time sys-
tem. Our approach centers around providing language-
level mechanisms for expressing parallelism. We will use
the following words to denote the design goals regarding
our parallel programming system:

1. Efficiency. The overhead required to support parallel
execution threads should be as low as possible. As a
result, only a minor penalty should be incurred when
the parallel program is executed on a single processor.

2. Flexibility. The parallel language constructs should
allow expression of varying degrees of granularity
from loop-level to procedural-level, which reduces
the percentage of execution time spent on overhead
by optimizing for specific cases.

3. Expressiveness. The language model should allow
the straightforward expression of a wide variety of
parallel algorithms. An important aspect of this re-
quirement is that a dynamic model of parallelism must
be supported (this is explained below).

4. Structure. In addition to flexibility and expressive-
ness, the parallel language model should promote the
development of well-structured programs. This goal
requires that critical sections are centralized and well-
identified, so that deadlock among multiple parallel
threads is prevented.

By attaining these goals, we will have a parallel pro-
gramming system that is efficient, easy to use, and widely
applicable. The efficiency goal ensures that the system will
be useful in both parallel and multistream execution modes,
where time sharing users are limited to a single processor.
High performance of the run-time system will reduce the
minimum grain size of parallelism necessary so that system
overhead does not dominate execution time. The flexibil-
ity goal will allow the programmer to specify parallel code
that meets the practical minimum grain size requirement,
so that multiple processors may be profitably exploited.
Based on our approach to the efficiency goal, we expect the
practical minimum grain size to be small (e.g., on the order
of 10000 executed assembly language instructions), so that
large amounts of parallelism may be exploited at run-time.

The expressiveness goal ensures that a wide variety of
applications may be coded in the parallel language. The
parallel model is intended to support general purpose par-
allel programming, which includes scientific computation-
intensive applications as well as non-numeric applications
typified by sorting, searching, and branch and bound ap-
plications. The model is is not intended to provide mech-
anisms that are useful for programming embedded or dis-
tributed systems, or even simulating such systems. Itisalso
not intended for managing physical resources, and so is not
useful for programming operating systems. These types of

231

applications are better suited to concurrent languages (e.g.,
Ada, Occam, Concurrent C, Linda, etc.), which allow per-
sistent communicating processes at the expense of run-time
system overhead. ‘

On the other hand, the model for parallelism we pro-
pose is intended to be more expressive than parallel loops
or sections that are based on sequential languages, espe-
cially those constructs that may notbe nested. To attain this
goal, we incorporate a dynamic model of parallelism. Even
though parallelizing compilers may use dynamic schedul-
ing techniques to allocate loop iterates to processors, the
structure of the program parallelism is typically static,
where the main program creates a number of microtasks
to execute the iterates, and then resumes control to set up
the next parallel loop. In our dynamic model of parallelism,
any thread of execution can dynamically create additional
threads using an explicit create statement. This requires a
run-time system capability to queue and schedule multiple
heterogeneous threads or procedure-processes. Using this
model, the bottleneck of the main program executing se-
rially to set up each new homogeneous parallel section is
eliminated. Instead, new instances of parallel code are set
up and added to the run queue when they are created, and
in parallel with other procedure-processes.

The structure goal is intended to encourage an easy to
understand, straightforward style of parallel programming,
that does not hamper efficiency, flexibility, or expressive-
ness. If implemented, the benefit of this requirement is
that the model used for expressing parallelism prevents
deadlock and “distributed critical sections”. Deadlock re-
sults when a parallel program unit is suspended waiting
for an event that will never occur (e.g. the unlocking of
a semaphore). Distributed critical sections occur when
different programming units manipulate shared resources,
each within its own code section. Even though these ac-
cesses to shared resources may occur in mutual exclusion,
the program is still difficult to understand and debug. These
problems with semaphores were identified in [14] and [15],
where proposals were made to unify synchronization and
communication to aid in centralizing a given critical sec-
tion. This idea was refined with the extended rendezvous
concept of Ada, where a critical section can be embedded
within a rendezvous statement which is used for synchro-
nization and communication between tasks [16]. We pro-
pose a parallel programming model that centralizes access
to data that is logically shared by multiple program units
as well, but our constructs rely on parameter passing with
process creation and termination instead of rendezvous.
Our model also prevents deadlock in the scheduling and
execution of parallel program units.

2 Overview and Background

Our approach to the development of a parallel program-
ming system begins with the design of a suitable language
and its run-time system. In order to focus on the parallel
nature of the language, we extend an existing sequential
language, namely C. We chose C since it has simple con-
structs and is easily implemented. Also, from our point of
view, C has a desirable property in that functions cannot
be nested statically. This is consistent with our model of
parallel program units, that are also restricted from being
statically nested. Qur proposed language constructs can
also be added to FORTRAN with only slight modification, as

we have already done in order to perform several experi-
ments.

The extensions we propose for parallel programming in-
clude the addition of a parallel procedure model to C. Each
of these parallel procedures, called procedure-processes or,
to adopt the terminology of [17], simply paraprocs, share
parameters with the process that invoked it. Both process
synchronization and communication are handled through
the create and merge primitives. Procedure-processes may
create other paraprocs, so that a logical tree of procedure-
processes can be created that fluctuates dynamically.

This parallel procedure model bears some resemblance
to other imperative languages that have been proposed pre-
viously for shared-memory multiprocessors. Examples in-
clude the extended FORTRAN for the HEP multiprocessor
[18], the EPEX C environment proposed in [17], PCF FOR-
TRAN [19], PCP [20], and generic run-time support pack-
ages such as the Uniform System [21], the Chameleon
System [22], and Fast Threads [12].

The system we propose here is intended to be simpler
and therefore more efficiently implemented than any of
these other proposals. While several ideas from the other
systems have been incorporated, much of the complexity
has been stripped away. The mechanisms we propose allow
procedure-processes to be created in groups, and restrict
synchronization to be performed through paraproc creation
and termination only. Our model also allows for parallelism
to be specified without the possibility of deadlock, which
is an issue not addressed in most other proposals for an
imperative parallel procedure based language.

The run-time system for this parallel language is de-
signed to provide maximum performance. In fact, the
design of the parallel model of the language has been
influenced considerably by run-time system performance
considerations. The origin for our run-time system is the
self-scheduling technique used in parallelizing FORTRAN
compilers [18, 6], with our implementation as described in
[23, 7. By building on this basic run-time system, we can
support a dynamic model of parallelism where procedure-
processes are created in addition to being scheduled at
run-time. Because parallel work can be created by any
active paraproc, the simple self-scheduling technique must
be extended to operate with a variable length run queue of
available work. Also, due to the semantics of paraproc cre-
ation and termination, it is possible for procedure-processes
to become suspended while waiting for child paraprocs to
complete, This requires a blocking and resumption ca-
pability in the run-time system, in order to support the
run-until-block semantics.

3 Parallel Procedure Model

The model we propose for specifying program paral-
lelism is based on adding a process model to the C language.
This process model has semantics very similar to that of
the C function or FORTRAN subroutine. These procedure-
processes are quite different from the processes or tasks of
concurrent languages in that there are no communication
ports, channels, or rendezvous type communication calls.
Instead, all explicit communication is through parameters
passed to the procedure-process at creation. Parameters are
passed to the created paraprocs using reference semantics,
so any manipulation of their value is evident to the par-
ent paraproc. There is also a shared global memory space,

232

but it is not protected from simultaneous access by multiple
paraprocs. There are no explicit synchronization primitives
provided in the language model except for the create and
merge primitives for paraproc creation and termination.
Furthermore, there is no data dependency checking be-
tween procedure-processes. The programmer ensures that
this is not necessary by explicitly stating parallelism with
procedure-processes. The rationale for our decisions re-
garding these language constructs is given in Sec. 4, where
the run-time system implementation is described.

3.1 Declaration and Scope

The advantages we see in choosing C as a base language
for adding parallel constructs are its rules for function and
variable declaration, scope, and visibility. Function decla-
rations cannot be nested in C, and we choose to apply this
restriction to procedure-processes as well. Processes are
declared in a manner almost identical to C functions (see
Sec. 3.3 below for an example). Using semantics similar
to C keeps the model both simple and consistent with the
C language.

Scope and visibility rules for variables are the same as
they are for C [24]. Global variables are declared at the
beginning of the main program or are visible in other files
using the extern declaration. Variables declared within
a procedure-process are not visible outside the procedure-
process. Variables may be visible to a subset of processes
all declared in a single file using the static declaration.
Accesses to these variables are unprotected as is the case
for global variables. Paraprocs themselves may also be
declared as static, which restricts their visibility to the
file where they are declared and prevents paraprocs declared
in other files from creating instances of them.

Paraprocs must be reentrant, so that multiple instantia-
tions of them may all execute simultaneously. All variables
local to a paraproc are allocated on the stack, so all of them
are deallocated when the paraproc completes, just as in the
case of a procedure/function return. Static variables are
not allowed in paraprocs, they must instead be declared
as described above. Besides its own variables, a paraproc
can only access parameters, global variables, and visible
static variables. Data that is to be shared by subsets of
procedure-processes is controlled by the programmer by
using parameters or static variables. If the programmer
requires that access to shared static or global data must
be synchronized, the create and merge primitives must be
used.

3.2 Creation and Termination

Paraprocs are created in groups of 1 or more in a single
create statement. The paraproc name and parameter list are
specified in the create statement, and a variable is specified
as the destination of a procedure-process group value that
is returned. If a parameter is a scalar or structure, it is
passed to each paraproc created. If a parameter is an array,
the value passed is indexed from the array base using the
created child paraproc’s instantiation number. This number
is unique to each paraproc in the group, and is a value
between 1 and N where N is the number of procedure-
processes in the group. Each paraproc has a predefined
variable me, which is the value of its instantiation number.

After paraprocs are created, they execute in parallel with
their creator and siblings. Since any procedure-process may
create additional paraprocs, the program can be thought of

as a “tree” of paraprocs executing in parallel. A procedure-
process terminates when it executes a complete statement.
All paraprocs must merge with their child paraprocs before
they can execute a complete statement. The merge state-
ment specifies the procedure-process group value returned
by the create statement. When all of the child paraprocs in
the group terminate, the parent paraproc may continue past
the merge point. This is effectively a barrier synchroniza-
tion, but its scope is limited to the parent paraproc and its
children rather than the entire program. A paraproc may
create several different procedure-process groups during
its lifetime, execute with them in parallel, and merge with
them in any order it wishes.

The main thread of execution of the program is the
“master” process, and it is the only scheduleable execution
thread when the program begins. The program terminates
when the master thread completes, and this can only happen
after it merges with all of its children.

3.3 Example Syntax

The following program fragments show the proposed
syntax for the parallel procedure model. The code is a par-
allel quicksort program adapted from a sequential version
given in [25]. The code assumes two predefined functions,
findpivot and partition, which are used to find the
pivot value and partition the global array A to be partially
sorted around the pivot. These sequential routines can be
found in [25]. Because we require that all C functions
be reentrant, findpivot and partition can be both
called by many paraprocs simultaneously. This algorithm
computes the correct result, because there is no data depen-
dence between paraprocs. Any paraproc sorting the array
is working only with its own subrange. This subrange is
only shared with its parent paraproc, and the parent stops
accessing the array before it creates any children. This is
an example of using the create statement to synchronize
access to shared data.

This algorithm demonstrates the ability of parallel pro-
cedures to specify a grain size that is large in comparison
to most parallel loop bodies. The calls to the serial routines
findpivot and partition provide a large number of
instructions to be executed within a single parallel proce-
dure. Because of the semantics of our language constructs,
these function calls in the body of the paraproc do not
inhibit parallelization on procedure-process boundaries.

In the example, the new reserved words needed for the
parallel extensions are shown in boldface. The first code
fragment demonstrates the syntax used for declaring para-
procs (Fig. 1). The keyword process denotes that the code
is not a C function and instead is to be executed as a parallel
thread when created by a corresponding create statement.
The rest of the code is the same as it would be if the
procedure-process was instead a function, except for the
complete statement, which is used to terminate the para-
proc.

The quicksort procedure-process also includes create
and merge statements. The create statement is used to
create a group of paraprocs using some visible procedure-
process declaration. In this case, the visible procedure-
process is quicksort itself. The value returned by create
is a procedure-process group identifier, and is used later
as a parameter to the merge primitive. The number 2 in
brackets in the create statement specifies the number of

233

/* type declaration for records to be sorted */
typedef struct node {

char name [NAMESIZE];
int key;
} RECORD;

RECORD A|[N]: /* N is some predefined constant */
/* A is array of records */

/* other globals are declared here */

process quicksort (i, j)

int i(*), Jj(*); /*declare type of parameters */

{ /* * indicates array slice */
int pivot, pivotindex, k; J* local vars */
iarg(2]), jargl2]:
pid sorters; /* group handle declaration */

/* source code for findpivot is in the Aho ref. */

pivotindex = findpivot (i, j);
if(pivotindex != 0)

{

pivot = A[pivotindex].key;

/* source code for partition is in the Aho ref. */

k = partition(i,j,pivot);

iarg[0] = i; jarg(0] = k - 1;

iarg[l] = k; jarg(l] = j;

sorters = create[2] quicksort (iargl[*],
jarg(#*]);

/* creates 2 paraprocs, each gets one value of */

/* unique index in iarg and jarg */

merge (sorters); /* wait for the 2 sorter */

} /* paraprocs to complete */
complete; [* paraproc terminates */

Figure 1: Procedure-process declaration.

paraprocs of the same type to be created. This value can
be replaced by any integer expression. The paraproc name
and actual parameters are then specified. In this exam-
ple, the first created paraproc has access to iarg[0] and
jarg[0], while the second has access to iarg[1] and
jarg[1]. These array values are assigned from local pa-
rameters and variables before the create statement. These
values correspond to the partitioning of the subrange of the
array A.

In general, each parameter is passed (with reference
semantics) to each created procedure-process, except for
any parameters that are arrays with a subscript specified as
a *, In this case, each paraproc is passed a unique entry of
the array based on its unique instantiation identifier. The
parameters in the paraproc to be created are declared as
+’ed arrays also, so that the compiler may generate the
proper addressing sequence in instances where it has yet
to encounter the actual create statement. The array values

are taken sequentially, starting with the value at subscript
0, since arrays are zero-based in C. If the array is multi-
dimensional, with *’s in multiple dimensions, the indices
are assigned with the right-most index varying first (this
is consistent with row-major ordering). These rules are
significant if the number of procedure-processes created is
less than the total number of values in an array parameter. If
the number of paraprocs is greater than the number of values
corresponding to *’ed dimensions of an array parameter, an
erroneous condition occurs. It is possible to generate code
to check this condition at run time if it cannot be determined
at compile time (e.g., the number of paraprocs to be created
is not known at compile time). The issue of checking for
erroneous conditions is discussed in [7].

The next line of quicksort shows the syntax used for
merging with child paraprocs. This statement acts as a
barrier synchronization by suspending the parent until all
of the children referenced by the procedure-process group
handle are completed. Since the semantics of the parameter
passing are by reference, any values returned by the child
paraprocs are available in the actual parameters after the
merge statement. However, in this example, iarg and
jarg are unaffected. The child paraprocs’ updates of A,
though, are recorded in shared memory before completion
of the merge statement. This updating of shared memory
is discussed in Sec 4.4 below.

main ()

{ /* declare paraproc handle of predefined type pid */
pid sorter;

. /* code to initialize A goes here */
sorter = create[l] quicksort(0, N - 1);

. [* execution continues here after create */

merge (sorters) ;

} /* wait for sorter paraproc to complete */

Figure 2: Procedure-process creation in main program.

Figure 2 can be thought of as a continuation of Fig. 1,
where, after declaration of the quicksort procedure-process,
the main program appears. The main program creates 1
quicksort paraproc to sort the entire array. Because the
creator does not suspend after the create, other statements
may be executed before the merge, including more create
statements for other procedure-processes. For example,
several sorts on different keys may all proceed in parallel if
the array A is used as a read-only variable. This would re-
quire some minor modifications to quicksort incorporating
indirection through pointers to make it more general.

3.4 Structure

The structure of our parallel language encourages a pro-
gramming style where procedure-processes are used as
computational tasks while the parent paraproc coordinates
the data and results. The merge primitive provides a barrier
type synchronization mechanism. Because this technique
is somewhat limited, some algorithms may need to create
and merge with procedure-process groups several times in
order to synchronize access to shared data. Because of the

234

efficient design of our run-time system (described in Sec.
4), we believe this situation is acceptable. Furthermore, as
we will show in the next section, our basic parallel exten-
sions prevent a deadlock situation from occurring.
Alternatives to our create and merge primitives that al-
low processes to synchronize arbitrarily, e.g., semaphores,
allow a coding style which is confusing, contains dis-
tributed critical sections, and permits a deadlock situation
to occur. Deadlock can also occur if rendezvous style com-
munication is used. Adding rendezvous capabilities also
increases process weight by adding communication queues
to the process state, which makes run-time system context
switching more expensive. However, as stated above, some
algorithms are not suitable for our proposed programming
model, and they will have to utilize other languages that
incorporate alternative synchronization techniques.

4 Run-Time Support

The run-time system is the key component in the imple-
mentation of a parallel programming system. It provides
the interface between the hardware, operating system, and
the model of parallelism at the language level. In order to
describe the run-time system, we must make some assump-
tions about the hardware environment. Qur proposal is
intended for a system of one or more homogeneous proces-
sors, each having direct access to a logically global shared
memory space. This memory space may be contained in a
central “main memory” unit or spread across several mem-
ory units. The memory space may be cached into multiple
caches or local memories that may share individual data
items. In this case, the caches are assumed to be kept
consistent [26]. Alternatively, the memory space may be
spread across multiple local memories and possibly a cen-
tral memory, with no two memory units both possessing a
single data item. In this case, all processing elements must
be able to directly access each local memory (e.g., [27]),
or the operating system must create the “illusion” of shared
memory (e.g., [28]). The target architecture must also sup-
ply a non-interruptible read-modify-write instruction for
synchronization. This instruction should be executable by
the run-time support in user mode so that overhead is kept
to a minimum.

4.1 Overview

The basic structure of the run-time system is based on
microtasking. Each processor allocated for the execution
of the program begins by executing the run-time system
scheduling kernel which runs in user mode (the role of the
operating system is discussed in Sec. 6 below). The kernel
code continuously attempts to obtain work for the processor
from a global queue. When a program begins, the main unit
begins execution and the run queue is empty. Only when
additional procedure-processes are created does work enter
the queue. All work present in the run queue is ready
for scheduling, there is no need to synchronize between
execution of queue entries. When work is obtained from
the run queue, it is processed until the run-time system
is reentered, either to obtain more work, add work to the
queue, or to perform synchronization. When the run-time
system is reentered, it is possible that some updating of
global run-time system data structures will be performed
as aresult of the work just completed or the synchronization
request. When all work is completed each processor will

be busy looping in the kemel attempting to acquire work.
When the last thread of execution terminates (the main
program unit), an operating system call is made so that
those processors may be reclaimed and used for another
job.

4.2 Scheduling

As mentioned earlier, this approach for scheduling pro-
cessors can be described as a sclf-scheduling style. This
term has been used to describe the technique where multi-
ple processors each obtain a unique iteration of a parallel
loop they are to execute [18, 6]. The case we describe is
similar in that each processor acquires an index and other
basic information from the queue that determines which in-
stantiation of which parallel procedure it is to execute. The
queue structure enhances the analogy, since one queue entry
is made for each group of procedure-processes created.

The queue is a linked list of work entry data structures,
or frames. These frames are similar to the frames used in
the Spoc run-time system [29]. However, the frames we use
are simpler, and are not variable length execution frames for
procedures. Instead, they contain a fixed amount of basic
information that is needed to begin a procedure-process. A
frame consists of the parallel procedure’s starting address,
the number of members in the procedure-process group, a
pointer to amemory space where parameter pointers reside,
and a pointer to the next frame in the work queue. The slot
that holds the number of instantiations to be executed also
doubles as a synchronization counter. Frames are allocated
from an area in memory designated to be the frame pool.
Because frames are of a fixed size, their allocation and
reclamation can be performed very quickly without any
interaction with the operating system. ;

When a processor schedules a paraproc, an indivisi-
ble fetchddecrement' operation is performed on a global
register or well-known memory location that contains the
number of procedure-processes yet to be created for the
procedure-process group represented by the frame at the
head of the run queue. This global value is initialized
by reading the count of procedure-processes to be created
(which is also the synchronization counter) from the cor-
responding frame when it is moved to the head of the run
queue. The global value is read before the fetch&decrement
operation to assure that it is greater than zero. If it is
not, the run-queue is empty, and the value is reread in a
tight loop until it is greater than zero, indicating that the
fetch&decrement can proceed. If the number returned by
the decrement is greater than zero, the processor begins ex-
ecution of the procedure-process indicated by the current
frame with the unique instantiation index returned from
the fetch&decrement operation (this index is the value of
the me variable described above). The parameter pointer
is used to obtain access to the parameters passed to the
procedure-process. The synchronization counter in the
frame is decremented when the process executes the com-
plete statement.

If the value returned from the fetch&decrement opera-
tion is not greater than zero, one of two operations takes
place. If the value is negative, the scheduling kernel is
reentered to reread the value in a tight loop until it is

11f the hardware does not support fetch&op, the operation is performed
non-atomically using the provided synchronization primitive to ensure
mutual exclusion.

235

positive’. When the value becomes greater then zero,
the fetch&decrement is performed again. If the value re-
turned from the fetch&decrement is equal to zero, the last
procedure-process of the current frame has been scheduled
and the global run queue pointer to this frame must be up-
dated. The processor that assumes this task must wait until
all other processors that scheduled one of the current para-
procs has read the starting address and frame pointer before
these run-time system globals can be changed. These val-
ues are then updated from the next frame in the queue and
the queue head pointer is set to reference this next frame
of work. If no new work is available, the processor must
wait for a new set of paraprocs to be created by entering the
tight loop mentioned above. It may also be possible for the
run-time system to call the operating system to relinquish
the processor instead of waiting for more work. This can
only be done under certain conditions, and is discussed in
(7.

4.3 Synchronization

Synchronization among multiple procedure-processes is
expressed at the language level using the create and merge
primitives. There are no other synchronization primitives
provided, but mutual exclusion is observed by the run-
time system when needed to perform its services. Because
create may specify parameters, communication between
parent and child is possible, and the merge primitiveis used
to synchronize access to this data. Communication between
sibling paraprocs must be coordinated by the parent, and
is done by passing the same parameters to more than one
child paraproc. Further possibilities for communication are
discussed below, in Sec. 4.4,

Synchronization in the run-time system is performed
by directly manipulating the synchronization hardware or
using the assembly level synchronization instructions. Mu-
tual exclusion is necessary in the run-time system to pro-
tect the integrity of run-time system data structures that are
shared by all processors running in the kernel. The syn-
chronization performed in the run-time system allows the
high-level synchronization statements of the language to
be supported, thus eliminating the need for programmers to
use low-level synchronization routines such as semaphores.

The barrier style synchronization of the merge statement
is supported by decrementing the synchronization counter
in a frame on behalf of a completing procedure-process.
The merging parent checks this value to see if it is zero.
If it is not, that paraproc must block, and a new one is
scheduled from the run queue with control being trans-
ferred in a manner similar to a procedure call. When that
procedure-process completes, the synchronization counter
for the blocked parent paraproc is checked, and if it is still
not zero, another paraproc is scheduled on that processor.
If it is zero, control is returned to the parent paraproc, in a
manner similar to a procedure return.

Because of the simple structure of synchronization in the
language, it is not possible for 1) a blocked parent paraproc
to be waiting for the completion of a child paraproc and 2)
all other processors are trying to schedule more work and
3) no new paraprocs are available to be scheduled. This

2In some systems (e.g., the Astronautics ZS series), the processor may
idle until the global register becomes positive. This avoids busy waiting.
Also, the processor may check its stack to see if it has a blocked paraproc
that may be d. This is di d further below.

deadlock condition cannot occur because conditions 2) and
3) together imply that any children created by the parent
in condition 1) must have completed, and the parent may
resume execution. The only way that child paraprocs may
block and in turn block their parent is if they themselves
have created more paraprocs® This, however, violates con-
ditions 2) and/or 3) for deadlock. There is no other way that
paraprocs can block waiting for other events, since there
are no other synchronization primitives.

The only possibility for deadlock within the run-time
system is when the frame pool becomes exhausted. If
the pool cannot be enlarged dynamically, then the pro-
gram must abort. However, a simple operating system call
should trivially accomplish this task. Any other chance for
deadlock to occur comes from the actions of the operating
system. This issue is discussed below in [7].

4.4 Communication

As stated above, communication between paraprocs is
primarily through parameters that are passed at paraproc
creation. Data can also be shared through the use of global
variables. Programmers use create and merge to synchro-
nize access to shared data as stated above. A benefit of
this approach is that a model of weak ordering [30] or even
release consistency [31] is provided at the language level.
As a result, the compiler may generate code that stores
data which is potentially sharable by multiple procedure-
Pprocesses in registers, as long as shared memory is updated
by the procedure-process at each create and merge state-
ment it encounters. Sharing data through parameters also
allows parent paraprocs to shared different variables with
different child paraprocs. For example, the syntax de-
scribed above demonstrated how to split up the elements of
an array over a group of child paraprocs.

Parameters are passed with reference semantics to im-
prove efficiency. Since we assume a shared memory space,
reference parameters are more efficient than making unnec-
essary copies of variables. This approach also relieves the
programmer from passing pointers to objects that will be
modified, as must be done when parameters are passed by
value. Passing pointers with value parameters would also
complicate the syntax proposed in Sec. 3 above.

In addition to reducing the number of variable copies,
another aspect of the run-time system that provides for
increased efficiency is the fixed size of frames. This is
done to make frame allocation and initialization very fast.
It requires, though, that a set of parameters be passed via
a single address. This address refers to an area where
the addresses of all the parameters reside. In order to
implement this approach, there must be a quick way to
allocate local memory for a procedure-process.

4.5 Stack Management

In order to provide this local memory, we assume that
each processor has a chunk of sequential memory loca-
tions that it can efficiently manage as a local stack. This
stack is used in the classic way for procedure (C function)
calls and operating system calls. For parallel procedure-
processes, it is used for parameter passing with a pointer
to the parameter space placed in the corresponding frame.

3 Any created paraprocis ready for execution due to the dynamicnature
of the run queue. That is, there is NO work placed in the run queue unless
it is ready for execution.

236

Copied into Queue Queue Tail
Shared Reglsters Hoad
Count "1 count “1 Count _L
Addr |_Addr_ | =
Param Param
Ptr Ptr
FP FP
Frame Frame
Stack Stack

Figure 3: Processor stacks and frames in run queue.

Also, the stack is used for saving contexts of merging para-
procs and accessing synchronization counters at scheduling
points. Thus, the stack is shared concurrently among all
paraprocs scheduled on a particular processor that have yet
to complete. Only one paraproc at a time is active on any
processor, so the sharing of the stack is very similar to
the sharing that goes on between the caller and callee of a
function.

When a procedure-process begins execution, it allocates
space for its local variables using the stack in the usual
way, but it does not save the current register set or any
subset thereof. The address in the frame that refers to the
parameter space is available to the paraproc, and several
strategies are possible for using this address to refer to the
parameters. These techniques may involve use of the stack.
When a new group of paraprocs is to be formed, the stack
is used to allocate a parameter space area and an address
referring to this area is placed in the new frame. After
paraproc creation, the creator continues execution, and the
stack may continue to grow in size. When a paraproc
terminates, it returns the stack top pointer to refiect the top
of the stack when the paraproc began execution. Figure 3
shows a logical organization of stacks and frames in the run
queue.

If a paraproc executes a merge statement and the child
paraprocs have not all yet terminated, the parent paraproc
must block. Any registers that must be saved by the parent
paraproc are pushed on the stack in addition to a return
address, as is similar to the case of a procedure call. Also,
the last item to be pushed on the stack is the address of the
synchronization counter that the blocking paraproc is wait-
ing on. The processor then jumps to the run-time system’s
self-scheduling code to obtain more work.

This approach relieves paraprocs from saving registers
on the stack before they may begin execution. Since a
blocking paraproc saves its own context on the stack, it
need only save the registers that it will use after the merge
point. In the programs we have implemented with this
technique, the amount of registers to be saved at a merge

4Essentially its stack space and general purpose registers, not special
purpose registers or other information managed at the operating system
level.

pointis usually less than 4, as opposed to saving all general
purpose registers upon entry. Furthermore, this technique
enables a paraproc context to be transferred to another pro-
cessor (or virtual processor) via a stack pointer. Although
this type of migration has not yet been implemented, its
usefulness and exact implementation are discussed in [7].

When a paraproc completes, it returns the stack to its
original location as described above. A check is then made
to see if the top of the stack is a valid pointer to a synchro-
nization counter that is now equal to zero. If it does, the
counter reference is popped and a procedure-style return
is executed so that the blocked parent may resume. If the
synchronization value is non-zero, a jump to the run-time
system's self-scheduling code is executed instead.

Because the stack is used as a link to parameters passed
to child paraprocs, the parent paraproc is required to merge
with its children before completing. This is to prevent the
stack top from being returned to a point that deallocates the
parameter space. We believe this a not a serious restriction,
since it is likely for parent paraprocs to require synchro-
nization with their children so that shared data can then be
manipulated safely. This restriction also permits the use of
fixed length frames, since the stack is used for the variable
length portion of the logical execution frame.

While our system for suspending and resuming a merg-
ing procedure-process may seem quite unconventional, we
believe that this technique saves us considerable execution
overhead. An alternative scheme would be to save the
entire state of the suspending process in a process control
block (PCB), and link all such blocks in a queue of blocked
processes. This approach would increase the overhead of
scheduling, since a check of the suspended process queue
would then be necessary. We believe the procedure call
and return technique to be more efficient, as calling and re-
turning sequences for procedure calls are well understood,
and can be implemented with only a few instructions. This
approach also allows local stack areas to be used for pro-
cess stacks, eliminating the need to reload stack pointers
from and allocate stack areas in PCB’s.

5 Experimental Implementation
5.1 The ZS Simulator Testbed

For maximum efficiency, we have developed the run-
time system code in assembly language, and added it to the
sequential assembly code generated by both FORTRAN and
C compilers. Our initial target is the Astronautics ZS multi-
processor series [32], an architecture containing high speed
decoupled-access-execute (DAE) processors [33, 34]. The
machine has been designed to be configured with as many as
16 processors, each possessing its own 128K bytes of local
memory and connected to an 8-way interleaved main mem-
ory of 128M bytes using a crossbar interconnect. Cache
consistency is not provided in hardware, but this feature
was added to the simulator testbed described below. One
feature of this architecture which we have found beneficial
is the set of shared “semaphore” registers which support the
fetch&op synchronization primitive. These registers hold
the run-time system globals and provide for fast synchro-
nization.

Because the ZS-1 system is configured with only 1 CPU,
we have used it to develop and debug our code for a sin-
gle processor. For larger configurations, we have used
an execution-driven register-transfer level simulator which

237

uses ZS executable binaries as input. In uniprocessor tests,
we have found the simulator to accurately reflect the speed
of the hardware.

The use of the simulator also allowed us to effectively
change the architecture, by adding a cache consistency
scheme. A full-map central directory-based hardware
cache consistency scheme was implemented based on the
technique described in [35]. This technique allows mul-
tiple caches to hold the same block until a write occurs,
invalidating all other copies. We refer to this technique as
“shared” hardware consistency. With the modified simula-
tor, we were able to turn hardware cache consistency off,
which we refer to as “assumed” consistency, and thus deter-
mine an amount of overhead for keeping caches consistent.
Other cache consistency techniques were also tested, and
full details of the experimental testbed can be found in [7].

The implementation of parallel procedure run-time sup-
port for the ZS architecture was straightforward. The
frames allocated and initialized as part of paraproc creation
were assembled into a linked list as the run queue. The
head frame of the run queue was placed in the semaphore
registers, so that scheduling could be performed quickly
without the need for chasing pointers. Only one processor
was needed to update the list and copy the head frame into
the semaphore registers once all paraprocs of the current
frame had been scheduled. The assembly code for frame al-
location and initialization, scheduling and run queue man-
agement, and paraproc blocking and resumption can be
found in [7]. .

5.2 Source Programs

TRFD: The first program used in our tests to measure per-
formance of our run-time system is based on the TRFD code
from the Perfect Club Benchmark Suite. This programis a
“kernel” of the calculation used in a two-electron integral
transformation [36]. The code is based on a restructured
mathematical equation which requires on the order of n
floating point operations where n is the number of basis
functions used in the transformation. The code for the
TRFD program used in our experiments appears in [7], and
its structure is summarized by Fig. 4. The parallelization
was detected by hand at the loop level, and was based pri-
marily on the findings reported in [37]. There are 5 parallel
loops in total, two in the INTGRL subroutine and 3 in the
OLDA subroutine, each being a doall loop, where loop
iterations may execute in any order and in parallel. The
mainline of the code is a DO loop which repeats the en-
tire calculation (one call each to INTGRL and OLDA) for
different values of n. It has been modified to remove state-
ments associated with timing, computing FLOP rates, and
printing the results. However, our uniprocessor tests using
the parallelized code did include these other statements, in
order to help verify the code’s correctness.

Performance of the parallel loop version of TRFD is
reported in [7]. However, there are two major differences
in the parallel procedure version which significantly impact
performance. First, each parallel loop is treated as if it
were a parallel procedure. This transformation is one that
could be performed by a compiler to make parallel loop
code suitable for our parallel procedure run-time system.
However, some minor code changes are necessary at the
assembly language level in order to use the paraproc run-
time system. Instead of passing values through semaphore

Program TRFD

DOI=10,N, 5

v
CALL INTGRL

DOALL

DOALL

v

CALL OLDA
DOALL

Figure 4: Structure of TRFD code.

registers to parallel code loop bodies as done in the code
of [7], these values are passed as parameters using stack
space and the frame structure described above. Also, each
paraproc body is passed the frame pointer of the parent
code, so that read only stack variables may be shared. This
last change may be thought of as an enhancement that
enables a reduction in parameter space for paraproc calls
when values are used in a read-only fashion.

The second major change for the paraproc version of
the code is the inclusion of nested parallelism. In order
to limit overhead, the baseline self-scheduling kernel used
to support parallel loops in [7] does not support nested
parallel constructs. The inclusion of nested parallelism for
the paraproc run-time system allowed parallelizing of the
outermost loop of the program and the first nested loop in
the final parallel loop of the OLDA subroutine. The TRFD
program overlays the memory space for several arrays in
one large common block. Because the outermost loop of the
program repeats the entire calculation for different values
of n, the memory space in this common block had to be
expanded to avoid unnecessary data dependencies between
the calculations associated with different values of n. This
required an expansion from 16.8M bytes of the parallel loop
version to 36M bytes with the procedure version that can
simultaneously accommodate values of n equal to 10, 15,
20, 25, 30 35, and 40. However, in our simulations with
n = 10 and n = 15, only 4M bytes were needed.

The addition of the nested parallel loop in the OLDA
subroutine increased the number of microtasks for this last
loop from n to n * (n + 1)/2. The parallelization of the
outermost loop of the entire program did not increase paral-
lelism for the test where n = 10. However, when n = 15,
the program also repeats the calculation for n = 10. In
this case, the entire calculations involving all parallel loops
may execute simultaneously for both n = 10 and n = 15.
The code for this version of TRFD can be found in [7].

Quicksort: The parallel procedure code for the quicksort
program is based on the recursive sequential code found
in [25] and used above to demonstrate the syntax and se-
mantics of our language extensions. For our experiments,
though, the array of records to be sorted was made up

238

Consistency Technique
[Assumed [Shared

Speedup 8
e
1 2 3 4 8 12 16
Processors

Figure 5: TRFD speedups for n = 10.

Consistency Technique

Assumed [Shared

12

14

12

10
Speedup 8

1 2 3 4 8

Processors

Figure 6: TRFD speedups for n = 15.

of floating point numbers which were also used as keys.
The program was also parallelized at the assembly lan-
guage level after compiling sequential portions written in
FORTRAN. The FORTRAN version of the parallel procedure
quicksort program can be found in [7].

5.3 Performance
TRFD: Figures 5 and 6 show the speedups for the paral-
lel procedure version of TRFD. Each bar in these graphs
is made up of overlays of bars for each cache consistency
technique. That is, for example, the area shaded for as-
sumed consistency shows the additional performance gain
over the central directory-based hardware consistency.
For n = 10 with assumed cache consistency, we see
that speedup is linear for up to four processors, and shows
an efficiency rating, E = S/P where S is speedup and
P is processors, of greater than 80% for 16 processors.
When cache consistency is introduced, the efficiency rating
drops to 69% for 16 processors, but speedup is still nearly
linear for 1 to 4 processors. When comparing this data
to the results for the parallel loop version reported in [7],
a performance gain of 20% to 25% is observed. Thus,
the addition of nested parallelism in the last loop of the
OLDA subroutine offset any increase in run-time system
overhead. However, the limiting factors in performance
in this case are still load balancing and the overhead for
run-time scheduling and synchronization. These factors
account for the 20% loss of efficiency for 16 processors

Consistency Technique
I Assumed [J Shared

Speedup °
S I
1 2 3
Processors

Figure 7: Quicksort speedups for n = 6400.

while cache consistency accounted for 11%.

For n = 15, the speedups are up to 25% better for both
assumed and shared hardware consistency. However, in
this case, the speedup is linear for assumed consistency
and nearly linear for shared hardware consistency even for
16 processors. The decrease in efficiency for shared hard-
ware consistency is less than 10% for 16 processors. These
results show that the slowdown due to load balancing and
overhead for run-time scheduling and synchronization has
been overcome by the increased parallelism brought about
by making the outermost loop of the program into two para-
procs. This demonstrates that, with sufficient parallelism,
cache consistency overhead is the major barrier to achiev-
ing linear speedup. However, even the overhead for cache
consistency was reduced for n = 15, due to increased grain
sizes for some paraprocs represented by the doall loops
in OLDA. A more detailed account of the performance of
this program using the different run-time systems and cache
consistency protocols can be found in [7].

Quicksort: Figure 7 shows the speedup for the parallel
quicksort program for 6400 floating point numbers. Similar
results were also observed for 1000 and 50,000 numbers.
While the speedups for greater numbers of processors is
somewhat disappointing for this program, it is important to
note that the speedups are at least respectable for 2, 3, and
4 processors.

The overall limit to speedup for this program is due
to the nature of its parallelization. The findpivot and
partition routines consume a large percentage of the
execution time for each paraproc. Also, the running time
for these routines is dependent on the size of the interval
they are working on. At the beginning of the program, be-
fore the first recursion, there is only one paraproc executing
and the interval to be processed is the entire array A. Af-
ter the first recursion, there are only 2 paraprocs executing,
each with an interval roughly one-half the size of A. Clearly,
there is a large portion of execution time spent with less than
4 scheduleable paraprocs. Also, as parallelism increases,
grain size decreases.

In addition to the reasonable speedups for 2, 3, and
4 processors, there is further evidence that the run-time
support code is not the limiting factor in speedup. In an
attempt to compare our paraproc quicksort program to “the
best sequential algorithm” in order to compute speedup,

239

we tested a sequential FORTRAN version taken from the
Numerical Recipes [38]. This program contained loops and
GO TO statements together with a stack-like data structure
to implement recursion at the FORTRAN source level. This
code structure inhibited loop-level parallelization due to
data dependencies. Also,in an attempt to avoid a slowdown
with quicksort in the case where the data set is already sorted
[25], a random number generator was incorporated to aid
in partitioning the intervals.

In our tests with this program, it ran between 38% and
76% slower than our paraproc version on 1 processor. This
indicates that the “retrofit” of recursion at the source level
combined with the random number generator required more
overhead than our paraproc run-time system and the proce-
dure calls to findpivot and partition.

6 System Issues

For all of our performance tests described above, there
are no operating system calls, I/O statements, or OS-level
context switching. As a result, virtual processors are in
effect physical processors, and the program’s allocation
does not vary at run-time. This is not unreasonable for
these tests, since all program running times are less than 1
second, a reasonable amount of time observed between
interrupts for an OS-level process on a shared-memory
multiprocessor’. However, in order to make our system
feasible in a realistic setting, it must handle OS interaction
and be able to vary processor allocation dynamically. For
example, the parallel quicksort program is one which could
benefit from acquiring additional processors only after sev-
eral recursions. The following paragraphs briefly describe
the issues involved in merging our run-time system with
a compiler and multiprocessor operating system. As al-
ways, the goal is to provide additional capabilities without
unnecessarily increasing overhead.

The major compilation issues involve the incorporation
of a loop-based model of parallelism into the language,
the development of strict guidelines for code generation,
and identification of areas for optimization. A loop-based
model of parallelism should be added, as mentioned above,
to allow our system to benefit from work done in detection
and restructuring of parallel loops [5, 39, 6]. This model
can be supplied either with compiler-automated detection
or an explicit set of language constructs such as those found
in [40, 19, 17]. Strict code generation guidelines are neces-
sary to enforce conventions required for the parallel object
code. For example, all procedures, parallel and sequential,
must be reentrant. Finally, optimization effort should be
spent to improve the performance of parameter passing.
Implementation dependencies such as shared registers or
register windows may aid in this effort. A more detailed
description of each of these issues can be found in [7].

The role of the operating system in our parallel process-
ing system is simple and straightforward. We still require
the OS to support I/O requests, shared virtual memory, and
library routines (e.g. timing support). The concepts of time
and process priorities are omitted from our proposed lan-

5 Although an interrupt may occur as often as once every millisecond to
check for scheduleable OS-level processes, these interrupts may only be
felt by one processor, possibly idle and not allocated for use by a parallel
program. Hence, an observed time between interrupts of 1 second is not
unreasonable.

guage, because they complicate the implementation. The
major areas for defining an OS interface to our run-time
system are virtual processor support, /O, and scheduling.
Our run-time system is best supported by an OS that pro-
vides multiple OS-level processes or threads as virtual pro-
cessors. The number of virtual processors should be less
than the number of physical processors, and this number
can vary over the life of the program. 1/O support is also
required from the OS, but language-level synchronization
by the programmer should be used to prevent chaos with
shared file descriptors.

Scheduling needs to be reconciled with the run-time
system for asynchronous system calls and interrupts. An
asynchronous system call returns before the request is ser-
viced, so that work may be done in the interim. This
could be treated as a merge point by the paraproc run-time
system. Interrupts can seriously disrupt the progress of
a parallel program when synchronization is required. In
order to avoid a situation where many threads are waiting
for a blocked thread, some researchers have proposed gang
scheduling [41,42] or coscheduling [10], where an interrupt
to any virtual processor stops the entire program. However,
we believe that this approach can be avoided if virtual pro-
cessors are preempted only at a merge point. This avoids
blocking a synchronization operation, and enables a stack’s
context of blocked paraprocs to be managed in a queue of
stack pointers by the run-time system for later reschedul-
ing. This approach could be supported by an interrupt being
posted to the entire program, with one virtual processor re-
sponding at the next merge point, which is reasonable in a
multiprocessor time-shared system. A complete discussion
of each of these issues and their impact on deadlock can be
found in [7].

7 Summary and Future Directions

In this paper, we have proposed parallel procedure lan-
guage extensions and described a run-time system to sup-
port them. These parallel processing extensions have been
designed to meet the goals stated in Sec. 1. The descriptions
of the dynamic model of parallelism, its simplicity, its abil-
ity to support nested create statements and recursion, and
its relation to parallel loops are intended to demonstrate the
flexibility and expressiveness of the proposed parallel pro-
gramming system. The structure promoted by the parallel
programming extensions is discussed in terms of centraliz-
ing access to shared data and preventing deadlock among
parallel procedures. We believe that the goals of flexibil-
ity, expressiveness, and structure have been met, but only
repeated usage of a completed system can determine this
for sure.

Our results from experimentation with the paraproc run-
time system with the TRFD program suggest that we have
met our goal for efficiency as well. In the tests withn = 15,
cache consistency overhead was on the only barrier prevent-
ing linear speedup, as the results with assumed consistency
demonstrate. Additional work described in [7] confirms
that the cache consistency overhead is due to program ref-
erences to shared cache blocks, and not run-time system
references, which are mostly shared through the semaphore
registers in the ZS implementation.

We also demonstrated speedup potential for recursive
algorithms using our language extensions and run-time sys-
tem. However, the experiments with the parallel quicksort

program also exposed the limits of speedup due to the nature
of the parallel algorithm itself. Although enhancements
to the run-time system and its operating system interface
may overcome this difficulty, it is also possible to improve
speedup efficiency by taking advantage of the language fea-
tures to specify more parallelism, including heterogeneous
parallelism. For example, the quicksort program could be
modified to sort using pointers to records with multiple
fields and keys. Then, several sorts on different keys could
proceed in parallel. Also, since paraproc creation does not
block the parent until a merge point, other paraprocs could
be created to perform other operations on the same shared
data. For example, a set of student records could be pro-
cessed to determine a curve for test scores in parallel with
sorts based on student names and identification numbers.

The next step of this work is to extend the run-time
system to account for the interface to a compiler and multi-
processor operating system as introduced in Sec. 6 above.
This will enable us to perform additional experimentation
with parallel programs executing in a true multiuser, time-
shared environment. This experimentation, coupled with
an effort to code more algorithms using our proposed lan-
guage constructs, will enable a complete evaluation of the
usefulness of our proposed shared-memory parallel pro-
gramming system.

References
{11 A. H. Karp, “Programming for parallelism,” IEEE Com-
puter, pp. 43-57, May 1987.

R. G. Babb I, ed., Programming Parallel Processors,
Addison-Wesley, Reading, MA, 1988.

A. H. Karp and R. G. Babb, “A comparison of 12 parallel
FORTRAN dialects,” IEEE Software, pp. 52-67, Sept. 1988.

M. Kallstrom and S. S. Thakkar, “Programming three par-
allel computers,” IEEE Software, pp. 11-22, Jan. 1988.

M. Wolfe, Optimizing Supercompilers for Supercomputers,
PhD thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1982.

(21

f3]

[4

[aw}

(5

—

(6

—

C. D. Polychronopoulos, Parallel Programming and Com-
pilers, Kluwer Academic Publishers, Norwell, MA, 1988.

R. M. Clapp, Run-Time Supportfor Parallel Programs,PhD
thesis, Department of Electrical Engineering and Computer
Science, The University of Michigan, 1991.

M. Acetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young, “Mach: A new kemel founda-
tion for Unix development,” in Proc. of the USENIX 1986
Summer Technical Conference, pp. 193-210, June 1986.

J. Edler, J. Lipkis, and E. Schonberg, “Process management
for highly parallel Unix systems,” in Proc. of the USENIX
Workshop on Unix and Supercomputers, 1988.

7

—

[8

—_—

9

—

[10] B. Beck and D. Olien, “A parallel-programming process

model,” JEEE Software, pp. 63-72, May 1989.

M. L. Scott, T. J. LeBlanc, and B. D. Marsh, “Design ratio-
nale for Psyche, a general-purpose multiprocessor operating
system,” in Proc. of the 1988 Int. Conf. on Parallel Process-
ing, pp. 255-262, Aug. 1988.

(11]

[12] T.E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy, “Scheduler activations: Effective kernel support for
the user-level management of parallelism,” Technical Re-
port 90-04-02, The Department of Computer Science and
Engineering, University of Washington, Oct. 1990.

[13] Z. Li and P-C. Yew, “Efficient interprocedural analysis
for program parallelization and restructuring,” in Proc. of
Parallel Programming : Experience with Applications, Lan-
guages, and Systems (PPEALS 1988), pp. 85-97, July 1988,

[14] C. A. R. Hoare, “Communicating sequential processes,”
Comm. of the ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978.

[15] P. Brinch Hansen, “Distributed processes: A concurrent
programming concept,” Comm. of the ACM,vol.21,no.11,
pp- 934-941, Nov. 1978.

J. D. Ichbiah, J. G. P. Bames, J. C. Heliard, B. Krieg-
Breckner, O. Roubine, and B. A. Wichmann, “Rationale
for the design of the Ada programming language,” ACM
SIGPLAN Notices, vol. 14, no. 6, , June 1979.

A. Norton and W. L. Chang, “Self-scheduling in the runtime
environment,” Technical Report RC 12572 (#56256), IBM
T. J. Watson Research Center, Yorktown Heights, NY, Feb.
1987.

B. J. Smith, “Architecture and applications of the HEP mul-
tiprocessor computer system,” in Real-Time Processing IV,
Proc. of SPIE, pp. 241-248,1981.

B. Leasure et al., “PCF FORTRAN: Language definition,”
Technical Report Version 1, The Parallel Computing Forum,
Aug. 1988.

E. D. Brooks III, “PCP: A parallel extension of C that is 99%
fat free,” Technical report, Lawrence Livermore National
Laboratory, 1988.

R. H. Thomas and W. Crowther, “The Uniform System: An
approach to runtime support for large scale shared mem-
ory parallel processors,” in Proc. of the 1988 Int. Conf. on
Parallel Processing, pp. 245-254, Aug. 1988.

G.A. Alverson, Abstractions for Effectively Portable Shared
Memory Parallel Programs, PhD thesis, University of
Washington, 1990. Department of Computer Science and
Engineering.

R. M. Clapp, T. N. Mudge, and J. E. Smith, “Performance
of parallel loops using alternative cache consistency proto-
cols on a non-bus multiprocessor,” in Proc. of the Cache
and Interconnect Workshop, 16th Int. Symp. on Computer
Architecture, pp. 131-152, Kluwer Academic Publishers,
Norwell, MA, 1989.

(24] B. W. Kemnighan and D. M. Ritchie, The C Programming
Language, Prentice-Hall, Englewood Cliffs, NJ, 1978.

[25] A.V.Aho,J.E. Hopcroft, and J. D. Ullman, Data Structures
and Algorithms, Addison-Wesley, Reading, MA, 1983.

[26] A.]J. Smith, “Cache memories,” ACM Computing Surveys,
vol. 14, no. 3, pp. 473-530, Sept. 1982.

[16]

(1

(18]

[19]

{20]

{211

[22]

{23]

[27] R. Rettberg and R. Thomas, “Contention is no obstacle to
shared-memory multiprocessing,” Comm. of the ACM, vol.
29, no. 12, pp. 1202-1212, Dec. 1986.

M. Beltrameti, K. Bobey, and J. R. Zorbas, “The control
mechanism for the Myrias parallel computer system,” ACM
Computer Architecture News, Aug. 1988.

A. J. Musciano and T. L. Sterling, “Efficient dynamic
scheduling of medium-grained tasks for general purpose
parallel processing,” in Proc. of the 1988 Int. Conf. on Par-
allel Processing, pp. 166-175, Aug. 1988.

S. V. Adve and M. Hill, “Weak ordering - a new definition,”
in Proc. of the 17th Int. Symp. on Computer Architecture,
pp- 2-11, June 1990.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy, “Memory consistency and event
ordering in scalable shared-memory multiprocessors,” in
Proc. of the 17th Int. Symp. on Computer Architecture, pp.
15-26, May 1990.

J. E. Smith et al., “The ZS-1 central processor,” in Proc. of
the Second Int. Conf. on Architectural Supportfor Program-
ming Languages and Operating Systems (ASPLOS II), pp.
199-204, Oct. 1987.

Astronautics Corporation of America, ZS Central Processor
— Architecture Reference Manual, Madison, W1, 1988.

[34] J. E. Smith, “Decoupled access/execute computer architec-
tures,” ACM Trans. on Computer Systems, vol. 2, no. 4, pp.
289-308, Nov. 1984.

[35] L. M. Censier and P. Feautrier, “A new solution to coher-
ence,” IEEE Trans. on Computers, vol. C-27, no. 12, pp.
1112-1118, Dec. 1978.

“Perfect Club Benchmark Suite 0 documentation,” Techni-
cal report, Center for Supercomputing Research and Devel-
opment, University of Illinois at Urbana-Champaign, Mar.
1989.

C. M. Grassl and J. L. Schwarzmeier, “Performance of ap-
plications programs on supercomputers: Results from the
Perfect Benchmarks,” Technical report, Cray Research, Inc.,
Mendota Heights, MN, Apr. 1990.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes, Cambridge University Press,
Cambridge, England, 1986.

M. Wolfe, “Multiprocessor synchronization for concurrent
loops,” IEEE Software, pp. 34-42, Jan. 1988.

M. D. Guzzi, D. A. Padua,J. P. Hoeflinger, and D. H. Lawrie,
“Cedar FORTRAN and other vector and parallel FORTRAN
dialects,” in Proc. of Supercomputing '88, pp. 114-121,
Nov. 1988.

D. G. Feitelson and L. Rudolph, “Distributed hierarchical
control for parallel processing,” IEEE Computer, pp. 65-717,
May 1990.

D. L. Black, “Scheduling support for concurrency and par-
allelism in the Mach operating system,” IEEE Compuler,
Pp. 35-43, May 1990.

[28]

[29]

[30]

31

(32]

[33]

[36]

(37]

(38]

{39]

[40]

(411

{42]

