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Abstract -The design of microelectronic systems has tradi- 
tionally been carried out at several levels of abstraction. Parti- 
tioning the design process into levels makes it more manage- 
able, but usually results in a suboptimal design. When high 
performance is the goal, optimization should he done across 
multiple abstraction levels. This paper illustrates multilevel 
optimization in the design of an instruction cache for a high- 
performance GaAs microprocessor. Performance of the system 
is maximized by concurrently considering the interrelationships 
of: 1) the time of flight of signals across the multichip module 
on which the processor and cache chips are mounted; 2) the 
clocking scheme that synchronizes these signals; and 3) the size 
of the cache. These three design issues are normally considered 
independently because they arise in different abstraction levels. 
Design automation tools developed to facilitate this multilevel 
optimization are described. This process, applied to various 
subsystems, has been used to gain substantial performance 
improvement in the GaAs microcomputer. 

I .  INTRODUCTION 
ANAGING the design of a computer system is M greatly simplified by partitioning the design into a 

hierarchy of abstraction levels (e.g., transistor, logic, ar- 
chitecture, and language levels [l]) which can be treated 
with some degree of independence. Designs are typically 
carried out by several groups of designers, each having 
responsibility for one of these levels. The use of abstrac- 
tions is necessary for dealing with the complexity of 
microelectronic system design; however, the indiscrimi- 
nate application of this approach leads to suboptimal 
computer designs. 

As system performance goals increase, the inefficien- 
cies introduced by treating the various abstraction levels 
independently become significant. Without abandoning 
the advantages of partitioning the design process, selected 
optimizations across traditionally separate abstraction lev- 
els can be performed to achieve better overall system 
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performance. This approach is referred to herein as mul- 
tilevel optimization. Multilevel optimization requires con- 
current consideration of all design levels over which the 
optimization is to take place, rather than allowing, for 
example, a top-down methodology, in which the design at 
each level dictates the specifications of the next level 
down the hierarchy. Multilevel optimization relies heavily 
on the ability to simulate performance at each abstraction 
level in order to evaluate the impact of design trade-offs 
on system performance, and is characterized by the need 
for iteration as the design takes form on several levels at 
once. 

This paper describes a typical example of multilevel 
optimization in the design of an instruction cache for a 
high-performance GaAs microcomputer currently under 
development at the University of Michigan [21. In particu- 
lar, the performance of this system, as defined by its 
instruction execution rate, has been maximized by concur- 
rently optimizing the circuit, timing, and architectural 
levels of the design. The instruction cache subsystem is 
used to illustrate this multilevel optimization; numerous 
other examples of the design technique could be cited 
from this project. 

Section I1 provides background information which puts 
the discussion into perspective. The optimization problem 
is formulated in Section 111. Section IV details the multi- 
level optimization procedure and some of the CAD tools 
developed to support it. Section V summarizes the bene- 
fits and challenges of multilevel optimization. 

11. BACKGROUND 
The University of Michigan GaAs microcomputer im- 

plements the MIPS instruction-set architecture. This RISC 
architecture is appropriate for implementation in GaAs 
because of its simplicity, and it is well-suited to executing 
the programs expected in the target environment, that of 
an engineering workstation. Use of the standard instruc- 
tion set enables the computer to use the MIPS Computer 
Systems, Inc. operating system and language compilers 
with few modifications, as well as allowing it to execute 
application programs written for MIPS processors. The 
desire for software compatibility narrows the design space, 
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Fig. 1. System block diagram. 

constraining the architectural options, and in many ways 
reducing design effort and risk in the project. 

Due largely to the increased speed and density of 
scaled CMOS technologies, microprocessors have sus- 
tained an increase in performance of 2-3 times every 
three years (compared to 1.5 times for supercomputers) 
[31. Switching speed and integration levels were important 
considerations in selecting GaAs direct-coupled FET logic 
(DCFL) from Vitesse Semiconductor Corporation as the 
technology for this design. The 32-b CPU and 64-b float- 
ing-point accelerator (FPA) defined by the MIPS architec- 
ture will be implemented in this project on a single chip. 
As microprocessors such as this one move into the perfor- 
mance range of supercomputers, advanced packaging 
technology is required to prevent unavoidable chip cross- 
ings from dominating system delay. Multichip module 
(MCM) technology is used to reduce delay on the critical 
path between the processor and cache memory, allowing 
the speed of GaAs to be reflected in system performance. 

Fig. 1 shows a block diagram of the GaAs microcom- 
puter. This organization resulted from extensive architec- 
tural studies using a multilevel cache simulator, cacheUM 
(see Section IV-C). The main components are the proces- 
sor chip (CPU and FPA), direct-mapped primary and 
secondary caches, a memory management unit (MMU), 
and a bus interface chip that connects the processor to 
the primary memory and 1 / 0  bus. Bandwidth considera- 
tions dictated that the primary cache be split into data 
and instruction sections that can be accessed simultane- 
ously. The MMU chip combines the functions of a write 
buffer between primary and secondary cache, virtual-to- 
physical address translation, and cache control. 

111. THE PROBLEM 
Our objective is to maximize the performance of the 

GaAs microcomputer in terms of the average number of 
instructions it can execute per second. This figure is 
usually expressed in units of MIPS, millions of instruc- 

tions per second, defined by 

103 
MIPS = ~ 

Tc x CPI 

where T, is the period of the processor clock in nanosec- 
onds and CPI is clock cycles per instruction for a repre- 
sentative mix of application programs. The optimization 
problem is therefore equivalent to minimizing T, X CPI. 
These variables arise in different abstraction levels, and 
changes in design parameters can affect them in opposite 
ways. To optimize system performance, the effects must 
be considered concurrently. 

In general, the principal parameters affecting T, and 
CPI are the total time taken to fetch instructions from the 
primary instruction cache, the size of the cache, and the 
number of branch delay slots. These parameters are all 
related. Clearly, T, is an increasing function of cache 
access time. Access time is, in turn, an increasing function 
of cache size in a given technology, due to longer access 
times in larger memory chips and longer time of flight in 
memory systems having more chips. If access times of 
secondary cache and main memory remain constant, then 
CPI decreases with increasing Tc because fewer cycles are 
required to access these levels of memory. CPI is gener- 
ally a decreasing function of cache size, because larger 
caches have lower miss rates. 

The effect of branch delay slots on T, and CPI is less 
obvious. Fig. 2(a) illustrates how branch delay slots arise. 
On the left side of the diagram, the two possible targets 
of the branch instruction, PC + 1 and PC +Branch Offset, 
are calculated, but selection of the appropriate address 
must wait for the output of the comparator on the right 
(evaluation of the branch condition). Delay slots allow 
this evaluation and selection to extend beyond a single 
cycle. The MIPS instruction set architecture (ISA) being 
implemented in this project dictates one branch delay 
slot. In general, CPI is an increasing function of the 
number of delay slots because techniques such as branch 
prediction and reordering of instructions to fill these slots 
are not always successful. T, tends to be inversely propor- 
tional to the number of branch delay slots because delay 
slots create a pipeline loop through the instruction cache 
and the processor, as illustrated in Fig. 2(b) for a one-slot 
branch delay. 

Our desire to maintain software compatibility with the 
MIPS instruction set architecture [4] constrains our design 
to having exactly one branch delay slot, leaving cache size 
and access time as the only designable parameters. As 
mentioned above, cache access time is a function of cache 
size, so the performance model can be stated in terms of 
the following three equations: 

cpl = f (  Tc ,  'cache) (2) 

Tc g ( ' c t c h e >  (3) 

tcache = 'cache) (4) 
where tcache is the total time taken to fetch instructions 
from the primary instruction cache and Scathe is primary 
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Fig. 2. (a) Branch instruction logic. (b) Critical path through the 
instruction cache. 

cache size. These three functions correspond, respec- 
tively, to the architectural, timing, and circuit levels. CPI 
decreases as cache size increases, but reache and T, in- 
crease with cache size. The remainder of this paper is 
devoted to the development of these three functions, and 
to minimizing the product T, X CPI. 

IV. THE LEVELS OF OPTIMIZATION 
A. Circuit Level 

T, is critically dependent on reache, so multichip module 
packaging is used to minimize the off-chip delay time 
while simultaneously maintaining signal integrity. The 
semiconductor chips are mounted on the MCM and inter- 
connected by conductors embedded in low-permittivity 
dielectrics on a rigid substrate material. The MCM also 
provides photolithographically defined terminating resis- 
tors. The signal lines are sandwiched between ground and 
power planes, and run predominantly in orthogonal direc- 
tions. These interconnections are designed to behave as 
50-70-R stripline transmission lines. 

Fig. 203) identifies the delay of each component in the 
two-stage pipeline loop connecting the processor and the 
instruction cache: tproc represents the critical delay 
through the branch condition logic on the processor chip; 

~ 

765 

tcache models the overall memory access time, and is the 
sum of t,,,, the round-trip signal propagation time 
on the MCM, and taccess, the access time of the cache it- 
self. Both the processor delay and the round-trip signal 
propagation time on the MCM have been determined by 
simulation using a version of SPICE 2G.6 with Vitesse- 
proprietary models for enhancement and depletion MES- 
FET's [2]. The 1-kb register file and the arithmetic logic 
unit from the processor data path have been fabricated 
and tested. Measured delay times from these circuits, 
composed of 16 085 and 3419 transistors, respectively, 
have verified the circuit simulations. For example, propa- 
gation times for the 32-b adder, predicted to be 2.5 ns, 
were measured on four chips at 2.0, 2.3, 2.5, and 2.5 ns 
[51. 

SPICE simulation of the processor chip showed that 
the worst-case delay for the branch condition logic is 
3.0 ns, arising from the read setup (1.2 ns), read from the 
register file (0.4 ns), a quick compare in the arithmetic 
logic unit (1.3 ns), and a multiplexing operation (0.1 ns). 
This is the shaded path shown in Fig. 2(a). The primary 
cache will be made of custom GaAs 1KX32-b SRAM 
chips, which are expected to have access times of 3 ns, 
exclusive of buffer delays. (In this analysis, 1 /0  drivers 
and receivers are included in the parameter t,,,.) 

Preliminary layouts of the MCM were used to estimate 
t,,,. At a clock rate of 250 MHz, interconnects on the 
MCM behave predominantly as RC transmission lines, 
but inductive effects are not completely negligible. Trans- 
mission-line effects were included by modeling the inter- 
connect for 1 b of a bus with a ladder network consisting 
of a lumped series inductor and resistor together with a 
shunt capacitor for each millimeter of interconnect [21. 
Input pads were represented by diode-connected MES- 
FET's and parallel capacitors. The chips were intercon- 
nected using stubs branching off the transmission line, 
which was terminated with a 50-R resistor. While these 
layouts were only first approximations and the SPICE 
models are imperfect representations of MCM intercon- 
nect, the simulation results are reasonably accurate, and 
they allow the impact of cache size on tcache to be evalu- 
ated. Such preliminary analysis is common in multilevel 
optimization because trade-offs are evaluated before the 
design is fully specified at any of the abstraction levels. At 
each iteration of the design, the simulations yield more 
accurate results. 

The top line in Fig. 3 is the total cache access time 
tcache for cache sizes ranging from 2K words to 32K words. 
This curve completely characterizes the function h in (4). 
It is the sum of the constant cache access time (taccess) of 
3 ns and the time of flight on the MCM for each cache 
size. 

B. Timing Analysis 

The performance level of this processor requires that 
the MCM and all of the MCM-mounted components be 
viewed from a timing perspective as a single entity. While 
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Fig. 3. The relationship between cache time, cycle time, and cache 
size. 

elaborate interchip signaling protocols simplify the task of 
combining off-the-shelf chips, they also reduce perfor- 
mance by increasing chip-crossing delays. In this design, 
with all custom chips, the interfaces can be tailored to 
achieve the highest possible performance. Such optimiza- 
tion requires accurate timing analysis techniques. We 
have developed two new timing analysis tools, checkTc 
and minT, for this purpose [6]. The first of these, checkir,, 
is a timing verifier which examines a circuit to see if it 
satisfies a specified clock schedule, and reports setup- and 
hold-time violations. The second tool, minT,, is a clocking 
optimizer which determines the optimal clock schedule 
(i.e., the schedule with the minimum cycle time) that 
satisfies all timing constraints of a given circuit. 

The cycle time curve of Fig. 3 shows the relationship 
between optimal cycle time and cache size. This relation- 
ship was derived by running minT, on the critical path 
between the processor and the primary instruction cache 
(Fig. 2(b)) using the appropriate value of tcache for each 
cache size. To achieve the optimal cycle time, the address 
and instruction latches in Fig. 2(b) must be clocked so 
that a signal arriving at the input of a latch is gated 
through the latch immediately. If the signal is delayed by 
the clock, a nonoptimal cycle time will result. MinT, 
ensures that signals never wait along the critical path and 
guarantees that the signals at all latches in the system 
meet setup- and hold-time requirements. 

The optimal cycle time is inversely proportional to the 
number of stages in the critical path pipeline. Therefore, 
the two-stage critical path of Fig. 2(b) results in a propor- 
tionality constant of one-half between increases in tcache 
and increases in T,. This factor is clearly seen in the 
piecewise linear slopes of the cache time (tcache) and cycle 
time (T,) curves of Fig. 3. The horizontal line at 1.5 ns 
represents tproc /2. The interval between this line and the 
T, curve is tcache/2. The function g in (3) can now be 
defined as 

tproc + 'cache T, = 
2 

2K 4K 8K 16K 32K 
I-cache size (words) 

Fig. 4. Architectural performance versus cache size for various values 
of system cycle time that vary from 3.6 to 5.0 ns in 0.2-ns intervals. The 
left axis shows CPI and the right axis shows the instruction cache miss 
ratio. 

C. Architectural Level 

To determine CPI for a particular instruction cache 
size, the cache is simulated using address traces from real 
application programs as input stimuli. The trace-driven 
cache simulator we have developed to do this is called 
cacheUM [2]. CacheUM models all aspects of the memory 
system shown in Fig. 1. Performance of a memory system 
varies with the application program. To make these simu- 
lations as realistic as possible, a mix of integer and float- 
ing-point applications was used to represent the work 
load of a high-performance workstation used in a techni- 
cal environment. The benchmark suite consisted of these 
16 programs: MatrixSOO, awk, diff, doduc, dhrystone2, 
espresso, gnuchess, grep, integral, linpack, Livermore 
loops, nroff, small, spice2g6, Timberwolf, and yacc. Cache 
performance for each of these benchmarks is listed in [2]. 
Their execution required about 2.5 X 10' processor cycles. 
To simulate a multiprogramming environment, context 
switches among benchmarks are scheduled whenever a 
system call is executed or a fixed-process time slice of 
500 000 cycles expires. The CPI value of a memory system 
is calculated by dividing the total number of cycles by the 
number of instructions executed by all benchmarks. 

Every line in the cache is accompanied by a tag word 
that specifies which line of main memory is currently in 
the cache. A primary- or secondary-cache miss causes a 
new cache line to be read from the next memory level, 
and the corresponding tag word to be updated. In this 
design, the primary instruction cache is refilled from the 
secondary cache one four-word line at a time using a wide 
data bus. Because it allows the cache to be refilled 
quickly, this scheme significantly reduces the miss penalty. 

The values of CPI are shown in Fig. 4 for five instruc- 
tion cache sizes (not including tag words) and for system 
cycle times varying from 3.6 to 5.0 ns. As will be seen 
below, some of the cycle time/cache size combinations 
are not physically realizable. Fig. 4 shows that CPI de- 
creases with increasing cache size and increasing system 
cycle time as expected. The dependence of CPI on cycle 
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Fig. 5.  System performance versus cache size. The system performance 
for each cache size is shown by the Technology Constraint curve. 

time is less pronounced at larger cache sizes because the 
number of cycles it takes to refill cache is only a factor 
when there is a cache miss. The miss rate is smaller for 
large caches, so system cycle time has a smaller effect on 
CPI. Though the plot only shows instruction cache sizes 
to 32K words, the slopes of the curves are still decreasing. 
This indicates that larger caches will have even lower miss 
rates. The function f in ( 2 )  is thus given by Fig. 4. 

D. Multilevel Optimization 

With functions f, g, and h of (21-44) specified, all the 
information is available to determine the design point 
that has the best overall system performance. The optimal 
design point is found by selecting the cache size Scathe 
that minimizes the product T, xCPI. Fig. 5 plots the 
MIPS rating as a function of primary instruction cache 
size, for various cycle times. These plots show the trade-off 
between system cycle time and instruction cache size. The 
Technology Constraint curve of Fig. 5 is the inverse of 
T, x CPI, or the MIPS rating of the system constrained by 
all of the circuit, timing, and architectural effects de- 
scribed. Only the values below this line are physically 
realizable. The optimal cache size is readily seen from 
this curve to be 4K words. The figure suggests that, for 
the benchmarks used in this analysis, the system will have 
a MIPS rating of 162. It is interesting to note that this 
cache size is much smaller than that suggested by archi- 
tectural considerations alone (see Fig. 4), and larger than 

that which yields the smallest cycle time T, suggested 
solely by circuit/timing considerations (see Fig. 3). 

V. CONCLUDING REMARKS 
In this paper we have demonstrated, with one example, 

that optimization of high-performance microelectronic 
systems can only be achieved by concurrent consideration 
of multiple design levels. This design process is more 
demanding than the traditional top-down or bottom-up 
approaches because it requires a global view of the design 
space, and calls for iterative simulations of design trade- 
offs as the design evolves to its final form. In the example 
detailed here, architectural, timing, and circuit levels are 
concurrently evaluated to optimize the instruction cache 
size of a GaAs microcomputer. We believe that multilevel 
optimization will become increasingly necessary as de- 
mands for ever-increasing performance continue. Tools 
and methodologies that go beyond traditional approaches 
must be developed to support this extension to microelec- 
tronic circuit design. 
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