
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 5, MAY 1YY I 763

Special Brief Papers

Multilevel Optimization in the Design of a High-Performance
GaAs Microcomputer

0. A. Olukotun, R. B. Brown, R. J. Lomax, T. N. Mudge, and K. A. Sakallah

Abstract -The design of microelectronic systems has tradi-
tionally been carried out at several levels of abstraction. Parti-
tioning the design process into levels makes it more manage-
able, but usually results in a suboptimal design. When high
performance is the goal, optimization should he done across
multiple abstraction levels. This paper illustrates multilevel
optimization in the design of an instruction cache for a high-
performance GaAs microprocessor. Performance of the system
is maximized by concurrently considering the interrelationships
of: 1) the time of flight of signals across the multichip module
on which the processor and cache chips are mounted; 2) the
clocking scheme that synchronizes these signals; and 3) the size
of the cache. These three design issues are normally considered
independently because they arise in different abstraction levels.
Design automation tools developed to facilitate this multilevel
optimization are described. This process, applied to various
subsystems, has been used to gain substantial performance
improvement in the GaAs microcomputer.

I . INTRODUCTION
ANAGING the design of a computer system is M greatly simplified by partitioning the design into a

hierarchy of abstraction levels (e.g., transistor, logic, ar-
chitecture, and language levels [l]) which can be treated
with some degree of independence. Designs are typically
carried out by several groups of designers, each having
responsibility for one of these levels. The use of abstrac-
tions is necessary for dealing with the complexity of
microelectronic system design; however, the indiscrimi-
nate application of this approach leads to suboptimal
computer designs.

As system performance goals increase, the inefficien-
cies introduced by treating the various abstraction levels
independently become significant. Without abandoning
the advantages of partitioning the design process, selected
optimizations across traditionally separate abstraction lev-
els can be performed to achieve better overall system

Manuscript received September 24, 1990; revised January 10, 1991.
This work was supported by the U S . Army Research Office under the
URI Program, Contract DAAL03-87-K-0007, and by the Defense Ad-
vanced Research Projects Agency under DARPA/ARO Contract

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109-2122.

IEEE Log Number 9143200.

DAAL03-90-C-0028.

performance. This approach is referred to herein as mul-
tilevel optimization. Multilevel optimization requires con-
current consideration of all design levels over which the
optimization is to take place, rather than allowing, for
example, a top-down methodology, in which the design at
each level dictates the specifications of the next level
down the hierarchy. Multilevel optimization relies heavily
on the ability to simulate performance at each abstraction
level in order to evaluate the impact of design trade-offs
on system performance, and is characterized by the need
for iteration as the design takes form on several levels at
once.

This paper describes a typical example of multilevel
optimization in the design of an instruction cache for a
high-performance GaAs microcomputer currently under
development at the University of Michigan [21. In particu-
lar, the performance of this system, as defined by its
instruction execution rate, has been maximized by concur-
rently optimizing the circuit, timing, and architectural
levels of the design. The instruction cache subsystem is
used to illustrate this multilevel optimization; numerous
other examples of the design technique could be cited
from this project.

Section I1 provides background information which puts
the discussion into perspective. The optimization problem
is formulated in Section 111. Section IV details the multi-
level optimization procedure and some of the CAD tools
developed to support it. Section V summarizes the bene-
fits and challenges of multilevel optimization.

11. BACKGROUND
The University of Michigan GaAs microcomputer im-

plements the MIPS instruction-set architecture. This RISC
architecture is appropriate for implementation in GaAs
because of its simplicity, and it is well-suited to executing
the programs expected in the target environment, that of
an engineering workstation. Use of the standard instruc-
tion set enables the computer to use the MIPS Computer
Systems, Inc. operating system and language compilers
with few modifications, as well as allowing it to execute
application programs written for MIPS processors. The
desire for software compatibility narrows the design space,

0018-9200/91/0500-0763$01 .OO 01991 IEEE

764 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 5, MAY 1991

2-32 Kword
4 word line - - 1 I n s t t ? 1 16nsrefi" 1 1

572-948 ns refill

I r'; MMU 1 (unified' Interface
256 Kword

32 word line

16 ns refill

Cache

4 Kword,
4 word line

Fig. 1. System block diagram.

constraining the architectural options, and in many ways
reducing design effort and risk in the project.

Due largely to the increased speed and density of
scaled CMOS technologies, microprocessors have sus-
tained an increase in performance of 2-3 times every
three years (compared to 1.5 times for supercomputers)
[31. Switching speed and integration levels were important
considerations in selecting GaAs direct-coupled FET logic
(DCFL) from Vitesse Semiconductor Corporation as the
technology for this design. The 32-b CPU and 64-b float-
ing-point accelerator (FPA) defined by the MIPS architec-
ture will be implemented in this project on a single chip.
As microprocessors such as this one move into the perfor-
mance range of supercomputers, advanced packaging
technology is required to prevent unavoidable chip cross-
ings from dominating system delay. Multichip module
(MCM) technology is used to reduce delay on the critical
path between the processor and cache memory, allowing
the speed of GaAs to be reflected in system performance.

Fig. 1 shows a block diagram of the GaAs microcom-
puter. This organization resulted from extensive architec-
tural studies using a multilevel cache simulator, cacheUM
(see Section IV-C). The main components are the proces-
sor chip (CPU and FPA), direct-mapped primary and
secondary caches, a memory management unit (MMU),
and a bus interface chip that connects the processor to
the primary memory and 1 / 0 bus. Bandwidth considera-
tions dictated that the primary cache be split into data
and instruction sections that can be accessed simultane-
ously. The MMU chip combines the functions of a write
buffer between primary and secondary cache, virtual-to-
physical address translation, and cache control.

111. THE PROBLEM
Our objective is to maximize the performance of the

GaAs microcomputer in terms of the average number of
instructions it can execute per second. This figure is
usually expressed in units of MIPS, millions of instruc-

tions per second, defined by

103
MIPS = ~

Tc x CPI

where T, is the period of the processor clock in nanosec-
onds and CPI is clock cycles per instruction for a repre-
sentative mix of application programs. The optimization
problem is therefore equivalent to minimizing T, X CPI.
These variables arise in different abstraction levels, and
changes in design parameters can affect them in opposite
ways. To optimize system performance, the effects must
be considered concurrently.

In general, the principal parameters affecting T, and
CPI are the total time taken to fetch instructions from the
primary instruction cache, the size of the cache, and the
number of branch delay slots. These parameters are all
related. Clearly, T, is an increasing function of cache
access time. Access time is, in turn, an increasing function
of cache size in a given technology, due to longer access
times in larger memory chips and longer time of flight in
memory systems having more chips. If access times of
secondary cache and main memory remain constant, then
CPI decreases with increasing Tc because fewer cycles are
required to access these levels of memory. CPI is gener-
ally a decreasing function of cache size, because larger
caches have lower miss rates.

The effect of branch delay slots on T, and CPI is less
obvious. Fig. 2(a) illustrates how branch delay slots arise.
On the left side of the diagram, the two possible targets
of the branch instruction, PC + 1 and PC +Branch Offset,
are calculated, but selection of the appropriate address
must wait for the output of the comparator on the right
(evaluation of the branch condition). Delay slots allow
this evaluation and selection to extend beyond a single
cycle. The MIPS instruction set architecture (ISA) being
implemented in this project dictates one branch delay
slot. In general, CPI is an increasing function of the
number of delay slots because techniques such as branch
prediction and reordering of instructions to fill these slots
are not always successful. T, tends to be inversely propor-
tional to the number of branch delay slots because delay
slots create a pipeline loop through the instruction cache
and the processor, as illustrated in Fig. 2(b) for a one-slot
branch delay.

Our desire to maintain software compatibility with the
MIPS instruction set architecture [4] constrains our design
to having exactly one branch delay slot, leaving cache size
and access time as the only designable parameters. As
mentioned above, cache access time is a function of cache
size, so the performance model can be stated in terms of
the following three equations:

cpl = f (Tc , 'cache) (2)

Tc g (' c t c h e > (3)

tcache = 'cache) (4)
where tcache is the total time taken to fetch instructions
from the primary instruction cache and Scathe is primary

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 5, MAY 1991

Condition *I
(a)

,.l-H I-Cache k-h
(MCM traces) (MCM traces)

. 'proc

Processor Chip

(b)

Fig. 2. (a) Branch instruction logic. (b) Critical path through the
instruction cache.

cache size. These three functions correspond, respec-
tively, to the architectural, timing, and circuit levels. CPI
decreases as cache size increases, but reache and T, in-
crease with cache size. The remainder of this paper is
devoted to the development of these three functions, and
to minimizing the product T, X CPI.

IV. THE LEVELS OF OPTIMIZATION
A. Circuit Level

T, is critically dependent on reache, so multichip module
packaging is used to minimize the off-chip delay time
while simultaneously maintaining signal integrity. The
semiconductor chips are mounted on the MCM and inter-
connected by conductors embedded in low-permittivity
dielectrics on a rigid substrate material. The MCM also
provides photolithographically defined terminating resis-
tors. The signal lines are sandwiched between ground and
power planes, and run predominantly in orthogonal direc-
tions. These interconnections are designed to behave as
50-70-R stripline transmission lines.

Fig. 203) identifies the delay of each component in the
two-stage pipeline loop connecting the processor and the
instruction cache: tproc represents the critical delay
through the branch condition logic on the processor chip;

~

765

tcache models the overall memory access time, and is the
sum of t,,,, the round-trip signal propagation time
on the MCM, and taccess, the access time of the cache it-
self. Both the processor delay and the round-trip signal
propagation time on the MCM have been determined by
simulation using a version of SPICE 2G.6 with Vitesse-
proprietary models for enhancement and depletion MES-
FET's [2]. The 1-kb register file and the arithmetic logic
unit from the processor data path have been fabricated
and tested. Measured delay times from these circuits,
composed of 16 085 and 3419 transistors, respectively,
have verified the circuit simulations. For example, propa-
gation times for the 32-b adder, predicted to be 2.5 ns,
were measured on four chips at 2.0, 2.3, 2.5, and 2.5 ns
[51.

SPICE simulation of the processor chip showed that
the worst-case delay for the branch condition logic is
3.0 ns, arising from the read setup (1.2 ns), read from the
register file (0.4 ns), a quick compare in the arithmetic
logic unit (1.3 ns), and a multiplexing operation (0.1 ns).
This is the shaded path shown in Fig. 2(a). The primary
cache will be made of custom GaAs 1KX32-b SRAM
chips, which are expected to have access times of 3 ns,
exclusive of buffer delays. (In this analysis, 1 /0 drivers
and receivers are included in the parameter t,,,.)

Preliminary layouts of the MCM were used to estimate
t,,,. At a clock rate of 250 MHz, interconnects on the
MCM behave predominantly as RC transmission lines,
but inductive effects are not completely negligible. Trans-
mission-line effects were included by modeling the inter-
connect for 1 b of a bus with a ladder network consisting
of a lumped series inductor and resistor together with a
shunt capacitor for each millimeter of interconnect [21.
Input pads were represented by diode-connected MES-
FET's and parallel capacitors. The chips were intercon-
nected using stubs branching off the transmission line,
which was terminated with a 50-R resistor. While these
layouts were only first approximations and the SPICE
models are imperfect representations of MCM intercon-
nect, the simulation results are reasonably accurate, and
they allow the impact of cache size on tcache to be evalu-
ated. Such preliminary analysis is common in multilevel
optimization because trade-offs are evaluated before the
design is fully specified at any of the abstraction levels. At
each iteration of the design, the simulations yield more
accurate results.

The top line in Fig. 3 is the total cache access time
tcache for cache sizes ranging from 2K words to 32K words.
This curve completely characterizes the function h in (4).
It is the sum of the constant cache access time (taccess) of
3 ns and the time of flight on the MCM for each cache
size.

B. Timing Analysis

The performance level of this processor requires that
the MCM and all of the MCM-mounted components be
viewed from a timing perspective as a single entity. While

766 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 5, MAY 1991

2K 4K 8K 16K 32K
I-cache size (words)

Fig. 3. The relationship between cache time, cycle time, and cache
size.

elaborate interchip signaling protocols simplify the task of
combining off-the-shelf chips, they also reduce perfor-
mance by increasing chip-crossing delays. In this design,
with all custom chips, the interfaces can be tailored to
achieve the highest possible performance. Such optimiza-
tion requires accurate timing analysis techniques. We
have developed two new timing analysis tools, checkTc
and minT, for this purpose [6]. The first of these, checkir,,
is a timing verifier which examines a circuit to see if it
satisfies a specified clock schedule, and reports setup- and
hold-time violations. The second tool, minT,, is a clocking
optimizer which determines the optimal clock schedule
(i.e., the schedule with the minimum cycle time) that
satisfies all timing constraints of a given circuit.

The cycle time curve of Fig. 3 shows the relationship
between optimal cycle time and cache size. This relation-
ship was derived by running minT, on the critical path
between the processor and the primary instruction cache
(Fig. 2(b)) using the appropriate value of tcache for each
cache size. To achieve the optimal cycle time, the address
and instruction latches in Fig. 2(b) must be clocked so
that a signal arriving at the input of a latch is gated
through the latch immediately. If the signal is delayed by
the clock, a nonoptimal cycle time will result. MinT,
ensures that signals never wait along the critical path and
guarantees that the signals at all latches in the system
meet setup- and hold-time requirements.

The optimal cycle time is inversely proportional to the
number of stages in the critical path pipeline. Therefore,
the two-stage critical path of Fig. 2(b) results in a propor-
tionality constant of one-half between increases in tcache
and increases in T,. This factor is clearly seen in the
piecewise linear slopes of the cache time (tcache) and cycle
time (T,) curves of Fig. 3. The horizontal line at 1.5 ns
represents tproc /2. The interval between this line and the
T, curve is tcache/2. The function g in (3) can now be
defined as

tproc + 'cache T, =
2

2K 4K 8K 16K 32K
I-cache size (words)

Fig. 4. Architectural performance versus cache size for various values
of system cycle time that vary from 3.6 to 5.0 ns in 0.2-ns intervals. The
left axis shows CPI and the right axis shows the instruction cache miss
ratio.

C. Architectural Level

To determine CPI for a particular instruction cache
size, the cache is simulated using address traces from real
application programs as input stimuli. The trace-driven
cache simulator we have developed to do this is called
cacheUM [2]. CacheUM models all aspects of the memory
system shown in Fig. 1. Performance of a memory system
varies with the application program. To make these simu-
lations as realistic as possible, a mix of integer and float-
ing-point applications was used to represent the work
load of a high-performance workstation used in a techni-
cal environment. The benchmark suite consisted of these
16 programs: MatrixSOO, awk, diff, doduc, dhrystone2,
espresso, gnuchess, grep, integral, linpack, Livermore
loops, nroff, small, spice2g6, Timberwolf, and yacc. Cache
performance for each of these benchmarks is listed in [2].
Their execution required about 2.5 X 10' processor cycles.
To simulate a multiprogramming environment, context
switches among benchmarks are scheduled whenever a
system call is executed or a fixed-process time slice of
500 000 cycles expires. The CPI value of a memory system
is calculated by dividing the total number of cycles by the
number of instructions executed by all benchmarks.

Every line in the cache is accompanied by a tag word
that specifies which line of main memory is currently in
the cache. A primary- or secondary-cache miss causes a
new cache line to be read from the next memory level,
and the corresponding tag word to be updated. In this
design, the primary instruction cache is refilled from the
secondary cache one four-word line at a time using a wide
data bus. Because it allows the cache to be refilled
quickly, this scheme significantly reduces the miss penalty.

The values of CPI are shown in Fig. 4 for five instruc-
tion cache sizes (not including tag words) and for system
cycle times varying from 3.6 to 5.0 ns. As will be seen
below, some of the cycle time/cache size combinations
are not physically realizable. Fig. 4 shows that CPI de-
creases with increasing cache size and increasing system
cycle time as expected. The dependence of CPI on cycle

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 5, MAY 199 I1 767

Technology constraint

J.
-170

120 +’ I I I 1 1 2 0
2K 4K 8K 16K 32K

I-cache size (words)

Fig. 5. System performance versus cache size. The system performance
for each cache size is shown by the Technology Constraint curve.

time is less pronounced at larger cache sizes because the
number of cycles it takes to refill cache is only a factor
when there is a cache miss. The miss rate is smaller for
large caches, so system cycle time has a smaller effect on
CPI. Though the plot only shows instruction cache sizes
to 32K words, the slopes of the curves are still decreasing.
This indicates that larger caches will have even lower miss
rates. The function f in (2) is thus given by Fig. 4.

D. Multilevel Optimization

With functions f, g, and h of (21-44) specified, all the
information is available to determine the design point
that has the best overall system performance. The optimal
design point is found by selecting the cache size Scathe
that minimizes the product T, xCPI. Fig. 5 plots the
MIPS rating as a function of primary instruction cache
size, for various cycle times. These plots show the trade-off
between system cycle time and instruction cache size. The
Technology Constraint curve of Fig. 5 is the inverse of
T, x CPI, or the MIPS rating of the system constrained by
all of the circuit, timing, and architectural effects de-
scribed. Only the values below this line are physically
realizable. The optimal cache size is readily seen from
this curve to be 4K words. The figure suggests that, for
the benchmarks used in this analysis, the system will have
a MIPS rating of 162. It is interesting to note that this
cache size is much smaller than that suggested by archi-
tectural considerations alone (see Fig. 4), and larger than

that which yields the smallest cycle time T, suggested
solely by circuit/timing considerations (see Fig. 3).

V. CONCLUDING REMARKS
In this paper we have demonstrated, with one example,

that optimization of high-performance microelectronic
systems can only be achieved by concurrent consideration
of multiple design levels. This design process is more
demanding than the traditional top-down or bottom-up
approaches because it requires a global view of the design
space, and calls for iterative simulations of design trade-
offs as the design evolves to its final form. In the example
detailed here, architectural, timing, and circuit levels are
concurrently evaluated to optimize the instruction cache
size of a GaAs microcomputer. We believe that multilevel
optimization will become increasingly necessary as de-
mands for ever-increasing performance continue. Tools
and methodologies that go beyond traditional approaches
must be developed to support this extension to microelec-
tronic circuit design.

ACKNOWLEDGMENT

The authors thank MIPS Computer Systems for support-
ing this project with technical assistance under a special
licensing arrangement. We also gratefully acknowledge
the assistance of Vitesse Semiconductor Corporation,
Seattle Silicon Corporation, and Mentor Graphics Corpo-
ration.

REF ER EN c E s

[1] A. S. Tanenbaum, Structured Computer Organization, 3rd ed. En-
glewood Cliffs, NJ: Prentice-Hall, 1990.

[2] T. N. Mudge et al., “The design of a microsupercomputer,” Com-
puter, pp. 57-64, Jan. 1991.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach.

[4] G. Kane, MIPS RISC Architecture. Englewood Cliffs, NJ:
Prentice-Hall, 1989.

[5] J. A. Dykstra, “High-speed microprocessor design with gallium ar-
senide very large scale integrated digital circuits,” Ph.D. dissertation,
Univ. of Michigan, Ann Arbor, 1990.

[6] K. A. Sakallah, T. N. Mudge, and 0. A. Olukotun, “Analysis and
design of latch-controlled synchronous digital circuits,” in Proc. 27th
ACM/IEEE Design Automation Conf., June 1990, pp. 111-117.

San Mateo, CA: Morgan Kaufmann, 1990.

