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Abstract 
In the near future, microprocessor systems with very 

high clock rates will use multichip module (MCM) pack- 
aging technology to  reduce chip-crossing delays. In this 
paper we present the results of a study for the design 
of a 250 MHz Gallium Arsenide (GaAs) microprocessor 
t,lrat employs h4CM technology to  improve performance. 
The design study for the resulting two-level split cache 
st.arts with a baseline cache architecture and then ex- 
amines the following aspects: 1) primary cache size and 
degree of associativity; 2) primary data-cache write pol- 
icy; 3) secondary cache size and organization; 4) pri- 
mary cache fetch size; 5) concurrency between instruc- 
tion and data  accesses. A trace-driven simulator is used 
to analyze each design’s performance. The results show 
that memory access time and page-size constraints ef- 
Cectively limit the size of the primary data  and instruc- 
tion caches to  4I<W (16KB). For such cache sizes, a 
write-through policy is better than a write-back policy. 
Three cache mechanisms that contribute to improved 
performance are introduced. The first is a variant of 
the write-through policy called write-only. This write 
policy provides most of the performance benefits of sub- 
I l o d  placernenl without extra valid bits. The  second, 
is the use of a split secondary cache. Finally, the third 
mechanism allows loads to  pass stores without associa- 
tive matching. 
Keywords-two-level caches, high performance pro- 
cessors, gallium arsenide, multichip modules, trace- 
driven cache simulation. 

1 Introduction 
The integration level of gallium arsenide (GaAs) tech- 
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iiology is now high enough to  support the fabrication of 
a RlSC CPU and floating-point accelerator (FPA) on 
a single processor chip. However, i t  is not yet practi- 
cal i n  GaAs to integrate primary cache with the CPU 
and FPA. The  architectural design of the cache sys- 
tem for such a processor must, therefore, consider how 
chip-crossing delays between the processor and cache 
will impact system performance. Multichip modules 
(MCMs) have been developed in recent years to re- 
duce the penalty associated with chip crossings in high- 
performance systems. In this packaging technology, 
bare integrated circuits are mounted in close proxim- 
ity on a substrate having high-density interconnect. In 
systems using MCM packaging, partitioning must ad- 
dress not only which functions go on each chip, but also, 
which chips go on the MCM. The  guiding principle is 
t o  place components on the MCM which, through low- 
latency communication with the CPU,  will produce the 
greatest increase in system performance. The  effects of 
different partitioning schemes can only be determined 
through simulation or experimentation. 

Our purpose is to  design a cache architecture for a 
250 MHz microprocessor that  is optimized for perfor- 
mance given specific technology constraints. The con- 
straints are the area of the MCM, the speed, physical 
size and organizations of the primary and secondary 
cache SRAMs and the main memory latency time and 
transfer rate. Within these constraints we have evalu- 
ated the design of a number of twdeve l  cache archi- 
tectures. This design process is subdivided into five 
phases: primary cache size and associativity, primary 
data-cache write policy, secondary cache size and orga- 
nization, primary cache fetch size and techniques that 
increase memory system concurrency. The  design deci- 
sions for the first phase rely on the physical properties 
of both the MCM and GaAs technology. The  successive 
designs rely on the decisions made in previous phases. 
The  architectural performance data  presented in this 
paper are the result of detailed trace-driven simulations 
of real benchmarks. 

The  following section presents a base architecture 
that serves as the starting point for our design study, 
and gives a brief overview of technological issues which 
bear on the cache architecture. Section 3 discusses the 
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siinnlation methodology used to evaluate alternative de- 
signs. Analysis of the base architecture with these sim- 
illation tools is reported in Section 4. In Section 5 we 
show that for the technology we are using 4 KW (16 
KB) represents the best size for the primary instruc- 
tion aiid data caches. Our study of primary-cache write 
policy shows a trade-off between write policy and sec- 
ondary cache access time. A write-through policy has 
liigher performance when the access time is less than 8 
CPU cycles while write-back policy performs better for 
access times greater than 8 CPU cycles. We present a 
variaut of a writ,e-throngh policy called write-only which 
performs almost as well a s  subblock placement without 
the use of extra valid hits. Section F shows that split- 
ting a large direct-mapped secondary cache, produces 
performance improvements and implementation bene- 
fits. Section 7 slrows that the performance improvement 
from increasing the amouut of concurrency in the mem- 
ory system is small. Concluding remarks are made in 
Section 8. 

2 Base Architecture 
The base architecture is diagrammed in Fig. 1 and 

sl~ows a single-chip CPU that integrates a pipelined 
iiistruct,ion set processor aiid FPA based on the MIPS 
arcl~it,ecture [I(anS7]. The figure also shows a two- 
level cache architecture comprised of a high-speed, low- 
lat,ency primary (LI)  caclie and a inucli larger, high 
lbandividtli secondary (L2) cache. The L1 cache, which 
is split into I-cache (instructions) and D-cache (data), 
a n d  the 1,2 tags are  to he implemented with 1K x 32- 
bit  SRAAis that have a 3 nanosecond access time. Fi- 
nally, the figure shows a memory management unit chip 
(MMU) and a write buffer (WB) chip. These, to- 
gether with the CPU, are being designed in Vitesse’s 
IlGaAs I11 process. 

The CPU has a critical path that limits the cycle time 
to just under 4 nanoseconds. Ilowever, the memory ac- 
cess paths to the L1 caches have the potential to increase 
tliis cycle time because they make two chip crossings. If 
the components are mounted on a conventional PCB, 
simple circnit models are suficient to show that the 
cycle time will be dominated by the time lost in sig- 
nal propagation between the chips. The  effects of chip 
crossings can be reduced if the components of the base 
archit,ectuie are mounted on an MCM. Several prop- 
erties of hiCAls make them superior to PCBs in high 
performance systems. First, physical distances can be 
reduced because RICAis allow the direct bonding of un- 
packaged dies. Second, hiCAI features are only a factor 
of 10 larger than on-chip features. Typical line widths 
are 10-20 microns with pitches of 30-40 microns. This 
compares very favorably to PCBs where feature sizes 
on the order of 1000 microns are typical. Third, MCMs 
a150 allow larger pinouts because components can be 
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Figure 1: Baseline architecture. 

mounted as flip-chip dies having interior pads. All three 
properties contribute to very high packaging densities 
that  make low-latency, high-bandwidth inter-chip COLI- 
nections possible. In addition, superior electrical prop- 
erties (low dielectric constant) and reduced packaging 
parasitics, coupled with short interconnect distances al- 
low use of smaller, lower-power off-chip drivers. 

Unfortunately, even when advanced packaging tecli- 
niques are employed, inter-chip propagation delays are 
significant. Increasing primary cache size increases its 
area on the MCM and, consequently, inter-chip propa- 
gation delays. Furthermore, larger caches result in more 
Ioadingfor driver circuits. Both of these facts cause pri- 
mary caches to have an access time that grows markedly 
with size. In our case, the inter-chip propagation delay 
and loading can contribute as much as 50% to the over- 
all access time [Mudt91] and limit the cache size to a 
point where miss penalties can be significant. A sec- 
ond level of cache is employed to reduce this peualty 
[SL88, WBL89, PrzSO]. 

As a starting point for this work, a base architecture 
is defined below: 

L1 I-cache (Ll-I) is a direct-mapped 4K1Y cache 
with 4W lines and refill. 

L1 D-cache (Ll-D) is a direct-mapped 4I<W cache 
with 4W lines and refill. 

The L1 caches are write-back and require 1 cycle 
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to read, 2 cycles for a write hit and 1 cycle for a 
write miss. 

L2 is a unified write-back direct mapped 256KW 
cache with 32W lines and 32W refill. 

The refill path is 4W wide between L1 and L2 and 
is shared between I and D. 

Tlne L1 miss penalty is 6 cycles (2 cycles communi- 
catioii delay and 4 cycles for the 4W transfer). 

Tlne L2 cache is constructed from 8K x 8-bit BiC- 
110s SRAMs with an access time of 10 nanosec- 
onds. 

The L2 miss penalties are 143 cycles for a clean 
miss and 237 for a dirty miss. 

A 4-deep, 4W wide write buffer connects the L1 D- 
cache with L2. Tlne primary I- and D-cache both 
wait for this buffer to empty before processing a 
miss. 

The CPU, MMU, primary caches and secondary 
cache tags are mounted on the MCM. 

A direct-mapped 4KW organization is chosen for the 
L1 cache sizes because the target machine's page size is 
41<\,\' and the operating system allows synonyms. This 
iiieaiis t,liat the untranslated address bits can index the 
cache without causing inconsistent synonyms. Hence, 
cache tag lookup does not require any bit translation 
and occurs in parallel with the virtual page number 
translation. This allows the smaller physical page num- 
ber to be used as the tag instead of the larger virtual 
page inumber which must contain the process identifier 
(PID) (S bits in our case). 

The RIalU contains the primary cache tags, the TLB 
logic, the write-buffer address queue, and the cache con- 
trollers for both levels of cache. I t  is possible to fit the 
bag memory for the 8 I W  primary cache entirely within 
[.lie RIMU if physical tags are used. Doing this makes 
tag checking and the control of primary cache misses 
simpler and faster. The tags take 40Kb of memory plus 
comparison logic. The TLB is organized as a %way 
set-associative 32 entry cache for instructions and a 2- 
way set-associative 64 entry cache for data. It requires 
4I<b of memory. The write-huffer address queue is a 32- 
Ibit wide 4 entry shift register. A corresponding 128-bit 
wide 4 entry data queue is implemented in the WB chip. 
The RlMU connects to the BiCMOS L2 SRAM through 
ECL compatible 1/0 pads. 

The 4W line size is a limitation imposed by the con- 
nector bandwidth of the MCM. The L1 cac1ies.are write- 
back. <Vrit,e lnit,s take 2 cycles to allow for tag c.hecking 
before the write is committed. Following the lead of 

earlier work on twdevel  caches, we start with a uni- 
fied L2 cache [SL88, WBLSS, PrzSO, TDFSO]. The miss 
penalties for L2 are those of the R6020 system bus chip 
[Tho901 of the ECL-based MIPS RC6230 which will he 
used for prototyping. Waitingfor the write buffer empty 
before fetching the da ta  for a primary cache miss is nec- 
essary to keep the secondary cache consistent. 

3 Simulator and Benchmarks 
Computer performance is proportional to the aver- 

age number of cycles required t o  execute an instruction. 
Commonly referred to as the CPI (cycles per instruc- 
tion), it  is expressed as, 

C P I = l +  

where CPU-stall-cycles are due to multi-cycle instruc- 
tions such as loads, branches, and floating-point opera- 
tions, and memorys ta l l_cyc les  are the number ofex- 
tra cycles spent fetching instructions and loading and 
storing data. 

A trace-driven simulator has been developed to accu- 
rately count the number of cycles spent in the memory 
system. It is based on the MIPS suite of program perfor- 
mance analysis tools, p i x i e  and p i x s t a t s  [MIPS8b]. 
The simulator is capable of modeling a wide variety of 
a two-level cache memory configurations. The effects of 
a multiprogramming environment are also modeled. 

The first step in the simulation process is to use p i x i e  
to instrument the benchmarks that will provide the ad- 
dress traces. p i x i e  takes an object file and augmeuts 
it with instructions a t  basic block entry points aud data 
reference instructions so that when the augmented ob- 
ject file is executed, it produces a trace of instruction 
and data reference addresses. To enable the simulator 
to switch among processes when voluntary system call 
instructions are executed, a system call file that  coil- 
tains the address of all system call instructions is gen- 
erated for each benchmark. We pessimistically assume 
that all voluntary system calls cause context switches 
to occur. A separate cache simulator program is gen- 
erated for each memory configuration. The resulting 
cache simulator runs efficiently because it only contains 
necessary code and all memory system parameters are 
constants. A full multiprogram cache simulation exe- 
cutes at the rate of 240,000 references per second on a 
MIPS RC3240 (a 15-20 MIPS system). 

There are three parts to a cache simulation run: 
the file descriptor multiplexor, the benchmarks and the 
cache simulator. The file descriptor multiplexor uses 
UNIX pipes to map a trace output file descriptor of 
a benchmark program to an input file descriptor of 
the cache simulator. Each benchmark is mapped to 
a unique input file descriptor. Context switching be- 
tween benchmarks is achieved by switching amoug the 

CPU-stall-cycles + memory-stall-cycles 
ins t ruc t ion-count  
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input file descriptors from which traces are read. Dur- 
ing initialization, the cache simulator reads a process 
configuration file and the system call files. The process 
configuration file specifies the number of processes that 
ruii concurrently (the multiprogramming level), and the 
order in which the processes are run. Each benchmark is 
counted as a single process. A hash table that contains 
a list of system call basic block entry points is created 
Cor each benchmark from its system call file. During 
siinnlatiou, a context switch is scheduled whenever the 
program counter matches an entry in a benchmark's sys- 
tem call hash table, or after the process' time slice has 
elapsed. The  next process that runs is selected using 
a round-robin schedule. When a benchmark terminates 
tlie nest benchmark in order is started. This continues 
i in t , i l  all the benchmarks have terminated. 

The architecture supports process identifiers (PIDs) 
t,liat are included as prefixes to  virtual addresses so that  
cacli process has a distinct address space. This improves 
pesformance by eliminating the need to flush the caches 
and the translation-lookaside buffer (TLB) after every 
coiit,est switch [AgaSS]. Tlie simulator also models this 
feature. The virtual to physical mapping of addresses is 
performed using page coloring [TDFOO]. 

The importance of realistic workloads for obtaining 
meaiiingfiil predictions of cache performance lias been 
rccogiiized for some time [SmiS5]. Afore recently, the 
importance of long traces for obtaining accurate perfor- 
inance figures of large secondary caches has also been 
dcmonstrated [BI<WgO]. Tlie simulation methods that 
\rere described above are as realistic as possible without 
iiicluding operating system kernel references a t  the con- 
test switch points and rely on the use of benchmarks 
tha t  approximate a rcal workload (Table 1) .  Described 
iii  [MIPSSa] they consist of a variety of C and FORTRAN 
programs. Executing the benchmark suite generates a 
total of about 2.5 billion memory references. 

To include the effects of inultiprogrammiug on vari- 
ous cache configurations, it is important to clioose tlie 
values of multiprogramming level and process switch in- 
terval that are appropriate for a system as fast ours. 
To make these choices we used the base architecture 
and the cache simulator described above. The results 
nse sliowii i n  Figs. 2 and 3. Experiments conducted as 
ot,lier cache architectures were explored showed these 
rmii1t.s t,o be fairly typical for the full range of architec- 
t,iircs considered in this work. Fig. 2 shows that  for a 
tiine slice of 500,000 cycles, performance degrades only 
sliglit,ly as the level of multiprograinming increases. The 
rinderlying mechanism for this effect appears to be the 
follo\ring: some of the lines brought into the cache by a 
[xocess that is subsequently switched out will be evicted 
Ihefore tlie process is restarted. The number of lines that 
are  evicted before a process restarts increases with the 
nuniber of processes between restarts, i.e., as the level 
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Figure 2: The effect of multiprogramming level on cache 
performance. 
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Figure 3: The effect of context switch interval level on 
cache performance. 

of multiprogramming increases. The L1 caches are too 
small t o  show this effect in a pronounced way. For in- 
stance, the L1-I miss rate does not change and the LI-D 
miss rate changes by only 2%. However, the L2 cache is 
big enough to  simultaneously contain lines from several 
processes and so its miss rate changes by 70%. For- 
tunately for overall performance, this is 70% of a very 
small number (x 0.5%, see Fig. 2). In summary, for sys- 
tems in the general range of those under investigation, 
cache performance is unaffected by multiprogramming 
levels of more than eight. Therefore we use a multipro- 
gramming level of eight for our remaining studies. 

Performance is improved significantly by increasing 
the time slice (see Fig. 3). This is due to the greater 
opportunity of reusing lines that are brought into the 
cache. It is clear that  picking a time slice that is too 
short will result in poor cache performance [BI<WSO]. 
To guide the choice of a realistic time slice we examined 
the literature. Clark et  al. have investigated the fre- 
quency with which context switches and interrupts oc- 
cur on a VAX 8800 using a hardware monitor [CBI<S8]. 
They report an average of 7.7 milliseconds between con- 
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Table 1: List of benchmarks that were used to  create a multiprogramming workload. Integer benchmarks are denoted 
by  ( I ) ,  single precision floating point benchmarks by (S), and double precision floating point by (D). 

Description Instructions Loads Stores # System 
(million) (% of inst.) (% of inst.) calls 

t,ext, swvit,ches. This time would translate into 1.9 million 
cycles for a computer with a 4 nanosecond cycle time. 
Ilomever, this represents a context switch interval that  is 
too long; it ignores 110 and timer interrupts which cause 
operating system kernel code to  be executed, thus hav- 
ing a negative effect on cache performance similar to  
cont,ext switching. If we assume that 1/0 devices and 
t,itiier interrupts are unaffected by a shorter CPU cy- 
cle time, we could use Clark’s figure of 0.9 milliseconds 
between any interrupt to  take these interrupts into ac- 
count. This time represents 225,000 4 nanosecond cy- 
cles. However, this context switch interval is too pes- 
simistic because most context switches to  the operating 
sxstein kernel that  are caused by interrupts switch back 
t,o the process that was interrupted. Such a process is 
Iiliely to  find a significant portion of its working set is 
still retained in a large secondary cache. This is illus- 
[,rated by the lower L2 miss rate for a multiprogramming 
lei-cl of two in  Fig. 2. As a compromise we chose a time 
slice of 500,000 cycles for our experiments. It results in 
a n  average of 310,000 cycles between context switches 
ivlieii all system call context switches are also included. 
It is iiiteresting to note that faster machines may achieve 
lower cache miss rates because they execute more cycles 
betrreen context switches. 

4 Base Architecture Perfor- 
mance 

The performance of the base architecture is shown in 
Fig. 4.  Also shown is the performance loss breakdown 
from each of the coinpouents of the system as different 
gray levels. The  horizontal axis at 1.238 CPI represents 
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Figure 4: Performance losses of the base architecture 

the contribution of single cycle instruction execution, 
processor stalls resulting from load delays, branch de- 
lays and multicycle operations. The histogram above 
this axis is the Contribution to  CPI from the cache sys- 
tem and the focus of our discussion. 

In the remainder of this paper architectural tecli- 
niques that improve the performance of the base ar- 
chitecture by decreasing the value of CPI without in- 
creasing cycle time will be investigated. Throughout the 
exploration of alternatives we err on the side of arcbitec- 
tures with simple implementations t o  avoid unexpected 
performance traps. 

5 Primary Cache Size 
We begin our investigation with the primary cache 

( L l )  because i t  can determine the system cycle time. 
Here, the goal is to  find a balance of size and orga- 
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nization tradeoffs that  yields a maximum performance 
design. 

The L1-I cache size is not limited by the page size 
coiistraiiit because it is a read only cache and so incon- 
sistent synonyms cannot occur. Therefore, i t  is feasible 
to increase the L1-I cache size and thereby decrease the 
CI'I. However, the additional SRAMs required to  im- 
plement an 8I<W cache (4 more for memory and 2 more 
for virtual tags) coupled with the additional time re- 
quired to traiislate the virtual address will increase the 
access time enough to nullify the positive effects of a 
lower miss ratio [OBL'91] and produce an overall per- 
rormance loss. 

For a direct mapped L1-D cache, it is impossible to in- 
crease cache size beyond the page size without operating 
syst.em support. One might consider a set-associative 
Ll-D cache, but that  would force the L1-D tags off the 
hlMU chip. This additional tag access time added to  
t,lic coinparison time almost doubles system cycle time. 
i\gain, an increased cache size does not increase overall 
performance. 

6 Write Policy 
Ily adding together the contributions of 2 cycle writes 

( L 1  writes) aiid write buffer cycles ( WB)  to the CPI 
i l l  Fig. 4 it is determined that writes account for 24% 
of tlie performance loss in the memory system. The 
erect of write policy on system performance is studied 
i n  an attempt to reduce this loss. Four write-policies are 
considered, they are: the write-back policy used in the 
I,nse-architecture, a write-miss-invalidate policy, a new 
policy called write-only and subblock placement [HPSO]. 
Tlie write-back policy uses the four entry deep write- 
Ibilffer defined in the base architecture. The other three 
ivsitc-through policies use an one word wide, eight entry 
(leep write billTer. 

III  the write-back policy used iii this study, writes that  
liit i i i  the cache take two cycles and those that miss take 
oiic cycle. Write-allocate is used in the event of a write 
iiiiss. A modified line that is replaced is sent to a four- 
word deel) write-buffer. In the write-miss-invalidate pol- 
icy write hits take one cycle and write misses take two 
cycles. It is possible to  complete write hits in a sin- 
gle cycle because the tag is checked while the data  is 
ivritten to  the cache. If a miss is detected, a second 
cycle is used to  invalidate the corrupted line. No previ- 
o i d y  \witten inforination is lost by doing this because 
all writes are sent to the write buffer. Our new write- 
only policy modifies write-miss-invalidate by updating 
thc tag 011 a write-miss and marking the line as write- 
olily. This allows one cycle completion of subsequent 
irrit.es t o  the line. All reads that map to a write-only 
liiie miss aiid cause the line to  be reallocated. In sub- 
blocli placemeiit each tag has four extra valid bits; one 
fos each of the four words in the line. A write-miss 

1. 

Figure 5: Write policy-12 access time tradeoff for tlie 
base architecture. 

causes the address portion of the tag to  be updated in 
the next cycle. If the write was a word-write, the cor- 
responding valid bit is turned on and all other bits are 
turned off. Subsequent word writes t o  the line update 
the valid bits in one cycle. However, partial word writes 
to the line do not update the valid bits. 

The performance of the base architecture using these 
four write-policies is shown in Fig. 5 for L2 access times 
of two to ten CPU cycles. These access times assume 
a two cycle latency to  account for L2-tag checking and 
communication delay between the L1 and L2 caches. 
Single reads and writes of L2 take the full access time. 
However, a stream of writes may overlap one or both cy- 
cles of latency. Fig. 5 shows that  for L2 access times of 
less than 8 cycles write-through policies achieve higher 
performance, while for L2 access times greater tliaii 
8 cycles the write-back policy achieves higher perfor- 
mance. The reason is that for a 4I<W, cache writes hit 
in the cache most of the time. Since writes make up a 
0.0725 fraction of instructions, the constant 0.071 loss in 
CPI from 2-cycle-write-hits (Write hits in Fig. 5 )  shown 
by the write-back policy indicates a hit rate of 98%. 
In contrast, the write-through policies lose significantly 
less performance due to  two-cycle-write-misses because 
the write-miss rate is only 2%. However, write-through 
polices waste many more cycles on average waiting for 
the write buffer t o  empty before fetching the data  for a 
L1 read miss than a write-back policy. The number of 
cycles i t  takes to  empty the write-buffer is determined 
by the effective access time of the secondary cache. This 
assumes that changes in L2 cache size can be related to 
changes in effective L2 cache access time [PrzSO]. At 
some value of effective L2 access time the extra time 
spent waiting for the write-buffer in the write-througli 
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policies will be greater than the cost of two-cycle-write- 
hits in tlie write-back policy. This results in a trade- 
OK between write policy and effective L2 cache access 
t.ime. We note that tlie exact nature of this trade-off 
depends on the L1 read miss ratio and therefore on L1 
size. However, the L2 access time at  which a write-back 
policy becomes the better choice grows with L1 cache 
size because larger L1 caches have fewer read and write 
misses. 

Fig. 5 shows that for the region of L2 access time in 
which a write-through policy is most effective (4 and 
G cycles) write-only performs almost as well as suh- 
block placement. The  reason for this is that  most of the 
performance gain (over 80%) from subhlock placement 
over write-miss-invalidate comes from writes misses that 
cause subsequent writes to  hit. The  extra performance 
gain from read hits that  would otherwise have missed is 
less t.lian 20%. Write-only requires 3I<b less tag memory 
t,lian subblock placement for the base architecture. Fur- 
thermore, write-only does not need the ability to  read 
and write the tag RAM in the same cycle. For this rea- 
son we will use the write-only write-through policy in 
the remainder of this paper. 

Using a write-through cache increases the number of 
slots in the write-buffer by a factor of two (8 deep in- 
stead of 4 deep), hut decreases its width from four words 
to one word. The accompanying factor of four reduction 
i i i  I f 0  requirements, from 256 pins to  64 pins, enables 
11s to put the write-buffer inside the MMU chip. Thus, 
a write-only policy provides higher performance and a 
cheaper and simpler implementation than a write-back 
policy for the L2 access times of the base architecture. 

7 Secondary Cache 
The effects of secondary cache size and organization 

011 performance are investigated by looking at  four can- 
didate cache organizations: unified direct-mapped, uni- 
fied two-way associative, split direct-mapped and split 
two-way associative. A split cache is logically parti- 
t.ioned into instructions and data. It is assumed that 
making a cache associative adds one CPU cycle increas- 
ing t,lie access time of the cache from 6 to  7 cycles or 

Fig. G shows the performance of these four cache 
organizations. This figure shows that splitting improves 
t,he performance of direct-mapped caches of G4KW or 
more. The performance benefit of splitting is not evi- 
dent for two-way associative caches until the cache size 
reaches 512KW. The  benefits of splitting large caches 
come without an increase in cache access time or cache 
access bandwidth because splitting can be implemented 
by using the high-order bit of the cache index to  in- 
terleave between the instruction and data  halves of the 
cache. 

Two processes access the secondary cache: instruc- 
tion fetching and da ta  accessing. These two processes 

,M 521: e 4 I  12% 2% 512x ,024K 
U Uh.  r h s  I-&, 

Figure 6:  Performance of various L2 sizes and organi- 
zations. 1-way associative caches have a G cycle access 
time; 2-way set-associative caches have a 7 cycle access 
time. 

size (words) 
16K 
32K 
64K 

128K 
25GK 
512K 

1024K 

unified 
1-way - 

0.0335 
0.0240 
0.0186 
0.0133 
0.0112 
0.0102 
0.0102 - 

~ 

unified 
2-way 

0.0269 
0.0181 
0.0129 

0.0048 
0.0034 
0.0031 

- 

0 . 0 0 7 ~  

~ 

- 
split 

l-way 
0.0489 
0.0273 
0.0177 
0.0121 
0.0072 
0.0051 
0.0042 

- 

__ 

- 
split 

2-way 
0.0364 
0.0221 
0.0143 
0.0093 
0.0051 
0.0025 
0.0013 

~ 

__ 
Table 2: L2 miss ratios for the sizes and organizations 
of Fig. 6 .  

never share address space, hut in a direct-mapped cache, 
they can interfere with one another because of mapping 
conflicts (two memory locations mapped to  the same 
line). This is a feature of direct mapped caches that de- 
grades their performance [Hil87]. We have shown that 
these conflicts can be reduced without affecting access 
time by dividing the cache into separate instruction and 
data  portions. Others have shown that tlie miss ratios 
for split direct-mapped primary caches are no worse 
than those of unified caches [WBL89]. Table 2 shows 
that for large secondary caches, splitting actually ini- 
proves the miss ratio. This improvement is expected 
to  increase for even larger cache sizes because a greater 
fraction of misses are due t o  conflicts. 

To further investigate the effect that  splitting the L2 
cache has on performance the speed-size tradeoff curves 
for the L2 instruction cache (L2-I) and L2 data  cache 
(L2-D) are shown in Figs. 7 and 8. The  effect of writes 
on L2-D is ignored in order to  simplify the compari- 
son between L2-I and L2-D. The  da ta  in tlie figures 
are the result of varying the speed and size of the L2-I 
and L2-D caches from the base architecture. Both sets 
of curves show the same trend; the marginal perfor- 

144 



- C O  

- 8  

- 4 - 7  

0 6  

- 8 - 5  

* 4  

9 3  

- 2  

9 1  

I 
8K 16K 32K 64K 128K 256K 512K 

L2.I sile (words) 

Figure 7: The L2-I speed-size tradeoff with a 4I<W L1-I. 

inillice increase due to increasing cache size is smaller 
for larger cache sizes. IIowever, tlie exact shape and 
level of performance of the L2-I and L2-D caches is quite 
difTerent. The L2-I cache performance varies from 0.19 
CPI to 0.02 CPI and the curves are fairly flat for cache 
sizes larger than 64KW. Whereas the L2-D cache per- 
formance varies from 0.72 CPI to 0.06 CPI and is still 
decreasing a t  512KW. From this data  we conclude that 
the optimum data  cache size is roughly 8 times as large 
as t.he optimum instruction cache. Two-way associa- 
tive split L2 caches show the same trends, although the 
ciiivcs are shifted downward due to the lower miss rates 
i i i id tlie L2-D cache performance improves mare than 
tlie I,?-I cache. 

Tlie speed-size tradeoffs for secondary instruction and 
data parts of a split secondary cache are radically dif- 
fcrent. To take advantage of this fact we should imple- 
ment the L2-I cache in a faster, less dense technology 
t,linn the L2-D cache. To do this, a 32KW L2-I cache is 
implemented from the same 1I< x 32-bit chips as the L1 
cac.l~es. Tlie access timeof this cache is two CPU cycles. 
The 25GKW secondary cache from tlie base architecture 
is made into a 25GI<W L2-D cache. However, the L2- 
I1 cache is not made 2-way set-associative because its 
0.012 decrease i n  CPI is too small a performance ben- 
clit for the extra multiplexing, interconnect, and MMU 
p i n s  necessary to implement it. 

The performance gain describe above is shown by 
the difference between the first and second columns of 
Fig. 9. A substantial 34% increase in performance is 
achieved. Tlie contribution of the memory system to 
CPI is uow 0.242. If we exchange the sizes and access 
liines of L2-I aud L2-D, the CPI increases by 21% to 
0.793. It is clear that  L2-I should be placed on the 
RICRI ivliile L2-D should be placed off of the MCM. 
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8K 16K 31K 64U l Z B K  256K 512K 
U - D  slze (wxdi) 

Figure 8: The L2-D speed-size tradeoff with a 41<W 
Ll-D. 

8 Primary Cache Fetch Size 
With the latency and transfer rates between L2 and 

L1 fixed for both instructions and data  we can inves- 
tigate the effect that fetch size has on performance 
[Smi87, PrzSO]. The L1-I latency is two cycles and the 
transfer rate is four words every cycle. For L1-D the 
latency is six cycles and the transfer rate is four words 
every cycle. 

Performance is maximized when the fetch size and 
line size of L1-I are both eight words long. The opti- 
mal Ll-D fetch and line size is also eight words. Any 
further increase in the fetch sizes of either Ll-I or L1- 
D will decrease performance. The total improvement i n  
performance of lengthening the Ll-I and L1-D fetch size 
to E words is a 0.026 decrease in CPI. This is shown by 
the difference between the second and third columns in 
Fig. 9. As a consequence of increasing the L1 line size 
by a factor of two the size of the L1 tags 011 the M M U  
chip has been reduced from 40Kb to 20Kb. 

9 Memory System Concurrency 
With the six optimizations we have implemented so 

far, memory performance has been improved by 4S% 
and total performance by 12% as measured in CPI. 
In this section we will evaluate techniques that ini- 
prove performance by allowing more concurrency be- 
tween memory accesses. 

With a split L2 cache instruction and data  accesses 
are completely independent. Thus after an Ll-I miss it 
is possible to refill the L1-I cache from the L2-I cache 
while the write-buffer continues to empty into the L2- 
D cache. This provides a decrease in CPI of 0.011 
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rigure 10:-The performance improvement gained from 
adding .more concurrency to t.he memory system. 

;Itown i n  the second column of Fig. 10. 
'To allow data-reads to bypass data-,writes  in^ the 

writ,e-l)uffer usually requires that all eight entries of 
(.Ire write-buffer associatively matclr the address of the 
iniised line. If a match is made, then all entries ahead, 
including thematched entry, must be flushed to keep the 
si.at,c of the L2-D cache  consistent.^ However, if an extra 
dirty bit is added to the Ll-D tags. The~cache need only 
he flrislied when dirt,y lines are replaced in the cache. 
No associative.matclring is needed. This scheme works 
Jmiiuse the write-only policy ensures that all writes al- 
locate-a 1ine.in the Ll-D cache. The write-buffer can 
only contain.parts of dirty lines. Therefore, to keep the 
L2-D cache consistent it is only necessary .to flush the . 
writ,e-buffei when these lines are replaced.  experiments 
show that tli,is scheme achieves 95% of the performance 
incrpaie of associative matching, However, this perfor- 
nyance~ illcrew. is very rnodest;.only a 0.008 decrease 
i n  CPI. This performatice is shown in Column D W B  
bypns: in  Fig. 10. 

At this design point, the largest component of perfor- 
mince loss is that  of L2-D dirty misses. Currently, when . .  

Figure 11: Optimized architecture. 

a L2-D dirty miss occurs the dirty line is written to main 
memory,and then the requested line is read from main 
memory. To improve this situation a single 32 word 
line write-buffer or dirty buffer can he added to L2-D 
cache. Now it is possible to read tlie requested line he- 
fore the dirty line is written. However, tlie performance 
improvement from doing this is only a 0.008 decrease in 
CPI. It is shown in Column L& WE of Fig. 10. 

The total performance improvement from adding co11- 
currency to the system is a 0.027 decrease ,in CPI. It is 
cliar that  increasing concurrency in the memory sys- 
tem in these limited ways adds much less to the perfor- 
mance of the memory system than the basic cache size, 
organization and speed optimizations discussed in the 
previous sections. In fact, it  is questionable, whether 
the last two optimizations should be implemented at  all 
given the increase in control logic and memory required. 

The final three optimizations bring the total memory 
system performance improvement to 54.5%  and total 
system performance improvement to 13.7%. The opti- 
mized architecture is diagrammed in Fig. 11 

10 Conclusions 
We have developed a cache simulator capable of mod- 

eling multiprogrammed workloads. The simulator was 
used to select appropriate values~ for multiprogratn- 
ming level and time-slice, and t o  evaluate and refine 
the design of a two-level cache architecture our high- 
performance MCM-based microprocessor. Tlie simula- 
tor provides detailed cycle counts that  enabled us to 
evaluate a number of design alternatives based on to- 
tal system performance. Our experiments show that .a 
new write-only policy is better than a write-back policy 
and almost as good as subblock placement for secondary 
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cacbe access times of eight CPU cycles or less. Our ex- 
iperiments also show that there is a performance advan- 
tage t,o be gained from logically splitting the secondary 
cache into instruction and data parts. Performance is 
rurther enhanced if the cache is physically partitioned 
\rit,li a 32KW two cycle access time secondary instruc- 
t.ioii cache on the MCM and a 25GKW six cycle access 
t.ime secondary data  cache off of the MCM. This parti- 
tioning is dictated by the difference between the speed- 
size trade-offs of secondary instruction and data caches 
and provides a significant increase in performance. Rel- 
at.ively less performance is gained by using extra hard- 
ware to add concurrency to memory accesses through 
t.lre nse of a dirty buffer, or through data-read conflict 
ciiecking in the write buffer. Finally, this study has 
deinoiistrated that cache simulations must be tied to 
specific technological implementations in order to yield 
meaningful results. 
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