
Implementing a Cache for a High-Performance GaAs Microprocessor *

0. A. Olukotun T. N. Mudge R. B. Brown

Dept. Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, Mi 48109-2122

Abstract
In the near future, microprocessor systems with very

high clock rates will use multichip module (MCM) pack-
aging technology to reduce chip-crossing delays. In this
paper we present the results of a study for the design
of a 250 MHz Gallium Arsenide (GaAs) microprocessor
t,lrat employs h4CM technology to improve performance.
The design study for the resulting two-level split cache
st.arts with a baseline cache architecture and then ex-
amines the following aspects: 1) primary cache size and
degree of associativity; 2) primary data-cache write pol-
icy; 3) secondary cache size and organization; 4) pri-
mary cache fetch size; 5) concurrency between instruc-
tion and data accesses. A trace-driven simulator is used
to analyze each design’s performance. The results show
that memory access time and page-size constraints ef-
Cectively limit the size of the primary data and instruc-
tion caches to 4I<W (16KB). For such cache sizes, a
write-through policy is better than a write-back policy.
Three cache mechanisms that contribute to improved
performance are introduced. The first is a variant of
the write-through policy called write-only. This write
policy provides most of the performance benefits of sub-
I l o d placernenl without extra valid bits. The second,
is the use of a split secondary cache. Finally, the third
mechanism allows loads to pass stores without associa-
tive matching.
Keywords-two-level caches, high performance pro-
cessors, gallium arsenide, multichip modules, trace-
driven cache simulation.

1 Introduction
The integration level of gallium arsenide (GaAs) tech-

*This work was supported by the Defense Advanced Research
Projecla Agency under DARPA/ARO Contract No. DAAL03-90-
c-0028.

Permission to copy without fee a11 or pan of this malerial is granted
pmvided that the copier are not made or distributed for direct commercial
advantage. the ACM copyright notice and the tille of the publication and
its date appear. and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish.
requires a fee andlor specific permission.

iiology is now high enough to support the fabrication of
a RlSC CPU and floating-point accelerator (FPA) on
a single processor chip. However, i t is not yet practi-
cal i n GaAs to integrate primary cache with the CPU
and FPA. The architectural design of the cache sys-
tem for such a processor must, therefore, consider how
chip-crossing delays between the processor and cache
will impact system performance. Multichip modules
(MCMs) have been developed in recent years to re-
duce the penalty associated with chip crossings in high-
performance systems. In this packaging technology,
bare integrated circuits are mounted in close proxim-
ity on a substrate having high-density interconnect. In
systems using MCM packaging, partitioning must ad-
dress not only which functions go on each chip, but also,
which chips go on the MCM. The guiding principle is
t o place components on the MCM which, through low-
latency communication with the CPU, will produce the
greatest increase in system performance. The effects of
different partitioning schemes can only be determined
through simulation or experimentation.

Our purpose is to design a cache architecture for a
250 MHz microprocessor that is optimized for perfor-
mance given specific technology constraints. The con-
straints are the area of the MCM, the speed, physical
size and organizations of the primary and secondary
cache SRAMs and the main memory latency time and
transfer rate. Within these constraints we have evalu-
ated the design of a number of twdeve l cache archi-
tectures. This design process is subdivided into five
phases: primary cache size and associativity, primary
data-cache write policy, secondary cache size and orga-
nization, primary cache fetch size and techniques that
increase memory system concurrency. The design deci-
sions for the first phase rely on the physical properties
of both the MCM and GaAs technology. The successive
designs rely on the decisions made in previous phases.
The architectural performance data presented in this
paper are the result of detailed trace-driven simulations
of real benchmarks.

The following section presents a base architecture
that serves as the starting point for our design study,
and gives a brief overview of technological issues which
bear on the cache architecture. Section 3 discusses the

0 1991 ACM 0-89791-394-9/91/0005/0138 $1.50 138

trev
Typewritten Text
The 18th Annual International Symposium on Computer Architecture. May, 1991.

siinnlation methodology used to evaluate alternative de-
signs. Analysis of the base architecture with these sim-
illation tools is reported in Section 4. In Section 5 we
show that for the technology we are using 4 KW (16
KB) represents the best size for the primary instruc-
tion aiid data caches. Our study of primary-cache write
policy shows a trade-off between write policy and sec-
ondary cache access time. A write-through policy has
liigher performance when the access time is less than 8
CPU cycles while write-back policy performs better for
access times greater than 8 CPU cycles. We present a
variaut of a writ,e-throngh policy called write-only which
performs almost as well a s subblock placement without
the use of extra valid hits. Section F shows that split-
ting a large direct-mapped secondary cache, produces
performance improvements and implementation bene-
fits. Section 7 slrows that the performance improvement
from increasing the amouut of concurrency in the mem-
ory system is small. Concluding remarks are made in
Section 8.

2 Base Architecture
The base architecture is diagrammed in Fig. 1 and

sl~ows a single-chip CPU that integrates a pipelined
iiistruct,ion set processor aiid FPA based on the MIPS
arcl~it,ecture [I(anS7]. The figure also shows a two-
level cache architecture comprised of a high-speed, low-
lat,ency primary (LI) caclie and a inucli larger, high
lbandividtli secondary (L2) cache. The L1 cache, which
is split into I-cache (instructions) and D-cache (data),
a n d the 1,2 tags are to he implemented with 1K x 32-
bit SRAAis that have a 3 nanosecond access time. Fi-
nally, the figure shows a memory management unit chip
(MMU) and a write buffer (WB) chip. These, to-
gether with the CPU, are being designed in Vitesse’s
IlGaAs I11 process.

The CPU has a critical path that limits the cycle time
to just under 4 nanoseconds. Ilowever, the memory ac-
cess paths to the L1 caches have the potential to increase
tliis cycle time because they make two chip crossings. If
the components are mounted on a conventional PCB,
simple circnit models are suficient to show that the
cycle time will be dominated by the time lost in sig-
nal propagation between the chips. The effects of chip
crossings can be reduced if the components of the base
archit,ectuie are mounted on an MCM. Several prop-
erties of hiCAls make them superior to PCBs in high
performance systems. First, physical distances can be
reduced because RICAis allow the direct bonding of un-
packaged dies. Second, hiCAI features are only a factor
of 10 larger than on-chip features. Typical line widths
are 10-20 microns with pitches of 30-40 microns. This
compares very favorably to PCBs where feature sizes
on the order of 1000 microns are typical. Third, MCMs
a150 allow larger pinouts because components can be

I I

L1 mi l write-back 7 Main memory

Figure 1: Baseline architecture.

mounted as flip-chip dies having interior pads. All three
properties contribute to very high packaging densities
that make low-latency, high-bandwidth inter-chip COLI-
nections possible. In addition, superior electrical prop-
erties (low dielectric constant) and reduced packaging
parasitics, coupled with short interconnect distances al-
low use of smaller, lower-power off-chip drivers.

Unfortunately, even when advanced packaging tecli-
niques are employed, inter-chip propagation delays are
significant. Increasing primary cache size increases its
area on the MCM and, consequently, inter-chip propa-
gation delays. Furthermore, larger caches result in more
Ioadingfor driver circuits. Both of these facts cause pri-
mary caches to have an access time that grows markedly
with size. In our case, the inter-chip propagation delay
and loading can contribute as much as 50% to the over-
all access time [Mudt91] and limit the cache size to a
point where miss penalties can be significant. A sec-
ond level of cache is employed to reduce this peualty
[SL88, WBL89, PrzSO].

As a starting point for this work, a base architecture
is defined below:

L1 I-cache (Ll-I) is a direct-mapped 4K1Y cache
with 4W lines and refill.

L1 D-cache (Ll-D) is a direct-mapped 4I<W cache
with 4W lines and refill.

The L1 caches are write-back and require 1 cycle

139

to read, 2 cycles for a write hit and 1 cycle for a
write miss.

L2 is a unified write-back direct mapped 256KW
cache with 32W lines and 32W refill.

The refill path is 4W wide between L1 and L2 and
is shared between I and D.

Tlne L1 miss penalty is 6 cycles (2 cycles communi-
catioii delay and 4 cycles for the 4W transfer).

Tlne L2 cache is constructed from 8K x 8-bit BiC-
110s SRAMs with an access time of 10 nanosec-
onds.

The L2 miss penalties are 143 cycles for a clean
miss and 237 for a dirty miss.

A 4-deep, 4W wide write buffer connects the L1 D-
cache with L2. Tlne primary I- and D-cache both
wait for this buffer to empty before processing a
miss.

The CPU, MMU, primary caches and secondary
cache tags are mounted on the MCM.

A direct-mapped 4KW organization is chosen for the
L1 cache sizes because the target machine's page size is
41<\,\' and the operating system allows synonyms. This
iiieaiis t,liat the untranslated address bits can index the
cache without causing inconsistent synonyms. Hence,
cache tag lookup does not require any bit translation
and occurs in parallel with the virtual page number
translation. This allows the smaller physical page num-
ber to be used as the tag instead of the larger virtual
page inumber which must contain the process identifier
(PID) (S bits in our case).

The RIalU contains the primary cache tags, the TLB
logic, the write-buffer address queue, and the cache con-
trollers for both levels of cache. I t is possible to fit the
bag memory for the 8 I W primary cache entirely within
[.lie RIMU if physical tags are used. Doing this makes
tag checking and the control of primary cache misses
simpler and faster. The tags take 40Kb of memory plus
comparison logic. The TLB is organized as a %way
set-associative 32 entry cache for instructions and a 2-
way set-associative 64 entry cache for data. It requires
4I<b of memory. The write-huffer address queue is a 32-
Ibit wide 4 entry shift register. A corresponding 128-bit
wide 4 entry data queue is implemented in the WB chip.
The RlMU connects to the BiCMOS L2 SRAM through
ECL compatible 1/0 pads.

The 4W line size is a limitation imposed by the con-
nector bandwidth of the MCM. The L1 cac1ies.are write-
back. <Vrit,e lnit,s take 2 cycles to allow for tag c.hecking
before the write is committed. Following the lead of

earlier work on twdevel caches, we start with a uni-
fied L2 cache [SL88, WBLSS, PrzSO, TDFSO]. The miss
penalties for L2 are those of the R6020 system bus chip
[Tho901 of the ECL-based MIPS RC6230 which will he
used for prototyping. Waitingfor the write buffer empty
before fetching the da ta for a primary cache miss is nec-
essary to keep the secondary cache consistent.

3 Simulator and Benchmarks
Computer performance is proportional to the aver-

age number of cycles required t o execute an instruction.
Commonly referred to as the CPI (cycles per instruc-
tion), it is expressed as,

C P I = l +

where CPU-stall-cycles are due to multi-cycle instruc-
tions such as loads, branches, and floating-point opera-
tions, and memorys ta l l_cyc les are the number ofex-
tra cycles spent fetching instructions and loading and
storing data.

A trace-driven simulator has been developed to accu-
rately count the number of cycles spent in the memory
system. It is based on the MIPS suite of program perfor-
mance analysis tools, p i x i e and p i x s t a t s [MIPS8b].
The simulator is capable of modeling a wide variety of
a two-level cache memory configurations. The effects of
a multiprogramming environment are also modeled.

The first step in the simulation process is to use p i x i e
to instrument the benchmarks that will provide the ad-
dress traces. p i x i e takes an object file and augmeuts
it with instructions a t basic block entry points aud data
reference instructions so that when the augmented ob-
ject file is executed, it produces a trace of instruction
and data reference addresses. To enable the simulator
to switch among processes when voluntary system call
instructions are executed, a system call file that coil-
tains the address of all system call instructions is gen-
erated for each benchmark. We pessimistically assume
that all voluntary system calls cause context switches
to occur. A separate cache simulator program is gen-
erated for each memory configuration. The resulting
cache simulator runs efficiently because it only contains
necessary code and all memory system parameters are
constants. A full multiprogram cache simulation exe-
cutes at the rate of 240,000 references per second on a
MIPS RC3240 (a 15-20 MIPS system).

There are three parts to a cache simulation run:
the file descriptor multiplexor, the benchmarks and the
cache simulator. The file descriptor multiplexor uses
UNIX pipes to map a trace output file descriptor of
a benchmark program to an input file descriptor of
the cache simulator. Each benchmark is mapped to
a unique input file descriptor. Context switching be-
tween benchmarks is achieved by switching amoug the

CPU-stall-cycles + memory-stall-cycles
ins t ruc t ion-count

140

input file descriptors from which traces are read. Dur-
ing initialization, the cache simulator reads a process
configuration file and the system call files. The process
configuration file specifies the number of processes that
ruii concurrently (the multiprogramming level), and the
order in which the processes are run. Each benchmark is
counted as a single process. A hash table that contains
a list of system call basic block entry points is created
Cor each benchmark from its system call file. During
siinnlatiou, a context switch is scheduled whenever the
program counter matches an entry in a benchmark's sys-
tem call hash table, or after the process' time slice has
elapsed. The next process that runs is selected using
a round-robin schedule. When a benchmark terminates
tlie nest benchmark in order is started. This continues
i in t , i l all the benchmarks have terminated.

The architecture supports process identifiers (PIDs)
t,liat are included as prefixes to virtual addresses so that
cacli process has a distinct address space. This improves
pesformance by eliminating the need to flush the caches
and the translation-lookaside buffer (TLB) after every
coiit,est switch [AgaSS]. Tlie simulator also models this
feature. The virtual to physical mapping of addresses is
performed using page coloring [TDFOO].

The importance of realistic workloads for obtaining
meaiiingfiil predictions of cache performance lias been
rccogiiized for some time [SmiS5]. Afore recently, the
importance of long traces for obtaining accurate perfor-
inance figures of large secondary caches has also been
dcmonstrated [BI<WgO]. Tlie simulation methods that
\rere described above are as realistic as possible without
iiicluding operating system kernel references a t the con-
test switch points and rely on the use of benchmarks
tha t approximate a rcal workload (Table 1) . Described
iii [MIPSSa] they consist of a variety of C and FORTRAN
programs. Executing the benchmark suite generates a
total of about 2.5 billion memory references.

To include the effects of inultiprogrammiug on vari-
ous cache configurations, it is important to clioose tlie
values of multiprogramming level and process switch in-
terval that are appropriate for a system as fast ours.
To make these choices we used the base architecture
and the cache simulator described above. The results
nse sliowii i n Figs. 2 and 3. Experiments conducted as
ot,lier cache architectures were explored showed these
rmii1t.s t,o be fairly typical for the full range of architec-
t,iircs considered in this work. Fig. 2 shows that for a
tiine slice of 500,000 cycles, performance degrades only
sliglit,ly as the level of multiprograinming increases. The
rinderlying mechanism for this effect appears to be the
follo\ring: some of the lines brought into the cache by a
[xocess that is subsequently switched out will be evicted
Ihefore tlie process is restarted. The number of lines that
are evicted before a process restarts increases with the
nuniber of processes between restarts, i.e., as the level

0.035

0.03

0.025 .:
a

0.02 .I
a

0.015

-0- L1-D miss ratio

-+ L2 miss ralio

0 L1-lmhsralio
0.8

0.6

-
P

2 4 8 16
Mullipmgramming Level

Figure 2: The effect of multiprogramming level on cache
performance.

-3 \- cp' Fo " b&y js 0.08 : I

3
0.01

.+.
0.02 - -.-
0

001 0.05 0.1 0.5 1 5 10
am s- ,mli*m q d q

Figure 3: The effect of context switch interval level on
cache performance.

of multiprogramming increases. The L1 caches are too
small t o show this effect in a pronounced way. For in-
stance, the L1-I miss rate does not change and the LI-D
miss rate changes by only 2%. However, the L2 cache is
big enough to simultaneously contain lines from several
processes and so its miss rate changes by 70%. For-
tunately for overall performance, this is 70% of a very
small number (x 0.5%, see Fig. 2). In summary, for sys-
tems in the general range of those under investigation,
cache performance is unaffected by multiprogramming
levels of more than eight. Therefore we use a multipro-
gramming level of eight for our remaining studies.

Performance is improved significantly by increasing
the time slice (see Fig. 3). This is due to the greater
opportunity of reusing lines that are brought into the
cache. It is clear that picking a time slice that is too
short will result in poor cache performance [BI<WSO].
To guide the choice of a realistic time slice we examined
the literature. Clark et al. have investigated the fre-
quency with which context switches and interrupts oc-
cur on a VAX 8800 using a hardware monitor [CBI<S8].
They report an average of 7.7 milliseconds between con-

Benchmark

Table 1: List of benchmarks that were used to create a multiprogramming workload. Integer benchmarks are denoted
by (I) , single precision floating point benchmarks by (S), and double precision floating point by (D).

Description Instructions Loads Stores # System
(million) (% of inst.) (% of inst.) calls

t,ext, swvit,ches. This time would translate into 1.9 million
cycles for a computer with a 4 nanosecond cycle time.
Ilomever, this represents a context switch interval that is
too long; it ignores 110 and timer interrupts which cause
operating system kernel code to be executed, thus hav-
ing a negative effect on cache performance similar to
cont,ext switching. If we assume that 1/0 devices and
t,itiier interrupts are unaffected by a shorter CPU cy-
cle time, we could use Clark’s figure of 0.9 milliseconds
between any interrupt to take these interrupts into ac-
count. This time represents 225,000 4 nanosecond cy-
cles. However, this context switch interval is too pes-
simistic because most context switches to the operating
sxstein kernel that are caused by interrupts switch back
t,o the process that was interrupted. Such a process is
Iiliely to find a significant portion of its working set is
still retained in a large secondary cache. This is illus-
[,rated by the lower L2 miss rate for a multiprogramming
lei-cl of two in Fig. 2. As a compromise we chose a time
slice of 500,000 cycles for our experiments. It results in
a n average of 310,000 cycles between context switches
ivlieii all system call context switches are also included.
It is iiiteresting to note that faster machines may achieve
lower cache miss rates because they execute more cycles
betrreen context switches.

4 Base Architecture Perfor-
mance

The performance of the base architecture is shown in
Fig. 4. Also shown is the performance loss breakdown
from each of the coinpouents of the system as different
gray levels. The horizontal axis at 1.238 CPI represents

1.7

1.65 U - D m i s r

1.5 L2-Imisr
155
1.5 U WB

6 1.45 L l writes

1.4

1.35
Ll-Dmiss

1.1 L1-lmisr

1.25

1 .23
barram.

m i f e ~ r s

Figure 4: Performance losses of the base architecture

the contribution of single cycle instruction execution,
processor stalls resulting from load delays, branch de-
lays and multicycle operations. The histogram above
this axis is the Contribution to CPI from the cache sys-
tem and the focus of our discussion.

In the remainder of this paper architectural tecli-
niques that improve the performance of the base ar-
chitecture by decreasing the value of CPI without in-
creasing cycle time will be investigated. Throughout the
exploration of alternatives we err on the side of arcbitec-
tures with simple implementations t o avoid unexpected
performance traps.

5 Primary Cache Size
We begin our investigation with the primary cache

(L l) because i t can determine the system cycle time.
Here, the goal is to find a balance of size and orga-

I42

nization tradeoffs that yields a maximum performance
design.

The L1-I cache size is not limited by the page size
coiistraiiit because it is a read only cache and so incon-
sistent synonyms cannot occur. Therefore, i t is feasible
to increase the L1-I cache size and thereby decrease the
CI'I. However, the additional SRAMs required to im-
plement an 8I<W cache (4 more for memory and 2 more
for virtual tags) coupled with the additional time re-
quired to traiislate the virtual address will increase the
access time enough to nullify the positive effects of a
lower miss ratio [OBL'91] and produce an overall per-
rormance loss.

For a direct mapped L1-D cache, it is impossible to in-
crease cache size beyond the page size without operating
syst.em support. One might consider a set-associative
Ll-D cache, but that would force the L1-D tags off the
hlMU chip. This additional tag access time added to
t,lic coinparison time almost doubles system cycle time.
i\gain, an increased cache size does not increase overall
performance.

6 Write Policy
Ily adding together the contributions of 2 cycle writes

(L 1 writes) aiid write buffer cycles (WB) to the CPI
i l l Fig. 4 it is determined that writes account for 24%
of tlie performance loss in the memory system. The
erect of write policy on system performance is studied
i n an attempt to reduce this loss. Four write-policies are
considered, they are: the write-back policy used in the
I,nse-architecture, a write-miss-invalidate policy, a new
policy called write-only and subblock placement [HPSO].
Tlie write-back policy uses the four entry deep write-
Ibilffer defined in the base architecture. The other three
ivsitc-through policies use an one word wide, eight entry
(leep write billTer.

III the write-back policy used iii this study, writes that
liit i i i the cache take two cycles and those that miss take
oiic cycle. Write-allocate is used in the event of a write
iiiiss. A modified line that is replaced is sent to a four-
word deel) write-buffer. In the write-miss-invalidate pol-
icy write hits take one cycle and write misses take two
cycles. It is possible to complete write hits in a sin-
gle cycle because the tag is checked while the data is
ivritten to the cache. If a miss is detected, a second
cycle is used to invalidate the corrupted line. No previ-
o i d y \witten inforination is lost by doing this because
all writes are sent to the write buffer. Our new write-
only policy modifies write-miss-invalidate by updating
thc tag 011 a write-miss and marking the line as write-
olily. This allows one cycle completion of subsequent
irrit.es t o the line. All reads that map to a write-only
liiie miss aiid cause the line to be reallocated. In sub-
blocli placemeiit each tag has four extra valid bits; one
fos each of the four words in the line. A write-miss

1.

Figure 5: Write policy-12 access time tradeoff for tlie
base architecture.

causes the address portion of the tag to be updated in
the next cycle. If the write was a word-write, the cor-
responding valid bit is turned on and all other bits are
turned off. Subsequent word writes t o the line update
the valid bits in one cycle. However, partial word writes
to the line do not update the valid bits.

The performance of the base architecture using these
four write-policies is shown in Fig. 5 for L2 access times
of two to ten CPU cycles. These access times assume
a two cycle latency to account for L2-tag checking and
communication delay between the L1 and L2 caches.
Single reads and writes of L2 take the full access time.
However, a stream of writes may overlap one or both cy-
cles of latency. Fig. 5 shows that for L2 access times of
less than 8 cycles write-through policies achieve higher
performance, while for L2 access times greater tliaii
8 cycles the write-back policy achieves higher perfor-
mance. The reason is that for a 4I<W, cache writes hit
in the cache most of the time. Since writes make up a
0.0725 fraction of instructions, the constant 0.071 loss in
CPI from 2-cycle-write-hits (Write hits in Fig. 5) shown
by the write-back policy indicates a hit rate of 98%.
In contrast, the write-through policies lose significantly
less performance due to two-cycle-write-misses because
the write-miss rate is only 2%. However, write-through
polices waste many more cycles on average waiting for
the write buffer t o empty before fetching the data for a
L1 read miss than a write-back policy. The number of
cycles i t takes to empty the write-buffer is determined
by the effective access time of the secondary cache. This
assumes that changes in L2 cache size can be related to
changes in effective L2 cache access time [PrzSO]. At
some value of effective L2 access time the extra time
spent waiting for the write-buffer in the write-througli

143

policies will be greater than the cost of two-cycle-write-
hits in tlie write-back policy. This results in a trade-
OK between write policy and effective L2 cache access
t.ime. We note that tlie exact nature of this trade-off
depends on the L1 read miss ratio and therefore on L1
size. However, the L2 access time at which a write-back
policy becomes the better choice grows with L1 cache
size because larger L1 caches have fewer read and write
misses.

Fig. 5 shows that for the region of L2 access time in
which a write-through policy is most effective (4 and
G cycles) write-only performs almost as well as suh-
block placement. The reason for this is that most of the
performance gain (over 80%) from subhlock placement
over write-miss-invalidate comes from writes misses that
cause subsequent writes to hit. The extra performance
gain from read hits that would otherwise have missed is
less t.lian 20%. Write-only requires 3I<b less tag memory
t,lian subblock placement for the base architecture. Fur-
thermore, write-only does not need the ability to read
and write the tag RAM in the same cycle. For this rea-
son we will use the write-only write-through policy in
the remainder of this paper.

Using a write-through cache increases the number of
slots in the write-buffer by a factor of two (8 deep in-
stead of 4 deep), hut decreases its width from four words
to one word. The accompanying factor of four reduction
i i i I f 0 requirements, from 256 pins to 64 pins, enables
11s to put the write-buffer inside the MMU chip. Thus,
a write-only policy provides higher performance and a
cheaper and simpler implementation than a write-back
policy for the L2 access times of the base architecture.

7 Secondary Cache
The effects of secondary cache size and organization

011 performance are investigated by looking at four can-
didate cache organizations: unified direct-mapped, uni-
fied two-way associative, split direct-mapped and split
two-way associative. A split cache is logically parti-
t.ioned into instructions and data. It is assumed that
making a cache associative adds one CPU cycle increas-
ing t,lie access time of the cache from 6 to 7 cycles or

Fig. G shows the performance of these four cache
organizations. This figure shows that splitting improves
t,he performance of direct-mapped caches of G4KW or
more. The performance benefit of splitting is not evi-
dent for two-way associative caches until the cache size
reaches 512KW. The benefits of splitting large caches
come without an increase in cache access time or cache
access bandwidth because splitting can be implemented
by using the high-order bit of the cache index to in-
terleave between the instruction and data halves of the
cache.

Two processes access the secondary cache: instruc-
tion fetching and da ta accessing. These two processes

,M 521: e 4 I 12% 2% 512x ,024K
U Uh. r h s I-&,

Figure 6: Performance of various L2 sizes and organi-
zations. 1-way associative caches have a G cycle access
time; 2-way set-associative caches have a 7 cycle access
time.

size (words)
16K
32K
64K

128K
25GK
512K

1024K

unified
1-way -

0.0335
0.0240
0.0186
0.0133
0.0112
0.0102
0.0102 -

~

unified
2-way

0.0269
0.0181
0.0129

0.0048
0.0034
0.0031

-

0 . 0 0 7 ~

~

-
split

l-way
0.0489
0.0273
0.0177
0.0121
0.0072
0.0051
0.0042

-

__

-
split

2-way
0.0364
0.0221
0.0143
0.0093
0.0051
0.0025
0.0013

~

__
Table 2: L2 miss ratios for the sizes and organizations
of Fig. 6 .

never share address space, hut in a direct-mapped cache,
they can interfere with one another because of mapping
conflicts (two memory locations mapped to the same
line). This is a feature of direct mapped caches that de-
grades their performance [Hil87]. We have shown that
these conflicts can be reduced without affecting access
time by dividing the cache into separate instruction and
data portions. Others have shown that tlie miss ratios
for split direct-mapped primary caches are no worse
than those of unified caches [WBL89]. Table 2 shows
that for large secondary caches, splitting actually ini-
proves the miss ratio. This improvement is expected
to increase for even larger cache sizes because a greater
fraction of misses are due t o conflicts.

To further investigate the effect that splitting the L2
cache has on performance the speed-size tradeoff curves
for the L2 instruction cache (L2-I) and L2 data cache
(L2-D) are shown in Figs. 7 and 8. The effect of writes
on L2-D is ignored in order to simplify the compari-
son between L2-I and L2-D. The da ta in tlie figures
are the result of varying the speed and size of the L2-I
and L2-D caches from the base architecture. Both sets
of curves show the same trend; the marginal perfor-

144

- C O

- 8

- 4 - 7

0 6

- 8 - 5

* 4

9 3

- 2

9 1

I
8K 16K 32K 64K 128K 256K 512K

L2.I sile (words)

Figure 7: The L2-I speed-size tradeoff with a 4I<W L1-I.

inillice increase due to increasing cache size is smaller
for larger cache sizes. IIowever, tlie exact shape and
level of performance of the L2-I and L2-D caches is quite
difTerent. The L2-I cache performance varies from 0.19
CPI to 0.02 CPI and the curves are fairly flat for cache
sizes larger than 64KW. Whereas the L2-D cache per-
formance varies from 0.72 CPI to 0.06 CPI and is still
decreasing a t 512KW. From this data we conclude that
the optimum data cache size is roughly 8 times as large
as t.he optimum instruction cache. Two-way associa-
tive split L2 caches show the same trends, although the
ciiivcs are shifted downward due to the lower miss rates
i i i id tlie L2-D cache performance improves mare than
tlie I,?-I cache.

Tlie speed-size tradeoffs for secondary instruction and
data parts of a split secondary cache are radically dif-
fcrent. To take advantage of this fact we should imple-
ment the L2-I cache in a faster, less dense technology
t,linn the L2-D cache. To do this, a 32KW L2-I cache is
implemented from the same 1I< x 32-bit chips as the L1
cac.l~es. Tlie access timeof this cache is two CPU cycles.
The 25GKW secondary cache from tlie base architecture
is made into a 25GI<W L2-D cache. However, the L2-
I1 cache is not made 2-way set-associative because its
0.012 decrease i n CPI is too small a performance ben-
clit for the extra multiplexing, interconnect, and MMU
p i n s necessary to implement it.

The performance gain describe above is shown by
the difference between the first and second columns of
Fig. 9. A substantial 34% increase in performance is
achieved. Tlie contribution of the memory system to
CPI is uow 0.242. If we exchange the sizes and access
liines of L2-I aud L2-D, the CPI increases by 21% to
0.793. It is clear that L2-I should be placed on the
RICRI ivliile L2-D should be placed off of the MCM.

0.7
- 9

- + - a

- 7

Q 6

- 0 5

* 4

9 3

9 2

9 1

0.8

0.5

DL 0
D g 0.4

0.3

0.2

0.1

8K 16K 31K 64U l Z B K 256K 512K
U - D slze (wxdi)

Figure 8: The L2-D speed-size tradeoff with a 41<W
Ll-D.

8 Primary Cache Fetch Size
With the latency and transfer rates between L2 and

L1 fixed for both instructions and data we can inves-
tigate the effect that fetch size has on performance
[Smi87, PrzSO]. The L1-I latency is two cycles and the
transfer rate is four words every cycle. For L1-D the
latency is six cycles and the transfer rate is four words
every cycle.

Performance is maximized when the fetch size and
line size of L1-I are both eight words long. The opti-
mal Ll-D fetch and line size is also eight words. Any
further increase in the fetch sizes of either Ll-I or L1-
D will decrease performance. The total improvement i n
performance of lengthening the Ll-I and L1-D fetch size
to E words is a 0.026 decrease in CPI. This is shown by
the difference between the second and third columns in
Fig. 9. As a consequence of increasing the L1 line size
by a factor of two the size of the L1 tags 011 the M M U
chip has been reduced from 40Kb to 20Kb.

9 Memory System Concurrency
With the six optimizations we have implemented so

far, memory performance has been improved by 4S%
and total performance by 12% as measured in CPI.
In this section we will evaluate techniques that ini-
prove performance by allowing more concurrency be-
tween memory accesses.

With a split L2 cache instruction and data accesses
are completely independent. Thus after an Ll-I miss it
is possible to refill the L1-I cache from the L2-I cache
while the write-buffer continues to empty into the L2-
D cache. This provides a decrease in CPI of 0.011

145

~:~ 1 6

I 3 5

1.3

1.25

1.605

L2 0-cache
256 KW

Main memory. 32 w line

1:iyiire 9: The performance improvement from adding a
3?I i \ \ ' 2 cyclc L2 on.the M C M and from optimizing L1
ktch size.

' 7 0 L2-0 miss

BWL,L"* ,WBbyprs DWSbYpa.. W W B
* r c h i t e i e

rigure 10:-The performance improvement gained from
adding .more concurrency to t.he memory system.

;Itown i n the second column of Fig. 10.
'To allow data-reads to bypass data-,writes in^ the

writ,e-l)uffer usually requires that all eight entries of
(.Ire write-buffer associatively matclr the address of the
iniised line. If a match is made, then all entries ahead,
including thematched entry, must be flushed to keep the
si.at,c of the L2-D cache consistent.^ However, if an extra
dirty bit is added to the Ll-D tags. The~cache need only
he flrislied when dirt,y lines are replaced in the cache.
No associative.matclring is needed. This scheme works
Jmiiuse the write-only policy ensures that all writes al-
locate-a 1ine.in the Ll-D cache. The write-buffer can
only contain.parts of dirty lines. Therefore, to keep the
L2-D cache consistent it is only necessary .to flush the .
writ,e-buffei when these lines are replaced. experiments
show that tli,is scheme achieves 95% of the performance
incrpaie of associative matching, However, this perfor-
nyance~ illcrew. is very rnodest;.only a 0.008 decrease
i n CPI. This performatice is shown in Column D W B
bypns: in Fig. 10.

At this design point, the largest component of perfor-
mince loss is that of L2-D dirty misses. Currently, when . .

Figure 11: Optimized architecture.

a L2-D dirty miss occurs the dirty line is written to main
memory,and then the requested line is read from main
memory. To improve this situation a single 32 word
line write-buffer or dirty buffer can he added to L2-D
cache. Now it is possible to read tlie requested line he-
fore the dirty line is written. However, tlie performance
improvement from doing this is only a 0.008 decrease in
CPI. It is shown in Column L& WE of Fig. 10.

The total performance improvement from adding co11-
currency to the system is a 0.027 decrease ,in CPI. It is
cliar that increasing concurrency in the memory sys-
tem in these limited ways adds much less to the perfor-
mance of the memory system than the basic cache size,
organization and speed optimizations discussed in the
previous sections. In fact, it is questionable, whether
the last two optimizations should be implemented at all
given the increase in control logic and memory required.

The final three optimizations bring the total memory
system performance improvement to 54.5% and total
system performance improvement to 13.7%. The opti-
mized architecture is diagrammed in Fig. 11

10 Conclusions
We have developed a cache simulator capable of mod-

eling multiprogrammed workloads. The simulator was
used to select appropriate values~ for multiprogratn-
ming level and time-slice, and t o evaluate and refine
the design of a two-level cache architecture our high-
performance MCM-based microprocessor. Tlie simula-
tor provides detailed cycle counts that enabled us to
evaluate a number of design alternatives based on to-
tal system performance. Our experiments show that .a
new write-only policy is better than a write-back policy
and almost as good as subblock placement for secondary

146

cacbe access times of eight CPU cycles or less. Our ex-
iperiments also show that there is a performance advan-
tage t,o be gained from logically splitting the secondary
cache into instruction and data parts. Performance is
rurther enhanced if the cache is physically partitioned
\rit,li a 32KW two cycle access time secondary instruc-
t.ioii cache on the MCM and a 25GKW six cycle access
t.ime secondary data cache off of the MCM. This parti-
tioning is dictated by the difference between the speed-
size trade-offs of secondary instruction and data caches
and provides a significant increase in performance. Rel-
at.ively less performance is gained by using extra hard-
ware to add concurrency to memory accesses through
t.lre nse of a dirty buffer, or through data-read conflict
ciiecking in the write buffer. Finally, this study has
deinoiistrated that cache simulations must be tied to
specific technological implementations in order to yield
meaningful results.
Ackiiowledgrnents
\\le thank MIPS Computer Systems for supporting this
project wit11 technical assistance nnder a special licens-
iiig arrangement. We also gratefully acknowledge the
assistance of Vitesse Semiconductor Corp., Seattle Sil-
icon Corp., and Mentor Graphics Corp. Finally, we
t,lianl; the aiionyinous reviewers for suggesting we look
at subblock placement and David Nagle for his help in
lireparing the final manuscript.

References
[,\gaSS]

[I<\B90]

[CBIiSS]

[111187]

[IIP90]

[KanS7]

A. Agarwal, Analysis o f Cache Performance
fo r Operating Systems and Mulliprogram-
ining. Kluwer Academic Publishers, 1988.

A. Borg, R. E. Kessler, and D. W. Wall,
‘Generation and analysis of very long ad-
dress traces,” in Proc. of the 17th Annual
International Symposium on Computer Ar-
chitecture, pp. 270-279, June 1990.

D. W. Clark, P. J . Bannon, and J. B.
Keller, “Measuring vas 8800 performance
with a histogram hardware monitor,” in
Proc. of the 15th Annual International Sym-
posium o n Computer Architecture, pp. 176-
185, June 1988.

M . D. Hill, Aspects o f Cache Memory and
Instruction Buffer Performance. PhD the-
sis, University of California, 1987.

J . L. Hennessey and D. A . Patterson, Com-
puter Architecture A Quantative Approach.
San Mateo, California: Morgan Kaufman
Publishers, Inc., 1990.

G. Kane, MIPS R200 RISC Architecure.
Englervood Clifk, New Jersey: Prentice
Hall, 1987.

(Mud+91]

[MIPSSa]

[MIPSSb]

[OBL+Ql]

[Prz9O]

[s~aa)

[Smi85]

[Smi87]

[TDFSO]

[Tho901

[WBL89]

T . N. Mudge et al., “The design of a micro-
supercomputer,” Computer, vol. 24, Jan.
1991.

MIPS Computer Systems, Inc, Performance
Brief CPU Benchmarks, Oct. 1988.

MIPS Computer Systems, Inc, RISConipiler
Languages Programmer’s Guide,.Dec. 1988.

0. A. Olukotun, R. B. Brown, R. J . Lomax,
T. N. Mudge, and K . A. Sakallah, “Rlulti-
level optimization in the design of a liigli-
performance GaAs microcomputer,” IEEE
J. Solid-State Circuits, vol. 26, May 1001.
(to appear).

S. A. Przbylski, Cache and Memory Hierar-
chy Design. San Mateo, California: Morgan
Kaufman Publishers, Inc., 1990.

R. T. Short and H. M. Levy, “A simula-
tion study of two-level caches,” in Proc. of
the 15th Annual International Symposiam
on Computer Architecture, pp. 81-88, June
1988.

A. J . Smith, “Cache evaluation and the
impact of workload choice,” in Proc. of
the 12th Annual International Symposiuni
on Computer Architecture, pp. G4-73, June
1985.

A. J. Smith, “Line (block) size choice for
CPU cache memories,” ZEEE Trans. Conr-
puters, vol. C-3G, pp. 1063-1075, Sept. 1987.

G. Taylor, P. Davies, and iM. Farmwald,
“The TLB s l i c e a low-cost high-speed
address translation mechanism,” in Proc.
o f the 17th Annual International Sympo-
sium on Computer Architecture, pp. 355-
363, June 1990.

M. Thorson, “ECL bus controller hits 266
Mbytesfs,” Microprocessor Report, vol. 4,
pp. 12-13, Jan. 1990.

W.-H. Wang, JI-L. Baer, and II. M. Levy,
“Organization and performance of a tmo-
level virtual-real cache hierarchy,” in Proc.
of the 16th Annual International Synipo-
sium on Computer Architecture, pp. 140-
148. June 1989.

147

