
The Design of a
Microsupercomputer

Trevor N. Mudge, Richard B. Brown, William P. Birmingham, Jeffrey A. Dykstra,
Ayman I. Kayssi, Ronald J. Lomax, Oyekunle A. Olukotun, and Karem A. Sakallah

University of Michigan

Raymond A. Milano, Vitesse Semiconductor Corporation

A s supercomputer performance
continues to grow, packaging
techniques will remain critical for

reducing chip-to-chip delays. In addition,
higher integration levels will become in-
creasingly important because they can
drastically reduce the number of chip
crossings. Microcomputer systems have
enjoyed a performance increase of 100 to
200 percent every three years, in large part
due to the growth in chip integration den-
sity. In contrast, mainframe supercomputers
have improved by only about 50 percent
every three years.’ It should not be sur-
prising, then, if the next generation of
supercomputers evolves from the micro-
processor rather than continuing the main-
frame tradition.

This article describes our work to devel-
op a prototype “microsupercomputer” that
will realize the best of both the supercom-
puter and the microprocessor traditions. It
does so by using GaAs Mesfet E D DCFL
(gallium arsenide, metal semiconductor field-
effect transistor, enhancement/depletion
direct-coupled FET logic), a high-speed
technology that has good integration densi-
ty, and by using state-of-the-art packaging
technology to prevent chip crossings from
dominating the overall speed of the system.

With the levels of integration now be-
coming available in this technology, i t is

Using advanced GaAs
technology and a
multichip module

package, this prototype
next-generation
machine takes

advantage of the best of
both the

microprocessor and
supercomputer

traditions.

possible to implement a 32-bit CPU and a
floating-point accelerator (FPA) on a sin-
gle processor chip.2 It is also possible to
implement a 3-nanosecond, 32-Kbit static
RAM. These are critical integration levels
because they allow the number of chip
crossings on the critical timing path of an
instruction to be limited to just two (ac-
cessing an off-chip cache).

The processor, cache, memory control-
ler, and bus interface will be packaged on
a single multichip module (MCM) a few
inches on a side, to minimize the time
penalty of unavoidable chip crossings. High
integration levels and high-performance
packaging allow the switching speed of
GaAs to be reflected in system speed.

The focus of this research is the rela-
tionship between hardware implementations
and emerging technologies. We chose to
implement the MIPS Computer Systems
instruction set3 to bound the architectural
options and to eliminate the need to develop
compilers and operating systems. In addi-
tion, it allows us to use the MIPS MC6280
chassis rather than developing our own
high-performance backplane, primary and
secondary memory, I/O, and power supplies.

Our efforts are concentrated on develop-
ing the processor and cache. The resulting
system will be a general-purpose computer
that runs a conventional Unix environment
and supports standard programming lan-
guages and networking protocols. This
machine will significantly accelerate exe-
cution of the existing large base of applica-
tion software.

Our circuit simulations of the processor,
verified by fabrication and testing of the
register file and arithmetic logic unit,4 in-
dicate that it can be clocked at 250 MHz.

57

Primary cache chips

Memory
Processor management

Primary cache chips

Figure 1. VSPICE schematic to determine CPU-to-cache delay. The number of 1-
mm resistor-inductor-capacitor (RLC) segments (inset, upper right) used to
model each section of the interconnect is indicated on the lines.

Cache simulations show that a sustained
performance of 170 million instructions per
second can be expected at this clock rate.

Technology

Technology includes both semiconduc-
tors and packaging. To exploit the speed of
fast transistors, package parasitics and in-
terconnect lengths must be carefully con-
trolled. Packaging is especially important
to Mesfet logic families, since their drive
capabilities are inferior to corresponding
bipolar families. Though the critical timing
path (instruction fetch from first-level
cache) has only two chip crossings in our
design, the delay associated with them must
be on the order of one nanosecond to allow
use of a four-nanosecond clock. The need
to use high-performance packaging tech-
niques for very fast systems is becoming
widely accepted. The choice of semicon-
ductor technology, on the other hand, re-
mains a subject of debate.

Circuit technology. Because of its good
speed (I 30-picosecond gate delays), sim-
plicity (few devices per gate), and low
power, we selected E/D DCFL, a Mesfet
technology developed by Vitesse Corpo-
ration, as the basic logic family for this
project. E/D DCFL has circuit topologies
similar to E/D NMOS. There are challeng-
es in designing with DCFL:

limited fan-in and fan-out,
lack of dynamic circuits due to the

comparative difficulty of pass transis-

orientation-dependent transistor char-

small noise margins.

Mesfet Schottky gate,

tor design,

acteristics, and

Nevertheless, dramatic improvement in
yield has been achieved; a 30K gate array
is now commercially available. This implies
that VLSI integration levels are now
practical in GaAs DCFL, particularly in a
custom design style.

Packaging technology. A major factor
in increasing the clock speed is to minimize
the round-trip delay to the first-level cache
chips, simultaneously maintaining good
signal integrity by using a high-performance
MCM interconnect technology.s The sig-
nal lines on the MCM behave as stripline
transmission lines and are designed for
impedance levels of SO to 70 ohms. Off-
chip drivers must be capable of driving
these low impedances.

The multiple fan-out required for the
cache prevents ideal impedance matching,
making simulation of the signal behavior
essential. On the basis of a preliminary
layout of the MCM, we performed a VSPICE
simulation to estimate interconnect delays.
(VSPICE is aproprietary version of SPICE
modified by Vitesse Corporation for its E D

Mesfet technology.) We did this by model-
ing a 1-bit line of a bus by the ladder
network shown in Figure 1. We modeled
each input pad of the GaAs SRAM chips
by a diode-connected Mesfet and parallel
capacitor.

In some simulations, the driver was only
a pull-up; the terminating resistor acted as
a pull-down. In other cases, an active pull-
down was used. Round-trip delay times
(including the input and output buffers and
pads) ranged between 1.6 and 1.8 nano-
seconds. Time averaging, with level-sen-
sitive latches, makes it possible to achieve
a 4-nanosecond cycle time even though the
memory access time is 3 nanoseconds.6 A
three-dimensional transmission-line matrix
method,' which automatically includes all
capacitive and inductive couplings, will be
used to characterize more detailed effects
of propagation and crosstalk.

Thermal studies have shown that flipchips
1 centimeter square have thermal resistances
of around 4- to 5-degrees C/W.' The
overall dissipation of the 3-inch by 3-inch
MCM is on the order of lOOW, but most
chips on our MCM will dissipate only 4 to
SW. Removing this heat, while not trivial,
is within the 1- to 2-W/cm2 capability of
MCM packages.

System architecture

Processor. Central to the design of the
microsupercomputer is the 32-bit CPU,
which is integrated with the FPA. It is
implemented as a five-stage pipeline, with
the successive stages denoted IF, RF, ALU,
MEM, and WB. Instructions are fetched
from cache in the IF stage. One instruction
is required every clock period unless there
is a cache miss or exception. In the RF
stage, the instruction is decoded and op-
erands are read from the register file. In the
ALU stage, 32-bit two's complement
arithmetic and logic operations take place,
and in the MEM stage the data cache is read
or written. Finally, in the WB stage, results
are written back to the register file. Every
operand from memory (except immediates)
must be temporarily stored in the register
file before i t can be used in a calculation.
The ALU, IF, and MEM stages are 4
nanoseconds long but, to accommodate the
one instruction branch delay expected by
the MIPS compiler, the RF and WB stages
were made only 2 nanoseconds long.

The basic structure of the CPU is shown
in Figure 2. The caches, shown as shaded
blocks, are implemented as separate chips.
The data path includes a register file with

58 COMPUTER

thirty-one 32-bit general-purpose registers,
an ALU, a shifter, and a multiply/divide
unit. Note that a separate address adder and
incrementer are required for the program
counter section to comply with the instruc-
tion-per-clock-cycle philosophy. Also
shown in Figure 2 are two possible bypass
paths, required to avoid hardware inter-
locks. Bypassing allows the ALU to take
operands from any pipe stage, even before
the register file is updated with the new
value. Nominal delays of major CPU logic
blocks are given in Table 1.

Register f i le. The register file is orga-
nized as thirty-one 32-bit registers that can
be accessed through three 32-hit ports (one
write and two reads). Simultaneous write
and read operations to a given register are
allowed in the same clock cycle.

ALU. The ALU design is based on a
binary look-ahead tree for carry computa-
t i ~ n . ~ The worst-case instruction is “set on
less than” (SLT). It uses the full carry chain
plus two additional XOR gates, after which
the result is transmitted back across the
ALU from most significant bit to least
significant bit and then to the top of the
ALU for possible bypassing. For branch
condition calculations, “quick compare”
circuitry (simple logic comparison without
subtractions) and a multiplexer to select
the comparison type are added to the
ALU. The output of the comparison cir-
cuit controls the program counter (PC)
for the instruction following the branch
delay slot.

Shifter. The shifter can perform left and
right logical shifts and arithmetic right
shifts by 0 to 31 bits. Instead of a barrel
shifter, as is commonly used in CMOS, we
used a five-stage tree shifter, because at 2.7

nanoseconds the tree design had less than
half the delay of a barrel shifter.

access (address generation, cache access, and
data alignment) must be done in twocycles, so
extra power and area were provided to speed
up the address adder and load aligner, allow-
ing a maximum time for cache access.

Load aligner. The load aligner design is
similar to the shifter. An entire data cache

Register file
Control

I

D-cache

Latch

Latch

2 I

I-cache 0
I

Program
counter

PC adder
incremente

Figure 2. Register-transfer-level of the CPU. Key latches and flip-flops (F/F) are
also shown.

Table 1. Parameters of major CPU logic blocks.

Logic Block Devices Area Function Limiting Delay Power

Register file 16,085 4.2x1.6 m m Read + setup 1.6 ns 1.70W
ALU 3,419 3 . 3 ~ 0 . 5 mm SLT with bypass 3.5 ns 0.67W

Shifter 1,848 3.4x0.5 mm Shift data or address 2.7 ns 0.41W
Integer multiply

and divide 6,874 4 . 0 ~ 1 .O mm 1 add step 3.6 ns 0.84W
Load aligner 1,922 3.4xO.S mm Align 1 . 1 ns 0.27W
Address adder 1,675 3 . 2 ~ 0 . 2 mm Add 1.8 ns 0.21W

0.8OW PC section 7,082 3 . 3 ~ 1 . 3 mm PC + offset 2.5 ns
Data path =30,000 4 . 2 ~ 6 . 0 mm 5.00W

Quick compare 1.3 ns

January 1991 59

buses I

>

A 32-bit address
buses

Secondary I-cache
128 kilowords

p5-q interface

Data
translation
look-aside
buffer

V
Tags Primary D-cache

4 kilowords

Write-buffer

i '

Figure 3. Cache organization.

4-word bus

Controller. The controller decodes in-
structions and distributes control signals to
the register file, ALU, shifter, integer mul-
tiply/divide unit, load aligner, and multi-
plexers. It also contains logic for handling
exceptions generated in the CPU, in the
FPA, and in the off-chip cache controller.
Normally, an exception causes the program
counter to jump to the address of the excep-
tion-handling r o ~ t i n e . ~ Cache miss excep-
tions are handled by stalling the pipeline.
Because of the static design of data path
circuits, a stall is produced by simply
stopping the clock to the data path.

*

FPA. The floating-point accelerator will
be implemented on the same chip as the
CPU. The logic implements single- and
double-precision IEEE arithmetic. The
principal blocks in the chip are: a register
file of thirty-two 32-bit registers, an expo-
nent unit for performing exponent arith-
metic and aligning mantissas, an adder/
subtracter, a multiplier unit, a divide unit,
and a round unit.

Secondary D-cache
128 kilowords

Cache architecture. The processor just
specified has a 4-nanosecond clock and a
potential average CPI (clocks per instruc-

tion) of close to one. To realize this poten-
tial, it is necessary that the compiler be able
to schedule one instruction per clock, and
that the memory system be able to deliver
one instruction per clock and, when nec-
essary, its operand, too. In other words, we
need a high-bandwidth, low-latency
memory system. A common way to achieve
this in scalar processors is to use a cache
and to match the bandwidth requirements
set by the peak instruction execution rate
of the CPU. This requirement is most eas-
ily met with a split, instruction-and-data
cache, if pins are not a limitation. Indeed,
in systems using conventional CMOS im-
plementations of the MIPS architecture,
large split caches (more than 32 kilobytes)
are typical. Current CMOS SRAM tech-
nology readily supports the construction of
caches this size with access times that match
the execution rate of current microproces-
sors.

However, current high-density SRAM
technology cannot match a cycle time of 4
nanoseconds. For that, we must look to
GaAs SRAMs. Unfortunately, the density
levels of these high-speed memories is
modest (32 kilobits). Because of signal
propagation, access time in a cache is an

increasing function of cache size. Keeping
access time around 4 nanoseconds limits a
cache made of these chips to a size where
the performance degradation due to cache
misses is unacceptable. The performance
can be improved by using a second level of
cache.

To validate the preceding rationale for
a two-level cache and to determine the op-
timal design, we developed a simulator,
cacheUM, described later in this article.
Figure 3 shows the organization of the
principal components of the memory sys-
tem that resulted from our experiments with
cacheUM. To satisfy the twin requirements
of low latency and high bandwidth, we de-
signed the primary cache to deliver both an
instruction and a data word within the CPU
cycle time (4 nanoseconds) and to be capa-
ble of sustaining this in every cycle except
for infrequent primary-cache misses.

To simplify concurrent access of in-
structions and data, we split the primary
cache into an instruction cache (I-cache)
and a data cache (D-cache). To simplify
the organization of the cache, we continued
this split in the secondary cache. Apart
from the decision to employ a two-level
cache, necessitated by the technological
limitations mentioned earlier, the guiding
philosophy in our memory system design
was simplicity, even at the cost of primary-
cache miss cycles. The resulting ease of
layout and simplicity of control logic more
than compensated for these lost cycles by
not requiring an extended system cycle
time. Key components of the memory or-
ganization are summarized in the follow-
ing paragraphs.

Primary cache. The signal lines from
the CPU to the primary caches are critical
paths in the design in the sense that their
delay determines the lower bound on in-
struction and data latency. To keep this
critical delay to a minimum and avoid the
need for a translation look-aside buffer in
the access path, both the I-cache and the D-
cache are direct-mapped with virtual indices
and tags (see Figure 3). The virtual-to-
physical address translation is postponed
until secondary-cache access, which occurs
less frequently. The translation is performed
by two logically separate TLBs, the I-TLB
on the instruction side and the D-TLB on
the data side. They are implemented as 16-
and 32-entry direct-mapped SRAM cach-
es, respectively.

The limitations on the size of the primary
caches have two sources: signal propaga-
tion delays on the MCM between the CPU
and the cache chips, and the requirement

60 COMPUTER

that the MIPS architecture support syn-
onyms - two virtual addresses that map to
the same physical address. The propagation
delays increase as the cache footprint on the
MCM increases - that is, as the number of
chips in the cache increases. Using the
techniques described earlier to determine
signal delay on the MCM, we were able to
show that our goal of a 4-nanosecond limit
on latency places an 8-kiloword (32-kilobyte)
limit on the cache. In fact, in a cache of this
size the signal delay is close to 50 percent of
the cache’s latency.

The requirement to support synonyms
places a more restrictive limit of 4 kilowords
(16 kilobytes) on cache size. However, this
limit applies only to the D-cache because
the contents of the I-cache cannot be
modified by store operations.

The address translation process translates
only the top 18 bits of the 32-bit virtual
address; consequently, there is no possibility
of synonyms occurring within a 16-kilobyte
page (defined by the low 14 bits of the
virtual address). Therefore, we can avoid
the synonyms in the D-cache in a straight-
forward fashion by using a direct-mapped
cache and limiting its size to a 4-kiloword
page. The disadvantage is that there is an
increase in the miss rate as a result of using
a smaller cache.

Methods for allowing larger caches that
can contain synonyms require significant
additional hardware, such as reverse
translation buffers,l0 which would com-
plicate the cache design and layout, resulting
in an increase in critical signal delays.
These, in turn, would increase cache laten-
cy, thus offsetting any advantage gained
through improved hit rates.

In our simulations, we found that the
best performance was obtained with a
cache line of four words. Specifically, just
1.8 percent of the cycles of a typical appli-
cation program was wasted due to I-cache
misses, and, in spite of the 4-kiloword
restriction on the D-cache, only 6.88 per-
cent of the cycles was wasted due to D-
cache misses (see Table 2) .

In keeping with implementation sim-
plicity, stores to the D-cache write through
to the secondary cache via a write buffer
(see Figure 3) and are assumed to hit the D-
cache. If they are found to have missed the
primary D-cache, an extra cycle is used to
invalidate the entry. This can result in the
invalidation of some useful lines in the
cache, but our simulations show that the
total loss due to D-cache write misses is no
more than 0.84 percent of the cycles.

The primary caches are constructed from
custom 1Kx32-bit SRAM chips, fabricat-

ed by integrating four of Vitesse’s 1Kx8-bit
SRAM macrocells on a single die. The
1Kx32-bit organization is ideal for the pri-
mary cache design. The 8-kiloword I-cache
can be realized using eight cache chips for
the 2K lines and a further two cache chips
for the tag memory for those lines. The 4-
kiloword D-cache requires five custom
cache chips.

Secondary cache. The secondary cache
is constructed from a 12-nanosecond bipolar
CMOS SRAM and is also split into in-
struction and data parts. Each half is 128
kilowords, resulting in a total of 1 megabyte
of secondary cache. The split secondary
cache is unusual, but it simplifies the logic
needed to control the cache. In addition,
simulations show that splitting the sec-
ondary cache gives a slight (two to five
percent) improvement in the CPI figure.
The secondary I-cache has a one-line (four-
word) path to the primary I-cache. The
secondary D-cache is similarly connected
to the primary D-cache. These line-wide
paths simplify refill when there is aprimary-
cache miss. Refill takes six cycles.

The secondary caches are connected to
the RC6280 backplane through bus inter-
face logic that implements a copy-back
and miss-allocate protocol. Secondary-
cache misses are expensive: 141 cycles for
a clean miss and 235 for a dirty miss.
Fortunately, neither is very frequent, wast-
ing only 7.63 percent of total cycles on
average.

MCM layout. Figure 4 shows the pre-

liminary layout of the processor and pri-
mary cache, the time-critical portion of the
MCM. The figure is drawn approximately
to scale, with the horizontal dimension
representing 5 centimeters. The primary
chips are the processor, the cache controller,
and the cache chips. The chip placement is
designed to minimize the maximumround-
trip delay from the CPU to the primary
cache. A VSPICE simulation gave the delay
time as 1.6 to 1.8 nanoseconds on the
worst-case delay path (see the section on
packaging technology).

The MCM mounts on the complete
processor board that contains the second-
ary cache and the interface to the RC6280
backplane. With the exception of the pro-
cessor board, the remainder of the RC6280
implementation is unchanged.

CAD tools

The role of CAD tools in the design of
the microsupercomputer was driven by the
following goals:

An integrated approach to the design
process, aimedat achieving optimal system
performance rather than maximizing the
performance of individual subsystems (such
as the CPU or the memory subsystems) in
isolation. This approach requires the si-
multaneous consideration of technologi-
cal, architectural, and packaging issues in
one consistent framework.

The use of existing CAD tools when-
ever possible, allowing us to leverage ma-

Primary innr
instruction - Primary instruction cache

cache
tags

I ’ - -
T T T

Primary
data - Primary data cache

cache
tags

1

L unit I unit
I ’ - -

T T T
Primary

data - Primary data cache
cache
tags

1

Figure 4. Multichip module layout.

January 1991 61

ture CAD technologies such as schematic
capture, logic and circuit simulation, and
automatic layout systems. We use Mentor
Graphics' schematic capture and simula-
tion tools. For circuit simulation, we use
VSPICE, the Vitesse version of SPICE
mentioned earlier. For high-level simula-
tion, we use Cadence Design Systems' Ver-
ilog simulator. And, for layout, we are using
Seattle Silicon Corporation's Chip Crafter
and Finesse tools, customized with generators
for the four-metal Vitesse GaAs process.

Development of new CAD tools to ad-
dress specific needs in our design for which
current tools are either nonexistent or inad-
equate. These tools include a finite-differ-
ence transmission-line-matrix simulator to
characterize the chip-to-chip interconnect
on the MCM'; checkTc and minTc, two
timing analysis and optimization tools to
help identify critical paths in the design and
to minimize the cycle time6; and a cache
simulator to study various architectural
trade-offs.

In this section, we highlight the cache
simulation tool, cacheUM. The efficiency
with which a CPU architecture executes a
program can be measured by the average
number of CPI.' This value is calculated by
dividing the number of useful instructions
in a program by the number of cycles it
takes for the CPU architecture to execute
the program. For a particular clock speed,
CPI also gives a measure of total processor
performance.

Table 2. Benchmark performance results.

As noted earlier, a high-performance
processor requires a matching high-perfor-
mance memory system. In order to make
intelligent memory system design choices,
we must evaluate the CPI values for differ-
ent memory organizations. The tool devel-
oped to make these evaluations is cacheUM,
a trace-driven two-level cache simulator
that models all aspects ofthe memory system
described earlier.

Simulation with cacheUM operates as
follows: MIPS object code is annotated by
MIPS Pixie" at basic-block entry points
and at memory references. When this an-
notated code is executed, i t produces a
trace of instruction and data addresses.
This trace stream is fed to the cache sim-
ulator, which generates and collects sta-
tistics. The cycle count that cacheUM
provides assumes that each instruction
executes in the CPU in one cycle. This
cycle count must be added to the number of
internal CPU stall cycles caused by exe-
cuting multicycle instructions such as inte-
ger multiply, integer divide, and floating-
point instructions. The number of extra
cycles is provided by MIPS Pixstats. This
augmented cycle count is used to calculate
the value of CPI and the contribution of the
different parts of the system to the value of
CPI for the memory organization. The cache
simulator executes an average of 80 times
slower than the original object file.

The applications used to provide the
traces have a significant effect on the per-
formance of a memory system. We have

used a mix of integer and floating-point
applications to represent the work load of a
high-performance workstation in a technical
environment. We execute each application
assuming a context switch interval of one
million instructions. At each context switch
interval, all caches are flushed. This tech-
nique of simulation context switches is
shown to give pessimistic performance
results.'* We calculate the composite CPI
value by dividing the total number of cy-
cles by the number of instructions executed.
This provides the harmonic mean of the
CPI weighted by the number of instruc-
tions executed by each benchmark.

Table 2 shows the statistics obtained by
executing 15 common benchmarks. These
statistics include the number of dynamic
instructions executed (in millions), the
number of cycles it took to execute them
(in millions), and the top four memory
system contributors to performance degra-
dation (shown as a percentage of CPI).
From this table, we note that primary D-
cache misses (PD-miss) account for most
of the loss in memory system performance,
a direct consequence of restricting the D-
cache size to a page, as explained earlier.
However, the performance loss due to sec-
ondary D-cache misses (SD-miss) is not
much less than that due to primary D-cache
misses. We believe that the secondary cache
miss rates are artificially high due to the
manner in which context switches were
simulated. In reality, it is possible for sever-
al processes, depending on the size of their

Name Instructions* Cycles* PI-miss** PD-miss** SI-miss** SD-miss** CPI

5Diff
Awk
Doducd
Dhrystone02
Espresso
Gnuchess
Grep
Linpackd
LFK 12
Nroff
Small
SPICE2g6
Whetd
Wolf33
Y ACC

Total

218.3
34.9
48.1
53.6

119.0
488.2

49.4
4.0

275.5
15.7
16.7

297.3
9.4

83.2
96.9

l,8 10.4

306.6
50.6

102.6
64.2

149.8
606.6

59.1
7.1

394.5
21.9
22.4

552.9
18.0

180.2
136.0

2,672.6

0.06
4.90
9.14
0.07
1.92
0.86
0.05
0.17
0.01
0.66
0.08
5.58
0.27
3.38
0.3 1

1.80

9.88
3.55
8.57
0.02
3.58
0.84
0.14

24.69
2.52
1.21
2.45

19.31
0.10

20.98
5.89

6.88

0.3 1
2.27
8.95
0.30
1.88
2.99
0.29
0.86
0.06
2.59
0.36
3.35
1.28
5.06
0.67

2.13

12.15
2.43
3.41
0.14
2.59
I .49
0.30
8.1 1
0.91
2.07
1.37

14.03
0.48

1 1.70
4.68

5.47

1.40
1.45
2.13
1.20
1.26
1.24
1.20
1.78
1.43
1.40
1.34
1.86
1.91
2.16
1.40

1.48

* In millions.

62

** Percentage of CPI.

COMPUTER

working sets, to share a 1-megabyte sec-
ondary cache without flushing each other’s
entries entirely between context switches.

he performance goals of the proto-
type 250-MHz microsupercomput- T er require an integrated design ap-

proach in which technology, architecture,
and packaging are considered simulta-
neously. GaAs DCFL technology, with its
high speed, high level of integration, and
high yield, is an important element in
achieving the desired performance.

Multichip-module packaging must be used
to achieve the needed cache performance,
and careful partitioning of the processor
components is required to minimize the
number of chip crossings in the critical path.

The use of CAD tools is critical. It is
important to use an automatic layout sys-
tem to leverage the technology and take
immediate advantage of continuously in-
creasing integration levels without exten-
sive and costly redesign.

Simulation of cache performance is nec-
essary to achieve the best compromise be-
tween size and speed and, in general, the use
of simulation is crucial in making the ma-
jority of decisions along the design path.

Coordinating these different aspects makes
it possible to achieve a global optimization
of the design and to build a system meeting
the specifications we have described..

Acknowledgments
We thank MIPS Computer Systems for sup-

porting this project with technical assistance
under a special licensing arrangement. We
gratefully acknowledge the assistance of Seattle
Silicon Corporation and Mentor Graphics Cor-
poration. This work has been supported in part
by the Defense Advanced Research Projects
Agency underDARPA/ARO contract DAAL03-
90-C-0028, and by the US Army Research Of-
fice under the URI Program contract DAAL03-
87-K-0007.

References
1. J.L. Hennessy and David A. Patterson,

Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, San Mateo,
Calif., 1990.

2. H. Vlahos and V. Milutinovic, “GaAs Mi-
croprocessors and Digital Systems,” IEEE
Micro, Vol. 8, No. I , 1988, pp. 28-56.

3. G. Kane, MIPS RISCArchitecture, Prentice
Hall, Englewood Cliffs, N.J., 1988.

4. J.A. Dykstra, High-speed Microprocessor
Design with Gallium Arsenide Very Large
Scale Integrated Digital Circuits, PhD dis-
sertation, Univ. of Michigan, 1990.

5. H.B. Bakoglu, Circuits, Interconnects, and
Packaging f o r VLSI, Addison-Wesley,
Reading, Mass., 1990.

6. K.A. Sakallah, T.N. Mudge, and O.A.
Olukotun, “checkTc and minTc: Timing
Verification and Optimal Clocking of Syn-
chronous Digital Circuits,” Proc. ICCAD 90,
Int’l Con$ on Computer-AidedDesign, IEEE
Computer Soc. Press, Los Alamitos, Calif.,
Order No. 2055, pp. 552-555.

7. R.H. Voelker and R.J. Lomax, “A Finite-
Difference Transmission Line Matrix Meth-
od Incorporating a Nonlinear Device Mod-
el,” IEEE Trans. Microwave Theory and
Techniques, Vol. 38, No. 3, Mar. 1990, pp.
302-312.

8. Y.C. Lee et al., “Internal Thermal Resis-
tance of a Multi-Chip Packaging Design for
VLSI Based Systems,” IEEE Trans. Com-
ponents, Hybrids, andManufucturing Tech-
nology, Vol. 12, No. 2, June 1989, pp. 163-
169.

9. N.H.E. Weste and K. Eshraghian, Principles
of CMOS VLSI Design, Addison-Wesley,
Reading, Mass., 1985.

10. J.R. Goodman, “Coherency for Multipro-
cessor Virtual Address Caches,” Proc. AS-
PLOS, Second Int’l Conf. Architectural
Support for Programming Languages and
Operating Systems, Oct. 1987, pp, 72-81.

1 1. RISCompiler Languages Progruinmer’s
Guide,MIPS Computer Systems, Inc., Santa
Clara, Calif., Dec. 1988.

12. A. Agarwa1,AnalysisofCache Performance
.for Operating Systems and Multiprogrum-
ming, Kluwer Academic Publishers, Bos-
ton, Mass., 1988

Trevor N. Mudge an associz professor of
electrical engineering and computer science at
the University of Michigan, which he joined in
1977, and is the director of the university’s
Advanced Computer Architecture Laboratory.
He has written more than 100 papers on comput-
er architecture, programming languages, VLSI
design, and computer vision.

Mudge received the BSc in cybernetics from
the University of Reading, England, in 1969,
and the MS and PhD in computer science from
the University of Illinois in 1973 and 1977,
respectively. He is a senior member of the IEEE,
and a member of the IEEE Computer Society,
the ACM, and the British Computer Society.

Richard B. Brown joined the faculty of the
University of Michigan Department of Electri-
cal Engineering and Computer Science in 1985
and has been involved in shaping its VLSI pro-
gram and introducing a uniform set of CAD
tools into the curriculum.

Brown received the BS and MS degrees in
electrical engineering from Brigham Young
University in 1976 and the PhD in electrical
engineeringfrom the Universityof Utah in 1985.
He is a member of the IEEE and the IEEE
Computer Society.

William P. Birmingham is an assistant profes-
sor in the Department of Electrical Engineering
and Computer Science at the University of
Michigan, where he is also a member of the
Advanced Computer Architecture Laboratory
and the Artificial Intelligence Laboratory. He
has spent several years in industry, developing
AI-based CAD tools.

Birmingham received the BS in electrical
engineering in 1982, the MS in computer engi-
neering in 1983, and the PhD in electrical engi-
neering in 1988, all from Carnegie Mellon Uni-
versity. He is a member of the IEEE, the IEEE
Computer Society, the ACM, and Sigma Xi.

Jeffrey A. Dykstra has worked on advanced IC
design of communication devices at Motorola’s
Chicago Corporate R&D division since June
1990.

Dykstra received the BS in letters and engi-
neeringfromCalvinCollegein 1981. Hereceived
the BSEE in 1982 and the MSEE in 1984, both
from the University of Michigan, where he com-
pleted the requirements for the PhD in October
1990.Heis amemberofEtaKappaNu,TauBeta
Pi, and the IEEE.

January 1991 63

High-Frequency Microelectronics. He has published works on electron
gun design, plasma simulation, microwave devices, finite-element simu-
lation of solid-state devices, and CAD for VLSI.

Lomax received the BA in mathematics in 1956 and the MA and PhD
in applied mathematics in 1960, all from the University of Cambridge,
England. He is a fellow of the Cambridge Philosophical Society, a senior
member of the IEEE, and a member of the IEEE Computer Society and the
Society for Industrial and Applied Mathematics.

Ayman I. Kayssi is a member of the Advanced Computer Architecture
Laboratory and a PhD candidate in the Department of Electrical Engineer-
ing and Computer Science at the University of Michigan. His research
interest is computer-aided design for high-speed VLSI circuits and systems.

Kayssi received the BE degree in 1987 from the American University
of Beirut, Lebanon, and the MSE degree in 1989 from the University of
Michigan. He is a student member of the IEEE and the IEEE Computer
Society.

Oyekunle A. Olukotun is pursuing aPhD at the University of Michigan.
His research interests include parallel algorithms for computer-aided
design of integrated circuits and tools for the analysis, design, and
verification of high-performance digital systems.

Olukotun received the BS in electrical engineering in 1985 and the MS
in computer engineering in 1987, both from the University of Michigan.
He is a student member of the IEEE Computer Society.

Ronald J. Lomax is a professor of electrical engineering and computer
science at the University of Michigan, where he has worked since 1961.
He conducts research on high-speed GaAs digital circuits in the Center for

I
HOW CAN YOU SIMPLIFY AN0 REDUCE

THE COST OF SOFTWARE DEUELOPMENT?

You start with
CASE
Computer-Aided
Software Engineering
By T.G. Lewis
420 pp., 274 illus., $45.95

Just published!

This comprehensive guide explains proven ways to
apply CASE techniques and tools to write the best
possible software. Included are specific examples that
rake a project from inception to final stage. clearly
illustrating how to apply CASE tools to your own
applications. The book shows you how and when to
use CASE for different functions, including cost
estimation, project management, requirement
specification, coding, testing and maintenance. And it
covers such important new areas as UIMS, object-
oriented design, visual programming, and the Spiral
Life Cycle model.

To take full advantage of the time- and money-saving
benefits of CASE, send for your FREE 15-day
examination of CASE: Computer-Aided Sopware
Engineet-ing today! N o obllgdtion to purchase!

To order by credit card call toll free 1-800-926-2665
Or write to VAN NOSTRAND REINHOLD. Mail Order
Dept , P 0 Box 668, Florence, KY 41022-0668
1/91 F 1 1 > X

Karem A. Sakallah has been an associate professor of electrical engi-
neering and computer science at the University of Michigan since 1988.
His research focuses on CAD for integrated circuits and systems.

Sakallah received the BE in electrical engineering from the American
University of Beirut in 1975 and the MSEE and PhD in electrical and
computer engineering from Carnegie Mellon University in 1977 and 198 1,
respectively. He is a member of the IEEE Computer Society.

Raymond A. Milano is the director of standard cells and foundry services
for custom and semicustom GaAs products at Vitesse Semiconductor
Corporation, whicb he joined in 1984.

Milano received the BS from the University of Rhode Island in 1972, the
MS from Rutgers University in 1974, and the PhD from the University of
Illinois in 1980, all in electrical engineering.

Readers may write to all the authors (except Milano) at the Department
ofElectrica1 Engineering and Computer Science, the University ofMichigan,
Ann Arbor, MI 48109-2122. Milano can be reached at Vitesse Semicon-
ductor Corporation, 741 Calle Plano, Camarillo, CA 93010.

Reader Service Number 5
COMPUTER

