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A s supercomputer performance 
continues to grow, packaging 
techniques will remain critical for 

reducing chip-to-chip delays. In addition, 
higher integration levels will become in- 
creasingly important because they can 
drastically reduce the number of chip 
crossings. Microcomputer systems have 
enjoyed a performance increase of 100 to 
200 percent every three years, in large part 
due to the growth in chip integration den- 
sity. In contrast, mainframe supercomputers 
have improved by only about 50 percent 
every three years.’ It should not be sur- 
prising, then, if the next generation of 
supercomputers evolves from the micro- 
processor rather than continuing the main- 
frame tradition. 

This article describes our work to devel- 
op a prototype “microsupercomputer” that 
will realize the best of both the supercom- 
puter and the microprocessor traditions. It 
does so by using GaAs Mesfet E D  DCFL 
(gallium arsenide, metal semiconductor field- 
effect transistor, enhancement/depletion 
direct-coupled FET logic), a high-speed 
technology that has good integration densi- 
ty, and by using state-of-the-art packaging 
technology to prevent chip crossings from 
dominating the overall speed of the system. 

With the levels of integration now be- 
coming available in  this technology, i t  is 

Using advanced GaAs 
technology and a 
multichip module 

package, this prototype 
next-generation 
machine takes 

advantage of the best of 
both the 

microprocessor and 
supercomputer 

traditions. 

possible to implement a 32-bit CPU and a 
floating-point accelerator (FPA) on a sin- 
gle processor chip.2 It is also possible to 
implement a 3-nanosecond, 32-Kbit static 
RAM. These are critical integration levels 
because they allow the number of chip 
crossings on the critical timing path of an 
instruction to be limited to just two (ac- 
cessing an off-chip cache). 

The processor, cache, memory control- 
ler, and bus interface will be packaged on 
a single multichip module (MCM) a few 
inches on a side, to minimize the time 
penalty of unavoidable chip crossings. High 
integration levels and high-performance 
packaging allow the switching speed of 
GaAs to be reflected in system speed. 

The focus of this research is the rela- 
tionship between hardware implementations 
and emerging technologies. We chose to 
implement the MIPS Computer Systems 
instruction set3 to bound the architectural 
options and to eliminate the need to develop 
compilers and operating systems. In addi- 
tion, it allows us to use the MIPS MC6280 
chassis rather than developing our own 
high-performance backplane, primary and 
secondary memory, I/O, and power supplies. 

Our efforts are concentrated on develop- 
ing the processor and cache. The resulting 
system will be a general-purpose computer 
that runs a conventional Unix environment 
and supports standard programming lan- 
guages and networking protocols. This 
machine will significantly accelerate exe- 
cution of the existing large base of applica- 
tion software. 

Our circuit simulations of the processor, 
verified by fabrication and testing of the 
register file and arithmetic logic unit,4 in- 
dicate that it can be clocked at 250 MHz. 
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Figure 1. VSPICE schematic to determine CPU-to-cache delay. The number of 1- 
mm resistor-inductor-capacitor (RLC) segments (inset, upper right) used to 
model each section of the interconnect is indicated on the lines. 

Cache simulations show that a sustained 
performance of 170 million instructions per 
second can be expected at this clock rate. 

Technology 

Technology includes both semiconduc- 
tors and packaging. To exploit the speed of 
fast transistors, package parasitics and in- 
terconnect lengths must be carefully con- 
trolled. Packaging is especially important 
to Mesfet logic families, since their drive 
capabilities are inferior to corresponding 
bipolar families. Though the critical timing 
path (instruction fetch from first-level 
cache) has only two chip crossings in our 
design, the delay associated with them must 
be on the order of one nanosecond to allow 
use of a four-nanosecond clock. The need 
to use high-performance packaging tech- 
niques for very fast systems is becoming 
widely accepted. The choice of semicon- 
ductor technology, on the other hand, re- 
mains a subject of debate. 

Circuit technology. Because of its good 
speed ( I  30-picosecond gate delays), sim- 
plicity (few devices per gate), and low 
power, we selected E/D DCFL, a Mesfet 
technology developed by Vitesse Corpo- 
ration, as the basic logic family for this 
project. E/D DCFL has circuit topologies 
similar to E/D NMOS. There are challeng- 
es in designing with DCFL: 

limited fan-in and fan-out, 
lack of dynamic circuits due to the 

comparative difficulty of pass transis- 

orientation-dependent transistor char- 

small noise margins. 

Mesfet Schottky gate, 

tor design, 

acteristics, and 

Nevertheless, dramatic improvement in 
yield has been achieved; a 30K gate array 
is now commercially available. This implies 
that VLSI integration levels are now 
practical in GaAs DCFL, particularly in a 
custom design style. 

Packaging technology. A major factor 
in increasing the clock speed is to minimize 
the round-trip delay to the first-level cache 
chips, simultaneously maintaining good 
signal integrity by using a high-performance 
MCM interconnect technology.s The sig- 
nal lines on the MCM behave as stripline 
transmission lines and are designed for 
impedance levels of SO to 70 ohms. Off- 
chip drivers must be capable of driving 
these low impedances. 

The multiple fan-out required for the 
cache prevents ideal impedance matching, 
making simulation of the signal behavior 
essential. On the basis of a preliminary 
layout of the MCM, we performed a VSPICE 
simulation to estimate interconnect delays. 
(VSPICE is aproprietary version of SPICE 
modified by Vitesse Corporation for its E D  

Mesfet technology.) We did this by model- 
ing a 1-bit line of a bus by the ladder 
network shown in Figure 1.  We modeled 
each input pad of the GaAs SRAM chips 
by a diode-connected Mesfet and parallel 
capacitor. 

In some simulations, the driver was only 
a pull-up; the terminating resistor acted as 
a pull-down. In other cases, an active pull- 
down was used. Round-trip delay times 
(including the input and output buffers and 
pads) ranged between 1.6 and 1.8 nano- 
seconds. Time averaging, with level-sen- 
sitive latches, makes it possible to achieve 
a 4-nanosecond cycle time even though the 
memory access time is 3 nanoseconds.6 A 
three-dimensional transmission-line matrix 
method,' which automatically includes all 
capacitive and inductive couplings, will be 
used to characterize more detailed effects 
of propagation and crosstalk. 

Thermal studies have shown that flipchips 
1 centimeter square have thermal resistances 
of around 4- to 5-degrees C/W.' The 
overall dissipation of the 3-inch by 3-inch 
MCM is on the order of lOOW, but most 
chips on our MCM will dissipate only 4 to 
SW. Removing this heat, while not trivial, 
is within the 1- to 2-W/cm2 capability of 
MCM packages. 

System architecture 

Processor. Central to the design of the 
microsupercomputer is the 32-bit CPU, 
which is integrated with the FPA. It is 
implemented as a five-stage pipeline, with 
the successive stages denoted IF, RF, ALU, 
MEM, and WB. Instructions are fetched 
from cache in  the IF stage. One instruction 
is required every clock period unless there 
is a cache miss or exception. In the RF 
stage, the instruction is decoded and op- 
erands are read from the register file. In the 
ALU stage, 32-bit two's complement 
arithmetic and logic operations take place, 
and in the MEM stage the data cache is read 
or written. Finally, in the WB stage, results 
are written back to the register file. Every 
operand from memory (except immediates) 
must be temporarily stored in  the register 
file before i t  can be used in a calculation. 
The ALU, IF, and MEM stages are 4 
nanoseconds long but, to accommodate the 
one instruction branch delay expected by 
the MIPS compiler, the RF and WB stages 
were made only 2 nanoseconds long. 

The basic structure of the CPU is shown 
in Figure 2. The caches, shown as shaded 
blocks, are implemented as separate chips. 
The data path includes a register file with 
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thirty-one 32-bit general-purpose registers, 
an ALU, a shifter, and a multiply/divide 
unit. Note that a separate address adder and 
incrementer are required for the program 
counter section to comply with the instruc- 
tion-per-clock-cycle philosophy. Also 
shown in Figure 2 are two possible bypass 
paths, required to avoid hardware inter- 
locks. Bypassing allows the ALU to take 
operands from any pipe stage, even before 
the register file is updated with the new 
value. Nominal delays of major CPU logic 
blocks are given in Table 1. 

Register f i le.  The register file is orga- 
nized as thirty-one 32-bit registers that can 
be accessed through three 32-hit ports (one 
write and two reads). Simultaneous write 
and read operations to a given register are 
allowed in the same clock cycle. 

ALU. The ALU design is based on a 
binary look-ahead tree for carry computa- 
t i ~ n . ~  The worst-case instruction is “set on 
less than” (SLT). It uses the full carry chain 
plus two additional XOR gates, after which 
the result is transmitted back across the 
ALU from most significant bit to least 
significant bit and then to the top of the 
ALU for possible bypassing. For branch 
condition calculations, “quick compare” 
circuitry (simple logic comparison without 
subtractions) and a multiplexer to select 
the comparison type are added to the 
ALU. The output of the comparison cir- 
cuit controls the program counter (PC) 
for the instruction following the branch 
delay slot. 

Shifter. The shifter can perform left and 
right logical shifts and arithmetic right 
shifts by 0 to 31 bits. Instead of a barrel 
shifter, as is commonly used in CMOS, we 
used a five-stage tree shifter, because at 2.7 

nanoseconds the tree design had less than 
half the delay of a barrel shifter. 

access (address generation, cache access, and 
data alignment) must be done in twocycles, so 
extra power and area were provided to speed 
up the address adder and load aligner, allow- 
ing a maximum time for cache access. 

Load aligner. The load aligner design is 
similar to the shifter. An entire data cache 
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Control 
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D-cache 

Latch 

Latch 

2 I 

I-cache 0 
I 

Program 
counter 

PC adder 
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Figure 2. Register-transfer-level of the CPU. Key latches and flip-flops (F/F) are 
also shown. 

Table 1. Parameters of major CPU logic blocks. 

Logic Block Devices Area Function Limiting Delay Power 

Register file 16,085 4.2x1.6 m m  Read + setup 1.6 ns 1.70W 
ALU 3,419 3 . 3 ~ 0 . 5  mm SLT with bypass 3.5 ns 0.67W 

Shifter 1,848 3.4x0.5 mm Shift data or address 2.7 ns 0.41W 
Integer multiply 

and divide 6,874 4 . 0 ~ 1  .O mm 1 add step 3.6 ns 0.84W 
Load aligner 1,922 3.4xO.S mm Align 1 . 1  ns 0.27W 
Address adder 1,675 3 . 2 ~ 0 . 2  mm Add 1.8 ns 0.21W 

0.8OW PC section 7,082 3 . 3 ~ 1 . 3  mm PC + offset 2.5 ns 
Data path =30,000 4 . 2 ~ 6 . 0  mm 5.00W 

Quick compare 1.3 ns 
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Figure 3. Cache organization. 

4-word bus 

Controller. The controller decodes in- 
structions and distributes control signals to 
the register file, ALU, shifter, integer mul- 
tiply/divide unit, load aligner, and multi- 
plexers. It also contains logic for handling 
exceptions generated in the CPU, in the 
FPA, and in the off-chip cache controller. 
Normally, an exception causes the program 
counter to jump to the address of the excep- 
tion-handling r o ~ t i n e . ~  Cache miss excep- 
tions are handled by stalling the pipeline. 
Because of the static design of data path 
circuits, a stall is produced by simply 
stopping the clock to the data path. 

* 

FPA. The floating-point accelerator will 
be implemented on the same chip as the 
CPU. The logic implements single- and 
double-precision IEEE arithmetic. The 
principal blocks in the chip are: a register 
file of thirty-two 32-bit registers, an expo- 
nent unit for performing exponent arith- 
metic and aligning mantissas, an adder/ 
subtracter, a multiplier unit, a divide unit, 
and a round unit. 

Secondary D-cache 
128 kilowords 

Cache architecture. The processor just 
specified has a 4-nanosecond clock and a 
potential average CPI (clocks per instruc- 

tion) of close to one. To realize this poten- 
tial, it is necessary that the compiler be able 
to schedule one instruction per clock, and 
that the memory system be able to deliver 
one instruction per clock and, when nec- 
essary, its operand, too. In other words, we 
need a high-bandwidth,  low-latency 
memory system. A common way to achieve 
this in scalar processors is to use a cache 
and to match the bandwidth requirements 
set by the peak instruction execution rate 
of the CPU. This requirement is most eas- 
ily met with a split, instruction-and-data 
cache, if pins are not a limitation. Indeed, 
in systems using conventional CMOS im- 
plementations of the MIPS architecture, 
large split caches (more than 32 kilobytes) 
are typical. Current CMOS SRAM tech- 
nology readily supports the construction of 
caches this size with access times that match 
the execution rate of current microproces- 
sors. 

However, current high-density SRAM 
technology cannot match a cycle time of 4 
nanoseconds. For that, we must look to 
GaAs SRAMs. Unfortunately, the density 
levels of these high-speed memories is 
modest (32 kilobits). Because of signal 
propagation, access time in a cache is an 

increasing function of cache size. Keeping 
access time around 4 nanoseconds limits a 
cache made of these chips to a size where 
the performance degradation due to cache 
misses is unacceptable. The performance 
can be improved by using a second level of 
cache. 

To validate the preceding rationale for 
a two-level cache and to determine the op- 
timal design, we developed a simulator, 
cacheUM, described later in this article. 
Figure 3 shows the organization of the 
principal components of the memory sys- 
tem that resulted from our experiments with 
cacheUM. To satisfy the twin requirements 
of low latency and high bandwidth, we de- 
signed the primary cache to deliver both an 
instruction and a data word within the CPU 
cycle time (4 nanoseconds) and to be capa- 
ble of sustaining this in every cycle except 
for infrequent primary-cache misses. 

To simplify concurrent access of in- 
structions and data, we split the primary 
cache into an instruction cache (I-cache) 
and a data cache (D-cache). To simplify 
the organization of the cache, we continued 
this split in the secondary cache. Apart 
from the decision to employ a two-level 
cache, necessitated by the technological 
limitations mentioned earlier, the guiding 
philosophy in our memory system design 
was simplicity, even at the cost of primary- 
cache miss cycles. The resulting ease of 
layout and simplicity of control logic more 
than compensated for these lost cycles by 
not requiring an extended system cycle 
time. Key components of the memory or- 
ganization are summarized in the follow- 
ing paragraphs. 

Primary cache. The signal lines from 
the CPU to the primary caches are critical 
paths in the design in the sense that their 
delay determines the lower bound on in- 
struction and data latency. To keep this 
critical delay to a minimum and avoid the 
need for a translation look-aside buffer in 
the access path, both the I-cache and the D- 
cache are direct-mapped with virtual indices 
and tags (see Figure 3). The virtual-to- 
physical address translation is postponed 
until secondary-cache access, which occurs 
less frequently. The translation is performed 
by two logically separate TLBs, the I-TLB 
on the instruction side and the D-TLB on 
the data side. They are implemented as 16- 
and 32-entry direct-mapped SRAM cach- 
es, respectively. 

The limitations on the size of the primary 
caches have two sources: signal propaga- 
tion delays on the MCM between the CPU 
and the cache chips, and the requirement 
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that the MIPS architecture support syn- 
onyms - two virtual addresses that map to 
the same physical address. The propagation 
delays increase as the cache footprint on the 
MCM increases - that is, as the number of 
chips in the cache increases. Using the 
techniques described earlier to determine 
signal delay on the MCM, we were able to 
show that our goal of a 4-nanosecond limit 
on latency places an 8-kiloword (32-kilobyte) 
limit on the cache. In fact, in a cache of this 
size the signal delay is close to 50 percent of 
the cache’s latency. 

The requirement to support synonyms 
places a more restrictive limit of 4 kilowords 
(16 kilobytes) on cache size. However, this 
limit applies only to the D-cache because 
the contents of the I-cache cannot be 
modified by store operations. 

The address translation process translates 
only the top 18 bits of the 32-bit virtual 
address; consequently, there is no possibility 
of synonyms occurring within a 16-kilobyte 
page (defined by the low 14 bits of the 
virtual address). Therefore, we can avoid 
the synonyms in the D-cache in a straight- 
forward fashion by using a direct-mapped 
cache and limiting its size to a 4-kiloword 
page. The disadvantage is that there is an 
increase in the miss rate as a result of using 
a smaller cache. 

Methods for allowing larger caches that 
can contain synonyms require significant 
additional hardware, such as  reverse 
translation buffers,l0 which would com- 
plicate the cache design and layout, resulting 
in an increase in critical signal delays. 
These, in turn, would increase cache laten- 
cy, thus offsetting any advantage gained 
through improved hit rates. 

In our simulations, we found that the 
best performance was obtained with a 
cache line of four words. Specifically, just 
1.8 percent of the cycles of a typical appli- 
cation program was wasted due to I-cache 
misses, and, in spite of the 4-kiloword 
restriction on the D-cache, only 6.88 per- 
cent of the cycles was wasted due to D- 
cache misses (see Table 2 ) .  

In keeping with implementation sim- 
plicity, stores to the D-cache write through 
to the secondary cache via a write buffer 
(see Figure 3) and are assumed to hit the D- 
cache. If they are found to have missed the 
primary D-cache, an extra cycle is used to 
invalidate the entry. This can result in the 
invalidation of some useful lines in the 
cache, but our simulations show that the 
total loss due to D-cache write misses is no 
more than 0.84 percent of the cycles. 

The primary caches are constructed from 
custom 1Kx32-bit SRAM chips, fabricat- 

ed by integrating four of Vitesse’s 1Kx8-bit 
SRAM macrocells on a single die. The 
1Kx32-bit organization is ideal for the pri- 
mary cache design. The 8-kiloword I-cache 
can be realized using eight cache chips for 
the 2K lines and a further two cache chips 
for the tag memory for those lines. The 4- 
kiloword D-cache requires five custom 
cache chips. 

Secondary cache. The secondary cache 
is constructed from a 12-nanosecond bipolar 
CMOS SRAM and is also split into in- 
struction and data parts. Each half is 128 
kilowords, resulting in a total of 1 megabyte 
of secondary cache. The split secondary 
cache is unusual, but it simplifies the logic 
needed to control the cache. In addition, 
simulations show that splitting the sec- 
ondary cache gives a slight (two to five 
percent) improvement in the CPI figure. 
The secondary I-cache has a one-line (four- 
word) path to the primary I-cache. The 
secondary D-cache is similarly connected 
to the primary D-cache. These line-wide 
paths simplify refill when there is aprimary- 
cache miss. Refill takes six cycles. 

The secondary caches are connected to 
the RC6280 backplane through bus inter- 
face logic that implements a copy-back 
and miss-allocate protocol. Secondary- 
cache misses are expensive: 141 cycles for 
a clean miss and 235 for a dirty miss. 
Fortunately, neither is very frequent, wast- 
ing only 7.63 percent of total cycles on 
average. 

MCM layout. Figure 4 shows the pre- 

liminary layout of the processor and pri- 
mary cache, the time-critical portion of the 
MCM. The figure is drawn approximately 
to scale, with the horizontal dimension 
representing 5 centimeters. The primary 
chips are the processor, the cache controller, 
and the cache chips. The chip placement is 
designed to minimize the maximumround- 
trip delay from the CPU to the primary 
cache. A VSPICE simulation gave the delay 
time as 1.6 to 1.8 nanoseconds on the 
worst-case delay path (see the section on 
packaging technology). 

The MCM mounts on the complete 
processor board that contains the second- 
ary cache and the interface to the RC6280 
backplane. With the exception of the pro- 
cessor board, the remainder of the RC6280 
implementation is unchanged. 

CAD tools 

The role of CAD tools in the design of 
the microsupercomputer was driven by the 
following goals: 

An integrated approach to the design 
process, aimedat achieving optimal system 
performance rather than maximizing the 
performance of individual subsystems (such 
as the CPU or the memory subsystems) in 
isolation. This approach requires the si- 
multaneous consideration of technologi- 
cal, architectural, and packaging issues in 
one consistent framework. 

The use of existing CAD tools when- 
ever possible, allowing us to leverage ma- 
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Figure 4. Multichip module layout. 
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ture CAD technologies such as schematic 
capture, logic and circuit simulation, and 
automatic layout systems. We use Mentor 
Graphics' schematic capture and simula- 
tion tools. For circuit simulation, we use 
VSPICE, the Vitesse version of SPICE 
mentioned earlier. For high-level simula- 
tion, we use Cadence Design Systems' Ver- 
ilog simulator. And, for layout, we are using 
Seattle Silicon Corporation's Chip Crafter 
and Finesse tools, customized with generators 
for the four-metal Vitesse GaAs process. 

Development of new CAD tools to ad- 
dress specific needs in our design for which 
current tools are either nonexistent or inad- 
equate. These tools include a finite-differ- 
ence transmission-line-matrix simulator to 
characterize the chip-to-chip interconnect 
on the MCM'; checkTc and minTc, two 
timing analysis and optimization tools to 
help identify critical paths in the design and 
to minimize the cycle time6; and a cache 
simulator to study various architectural 
trade-offs. 

In this section, we highlight the cache 
simulation tool, cacheUM. The efficiency 
with which a CPU architecture executes a 
program can be measured by the average 
number of CPI.' This value is calculated by 
dividing the number of useful instructions 
in a program by the number of cycles it 
takes for the CPU architecture to execute 
the program. For a particular clock speed, 
CPI also gives a measure of total processor 
performance. 

Table 2. Benchmark performance results. 

As noted earlier, a high-performance 
processor requires a matching high-perfor- 
mance memory system. In order to make 
intelligent memory system design choices, 
we must evaluate the CPI values for differ- 
ent memory organizations. The tool devel- 
oped to make these evaluations is cacheUM, 
a trace-driven two-level cache simulator 
that models all aspects ofthe memory system 
described earlier. 

Simulation with cacheUM operates as 
follows: MIPS object code is annotated by 
MIPS Pixie" at basic-block entry points 
and at memory references. When this an- 
notated code is executed, i t  produces a 
trace of instruction and data addresses. 
This trace stream is fed to the cache sim- 
ulator, which generates and collects sta- 
tistics. The cycle count that cacheUM 
provides assumes that each instruction 
executes in the CPU in one cycle. This 
cycle count must be added to the number of 
internal CPU stall cycles caused by exe- 
cuting multicycle instructions such as inte- 
ger multiply, integer divide, and floating- 
point instructions. The number of extra 
cycles is provided by MIPS Pixstats. This 
augmented cycle count is used to calculate 
the value of CPI and the contribution of the 
different parts of the system to the value of 
CPI for the memory organization. The cache 
simulator executes an average of 80 times 
slower than the original object file. 

The applications used to provide the 
traces have a significant effect on the per- 
formance of a memory system. We have 

used a mix of integer and floating-point 
applications to represent the work load of a 
high-performance workstation in a technical 
environment. We execute each application 
assuming a context switch interval of one 
million instructions. At each context switch 
interval, all caches are flushed. This tech- 
nique of simulation context switches is 
shown to give pessimistic performance 
results.'* We calculate the composite CPI 
value by dividing the total number of cy- 
cles by the number of instructions executed. 
This provides the harmonic mean of the 
CPI weighted by the number of instruc- 
tions executed by each benchmark. 

Table 2 shows the statistics obtained by 
executing 15 common benchmarks. These 
statistics include the number of dynamic 
instructions executed (in millions), the 
number of cycles it took to execute them 
(in millions), and the top four memory 
system contributors to performance degra- 
dation (shown as a percentage of CPI). 
From this table, we note that primary D- 
cache misses (PD-miss) account for most 
of the loss in memory system performance, 
a direct consequence of restricting the D- 
cache size to a page, as explained earlier. 
However, the performance loss due to sec- 
ondary D-cache misses (SD-miss) is not 
much less than that due to primary D-cache 
misses. We believe that the secondary cache 
miss rates are artificially high due to the 
manner in which context switches were 
simulated. In reality, it is possible for sever- 
al processes, depending on the size of their 

Name Instructions* Cycles* PI-miss** PD-miss** SI-miss** SD-miss** CPI 

5Diff 
Awk 
Doducd 
Dhrystone02 
Espresso 
Gnuchess 
Grep 
Linpackd 
LFK 12 
Nroff 
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SPICE2g6 
Whetd 
Wolf33 
Y ACC 

Total 

218.3 
34.9 
48.1 
53.6 

119.0 
488.2 

49.4 
4.0 

275.5 
15.7 
16.7 

297.3 
9.4 

83.2 
96.9 

l,8 10.4 

306.6 
50.6 

102.6 
64.2 

149.8 
606.6 

59.1 
7.1 

394.5 
21.9 
22.4 

552.9 
18.0 

180.2 
136.0 

2,672.6 

0.06 
4.90 
9.14 
0.07 
1.92 
0.86 
0.05 
0.17 
0.01 
0.66 
0.08 
5.58 
0.27 
3.38 
0.3 1 

1.80 

9.88 
3.55 
8.57 
0.02 
3.58 
0.84 
0.14 

24.69 
2.52 
1.21 
2.45 

19.31 
0.10 

20.98 
5.89 

6.88 

0.3 1 
2.27 
8.95 
0.30 
1.88 
2.99 
0.29 
0.86 
0.06 
2.59 
0.36 
3.35 
1.28 
5.06 
0.67 

2.13 

12.15 
2.43 
3.41 
0.14 
2.59 
I .49 
0.30 
8.1 1 
0.91 
2.07 
1.37 

14.03 
0.48 

1 1.70 
4.68 

5.47 

1.40 
1.45 
2.13 
1.20 
1.26 
1.24 
1.20 
1.78 
1.43 
1.40 
1.34 
1.86 
1.91 
2.16 
1.40 

1.48 

* In millions. 
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working sets, to share a 1-megabyte sec- 
ondary cache without flushing each other’s 
entries entirely between context switches. 

he performance goals of the proto- 
type 250-MHz microsupercomput- T er  require an integrated design ap- 

proach in which technology, architecture, 
and packaging are considered simulta- 
neously. GaAs DCFL technology, with its 
high speed, high level of integration, and 
high yield, is an important element in 
achieving the desired performance. 

Multichip-module packaging must be used 
to achieve the needed cache performance, 
and careful partitioning of the processor 
components is required to minimize the 
number of chip crossings in the critical path. 

The use of CAD tools is critical. It is 
important to use an automatic layout sys- 
tem to leverage the technology and take 
immediate advantage of continuously in- 
creasing integration levels without exten- 
sive and costly redesign. 

Simulation of cache performance is nec- 
essary to achieve the best compromise be- 
tween size and speed and, in general, the use 
of simulation is crucial in making the ma- 
jority of decisions along the design path. 

Coordinating these different aspects makes 
it possible to achieve a global optimization 
of the design and to build a system meeting 
the specifications we have described.. 
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