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Abstract

This paper is an overview of the architecture, technol-
ogy and CAD tools used in the design of an experimental
250 MHz “micro-supercomputer” which is being designed
for a sustained performance of 170 MIPS. The system will
include a gallium arsenide processor which executes the
MIPS instruction set and a two-level cache memory system,
packaged on a multi-chip module. The risk in undertaking
this project is minimized by using existing but advanced
GaAs technology, by building needed CAD tools on top of
commercial tools, and by using a standard instruction-set
architecture.

1 Introduction

As supercomputers continue to grow in performance, pack-
aging techniques will remain critical for reducing chip-to-
chip delays. In addition, higher integration levels will be-
come increasingly important because they can drastically
reduce the number of chip crossings. The growth in inte-
gration density has been a major factor in the performance
increase enjoyed by microprocessor systems, of 2-3 times
every three years. In contrast, mainframe supercomputers
have only improved by about 1.5 times every three years
(1]. It should not be surprising, then, if the next generation
of supercomputers evolves from the microprocessor rather
than the mainframe supercomputer tradition.

This paper describes work to develop a prototype
“micro-supercomputer” that will realize the best of both
the supercomputer and the microprocessor traditions by us-
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ing GaAs MESFET enhancement/depletion direct-coupled
FET logic (E/D DCFL), a high speed technology that
has good integration density, and by using state-of-the-art
packaging technology to prevent chip-crossings from dom-
inating the overall speed of the system. With the level of
integration now becoming available in this technology, it
is possible to implement a 32-bit CPU and a floating point
accelerator (FPA) on a single processor chip. It is also
possible to implement a 3 ns 32 K-bit SRAM. These are
critical integration levels because they allow the number
of chip crossings on the critical timing path of an instruc-
tion to be limited to just two (accessing an off-chip cache).
The processor, cache, memory controller, and bus interface
will be packaged on a single multi-chip module (MCM) of
a few inches on a side, to minimize the time penalty of
unavoidable chip crossings. High integration levels and
high-performance packaging allow the switching speed of
GaAs 1o be reflected in system speed.

The focus of this research is the relationship between
hardware implementations and emerging technologies. We
chose 1o implement the MIPs [2] instruction set to bound
the architectural options, and to eliminate the need for de-
veloping compilers and operating systems. In addition, it
allows us to use the Mips MC6280 chassis, rather than
developing our own high-performance backplane, primary
and secondary memory, 1/O, and power supplies. Our
efforts are concentrated on developing the processor and
cache. The resulting system will be a general purpose
computer that runs a conventional UNIx! environment and
supports standard programming languages and networking

1UNIX is a trademark of AT&T.



protocols. A large base of application software exists, the
execution of which could be accelerated significantly on
this machine.

In Section 2 of this paper, circuit and packaging tech-
nology are discussed. Our SPICE simulations of the CPU,
verified by fabrication and testing of the register file and
arithmetic logic unit {3], indicate that it can be clocked at
250 MHz. For a system to make effective use of a pro-
cessor running at this speed, the memory must be capable
of delivering both instructions and data, with low latency,
at a rate of 250 MHz. Section 3 outlines a systems ar-
chitecture that takes advantage of the GaAs technology,
and discusses trade-offs in the cache memory design. Sec-
tion 4 describes the CAD tools developed for this project.
In Section 5 we summarize the challenges in the design
of a micro-supercomputer, and conclude that solutions to
these are within the reach of current technology.

2 Technology

2.1 Circuit Technology

Technology includes both semiconductors and packaging.
To exploit the speed of fast transistors, package para-
sitics and interconnect lengths must be carefully controlled.
Packaging is especially important to MESFET logic fam-
ilies, since their drive capabilities are inferior to corre-
sponding bipolar families. Though the critical timing path
(instruction fetch from first-level cache) has only two chip
crossings in our design, the delay associated with these
must be on the order of 1 nS to allow use of a 4 nS clock.
The need to use high performance packaging techniques
for very fast systems is becoming widely accepted. The
choice of semiconductor technology, on the other hand,
remains a subject of debate.

Because of its good speed (130 pS gate delays), simplic-
ity (few devices per gate), and low power, we selected a
MESFET technology developed by Vitesse, E/D DCFL, as
the basic logic family for this project. E/D DCFL has cir-
cuit topologies similar to E/D NMQOS, although with lower
fan-in and fan-out. Figure 1 shows typical DCFL logic
gates. Simplicity and low power requirements make pos-
sible a high integration level, which is necessary for MES-
FET logic to achieve system speed commensurate with its
gate speed. The chips are designed to run over a tem-
perature range of 0-70° C and static NOR logic is used
primarily.

Early problems with GaAs material quality and process-
ing yield have left lingering questions about the practical-
ity of large scale integration. This is particularly true for
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DCFL which has small logic swings and small noige mar.
gins, because the Schottky barrier gates draw current g,
the logic high input. This makes DCFL very dependem
upon enhancement threshold uniformity to maintain Noige
margins. Factors which affect yield are wafer quality, pr_
cessing techniques and operator skill, number of Procesg;p g
steps (mask levels), die size and number of pads, Critica]
dimensions, circuit complexity, and design melhOdolog
The Vitesse E/D DCFL process is designed to produce higr{
yield, as well as low power dissipation, high speed, and 5
high integration level.
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Figure 1: Example DCFL gates. (a) NOR gate, (b) OR
gate, (¢) Super-buffer.

The use of self-aligned transistors and refractory metal
gates minimizes the number of masks required to make
high-transconductance devices with adequate threshold
voltage control. The four-layer aluminum interconnect sys-
tem is based on industry standard techniques and makes
use of no special equipment or technology. With this pro-
cess, GaAs ICs having low power dissipation and ECL-like
speed can be built using about half the mask layers of cur-
rent ECL processes.

Figure 2 shows the dramatic improvement in yield which
has been achieved as a function of time, with data shown
for four gate-arrays: a 1500 gate-array part, a 4500 gai-
array part, a 10K gate-array part, a 30K gate-array part
This data demonstrates that VLSI integration levels &%
practical in GaAs DCFL, and suggests yields and integ™
tion levels will continue to improve. There are, howcter
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Figure 2: Functional probe yield.

challenges in designing with DCFL compared to NMOS or
CMOS: limited fan-in and fan-out; lack of dynamic circuits
due to the MESFET Schottky gate; comparative difficulty
of pass transistor design; orientation-dependent transistor
characteristics; and small noise margins.

In summary, even though compared to NMOS or
CMOS, DCFL still presents the designer with several limi-
tations that must be worked around, the level of integration
becoming available through yield improvements in DCFL
GaAs makes implementation of a 32-bit processor on a
single chip possible. This is a critical integration level for
reducing the number of chip crossings and gives DCFL
and edge over ECL.

22 Packaging Technology

A major factor in increasing the clock speed is to min-
imize the roundtrip delay to the first-level cache chips,
while simultaneously maintaining good signal integrity by
using a high performance MCM interconnect technology
(4. The signal lines on the MCM behave as stripline
transmission lines and are designed for impedance levels
of 50-70 ohms. Off-chip drivers must be capable of driv-
ing these low impedances. The multiple fan-out required
for the cache prevents ideal impedance matching, making
Simulation of the signal behavior essential. On the basis of
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a preliminary layout of the MCM, a VSPICE ? simulation
was performed to estimate interconnect delays. This was
done by modeling a one-bit line of a bus by the ladder
network shown in Fig. 3. Each input pad of the GaAs
SRAM chips was modeled by a diode-connected MESFET
and parallel capacitor. In some simulations the driver was
only a pullup; the terminating resistor acted as pulldown.
In other cases an active pulldown was used. Roundtrip
delay times (which include the input and output buffers
and pads) ranged between 1.6 and 1.8 ns. Time averaging,
with level-sensitive latches, makes it possible to achieve
a 4 ns cycle time even though the memory access time
is 3 ns [5]. A three-dimensional transmission-line matrix
method [6] which automatically includes all capacitive and
inductive couplings will be used to optimize further and
to characterize more detailed effects of propagation and
crosstalk.

The chips must be incorporated into the package in a way
which minimizes lead length and maximizes heat transfer
from the chip. Possibilities include wire bonding, flip chip
and tape automated bonding. Thermal studies on a sili-
con processor module [7] have shown that flip chips 1 cm
square have thermal resistances of around 4-5 °C/W. Be-

2VSPICE is a proprietary version of SPICE modified by Vitesse Corp.
for their E/D MESFET technology.
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Figure 3: VSPICE schematic to determine CPU-cache dela

section of the interconnect is indicated on the lines.

cause most of the heat is generated on the bottom of the
flipped chip, GaAs chips are expected to have similar ther-
mal resistances. An approximate estimate for wire bonded
~ chips gives about twice these values, but still within a rea-
sonable range. The overall dissipation of the 3in. x 3
in. MCM is on the order of 100 W, but most chips on
our MCM will dissipate only 4-5 W. Removing this heat,
while not trivial, is within the 1-2 W/cm? capability of
MCM packages.

This suggests that a clear-cut decision cannot be made
on a purely thermal basis. The lower parasitics and higher
wiring density of flip chips should give superior perfor-
mance. Fortunately, availability of flip chip packaging is
improving rapidly.

3 System Architecture

3.1 Processor

Central to the design of the micro-supercomputer is the
32-bit CPU, which is integrated with the FPA. It is im-
plemented as a five-stage pipeline shown in Fig. 4. The
successive stages are denoted IF, RF, ALU, MEM, WB.
Instructions are fetched from cache in the IF stage. One
instruction is required every clock period unless there is a
cache miss or exception. In the RF stage, the instruction
is decoded and operands are read from the register file.
32-bit two’s complement arithmetic and logic operations
take place in the ALU stage, and the data cache is read
or written during the MEM stage. Finally, during the WB
stage, results are written back to the register file. Every
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Figure 4: Pipeline stages and relative timing.

operand from memory (except immediates) must be tem-
porarily stored in the register file before it can be used in a
calculation. The ALU, IF, and MEM stages are 4 ns long,
but to accommodate the one instruction branch delay ex-
pected by the MIPs compiler, the RF and WB stages were
made only 2 ns long. Also shown in Fig. 4 are two pos-
sible bypass paths, required to avoid hardware interlocks.
Bypassing allows the ALU to take operands from any pipe
stage, even before the register file is updated with the new
value,

The basic structure of the CPU is shown in Fig. 5. The
caches, shown as shaded blocks, are implemented as sepa-
rate chips. The data path includes a register file with thirty-




Logic Block Devices Function Delay Power
(Area) Estimate
Register File 16,085 Read 04 nS 1.70W
SRAM -like (42 x 1.6 mm) | Read Set-Up 1.2nS
3-port, 32-Registers, 32-bits Pre-Set 1.5nS
Write (from clk) 1.2 nS
Write (from data) | 0.6 nS
Write Set-Up 0.8 nS
Arithmetic Logic Unit 3419 Add 25nS | 06TW
Binary carry Jook-ahead (3.3 x0.5mm) | SLT (Set on <) 29nS
Functions: ADD, SUB, AND, NOR, SLT with bypass | 3.5 nS
OR, SLT, BRANCH CONDITION Quick Compare 1.3nS
Shifter 1,848 Data 27nS | 041W
Functions: SLL, SRL, SRA (3.4 x 0.5 mm) | Control 2.5 nS
Integer Multiply and Divide 6,874 1 add siep 3.6nS | 0.84W |
Functions: MULT(U), DIV(U) (4.0 x 1.0 mm)
Load Aligner 1,922 Align 1.1 nS 0.27W
Functions: LB(U), LH(U), LWL, LWR (3.4 x 0.5 mm)
Address Adder 1,675 Add 1.8 nS 0.21W
Group 4 carry look-ahead (3.2x02mm)
PC section 7,082 PC + Incr. 2.3 nS 0.80W
(3.3 x 1.3 mm) | PC + Offset 2.5nS
Datapath = 30,000 W
(4.2 x 6 mm)

Table 1: Summary of parameters for major CPU logic blocks.

Controi

Figure 5: Register-transfer level block diagram of the CPU,
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one 32-bit general purpose registers, an ALU, a shifter, and
a multiply/divide unit. Note that a separate address adder
and incrementer are required for the program counter sec-
tion to comply with the instruction per clock-cycle philoso-
phy. Nominal delays of major CPU logic blocks are given
in Table 1; brief descriptions of these and other blocks
follow.

Register File. The register file is organized as thirty-one
32-bit registers that can be accessed through three 32-bit
ports (one write and two reads). Simultaneous write and
read operations to a given register are allowed in the same
clock cycle.

ALU., The ALU design is based on a binary look-ahead
tree for carry computation [8]. The worst case instruction
is “set on less than™ (SLT). It uses the full carry chain
plus two additional XOR gates, after which the result is
transmitted back across the ALU from MSB to LSB, and
then to the top of the ALU for possible bypassing.

For branch condition calculations, “quick compare” cir-
cuitry (simple logic comparison without subtractions) and
a multiplexor to select the comparison type are added to
the ALU. The output of the comparison circuit controls the
PC for the instruction following the branch delay slot.



Shifter. The shifter can perform left and right logical
shifts and arithmetic right shifts by 0 to 31 bits. Instead of
a barrel shifter, as is commonly used in CMOS, we used
a five-stage tree shifter, because at 2.7 ns, the tree design
had less than half the delay of a barrel shifter.

split instruction/data cache. Indeed, in systems built using
conventional CMOS implementations of the MIPs architec.
ture, large split caches (32-K+ bytes) are typical. Curren
CMOS SRAM technology readily supports the constructioy
of caches of this size with access times ({,.) that mach
the execution rate of current microprocessors. However,

Load Aligner. The load aligner design is similar to the
shifter. An entire data cache access (address generation,
cache access, and data alignment) must be done in two
cycles, so extra power and area were devoted to speed up
the address adder and load aligner, allowing a maximum
time for cache access.

Controller. The controller decodes instructions and dis-
tributes control signals to the register file, ALU, shifter, in-
teger multiply/divide unit, load aligner, and multiplexors.
It also contains logic for handling exceptions generated in
the CPU, in the FPA, and in the off-chip cache controller.
Normally, an exception causes the program counter to jump
to the address of the exception-handling routine [2]. Cache
miss exceptions are handled by stalling the pipeline. Be-
cause of the static design of datapath circuits, a stall is
produced by simply stopping the clock to the datapath.

FPA. The FPA will be implemented on the same chip as
the CPU. The logic implements single and double precision
IEEE arithmetic. The principal blocks in the chip are: a
register file of thirty-two 32-bit registers, an exponent unit
for performing exponent arithmetic and aligning mantissae,
an adder/subtractor, a multiplier unit, a divide unit, and a
round unit. To preserve the same latencies as the RC6280
requires about 45,000 gates. Although this is three times
the gate count required by the CPU (which was designed in
two-year-old version of DCFL) current processing technol-
0gy can support it (see Fig. 2). The layout for the FPA will
be done using the the GaAs compiler described in Sec. 4.1,

3.2 Cache Architecture

The processor specified above has a 4 ns clock and a po-
tential average CPI (clocks per instruction) of close to one.
To realize this potential it is necessary that: 1) the compiler
can normally schedule one instruction per clock; and 2) the
memory system can deliver one instruction per clock, and
when necessary, its operand too. In other words, we need
a high bandwidth, low latency memory system. A com-
mon way to achieve this in scalar processors is to use a
cache and to match the bandwidth requirements set by the
peak instruction execution rate of the CPU. Except for pin-
out limitations, this requirement is most easily met with a
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current high density SRAM technology cannot match 3 cy-
cle time of 4 ns. For that we must look to GaAs SRAM;,
Unfortunately, the density levels of these high-speed mep,.
ories is modest (32 K-bits), so the placement of the mem.
ory chips becomes critical, as it has a significant impact o
cache access time. Thus, the cache access time becomeg
an increasing function of the cache size or equivalently of
the cache hit rate. Clearly, there is a point of diminishing
returns. Consider the memory access time given by the
expression:

htae + (1 = B)T

where h is the cache hit rate and T is the time penalty for 5
cache miss. If ht,. is fixed as a consequence of being 3
decreasing function of #,., then the miss penalty becomes
a dominant factor in determining the CPI for the System,
The miss penalty 7" can be reduced in a straightforward
manner by using a second level of cache. The alternative
is to reduce the access time to main memory which is no
a cost effective solution.

To validate the above rationale for a 2-level cache the
simulator, cacheUM described in Section 4.4, was deve].
oped to determine the optimal design. Figure 6 shows the
organization of the principal components of the memory
system that resulted from our experiments with cachelUM
To satisfy the twin requirements of low latency and high
bandwidth, the primary cache was designed to deliver both
an instruction and a data word within the CPU cycle time
(i.e., 4 ns) and to be capable of sustaining this every cy-
cle except for infrequent primary cache misses. To sim-
plify concurrent access of instructions and data, the pri-
mary cache is split into an instruction cache (I-cache)
and a data cache (D-cache). To simplify the organiz-
tion of the cache this split was continued into the sec-
ondary cache. Apart from the decision to employ a 2-level
cache, which was necessitated by the technological lim-
itations mentioned above, the guiding philosophy in our
memory system design was simplicity, even at the cost of
primary cache miss cycles. The resulting ease of layout
and simplicity of control logic more than compensated for
these lost cycles by not requiring an extended system cy-
cle time. Key components in the memory organization art
summarized in the following paragraphs.
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Figure 6: Block diagram of the cache organization.

Primary Cache. The signal lines from the CPU to the
primary caches are critical paths in the design in the sense
that their delay determines the lower bound on instruction
and data latency. To keep this critical delay to a minimum,
both the I- and D-cache are direct mapped with virtual in-
dices and tags, to avoid the need for a translation lookaside
puffer (TLB) in the access path (see Fig. 6). The virtual-
to-physical address translation is postponed until secondary
cache access which occurs less frequently. The translation
is performed by two logically separate TLBs, the I-TLB
on the instruction side and the D-TLB on the data side.
They are implemented as 16 and 32 entry directed mapped
SRAM caches.

The limitations on the size of the primary caches have
two sources: signal propagation delays on the MCM be-
tween the CPU and the cache chips, and the requirement
that the MIPs architecture support synonyms—two virtual
addresses that map to the same physical address. The prop-
agation delays increase as the footprint of the cache on the
MCM increases, i.c., as the number of chips in the cache
increases. Using the techniques described in Section 2.2
to determine signal delay on the MCM, we were able to
show that our goal of a 4 nS limit on latency places an
8 K-word (32 K-bytes) limit on the cache. In fact, in a
cache of this size the signal delay is close to 50% of the
cache’s latency.

The requirement to support synonyms places a more re-
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strictive limit of 4 K-words (16 K-bytes) on cache size,
However, this limit only applies to the D-cache because
the contents of I-cache cannot be modified by store oper-
ations. The address translation process only translates the
top 18 bits of the 32-bit virtual address, consequently there
is no possibility of synonyms occurring within a 16 K-byte

page (defined by the low 14 bits of the virtual address).
Therefore, the synonyms in the D-cache can be avoided in
a straightforward fashion by using a direct mapped cache
and limiting its size to a 4 K-word page. The disadvantage
is that there is an increase in the miss rate as a result of
using a smaller cache. Methods for allowing larger caches
that can contain synonyms require significant additional
hardware, such as reverse translation buffers [9], which
would complicate the cache design and layout, resulting in
an increase in critical signal delays. These, in tumn, will
increase cache latency and so work towards offsetting any
advantage gained through improved hit rates. In our sim-
ulations we found that the best performance was obtained
a cache line of four words. Specifically, just 1.8% of the
cycles of a typical application program was wasted due to
I-cache misses and, in spite of the 4 K-word restriction on
the D-cache, only 6.88% of the cycles were wasted due to
D-cache misses (see Section 3.2).

In keeping with implementation simplicity, stores to the
D-cache write-through to the secondary cache via a write
buffer (see Fig. 6) and are assumed to hit the D-cache. If
they are found to have missed the primary D-cache, an
extra cycle is used to invalidate the entry. This can result
in some useful lines in the cache being invalidated, but our
simulations show that the total loss due to D-cache write
misses is no more than 0.84% of the cycles.

The primary caches are constructed from custom 1 K
x 32-bit SRAM chips. The chips will be fabricated by
integrating four of Vitesse’s 1 K x 8-bit SRAM macro-
cells on a single die. The 1 K x 32-bit organization is ideal
for the primary cache design. The 8 K-word I-cache can be
realized using 8 cache chips for the 2 K-lines and a further
2 cache chips for the tag memory for those lines. The
custom cache chips also include a comparator to facilitate
their use in tag memory. The 4 K-word D-cache requires
S custom cache chips.

Secondary Cache. The secondary cache is constructed
from 12 ns BICMOS SRAM, and is also split into instruc-
tion and data parts. Both halves are 128 K-words each,
resulting in a total of 1 M-byte of secondary cache. The
split secondary cache is unusual, but it simplifies the logic
needed to control the cache. In addition, simulations show
that splitting the secondary cache gives a slight (2-5%)
improvement in the CPI figure. The secondary I-cache
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Figure 7: MCM layout.

has a one line (4 word) path to the primary I-cache. The
secondary D-cache is connected the primary D-cache in a
similar fashion. These line-wide paths simplify refill when
there is a primary cache miss. Refill takes 6 cycles.

The secondary caches are connected to the RC6280
backplane through bus interface logic that implements a
copyback and miss-allocate protocol. Secondary cache
misses are expensive, 141 cycles for a clean miss and 235
for a dirty miss. Fortunately, neither of these events is very
frequent, wasting only 7.63% of total cycles on average.

3.3 MCM Layout

Figure 7 shows the preliminary layout of the processor
and primary cache, the time-critical portion of the MCM.
The figure is drawn approximately to scale, with the width
representing 5 cm. The primary chips are the processor, the
cache-controller, and the cache-chips. The chip placement
is designed to minimize the maximum roundtrip delay from
the CPU to the primary cache. A VSPICE simulation gave
the delay time as 1.6-1.8 ns on the worst case delay path
(see Section 2.2).

The MCM mounts on the complete processor board that
contains the secondary cache and the interface to the R6000
backplane. With the exception of the processor board
power supply, the remainder of the R6000 implementation
is unchanged.

4 CAD Tools

The role of CAD tools in the design of the micro-
Supercomputer was driven by the following goals:

¢ An integrated approach to the design process aimed
at achieving optimal system performance as opposed
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¢ The use of existing CAD tools whenever possible, 5.
lowing us to leverage mature CAD technologies such
as schematic capture, logic and circuit simulation, ang
automatic layout systems. We use Mentor Graphic
schematic capture and simulation tools. For Cireyjy
simulation, we use VSPICE, the Vitesse version of
SPICE mentioned earlier. For high level simulatigy
we use the Verilog simulator 3. And for layout, we ae
using the ChipCrafter and Finesse * tools, customizeg
with generators for the 4-metal Vitesse GaAs Process,

¢ Development of new CAD tools to address specific
needs in our design for which current tools are ¢j.
ther non-existent or inadequate. These tools incluge
a finite-difference transmission-line-matrix simulao;
to characterize the chip-to-chip interconnect on the
MCM [6], checkT.and minT., two tools for timing
analysis and optimization to help identify critical pathg
in the design and to minimize the cycle time [5], and
a cache simulator to study various architectural trade-
offs.

4.1 GaAs Compiler

Several projects to design supercomputers have relied on
gate-array technology for rapid implementation. However,
the fixed location of the gates inevitably leads to subop-
timal integration levels and long interconnections. The
compiler concept, however, allows the designer to achieve
near-custom level use of chip area without the effort neces.
sary for custom design. In the case of GaAs there is an ad-
ditional pay-off because of the reduction in inter-gate delay,
which represents a much greater percentage of the overall
system delay relative to slower technologies. Tools for sil-
icon compilation from Seattle Silicon Corporation which
were available included the ChipCrafter IC design tool,
which was set up for use with 2-metal CMOS technologies.
To make use of this tool in the design of GaAs circuits, we
used the Compiler Development System (CDS) that com-
plements ChipCrafter to build a database of GaAs cells,
gates, memory elements, high-level modules, and datapath
cells. CDS allows its users to write code in C to generate
the layout, the logic simulation model, and the symbol for

3Verilog is a trademark of Cadence Design Systems.
*ChipCrafier and Finesse are trademarks of Seattle Silicon Corp.
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42 FD-TLM Simulator

we have developed a simulator which solves for the be-
wvior of circuits in terms of the three-dimensional elec-
pmagnetic field distribution. A variable-mesh finite-
fifference transmission-line-matrix (FD-TLM) method [6]
sused which performs a full-wave solution of Maxwell’s
quations. In this approach, all couplings between in-
monnects, both capacitive and inductive are automati-
dly included, and in addition, radiation effects are taken
to account. The simulator also allows lumped mod-
s of nonlinear devices (e.g. transistors) to be included
liconsistently. The FD-TLM program is very compute-
tensive (currently it runs on a Cray Y-MP) so that it
i be used in developing simpler models and to check
> accuracy of critical results determined by lower level
nulators. The TLM method uses the analogy between
: voltage and current on a three-dimensional mesh of
nsmission lines to the electric and magnetic fields in
xwell’s equations. The method proceeds by determin-
‘the scattering of impulses arriving at each node of the
lem at discrete time intervals. The resulting equations
recast in the form of finite difference equations in or-
to improve the efficiency by reducing the number of
fations per step and the memory required compared to
original TLM method.

opics which will be explored by this method include
llation of chip-to-package pad bonds, interconnects in-
ing terminating loads, effects of imperfect matching of
Connects due to multiple fan-out and crosstalk for crit-
signals. In general, FD-TLM simulation will concen-
on parts of the circuit which cannot easily be modeled
imped circuit simulators because of three-dimensional
s or long-range distributed interactions.
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Figure 8: Three phase timing for the CPU.

4.3 Timing Analysis

The performance levels for which our design aims, require
that the processor module be viewed as a single integrated
entity from the perspective of timing. Elaborate interchip
signaling protocols reduce performance by increasing the
delays at chip-crossings, but they simplify the task of the
systems integrator who typically needs to combine off-the-
shelf chips. In our design the interchip interfaces can be
customized to improve performance (for example we use
native GaAs levels).

The performance gains that are possible, from treating
the MCM as a single logic circuit, can only be realized
through use of accurate timing analysis techniques. We
have developed two new timing analysis tools, checkT, and
minT., for this purpose [10). The first tool, checkT, , is a
timing verifier which examines a circuit to see if it satis-
fies a specified clock schedule, and reports setup and hold
time violations. The second tool, minT, is a clocking op-
timizer which determines the optimal clock schedule (i.e.
the schedule with the minimum cycle time) that satisfies
all timing constraints for a given circuit. The optimization
problem is formulated as a sequence of linear programs de-
rived from the propagation and synchronization constraints
in the design. Both tools are based on a new timing model
of synchronous digital circuits which is: 1) general enough
to handle arbitrary multi-phase clocking; 2) complete, in
the sense that it captures signal propagation along short as
well as long paths in the logic; and 3) extensible to make it
relatively easy to incorporate “complex” latching structures
(including the common level-sensitive D-latch).

Figure 8 shows a portion of the output from minT, when
it was used to minimize the clock cycle for a portion of
the processor data path (see Fig. 5). There are three clock
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Figure 9: Cache simulation with cacheUM.

phases, shown at the top of the figure. More precisely,
there are two non-overlapping phases (¢; and ¢,), and a
derived third phase (¢3) that is used solely to preset the
sense amplifiers of the register file (see Sec. 3.1). The
signals at four latches are also shown at the bottom of the
figure. The corresponding latches are marked in Fig. 5.

44 cacheUM

The efficiency with which a CPU architecture executes a
program can be measured by the average number of CPI
[1]. This value is calculated by dividing the number of
useful instructions in a program by the number of cycles
it takes for the CPU architecture to execute the program.
For a particular clock speed, CPI also gives a measure of
total processor performance.

As noted earlier, a high-performance processor requires
a matching high-performance memory system. In order to
make intelligent memory system design choices, we must
evaluate the CPI values for different memory organizations.
The tool developed to make these evaluations is cacheUM,
a trace-driven two-level cache simulator that models all
aspects of the memory system described in Section 3.2.

Simulation using cacheUM operates as shown in Fig. 9.
MIPs object code is annotated by pixie® [11] at basic-
block entry-points and at memory references. When this
annotated code is executed it produces a trace of instruction
and data addresses. This trace stream is fed to the cache

Spixie is a2 trademark of the MIPS Corp.
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The number of extra cycles is provided by Pixstatst
This augmented cycle count is used to calculate the valye
of CPI and the contribution of the different parts of the
system to the value of CPI for the memory Organization
The cache simulator executes an average of eighty timeg
slower than the original object file.

The applications used to provide the traces have a sigpis.
icant effect on the performance of a memory system. We
have used a mix of integer and floating-point applicationg
to represent the workload of a high performance workstz.
tion used in a technical environment. Each application is
executed assuming a context switch interval of one million
instructions. At each context switch interval all caches are
flushed. This technique of simulation context switches is
shown to give pessimistic performance results [12]. The
composite CPI value is calculated by dividing the total
number of cycles by the number of instructions executeq,
This provides the harmonic mean of the CPI weighted by
the number of instructions executed by each benchmark.
Table 2 shows the statistics obtained by executing 15 com.
mon benchmarks. These statistics include the number of

‘dynamic instructions executed in millions, the number of

cycles in millions it took to execute them, and the top four
memory system contributors to performance degradation
shown as a percentage of CPI. From this table, we note that
primary D-cache misses (PD-miss) account for most of the
loss in memory system performance, a direct consequence
of restricting the D-cache size to a page, as explained ear-
lier in Section 3.2. However, the performance loss duc
to secondary D-cache misses (SD-miss) is not much less
than that due to primary D-cache misses. We believe that
the secondary cache miss rates are artificially high due to
the manner in which context switches were simulated. In
reality, it is possible for several processes, depending on
the size of their working sets, to share a 1 M-byte sec-
ondary cache without flushing each other’s entries entirely
between context switches.

In Table 3 we compare the performance of the
micro-supercomputer with an R3000-based computer, the
M/20007. The M/2000 has 64 K-byte primary instruction
and data caches, a four entry write buffer to main memory,
and a 25 MHz clock. The cycle times differ by a factor
of ten, whereas the TPI figures differ by a factor of 9.2

Spixstats is a trademark of the MIPS Corp.
TM/2000 is a trademark of the MIPS Corp.
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| Name | Insts(M)  Cycles(M) Pl -miss(%) PD-miss(%)  SI-miss(%) SD-miss(%) | CPT}
Sdiff 2183 306.6 0.06 9.88 0.31 12.15 | 1.40
awk 349 50.6 4.90 355 227 243 | 145
doducd 48.1 102.6 9.14 8.57 8.95 341 ] 213
dhrystone(2 53.6 64.2 0.07 0.02 0.30 0.14 | 1.20
espresso 119.0 149.8 1.92 3.58 1.88 259 | 126
gnuchess 488.2 606.6 0.86 0.84 299 149 | 1.24
grep 494 59.1 0.05 0.14 0.29 030 | 1.20
linpackd 4.0 7.1 0.17 24.69 0.86 8.11 | 1.78
LFK(12) 2755 3945 0.01 2.52 0.06 091 | 1.43
nroff 15.7 219 0.66 1.21 2.59 207 | 1.40
small 16.7 224 0.08 245 0.36 137 | 1.34
spice2gb 2973 5529 5.58 19.31 335 14.03 | 1.86
wheid 9.4 18.0 0.27 0.10 1.28 048 | 191
wolf33 832 180.2 3.38 20.98 5.06 11.70 | 2.16
yacc 96.9 136.0 0.31 5.89 0.67 468 | 1.40
Total 18104 2672.6 1.80 6.88 2.13 547 | 1.48

Table 2: Benchmark performance results.

dachine | CPI _ Cycle ime(ns) TPl | MIPS |

2000 1.36 40 544 18.4
icro-super | 1.48 4 592 ] 1689

Performance comparison between an M/2000 and
-supercomputer.

rence is due to the slightly poorer memory perfor-

the micro-supercomputer. However, the fact that
le to increase the clock cycle by a factor of ten
' a nominal reduction in architectural efficiency
ired by CPI) supports the design choice of using
subassembly for the cache,

5 Conclusions

discussed design considerations for a prototype
micro-supercomputer, and have shown that in
chieve the performance goals it is necessary to
legrated design approach in which technology,
‘¢ and packaging are considered simultaneously.
" GaAs DCFL technology which has high speed,
el of integration and high yield is an impor-
nt in achieving the desired performance. Multi-
le packaging must be used to achieve the needed
ormance, and careful partitioning of the proces-
nents is required to minimize the number of chip
n the critical path. The use of CAD tools is crit-
mportant to use a chip compiler to leverage the
*and take immediate advantage of continuously
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increasing integration levels without extensive and costly
redesign. Simulation of cache performance is necessary to
achieve the best compromise between size and speed, and
in general, the use of simulation is crucial in making the
majority of decisions along the design path. By coordi-
nating these different aspects we believe that it is possible
to achieve a global optimization of the design and build a
system which will meet the specifications which we have
described.
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