
322 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I I ,  NO. 3, MARCH 1992 

Analysis and Design of Latch-Controlled 
Synchronous Digital Circuits 

Karem A. Sakallah, Member, IEEE, Trevor N.  Mudge, Senior Member, IEEE, and Oyekunle A. Olukotun 

Abstract-We present a succinct formulation of the timing 
constraints for latch-controlled synchronous digital circuits. We 
show that the constraints are mildly nonlinear and prove the 
equivalence of the nonlinear optimal cycle time calculation 

problem. We present an LP-based algorithm which is guaran- 
teed to obtain the optimal cycle time for arbitrary circuits con- 
trolled by a general Class of multiphase overlapped clocks. We 
illustrate the formulation and an initial implementation of the 
algorithm on some example circuits. 

input and output terminals of a latch while the latch is 
enabled. This in turn leads to a set of cyclic timing con- 
straints which must be satisfied by a properly designed 

constraints are indeed satisfied for a given Circuit and a 
given clocking scheme. The design problem, on the other 
hand, attempts to find, for a given circuit and clocking 
scheme, the minimum clock cycle time which would not 
violate these constraints. In both cases the cyclic nature 

problem to an associated and simpler linear programming (LP) circuit. The analysis problem seeks to determine if these 
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NOMENCLATURE 

Number of clock phases. 
Number of latches. 
Clock phase i. 
Duration of active interval of 4;. 
Start time, within the common clock cycle, of 

the active interval of 4;. 
+i to +j phase-ordering flag. 
+i to 4j input/output relationship flag. 
4; to phase-shift operator. 
Clock phase used to control latch i. 
Arrival time of valid data signal at input of 

Departure time of valid data signal from input of 

Departure time of valid data signal from output 

Setup time for latch i. 
Propagation delay of latch i. 
Propagation delay from an input latch i through 

a combinational logic block to an output 
latch j .  

latch i. 

latch i. 

of latch i. 

I. INTRODUCTION 

of the constraints frustrates intuitive solution approaches 
based on simple graph traversal methods, such as CPM 
[4], which require the constraint set to be acyclic. 

This paper has two main goals. The first is to present a 
succinct, yet complete, formulation of the timing con- 
straints for latch-controlled synchronous digital circuits. 
The constraints in this formulation are easily constructed, 
almost by inspection, for any circuit topology and clock- 
ing scheme, and are clearly seen to be nonlinear, though 
mildly so. The second goal of the paper is to formally 
prove the equivalence of the nonlinear design problem 
(i.e., the minimum clock cycle optimization problem with 
nonlinear timing constraints) to an associated and simpler 
linear programming (LP) problem. This proof forms the 
basis of an LP-based algorithm for finding the optimal 
cycle time. 

Most current methods for the analysis and design of 
level-sensitive synchronous digital circuits assume edge 
triggering to simplify the analysis and then apply some 
heuristics to approximate the level-sensitive constraints. 
As a consequence, in the analysis case, they may declare 
a design to be in violation of timing constraints when in 
fact it is not, and in the design case, they may not produce 
the minimum cycle time. Our modeling of the level-sen- 
sitive constraints is not an approximation and so avoids 
both of these problems. 

vious work in the area is given in Section 11. Section I11 
presents a formulation of the timing constraints for level- 
sensitive synchronous digital circuits. They are seen to be 

HE analysis and design of synchronous digital cir- 
T c u i t s  which are controlled by level-sensitive latches is This Paper is organized as follows* A review of Pre- 

generally acknowledged to be a 
The difficulty is due mainly to the coupling between the 

problem 

nonlinear. Section IV shows that the solution of the ap- 
parently Optima1 cyc1e time design problem can 
in fact be found by solving an associated LP problem, and 
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11. PREVIOUS WORK 

The timing analysis of digital logic circuits goes back 
at least to the work of Kirkpatrick in the 1960’s [ 5 ] .  How- 
ever, this and much subsequent work was concerned with 
timing analysis for edge-triggered logic. It has only been 
during this decade, with MOS VLSI emerging as the lead- 
ing technology for implementing digital systems, that the 
timing analysis and design of level-sensitive logic have 
become important. In this period several authors have ad- 
dressed the question of level-sensitive latches, including 
Agrawal [6], Jouppi [I] ,  Ousterhout [ 2 ] ,  Unger [7], Szy- 
manski [8], Cherry [9], Wallace [lo], and Dagenais [ 1 11, 

One of the earliest, Agrawal, attempted to find the 
maximum frequency of operation of a logic circuit through 
a bounded binary search algorithm. Jouppi proposed an 
iterative scheme based on the concept of “borrowing.” 
In the first iteration, the critical path(s) in the circuit are 
determined by pretending that the latches are edge trig- 
gered. This approximation is removed in subsequent it- 
erations. In each of these iterations an attempt is made to 
reduce the clock cycle time to a value determined by the 
second most critical path. This is accomplished by trading 
(borrowing) the slack time in the subcritical path. In prac- 
tice, only one borrowing iteration is performed to limit 
the computation cost. The TV program incorporates this 
borrowing algorithm and has been effectively applied for 
the verification of several large commercial chips. Ous- 
terhout developed Crystal, a MOS timing verification pro- 
gram similar in many respects to TV. However, Crystal 
makes no attempt at dealing with clocking issues and con- 
fines its attention to the proper modeling of signal delay 
through trees of MOS transistors. In fact, Ousterhout ac- 
knowledged the inherent difficulty of dealing with level- 
sensitive latches. 

Unger developed a set of timing constraints for a lim- 
ited form of two-phase clocking with level-sensitive 
latches. He considered both the short-path (early arrival) 
as well as the long-path (late arrival) problems and pre- 
sented a heuristic procedure for computing the minimum 
cycle time subject to these constraints. This, to our 
knowledge, was the first explicit formulation of the tim- 
ing constraints of latch-controlled circuits as a system of 
linear inequalities. The LEADOUT program, developed 
by Szymanski, is an equation-based MOS timing analysis 
tool which handles multiphase clocking and level-sensi- 
tive latches. The temporal behavior of latches is specified 
by “max” constraints similar to those encountered in 
CPM graphs. To  eliminate the inevitable cyclic depen- 
dencies among these constraints, the circuit is first parti- 
tioned into its strongest-connected components, and con- 
straints are generated for each cycle-free path within the 
components. The reference does not, however, provide 
enough detail about LEADOUT’s clocking model to ex- 
plain how the cyclic dependencies induced by clock pe- 
riodicity are removed. A unique feature of LEADOUT is 
the compilation of the timing constraints into a fast-exe- 

[31. 

cuting program which allows repeated analysis of a circuit 
with different clocking or device parameters. 

More recently, several authors proposed linear pro- 
gramming formulations for the minimum cycle time prob- 
lem. The first such formulation appears to be due to 
Cherry in the Pearl CMOS timing analyzer. Like LEAD- 
OUT, Pearl starts out by constructing a causality graph 
which captures the dependencies among data and clock 
signals. The data signals at the inputs and outputs of 
latches are then forced to satisfy the appropriate setup and 
hold times, and a set of linear inequalities which deter- 
mine the “spacing” between pairs of clock edges is de- 
rived. The minimum cycle time satisfying these spacing 
requirements is then found by solving a linear program. 
The simplification of the system timing constraints to a 
small set of clock spacing requirements seems, however, 
to be based on certain implicit assumptions about when 
data signals at the latch inputs are available. 

In ATV (Abstract Timing Verifier), Wallace introduces 
the notion of local and common (absolute) frames of ref- 
erence for time and uses it to characterize the temporal 
relations among clock phases through a set of trunslu- 
tions. Then, in a process similar to that used in Pearl, 
ATV calculates bounds on the difference between pairs of 
translations in the form of linear inequalities, suggesting 
a linear programming solution. The program, however, 
requires the ordering of the clock edges to be specified by 
the user prior to the actual optimization step. To deter- 
mine the optimal clock schedule, therefore, it would be 
necessary to run ATV several times, with a different or- 
dering of the clock edges each time (e.g., nonoverlapped 
or overlapped). Another limitation in the ATV approach 
is its handling of loops of level-sensitive latches. The al- 
gorithm used by the program to deal with feedback and 
level-sensitive latches is to unroll (replicate) the circuit 
graph a user-specified number of clock cycles, n,. Beside 
the attendant inefficiency of such an algorithm when n, is 
large, if n, is smaller than the number of cycles covered 
by any loop of latches in the circuit, the solution gener- 
ated by the program will only be an approximation to the 
true solution. 

The most recent effort at addressing this problem is due 
to Dagenais. He developed a MOS timing analysis and 
design tool, TAMIA, which represents the timing behav- 
ior of general multi-phase-clocked latch-controlled cir- 
cuits by a set of nonlinear coupled relations. The design 
problem, which aims at finding the optimal clock param- 
eters for a given circuit, is then solved approximately by 
an iterative graph-based algorithm. Because it models a 
circuit at the transistor level, however, in its current im- 
plementation TAMIA carries out just one iteration of this 
algorithm. 

111. PROBLEM FORMULATION 
We consider synchronous digital circuits controlled by 

arbitrary k-phase clocks (to be defined shortly). We as- 
sume (see Fig. 1) that the circuits can be decomposed into 
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n cominnational logic 

a s c 
Fig. 1 .  Generalized logic model. 

stages of feedback-free combinational logic blocks with 
clocked inputs and outputs. ' The clocked elements at the 
inputs and outputs of the combinational stages are level- 
sensitive latches which provide temporary storage of data 
and act as synchronizers. These latches can be either static 
(for example, cross-coupled NAND gates) or dynamic (for 
example, MOS pass transistors). Regardless of the imple- 
mentation, the functional and timing behavior of these 
latches is similar, and the formulation presented here ap- 
plies to both types. 

We place no restrictions on the combinations of clock 
phases used to control the input and output latches of a 
combinational stage other than a requirement that the set 
of clock phases controlling each feedback loop in the cir- 
cuit be nonoverlapping; specifically, we require the logi- 
cal AND of this set of phases to be identically equal to 0 
at all times. 

A .  Clocking Methodology 
An arbitrary k-phase clock is defined to be a collection 

of k periodic signals, 41,  +2, , &, referred to as 
phases, with the same period. Each phase consists of two 
intervals: an active interval, during which the latches con- 
trolled by the phase are enabled; and a passive interval, 
when the latches are disabled. Without loss of generality 
we assume that all clock phases are active high; i.e., their 
active intervals occur when the phase signal assumes the 
logic 1 state. 

We define the following clock variables (see Fig. 2): 

T,: the clock cycle time, or period. 
s,: the start time, relative to the beginning of the 
common clock cycle, of the active interval of 4,. 
T, : the duration of the active interval of 4,. 

For brevity, we will identify 4, with its active interval, 
and simply refer to s, as the start of 4, and to T, as the 
duration or width of 4,. In addition, if 4, and 4J control 
an input latch and an output latch, respectively, of a com- 
binational logic block L,  we will simply refer to 4, as an 
input phase, 4J as an output phase, and 4, /bJ as an input/ 
output-phase pair of L. We also introduce two k x k ma- 
trices C and K with elements C, and K I J ,  defined as fol- 

'Fig. 1 is adapted from Glasser and Dobberpuhl [13, fig. 6 .7 ,  p. 3351. 

Fig. 2 .  Clock signal variables. 

lows: 

0 ,  i < j  

1 ,  i z j  

1 if 4 i /4 j  is an I/O phase pair of 
K . .  any logic block (2) 

I' i 0 otherwise. 

The K matrix identifies all I/O phase pairs for a partic- 
ular circuit. The C matrix is used to determine if a clock 
cycle boundary must be crossed when going between an 
I/O phase pair 4i/4j (see eqs. ( 6 )  and (12) below). 

We can now state the relations among the various clock 
variables as a set of inequalities which are collectively 
referred to as the clock constraints: 

CI.  Periodicity Constraints: 

T, 5 T,, i = 1 ,  , k  (3) 

si I T,, i = 1 ,  - e -  , k .  (4) 

si I s i + , ,  i = 1, - , k - 1 .  ( 5 )  

C2. Phase Ordering Constraints: 

C3. Phase Nonoverlap Constraints: 

si 1 sJ + TJ - C,,T, V ( i ,  j )  3 KO = 1 .  (6) 

C4. Clock Nonnegativity Constraints: 

T, L 0 (7) 

Ti 1 0, i = 1, 0 . 0  , k  (8) 

s i l O ,  i = l ; * - , k .  (9) 

These inequalities, except for the nonoverlap con- 
straints C3, are intuitively obvious. Constraints C3 ensure 
that the output phase +j of every U 0  phase pair must end 
before the input phase 4i starts. This in turn guarantees 
that the clock phases controlling any feedback loop in the 
circuit are never simultaneously overlapping. 
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4-phase overlapping clock 

’s4 - ’s 4 

3-ph.se overlapping dock 

0 TC 

0 1 0 0  

0 0 0 1  
1 0 0 0  

2Tc 

2-phase clock (must be non-overlapping) d-7TTpr$ $2 K =  [: :] 

Fig. 3. Clocks with two, three, and four phases. 

Constraints Cl-C4 should be viewed as the minimum 
set of requirements that must be satisfied by a k-phase 
clock. Further requirements, such as minimum phase 
width, minimum phase separation, and clock skew, can 
be easily added to this minimum set but will not be treated 
here. 

It is important to point out that the clock model intro- 
duced here is a temporal and not a logical one. The clock 
phases in this model are not assumed to have any logical 
relationships to one another; they are not prevented from 
being logically related either. This separation of the log- 
ical (functional) and timing aspects makes it possible to 
map any clocking discipline to our temporal framework 
by a suitable preprocessing step. This would include, for 
example, identifying derived and qualified clocks, fol- 
lowed by relabeling and ordering the clock phases ac- 
cording to ( 5 ) .  The generality of our clock model is dem- 
onstrated in Fig. 3 by showing how it applies to commonly 
used two-, three-, and four-phase clocking schemes. Note 
in particular that, for k = 2, the clock constraints ensure 
that the two phases are nonoverlapping, as they should 
be. 

B. Latch Constraints 
As will become evident, the simplicity of the formula- 

tion we present stems from a careful choice of time vari- 

ables and naturally leads to a solution by linear program- 
ming. 

We describe here the timing constraints necessary for 
the correct operation of D-type latches. Such latches have 
three terminals, representing data input, data output, and 
clock input (see Fig. 1). The circuit is assumed to contain 
E latches, numbered from 1 to E .  For each of these latches 
we define the following variables and parameters: 

p i :  denotes the clock phase used to control latch i 
(e.g., latch 3 in Fig. 1 hasp3 = 4). 
Ai : denotes the arrival time, relative to the beginning 
of phase p i ,  of a valid data signal at the input to 
latch i. 
D i :  denotes the departure time, which is the earliest 
time, relative to the beginning of phase p i ,  when the 
signal available at the data input of latch i starts to 
propagate through the latch. 
Q , :  denotes the earliest time, relative to the begin- 
ning of phase p i ,  when the signal at the data output 
of latch i starts to propagate through the succeeding 
stages of combinational logic. 
ADC-: denotes the setup time for latch i required be- 
tween the data input and the trailing edge of the clock 
input. 
ADQi: denotes the propagation delay of latch i from 
the data input to the data output of the latch while 
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the clock input is high. It is assumed that ADQj I 

Ajj : denotes the propagation delay from an input latch 
i through a combinational logic block to an output 
latchj. If latches i a n d j  are not directly connected 
by a combinational block, then A, = - m. 

Notice that both Dj and Qi will always be nonnegative 
quantities, whereas A; is unrestricted in sign. 

The constraints governing latch operation fall into two 
categories: setup constraints and propagation constraints. 
The setup constraints guarantee that a latch has sufficient 
time to lock (store) the signal at the data input before that 
signal is allowed to change again. Thus, 

. 

Ai + ADC; 5 TpI i = 1, . * 7 1. (10) 
Since Ai can be negative, signifying that valid data has 
arrived before the onset of phase p i ,  (10) may sometimes 
be satisfiable by a clock phase whose width Tp, is O! A 
more realistic setup constraint is obtained if A; is replaced 
by D j ,  yielding 

(11) 
In this case, since Di is always nonnegative, the constraint 
places a lower bound on the width of phase pi  equal to the 
required setup time. We will adopt this more realistic con- 
straint in our analysis. 

Unlike the setup constraints which are local, the prop- 
agation constraints are global. They relate the departure 
times of signals at different latches in the circuit using the 
combinational propagation delay parameters. Since latch 
variables are referenced to the beginning of their corre- 
sponding clock phase, it is convenient to define the fol- 
lowing phase-shift operator: 

Di + AD,-; 5 Tp,, i = 1, . * * , 1. 

Sjj sj - ( ~ j  + CjjT,). (12) 
Adding S,  to a time variable moves its referenced point 
(origin) ahead from si to sj . 

The propagation of signals from the inputs to the out- 
puts of latches is simply described by 

Qj = Dj + ADQ;, i = 1, - > 1. (13) 
Now consider a combinational path which starts at latch 

j and ends at latch i .  The data signal at latch j starts to 
propagate at time Qj and thus reaches latch i at Qj + Ai;, 
all times being referenced to the beginning of phase p i .  
Therefore, relative to the beginning of phase p i ,  the signal 
arrives at latch i at time Qj + Ajj + Splp,. The data signal 
at latch i becomes valid when all relevant input signals 
have had sufficient time to propagate through the combi- 
national circuitry leading to latch i. Thus, the arrival time 
of a valid signal at latch i becomes 

j = 1, * * , 1. (14) Ai = max (ej + Ajj + SPlpt) ,  
i 

The propagation constraints through the combinational 
logic can now be expressed as follows: 

Dj = max (0, A j ) ,  i = 1, * 3 1 (15) 

which express the fact that if a valid signal arrives at latch 
i before the start of phase p ,  , then the departure time of 
that signal must be delayed to the beginning of phase p ,  . 

By eliminating the Q and A variables using (13) and 
(14), the latch constraints can be written exclusively in 
terms of signal departure times D, along with the various 
clock variables, as follows: 

LI.  Setup Constraints: 

D, + ADC, 5 Tp,, i = 1, * . * , 1. (16) 

L2. Propagation Constraints: 

D, = max ( 0 ,  max (DJ + ADQ, + Aji + S,,,,)), 
J  

i , j  = 1, * - , 1. (17) 

D, 2 0, i = 1, e . .  7 1. (18) 

L3. Latch Nonnegativity Constraints: 

Using the notation scheme defined in this section, it is 
now possible to write down the set of timing constraints 
for arbitrary circuits by inspection. It is assumed that the 
circuit has been decomposed into clocked combinational 
stages, and that the various delay parameters have been 
calculated. We illustrate this process in the Appendix for 
the circuit shown in Fig. 1. 

IV. OPTIMAL CLOCK CYCLE CALCULATION 
The minimum clock cycle time can be calculated by 

solving the following optimization problem, denoted by 
PI  : 

P1. Optimal Cycle Time: 

Minimize T, 

Subject to Clock Constraints C1, C2, C3, and C4 

Latch Constraints L1, L2, and L3. 

PI  is a nonlinear optimization problem. Let RI denote the 
feasible region of P1, i.e., the set of solutions to P1 which 
satisfy the specified constraints. The nonlinearity of P1 is 
due to the max functions in the latch propagation con- 
straints L2. A linear optimization problem is obtained if 
these propagation constraints are relaxed as follows: 

L2R. Relaxed Propagation Constraints: 

D, 2 DJ + ADa + AJ1 + Splplr 9 1. i ,  j = 1, * - 
(19) 

Thus, we define the following linear program: 
P2. Modijied Optimal Cycle Time: 

Minimize T, 

Subject to Clock Constraints C1, C2, C3, and C4 

Latch Constraints L1, L2R, and L3 

If R2 is defined as the feasible region of P2, it should be 
obvious that RI G R,. 

Our objective in this section is to show that the mini- 
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mum cycle time obtained by solving the linear program 
P2 is the same as the minimum cycle time of the original 
nonlinear problem PI .  If we denote the optimal value for 
P1 and P2 by T:p;,,, and T:?,,,, respectively, then this re- 
sult can be expressed by the following theorem: 

Theorem 1 :  

TLp?,,, = T:?i,,. 

Proof: The critical element of this proof is the ob- 
servation that the optimal value of a linear program can- 
not be improved with the addition of extra constraints [4, 
p. 1701. It folllows that, since P2 is a relaxed version of 
P1, TLp!&, 2 Tl.t)2,),,,. Therefore the theorem is proved if we 
can show that P2 can be augmented with constraints such 
that the following two stipulations are true: 

1) The optimal value of the augmented problem is not 

2) The constraints of the augmented problem are 
greater (worse) than T:?,,,. 

equivalent to those of P1. 

Thus the augmented problem, which we will call P3, has 
the same optimal solution (i.e., the same values for all 
variables) as the original problem PI .  Since the only dif- 
ference between P1 and P2 are the latch propagation con- 
straints, we need to examine the following two cases: 

All D variables in the optimal solution to P2 are at 
their minimum values. Thus, the optimal solution 
to P2 satisfies all the constraints of P1, including 
the latch propagation constraints L2. In this case, 
P2 is equivalent to P I ,  and their optimal values are 
the same. 
One or more of the D variables is not at its mini- 
mum value. Thus the optimal solution to P2 violates 
some of the latch propagation constraints L2. To 
force the solution to satisfy the L2 constraints, we 
augment the constraints of P2 with equality con- 
straints as follows: 

(a) If A; 5 0 and Dj > 0 for some latch i, add 

(b) If A; > 0 and D; > A; for some latch i ,  add 

The addition of these equality constraints may in 
some cases cause the departure time at some other 
latch j which previously satisfied constraints L2 to 
now violate them. In such cases we add further 
equality constraints (either (a) or (b), as appropri- 
ate) for all such affected latches, and repeat the pro- 
cedure as often as necessary, until the constraints of 
P3 become equivalent to those of P1. It should be 
obvious that the addition of such equality con- 
straints does not increase the cycle time. Thus the 
two stipulations stated above are true, and the theo- 

the equality constraint Di = 0. 

the equality constraint D; = A ; .  

rem is proved. 0 

A geometric interpretation of this theorem is shown in 
Fig. 4. The figure clearly shows the following relation- 

7 1  

I Optimal iolution to PI 
I I I 

1 2 3 4 5 6 7  

P2: min t = z 2  P1: min z = z z  

s.t. 21 = max(2,zz) s.t. 21 2 2 

51 1 2 2  

2 2  2 1 

2 1 , 2 2  2 0 

2 2  2 1 

Z l r Q  z 0 
Fig. 4. Geometric interpretation of Theorem 1 .  

ships between the original problem P1 and the modified 
(relaxed) problem P2: 

The feasible region of P1 (the two heavy line seg- 
ments) is a subset of the feasible region of P2 (the 
shaded area, including the bordering line segments .) 
The optimal values of P1 and P2 are equal: zmin = 
1. 
P2 does not have a unique optimal solution. In fact 
any point on the horizontal dashed line segment is an 
optimal solution to P2. On the other hand, P1 has a 
unique optimal solution: the single point (2, 1). If XI 
and X 2  are used to denote, respectively, the optimal 
solution sets to P1 and P2, then the figure makes it 
clear that XI G X2. This relationship, in fact, holds 
regardless of the uniqueness or nonuniqueness of the 
optimal solutions, as can be easily verified by trying 
other objective functions. For example, if z = xl, 
thenX, = X 2 = ( ( 2 , x 2 ) ( l  1 ~ ~ 1 2 ) ; a n d i f z = x ,  
+ x2, then X, = X2 = ((2, l)}. 
An optimal solution to P2 may not be a feasible so- 
lution to P1. For example, the point (4, l )  is an op- 
timal solution to P2 but is clearly infeasible for P1. 
The figure suggests how such a solution may be made 
feasible for PI :  minimize xI until it satisfies x1 = 
max (2, x2). Applying this to the point (4, 1) yields 
the correct optimal solution (2, 1) to P1. The min- 
imization step can, in fact, be carried out by “slid- 
ing” x1 to the left until the max constraint in PI is 
satisfied. 
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Theorem 1 forms the basis for the following algorithm 
to find the optimal solution of P1 by linear programming: 

Algorithm MLP: Optimal Cycle Time Calculation by 
ModiJed LP 

(Comment: m is an iteration counter; v is a convergence 

1) Solve P2. Denote the optimal solution found by 

2) Set m = 0, 
3) For i ,  j = 1, - - , 1, evaluate DT” = max (0, 

maxi (D“ + AD@ + Aii + S,,,)). 
4) If x+I’ # for any i ,  set v = FALSE, and in- 

crement m. 
5) If v = = TRUE stop; otherwise set v = TRUE and 

go to (3). 

Several observations should be made about this algo- 
rithm: 

The overall performance of the algorithm depends on 
how efficiently we can solve the LP P2 in step 1. The 
most commonly used method for solving linear pro- 
grams is the simplex algorithm, which, on average, 
takes between n and 3n steps to reach the optimum, 
where n is the number of problem constraints [4, p. 
541. For P2, it is easy to show that the number of 
constraints is bounded from above by 4k + (F + 1) 1 ,  
where F is the maximum fan-in to any latch in the 
circuit and is usually a small number, such as 3 or 
5 .  Thus, the number of constraints is linear in the 
number of latches, 1. Additionally, by lumping 
latches corresponding to vector signals with similar 
timing (e.g., 32-bit data buses), the number 1 can be 
reasonably small even for large circuits. The com- 
plexity of step 1, therefore, grows only linearly with 
1.  The cost of this step can be reduced further by 
taking advantage of the special properties of this par- 
ticular LP. For instance, by treating all latches as 
though they were positive-edge-triggered flip-flops, 
a very good initial guess can be quickly generated 
and used as the starting point for optimization. 
The algorithm involves a Jacobi-style iteration (steps 
3 to 5) which updates the values of the departure 
times until all the max propagation constraints are 
satisfied. A more efficient Gauss-Seidel-style itera- 
tion is obviously possible. In fact, an event-driven 
update mechanism which only calculates the depar- 
ture times which have changed from the previous it- 
eration can be easily implemented. With such an en- 
hancement, the cost of the iterative steps is greatly 
reduced for large circuits. 
When the departure times are udpated in step (3), the 
clock variables are held fixed at the optimal values 
that were found by solving the LP in step (1). Thus, 
the update process fixes the clock “schedule” and 
“slides” the departure variables toward the time or- 
igin. 

flag.) 

Dyfori = 1, - * 9 1.  
= TRUE. 

The update iteration is guaranteed to terminate be- 
cause the departure times are bounded from below. 
In the examples we have attempted, the update pro- 
cess usually terminated in two to three iterations (in 
some cases no iterations were even necessary.) 

V. EXAMPLES 
In I this section we illustrate our proposed formulation 

with three examples. The examples were solved using an 
initial implementation of the MLP algorithm which in- 
corporates a simple parser, a dense-matrix LP solver 
which implements the standard simplex algorithm, and 
graphical output routines. 

The first example, adapted from [3], is shown in Fig. 
5 .  It is a simple two-stage system connected in a loop and 
controlled by a two-phase clock. To facilitate comparison 
with [3] we assume that all latches have equal setup and 
propagation delays of 10 ns. We also assume the same 
values for the combinational logic delays, except for block 
Ld , whose delay, A41, will be varied to study its effect on 
the optimal cycle time. The resulting set of timing con- 
straints are: 

Periodicity constraints: Ti ,  si I T,, i = 1, 2. 
Phase ordering constraints: sI 5 s2. 

Phase nonoverlap constraints: s1 5 s2 + T2 - T, and 

Latch setup constraints: 
~2 2 S I  + TI. 

D1 + 10 I TI 
0 3  + 10 I TI 

0 2  + 10 I T2 
0 4  + 10 5 T2. 

Latch propagation constraints: 
D I  = max (0,  D4 + 10 + A41 + s2 - SI - T,) 
D2 = max (0, D ,  + 10 + 20 + sl - s2) 
D3 = max (0,  D2 + 10 + 20 + s2 - SI - T,) 
D4 = max (0,  D3 + 10 + 60 + sl - s2). 
Nonnegativity constraints: T, 2 0; Tpi, sPi 1 0 ,  pi = 
1, 2; and Di L 0, i = 1, * - - 9 4. 

Figs. 6 and 7 compare the results obtained by the MLP 
algorithm with the null retardation in the initial phase 
(NRIP) algorithm, described in [3]. The diagrams in Fig. 
6 show, for each experiment, two complete cycles of the 
resulting clock schedule along with a “strip” which iden- 
tifies the names and delay values for each of the combi- 
national blocks and the times at which the data signals 
depart from each of the four latches. The shaded portions 
in these strips represent propagation through the latches 
themselves (A,,,), whereas gaps in the strips indicate sig- 
nals that arrive earlier than (and must thus wait for) the 
enabling edge of the corresponding clock phase. For ex- 
ample, the MLP solution for the A41 = 120 ns case, shown 
in part (c) of the figure, has a cycle time of 140 ns with 
signals departing from latches 1 through 4, respectively, 
at 60 ns, 90 ns, 140 ns, and 210 ns. Furthermore, the 
input to latch 3 becomes valid at 120 ns, 20 ns earlier than 
the rising edge of dl;  thus departure from latch 3 must 
wait until dl rises at 140 ns. 

These results lead to several observations: 
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I b h $1 h I 

10 ns 

Fig. 5 .  Block diagram for example 1 .  

MLP NRlP 

90 120 210 240 

110 120 230 

I d - 60 110 170 220 

70 90 180 200 

ol: 

n a? a n r 

D1 0 2  D3 D4 

80 110 190 220 

80 110 190 4 
D1 D2 D3 D4 

(a) 

110 140 250 280 

130 140 270 
I I 

70 120 190 240 

70 100 190 220 
$7 
ay 

+lo- 

9 n r 

D1 D2 D3 D4 D1 D2 D3 04 
[Ld 1 o O l L a l L b l L c  601 p 

(b) 

70 140 210 280 0 130 160 290 320 

70 100 210 240 150 160 310 
I I I ol- 

a? a 

D1 D2 D3 D4 D1 D2 D3 D4 

(C) 

denotes lOnS latch delay 

Fig. 6.  Timing diagrams for example 1 .  (a) A41 = 80 ns. (b) A4, = 100 
ns. (c) A41 = 120 ns. 

300 1 1 Unless additional constrain s are placed n the min- 
imum widths and separations o f  clock phases, the 
optimal solution will not be unique. This is illus- 
trated with two such solutions for the A41 = 80 ns 
case (see the top of Fig. 6). Each of these solutions 
has a cycle time of 110 ns, even though their phase 
signals are quite different. Physically, this means that 
the timing constraints of a given circuit may be sat- 
isfied by a number of different clock schedules which 
share a common cycle time. Additional require- 
ments, such as minimum duty cycle, may be applied 
to select one of these different solutions. The appar- 
ent uniqueness of the solution found by the NRIP 

200 - 

-- NRlP U', 
..- NRlP $ 
- MLP(Optima1) 

0- 
0 100 200 

A 41 

Fig. 7 .  T, versus A41 for example 1. 
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~ 

330 

0 

0 

4 4 

Fig. 8 .  Block diagram for example 2 .  

algorithm is due to its implicit minimum constraints 
on phase widths and separations. 
The NRIP algorithm produces an optimal solution 
for A41 = 60 ns. For all other values of A41, the cycle 
time found by NRIP is suboptimal (see Fig. 7). 
The piecewise-linear dependence of T, on A41 in the 
optimal solution has three distinct segments. For 0 
5 A41 I 20 ns, T, is independent of A41, and is set 
by some other delay in the circuit. When A41 2 20 
ns, block Ld becomes critical, and any increase in 
A41 causes T, to also increase. For 20 I A41 I 100 
ns, T, increases by 1 ns for every 2-11s increase in 
A4, because the added delay is shared between the 
two clock cycles (“borrowed” from 4J. For A41 L 
100, T, increases in direct proportion to A41, since 
the additional delay can no longer be shared between 
the two clock cycles, and slack is inevitably intro- 
duced in the cycle with shorter delay. The rather 
simple dependence of the optimal cycle time on A41 

in this case is due to the simplicity of the topology 
of this particular circuit. In fact, one can show that 
since the feedback loop consists of two complete 
clock cycles, the optimal cycle time is the maximum 
of the average delay around the loop and the differ- 
ence between the delays for each of the cycles mak- 
ing up the loop. 

MLP 
0 75 185 

4 1 y I  
75 160 

h 
I T L  

100 

di d2 

L78 

NRIP 
0 10 250 wn 

10 160 

901 
d3 d4 

I00 

ds =T!F 
denotes lOnS latch delay 

Fig. 9. Timing diagrams for example 2.  

pendence of that solution on the circuit’s delays. In- 
The cycle time calculations using the MLP and NRIP 

algorithms for a more complicated example are shown in 
Figs. 8 and 9. 

The following additional observations can be made: 

stead of a single critical path, the circuit has several 
critical combinational delay segments which may be 
disjoint. The criticality of these segments, and the 
subcriticality of others, are directly related to asso- 

Unlike the previous example, the cycle time found 
by the NRIP algorithm is significantly higher (35 %) 
than the optimal cycle time. While this result cannot 
be generalized for other circuits, it does point out 
that the approximate solution found by NRIP may 
deviate appreciably from the exact solution, and ad- 
ditional iterations might be necessary. Because it can 
be found fairly quickly, however, the NRIP solution 
may be used in the LP step of the MLP algorithm as 
a starting point. 
Because of the coupling of the timing constraints 
through the feedback loops in the circuit as well as 
through the periodic clock signals, the notion of a 
critical path is clearly inadequate as a basis for dis- 
cussing the optimality of the solution, and the de- 

ciated slack variables in the inequality constraints. 
The techniques of parametric analysis in linear pro- 
gramming can be usefully applied here to study the 
effects of varying the circuit delays on the optimal 
cycle time. 

The final example illustrates the application of the MLP 
algorithm to study and optimize the timing of a 250 MHz 
gallium arsenide microcomputer currently under devel- 
opment at the University of Michigan [ 121. Fig. 10 shows 
a simplified block diagram of the microcomputer’s CPU 
and its primary cache subsystem. The CPU implements 
an existing instruction-set architecture, the MIPS R6000, 
and has as its main components a register file of 32 32- 
bit registers, an ALU, a shifter, and an integer multiply 
and divide unit. The data path is 32 bits wide and is timed 
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Block Name 

Register File (RF) 

Arithmetic/Logic Unit (ALU) 

Shifter 

Integer Multiply/Divide (IMD) 

Load Aligner 

33 I 

No. of Transistors 

16,085 

3419 

1848 

6874 

1922 

I I I 

Total 

I 

30,148 

Fig. 10. GaAs MIPS system diagram 

0, 1 I 

$2 J I 

b I 1 

0.05 2.9 

0.1 0.7 

3.75 4.4 
Fig. 1 1 .  MLP-generated clock schedule for the GaAs MIPS data path. 

with a three-phase clock. The diagram shows the major 
logic blocks in the CPU data path, which is implemented 
as a single chip. The shaded blocks show the instruction 
cache and the data cache, which are implemented as a set 
of 15 high-speed GaAs 1 K X 32 SRAM chips. The syn- 
chronizing elements are a combination of latches and flip- 
flops (F/F’s, see Fig. 10). To reduce the effects of chip 
crossings the CPU and the primary caches are integrated 
into a single multichip module (MCM). 

We applied the MLP algorithm to a timing model of 
the data path to obtain its optimal clock schedule, assum- 
ing that the cache subsystem could be designed to match 
the speed of the CPU. The data path contains roughly 
30 000 transistors, the majority of which are in the reg- 
ister file (see Table I for a breakdown of the transistor 
count amoung the major data path blocks). The timing 
model was abstracted from the transistor level, and con- 
sists of 18 synchronizing elements, 15 of which are level- 
sensitive latches. Each of the synchronizers in the model 
represents a 32-bit-wide data bus. The timing parameters 
(propagation delays and setup times) were extracted from 
circuit simulations using SPICE. The resulting clock 
schedule is shown in Fig. 11. It is interesting to note the 
following: 

The number of constraints for this example was 91. 
Even though the current implementation of the MLP 
algorithm uses a dense-matrix solver, its execution 
time (on a DECStation 3100) was hardly noticeable 
(on the order of a few seconds). 

The optimal cycle time found by MLP (4.4 ns) is 
10% higher than the target cycle time of 4 ns. We 
are continuing to refine the delay parameters of the 
model from additional circuit simulations as well as 
actual measurements on prototype chips, and to ap- 
ply the MLP algorithm throughout the design pro- 
cess in order to monitor any changes in the optimal 
cycle time. 
Phase 43 in the optimal clock schedule is completely 
overlapped by + I .  While this relationship might seem 
odd at first, it is easy to explain once the function of 
43 in the circuit is recognized. This third phase is 
used as a precharge clock for the register file storage 
cells to speed up the readout of data into the ALU. 
The total overlap of 43 by 41 is not a problem since 
there are no direct paths in the circuit between these 
two phases (i.e., K 1 3  = K31 = 0). This result also 
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points out some of the generality of the timing model 
proposed in this paper, namely that it is able to over- 
lap clock phases if necessary to produce a shorter 
cycle time. 

VI. CONCLUSIONS 
We have shown in this paper that the optimal cycle time 

for circuits controlled by level-sensitive latches can be de- 
termined by solving a linear program. In contrast to ear- 
lier models, the timing constraints presented here are quite 
general, being based on very few assumptions, allowing 
them to accommodate a much wider class of clocking 
schemes. In addition, these constraints are very easy to 
generate for arbitrary circuit structures. The LP formula- 
tion provides a convenient theoretical foundation for ana- 
lyzing such constraints and for developing algorithms that 
are potentially more efficient than the simplex algorithm. 
We are currently investigating just such algorithms, not- 
ing that the entries of the constraint matrix for this prob- 
lem are exclusively topological (i.e., 0, k l ) .  We also 
intend to use parametric programming techniques to 
quantify the notion of critical path segments and to study 
the effects on the optimal cycle time of varying the circuit 
delays. 

APPENDIX 
To illustrate the notation developed in Section 111, we 

present here the complete set of timing constraints for the 
circuit shown in Fig. 1. The circuit has 11 latches and is 
controlled by a four-phase clock with the following K ma- 
trix: 

0 0 1  1 

I=[ '  1 1 0 0  '1. 
0 1 1 0  

Thus there are nine I/O phase pairs; the corresponding 
phase-shift operators (used in the latch propagation con- 
straints) are 

s , 3  = SI - s 3  

S I 4  = SI - ~4 

S21 = ~2 - SI - T, 

s 2 3  = s 2  - s3 

$4 = ~2 - ~4 

S31 = ~3 - S I  - T, 

S32 = ~3 - ~2 - Tc 

S42 = ~4 - ~2 - T, 

S43 sq - ~3 - T,. 

The timing constraints can now be stated as follows: 
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