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Abstract

In this paper we present the results of a preliminary study of the performance of
parallel loops on a non-bus shared-memory multiprocessor. Parallel loops are de-
fined to be “do” or "for" loops whose iterations are independent and can therefore
be executed in parallel. These are potentially the greatest source of parallelism in
a program and, therefore, it is important to demonstrate that this potential can be
realized before exploring other sources of parallelism. The sources of inefficiency
that can limit the parallelism are the mechanism for maintaining cache consistency
and the algorithm that schedules the loops across the processors. As part of our study
we examined the impact on parallel performance of two software and two hardware
cache consistency techniques as well as three scheduling policies.

INTRODUCTION

Parallel processing is an increasingly important technique used to speedup the ex-
ecution of compute-intensive scientific codes. In this paper we consider the use
of shared-memory multiprocessors in which the individual processors cooperate to
specdup the execution of a single program. In order to avoid re-writing the large
base of scientific codes written in sequential languages, methods have been devel-
oped to parallelize these programs. One of the most elementary of these methods
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is to simply execute multiple iterations of “do” loops or “for” loops in paraliel. we
will refer 1o these loops as “parallel loops”.

Parallel loops can be detected through data dependency analysis performed y
compile-time [6, 7). However, several languages and language extensions have
been proposed that contain doall and doacross style loops, which allow the
programmer to explicitly state the parts of the loop that may be executed in paraliel
[8,9, 10, 11].

A doall loop is one in which each iteration may be executed in any order ang
in parallel, i.e., there are no data dependencies between iterations. In a doacross
loop, one or more data dependencies exist between iterations which imposes an order
of execution. In this paper we limit our experiments to parallel loops that conform
explicitly or implicitly to the doall semantics. They represent potentially the
greatest source of parallelism in a program, therefore, as a first step, it is important
to demonstrate that these loops can be executed in parallel with a high degree of
efficiency before exploring other sources of parallelism.

To avoid performance degradation in a shared-memory multiprocessor due to
memory congestion it is necessary to include a cache or local memory with each
processor and provide a high-bandwidth connection to main memory. Furthermore,
techniques must be employed (either in hardware or software) to maintain data con-
sistency across the caches and main memory. Many hardware solutions to the cache
consistency problem have been studied, but most are snooping protocols, best suited
to shared-bus multiprocessors. Considerably less attention has been given to proto-
cols for non-bus systems as well as software techniques for maintaining consistency.

In this paper, we examine the impact of two software and hardware cache consis-
tency techniques in a non-bus multiprocessor on the performance of parallel loops.
We also examine the impact of three scheduling policies for the microtasks that result
from parallelizing the loops. We perform our experiments using a high performance
register-transfer level simulator of the Astronautics ZS series of multiprocessors. The
simulator interprets code from executable binaries, These binaries are created using
compilers and an assembler for an existing uniprocessor version of the ZS series, the
Z5-1. The sequential code is compiled and then hand paralielized by adding basic
run-time system and synchronization code at the assembly language level. The run-
lime extensions include support for the three scheduling policies, as well as software
consistency actions when necessary. Synchronization is performed using a special
set of shared “semaphore” registers, which keeps the synchronization traffic separaic
from the cache and prevent it from skewing the results of the consistency overhead
measurements. The use of a simulator for our experiments provides us with the
flexibility to alter the consistency hardware, basic cache parameters, and the number
of processors.

There have been a number of recent studies of multiprocessor cache performance
reported in [1, 2, 3, 4, 5]. The first three of these studies focused on bus-based
multiprocessors using snooping protocols for cache consistency. The other two ¢x-
amined the performance of hardware directory schemes and software schemes for
cache consistency. The experiments in these two studies were for a “generic” RISC-
based multiprocessor and relied on real multiprocessor traces from a collection of

application programs. These traces were obtained from a four processor CISC-based
multiprocessor and included operating system activity.

The distinguishing characteristics of our study are: 1) the target is an actual
design for a multiprocessor system that is an extension of an existing uniprocessor
compulter, 2) the performance measurements are made by using an interpreter driven
register-transfer level simulator, 3) the simulator inputs are real executable binarics of
microtasking parallel programs that are constructed using existing compiler/assembler
tools, and 4) there is no operating system code included in the measurcments, nor
is there any need to use the cache or main memory for synchronization purposes.
While this approach produces results that are particular to this system and the parallel
programs simulated, the results do provide a clear view of events that occur in a
microtasking environment on a real multiprocessor system. In particular, the study
exposes the difficulties and potential pitfalls in pursuing fine-grained parallelism on
a non-bus multiprocessor.

In the remainder of this paper, we provide some background on the issues sur-
rounding this problem arca, describe our experimental testbed, and discuss the results
of our experiments while offering some conclusions. The next section provides back-
ground on the run-time support necessary for parallel loops, directory schemes for
hardware supported cache consistency, and software schemes for cache consistency.
The following section describes our experimental testbed, including the ZS multi-
processor simulator, the construction of parallel programs for simulation, the imple-
mentation of the run-time support code, and the implementation of both software
and hardware schemes for cache consistency. In the last two sections we present the
results of our experiments and conclude with a discussion of those results.

BACKGROUND

Microtasking Run-Time Support

The run-time system that supports program parallelism is the vital component of the
parallel processing system because it sets limits on the system’s performance. A
straightforward run-time system is sufficient to support loop parallelism. Its sim-
Plicity is derived from the restricted form of parallelism provided by loops. Since
the multiple iterations of the loop execute with the same local environment (that of
the enclosing subprogram), there is no need to set up separate data or stack arcas.
Further, there is no communication between loop iterations, therefore groups of one
or more loop iterations can be scheduled as one microtask for an available processor
without concern for dependencies between the microtasks. We also restrict parallel
loops from being nested, to avoid complicating the microtask run-time support. By
eliminating nested parallel loops, the implementation is simplified without a severe
reduction in parallelism. Restructuring compilers may coalesce loops to increase
paralielism and provide a larger grain size. The grain size must be large enough to
Mmask the run-time support overhead, but not oo large that it leads to load imbal-
ance among the processors. Loop restructuring techniques are described in [12]. A
complete description of loop types and their properties can be found in [13].

The run-time support for microtasking relies on the self-scheduling paradigm
{14, 13, 15]. In this paradigm, the multiple processors executing a program access a



shared run-queue to obtain units of work, loop iterates in this case. The work in the
queue is represented by a record that indicates the address of the code as well as the
number of times it is to be executed. In the simple case, the run-queue may only hold
one such record at a time, providing for a very simple and efficient implementation,
The processors used by the program are dedicated, and may access the shared run.
queue without entering the operating system. This allows low overhead scheduling,
which in turn provides an opportunity to exploit fine-grained parallelism. These
microtasks follow run-to-completion semantics which enable the run-time system to
schedule them only once before they complete.

In a microtasking system, a program runs serially on a processor until a loop is
entered. It then performs a synchronization operation to allow other processors to
begin accessing the run-queue. The queue is read and modified so that each processor
obtains an increment of the work to be done. The processors continue to schedule
more work for themselves until there is none left. When the microtasks finish, they
usually synchronize at the point immediately following the loop. However, in some
cases, the serial portion of the code following the loop may execute in paralle]l with
some of the parallel microtasks. Any other available processor may also reload the
run-queue at this point with data that represents the next loop to be executed in
parallel. Data dependencies between the loop, the serial code, and any following
loops determine how much overlap is possible.

There are several variants of self-scheduling that are possible. When work is ob-
tained from the queue, a microtask of one or more loop iterations may be selected.
The number chosen is referred to as the chunk size [13]. It is also possible to vary the
chunk size dynamically as multiple processors are obtaining work. One such possi-
bility is guided self-scheduling [15]. Another possibility is to compute an “optimal”
chunk size based on the number of iterations and the number of processors avail-
able. These strategies all attempt to optimize the trade-off between load balancing
and overhead. In our experiments, we compare the performance of self-scheduling
with a fixed chunk size of 1 (which we simply call “self-scheduling™), guided self-
scheduling, and optimal chunk size scheduling. The details of our implementations
of these approaches are given in the EXPERIMENTAL TESTBED section below.

Cache Consistency

With the emergence of bus-based shared-memory multiprocessors in recent years,
the topic of cache consistency has received considerable attention. The bulk of
this attention has been focused on snooping cache consistency protocols, which are
ideal for bus-based systems. However, these schemes are not well suited to systems
which use a non-bus style of interconnect between processors, their caches, and
memory because they require the ability to broadcast addresses to each cache and
main memory. In fact, several multiprocessors which do not use a bus interconnect
do not support cache consistency in hardware (e.g., the Astronautics ZS series, the
IBM RP3, and the Evans & Sutherland ES-1). Non-bus multiprocessor systems with
caches or “transparent” local memories must rely on altemnative cache consistency
techniques.

We can categorize software mechanisms for cache consistency into three general
types that rely on: 1) non-cacheable data; 2) bypass, write through, and/or flush

of cache blocks; or 3) cached write buffers with merging. The first type is the
classical technique where shared data is made non-cacheable, typically on a page
boundary. The second type requires that the compiler utilize information about
data dependencies and alignment of words in cache blocks to bypass the cache on
a fetch if necessary, and to write through or flush blocks to main memory when
needed. Several implementations to this approach have been proposed {16, 17).
The third type allocates cache blocks for result data areas, and then merges these
blocks together at the conclusion of the parallel loop or section to form the final
result in main memory. It has been implemented on an existing distributed memory
multiprocessor using pages as the write buffer size {18]. In our experiments, we
have tested this approach using the minimum number of cache blocks required to
represent the entire result arca of one parallel loop as the write buffer size.

Directory schemes for cache consistency typically keep information regarding
cache block location and modification status in a central location. An carly scheme
proposed by Censier and Feautrier [19] keeps a directory entry for each potential
cache block in memory. The entry contains bits to indicate which caches, if any,
possess the block and whether or not the main memory version is up-to-date. Thus,
for an N processor system each entry would have at least N + 1 bits. A modification
to this scheme is to restrict blocks to at most one cache and then replace the bits
with an index value to indicate the cache where the block resides. In both cases,
the directory information is used on cache misses or non-private hits 10 retrieve the
up-to-date cache block and, if necessary, invalidate or update other copies and update
the tags and directory according to the specifics of the protocol. A survey of several
central directory based schemes can be found in [4).

Synchronization

A synchronization instruction is usually based on an indivisible read-modify-write
operation on either a main memory word or special memory hardware. Examples
include test-and-set [20], fetch-and-op [21], and compare-and-swap [20]. The advan-
tages of using main memory are generality and scalability, The disadvantages are
slowness and added complexity to deal with the interaction between hardware cache
consistency and synchronization [22]. Alternatively, special memories or shared reg-
isters may be provided for fast synchronization. Their disadvantages arc that they
are limited in number and they do not readily scale to large numbers of processors
123, 24, 25).

The parallel programs used for our experiments make use of the ZS’s shared
“semaphore” registers for synchronization, The ZS provides 32 sets of semaphore
Tegisters, each set consisting of 32 registers, each 32 bits long. Several fetch-and-op
instructions are provided that operate on the semaphore registers. Instructions are also
Provided for the first 8 registers in each group that enable processors Lo block until
the value of a particular register becomes either positive or negative. Together with
the ability to read and write these registers, these instructions make the semaphore
Tegisters ideal for holding addresses, implementing barriers, and computing indices
for a microtasking run-time system.



EXPERIMENTAL TESTBED

ZS Multiprocessor Simulator

The Astronautics ZS series of computers are based on a proprietary 64-bit processor
directed at numeric applications. The processor is heavily pipelined and is capable of
issuing two instructions per clock period. Memory accessing and floating point are
decoupled by using distinct instruction issuing streams for each. Memory accesses
are also buffered using processor queues for integer and floating point loads and
stores. These features permit dynamic scheduling between addressing and floating
point functions, and successfully hides memory latencies in many cases [26]. This
type of architecture is referred to as Decoupled Access/Execute (DAE) [27].

The ZS-1, a uniprocessor, was completed (both hardware and software) and has
been operational for some time. The hardware is constructed to support up to 16
processor systems, but multiprocessing software is incomplete. ZS-series multipro-
cessors use a shared set of registers for low-overhead interprocess communications,
The multiprocessing hardware has been checked out and has been used for small test
cases. Simulations reported in this paper use accurate timings based on the actual
ZS multiprocessor hardware.

The interconnection network in the ZS multiprocessor system is essentially a
crossbar network. The data path is four words (256 bits) wide, and is optimized
for 16 word (one cache line) transfers. To support references to non-cacheable data,
smaller transfers, down to one byte, can be accommodated, but the timing for smaller
transfers is the same as for a full 16 word transfer.

The multiprocessor simulator is a register transfer-level simulator and program
interpreter. Based on the instruction and address information supplied by the inter-
preter, the busy times of the functional units, load and store queues, cache, main
memory, registers, pipelines, etc. are modeled. These devices are advanced each
clock period in accordance with any dependencies that are present. A file of sys-
tem parameters is also used by the simulator to define cycle time requirements for
the functional units, memory access, and the queues. Additional parameters in-
clude cache line size and data associativity, functional unit requirements for each
instruction, and the processor clock speed. Except where otherwise noted below, the
simulations we ran used system parameter values consistent with the ZS-1 hardware.
In the uniprocessor case, we found the simulator timing resulis to be within 5%
of actual running time on the ZS-1. The discrepancy is due to the lack of address
translation faults in the simulator. In order to avoid different versions of a “warm
cache” between the different hardware configurations tested, the data cache for cach
processor is flushed before execution of the timed loop. The cold cache approach
did not alter the results greatly, and provided each test case with identical starting
positions,

Parallel Program Construction

Parallel programs were constructed for our experiments from two different versions
of a matrix multiply program written in (sequential) FORTRAN, The part that we
parallelized and tested were the triply nested do loops that are the kemnel of the
multiply. These nested do loops can be thought of as triply nested doall loops, since

there are no data dependencies between the iterations of the loops. The source code
we used for our tests and the assembler code generated by the compiler are discussed
in the RESULTS section below.

The programs were compiled on the ZS-1, and then disassembled. At the assem-
bly source level, we added instructions to implement the self-scheduling run-time
support. Each processor executes the same code, so the run-time support code is
responsible for synchronizing these multiple threads of execution and assuring that
each processor executes a unique subset of the total work (o be done. The run-time
support code added to both parallel programs was writien to be independent of the
number ofprocessors used to execute it. This code only assumes that a count of the
number of available processors is provided in one of the semaphore registers,

We parallelized our test programs by allocating microtasks that executed some
subset of the iterations of the outermost doall loop. As stated above, we tested three
different dynamic scheduling policies, all based on the concept of processor self-
scheduling. The first, which we refer (o as chunk scheduling, computes an “optimal”
chunk size by dividing the number of iterations for the outermost doall loop by
the number of processors available. If the numbers do not divide evenly, an extra
“chunk” of the leftover itcrations is also created. The second scheme, which we
simply call self-scheduling, creates one microtask for each iteration of the outermost
doall loop. The third technique, called guided-self scheduling, allocates a number
of iterations equal 1o [%] where R; is the number of iterations remaining 10 be
scheduled at step ¢ and p is the number of processors {13, 15].

For chunk scheduling, one processor computes the chunk size and places this
result, the starting address, and the maximum iteration value in separate semaphore
registers. At the starting address, just before the loop bodies, the beginning iteration
value for a microtask is converted (using the chunk size and the iteration limit) into
beginning and ending values to be used for the loops (e.g., multiplied by word size
to make a proper array index). After reading the semaphore registers and before loop
execution, another semaphore register is decremented. When this counter reaches
zero, it indicates that the semaphore registers can be reloaded with values pertaining
{0 the next parallel loop for execution. While the code to compute the chunk size
and load the semaphore registers is executing, all other idle processors are waiting
{0 enier the scheduling code. When the semaphore register holding the total number
of iterations to be executed is written and becomes greater than zero, the waiting
Processors begin executing a fetch&decrement operation on the register (o acquire a
unique index for that microtask.

The self-scheduling code is similar but less complex. There is no need to compute
a chunk size since the chunk size is always equal to one. Also, there is no need
to compute an ending value, since the outermost loop is executed only once. This
simplifies the code of the loop body by eliminating the test at the end of the outermost
loop that normally would determine whether or not the last iteration for that microtask
had been executed.

The code for guided self-scheduling is a little more complex. As part of the
Process of acquiring a unique index for cach microtask, several computations must
made 1o get the proper chunk size as well as the starting and ending values



for the iteration range. Because the global number of iterations remaining is the
basis for these computations, they must be performed in mutual exclusion until this
global value can be updated. This effectively creates a critical section of several
assembly language instructions to perform a self-scheduling operation. In addition
to holding addresses and key index values, the semaphore registers are also used
to implement a binary semaphore that ensures mutual exclusion for the scheduling
operation. While the chunk scheduling approach also requires a chunk calculation,
it is performed only once before any microtasks begin. For guided self-scheduling,
a chunk calculation must be performed at each scheduling point, thus increasing
the scheduling code critical section from one fetch&decrement instruction 1o a lock
acquisition and several integer arithmetic instructions.

Implementing Cache Consistency

In our experiments, we evaluated two software and two hardware consistency schemes,

The software schemes consisted of 1) making result data non-cacheable, and 2) using
local memory management instructions to merge multiple copies of the result data,
The ZS provides mechanisms to make pages of virtual memory non-cacheable as
well as several instructions for allocating and flushing cache blocks. The hardware
schemes we evaluated are two variants of a central directory based approach to cache
consistency. In order to evaluate the hardware schemes accurately, the ZS simulator
was modified to incorporate them. These consistency techniques are described in
more detail below.

Software Consistency While the first software cache consistency scheme is straight-
forward, the second warrants some further explanation. This second consistency
technique utilized the “allocate block” and “flush block” instructions to manage a
local copy of the result data in each cache. Each processor allocated enough blocks
to hold the entire result array at a temporary virtual address distinct from that used
by the other processors and distinct from the result area. As a side effect of the
allocate block instruction, each word in each block is initialized to a value of zero.
Each processor then proceeds with its share of the parallel loop iterations, performing
one or more scheduling operations depending on the self-scheduling technique used.
After all iterations have been scheduled, the first processor to complete its work pro-
ceeds by flushing its entire result area 10 main memory at a virtual address reserved
for the result using multiple flush block instructions. Each successive processor o
complete its iterations then, in mutual exclusion with other processors, reads each 64
bit word from the result area, performs an “OR” operation between that word and
the corresponding word stored at its temporary location, and places the result at the
result area’s virtual address. After each word is read and updated, the cached result
area is flushed to main memory.

An altemative approach to software consistency would be to flush blocks as they
are written in the body of the loop. Techniques for this style of consistency have
been proposed in the literature [16]. However, due to the fact that loop iterations are
allocated dynamically with our run-time support, and that the compiler produced code
accesses words in blocks in a non-sequential fashion, we would have to completely
rewrite the generated code as well as restrict iteration allocation in order to ensurc

consistent results. This problem would be simplified if individual words could be
flushed instead of blocks, or if the word size and cache block size were the same.
However, reducing the cache block size to such a small value would eliminate the
positive effects of spatial locality obtained with a multiword block. A policy of
prefetching one word blocks may compensate for this problem {28], but this requires
sophisticated compilers and architectural modifications and is beyond the scope of
our study.

Several properties of the codes we simulated enabled us to use the temporary
result area approach 10 consistency. The most important property is that while any
number of processors may need to access the same logical block, no two processors
require access 1o the same word within a given block. This creates a situation where
each cache contains a temporary result area with words that contain either zero or
a final result, and, no two caches contain a final result in the same logical word.
This enables the OR instruction to be used o merge the temporary result areas. This
approach to data consistency has been used in various forms in other systemns (e.g.,
the Myrias computer [18]).

If the temporary result areas are too large to remain in the cache along with
the other referenced data for the duration of the loop iteration executions, each
processor must allocate its temporary result area at a different virtual address. If
block replacement in the cache then effects the result area, its values will not be
corrupted by collision with other processor’s temporary results. This approach may
require that a large virtual memory space be available to the parallel program.

Hardware Consistency The hardware cache consistency schemes we evaluated are
based on the central directory approach proposed in [19]. While this approach is
similar to the one originally proposed by Tang [29], it requires fewer cache tags and
a smaller central directory. A survey of directory based cache consistency techniques
can be found in [4].

The hardware consistency scheme implemented requires a central directory with
an entry for each block. This entry contains several bits that indicate which caches
contain the block and whether or not the main memory copy is up-to-date. In one
scheme, originally proposed in {19], each directory entry contains one bit for each
cache in the system to indicate the block’s presence in that cache. There is also one
bit for each entry that indicates whether main memory is up-to-date with a cached
block. If it is not, this bit is set, and the block may reside in only one cache. This
consistency scheme does not require any additional cache tags than those already
Provided by the hardware. These include a valid bit, a dirty bit, and least recently
used bits.

A write miss makes a block dirty and consequently exclusive to that cache. The
directory must be consulted to invalidate any other cached entries. A write hit must
also consult the directory and propagate invalidations if the the block is not already
dirty (and thus private). The modified bit in the directory must also be set when a
write 10 a block is performed. Read hits and dirty write hits may proceed without
accessing the directory. A read miss requires a directory update for that cache’s
Presence bit for that block. Read and write misses must also supply the up-to-date



value of the block to the requesting cache. If the modified bit is set in the directory
on a cache miss, main memory must read the block from the cache containing the
up-to-date value and clear the associated dirty bit before supplying the data 10 the
requesting cache.

A variation of this scheme proposed in [4] was also tested. Instead of providing a
presence bit for each cache in each directory entry, only enough bits are provided to
encode an index to one cache in the system. This scheme provides exclusive accesg
for each cached block, and requires an invalidation whenever a processor accesses a
block that is cached elsewhere in the system.

As mentioned above, our experiments for evaluating hardware cache consistency
techniques required some modifications to the simulator, effectively changing the
architecture of the ZS. We also made several simplifying assumptions to avoid a
detailed redesign of the hardware. The first assumption is that no race conditions
exist between checking local cache tags and accessing the central directory. The
simulator updates the cache tags, the directory, and performs invalidations at the
point of the cache miss. The processor in this case then idles the required number of
cycles to simulate the time taken to perform these updates. Any subsequent accesses
by other processors always see the most up-to-date cache tags and directory values.
Because individual words are not shared in our lest programs, subsequent block
accesses by other processors need not wait for previous ones to complete before
updating cache tags and directory values. The first processor will cache the block
and load the referenced word into the load queue, but the block will no longer be
valid.

Although cache tags and directory entries are updated instantaneously, processors
must wait additional cycles before accesses are complete if the requested memory
bank is busy or the block to be accessed is dirty in another cache. We assume that the
directory is interleaved across the memory banks so that the block requested resides
in the same memory bank as its directory entry. This provides mutual exclusion for
directory entries, since only one processor may access a given memory bank at any
one time. We also assume that the directory can be updated, any necessary invalida-
tions can be sent, and main memory can be read all in the time it takes to perform
a main memory access. If the requested memory block is dirty in another cache, we
assume that memory can be updated and the value supplied in one additional main
memory access time. Since the requesting processor has control of the main memory
bank when the modified bit is checked, we do not queue the request to write the
up-to-date cache block back to main memory and update the directory.

The simulator provides interlocks and memory bank arbitration so that banks are
accessed in mutual exclusion. Bank conflicts will add delays to the completion of
requests, and these times are effectively added to the base memory access times we
assume for directory accesses. While our assumptions about race conditions, the
ability to send invalidations, the ability to read up-to-date blocks in other caches,
and the ability to add a directory to the memory system most certainly simplify our
experiments, we believe that these tests do reflect the additional delays brought about
by cache misses due 1o invalidations and memory accesses to modified blocks.

I\

RESULTS

Source Code

The programs we used in our experiments are two versions of‘a double precision
floating point matrix multiply. The basis for these programs is kemel 21 of the
Livermore FORTRAN Kemels [30]. We produced two versions of generated code
for this kemel by interchanging the order of the do loops. In order to encourage
the compiler to unroll inner loops and to make paralleliza.tion of the program easier,
we produced the first version of the code by making the innermost do loop into the
outermost do loop. This resulted in the following FORTRAN code:

dimension PX(25,101), Cx(25,101), VY (101, 25)

do 15 j 1, n
do 15 k 1, 25
do 15 i =1, 25
PX(i,3) = PX(i,3) + V¥ (i, k) * CX(k,3)
15 continue

nn

This version produced the fastest code in the sequential case fo:t seve.ral reasons.
In addition 1 enabling the compiler to unroll the innermost loop, the indexing paticms
in this case produced a unit stride in each of the three arrays. With the large .( 1‘28 byte)
cache line size, this version warmed the cache quickly and produced a minimum of
cache misses. Because the innermost loop accesses a different element of the 'rcsult
matrix on each iteration, the compiler did not accumulate partial results in I'Cng.[Cl'S.
This did not degrade performance, however, as the low number of cache misses
combined with the ZS’s dual instruction issue capability enabled the average number
of cycles per instruction to approach 0.6.

Although the version of the code shown above is the fastest in the uniprogessor
case, its heavy usc of memory caused it some performance problems when running on
multiple processors with consistent caches. For this reason, we tested anpthcr version
of the matrix multiply kernel. The alternate version was produccd.by mtcrcha'ngmg
the “k” and “i” do loops in the program shown above. We ghose this rcstructu.rmg. o
keep the variable length do loop as the outermost one. This allows a pgrﬂlchwtnon
Strategy that creates n microtasks of a fixed granulfmly, the same technique as used
in the previous version. With this strategy, each microtask computes the final rc;ult
for one column of the PX array. This helps keep different microtasks from accessing
values of the PX array that lie within the same cache line.

The indexing pattern of this second version pr()duced. gnit strides for. the PX and
CX arrays, but not the VY array. This caused three addl‘uonal cache m1§ses for the
entire multiply in the sequential case. Also, because the innermost logp in this case
Computes a final result for one element of the PX array, the intermediate results grc
accumulaled in registers before being written 10 memory. As part of the execution
of the “j» loop, some registers are used to hold values of the CX aay, reduqng
the number of memory references in the inner loops. However, all avgxlablc floating
Point registers are not used, and some values of the CX array are copneq }0 the local
Stack instead. Although this version of the code produced only 3 additional cache



ZS-1 Private Shared
Program Time | Eff. || Time | ER. || Time | EfT.
V.1,n=25 } 2745 1 1.00 [ 2745 [ 1.00 | 2762 | 0.99
V. 1,n=50 | 5272 1.00 ]| 5272 | 1.00 || 5305 | 0.99
V.2,n=25 || 3645 | 1.00 || 3645 | 1.00 || 3670 | 0.99
V.2,n=50 || 7261 | 1.00 || 7261 | 1.00 | 7311 | 0.99

Table 1: Sequential code performance for different hardware configurations.

misses, it ran quite a bit slower than the previous version, averaging slightly less
than 1 cycle per instruction. This slowdown is caused by the increase in instructions
executed to copy the CX array as well as a reduction in execution overlap due 1o
registers being busy during the multiplies and adds of the innermost loop.

Basic Performance

Table 1 shows the running time (in microseconds) and the efficiency of the first
two sequential versions of the code for n=25 and n=50 on the different hardware
configurations tested. The efficiency of sequential code on the ZS-1 is defined to be
1. The private column refers (o the hardware cache consistency scheme where there
is an index in the central directory that indicates which cache (if any) has a copy of
a block. The shared column refers (o the hardware consistency scheme where the
directory contains an entry for each block that has a presence bit for each cache. The
times for the ZS-1 and private cache consistency configurations are identical, because
the cache consistency actions have no effect when only once processor and cache is
in use. The times are slightly greater for the shared cache consistency configuration.
This reflects the overhead necessary for a directory access on a write hit when the
cache block is not already dirty. This situation occurs when data is read (and cached
as non-dirty) before it is written. The extra overhead required in this case, however,
is minimal.

Table 2 shows the performance for the sequential and parallel versions of the code
running on the ZS-1 configuration. The original program is the version generated by
the compiler for the uniprocessor. The chunk, self, and guided columns refer to the
parallelized codes running on the uniprocessor without any instructions to implement
software cache consistency. The running times for the parallel versions of the code
are less than the original code in many cases. Although the parallel codes have
additional instructions for scheduling and synchronization, their effect is more than
offset by the elimination of instructions in the inner loops that is brought about by
the parallelization. The eliminated instructions include calculation, comparison, and
branch instructions for loop bounds as well as some “nop” instructions that were
used 1o force the proper alignment. Certainly, the run-time support code added to
parallelize the program does not significantly degrade performance when the code is
run on a single processor.

Figures 1 and 2 show the speedups of the parallel programs for both versions of
the code when n=50 and the codes are simulated for the unmodified ZS hardware.
Figure 2 shows the speedups when calculated using the sequential times for both
versions of the program. This is done to show both the speedup of this particular

Original Chunk Self Guided
Program || Time | Eff. || Time | Eff. || Time | Eff. | Time | Efl.
V.1,n=25 || 2745 { 1.00 || 2641 | 1.04 || 2630 | 1.04 {| 2587 | 1.06
V.1, n=50 || 5272 | 1.00 J| 5216 | 1.01 || 5202 | 1.01 {| 5108 | 1.03
V.2,n=25 |} 3645 | 1.00 §| 3657 | 1.00 || 3720 | 0.98 || 3655 | 1.00
V.2, n=50 | 7261 | 1.00 }] 7274 | 1.00 || 7411 | 0.98 ]| 7272 | 1.00

Table 2: Sequential and parallel code performance the ZS-1.

code and to demonstrate the performance of the second version when it is compared
to the “‘best sequential algorithm”. The results are similar for both codes when n=25,
but the speedups are about 15% less for 8, 12, and 16 processors. 'Also, for n=25,
the three scheduling algorithms perform almost identically except in the case of ‘16
processors, where guided self-scheduling is about 11% slower and chunk scheduling
is about 3% slower than self-scheduling.

B Chunk
O set
B Guided

Figure 1: Speedups for n=50, first program version, assumed consislency.

The resulis in Figs. 1 and 2 represent an upper bound on.pamllcl performance
because software or hardware cache consistency has been omitied. The only sl(?w—
down in the code due 10 memory references are due to bank.conﬂic!s when multiple
processors atiempt to access main memory after a cache miss. Based on the small
amount of scheduling overhead observed in the single processor results shown abqve
and on the instruction counts for each processor, we can conclude that load balancing
is the major limiting factor in the speedup of these programs.

Software Consistency

Perhaps one of the most interesting results was observed when cache consi.stcncy
was enforced by making result data non—cacheab!e. Because the first version of
the code does not place temporary results in reglslers..(hc speedups of the code
in this case is never greater than 1. The second version of the code, however,
Writes (o the result array much less frequently, and the speedups_ for.n=50 when
Compared to both versions’ sequential running times are shown in Fig. 3. These
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Figure 2: Speedups for n=50, second program version, assumed consistency.

results demonstrate that while non-cacheable pages may be a reasonable technique
fgr maintaining consistency in some cases, such cases must be detectable at compile-
time so that the appropriate restructuring can be done. If compile-time detection is
not possible, poor performance will result.

16

14

Voo ooWw

Figure 3: Speedups for n=50, second program version, non-cacheable result.

The performance of the codes implementing cache consistency with temporary
result areas and cache management instructions was poor overall. For the first version
of the program, the speedup never exceeded 1, and for the second version, it never
exceeded 2.4. Although our algorithm for this consistency technique updated the final
result are'a one processor at a time, we computed results based on the assumption that
the merging of temporary result areas can be done pairwise in parallel using log, P
steps yhem P is the number of processors. We computed the time needed for on¢
reduction step by taking the differences between successive finishing times for all
processors in our original version. We took an average of these differences (which
were almost constant) and multiplied it by the number of steps required, log, P. (We
performed this calculation for values of P equal 10 4, 8, and 16). This merging time

was then added to the time taken by the processor that finished first in our simulations.
This “base” time was only slightly greater than the times for assumed consistency
shown above. This calculation of the merging time is optimistic, though, since is
docs not consider the extra synchronization required to implement this algorithm.

The calculated results for both versions of the source program using each of the
scheduling algorithms were nearly identical, indicating that the software consistency
actions dominated the running times. The speedup calculated versus the sequential
running time of the first version of the source code was never greater than 2.5, while
the speedup calculated versus the sequential running time of the second version of
the source code was never greater than 3.5. The results did show an increase in
speedup as more processors were employed, whereas the original code that updated
the final result area one processor at a time showed its best performance at 2.4 with
only 4 processors.

Hardware Consistency

For the hardware consistency tests, the simulator was modified as described in the
EXPERIMENTAL TESTBED section above. Since cache consistency was enforced in
hardware, there was no need for the programs 10 use any special cache management
or data alignment instructions. The programs used for these tests were identical to
those used in the assumed consistency tests shown in Figs. 1 and 2.

The performance of the private hardware scheme for cache consistency was sim-
ilar to that of the calculated results for software consistency. For the first version of
the program, the performance of hardware consistency was worse for fewer number
of processors, and better for greater numbers of processors. For the second version
of the source code, the private hardware consistency technique always performed
worse than the software results, with maximum speedups being less than 2.7 and 2.0
when compared to both versions of the sequential code.

While there was not much variation depending on scheduling algorithms or the
value of n for the second version of the source code, the first version showed much
more variability. Figure 4 shows the results for the first version of the program with
n=50. The results for n=25 show similar trends but smaller speedups, with the
exception of chunk scheduling for 2 processors, which performs as well as guided
self-scheduling.

It is interesting to note here the difference in performance of the various schedul-
ing algorithms. In the other tests where consistency is assumed or main memory
traffic is otherwise reduced, sclf-scheduling has a slight performance edge for larger
Numbers of processor because of its improved dynamic load balancing. However,
in Fig. 4 we see that chunk scheduling and guided self-scheduling perform better in
these experiments. Because they allocate chunks of iterations greaicr than 1, multiple
adjacent itcrations are allocated for each schedule. This provides additional spatial
locality on each processor which reduces cache misses. This result is more visible
for the first version of the program, where memory is accessed frequently.

The other interesting result in Fig. 4 is the performance of chunk scheduling
for 16 processors. It is slower than the same program running on 12 processors,
because of the chunk calculation algorithm. It computes an optimal chunk size of 1,



T B Chunk
i [ sen
6 W Guided

TVCcaoov W
3

Processors

Figure 4: Speedups for n=50, first program version, private hardware consistency.

pecausg that is the result of 25 div 16, However, for 12 processors, the chunk size
is 2, ?vuh I extra chunk of size 1 required to finish the loop. The program requires
25 microtasks 0 run on 16 processors, and the scheduling introduces the locality
problem observed with self scheduling. For 12 processors, only 13 microtasks are
created, and the first 12 execute 2 adjacent iterations each.

‘The major problem with the private hardware consistency technique is the slow-
do.wn caused by the prevention of sharing of read-only data. This is especially
evident for the second version of the source code, where each of the microtasks
access the. elements of one of the operands in the same order in a non-unit stride
fashion. Since an access to any block must invalidate any other copies of that block
there are many more cache misses using this consistency technique. ’

The performance of the shared hardware consistency scheme was better than any
of the other techniques, and approached the performance of assumed consistency
for the .second version of the source program. The shared hardware consistency
mechgmsm allows any cache block to reside in more than one cache. As long as the
b!ock Is not modified, no consistency actions are required. This approach avoids the
difficulties encountered by the private scheme with read-only data.

Tables 3 and 4 show the running times for both versions of the program using
shared hardware consistency. While the execution times for the first version of the
source code are faster than those for private hardware consistency, they do show
the same trends for the different scheduling algorithms. Because the second version
of the program references memory much less often, the speedup of this code for
for larger numbers of processors is greater. The performance of the second version
of the program using 16 processors and shared hardware consistency is competitive
with the first version of the program using assumed consistency. This version also
shows more even performance between the different scheduling algorithms, again

because memory is accessed less often. Fi peed
; . Figures 5 and 6 show the th
versions of the program when n=50, ) v forbo

Version 1 Times Version 2 Times
P | Chunk | Self | Guided || Chunk | Self | Guided
i 2656 | 2646 2603 3683 | 3745 3681
2 1420 | 3105 1387 1941 | 1977 1934
4 800 | 1697 909 1068 | 1080 1062
8 493 | 1032 628 639 | 634 627
12 394 744 637 498 490 489
16 740 | 742 632 377 1 364 405

Table 3: Parallel code running times for n=25 with shared hardware consistency.

Version 1 Times Version 2 Times
P} Chunk ] Self | Guided || Chunk ] Self ] Guided
1 5247 | 5235 5141 7324 | 7460 7322
2 2660 | 6193 2638 3686 | 3780 3716
4 1526 | 3294 1685 2090 | 1983 1964
8 910 | 1968 959 1219 { 1090 1082
12 705 | 1353 794 941 | 793 798
16 606 | 1120 732 812 | 653 651

Table 4: Parallel code running times for n=50 with shared hardware consistency.

Scheduling Algorithms

Our experiments did not suggest that any of the three scheduling algorithms tested
was clearly the best. The results for assumed consistency suggest that self-scheduling
and guided self-scheduling perform about the same, with chunk scheduling running
slower. Self-scheduling provides the most speedup for 16 processors, while guided
self-scheduling runs faster on fewer processors. Since self-scheduling allocates only
1 iteration for each schedule, it provides the best dynamic load balancing. How-
ever, guided self scheduling can come close in load balancing, since smaller chunks
are allocated during later schedules. Also, since chunk scheduling and guided-self
scheduling allocate more iterations per schedule on average, they have fewer schedul-
ing points at run-time. For this reason, these approaches may incur less scheduling
Overhead than self-scheduling, even though their scheduling code requires more in-
Structions to compute chunk size and loop bounds.

For the other tests, the performance of the scheduling algorithms depended on
the amount of memory accesses in the code. For the first version of the source
Program, where the number of memory accesses is great, the performance of chunk
Scheduling was best, with guided self-scheduling being next. As mentioned earlier,
this is due to the spatial locality in memory referencing that occurs when adjacent
iterations are executed on the same processor. For the second version of the program,
Where memory accesses are much fewer in number, the pattern described above for
assumed consistency was observed, with self-scheduling providing the most speedup
in most cases.

These results suggest that different scheduling techniques be used for depending
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Figure 5: Speedups for n=50, first program version, shared hardware consistency,
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on the characteristi A

Ihe coc::e mtcmacc;c; of the code inside the parallel loop. However, having seen that

speedup, it seems mas: ory the least is the most likely to achieve the highest

use self: ’scheduling b;c p}iefs should optimize in favor of this type of code, and
el ause it is easiest. More experiments usin lar .

and different source codes are needed bef, g larger grain sizes
. ore any firm i

regarding the scheduling algorithm used. Y conclusions can be made

CONCLUSIONS AND FUTURE WORK

Our results show shared hardware consistency 1o be the best technique for main-
1aining cache consistency. It outperformed the other techniques we tested, including
private hardware consistency. This differs with the conclusions offered in [4], where
it is conjectured that the performance of shared and private hardware consistency is
roughly equal. This may be attributable 10 the different types of parallelism present
in the test programs. We found that a fine-grained parallel program is more likely 10
shared data than those parallelized at the program level. Also, our tests accounted for
the effects of sharing cache blocks even when individual words are not shared. This
level of sharing caused too many invalidations in the private hardware consistency
case.

The software schemes we tested did not fare well at all, with the possible ex-
ception of non-cacheable data for the second version of the source program. The
overhead of temporary result areas for consistency seems to be o great for mi-
crotasking. Experiments using programs with much higher granularities should be
run. However, as the size of the result area grows, so does the overhead in merging
these areas. As for non-cacheable data, the performance is directly dependent on the
number of references to this data. In some cases, the effect can be devastating. If
this technique were to be used seriously in a real machine, hardware techniques (o
speedup these accesses without blocking the cache should be employed.

While the shared hardware consistency approach performed the best in our tests,
there are other tradeoffs 1o consider when choosing a cache consistiency technique.
The major disadvantage of this hardware technique is the size of the central directory
required. Since a presence bit is required for each cache in the system, the size of
the directory is proportional to the number of caches in the sysiem as well as the
size of main memory. This situation can prevent the use of this technique in systems
with a large number of processors.

There are also problems and tradeoffs to consider when using software schemes
for consistency. While the techniques we tested did not perform well, it is possible
that techniques using cache management instructions embedded within the parallcl
loop bodies may perform betier. However, these lechniques require sophisticated
compilers, as well as protection from interrupts or context swilching by the operating
system. The compiler has to manage the mapping between memory words and cache
blocks, 1o ensure that implicit block sharing does not introduce inconsistency. If
the software also assumes the presence of, or absence of, cache blocks based on
prefetching or cache management instructions, the operating sysiem must prevent
context switching and microtask migration from violating these assumptions. For
these reasons, we believe that software consistency schemes are best suited for single
user compute-intensive parallel processing systems.

Finally, we can state some basic conclusions about our experience with parallel
Processing at the microtasking level. First, different optimization strategies must
be employed by the compiler depending on the number of processors targeted and
the cache consistency technique used. As we have seen in the results listed above,
a version of a program that runs slower on a single processor may run faster on
multiple processors. Also, optimizing for fewer memory references reduces cache
consistency overhead and allows a different scheduling algorithm o be used.



_ Run-time support overhead for microtasking is not significant, but load balanc.
ing and overhead for cache consistency are problems. The single processor resylyg
fjcmonslratcd that run-time support overhead for paralielism was not expensive. Thig
is probably due, at least in part, to the low overhead synchronization provided by the
semaphore registers. The results for multiple processors and assumed consistency
demonstrated that load balancing was a limiting factor in speedup for larger numberg
of processors. Also, we saw from the results of tests that included cache consistency
techniques that the performance of assumed consistency could never be maltched,
With the exception of shared hardware consistency, this overhead was a major factor
in the slowdown of the parallel program,

. More parallelism of varying grains is needed. This conclusion follows directly
from the previous point. Mechanisms to create more microtasks that are ready o run
at any given time should help the load balancing problem. Although this may require
more overhead in run-time support code, the tradeoff may well be worth it, since this
overhead is quite low with the current technique. Our results also show a maximum
efficiency less than 75% with 16 processors. If the source program has a significant
fraction of sequential code between paratlel loops, overall program efficiency will be
quite low. Language extensions or alternate loop restructuring techniques are needed
to exploit more parallelism and raise this efficiency level.

In‘ order to confirm all of our conclusions and provide more detailed results, more
experiments need 1o be conducted. We are currently studying the speedup potential
of different doacross loops, where cross iteration data dependencies exist that require
ad(!itional synchronjzation. We are also developing some language extensions and
thcn.r ‘run—u'mc support code to provide more parallelism of varying grain sizes. In
addition 1o these new approaches, we also plan to test more loops and complete
programs 1o study the speedup potential of parallel loops with very large iteration
counts as well as the effects of sequential sections in complete programs.
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Predicting the Performance of Shared
Multiprocessor Caches
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Abstract

We investigate the performance of shared caches in a shared-
memory multiprocessor executing parallel programs, and formulate
simple models for estimating the load placed on the bus by such a
shared cache. We analyze three parallel program traces to quantify
the amount of sharing that takes place during program execution.
These results indicate that shared caches can substantially reduce
the load placed on a bus by a large number of processors.

Keywords: shared-memory multiprocessors, shared cache, data ref-
erence characteristics.

1 INTRODUCTION

There is considerable interest in the design of scalable shared memory
multiprocessors. The problem of building such machines is largely that
of building a memory system that is fast enough to supply the multiple
processors with the data they need to execute programs and communi-
cate with each other.

Modern microprocessors require a multi-level cache design to ap-
proach peak performance (8], and some processors already have large
instruction and data caches on-chip (e.g., 12 Kbytes in the Intel i860).
In such a multilevel cache hierarchy, the majority of the traffic (90%
to 99% in uniprocessors with large cache blocks [9]) is absorbed by the
first-level cache, which means that the higher level caches are idle most
of the time.

In a multiprocessor system, the utilization of a higher-level cache can
be increased by sharing it among several processors. Sharing a cache
between several processors executing the same parallel program can also



