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Abstract—Distributed execution of a single program is becoming in-
creasingly important for embedded real-time systems. The single pro-
gram approach to distributed programming allows the advantages of
language level software engineering developments to be fully realized
across machine boundaries. This paper examines some of the funda-
mental issues and tradeoffs involved in the translation and execution
of programs written in the Ada language and intended for distributed
execution. The memory access architecture, binding time and degree
of system homogeneity are the three basic dimensions in terms of which
target systems can be described. Library subprograms and library
packages are identified as natural distributable units of the language.
The program to process/memory mapping and the unit of the language
to be distributed are the key issues in the distribution of Ada. The
implications of various alternatives for these are analyzed.

Index Terms—Ada, distributed programming, programming lan-
guages, real-time systems.

I. INTRODUCTION

HERE has been considerable work on the subject of
parallel programming (see the excellent survey of [1]).
The bulk of this work has dealt with shared memory ar-
chitectures. In contrast, little has been done on program-
ming for loosely coupled distributed systems [2]. How-
ever, distributed execution is becoming increasingly
important for embedded real-time systems as such sys-
tems are increasingly implemented with distributed mi-
crocomputers. The single program approach to program-
ming multiple computers allows the advantages of
language level software engineering developments (e.g.,
abstract data types, separate compilation of specifications
and implementations, and extensive compile-time error
checking), to be fully realized across machine bounda-
ries. As yet, however, there are few implementations
which allow distributed execution of a single program.
While most efforts directed toward distributed program-
ming have emphasized developing communication mech-
anisms and designing languages to accommodate distri-
bution, we take the approach of adopting Ada and
investigating its implications. We take this approach be-
cause Ada seems destined to become a major factor in
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embedded software systems, the Ada Language Refer-
ence Manual [3] indicates that distributed execution was
in the minds of the language designers, and there is grow-
ing interest in the use of Ada for distributed systems. This
paper examines some of the fundamental issues for dis-
tributed execution in the Ada language.

A few distributed Ada systems have been proposed and/
or are in the process of being constructed. Cornhill [4],
[5] describes the Ada Program Partitioning Language
(APPL) for distributing an Ada program among a set of
processors. This system permits the distribution of a wide
variety of Ada elements. Jessop [6] advocates the use of
a package type to allow programs in the language to dy-
namically create packages, which might then be placed
on different nodes. The extension to Ada implemented by
Intel also includes a package type [7]. The package type,
however, is a modification of the language. Armitage and
Chelini [8] present a general description without details
of four approaches to programming distributed systems in
Ada.

The most comprehensive study to date is by Tedd et al.
[9]. They advocate an approach based upon virtual nodes.
Full Ada is supported on each virtual node, which must
support shared-memory. Communication between virtual
nodes is allowed only by task rendezvous. They describe
an extensive system for constructing distributed programs
at link time, i.e., the mapping of the programs onto pro-
cessors is done after the program is written. However, it
is necessary for the programmer to plan for the distribu-
tion by carefully designing the original program.

Mayer et al. [10] describe some basic timing problems
in cross-processor task entry calls and describe a pre-
translator approach which uses pragmas to specify the
distribution. This approach allows existing compilers to
perform the bulk of the compilation. Based on the idea of
[10], a translation system for distributed execution has
been implemented and is in operation.

Each of the above systems has either adopted a limited
viewpoint or presented only a very general discussion
lacking in detail. Many key issues have been overlooked.
The definition of Ada with respect to distributed execu-
tion is not clear from the Ada Language Reference Man-
ual (RM). As a result, implementors are developing their
own guidelines which, explicitly or implicitly, cha e the
language definition. A typical example is disallowing
shared variables in remotely accessible packages. But, this
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flies in the face of the ‘‘no superset, no subsets’” philos-
ophy of Ada.

This paper presents some preliminary thoughts on a
number of issues regarding distributed execution of Ada
programs. For each we take the view of a strict interpre-
tation of the RM and show that in some cases this can
lead to undesired consequences. Some of the undesired
consequences can be avoided by making additional as-
sumptions about the language, e.g., the restriction men-
tioned above. This leads to the question in the title: *‘Is
it still Ada?”’. We believe that further changes will be
necessary, and that the formal bodies controlling the def-
inition of the language should recognize questions regard-
ing distributed execution and clarify or extend the defi-
nition as necessary.

The next section introduces some preliminary termi-
nology, introduces the principle dimensions to the prob-
lem and sets the stage for Sections I and IV. Section II1
discusses the consequences of allowing various units of
the language to be distributed and Section IV discusses
implications of mapping a program into a set of proces-
sors. Concluding remarks follow in Section V.

II. PrRELIMINARIES

This section introduces and discusses the notion of dis-
tribution of a program and identifies two principal areas
that must be investigated: 1) the specification of the pro-
gram/memory mapping and 2) the units of the language
which may be distributed. It argues that the RM is insuf-
ficiently precise with respect to both of these issues; the
majority of this paper is devoted to exploring these issues.
Then, three principal dimensions that can be used to de-
scribe different distributed execution systems are identi-
fied. Whatever rules and language definitions are devel-
oped must apply across all systems that can be described
using these dimensions. Finally, it presents three criteria
by which alternative distributable units and mapping
specification policies can be compared.

A. Distributed Ada Programs

The operating system literature has defined the activity
that results from mapping a program onto a particular pro-
cessoras a process. We shall extend this term and call the
activity caused by the mapping of a single program onto
a ser of processors and memories a distributed process.
Factors associated with the mapping and the relation of
these to the program itself are the focus of discussion in
this paper. More precisely, the mapping is a set of rela-
tions between program segments and memories (associ-
ated with the different processors). It can be specified stat-
ically or dynamically, implicitly or explicitly, and be
made at any of several points in the program/compile/link/
execute sequence. Moreover, it is not necessary to specify
the complete mapping in one operation or at a single point
in the sequence. It is possible to specify that a particular
program segment may reside at a different location than
the rest of the program (without specifying where) at one
point in the program/compile/link/execute sequence, and

specify the binding to a specific memory at a later point
in the sequence. Separating the specification of the map-
ping into stages is somewhat analogous to using logical
I/O channels and deferring the association with specific
devices to run-time. It can have advantages in terms of
fault tolerance and reconfiguration without requiring com-
plete recompilation.

Translators whose compiled code is intended for dis-
tributed execution must have some knowledge of the map-
ping in order to generate the correct kind of addressing
for objects in the program. And, some algorithm devel-
opment depends upon partial knowledge of the distribu-
tion (e.g., which program segments are located remotely
from other program segments). We thus divide the map-
ping into two parts. The first part is called a distribution
specification and the second a binding specification.
Loosely speaking, the distribution specification desig-
nates elements of a program as being distributable, with-
out binding them to a specific machine. The second as-
signs elements of a program to specific machines. We call
an Ada program together with its distribution specifica-
tion a distributed Ada program. A more precise definition
of these terms is left to Section IV.

B. Allowed Units of Distribution

The units of the language that may be distributed are
closely related to the program/memory mapping, and are
the other major area to be discussed in this paper. They
significantly impact both the translation process required
and the execution efficiency obtainable. The RM takes a
step toward making the definition of distributable units a
part of the language definition, but is not entirely precise.
A more complete statement in the definition of the lan-
guage is necessary.

The RM explicitly states that parallel tasks may be dis-
tributed, and further, that any ‘parts of the actions of a
given task’’ may be distributed if the effect of the program
can be guaranteed by the implementation to not be al-
tered. There are three issues to be considered with respect
to this statement: 1) what the ‘effect of the program’” is,
2) what “‘guaranteed by the implementation’” means, and
3) what this statement implies about the units of the lan-
guage that may be distributed.

Effect of a Program: Unfortunately, it is not entirely
clear even in the uniprocessor case what the effect of a
program is. We have valid Ada programs which produce
different results depending upon the memory location in
which they are loaded. These programs involve reading
the system clock and can return different values because
of differences in code alignment with respect to 8 byte
boundaries and the number of memory references neces-
sary to fill the processor pipeline after a program jump.

For a second example, consider a system which can run
at either of two clock rates and a program that must re-
spond to external interrupts. Since fielding high priority
interrupts can have side effects by causing different alter-
natives to be taken in timed entry calls in unrelated tasks,
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the program can produce different results depending upon
the clock rate at which the processor is run. At some level
of detail the “‘effect’” of a program can be influenced by
such factors as system paging, or the instaritaneous state
of file system and its mapping on to disk segments. Ob-
viously, including time effects complicates the issue im-
mensely. But, Ada is intended for embedded real-time
systems and has time related constructs in the language.
The point is, that it can be extremely difficult to specify
a set of conditions sufficient for uniquely defining the “‘ef-
fect of a program.”

One might thus conclude that distribution of anything
should be disallowed. This conclusion, however, would
be more restrictive than that imposed on uniprocessor sys-
tems. It seems more appropriate to discuss distribution in
terms of the semantic descriptions of the various Ada con-
structs as defined in the RM. That is, if one is considering
placing a certain object or code segment on a processor
that is different from the processor containing the sur-
rounding definitions, or if a subprogram or package in-
cluded via a with clause is to be located on a processor
other than the including unit, all rules of scope, visibility,
timing, and separate compilability must still be satisfied.

Guaranteed by the Implementation: There are two
interpretations to the above phrase. First, it might mean
that when an implementation can determine that the effect
of the program is not altered by distributing some action
of the program, it can automatically move the execution
of the action to another processor. One might then be
tempted to add the interpretation that the action can only
be moved automatically, and not under user control. Sec-
ond, it might mean that if an implementation can guar-
antee that the effect of the program is never altered by
placing a particular unit of the language on a different pro-
cessor it can give the programmer the ability to decide
where the unit is to be placed.

Since the first interpretation would seem to be beyond
the current state of optimization technology, we will ex-
plore what an implementation must do to accomplish the
second interpretation for various possible units of distri-
bution.

Implications for Distributable Units: Even if the effect
of a program were uniquely defined, interpretation of the
statement is still not clear. It would clearly imply that in-
dividual statements and even expressions could be distrib-
uted (which is highly desirable for parallel processing of
some .operations). It would seem that subprograms could
be distributed. However, internal data objects and pack-
ages are not themselves actions or parts of actions. One
might infer, therefore, that they may not be distributed,
although this is not explicitly forbidden. Library packages
are not mentioned at all; since their distribution is not ex-
plicitly forbidden, it might be inferred that they may be
distributed. On the other hand, since what the RM does
say about units of distribution is to explicitly permit some
distribution, it might be inferred that anything not men-
tioned may not be distributed. Clarification is needed.

It is clear that the RM does not require distribution. Nor
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does it imply that because an implementation chooses to
distribute one kind of unit it must also allow distribution
of other units. It is not stated whether or not it is required
that an implementation which allows a unit to be distrib-
uted in some circumstances must do so in all circum-
stances, e.g., is it permissible to limit the distribution of
Statements to nonrecursive contexis? Similarly, there is
no indication of whether or not an implementation may
restrict the language in some way to accomplish the dis-
tribution. The latter two possibilities seem inconsistent
with the philosophy of language uniformity apparent in
Ada.

In Section III we explore the implications of the units
of distribution on translation difficulty, efficiency of code
execution, language uniformity, and distributed program-
ming expressibility.

C. Dimensions of Distribution

There are three major dimensions which parameterize
a distributed Ada system and which will impact both the
translation and execution phases of the system. These, to-
gether with some of their typical values are:

* the memory interconnection architecture of the sys-
tem upon which the distributed Ada programs are to ex-
ecute:

—shared memory systems
—distributed memory systems
—mixed shared and private memory systems
—massively parallel systems;
* the binding time of the distribution:
—prior to compile-time
—between frontend and backend compilation phases
—at linking time
—at run-time;

¢ the degree of homogeneity of the processors in-
volved:

—identical processors and system configurations

—identical processors and different configurations

—different processors, but similar data representa-
tions

—completely heterogeneous.

Two of the major impacts of the memory architecture
on the distributed translation system are the access time
to objects, and the addressing stategies which must be
used. Figs. 1 and 2 illustrate two of the possible system
architectures. Of particular interest is the mixed shared/
private memory scheme of Fig. 2 since it has a richer set
of possible distribution modes requiring more complex
implementation.

Only certain times for specifying the distribution and
binding are reasonable, and depending upon the times
chosen, several new utilities are needed for the compiler
environment.

Heterogeneity raises the obvious issues of translations
between the data and code representations of the different
processors. However, it also raises substantial questions
of data type definition, e.g., what is an INTEGER in a
system with both 8- and 64-bit processors.
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D. Criteria for Comparison

The comparison of alternative choices for units of dis-
tribution and distribution specifications is based upon one
concept: access to remote objects. Based upon this, three
different, and sometimes competing criteria arise, corre-
sponding, respectively, to the programmer’s, the trans-
lator’s, and the run-time system’s view of the distributed
programming problem.

_ These are:

¢ distributed program expressibility

¢ translation difficulty

* execution efficiency.

Distributed program expressibility is concerned with the
mechanisms for specifying the distribution of a program
among a set of processors and memory. Are there external
tools for expressing the distribution of the program? Or is
the distribution expressible directly as part of the pro-
gram? Should there be program notation to.explicitly in-
dicate remote objects, thus explicitly acknowledging the
appreciably slower object access?

In the case of translation difficulty, the measure is the
complexity of the constructs which must be included in
the compiled code to ensure that access to remote objects
can be accomplished while maintaining all of the other
characteristics of Ada. For example, how much context
information must be transmitted with remote object ref-
erence to allow correct address determinations to be made?
For example, consider retaining Ada scoping rules with
recursive procedure calls crossing machine boundaries.
How are task terminations to be handled? How does one
handle operations associated with remotely defined types?
How is addressing of remote objects handled?

Execution efficiency, particularly for real-time opera-
tions, is perhaps the most important criteria. It is likely
to be most influenced by addressing mechanisms for re-
mote object references.

1. UNIT oF DISTRIBUTION CONSIDERATIONS

A unit of distribution (or sometimes distributable unit)
is a unit of the language which may be placed at any one
of a set of memories. We begin by examining the ways in
which program elements can be assigned. There are three
distinct kinds of location assignments to be made in the
program mapping: 1) the memory unit to which data is
assigned, 2) the memory unit to which code is assigned,
and 3) the processor which is to execute the code. This
classification is necessitated, in particular, by the mixed
private/shared memory of Fig. 2. Since each processor in
this configuration has direct access to two memories,
specifying a processor which is to execute code does not
imply the memory to which either the data or code must
be assigned. Similarly, since the shared memory can be
accessed by multiple processors, assigning the code to
shared memory does not imply which processor is to ex-
ecute the code. '

There are three types of memory, privately addressable
(memory accessible only by the processor making the ref-
erence), shared addressable (shared-memory) and re-
motely addressable (must be accessed via communication
with another cpu). We will use the term directly address-
able to mean either shared or privately addressable. We
require one rule of reasonableness, that the memory on
which a code segment resides be directly addressable from
the processor which is to execute the code. For most.
memory architectures this implies that cases 2) and 3
above collapse into one. Only in the mixed private/sha
case must the distinction be made.

The comparison of units of distribution will be fram
on four major issues that arise, in one form or anot
for most of the possible choices for units of distributic
These issues are:

¢ Implied remote object access

® Obiject visibility and recursive execution

¢ Task termination problems
¢ Distributed types. ;

The impact of the different choices for units of
bution on these issues. will be discussed.. Much of
analysis will be based upon interactions that are al
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among different elements of the language. It is important
to note that all allowed interactions must be examined in
considering the possible units of distribution, whether or
not they correspond to good programming practice, since
all interactions defined in the RM will have to be imple-
mented.

An argument will be made that library subprograms and
library packages are reasonable choices for the basic units
of distribution. It will be shown that it is necessary to
place data objects declared from remotely defined types
on the site of object declaration, and that certain opera-
tions corresponding to these types be replicated on the
sites using them.

A. Implied Remote Object Access

Unless restricted in some way not currently specified in
the language, the choice of packages, subprograms, tasks,
or blocks as units of distribution leads to a requirement
that the programmer be able to reference remote data ob-
jects, subprograms, tasks, and type definitions. If a li-
brary package is a unit of distribution, then any subpro-
gram or package including that package via a with clause
must be able to reference any data objects, types, subpro-
grams, or tasks defined within its specification.

This implies a fine granularity of access down to the
level of individual data items. Except in the case of the
mixed memory architectures, the time required for this
access will involve both a communication channel delay
and processing time on both processors involved. This de-
lay will almost certainly be several orders of magnitude
slower than accessing directly addressable objects, and
will thus not be desirable for most applications. There
have, therefore, been suggestions [9] that one avoid this
delay by placing restrictions on what can be included in
declarative regions or specifications to be distributed,
e.g., disallowing data object or subprograms in the spec-
ification of a package to be distributed. There are two rea-
sons why such restrictions are undesirable. First, remote
access to data objects is highly desirable in some in-
stances. For example, if one has a large database which
is to be accessed by tasks residing on different processors,
a useful heuristic is to distribute the database in such a
way that the individual data items reside in memory di-
rectly addressable by the processor which will most fre-
quently operate on them. This implies a need for shared
variables across machines. Even the distribution of small
data objects makes sense in the context of a mixed pri-
vate/shared memory. Second, such restrictions would be
a change in, and disrupt the uniformity of, the language
definition. One should not allow packages in their full
generality under some circumstances and disallow pack-
ages to contain data objects in others. Rather, the gener-
ality should be allowed and the programmer allowed to
access remote data objects if the cost of access is accept-
able.

There is an important consequence of remote access to
objects other than tasks with respect to translator imple-
mentation. Access to data objects or subprograms by code
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during its execution is part of the normal flow of control
and is normally given no special recognition with respect
to the sharing of the processor, i.e., such accesses are not
points at which the scheduler would normally be invoked.
Since remote access involves sizable (in comparison to
cpu instruction times) delay, remote references should be
treated as scheduling points. Similarly, receipt of a mes-
sage completing a remote reference should also be treated
as a scheduling point.

B. Object Visibility and Recursive Execution

It is necessary to distinguish between the distribution
of an object and remote access to it. Remote access to an
object can be required as a consequence of distributing a
larger item, such as a package. Distribution of an object
itself means placing the object at a location different from
the location containing the context surrounding the defi-
nition. While both imply a need for distributed access to
the data object, the latter carries other implications as
well. First, due to the possibility of recursive procedure
calls, it implies the need for passing context information
with all references to a distributed object. Second, the im-
plications of the program may be less clear to the pro-
grammer.

Suppose that the unit which creates an object (hence-
forth referred to as the C-unit), and the unit which refers
to it (the R-unit) are at different sites. If the C-unit can be
recursively called, many instances of it and its variables
can co-exist. It is then necessary to export the context of
the C-unit to all R-units accessing the objects in the C-
unit to ensure that the correct version of the object is ref-
erenced. For example, consider the following pair of pro-
cedures:

procedure Pl is ~~Suppose this is the C-unit and is

on machine M1

X: INTEGER:
|
procedure P2 is —Suppose this is on machine M2
| #+ Ml
begin
¥
Xi= ... —a remote reference
Pi; —a recursive call
1
end P2;
begin —P1
|
P2;
i
end P1;

Since there will be many instances of the variable X,
some mechanism must be developed to provide P2 with
appropriate context information so that it can reference
the correct instance of X, most likely by passing implicit
context information with the call to P2. In [10] P1 and P2
each have an agent on the opposite machine from which
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they reside, and communicate via a system of mailboxes.
Each invocation of Pl instantiates a new version of P2’s
agent and creates a new mailbox through which P2 and
its appropriate agent communicate. The mailbox id is
passed to P2 upon its call, and provides the proper con-
text. This scheme has the advantage of being implement-
able with a pretransiator which allows existing Ada com-
pilers to be used, but has the disadvantage of requiring an
extra message to be passed at the exit of each call to P2
to tell its agent that it is done.

Similar problems of maintaining the proper context arise
with the distribution of data objects, functions, tasks, or
blocks. This can result in a large number of messages be-
tween the sites and a corresponding loss of time if the C-
unit and the R-units do not share a common memory. The
cause of this difficulty is recursive subprogram calls in
which some part of the recursive subprogram is remote
from the rest. While it is generally inadvisable to write
programs in a way that requires this type of remote ref-
erencing within recursively called subprograms, if sub-
programs, tasks, blocks, or data objects are themselves
distributable (as opposed to being distributed as part of a
coarser object such as a package), an implementation is
obliged to implement mechanisms to allow such usage.
We call this the recursive context problem.

If only library subprograms and library packages are
allowed as units of distribution, the recursive context
problem does not occur, as no unit of code can be required
to reference a recursively defined object residing on an-
other processor. The Appendix gives a proof of this state-
ment.

Thus, the use of library subprograms and library pack-
ages as units of distribution both simplifies translator im-
plementation and eliminates one possibly for program-
mers to construct unnecessarily complex implicit
interprocessor communication. Where it is desired to dis-
tribute finer grain objects, the objects may be encapsu-
lated into a package, and the package then distributed.

A further consideration in the distribution of data, sub-
program and task objects is distributed programming ex-
pressibility. It has been frequently stated that the philos-
ophy of Ada is to make explicit as much of the operation
of a program as possible. Since remote access is much
more time consuming than local access, it may, in some
cases, be necessary to have control over the access time,
i.e., to take alternative action if an access is not com-
pleted within a given time. Ada provides the timed entry
call mechanism which can, in theory, be used for this pur-
pose for task entry calls, although [10], [12] discuss a
number of problems in the implementation of distributed
timed entry calls. There is nothing comparable for other
forms of remote access, e.g., remote data or subprogram
references. It would, therefore, seem to be desirable to at
least make remote accesses explicit in a program so that
the programmer or someone reading a program could eas-
ily distinguish remote and local accesses. With the distri-
bution of data, subprogram, or task objects, there is no
such labeling mechanism available. Packages must be ex-

plicitly imported into a program context, and if the use
clause is not used, each reference to an object of the pack-
age must be preceded with the package name, flagging it
as an external reference. To think of package names as
possibly designating remoteness makes the interpretation
of package names ambiguous and is far from an ideal so-
lution.

C. Task Termination

Ada task termination is dependent not only upon the
task potentially terminating, but upon sibling and child
tasks, and in some cases the parent task, as well. There
are several ways in which this can cause termination dif-
ficulty when the tasks are located on different machines.
Consider the following code fragment:

task body MASTER is
task SLAVE 1 is
entry ENTRY _I;
end SLAVE 1;
l
task SLAVE 4 is
entry ENTRY _1;
end SLAVE 4;
|
task body SLAVE 1 is
begin
loop
select
accept ENTRY 1;
or
terminate;
end select;
end loop;
end SLAVE 1;
i
task body SLAVE 4 is
begin
loop
select
accept ENTRY _1;
or
terminate;
end select;
end loop;
end SLLAVE 4,
|
begin
l

end;

—MASTER

Suppose that MASTER has reached its end statement
and completed. It will terminate if SLAVE_1
SLAVE_4 are all at their select statements and waiting on
an open terminate alternative. In a uniprocessor situa-
tion, this does not cause unusual problems. The run-time
system can check SLAVE_1 - - - SLAVE_4 for waiting
at the terminate alternative without any other task gain-
ing control and making an entry call to SLAVE_1 - -»
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SLAVE 4 before it completes the check because it can
run at the highest priority.

With distributed execution this is not always possible.
Suppose that MASTER is on processor MO, SLAVE_1
on M1, and SLAVE 20n M2, etc. Now, when MASTER
completes, it must check termination conditions on the
other processors. Due to propagation delays, race condi-
tions can arise. For example, suppose that MASTER has
completed and serially checks the status of each of its
slaves and that the timing of ‘the events is as shown in
Fig. 3. In this figure, C indicates that the unit has com-
pleted, an X indicates that a task is waiting on a terminate
alternative. T1, - - -, T4 are the times at which the MAS-
TER is sent messages from SLAVE 1, - - -, SLAVE _4,
respectively, indicating their state at those times. Note
that at time T1, MASTER has been sent a message indi-
cating that SLAVE_1 is waiting at a terminate alterna-
tive. Between times T1 and T2, SLAVE 4, which was
not waiting at a terminate alternative makes a remote en-
try call to SLAVE 1, removing it from the condition of
waiting on a terminate alternative. Attime T2, SLAVE 4
has entered a state where it is waiting on a terminate al-
ternative. Thus, SLAVE 1.+~ SLAVE 4 all report that
they.are waiting at an open terminate alternative. MAS-
TER might then terminate when it should not.

Of -course, this problem: could be blocked by making
the slaves wait for further entries until. all termination
checking was.done, but if there were a long list-of sibling
tasks some-of which were not ready-to terminate, this
could cause SLAVE .1 to unnecessarily delay its-opera-
tion. This problem can be addressed by a more complex
termination-polling strategy .- However; that solution is not
the issue here; it is the need for.a complex strategy that
is:of interest. It can both increase the translation difficulty
and impede the execution efficiency of a distributed pro-
gram.

D. Distribution of Types

Distributed access to subprograms and tasks implies the
need to use remotely defined types, as both the specifi-
cation of the subprogram or task and the referencing unit
must have visibility of the types of the argumenis used.
The distribution of types is ‘one of the more interesting
aspects of distributing Ada programs as it forces a con-
sideration of unusual implementation mechanisms. There
are three questions which must be considered when ob-
jects (data or task) are created by units remote from the
location of the unit in-which the type is defined:

o ‘Where are declared objects of the type located: on
the site of the object.declaration or the site of the type
declaration?

s Where are allocated objects -of the type located: on
the site of the object declaration, the site of the type dec-
laration, the site of definition of the corresponding access
type, or the site of the declaration of the corresponding
acecess object?

» -Where are the operations of the type located?

For-example, let data type A be defined in-a package
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residing on machine M2, and X an object of type A de-
clared in a unit residing on machine M1. If X were placed
on M2 every reference to X from the unit in which it was
declared would require a remote reference. Thus, it is
likely one would want X placed on M1. One must then
examine the implications of the operations associated with
type A. Each defined data type has three classes of oper-
ations, basic operations, implicit operations, and user de-
fined operations. Some of the basic and implicit opera-
tions clearly should reside on M1, e.g., addition on
numeric types, storage allocation for objects of the type,
etc. To maintain uniformity, then, all implicit and basic
operations should be imported to (i.e., replicated on) the
machine on which the declared object resides.

Applying the notion of language uniformity, then, one
might expect that user defined operations should also be
replicated on all processors containing units which use the
types. However, user defined operations appear explicitly
in the region in which the type is declared in the form of
subprograms, and except for parameterless subprograms,
all subprograms are operations for some type. Thus, rep-
licating the user defined operations of types roughly
equates to replicating all of the subprograms appearing in
a package specification. This would also seem quite
counter to what one would expect from distributing a
package, which might after all only contain types and
subprograms in its specification. Further, replicating user
defined operations implies a remote access to variables
and subprograms defined within a package body. It thus
seems to the authors that it is only a slight sacrifice in
tanguage uniformity to not replicate user defined opera-
tions and keep them only on the memory to which the unit
defining the type is assigned.

Now consider object creation via the new allocator.
This requires the definition of an access type for the object
and the creation of an access object to hold the address of
the allocated object. Each of these could potentially be
declared in separate packages distributed to different lo-
cations than either the one holding the original type defi-
nition or the one which will ultimately execute the allo-
cator. For example,

package Pl is ~on machine M1
[task] type Ais . .
|

end P1;
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with P1;
package P2 is
type B is access P1L.A;
| .
end P2:
with P2
package P3 is —on machine M3
C: P2.B; —declare an access vati-
| able to objects of type A
end P3;

with P1;
with P3;
procedure P4 is
|
,begm
PIC = new Pl A;
| _ object of type A
end P4: '

——on machine M2

—on machine M4

In this case a remote access is required on each reference

to P3.C regardless of where the allocated object of type

A is placed. The number of off-machine operations is
minimized by placed the allocated ob;ect either on M3 or
M4 To maintain language umfﬂnmty it should be piaced
on M4,

Additional considerations arise if A is a task typ& Tasks
can then be dynamically instantiated and the programmer
may wish to control their placement as part of the algo-
rithm being developed. Or, one might wish to reduce or
eliminate the task termination problem described above.

Both of these goals, however, have negative implications
in terms of run-time efficiency, distributed program ex-

pressibility, and translational difficulties

Eliminating the distributed task termination pmblem re-
quires that tasks be placed on the same unit as their par
ents; then all of the checking of termination conditions
will take place on a single processor. Thus, declared tasks
would be placed on the processor of the declaring unit
while tasks created through evaluation of the allocator
~ would be placed on the processor holding the unit in which

the corresponding access type definition was elaborated.

Any other choice allows task parentage to be remote from
the task object itself and thus leads to the distributed ter-
mination problem. This would require placing an allo-
cated object of type A in the above example (with A now
a task type) on M2 since that is where the access type I8
elaborated.

However, if task objects are located cmnmdsmaliy with
their parents or at an arbitrary location assigned by the
programmer, the code for task objects would have to be
replicated as was considered above for user defined op-
erations on types. The same difficulty of having to access
local variables declared in package bodies would arise,
which would then be remote with respect to the task body.
This has obvious execution efficiency degradations if tasks
utilize shared variables, which they might well do. More-
over, it will become very difficult for a programmer to
recognize which references will be to remote variables.

__Allocate a new variable

To illustrate consider the example below:
Machine 1 Machine 2

with A; _ package Ais
procedure B is task type T is
T1: AT; _entryElI( - -);
| end T:
- T2 T
|  end A;
package body A is
Xy ,
_task body T is
=
begin .
i
Xi= -
|
end T:
.

enﬂ A- '

Note that T1 on machine 1 references the hidden vanabie'
X located on machine 2. '
Clearly, the translation also becomes more d;ﬁicuit For
example, consider separate compilation of package bod-
ies which contain task bodies for distributed task types.
Since package P2 and procedure P4 could be compiled
before the body of P1, the replicated task bodies would
be called for by normal compilation procedures before the
body containing them would have been compiled. This
could be handled by creating a record of units requiring
the task bodies as such units are compiled. Then, when
the package body for P1 is compiled, this record could be
checked to determine other processors for which the task
bodies must be compiled However, such a method is one
extra level of complication.
There is not a good solution which sausﬁes all pmb
lems. We have just outlined several problems with plac-
ing task objects anywhere other than at the location con-
taining the task definition. Suppose, then, that to be
consistent with previous comments about using packages
as the unit of distribution we place task objects with the
corresponding task type definition. This means that im-
plementors will have to face the distributed task termi-
nation problem, and allocated and declared tasks will often
be remote from the creatmg umts, and thus involve re-
mote task entry calls. If it is desired to place a task at any
particular node then that task, or task type definition, must
be encapsulated in a package. Consequently one could not
have the tasks of the same type occurring at more than a
single node. To avoid this problem requires having pack-
age types as suggested by Jessop [6]. Along with the
package types would come access variables to instances
of packages. Further, access objects referencing package
objects could be passed as in parameters to subprograms
and task entry calls. Thus, task objects could be creat |
with each package instance (on different machines) an
access to these could be passed from one place to anoth
via access pointers to the package containing them. Mor
over, an extension to include package types could be u

begin

_end;
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ward compatible with the existing definition of the lan-
guage.
E. Units of Distribution

There is no choice of distributable units within the cur-
rent definition of Ada that is devoid of difficulties of one
kind or another. Our preference is for library subprograms
and library packages. They represent a reasonable gran-
ularity of distribution, provide reasonable flexibility of
distributed program siructuring capabilities, do not re-
quire cross machine dynamic scope management, and
present minimum difficulty to the compiler implementors.
Data objects created from remote types should be placed
with the unit creating them, with implicit and basic op-
erations being replicated. User defined operations should
remain on the unit elaborating the type definition.

It would be our preference to restrict task objects ¢cre-
ated from task type definitions to the units on which the
corresponding type definitions are elaborated, and to have
package types added to the language specification. How-
ever, failing that, we believe it is necessary to allow task
objects to be placed on the unit initiating their creation
and live with the concomitant problems.

In view of the fact that some of the decisions concern-
ing units of distribution have significant implications on
the distributed language, we believe that the allowed units
of distribution should be specifically identified in the RM
more explicitly than they presently are.

1V, DISTRIBUTIONVAND BINDING SPECIFICATIONS
A. Implications of Memory Architecture

The principal effects of the memory architecture are on
the nature of the addressing mechanisms and the time re-
quired to access remote objects. In general, one will need
a distinct form of addressing for each type of memory that
occurs in the system. In order for the compiler to generate
code for efficient addressing, the distribution specification
should include the type of connection between processors
and the memory holding objects they reference. For ex-
ample, consider a loosely coupled system in which each
of the individual nodes consists of a mixed shared/private
" memory multiprocessor system. The mechanism for ad-
dressing an object in a shared memory will almost cer-
tainly be different than the one used for accessing data in
private memory and this will be different from sending
messages to access memory associated with a different
processor. The compiler needs to know the kind of rela-
tionships which will be present in order to generate the
correct instruction streams. Actual binding, which can oc-
cur later, will then be essentially a linking operation which
merely supplies specific values for address references.

The distribution specification thus becomes a set of re-
lations between pairs of objects in which the relations cor-
respond to kinds of addressing required for the first object
to reference the second. This is different from the binding
specification which makes an absolute assignment to each
object. The relations for the distribution specification can
be deduced from the binding specification. Separating the
weaker distribution specification and making only the dis-
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tribution specification available at compile time provides
greater flexibility in distributed program development. It
then becomes necessary to check for consistency of the
distribution specification. Further, when binding is finally
specified, it is necessary to check the consistency of the
binding and distribution specifications. Thus, the separa-
tion of the program to processor mapping into distribution
and binding specifications, while increasing flexibility,
requires the development of additional support tools.

The memory architectures present in a system also have
an impact on the general nature of the translation schemes
that may be used. For example, the authors have imple-
mented a pretranslation scheme which was intended to al-
low existing compilers to be used for distributed Ada pro-
grams {10}, Accordingly, only two addressing
mechanisms were readily available, local object referenc-
ing and subprogram or task entry calls to remote objects.
This suffices for distributed memory systems in which all
object references are either local or require message pass-
ing between systems. However, in a mixed private/shared
memory system, neither of these schemes will be satis-
factory for the shared memory if the compiler’s only
knowledge of memory is the local memory attached to a
single processor. The compiler would then be incapable
of directly addressing the shared memory. Accessing it
via system calls would be too ineflicient. It would be nec-
essary in this case that the compiler itseif have knowledge
of at least two kinds of memory, private and shared, and
be able to generate efficient mechanisms for addressing
both, defeating the purpose of the pretranslator approach.
The pretranslator approach, however, can be quite useful
for distributed memory systems with only moderate inter-
processor communication speed requirements in which
compile-time assignment of pmgram eiements to (logical)
processors is acceptable.

Finally, there is an additional mteracnon between the
memory architecture and binding time considerations. A
massively parallel system is almost certainly going to be
used differently than a modest sized loosely coupled ar-
chitecture. The latter is likely to be used for embedded
real-time systems in which each of the loosely-coupled
systems is attached to a different device, where the de-
vices must work together in a coordinated fashion, and
the binding specification is known a priori. While the for-
mer may also be part of an embedded real-time system, it
is likely to have some special function in the system, such
as image processing, in which the regularity of the par-
allel structure is to be exploited in some way. In this case,
as a consequence of the homogeneity of the processors,
the use to which the individual processors are assigned is
likely to be determined at run-time. This implies a need
for dynamic creation and distribution of objects in the
program. Ada lacks adequate mechamsms to deal with this
dynamic dxstnbutlon

B. Binding Time 7 ,

There are three issues to consider with regard to bind-
ing time: 1) when the distribution and binding specifica-
tions are made, 2) whar is specified at these times, and 3)
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the representation of the specifications. The first two of
these issues are closely related to the fact that different
addressing mechanisms are required for private and non-
private memory references. We will argue that the third
issue is a limitation of Ada vis-a-vis distributed programs.

1) Binding at Run-Time: Both the movement of an ex-
isting object from one memory to another and the creation
and location of new objects are capabilities one might like
to have. However, this requires deferring both the distri-
bution and binding specifications until run-time since the
type of memory access involved might change. This in
turn means that the compiler will . not even know whether
or not object references are private or nonprivate. It will
thus either have to use a generalized addressing mecha-
nism (i.e., create a Vvirtual target machine for all object
accesses), or use a private memory addressing mechanism
which will then have to be dynamically converted to a
nonprivate addressing mode for the objects to be dynam-
ically moved or created at a remote location. The use of
a generalized mechanism throughout would make local
addresses unacceptably expensive. The dynamic conver-
sion of a private memory addressing mechanism at run-
time is likely to require changing the instruction stream,
an effort normally associated with compilation, i.e.,
something akin to dynamic recompilation (at least back-
end processing) would be required. This is likely to be
complex and unacceptably slow.

On the other hand, if the distribution specification were
given prior to backend processing by the compiler, the
compiler would be able to use the right form of addressing
and only the correct values would have to be inserted when
binding is given at run-time. A change in the instruction
stream would not be necessary. For movement of objects
this is effectively a relinking operation for all references
to the object being moved, while for dynamic allocation
only a single address would have to be established. It is
also a restriction on the movement allowed; movement to
a memory requiring a different kind of access could not
be accommodated. Even with this, however, the overhead
associated with moving an object may be substantial be-
cause of the relinking process. This suggests that only in-
frequently referenced objects such as whole programs be
moved. Dynamic creation and deletion of objects, how-
ever, may be critical to some algorithms.

Expressing the program to processor mapping is also an
important issue. Ada does not have a sufficient set of
mechanisms by which run-time binding can be conve-
niently expressed. The new allocator provides a method
of dynamically creating a data or task object, but there is
no corresponding mechanism for specifying target loca-
tion. Pragmas could be defined to supply this informa-
tion, but since pragmas are compile-time statements, dy-
namic binding would require using a construct like case
selection with each case being a distribution pragma and
an allocator. This is rather awkward, especially for par-
allel machines with a large number of processors. Since
Ada does not have a concept of package types and generic
instantiations are compile-time actions, there is no mech-
anism. for dynamically creating and binding packages,

which we have argued above are the natural units of dis-
tribution. Finally, there are no mechanisms at all for spec-
ifying the movement of an object. However, in view of
the overhead involved in moving an object, this is prob-
ably not a serious limitation.

2) Binding at Link Time or Before: Binding at link-
time faces the same complexities described for run-time,
except that the overhead is incurred before run-time.
Again, stating the distribution specification by backend
compile-time is essential in a pragmatic sense. The re-
maining choices are to specify the distributions either be-
tween the frontend and backend compiler phases or prior
to compilation. The former clearly allows more flexibility
in terms of changing the assignment of distributable units
without requiring full recompilation, while the latter per-
mits a pretranslation scheme (described briefly in the next
section) to be developed which can use existing com-
pilers.

Language mechanisms for expressing the distribution
are not required for distribution and binding specification
at link time or before. Separate utilities may be used to
interactively specify the distribution and binding, or to
read a separate ‘‘program file’’ of specifications. How-
ever, from a program expressibility point of view, it is
desirable that the remoteness of objects be explicit. Also,
the behavior of real-time embedded systems will depend
upon the program mapping as well as the program. Thus,
there must be an easy way for the programmer or software
maintainer to read and correlate the program and the map-
ping. Having the mapping represented explicitly as part
of the program would minimize the opportunity for a pro-
grammer to miscorrelate the two parts. Failing that, how-
ever, a decompilation tool is needed which can reproduce
the original program with distribution and/or binding
specifications inserted in the program text.

In summary, the distribution specification should be
given by compile-time. It should either be‘included in the
language or there should be a decompilation tool which
will recreate the program with the distribution specifica-
tion inserted in the code. Dynamic creation or movement
of objects is rarely used in real-time programs because of
the overhead involved. In this case, similar tools are
needed for the binding specification. The Ada language
does not have adequate mechanisms for expressing dv
namic allocation and movement of objects in the distrib
uted setting.

C. Impact of Heterogeneity

Heterogeneity ‘can be approached in several ways, but
is far too complex to be fully-addressed in this paper.
Rather, we make some simple observations on three di-
rections one might take, or possibly combine. One ob-
vious method is to design-programs fora virtual Ada ma-
chine and then make the compilers for each real machine
produce code which ‘effectively implements the virtual
machine underneath the translated user program. How-
ever, there is often a significant loss of efficiency with this
approach. From amore pragmatic point of view, it would
be very advantageous if compilers produced for unipro-
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cessor operation could be included in a distributed trans-
lation system with minimum modification. This would al-
most certainly require using whatever data representations
and mechanisms were natural for a given processor type.
It would also deny translation within the compiler for a
virtual Ada machine. From the user’s point of view it will
thus be the combination of the processor type and the
compiler that are important, and when we speak of a
“‘processor type,”” we will actualy mean the combination
of the processor type and the translator for it.

Second, one can try to automatically perform appropri-
ate translations on objects passed from one processor to
another. With this assumption, we reach the conclusion
that a distributed Ada program must include processor
type information in the distribution specification. Con-
sider, for example, the representation of primitive data
types, e.g., integers and floating point numbers. Ada pro-
vides mechanisms to support portability which are useful
for distributed execution as well. One can define data
types in terms of the ranges needed and let the implemen-
tation choose the underlying base type from which the new
type is derived, with errors being flagged if any processor
cannot support the required range. Even in this case, how-
ever, the translation system may have to provide some
type of data translation, e.g., 16 bit integers on one ma-
chine and 24 on another, or left-to-right byte packing on
one machine and right-to-left on another. Moreover pro-
grammers are not obliged to use these mechanisms. Un-
fortunately, there is then no guarantee that a translation is
possible, €.g., a LONG_INTEGER might be 64 bits on
one machine and 32 on another. Either representation must
be made more explicit or additional checking of the dis-
tributed program is necessary to ensure the compatibility
of representation of data objects. Thus, knowledge of pro-
cessor type is required as input to a distributed translation
system.

Third, one might consider processor type information
as part of the semantics of the program. For example,
different processors may well have different values for im-
plementation dependent constants such as SYS-
TEM.TICK, and may use different scheduling disci-
plines. These differences may all be individually in accord
with the RM, but when a program intended for execution
on a single processor is distributed in different ways on a
set of processors, drastically different performance may
result. While it is in general understood that the effect of
the program on the environment is dependent upon the
implementation, when a distributed program is redistri-
buted amongst a set of processors, the underlying imple-

~mentation remains the same (even though the perfor-
mance might well change), and it is no longer appropriate
to think of the effect of the program depending upon the
implementation. In this case, we think of the semantics
of the distributed program as changing with the mapping
of the original Ada program onto the specific set of pro-
cessors in the system. The programmer should thus know
or be able to control the type of processor to which pro-
gram units will be assigned, and this information should
be included in the distribution specification.
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In reality, aspects of all three approaches may be nec-
essary. This is an area requiring considerable additional
research.

V. CONCLUSIONS

The distributed execution of Ada programs requires
further consideration of two issues: the units which may
be distributed and the specification of the program map-
ping onto the set of processors and memory to be used. It
was argued that the units of distribution should be stated
more precisely than presently done in the RM. It was
stated that the program mapping may be divided into two
parts, a distribution sepcification and a binding specifi-
cation; the former should be a required part of a **distrib-
uted Ada program.”’

It was recommended that the natural units of distribu-
tion for Ada are library packages and library subpro-
grams. These, in turn, require remote access to individual
data objects, subprograms and tasks. Use of remotely de-
fined types requires replication of implicit and basic op-
erations at each site creating objects of the type. Dynam-
ically elaborated objects, e.g., tasks, need to be placed at
the site of elaboration, which creates certain difficulties
with respect to implied access to remote variables and task
termination. The availability of a package type could be
upward compatible with the current definitions of Ada and
alleviate some of these difficulties.

The distribution specification should specify the pro-
cessor type and memory architecture used for each part of
the program. The inclusion of processor type makes ex-
plicit program semantics which would otherwise be un-
determined due to heterogeneity, while the memory ar-
chitecture specification allows the compiler to generate
the correct kind of distributed object access code.

There are two principal areas where the authors feel
that extensions are needed to Ada to handle the distributed
execution situation. Since the package is the recom-
mended distribution unit, mechanisms for dynamically in-
stantiating packages and specifying the processor on
which the new package is to be placed are needed. Syntax
is needed by which remote references can be made ex-
plicit. Several new tools are required: 1) a mechanism for
expressing the distribution of a program, 2) a checker to
ensure that the distribution specification is consistent with
language rules, 3) a checker to ensure that a binding spec-
ification is consistent with the corresponding distribution
specification, and 4) a decompilation tool which can in-
sert the distribution specification into the rest of the pro-
gram (if it was not there in the first place).

Most of the issues raised in this paper are closely re-
lated to the language definition. The authors believe that
these issues should be considered in conjunction with the
Ada 9X language review.

APPENDIX
THEOREM

If the units of distribution are library subprograms and
library packages, the recursive context problem does not
occur, that is, no unit of code can be required to reference
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a recursively defined object residing on another proces-
SOT.

Proof (by contradiction): In order for the recursive
context problem to arise it is necessary that there be a
recursively called creating unit, called the C-unit in Sec-
tion III-B, which creates some object, call it X, which can
be referenced by a code unit (an R-unit) on another ma-
chine. If the C-unit is a subprogram, then the R-unit must
be definitionally nested with the C-unit. However this is
not possible if the only distributable units are library sub-
programs and library packages.

Therefore, if the theorem is to be false, the C-unit must
be a library package. In this case it is possible for another
library subprogram or package (the R-unit) to reference
an object declared within the C-unit (a library package).
In order to generate the necessary recursion, it would then
be necessary that the body of the C-unit include the R-
unit via a with. In this case however the recursive call
would involve a subprogram or task of the C-unit (pack-
age) and all dynamically created objects of that subpro-
gram or task would be hidden from the R-unit. The only
visible objects of the C-unit (package) are outside of the
recursively called subprogram or task and thus are elab-
orated only once, during the initial C-unit elaboration.

Thus, while recursive calls can be constructed involv-
ing library subprograms and packages, the definitional
nesting required to cause the recursive context problem
cannot arise. Q.E.D.
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