Proc. 4th Conf. Hypercubes, Concurrent

Computers & Applications, vol. I, Mar. 1989, pp. 285-291

Short Latency Routing for Hypercube Multiprocessors

Gregory Buzzard*and Trevor Mudge!

Abstract

This paper presents a new strategy for routing mes-
sages between processor nodes in a hypercube multi-
processor. The strategy minimizes the inter-processor
latency, that is, the transit time of the start of the mes-
sage, and still keeps the overall transit time for the en-
tire message low. This strategy depends upon support
from the communication system to allow computations
on currently arriving message data. As a result, message
dependent computations in the majority of present-day
applications need only delay until the arrival of the first
few bytes of message data and the overall performance
becomes more dependent on the message latency than
on the entire message transit time.

1 Introduction

The performance of computer communication systems
can generally be evaluated as a function of two pa-
rameters, message latency (¢;) and message bandwidth
(BW). Message latency is the amount of time that
elapses from the moment that the sending processor
executes the message send operation until that message
begins to arrive at its destination. Message bandwidth
is the rate at which successive bytes of a message arrive
at the destination once the first byte has arrived. The
abundance of communication links in the hypercube in-
terconnection structure provides a tremendous amount
of potential message bandwidth. There are n2™ distinct
communication links in a hypercube of degree n. It is
the job of the communications system to convert this
raw link bandwidth into a usable and efficient message
passing system, that is, one that provides low latency
as well as ample message bandwidth. Additionally, the
communications system should abstract the details of
message routing from application programs.

*Gregory Buzzard is with the Department of Computer Science,
Naval Postgraduate School, Monterey, California 93943-5110

1 Trevor Mudge is with the Advanced Computer Architecture Lab-
oratory, Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, Michigan 48109-2110

Fffpl' tn f/’gm
[~ou Gatecence

Y] H rd L ATy

The effective communication bandwidth that is ob-
served by an executing process depends upon the speed
and utilization of the communication links. The mes-
sage latency is dependent upon the availability and uti-
lization of communication links. Communication link
speed is fixed by the hardware design. Availability
and utilization, however, depend upon the choices of
routing and transport strategies.

An obvious figure of merit to use in the evaluation of
the performance of these strategies is the total message
delivery time (¢, = #; + 5%, where L is the message
length). However, most existing parallel algorithms
process message data in a sequential order. Thus, if we
allow the processing of message data to proceed as it is
arriving, the primary figure of merit for communication
performance becomes the latency, or time to begin the
delivery of the message. This will be the case as long
as the actual message delivery rate meets or exceeds
the rate at which the processor consumes the message
data. Our message routing proposal is based upon the
fact that hypercube systems are capable of delivering
messages more quickly than they can be consumed and
that we can design a system in which some of this ex-
cess bandwidth can be effectively traded for decreases
in message latency.

As message traffic increases, the contention for com-
munication links becomes the chief performance bot-
tleneck for efficient message delivery. The partially
adaptive routing strategy that we propose reduces such
bottlenecks by spreading a given communication load
across a larger set of links. Our strategy is unique in
that it avoids the deadlocks that can occur in more
general adaptive routing schemes|CMP*88], while still
selecting from multiple possible communication paths.
Additionally, we fragment large message into smaller
packets which can then be interleaved with packets
from other messages onto a common communication
link. Such interleaving, in conjunction with our adap-
tive routing strategy, leads to large increases in com-
munication performance because the substantial reduc-
tion in message latency far outweighs the decrease in
effective message bandwidth.

‘“A l{jpéfcf«féf Concvprg Gm,ow‘ud 2aA /4pp/:.c.w“7;ﬁ5 [

trev
Typewritten Text
 Proc. 4th Conf. Hypercubes, Concurrent Computers & Applications, vol. I, Mar. 1989, pp. 285-291

| Transport | Routing | Message Delivery Time]

Datagram | Fixed (E<ube) t=k(ti_agm + B
Circuit Fixed (E-cube) t=kir oot "‘f
Circuit Adapt K(K — 1) | t=kti_sa1 + B
Packet Quasi-adaptive t=kti_gap+ %_fyﬁ

Table 1: Approximate Message Delivery Times

The next section of this paper describes common
message transport and routing schemes. In Section 3
we discuss our scheme, which we call quasi-adaptive
packet routing (QAP). After describing how QAP
works, we explain one of the chief principles behind
its performance and then discuss its deadlock avoid-
ance characteristic. Simulation studies that compare
the performance of QAP with the best of the circuit
based schemes are discussed in Section 4.

2 Transport & Routing Schemes

The communication system design space comprises
two axes, along the first axis lie the alternatives for
message transport schemes. These schemes are clas-
sified into two categories store-and-forward and cir-
cuit switched[RF87]. Store-and-forward systems can be
further divided into three groups: datagram, packet
switched and virtual circuit. The alternatives for rout-
ing mechanisms lie along the other design axis. At
one extreme, message routing can be fixed where the
route is a function of only the source and destination
nodes. At the other extreme, message routing can be
fully adaptive where routing decisions are made at each
step of the path from source to destination. Several of
the schemes which have been used or proposed are de-
scribed in[GR88], an approximation of the message de-
livery times based upon the choices of transport mech-
anism and routing strategy are given in Table 1. In the
equations given in Table 1, k is the distance from mes-
sage source to destination, ¢; is the latency for acquiring
a single communication link, L is the length of the mes-
sage data, H is the length of the message header, BW
is the bandwidth of the communication system and p is
the number of packets that the message data is divided
into.

Both of the schemes that employ adaptive routing
techniques have been shown to provide superior per-
formance over there non-adaptive counterparts|BM88,
GR88]. These two adaptive schemes employ rather dif-
ferent approaches for both their routing decisions and
their transport mechanisms. The K(K — 1) scheme is
based on a circuit switched transport mechanism with
a routing algorithm that will backtrack when necessary
to choose among K (K — 1) of the K! shortest paths be-
tween two nodes. The quasi-adaptive scheme is based
on a packet switched mechanism without backtrack-
ing that will choose among k paths. The differences
between the schemes are primarily reflected in the be-

havior of t; terms as the system communication load
increases.

In circuit switched systems, lengthy mesages can
tie up a number of communication links for a signif-
icant amount of time. This effect, which is described
in[BM88], can lead to substantial performance losses in
systems with moderate to heavy communication loads.
Packet switching avoids this problem by allowing pack-
ets from different messages to be interleaved on a com-
mon communication link. However, there is an ad-
ditional cost associated with packet switching. Each
packet is required to carry information that identifies
the packet and its destination. This leads to an effective
increase in the total amount of data that must be trans-
mitted through the network to deliver message with L
bytes of data from L + H to L + pH. Even further costs
would be incurred if the packet switching scheme were
to allow different packets from the same message to
travel via different paths. As a result, all packets from
the same message are required to follow the same path
in the quasi-adaptive scheme.

Another issue that arises for the adaptive routing
schemes is deadlock. Deadlock is implicitly avoided by
the e-cube routing algorithm|Lan82] that is commonly
employed in the fixed routing schemes. However, the
cost of avoiding deadlock in these schemes is rather
high: only one predetermined path may be used to
travel between two nodes. The K(K —1) adaptive rout-
ing scheme must detect and resolve deadlocks in order
to choose among the K(K — 1) paths. One of the key
features of the quasi-adaptive packet routing scheme is
that it allows an adaptive choice to be made between
different paths but still maintains the deadlock avoid-
ance property of the fixed routing schemes.

3 QAP Routing

Quasi-adaptive packet routing employs a packet based
transport mechanism that allows packets from differ-
ent messages to be interleaved. It uses a combination
of fixed and adaptive routing in which the first packet
may adaptively select its first routing step in any di-
rection that will take closer to its destination. All sub-
sequent packets from the message are routed in the
same initial direction. All routing decisions, other than
the first, are determined by a fixed routing algorithm
that depends only on the current and destination nodes.
Thus, packets from the same message will always ar-
rive in order at their destination. There are two primary
costs associated with this scheme: (1) each packet must
now carry its source and destination node numbers,
thus lowering the effective bandwidth for message data
as discussed above; and (2) the communications archi-
tecture must now detect if the node CPU requests part
of a message before it has arrived. If such an event oc-
curs, the affected process must be suspended until the
requested data has arrived, this is somewhat analogous
to taking a page fault. An architecture that provides
such a capability is described in[Buz88].

2

The performance of the quasi-adaptive packet rout-
ing scheme is, to a large extent, derived from its ability
to substantially avoid message bottlenecks that occur
frequently near busy source nodes. Such bottlenecks
can significantly limit the performance of the commu-
nication system. The chief challenge in avoiding this
problem is to spread the communications load among
the many available links while still avoiding deadlock.
While techniques for reducing local congestion away
from source nodes have been discussed [Val82], our
quasi-adaptive routing scheme provides a unique solu-
tion to reducing congestion near a busy source.

The primary factor that limits the speed with which
messages can be moved off of their source node in fixed
routing schemes is that they direct messages to half of
the nodes in the cube out of a single channel, messages
to half of the remaining nodes go out the next chan-
nel, etc. Under conditions of constant uniform traffic,
of course, this scheme makes optimal use of the links
by evenly distributing the message load from all nodes
across all links. However, in reality we expect mes-
sage traffic to be bursty and chaotic. This can lead
to excessive link contention for the most popular link
by messages that are attempting to leave their source
nodes. As a simple example, with all other communi-
cations quiescent, a pair of simultaneously generated
messages on any given node in a cube of dimension n
will collide while attempting to acquire their respective
initial links with a probability given by:

2 \V2 &1
PI:(Z"*I) 7% W

L \2
The (272:‘1’) term accounts for the fact that a node will

not send a message to itself. The term in the summation
is derived from the st chance, for each message, that
the kth link is chosen.

Rather than interleaving the message with packets
that have been queued for transmission, we have cho-
sen to adaptively select the first routing step for the
message based upon the shortest queue that takes the
message in a direction closer to its destination. All
packets of the message still follow the same route; how-
ever, the direction of the first step in the route is no
longer fixed. In this case, with all the other commu-
nications quiescent, a pair of simultaneously generated
messages on any given node in a cube of dimension n
will collide while attempting to acquire their respective
initial links with a probability given by:

e (Z)EH)

k=1

In this case, there is a 5 chance that the first message

chooses the kth link, and a 5z chance that the second
message cannot use any of the remaining links. Com-
paring (1) and (2), we can show that lim, o, Py = }
and lim, .o P, =0, also P; » P, for all n > 2, there-

fore we conclude that our adaptive packet transport

scheme significantly reduces the problem of messages
colliding prior to entering the communication network.
We also investigated adaptively routing the message by
choosing the first step at random. Both analytical and
simulation analyses showed this scheme to be inferior
to routing in the direction of the shortest queue.

Any routing scheme that makes adaptive routing de-
cisions needs to address the issue of deadlock. Con-
versely, fixed routing schemes that preclude the for-
mation of cyclical routing dependencies are inherently
deadlock free. For example, circuit based schemes
which use the (fixed) e-cube routing scheme, such as
the Intel iPSC 2 [Nug88], are deadlock free. Store-and-
forward schemes, which require buffers in addition to
links to deliver messages, must additionally preclude
the formation of buffer-based cyclical routing dependen-
cies in order to avoid deadlock. The dependency on
buffers can be merged into the link dependency by as-
sociating a specific buffer with each outbound link on
every node. Thus, an idle link will always be able to
provide buffer space to any packet that can reach its
node.

While the use of fixed routing schemes can preclude
deadlock, they eliminate all choice in the formation of
a path between source and destination nodes. Con-
sequently, they are unable to adapt to changing sys-
tem communication loads. Our quasi-adaptive routing
scheme allows any of k (where k is the distance between
the source and destination) paths to be chosen when the
packet enters the communication system. One of the
key features of QAP is that it allows adaptive routing
decisions while avoiding deadlock. Cyclical buffer de-
pendencies are avoided by associating a specific buffer
with each outbound link on every node. The routing in
QAP follows the deadlock avoiding e-cube scheme on
all routing steps after the first. Thus, any routing cycles
that may occur will be caused by a packet that is leaving
its source node. The only resources held by a packet in
QAP are the buffer that it occupies and, possibly, a link
to the next node. QAP packets that are on their source
node do not occupy buffer space in the communica-
tions switch. Thus, the only communication resources
that they may posses are links to adjacent nodes. We
can ensure that deadlock will never occur by allowing
any packet that is buffered in a communication switch
(i.e, one that is not on its first routing step) to reap-
propriate a required link from a packet that is on its
first step. This reappropriation may occur whenever
the link is not actively transmitting a packet, a link that
is transmitting is guaranteed to finish in a short time.

4 Simulation Comparisons

Extensive simulations were run for the K, K(X —1) and
QAP routing schemes. The performance of K(X — 1)
routing is superior to that of K routing, therefore, re-
sults are shown for only the K(K — 1) simulations. The
timing parameters for the K-family simulations were
taken from [CMP*88]. The time values recorded by the

J

simulator include the time to determine the next rout-
ing step and acquire a communication link for each
step along the path and the time for the transmission
of data once the full circuit has been established. The
overhead that is initially incurred by the transmitting
processor is not counted in the simulation time. Sim-
ilarly, the overhead incurred by the receiving proces-
sor is ignored. Since the K-family routing mechanisms
are not persistent (that is, they do not block waiting
for links to become available) they may acquire sev-
eral links toward the destination before arriving at a
node at which none of the necessary links are currently
available. Some of the previously acquired links must
then be dropped in order to backtrack and try another
of the K or K(K — 1) routes. We assume that the K-
family communication protocol allows these links to be
dropped instantaneously upon the receipt of a link drop
control signal, thus no time is added for backtracking.
It may also be the case that it is not possible to ac-
quire all of the links necessary to construct a full path
from source to destination in a single search of the K
or K(K — 1) possible routes. If this happens, all of the
acquired links are released and the sending processor
is interrupted. For the purposes of our simulation, the
sending processor immediately attempts to resend the
message. These complete retry actions do incur the cost
of one reception and one transmission overhead.

The time values recorded by the simulator for the
QAP routing scheme include the time to determine the
next routing step and acquire a link and buffer at all
intermediate nodes, the time to determine the routing
step and acquire a link to the destination node (but
no buffer), the time to transmit the data, and all of
the time spent waiting to acquire the necessary links
and buffers. As with K-family routing, the overheads
incurred by the sending and receiving processors are
ignored. The QAP routing scheme is persistent and
deadlock free, thus all messages will eventually make
it to their destinations without further intervention by
the sending node. Similar link bandwidth and routing
logic switching times are used in all simulations.

The chief external characteristic that distinguishes the
K-family routing schemes from QAP is that the K-
family protocols require bidirectional end-to-end com-
munications in order to establish routes and acquire
and release links (such communication requirements
are typical of circuit based schemes). This end-to-end
communication requires two lines. One line is required
from source toward the destination for the acquisition
of links during the route setup phase and later for the
transmission of data. Another line is required from
the destination (or blocked end point) back toward the
source to control the acquisition and release of links
during the route setup phase and, ultimately, to control
the flow of data during the transmission phase. While
it may be possible to construct a single line communica-
tion protocol for K-family routing, such a protocol will
be complex and costly to implement. The QAP protocol
requires only point-to-point flow control. This simple
point-to-point flow control information may be passed

back from an interim receiving node to its predecessor
on the same line that is used for the transmission of
data (see [Buz88)).

In an attempt to measure the impact of this design
characteristic, we provide further simulation results
that compare the performance of QAP and K(K — 1)
with an equal number of interconnects between nodes.
There are two choices for constructing systems like
K(K — 1) that require two lines for each unidirectional
data path. The system can be built with four lines (two
in each direction) connecting adjacent nodes. This al-
lows simultaneous message transmission in opposite
directions between two adjacent nodes for the K -family
routing schemes because the logical path in each direc-
tion has its own pair of data and control lines. In a four
line system the QAP scheme is assumed to make use of
the additional lines to double its link bandwidth. Al-
ternatively, the system can be built with two lines (one
in each direction) connecting adjacent nodes. In this
configuration, the K-family must acquire both lines to
support message transmission in either direction. Thus,
there is only one logical path between adjacent nodes
and it must be shared between message transmissions
in both directions. In the comparisons illustrated in this
paper we have used this latter configuration. We have
also run comparisons that assume four lines between
adjacent nodes. The relative performance characteris-
tics are comparable to the two line comparison.

The results of all of the comparisons are shown in
Figures 1 through 4. The simulations in all cases as-
sume a hypercube of degree six. We ran simulations
on hypercubes of up to degree 8, in all cases the relative
results are similar. The first two figures show the re-
sults of comparisons in which the K (K —1) scheme was
run on a four line system while the QAP scheme was
run on a two line system. The latter two figures show
the results with the K(K —1) scheme constrained to use
the same number of communication lines as QAP. Each
of the graphs show the performance of both K (X — 1)
and QAP routing across a range of synthetically gener-
ated message traffic loads. The probability distribution
functions that are used to generate these traffic loads
are given in Table 2. These distribution functions de-
termine message destinations, message lengths and the
delay time between the generation of successive mes-
sages. They are generated independently for each node.
In Table 2 the argument for the exponential distribution
function is the mean, the arguments for the normal dis-
tribution are the mean and variance, respectively, and
the arguments for the uniform distribution specify the
range of values. The specific message destination is
chosen uniformly from among all of the nodes that are
a given distance away. Two curves are shown for each
of the routing schemes, the lower curve indicates the
time for the beginning of the data to arrive at the desti-
nation, the upper curve indicates the time for all of the
data in the message to arrive. The graphs in Figures 1
and 3 show simulation results for an average message
length of 512 bytes, Figures 2 and 4 show results for an
average message length of 2048 bytes.

Average Message Delivery Time

Average Message Delivery Time

3500

3000 - — gumaad K(K'l) first
e K(K-1) last
' ——gp— QAP first
2500 iy QAP last
2000
1500
1000
500 -
0~ Y ™1 T T T T

i
A B C D E F G H 1
Message Traffic Load

Figure 1: Small Messages, Non-equal Lines

15000
1 e K(K-1) first
—— K(K-1) last
12000 - e QAP first
QAP last
9000 -
6000 -
3000
0 T T T T

¥ L
A B C D E F G H
Message Traffic Load

Figure 2: Large Messages, Non-equal Lines

I

Average Message Delivery Time

Average Message Delivery Time

12000

1 —g—me K(K-1) first
10000 - e K(K-1) last

J g QAP first

4 e QAP Jast
8000
6000 -
4000 -
2000 -

0 T

i 1
A B C¢C D E F G H
Message Traffic Load

Figure 3: Small Messages, Equal Lines

21000 -
—gm K({K-1) first
18000 - —g— Ki{K-1) last
——gge QAP first
QAP last
15000 +
12000 -
9000
6000 -
3000
0 T T

A B ¢ D E F G H
Message Traffic Load

Figure 4: Large Messages, Equal Lines

-

[case Tlength | intergeneration time | distance |

A exp(512) | normal(1024, 512) uniform(l, 6)
exp(2048) | normal(4096, 2048) uniform(1, 6)
B exp(512) normal(1280, 640) uniform(1, 6)
exp(2048) | normal(5120, 2560) uniform(l, 6)
C exp(512) normal(1536, 768) uniform(l, 6)
exp(2048) | normal(6144, 3072) uniform(1, 6)
D exp(512) normal(2048, 1024) uniform(1l, 6)
exp(2048) | normal(8192, 4096) uniform(1, 6)
E exp(512) normal(2560, 1280) uniform(1, 6)
exp(2048) | normal(10240, 5120) uniform(l, 6)
F exp(512) normal(3072, 1536) uniform(1, 6)
exp(2048) | normal(12288, 6144) uniform(l, 6)
G exp(512) | normal(5120, 2560) uniform(1, 6)
exp{2048) | normal(20480, 10240) | uniform(1, 6)
H exp(512) normal(7168, 3584) uniform(l, 6)
exp(2048) | normal(28672, 14336) | uniform(l, 6)
I exp(512) normal(9216, 4608) uniform(1, 6)
exp(2048) | normal(36864, 18432) | uniform(i, 6)

Table 2: Message Distribution Functions

As traffic loads increase, both schemes encounter a
knee in their performance curves which begins to sig-
nificantly limit performance. This effect is most appar-
ent for K(K — 1) routing in the equal line comparisons.
The performance of QAP in these cases ranges from
about equal to that of K(K — 1) under light message
traffic loads to significantly better than K(K — 1) un-
der moderate to heavy loads. Based upon the results
illustrated in Figures 3 and 4, it is easy to argue that
QAP is the preferable choice for systems in which the
number of communication lines is equal.

For the comparisons in which K(K — 1) is allowed
twice as many communication lines as QAP, the per-
formance of QAP is still much better for moderate to
heavy message traffic loads. In systems that allow the
processing of message data as it arrives, it is the lower
(first) set of curves that are most important. They rep-
resent the time delay between the sending of a message
and the processing of the initial message data. The con-
sumption of message data frequently occurs at a frac-
tion of the peak message delivery rate. For example,
we have shown that the message delivery bandwidth
of the NCUBE is more than four times greater than
the consumption rate of message data when perform-
ing the double precision vector operation: X = aX +¥
(see [BM88]). The gap between the first and last curves
provides a measure of message delivery rate. Circuit
based schemes like K(K — 1) deliver messages at peak
rates. Given the example above, the gap between the
first and last curves for QAP would have to be more
than four times greater than the gap for K(K - 1), be-
fore any performance degradation would occur. This
never occurs across the range of simulated messages
loads and even if it did, it would be offset by the ability
of QAP to begin processing message data much sooner.
In the cases with the lighter message traffic loads and
shorter messages K(K — 1), routing shows a perfor-

4000

e 12 buffers first
e 12 buffers last
ety 18 buffers first
ey 18 buffers last
3000 - i 26 buffers first
e 26 buffers last
e 40 buffers first

40 buffers last

Average Message Delivery Time

2000 -
1000
0 ¥ I H H L i 1 i 1
A B C D E F G H 1
Message Traffic Load

Figure 5: QAP -- Buffer Number Comparison (small
messages)

mance advantage. However, QAT can recover much
of this difference by using smaller packets, this can be
seen by looking at the simulations with 32 byte packets
which are shown in Figure 6.

4.1 Selecting Buffer and Packet Sizes for
QAP

There are two architectural design parameters that
must be selected for the QAP routing scheme, the size
of the message packets and the number of packets that
may be buffered at each node. The number of buffers
that are provided at each node is a very stable parame-
ter. It may be varied over a large range with negligible
performance impact. Our simulation results, shown in
Figure 5, indicate that performance effects are negligi-
ble across all message traffic loads for all cases where
the number of buffers provided at each node is greater
than about three time the number of neighboring nodes.
A small performance impact occurs under heavy mes-
sage traffic loads when the number of buffers is small.
The incremental improvement that is gained by adding
additional buffers also becomes minimal once the num-
ber of buffers reaches about four times the number of
neighboring nodes.

The effects of packet size on performance are more
noticeable. Above a certain level, which for our simula-
tion cases has empirically been determined to be about
64 bytes, increases in packet size lead to simultaneous
increases in first packet delivery time and decreases in

b

4500
i 32 byte first
4000 - w32 byte last
e 64 byte first
———o—— 64 byte last
3500 - Y
gy 128 byte first
E w3 128 byte last
= 3000 e 256 byte first
-
'g 256 byte last
g 2500 A
o
5
9 2000
=
o
€0
£ 1500 -
>
<
1000 -
500 -
0 T T T T T T

i i
A B C D E F G H 1
Message Traflic Load

Figure 6: QAP -- Packet Size Comparison (small mes-
sages)

overall (last packet) delivery time. Thus, by increas-
ing packet size we can make the effective bandwidth
of QAP tend toward that of X(X — 1). Below about
64 bytes, further decreases in packet size lead to sig-
nificant increases in the last packet delivery times and
only minor decreases in the delivery times for the ini-
tial packet. This effect is a result of the overhead of
packet handling beginning to dominate over the ben-
efits of small packet interleaving. The effects of these
tradeoffs can be seen in Figure 6.

5 Conclusions

Quasi-adaptive packet routing provides a simple and
effective solution to the problem of reducing message
delivery latency. It accomplishes this objective for a
wide range of message traffic loads and message sizes.
QAP performs particularly well when it is allowed to
use the same number of communication lines as other
schemes or when the communication loads are moder-
ate to heavy. The key features of QAP are that it is an
adaptive scheme, it avoids deadlock and it requires at
most neighbor-to-neighbor communications to perform
routing or message delivery actions. In future work we
will investigate the use of packet based routing tech-
niques to support shared virtual memory paging on
hypercubes. This work will coincide with explorations
into the feasibility of running the Mach [RTY*88] oper-

ating system on a hypercube.

References

[BM88]

[Buz88]

[CMP*88]

[GR88]

[Lan82]

[Nug88]

[RF87]

[RTY*88]

[Val82]

Gregory Buzzard and Trevor Mudge. High
performance hypercube communications. In
Geoffrey Fox, editor, The Third Conference on
Hypercube Concurrent Computers and Applica-
tions, pages 600—609. ACM, 1988.

Gregory D. Buzzard. High Performance
Communications for Hypercube Multiproces-
sors. PhD thesis, Department of Electrical
Engineering and Computer Science, Univer-
sity of Michigan, August 1988.

E. Chow, H. Madan,]. Peterson, D. Grun-
wald, and D. Reed. Hyperswitch network
for the hypercube computer. In 15th Annual
International Symposium on Computer Archi-
tecture, pages 90-99, May 1988.

Dirk Grunwald and Daniel Reed. Multipro-
cessor computer networks: Measurements
and prognostications. In Geoffrey C. Fox,
editor, Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applica-
tions. ACM, 1988.

C. R. Lang. The extension of object-oriented
languages to a homogeneous concurrent ar-
chitecture. Department of computer science,
technical report, 5014:tr:82, California Insti-
tute of Technology, 1982.

Steve Nugent. The iPSC/2 direct-connect
communications technology. In Geoffrey C.
Fox, editor, Proceedings of the Third Confer-
ence on Hypercube Concurrent Computers and
Applications, pages 51-60. ACM, 1988.

Daniel A. Reed and Richard M. Fujimoto.
Multicomputer Networks: Message-Based Par-
allel Processing, pages 138-144. The MIT
Press, 1987.

R. Rashid, A. Tevanian Jr.,, M. Young, D.
Golub, R. Baron, D. Black, W. Bolosky,
and J. Chew. Machine-independent virtual
memory management for paged uniproces-
sor and multiprocessor architectures. IEEE
Transactions on Computers, pages 896908,
August 1988.

L. G. Valiant. A scheme for fast parallel
communication. SIAM Journal of Computing,
pages 350-361, May 1982.

