A Parallel Language for a Distributed-Memory Multiprocessor

Russell M. Clapp and Trevor Mudge *
Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

Abstract

Development of software for MIMD multiprocessor archi-
tectures is impeded by the lack of adequate programming
environments for them. A vital component of these environ-
ments are high-level parallel programming languages which
are needed to support the development of applications that
are capable of exploiting parallelism. A parallel language
provides a machine independent view of parallelism, but can
also be sensitive to some major characteristics of the ar-
chitecture (e.g., the hypercube interconnect). The language
may also run efficiently if carefully constructed language spe-
cific run-time system code is used to support parallelism in-
stead of general operating system primitives. In this paper
we describe an approach to parallel programming using a
process-model parallel language for a hypercube. This lan-
guage is similar to other concurrent languages, but is different
in that it is intended for general-purpose parallel program-
ming. Process-model parallel programming primitives have
been added by us to the C language with emphasis being
placed on simplicity, flexibility, and efficiency. In addition
to describing the process model language, we discuss the de-
sign and implementation of the run-time system. This set
of run-time routines is responsible for supporting the pro-
cess model efficiently, thus making the language a practical
parallel programming tool.

1 Introduction and Motivation

The advent of parallel processors has led to the need for
effective ways to program them. Although these machines
have been available for some time, the techniques used to
program them are still immature, and in most cases are ad
hoc [11, 2, 12]. As technology has evolved, many differ-
ent parallel computer architectures have been proposed and
implemented. With architectures ranging from systolic ar-
rays to shared-bus multiprocessors, there have been a wide
variety of programming paradigms employed. Although we
would like to sece program parallelism expressed in an en-
tirely machine independent fashion, it is clear, at this point,
that some paradigms are not suitable for certain architectures,
particularly if performance is important.

Our goal is to develop a parallel language suitable for

*This work was supported in part by the National Science Foundation,
grant number MIP-8802771.

Fourth Conference on Hypercube Concurrent Computers and Applications

distributed-memory multiprocessors. The language is in-
tended to be easy to learn and understand, while providing an
environment for programming distributed-memory multipro-
cessors that is superior to the ones available today. Current
techniques for programming these machines usually involve
the Single Program Multiple Data (SPMD) style [11, 4]. In
this paradigm, a single program is written, and a copy of
it is run on each processor. Communication occurs through
explicit operating system calls. This style of programming
is inherently machine dependent, and is difficult to write and
debug. In the SPMD paradigm, the software becomes a pro-
cessor manager and merely provides an interface between the
individual processor’s instruction set and the programmer’s
algorithm. We believe that a better medium is needed for
expressing the parallelism of the algorithm.

In this paper, we discuss the design and implementation
issues of a simple parallel language. A major goal of our
design is to provide for an efficient implementation. The
approach we take is to provide programming techniques that
are somewhat similar to the current approach, while correct-
ing the glaring deficiences of the SPMD style. The con-
structs of the language are provided with the target architec-
ture and run-time system implementation in mind. However,
the language does provide for some degree of machine in-
dependence, without presenting a view so abstract that algo-
rithms cannot take advantage of the underlying architecture.
In the next section, we discuss the programming paradigm of
distributed-memory multiprocessors from a procedural point
of view. We then relate our experiences with implementing
Ada on a hypercube multiprocessor. Based on this discus-
sion, we propose some simple parallel constructs that can
be added to a sequential programming language (e.g. C)
without the need for elaborate run-time system support. In
the following section, we discuss the the requirements of the
run-time system and their implementation strategics. Finally,
we give some concluding remarks along with the status of
our implementation.

2 The Programming Paradigm

As stated above, we intend to pursue a procedural style of
programming. The specifics of this style are determined by
the model of the target architecture. Accordingly, we de-
scribe a simplified view of distributed-memory architectures
and then use this description to motivate a programming

Page 1



paradigm. This basic paradigm is then compared with an ap-
proach to programming a distributed-memory machine that
involves using the Ada language. We examine this approach
and compare it with our basic requirements for a parallel
programming language. This study suggests a basic set of
parallel language constructs that can be implemented effi-
ciently.

2.1 The System Model

The architectures of multiprocessing systems fall into four
broad categories. They are, 1) shared-memory multipro-
cessors, 2) non-uniform access shared-memory multiproces-
sors, 3) distributed-memory multiprocessors (DMMs), and
4) distributed computer systems. We classify hypercubes as
DMMs. Such systems are typically made up of homogeneous
processing elements with local memories connected together
via some dedicated network. Because the network is used
to connect the processing elements, remote memories are
not directly accessible. Therefore, we do not classify these
machines in either of the shared-memory categories. Hyper-
cubes and other DMMs are also not considered distributed
systems, because these configurations are typically made up
of autonomous computer systems that are interconnected on
either a broadcast or token-ring style local area network. In
addition, these computers typically provide more resources
than the processing elements in a hypercube, such as disks,
keyboard, monitor, etc.

Our model of DMMs is one where multiple processing
elements and memories are interconnected via a fixed, usu-
ally regular, network and are able to share resources such as
disk files and monitors. We propose a programming model
where a single program provides multiple execution threads,
where a thread is a single program counter associated with
a program fragment. Each thread has its own data area and
is allowed to communicate with other threads by sending
messages. We call a thread of execution a process and its
language level representation the process model. This pro-
gramming model is quite similar to the current SPMD style of
programming, but there are some important advantages to us-
ing the process-model approach. By providing mechanisms
for programming multiple processors with a single program
the benefits of type checking across processor boundaries and
machine independent interprocess communication are possi-
ble {5]. Furthermore, the number of program processes and
the number of available processors need not be the same,
allowing for program development on uniprocessor systems
as well as the possibility of dynamic reconfiguration either
for load balancing or to avoid faulty processors.

2.2 The Ada Experience

Our initial approach to providing a process-model parallel
language for a hypercube was to implement an existing lan-
guage, Ada. In addition to providing a block structured pro-
cedural language with variable scoping, Ada also provides a
process model in the form of tasks. A brief overview of Ada
is given in [5], together with a discussion of the run-time

Fourth Conference on Hypercube Concurrent Computers and Applications

system requirements and our approach toward implementing
them. Additional details of our implementation are given in
[6, 71

There are several problems that arise when implementing
Ada on a a DMM. These problems occur mainly because
of the shared-memory model that the language provides to
the user. Although this problem can be isolated to a large
extent, it hampers the freedom of the programmer to express
parallelism effectively. We outline the main problems with
supporting the Ada tasking model on a DMM below.

Units of Distribution The first issue to address in target-
ing Ada 1o a distributed-memory computer is to decide which
program units are suitable to be distributed across the pro-
cessing elements. While tasks may seem to be the obvious
answer to this question, there are many undesirable side ef-
fects that occur when any task is allowed to be distributed
{19, 16]. In fact, the recommendation is made in [19] to
allow only library packages and library subprograms to be
distributed. Packages are the unit of encapsulation in Ada,
and may contain a set of variable and type definitions, sub-
programs (functions and procedures), and tasks. The speci-
fication of a package exports the visibility of a subset of the
objects and types declared within it. By using library pack-
ages and library subprograms (those units that may be com-
piled separately and are not contained in enclosing packages)
as the units of distribution, the concept of binding types, vari-
ables, tasks, and subprograms to a processing element is in-
troduced. While this view may be appropriate for distributed
embedded systems, we feel it is not consistent with our view
of a programming paradigm for a DMM.

The Cactus Stack The main problem with supporting Ada
on a DMM is the language’s shared-memory model. Because
Ada supports Algol like scoping and nesting of subprograms
and tasks, a careless distribution of objects across processors
could result in a large number of remote memory references.
This is particularly true in the case of tasks. A task that
is declared in the scope of another task is a child of the
enclosing task. These tasks share the stack of the parent
task, and the child task’s local stack becomes a branch of
the cactus stack. If tasks are freely distributed or allowed to
migrate throughout the system, references to portions of the
parent’s stack space may be to remote memory. In order to
avoid this situation, we have proposed only the above stated
units of distribution, along with tasks that are dependent only
on library packages, not other tasks [5]. While this policy for
distribution simplifies the run-time system and prevents the
programmer from many subtle pitfalls it nevertheless restricts
the expression of parallelism in the program and makes load
balancing very difficult.

Task Termination Task creation and termination in Ada is
synchronized with the parent or creating task. In the case
of termination, tasks may wait in a loop to receive com-
munication or a signal to terminate. Tasks waiting in these
loops terminate if their parent is completed and all other sib-

Page 2



ling tasks are waiting in this loop. Support for this style
of termination is not too difficult to implement given the
above restrictions for units of distribution. However, when
all tasks are allowed to be distributed, the problem becomes
much more complex, and overhead is greatly increased [5].

Time The Ada language provides a predefined function
called CLOCK that returns the current point in time. A way
to provide this value quickly and accurately to all processing
elements in a DMM is a difficult problem. One approach is
to replicate the CLOCK function on each processor, and have
it read a local timer when called. But this requires that each
processor have a timer that is synchronized with all others in
the system. Alternatively, a central timer could be provided
so that a call to CLOCK results in a remote procedure call
to read this timer. However, the accuracy of the returned
value would be in question, due to the variable overhead of
making a remote procedure call over an unknown number
of communication links. In general, providing an accurate
CLOCK function in a DMM is complicated, particularly if
the hardware has not been designed to support it. This is
usually the case, unless the system was designed explicitly
for a real-time application,

2.3 Basic Language Features

Because of the problems we encountered in targeting Ada
10 a hypercube architecture, we have studied alternative ap-
proaches 1o specifying a parallel language that is suitable for
execution on a DMM. These alternatives are based on previ-
ous work done in the development of other concurrent lan-
guages and languages for distributed systems. Examples of
concurrent languages include Concurrent C {8], Occam [15],
and Mesa [14]. Examples of distributed languages include
Lynx [18], Network Implementation Language (NIL) [17],
and Synchronizing Resources (SR) [1]. Overall, we found
that concurrent languages tend to be designed for implement-
ing operating systems or other low-level applications. Their
model of parallelism tends to favor a shared-memory envi-
ronment, or a particular architecture in the case of Occam.
Distributed languages also tend to be designed for use in pro-
gramming operating systems. While these languages reflect
a distributed-memory model, they often support techniques
that allow for dynamic loading and linking of modules to
executing programs. While the distributed-memory model is
appropriate for programming DMMs, the additional features
are not needed for general-purpose parallel programming on
DMMs.

The process model we propose adding to a sequential lan-
guage is based on our experience with Ada and a consid-
eration of these alternative approaches. Because there are
several features of both Ada and Concurrent C that do seem
appropriate, our proposed process model is very similar to
that of Concurrent C. We discuss the process model of our
proposal below.

Fourth Conference on Hypercube Concurrent Computers and Applications

3 The Parallel Language

As stated above, our model of a parallel programming lan-
guage for a DMM is one where multiple threads of execution
are available, each with its own data area. We provide this
capability by adding a process model to a sequential lan-
guage. The language used initially to provide our process
model is C [13]. Because of its simplicity, C has many
desirable features that fit in well with our proposals. The
parallel features added to C are intended to be straightfor-
ward and require only basic run-time support. The following
is a summary of language features:

s Process model concurrency.
» Dynamic and static process creation and scheduling.
e Global data sharing.

s Support for synchronization and communication.

In addition to the features provided, there are other primitives
which are intentionally omitted from the language. They are:

o Shared data is not protected from concurrent access.
e No lock variables or semaphores are provided.
s No remote procedure call facility is provided.

o Timing is not supported.

The language features are described in the following para-
graphs together with the reasons for the above omissions.

Process Scope and Visibility Function declarations in C
may not be nested. We apply this restriction to processes
as well. Process dependencies are determined by create and
merge points, not by declaration. The scope and visibility
rules we use are the same as they are for C. Global variables
are declared before the beginning of the main function or are
visible in other files using the extern declaration. Variables
declared within a process are not visible outside the process.
Variables may be visible to a subset of processes if all are
declared in a single file, and the variables use the static
declaration. Processes themselves may also be declared as
static, which restricts their visibility to the file where they
are declared and prevents processes declared in other files
from creating instances of them.

Processes must be reentrant, so that multiple instantiations
of them may all execute simultancously. All variables local
to a process are allocated on a local stack. These variables
are then deallocated when the process completes, just as in
the case of a return from a function call. Static variables
are not allowed in processes, they must instead be declared as
described above. Besides its local variables, a process can
only access parameters, global variables, and visible static
variables. Data that is to be shared by subsets of processes
is controlled by the programmer by using parameters or static
variables. If access to shared static or global data must be
synchronized, the create and merge primitives must be used.

Page 3



Process Declaration Processes are declared at the begin-
ning of the program before the main function. The process
declaration specifies a type, a mode, input and output pa-
rameters, and code. The type identifier is used in create
statements to create an instance of a declared process. The
mode specifies whether process termination is synchronous or
asynchronous. Synchronous processes may return data upon
completion, and must merge with the process that creates
it. Asynchronous processes do not return data, and simply
run to completion. Parameters may also be passed into pro-
cesses upon creation and parameter semantics are by copy.
The code of a process is basically the same as a function,
but may also contain interprocess communication statements
(described below). Synchronous processes must also con-
tain complete a statement that specify values or variables
o be used for output parameters. Asynchronous processes
also contain complete statements, but without data. The
complete statement is necessary in the case of asynchronous
processes, because the main program may not terminate until
all of its processes have completed. An example of process
declaration appears in Fig. 1.

process synch proc(data item)
returns (result)
/* Parm type declaration. */
int data item, result;
{ /* Begin code. */
int i; /* Declare locals here. */

complete (result) ;

}

Figure 1: Process declaration.

Process Creation Processes may be created statically or
dynamically via the create statement. Static creation is pos-
sible when the create statement occurs before the main
function in the global declaration area, and the parameters
passed into the process are known at compile time. An im-
plementation may create these processes at run-time before
the execution of the main program begins, and, in this case,
parameters passed to the process may be variables. Dynamic
creation occurs when a create statement is executed at some
point in the main program or in some other process. The pro-
cess creating another process is suspended until the creation
is complete. The create statement may indicate an integer
processor identifier that specifies the initial location of the
created process. This is referred to as a location clause, and
it uses the keywords on node. The create statement returns
a process identifier, which can be used for process commu-
nication and termination. A variable must be declared of the
predefined type pid, and specified in the create statement to
hold the process identifier.

The create statement also may be used to create groups
of processes at once. The created processes may receive
exact copies of the parameters passed in, or they may receive
separate values from an array. If an array is specified as an

Fourth Conference on Hypercube Concurrent Computers and Applications

input parameter and has a * in any of its subscript fields, a
unique value of that subscript’s range is provided for each
created process. If more than one x appears, the subscripts
are sequenced in row-major form, i.e. with the right-most
index varying first. The input parameters of the process are
declared to be of the same type as the component type of the
array designated in the create. The create statement returns
an array of process identifiers in the case where a group of
processes are created. Figure 2 shows an example of process
creation.

int data[N], datum; /* N is a constant */

pid procs[N], oneproc;

procs[*] = create [N] proc(data[*]);

/* Each index of procs gets a unique pid.
* Each process gets a unique value from
* data. N may be replaced by a variable.
* A single process is created for node 2
* by the following:
*/

oneproc = create proc (datum) on node 2;

Figure 2: Process creation.

Process Termination There are several types of termina-
tion possible for processes. Synchronous processes terminate
when they execute the complete statement. The creating pro-
cess may then complete an execution of a merge statment
that optionally reads values of output parameters from the
completed process. Groups of processes may also be spec-
ified in single merge statement, using the * notation in a
manner similar o that described above. An example of the
syntax for merge is given in Fig. 3.

Asynchronous process also execute a complete statement
as their last statement, but no output parameters are specified
and the creating process does not merge with the completed
asynchronous process. The completion of asynchronous pro-
cesses is necessary to allow the entire program to terminate.
Thus, in a sense, the last statement of the main program can
be thought of as a merge with all asynchronous processes.

int results[N], result;

/* A group merge. */
merge procs[*] (results[*]};

/* A single merge. */
merge oneproc (result);

Figure 3: Process merging.

Processes may also be forcefully terminated using the kill
statement. Any process including the main program may kill
any other process for which it has a valid process identifier.
Process groups may also be killed in a single statement using
the * notation.

Page 4



Process Communication In addition parameter passing be-
tween processes, primitives for explicit interprocess commu-
nication are provided. This allows processes to exchange
data while running, and avoids the need for a large number
of process creations and terminations. Asynchronous com-
munication is supported using basic send and receive primi-
tives. A rendezvous mechanism is also proposed to support
synchronous communication. It is very similar to the ones
provided in Concurrent C and Ada [9], except that the com-
plex timed and conditional forms are not included.

The rendezvous mechanism is supported with call and ac-
cept statements. A call statement names a process identifier,
entry point for the rendezvous, and parameters to be passed
in and out. The output parameters returned from the accept-
ing process must be specified in a receive clause in the call
statement. A sequence of statements may be specified in a
call statement after the reserved word else. These statements
are executed if the rendezvous is not completed, either be-
cause of an invalid process identifier or because the called
process has terminated. The calling process is suspended at
the point of the call, and does not resume until the output
paramelters are provided by the accepting process.

The accept statement specifies the entry point, the param-
cters, and a sequence of statements to be executed while the
two processes are synchronized. This sequence of statements
must end with a send clause that returns the output param-
eters to the caller. Execution is suspended if no calls are
pending at the accept. The accept statement may be embed-
ded along with several others in a select statement, which
nondeterministically selects one of the accept statements for
execution. A select statement may specify a sequence of
statements following the reserved word else that are exe-
cuted if no calls are pending on any of the accept statements.
Boolean conditions, known as guards, may be specified be-
fore cach accept statement. No accept is attempted unless
its guard is true.

Asynchronous communication is supported with send and
receive primitives. The send statement is similar to a call,
but there are no output parameters. Execution of the sending
process continues immediately after the send. A broadcast
function can also be used in conjunction with send. In this
case, the target of the send is specified using an array for a
process group with the % notation.

The receive statement is identical to the accept. Guards
may be used, and several receive statements may be embed-
ded in a select statement with an else part. The sequence of
statements is specified in a receive just as it is in an accept,
since these statements are not executed if the guard is false
or an alternative receive is executed. Both calls and sends
are enqueued in FIFO order at their respective entry points.

Example syntax for all interprocess communication state-
ments is shown in Fig. 4.

Shared and Private Data As stated above, processes may
share global variables or visible static variables. It must
be recognized, though, that these references may be remote.
However, these variables may be placed on specific proces-

Fourth Conference on Hypercube Concurrent Computers and Applications

/* Basic call statement. */
call oneproc.deposit (data in)
receive (data out);
else

{
}
/* The following is a broadcast. */
send procs[*].mailbox (message);

/* Accepts embedded in a select. */
select
accept deposit (datal)

{
send (data2);
}
when flag then accept withdraw ()
{
send (data3) ;
}
else
{
}

end select;

/* The basic receive statement. */
receive mailbox (message);

Figure 4: Process communication.

sors using a location specification that is similar to the onc
used in a create statement, but the location integer specified
must be a constant. This feature is provided since it may be
of use in some algorithms. For example, using the location
specification in a create statement, a group of processes may
be created to run on a single node. These processes may then
share a static variable that is located on that processor.

While sharing of variables is supported to a certain ex-
tent, the language encourages sharing through communica-
tion calls and parameter passing. This reflects an underly-
ing assumption that memory is plentiful in a DMM. If this
is indeed the case, multiple copies of both code and data in
multiple processor memories should not cause any problems,
and may increase efficiency if it enables remote references
to be avoided.

Omitted Features Several features that are common in
languages for distributed and parallel computing have been
omitted from our proposal, as stated above. These features
are semaphores, shared data protection, remote procedure
calls, and explicit timing support. The first three features are
not needed, since the ones provided are sufficient to imple-
ment these operations. Timing is not supported, since the
language is not intended for real-time systems.

Synchronization is provided in the language through pro-

Page 5



cess creation, termination, and communication. Mutual ex-
clusion can be coded using processes that protect shared re-
sources, and provide access through rendezvous. This style
of protection can also be used to protect shared variables
from concurrent access. The omission of semaphores fol-
lows the advice of the Ada language designers [10], who
state that semaphores lead to a condition of “distributed crit-
ical sections,” where accesses to shared resources are not
centralized within a process. The other feature omitted from
our proposal is the remote procedure call {3]. This operation
is not necessary, since communication with remote processes
is possible, and these processes may be bound to a processor
if necessary. It is our philosophy that procedures (or func-
tions) should be reentrant and shared amongst all processes
to which they are visible. Multiple calls to one procedure
may then execute simultaneously. Instead of using proce-
dures to manipulate shared data or create other side effects,
processes should be used.

4 The Run-Time System

The run-time system for our parallel language must support
the execution of processes. The process is the unit of distri-
bution in this language. Because processes may share data
only through the use of globals or parameters, there is no
cactus stack structare. This greatly simplifies the support for
distributed processes, and avoids the problems encountered
with distributing Ada tasks and packages. The major com-
ponents of the run-time system for our paralle! language are
described briefly in the paragraphs below. Where similarities
io the run-time support for Ada occur, additional detail can
be found in [5, 6, 7].

Run-Time Kernel The run-time system is organized as a
kernel which executes on each processor in the DMM., The
kernel provides support for scheduling processes, creating
and terminating processes, interprocess communication, and
remote object reference. In order to provide these services,
the kernel must interface with the operating system support
for message passing, and use assembly code for some low-
level routines.

Processes are managed by the kernel using process control
blocks (PCBs). A PCB is a contiguous block of memory that
contains a process’ state, stack space, identifier, and pointers
to entry queues for communication (se¢ Fig. 5). The state
of the process indicates its execution status in addition to
its register values and other process state information. The
stack space is used to allocate local variables and frames for
function calls. The process identifier is simply an integer, but
when other processes use process identifiers defined at the
language level, they are records made up of a unique integer
value and the node number where the process is executing.
The entry queue pointers are to blocks of memory assembled
into a linked list. Each entry in the list is referred to as a call
record, and contains data for an execution of either a send or
call operation, depending on the type of entry point (either a
receive or accept). When the process with the entry queue

Fourth Conference on Hypercube Concurrent Computers and Applications

executes a receive or accept, the first entry on the appropriate
queue is consumed and the queue is updated.

Process Control Block Entry Queue

Proccess call Info
Info
Next Ptr =
State
Parameter
- Space
o
o
Head Ptr #— Call Info |4
Datafora i
particular Tail Pir = Next Ptr =
t int Guard Value
eniry pomt. Parameter
Other Info
Space
o
=
. Call Info [
Next Ptr s——
Parameter
Space

Figure 5: Process control block and entry quecue.

Scheduling is supported by maintaining a queue of
runnable processes. Time slicing of processes is easily sup-
ported using an interval timer [5]. Scheduling points occur at
time-slice interrupts and process state changes. These state
changes result from traps into the run-time system (o request
interprocess communication, process creation, or process ter-
mination.

Process Creation and Termination As stated above, pro-
cess creation can be static or dynamic. Static creation can be
viewed as an optimization, and can occur if the create state-
ment is in the global declaration area, and the parameters
for it are all statically known. Otherwise, process creation
occurs dynamically when it is encountered during the execu-
tion of the program. We require that cach processor retain a
copy of the code for any process which may be executed on
it.! Creation is performed by the run-time system by allocat-
ing and initializing a process control block. The generated
code for each process is similar to that of a procedure, and
the process allocates and initializes its own local variables
on its stack space. If a process is to be created on a remote
node, the run-time system sends a message containing the
input parameters to the node where the creation is to take
place. When the creation is complete, a message containing
the process identifier is returned to the creating node.

Termination occurs either when processes execute com-
plete statements or when they are killed. A complete state-

1 As an optimization, analysis of the program may be performed at com-
pile time to reduce the number of code copies needed.

Page 6



ment informs the creating process of the completion and pro-
vides any output parameters. This may involve sending a
message to the processor where the creating process is exe-
cuting. The creating process consumes the output parameters
when it executes a merge statement. If the merge point is
reached before the named process has completed, the creat-
ing process blocks and waits for the completion data to be
provided. In the case of asynchronous processes, no data is
returned upon completion, but a message is still sent. This
enables the run-time system on a given processor to record
when all of the processes that it has created have terminated.
This is necessary for determining when the entire program
has completed. Kill statements change the state of a pro-
cess so that it is no longer runnable. An acknowledgement
of a kill is made available to the creating process, so it can
tally the termination. The state of any returned parameters
is undefined, so kills should be used with caution. Killing a
terminated process has no effect.

Interprocess Communication The support for interpro-
cess communication is straightforward, based on our experi-
ence with implementing the Ada rendezvous mechanism on a
hypercube [6]. The rendezvous mechanism proposed in our
language is simpler, since there is no support for timed or
conditional calls. The asynchronous communication primi-
tives are also easily implemented. If the send or call is to a
locally located process, the entry queues of the receiving or
accepting processes are manipulated by the run-time system
to include call records. If the send or call is to a remote
process, the call record is formed and copied into a message
that is sent by the operating system. When the message is
received by the run-time system on the remote processor, the
call record is copied from the message buffer and inserted
into the entry queue. In the case of a rendezvous, the calling
process blocks and awaits a reply. The accepting process
executes any statements specified as part of the rendezvous,
and then returns the output parameters, either through the
original call record or via another message. The run-time
system then copies the parameters into the stack of the caller
or provides a pointer to the results. The run-time system
requires storage for the allocation of call records. In the case
of calls local to a processor, the call record may be allocated
off the caller’s stack.

In the simple case of a receive or accept, a process enters
the run-time system when the statement is executed. The
run-time system attempts to read data from the appropriate
entry queue and make the call record available to the process.
If there is no data available, the process waits until a send
or call arrives. In the general case, the receive or accept
is embedded in a select statement and/or may be guarded.
In this case, the process must indicate to the run-time sys-
tem which subset of entries it is willing to accept data from,
and whether or not the process should block if no data is
available. This can be accomplished by manipulating a data
structure contained in the process control block. This struc-
ture contains the addresses of the code associated with each
entry point and the guard values.

Fourth Conference on Hypercube Concurrent Computers and Applications

Remote Object Reference Any reference to a global or
static variable is potentially a remote reference. The pro-
cess must enter the run-time system at the point of a global
variable reference. Because these variables must be bound
to processors statically, the process knows which processor
the global variable resides on. The run-time system uses
this information to send a message to the appropriate proces-
sor, and includes data if the access is a write. The process
performing the global variable access is blocked until an ac-
knowledgement is received from the processor performing
the access. The acknowledgement contains the value of the
accessed object and/or an indication of an error condition.

The use of pointers as globals and the sharing of pointers
between processes is allowed but not recommended. It is
up to the programmer to guarantee that a pointer refers (o
a local object. If it does not, the result of a dereference is
undefined.

Because of the expense involved in accessing globals with-
out the guarantee of mutual exclusion, it is better for the
programmer to control the sharing of data through processes
and the rendezvous mechanism. The cost is roughly the same
in both cases, but the rendezvous ensures muatual exclusion.
The only exception to this rule is when it can be determined
statically that the variable and the process accessing it will
reside on the same processor. In this case, the variable may
be accessed directly without entering the run-time System.
However, this optimization causes problems when we con-
sider the possibility of process migration.

Process Migration The description of the language and
run-time system to this point has assumed that running pro-
cesses do not migrate. Instead, load balancing is achieved
by creating processes on processors with low loads. This
should be sufficient for most applications. However, migra-
tion of processes after creation may be desirable in some
cases. This, of course, requires more effort from the run-
time system. As long as code for a process is available on
another processor, migration involves the copying of the pro-
cess control block and entry queues from one processor (o
another. We require that all code be read-only, so that this
strategy will work correctly. Also, this strategy requires that
all data accesses within a process are relative to the stack
pointer. This may require that processes be allowed to mi-
grate only at specific point in their execution. The run-time
system must also reconstruct all call records into the proper
entry queues. The migration of a process may be expensive,
and should only occur when a net increase in efficiency can
be guaranteed. To reduce the cost, only processes with empty
entry queues should be moved.

The movement of a process will have some side effects,
including the invalidation of its process identifier. The run-
time system will have to forward messages for processes
that have relocated, and normal message contents will have
1o be altered so that stale process identifiers can be updated
when encountered. Migration of processes may also invali-
date assumptions regarding the locality of objects referenced
by pointers. When migration is allowed, all references o
global variables must be assumed to be remote. Pointers

Page 7



should only be used within processes to refer to local data,
and should be relative to the stack pointer.

5 Status and Conclusions

At this point, the run-time support for our proposed parallel
language is being developed using our Ada run-time kernel as
a base. The run-time support is simpler than that for Ada, due
to the fact that our language provides a more direct reflection
of the underlying environment. The main differences in the
run-time support for our proposed language are summarized
as follows:

e The cactus stack is not present in our proposal, so the
arbitrary distribution of processes causes no problems.

¢ Timing support is completely omitted.

e Remote object references may only occur in the case of
globally shared or static variables. There is no remote
procedure call.

¢ Migration is still somewhat difficult, but may be imple-
mented without violating any rules regarding units of
distribution.

In summary, the language described here is one suitable for
expressing general-purpose parallel programs for execution
on distributed-memory multiprocessors. A level of machine
independence has been provided, which allows software 10 be
developed independently of the number of processors avail-
able. However, location clauses may be used to take advan-
tage of optimal distribution strategies.

References

[1] G. R. Andrews, R. A. Olsson, M. Coffin, 1. Elshoff,
K. Nilson, T. Purdin, and G. Townsend. An overview
of the SR language and implementation. ACM
Transactions on Programming Languages and Systems,
10(1):51-86, January 1988.

[2] R. G. Babb 11, ed. Programming Parallel Processors.
Addison-Wesley, Reading, Mass., 1988.

{31 A. D. Birrell and B. J. Nelson. Implementing remote
procedure calls. ACM Transactions on Computer Sys-
tems, 2(1):39-59, February 1984,

[4] G. D. Buzzard. High Performance Communications for
Hypercube Multiprocessors. PhD thesis, Department
of Electrical Engineering and Computer Science, The
University of Michigan, 1988.

[51 R. M. Clapp and T. Mudge. Ada on a hypercube.
In Proceedings of The Third Conference on Hypercube
Concurrent Computers and Applications, pages 399-
408, Pasadena, CA, January 1988.

Fourth Conference on Hypercube Concurrent Computers and Applications

[6] R. M. Clapp and T. N. Mudge. Distributed Ada on a
loosely coupled multiprocessor. Technical Report RSD-
TR-3-88, Robotics Research Laboratory, Department of
Electrical Engineering and Computer Science, The Uni-
versity of Michigan, January 1988.

{71 R. M. Clapp, T. N. Mudge, and R. A. Volz. Dis-
tributed run-time support for ada on the ncube hyper-
cube multiprocessor. Technical Report RSD-TR-10-87,
Robotics Research Laboratory, Department of Electri-
cal Engineering and Computer Science, The University
of Michigan, August 1987.

[8] N. H. Gehani and W. D. Roome. Concurrent C. Soft-
ware Practice and Experience, 16(9):821-844, Septem-
ber 1986.

[9] N. H. Gehani and W. D. Roome. Rendezvous facilities:
Concurrent C and the Ada language. [EEE Transac-
tions on Software Engineering, SE-14(11):1546-1553,
November 1988.

{10] J. D. Ichbiah, J. G. P. Barnes, J. C. Heliard, B. Krieg-
Breckner, O. Roubine, and B. A. Wichmann. Rationale
for the design of the Ada programming language. ACM
SIGPLAN Notices, 14(6), June 1979,

[11] A. H. Karp. Programming for parallelism. /EEE Com-
puter, pages 43-57, May 1987.

[12] A. H. Karp and R. G. Babb. A comparison of 12 par-
allel FORTRAN dialects. IEEE Software, pages 52-67,
September 1988.

{13] B. W. Kemighan and D. M. Ritchie. The C Program-
ming Language. Prentice-Hall, Englewood Cliffs, NJ,
1978.

[14] B. W. Lampson and D. D. Redell. Experience with
processes and monitors in Mesa. Communications of
the ACM, 23(2):105~117, February 1980.

[15] D. May. Occam. ACM SIGPLAN Notices, 18(4):69-79,
April 1983.

[16] T. N. Mudge. Units of distribution for distributed Ada.
In Proceedings of the International Workshop on Real-
time Ada Issues, pages 6466, Morctonhampstead, UK,
May 1987.

[17] F. N. Parr and R. E. Swrom. NIL: A high level lan-
guage for distributed systems programming. /BM Sys-
tems Journal, 22(1 and 2), April 1983,

[18] M. L. Scott. Language support for loosely coupled dis-
tributed programs. IEEE Transactions on Software En-
gineering, SE-13(1):88-103, January 1987.

[19] R. A. Volz, T. N. Mudge, G. D. Buzzard, and P. Kr-
ishnan. Translation and execution of distributed Ada
programs: Is it still Ada? IEEE Transactions on Soft-
ware Engineering, SE-15(3):281-292, March 1989.

Page 8



