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1 Introduction

The flexible computer integrated factory has been a goal of American industry for at least
the past five years and has often been looked upon as industry’s salvation. Concrete re-
sults to date, however, have fallen far short of expectations. One of the principal reasons
is the complexity of manufacturing software. Software is the key to successful factory
integration. The difficulties in solving the problem of building complex manufacturing
software systems are numerous: the diversity of devices and languages used, the dis-
tributed nature of the system, the size of systems which must be built, and the persistent
intractability of large software systems in general.

Manufacturing software problems are rooted in a long history of building small (by
comparison to what is needed) stand alone systems with little regard for interfacing the
devices to computers, much less concern for compatibility with other diverse devices.
The solutions will also take a long time, and are not amenable to short term patches. The
McKinsey Company has recently completed a study on the integration of different levels
of CAD/CAM capability into manufacturing systems, and has concluded that retrofitted
evolution has only very limited success. Only through careful long term planning for
evolution to the ultimate goal will that goal be attained. The kinds of planning and
effort needed are comparable to those put forth by DoD in its attack on the large scale
embedded software problem that resulted in the development of the Ada! programming
language [1]. While manufacturing can and should take advantage of DoD’s efforts, it
has sufficient additional software problems that it must begin its own long range plan on
software problems.

Solving the manufacturing software problem requires a full spectrum of activity rang-
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ing from both corporate and university research through experimental implementations
and testing. To obtain real solutions to the problem, it is likely that cultural shifts will
be necessary in both the ways in which automated factories are operated and in relations
between the manufacturer and equipment vendors. This chapter outlines the nature of
the software problem and suggests a direction toward a solution.

2 The Manufacturing Software Problem

The integrated manufacturing software problem is strongly related to the complexity
and size of the system being integrated, and to the diversity of computers, languages
and operating systems being used to accomplish the integration. The machines, robots,
material transports, and so forth exist, but the software needed to tie them together
into orchestrated, flexible, robust systems does not. The software for the relatively few
integrated systems that do exist is very application specific, difficult to maintain, difficult
to change, difficult to port to other hardware, not robust and expensive. The following
list of typical device characteristics illustrates some of the problems:

¢ NC machines—Programmed in APT-like languages [2]. Complex special purpose
controllers with only a limited interface to the outside world.

e Robots—Programmed in VAL [3], Karel, or AML-like languages [4] [5] or, even
more likely, by teaching. Controllers built upon general purpose computers, but
interfaces to the outside world often limited.

e Programmable Controllers—Programmed in ladder logic; limited other program-
ming capabilities. Usually built out of special purpose hardware. Only limited
interfaces to other computers.

s Materials handling and storage/retrieval systems—Typically controlled by a general
purpose computer using languages such as assembly, FORTRAN, Pascal, or C.

Thus, controllers are not designed for interconnection; there are too many languages,
many of them inadequate and out of date while others are special purpose; controller
hardware often lacks the functionality of general purpose computers; there is almost no
use of modem software techniques; and there is no overall theoretical base for integrating
the operation of such systems.

Next consider the block diagram of Fig. 1 which portrays the kinds of interconnections
which are typical of those desired in the factory of the future. The diagram is coded
to distinguish interacting physical devices, local electronic communication and factory
wide network communication. Symptomatic problems, which are easy to recognize, are
described first. Then, the fundamental problems underlying these and whose solutions
are the real key to successful future manufacturing software integration, are identified
and discussed.
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One of the first symptomatic problems is the inability of devices to communicate
with one another. Most manufacturing devices have historically operated in a stand alone
mode, and it is only relatively recently that it has been recognized that communication
interfaces are necessary. Industry is now rapidly settling on RS-232, MAP, Ethernet, and
token rings as connection standards [6], and physical interconnections will be less of a
problem in the near future.

However, there is very little standardization of the logical (applications level) inter-
faces between the devices, and, even if physically connected, effective communication
among the software programs on different devices is difficult to obtain. Frequently, the
functions needed from a device are obtainable only in awkward ways, and there is gener-
ally no capability to modify the software in the device controllers to provide the needed
functions in an easy-to-use form, even though the device might be physically capable of
doing so. More generally, the software to control the collection of factory devices does
not generally exist.

The programming of machines on the shop floor by shop floor personnel when those
machines are part of a larger integrated system, is much more difficult than programming
stand alone machines. It is neither clear what constraints exist on the operation of a single
machine with respect to others present, nor evident how the programmer can program
within these constraints. Debugging of software involving multiple real-time devices is
difficult, and latent errors often appear. Problems frequently can be traced to misuse of
variables across machine boundaries, and unexpected side effects can occur and create
new problems as a consequence of fixing earlier problems.

To make real progress in solving manufacturing software problems, it is necessary to
identify the fundamental underlying problems and focus attention on solving these. First,
there is a major lack of understanding and definition of the problem. For example, there
is seldom a requirements document for the system being built stating such things as:

e What capabilities should the overall system have?
e What hooks and scars are required for future developments?

e What is the lifecycle view of the systems?

As a result, vendors can only produce what they think the industry needs, without any
carefully developed specifications that are consistent with overall integrated manufac-
turing needs. Often, as marketing ploys, minor differences (called advantages or en-
hancements) are inserted by competitors into the equipment. Manufacturing equipment,
particularly at the software level, are therefore not available as components. This is a
major stumbling block to integration. Industry cannot afford to custom design every
system to utilize whatever specifications vendors are currently providing.

A plethora of inadequate languages are currently used. These appear to have been
developed in ignorance of many important software concepts which have grown out of
the past decade and a half of programming language research. These important concepts
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include data abstraction, compile time error checking, large scale programming support
through separate compilation and modularization, concurrent processing mechanisms,
and real-time support. Also, the languages currently used lack standardization. Most
importantly, none of these languages address the fundamental problem that the systems
with which we are dealing are distributed. They typically include no development tools
that allow one to directly program and debug distributed systems.

While they have been a critial factor in the past manufacturing successes, pro-
grammable controllers are a major stumbling block to future progress. They appear
by the thousands in modem factories and are programmed by skilled tradesmen in a rela-
tively simple and easily understood language, ladder diagrams. While amenable to being
programmed by persons with only modest training, the resulting programs are quite lim-
ited, particularly in their ability to perform non-binary functions and communicate with
higher levels of control programs on other computers. While the controller industry has
provided a succession of higher level programming capabilities within PCs, the improve-
ments have only been incremental and are headed in a direction which will introduce
other problems as well. For example, as higher levels of programming capabilities are
added to PC’s the skill required of the programmers will increase. Current PC’s are
based on periodic scanning of a large number of input states. As higher level functions,
with arbitrary execution times are inserted into ladder outputs, the timing of the scans
will be disrupted. Most importantly, as PC’s become absorbed into larger systems and
are accountable to higher levels of control, it will become impossible to program them
as stand alone devices; we do not yet have the mechanisms, hardware or software, by
which they can be programmed in this larger context. In spite of all of these problems,
the concept of a programmable controller is critical to advanced manufacturing systems,
and new approaches to them must be sought. There are, in fact, a number of completely
different approaches to the development of programmable controllers which have the
potential of offering vastly improved capabilities, both in terms of hardware performance
and programming capabilities, and which can yet be, at the low end, compatible with
current ladder diagram schemes of programming.

Finally, mechanisms for real-time event driven control of complex systems are not
well understood, and general systems for programming them are not available.

3 Toward a Solution

The software problem for manufacturing systems has, then, a number of aspects. We
are faced with a heterogeneous mix of programmable devices. Various programming
methods are used. Interconnection of devices is awkward. Even if these were not issues,
the size and distributed nature of manufacturing software alone would make for very
serious problems. Solving problems of this magnitude requires a well thought out plan
of attack extending over a substantial length of time, at least 10 years in our opinion.
The solution must begin with a new conceptual framework for integrated manufacturing



system control software. The need for a conceptual framework for manufacturing control
software was a major conclusion of the recent NSF Workshop on Manufacturing Systems
Integration[7].

We propose a conceptual framework based on an intimate blending of modern software
concepts and formal models. In particular, we view an integrated manufacturing system as
an assemblage of software/hardware components, where “software/hardware component”
is a generalization of the software component concept in which, for instance, the internals
of a component instead of software might be a robot [8]. The formal models describe
the semantics of these components and their assemblages.

Ideally we want these components and assemblages to be generic in a way that allows
them to be used in different manufacturing systems, and we would like the creation
of assemblages and their models to be computer-aided, semi-automatic, or, perhaps,
even automatic. Further, the assemblages are distributed; therefore, issues of distributed
processing must be considered and incorporated into the conceptual framework.

Finally, we argue that the foregoing requires a common language environment. How-
ever, that does not mean a monolithic software, nor, does it rule out certain parts being
written in languages other than the common language. By “common language environ-
ment” we mean that the software providing overall structure, and probably most other
parts as well, is written in a common language. Software in other languages will fre-
quently be associated with particular devices, for example, a robot programmed in VAL,
and these can usually be encapsulated into shells crafted from the common language.

3.1 A Software/Hardware Components Industry

An important long term goal is the development of a components industry for manufac-
turing equipment and software. With this industry in place, manufacturers would specify
in a formal way the requirements for the manufacturing equipment they need and the
component suppliers would supply manufacturing hardware and software components
which would “plug” into the rest of the manufacturers system. This is exactly the oppo-
site of current practice in which the manufacturer assumes the responsibility for custom
designing the hardware and software interfaces for integration of the system.

For several important reasons to be outlined below, we will view these components
from the perspective of a control program on a general purpose computer. From this
perspective, the “components” are software abstractions of the real devices [8]. We thus
refer to this components industry as a software/hardware components industry, emphasing
their dual nature. Of course, it is possible to have components which are truly software
alone, e.g., arithmetic or database components, just as our components may have a
physical aspect to them. The software/hardware component view, however, is the correct
one for the purpose of building integrated manufacturing systems because software is the
only aspect of the component to which the higher level control system has any direct
access.



Contro! Computer

Control

“Program

Component Package Specification

Component implementation

Network (e.g. MAP)

The
“Software
. Device
Component Controller
Device

Figure 2: Software Component requiring distributed execution.

A pre-condition for the development of such a software/hardware components industry
is the adoption of a standard language that supports modern software engineering concepts
and has suitable abstraction capabilities. When one considers other language requirements
such as support for tasking and timing, large scale program development and extensibility,
there are few practical choices. The most widespread of these is Ada, and we frame the
rest of our discussion in terms of it. Furthermore, there will be a major general software
components industry built around Ada which can be drawn upon to support the more
general software components industry proposed here.

With Ada as a base language, the software/hardware component view can be described
more clearly and the interactions between the industrial manufacturer and the (manufac-
turing equipment) component supplier described in more detail. Figure 2 shows one of
the industrial manufactures control computers connected via a communications network
to some manufacturing component. Of particular interest is the use of Ada packages as



the abstraction mechanism for the component. The package specification is considered
to be part of the control program, while the package body is part of the component.

Several things derive from this view. First, the industrial manufacturer designs the
package specification to provide the view of the manufacturing device necessary for the
application at hand. Component suppliers are then given the compiled specification and
must provide not only the required hardware, but a body to the component package which
is compatible with the manufacturer compiled specification as well. Since the component
is now carefully specified, several vendors might bid against each other for the job.
Second, since the body must reside in the control computer, the supplier must take
responsibility for the applications level communication across the network. The supplied
software/hardware component is directly plugable into the manufacturer’s computer.

Third, since suppliers will have a fixed and standard framework within which they
must deliver components, it will both be easier to develop custom products and easier to
formulate standards when a class of devices has reached maturity.

3.2 Using Ada for Software/Hardware Components

Ada has been expressly designed to support the software components approach to con-
structing software for real-time embedded applications (in particular, see Bames p. 286
[9D). The support for separate compilation, packages, distinct package specifications, and
generics are particularly pertinent. Indeed, many of the companies currently focussing
their efforts on Ada compilers are likely to redirect those efforts to the production of
reusable Ada software components when the acceptance level of Ada has increased suf-
ficiently.

To provide a more concrete picture of an Ada software/hardware component con-
sider the case of a controller for a six-degree-of-freedom robot (for further examples see
[10][11]). It may be defined by the following package specification,

package ROBOT.6 is

procedure MOVE ( X, Y, Z: in REAL; DONE: out BOOLEAN);

procedure HAND ( OPEN, CLOSE: in BOOLEAN; DONE out BOOLEAN);
end ROBOT_6;

The package specification is bracketed by “package ROBOT.6 is” and “end ROBOT_6;”
(Ada reserved words are shown in lowercase bold and variables, types, procedure names,
function names, task names and package names are shown in uppercase). In the above
case only two procedures are specifiecd—MOVE and HAND. In general, procedures,
functions variables, types and tasks can be included in a package specification. The
details of the implementations of the two procedures are contained in the body of the
package. As far as the user of the robot is concerned it can be manipulated by MOVE
and HAND only. These procedures and the number and type of the arguments are
the complete specification of the user interface. In terms of Fig. 2 the principal part

8



of these procedures would reside in the control computer. Implementing the actions
implied by the procedures would require calls across the network. The important point is
that the unnecessary detail about the robot controller has been suppressed. This notion of
“information hiding” is the motivation for the package construct in Ada [12]. For instance,
the user is not required to know the bit level commands that have to be communicated
to the stepper motors, or dc motors, that drive the arm. The user also does not need to
know that a coordinate transform is being done in the controller, or the details of the
cross-network calls. Of course, this example is a very simple specification. If it were
the sum total of the design specification given to a supplier of robots, the supplier would
have a lot of freedom—perhaps too much. For example, he would be free to implement
his own control law among other things.

A good set of requirements would give the minimum ingredients that one would
expect to find in a specification like the one above. What do you want to know: the
control law—perhaps; bits in the register that determines the position of the third joint—
perhaps not. What do you want to hide? In most cases you will probably want to
distinguish between a drill press and a robot, although at some level of abstraction, say
the flow of the subassemblies through the shop, you may want to regard them both as
servers in a network of queues.

In the case where the control computer is responsible for several robots, it may be
inefficient to block on calls to MOVE, i.e., to wait until the complete move for a particular
robot has taken place before moving another. This need for concurrency can be handled
by specifying MOVE as a task as follows,

package ROBOT_6 is
procedure COORD ( X, Y, Z: in REAL;
function ACK return BOOLEAN;
procedure HAND (OPEN, CLOSE: in BOOLEAN; DONE: out BOOLEAN);
end ROBOT_6;
package body ROBOT_6 is
task MOVE is
entry COORD ( X, Y, Z: in REAL);
entry ACK ( DONE: out BOOLEAN);
end MOVE;
procedure COORD ( X, Y, Z: REAL) is
begin
MOVE.COORD ( X, Y, Z);
end MOVE;
function ACK return BOOLEAN is
DONE : BOOLEAN;
begin
MOVE.ACK(DONE);
return DONE;
end ACK;



procedure HAND(OPEN, CLOSE : in BOOLEAN; DONE; out BOOLEAN) is
begin

end HAND;
task body MOVE is

end MOVE;
end ROBOT_6;

A software/hardware components house would have the manufacturer’s specification
in one hand and the functionality of the robot controller in the other hand. The component
produced could be viewed as a software adapter. Of course the same robot might be used
for different applications—some where dynamics are important and others where they are
not. These differences can be handled by writing different specifications or by making
generic specifications to cover a class of virtual robots. By providing custom package
bodies different robots can be made to appear the same. Many possibilities exist. We have
used the example of robots, but the above applies equally to other types of manufacturing
machinery.

The idea of software specification is an important step in defining the behavior of the
subsystems (components) of a manufacturing system. However, there are important extra-
linguistic performance parameters. For example, reliability and mean-time-to-failure.
These types of things cannot be defined within the language. An interesting question,
and one that the benchmark of[13] starts to answer is the issue of specifications that
cannot be couched in language terms. In particular, the time of events. The language
describes function and sequence (and concurrency), but not sequence with respect to a
clock, ie, real-time performance.

3.3 Formal Models

We need models of the factory floor and process plans to develop control algorithms.
Since we realize the factory floor and process plans as assemblages of software/hardware
components, we are, in effect, concerned with formal semantic models for such compo-
nents. The modeling methodology used is described in more detail in [11] [14]. It is
a relatively simple formalism based upon as extension to first order logic [15] which is
just expressive enough to capture the level of detail—the logical level-—with which we
are concerned, yet avoids a modeling methodology that is too complicated to be practi-
cal. Further, it is a structure that lends itself well to application of artificial intelligence
techniques.

Finally, it can be used to represent the process plans that the cell is to implement
as well as the actions of the components. The uniform modeling of process plans and
software/hardware components simplifies the software structure and allows one to view
the process plan as just another component in the system.
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One component may include models of other components. The models may then
used in a predictive simulation manner to examine the likely outcome of a possible
control strategy before it is actually applied. And, the formal models of process plans
can be converted to actual components that drive the operation of a system. At present
the translation from the formal models to actual software is performed manually, but
conceptually (at present, and in the future actually) they could be converted automatically.
These instantiated components are then used in the control software being developed, as
shown in the bottom half of Figure 1.

3.4 Distributed Programming Capability

It is clear from Fig. 2 that the component vendors must face the problem of writing
programs that cross machine boundaries. The same will be true for the manufacturers as
well, since even in a modest sized installation there will be multiple control computers
which will have to communicate with each other in a manner similar to that shown in
Fig. 2. Underlying both groups of software requirements, then, will be a need to write
programs that cross machine boundaries. We believe that a promising approach to this
requirement is a distributed version of the Ada language, that is one in which a sin-
gle program can be executed on a set of processors [16] [17] [18] [19]. The point of a
distributed language is twofold. First, it would reduce the programmer’s view of interpro-
cessor communication to interprocess communication, which is the programmer’s natural
view of communication; any special application level communication protocols become
transparent to the programmer. It provides a conceptually cleaner view of the program.
(Note that MAP makes the communication possible, but not transparent.) Second, a ma-
jor tool of modem software technology is extensive compile time error verification. The
single program view of a distributed system would allow error verification to be done
across the entire system instead of, as is now the case, only on the subsets of a program
residing on a single processor.

Our approach to this need has been to adopt a standard programming language in-
tended for real-time operation and develop a distributed version of it. Because it is
basically a good language is subject to intense standardization efforts, and is ostensibly
intended for distributed execution, we selected Ada. To achieve distributed execution, we
have built a pre-translator that takes a single Ada program as an input and whose output
is a collection of pure Ada programs, one for each targeted processor. This is somewhat
akin to the way embedded SEQUEL is handled in the DB2 database management system.

Our distributed Ada system [17] allows us to distribute library packages and library
subprograms statically among a set of homogeneous processors. We write a single pro-
gram and use a pragma (essentially a complier directive) called SITE to specify the
location on which each library unit is to execute. For example, if a simple transport
system were controlled by computer number 2 and the cell control using it were on
computer 1, a sample of relevant code might look as follows:
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pragma SITE (2),
package VEHICLE is
procedure MOVE_FORWARD;

end VEHICLE;,

pragma SITE(1),
with VEHICLE;
procedure CONTROL is

begin
VEHICLE.MOVE_FORWARD;
end;

Our translation system would replace the local call to the procedure VEHI-
CLE.MOVE_FORWARD with the appropriate remote call. Similarly any references in
CONTROL to data objects defined in package VEHICLE would be translated into ap-
propriate remote references as would task entry calls. Note that the user need only use
the normal procedure call mechanism to cause the vehicle to move.

3.5 Smart Manufacturing Development Tools

Once there is a distributed software/hardware components industry the software problem
for manufacturing will be significantly eased. However, it will not be eliminated. There
will still be the problem of software that is peculiar to a given plant and mix of parts.
As long as software is tailored to specific situations there will be a continuing software
problem. A range of software construction tools are needed. At one end of the spectrum,
tools which allow different levels of shop floor and engineering personnel to program
parts of the system while retaining overall system integrity are needed. At the other
end of the spectrum, and more ideally, what is needed is a way to assemble and adapt
assemblies of software components automatically or semi-automatically.

What is important in both cases, however, is that these tools be developed in the
overall framework of the manufacturing software structure and not be developed first and
then used to force the overall structure into a suboptimal form. As an example of the
needed approach we have developed a prototype generic factory floor controller using
simulation instead of real components is on a pair of VAX’s. The control component is
on one VAX and a simulation of the factory floor on the other [11].
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3.6 Fully Flexible Programmable Controllers

There is a strong need for controllers which are much more powerful than those of
today. In other words, an Industrial Computer is called for. First, controllers must
be programmable in a powerful higher level language as well as ladder logic to effect
advanced manufacturing controls and communication. To minimize complexity, this lan-
guage should be the same as used for other parts of the system, i.e., Ada. However, this
does not mean that everyone must learn Ada. The user interfaces can be just about any-
thing that seems appropriate. For example, ladder diagrams are not ruled out. The design
of these user interfaces should be executed in a way to be compatible with constraints
imposed by participation of the controller in a larger control system is a major research
area.

Finally, we note that there are numerous ways in which the industrial computer of
the future could be constructed ranging from extended special purpose processors as of
today to new multi-processor architectures. A likely profitable direction, however, would
seem to be to adapt general purpose computers to the task. They easily make higher level
programming languages available and there are techniques for achieving the equivalent
of high scan rates. It is also straightforward to provide ladder diagram interfaces to them.

4 Conclusion

A coherent approach to manufacturing software is one of the most important building
blocks needed for U.S. industry to truly develop integrated manufacturing systems. We
have described a concept by which coherent manufacturing can be accomplished. How-
ever, the theory is not yet complete. Indeed, much remains to be done. Extensions to
the formal modeling system are needed to more fully handle generics and distribution
of components. The process of instantiation of generics to real components must be
extended to allow dynamic instantiations. Distributed languages must be studied in a
more general context of multiple forms of memory interconnections, multiple possible
binding times, and various degrees of homogeneity (e.g., see the major dimensions of a
distributed language defined in [20]).

Yet, we have accomplished enough to demonstrate the viability of the major under-
lying ideas. A primitive version of a distributed Ada translation system is working, and
a limited generic real-time factory controller is operational, with real factory compo-
nents replaced by simulation. We believe that when it is fully developed, the approach
presented here can become the heart of future integrated manufacturing systems.
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Notes
As far as a components industry is concerned, one could consider creating generic versions
of the above package with control law functions passed in as subprogram parameters.



