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Abstract 

Branch and Bound (BB) algorithms are a generalization of 
many search algorithms used in Artificial Intelligence and 
Operations Research. This paper presents our work on imple- 
menting BB algorithms on hypercube multiprocessors. The 
O-l integer linear programming (ILP) problem is taken as 
an example because it can be implemented to capture the 
essence of BB search algorithms without too many distract- 
ing problem specific details. A BB algorithm for the &l ILP 
problem is discussed. Two parallel implementations of the 
algorithm on hypercube multiprocessors are presented. The 
two implementations demonstrate some of the tradeoffs in- 
volved in implementing these algorithms on multiprocessors 
with no shared memory, su.ch as hypercubes. Experimental 
results from the NCUBE/six show the performance of the 
two implementations of the algorithm. Future research work 
is discussed. 

1 Introduction 

Hypercube multiprocessors have been used successfully for a 
wide range of applications in science and engineering. These 
applications can be characterized to a large extent by: 

1. The applications tend lo have uniform data sets that are 
constant in size and homogeneous in nature. 

2. There is a large degrel: of inherent parallelism in these 
applications. 
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3. The work load generated by an application is uniform 
across the processors; usually as a consequence of di- 
viding the data set uniformly among the processors. 

In this paper, we consider the class of BB algorithms. 
These algorithms do not exhibit the above characteristics and 
hence provide a challenge for parallel processors that, like 
hypercubes, do not have shared memory. It is not clear how 
much parallelism exists in a BB algorithm. The algorithm 
generates an irregular data set (the BB tree) dynamically. 
This implies that the division of work among the processor 
has to be done dynamically and that a load balancing mech- 
anism must be employed. The BB algorithm accumulates 
knowledge about the problem it is solving during its execu- 
tion and uses that knowledge to improve its efficiency. In a 
distributed memory environment, maintaining that knowledge 
involves a number of interesting tradeoffs. 

The remainder of this paper is organized as follows. The 
general formulation of the BB algorithm is described in 
Sec. 2. The O-l ILP problem and the specific BB algo- 
rithm used to solve it are described in Sec. 3. Two parallel 
implementations of that algorithm on a hypercube multipro- 
cessor are described in Sec. 4. The results obtained from 
our experimental setup on an NCUBE/six [NCUB85] system 
are given in Sec. 5. Some concluding remarks and future 
research directions are given in Sec. 6. 

2 The Branch and Bound Algorithm 

There is a large class of problems in the fields of Operations 
Research and Artificial Intelligence for which there exists no 
“direct” methods of solution or no efficient ones. Finding a 
solution involves a search through the problem space. Un- 
guided search, however, can easily become inefficient since 
many of these problems are at least NP-complete. Several 
techniques have been developed to guide the search and im- 
prove its average efficiency. The most general of these tech- 
niques is the Branch and Bound (BB) algorithm [LaWo66]. 

Many aspects of BB algorithms have been studied in the lit- 
erature. In [Ibar76a,Ibar76b,Ibar77,Ib~78] many of the the- 
oretical properties of BB algorithms have been developed. 
BE algorithms have been applied to solve a wide variety of 
problems. Examples include: traveling salesman [LMSK63], 
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integer programming [GeMa72], knapsack [InKo77], and 
many others. Also, BB algorithms have been recognized 
to be a generalization of many of the heuristic search algo- 
rithms in Artificial Intelligence such as A’, AO’ and alpha- 
beta muKa83]. 

The BB algorithm is an intelligent structured search of the 
problem space. The algorithm can be best described as a par- 
titioning algorithm which conducts its search for a solution by 
partitioning the problem space into subspaces of decreasing 
size until the desired solution is found or its non-existence is 
determined. 

The BB algorithm, in its most abstract form, consists of two 
processes: a branching process and a bounding process. The 
branching process partitions the problem space, or subspaces 
of it, into smaller size subspaces. The branching process 
always partitions first the subspace which is most likely to 
contain the desired solution. The branching process continues 
until the subspace is small enough to be searched exhaustively 
to determine if it contains the desired solution. 

The bounding process of the algorithm acts to reduce the 
number of subspaces partitioned by the branching process. A 
subspace is examined by the bounding process before it is 
partitioned. If it is proven that the subspace does not contain 
the desired solution, the subspace is pruned or eliminated 
from further consideration by the branching process. 

The combined action of the branching and bounding pro- 
cesses reduces the extent of the search and improves the 
search efficiency of the BB algorithm. The branching pro- 
cess guides the search towards solutions by partitioning sub- 
spaces that are more likely to contain these solutions before 
subspaces that are less likely to contain them. The bounding 
process helps by eliminating subspaces that cannot lead to 
these solutions wirhour actually partitioning these subspaces. 

The branching process applied to the problem space of a 
given problem can be performed by building a search tree, 
called a BB tree, over the problem space of that problem. 
The root of the tree represents the complete problem space. 
Children nodes in the tree represent subspaces of the prob- 
lem space. The branching process proceeds from the root of 
the tree to the leafs of the tree partitioning subspaces into 
smaller and smaller subspaces. The leaf nodes represent sub- 
spaces that are small enough to be exhaustively searched for 
solutions. 

Subspaces of the problem space represent partial solutions 
of the problem. Consequently, each node of the BB tree 
represents one partial solution to the original problem. The 
branching process proceeds from the root of the tree to the 
leafs extending partial solutions towards more complete so- 
lutions. Each child node represents one possible way of ex- 
tending its parent’s partial solution towards a more complete 
one. 

In most problems it is not practical, if not impossible, to 
explicitly represent the problem space or subspaces of it. A 
more practical representation is to use a problem specific data 
structure which implicitly represents the problem space. This 
data structure representation is referred to as a subproblem. 
Hence, a subproblem is a representation of a problem sub- 
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Figure 1: BB tree of a simple example. 

space or equivalently, a partial solution to the problem. BB 
algorithms are generally expressed and formulated in terms 
of subproblems rather than in terms of problem subspaces. 

The above process of building a BB tree is illustrated in 
Fig. 1. The figure shows the BB tree for a simple exam- 
ple. The original problem PO is at the root of the tree. Pa 
is then partitioned into three smaller subproblems 9, Pz and 
4. These subproblems are represented as three children of 
Pu. Each one of the three subproblems is further partitioned 
into yet smaller subproblems. In general, a subproblem Pj 
is partitioned into lc smaller subproblems Pj, , , Pj* which 
are represented as the Ic children of P,. The process of par- 
titioning a subproblem into smaller subproblems and adding 
the new subproblems to the tree is referred to as expanding 
that subproblem. At any point during the search, the set of 
subproblems that have been generated by the branching pro- 
cess, but have not yet been expanded is referred to as the set 
of active subproblems. The distance from the root of the BB 
tree to any subproblem, measured in the number of edges, 
defines the level of that subproblem. 

A subproblem Pi can be characterized by the value of a 
cost function f. The function f is defined as the value of the 
best solution that can be obtained from the subproblem Pi. 
The value of the function f is not known, however, until the 
subtree rooted at Pi is completely expanded. 

A subproblem Pi can be also characterized by the value of 
another function g, which is referred to as the lower bound 
function. It is defined as follows: 

1. S(Pi) 5 f(P*) (g is a lower bound estimate of f), 

2. s(R) = f(S) (g is exact when P, is feasible), and 
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3. g(P,,) 2 g(J-3 (1,ower bounds of descendant nodes 
never decrease). 

That is, the lower bound function is a lower bound estimate 
of the actual cost function f. In general, g should be much 
easier to compute than f. 

A BB algorithm consists of four major components: a se- 
lection procedure, a branching procedure, an elimination pro- 
cedure, and a termination test procedure. 

The selection procedure selects a subproblem from the set 
of active subproblems. It is based on a selection heuristic 
function h. The selection procedure always selects the sub- 
problem whose h value is minimum from the set of active 
subproblems. In other words, the selection procedure deter- 
mines the order in which the subproblems are selected for 
expansion. Three heuristics are commonly used. In best- 
jirst, the heuristic function is the same as the lower bound 
function. Therefore, subproblems with smaller lower bounds 
are selected first. In breadth-firs, the heuristic function is the 
same as the level of a subproblem in the BB tree. Therefore, 
subproblems with smaller level numbers are selected first. In 
depth-jut, the heuristic function is defined as the negative 
of the level of a subproblem in the BB tree. Therefore, sub- 
problems that are deeper in the tree are selected first. 

It is often convenient to represent the set of active subprob- 
lems as an ordered list of subproblems. The order in which 
the list is maintained is determined by the heuristic function 
h. In depth-first, the list is maintained in a last-in-last-out 
order. In breadth-first, the list is maintained in a first-in- 
first-out order. Finally, in best-first, the list is maintained by 
increasing lower bound values. 

The branching procedure examines the subproblem that has 
been selected by the selection procedure and uses problem 
specific methods to break that subproblem into smaller size 
subproblems. 

The elimination procedure examines the newly created sub- 
problems by the branching procedure and deletes the ones that 
can not lead to better solutions than those already found. To 
accomplish this, a special subproblem referred to as the in- 
cumbent is used to store the best feasible solution discovered 
during the search. A subproblem is deleted if its lower bound 
is greater than or equal to that of the incumbent. 

Finally, the termination test procedure eliminates a new 
subproblem if that subproblem can not lead to any feasible 
solutions. Like the branching procedure, problem specific 
techniques are used to accomplish that task. 

The BB algorithm may be formulated as shown below. 

1. Initialization. 

(a) The set of active subproblems is initialized to con- 
tain the original subproblem. 

(b) The incumbent is initialized to oo. 

2. Selection. 

(a) The subproblem with the smallest value of the 
heuristic function h is selected from the set of ac- 
tive subproblems. 

(b) The subproblem is deleted from the set. 

3. Branching. 

(a) The branching rule is used to generate new smaller 
subproblems from the one selected in (2). The 
lower bounds of the new subproblems are calcu- 
lated. 

(b) Steps 4-7 are performed for each new subproblem 
generated in 3(a). 

4. Termination Test. 

(a) The subproblem is evaluated to determine if it can 
lead to a feasible solution. If not. it is deleted. 

5. Feasibility Test. 

(a) 

(b) 

The subproblem is evaluated to determine if it is 
a feasible solution. If it is, and its lower bound is 
smaller than that of the incumbent, it replaces the 
incumbent. Otherwise, it is deleted. 

If the incumbent is updated in .5(a), then all the sub- 
problems in the set of active subproblems whose 
lower bounds are greater than or equal to that of 
the new incumbent are also deleted from the set. 

6. tower bound test. 

(a) If the lower bound of a new subproblem is greater 
than the lower bound of the incumbent, the sub- 
problem is deleted. 

7. Algorithm Termination. 

(a) If the set of active subproblems is not empty, steps 
(2)-(6) are repeated. Otherwise, the algorithm ter- 
minates, and the optimal solution is the incumbent. 

3 The O-l ILP Problem 

The O-l ILP problem is an optimization problem in which it 
is desired to minimize the value of a linear objective function 

f( z,, Q, . , 2,) subject to a set of constraints. The vari- 
ables (z,,D,... , z,), which are referred to as the decision 
variables, can take only the values 0 or 1. The problem can 
be more formally stated as follows: 

Minimize f = ~Cj~j 

j=l 

n 

subject to Ca;jZj 2 b; i= 1,2,...,m 
j=l 

"j E i&l) j= 1,2 ,...,n 

It can be assumed, with no loss of generality, that the coeffi- 
cients Cj, j = 1,2,. , n are non-negative. 

The BB algorithm used to solve the &i ILP problem is 
known as implicit enumerutiorz [wuCo80]. There are n bi- 
nary variables and the problem could, conceivably, be solved 
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hy enumerating all of the 2” possible solutions. The bound- 
ing process of the BB algorithm implies, however, that many 
of these 2” solutions will be discarded without explicitly enu- 
merating them; hence the name “implicit enumeration”. 

The implicit enumeration algorithm can be described using 
the following simple terminology. The assignment of a 0 or 
1 value to each one of the decision variables gives one of the 
2^ possible solutions. The assignment of values to some but 
not all of the decision variables gives a partial solution. A 
partial solution represents a subspace of the solution space or 
a subproblem of the original problem. The decision variables 
that are assigned values in a partial solution are said to be 
fixed. In contrast, the decision variables with no assigned 
values are said to be free. A completion is made by assigning 
a value of 0 or 1 to one of the free variables. 

Since cj 1 0 for all j, a lower bound jL on the value of 
the objective function for any subproblem can be computed 
by assigning the value of 0 to each free variable. Hence, 

fL = c cjxj 

fixed 
variables 

(1) 

Furthermore, a constraint can be satisfied if and only if 

C max(a,j, 0) > bi - C aijzj 
fm fised 

variablea variables 

i= 1,2 ,..., m. 

(2) 
Therefore, it is possible to check the infeasibility of any 

subproblem by applying equation (2) to the constraints of the 
problem. Assigning the value of 0 to each free variable in 
a subproblem makes a special completion that is referred to 
as the lower bound completion. The feasibility of the lower 
bound completion can be checked using equation (2) which 
reduces to: 

x xj>bi 
fised 

variables 

i=1,2 ,..., m. (3) 

The implicit enumeration BB algorithm for the O-l ILP 
problem can be formulated in the following steps: 

Step 1 The incumbent, denoted by ju, is created to contain 
the best feasible solution found during the search. The 
lower bound of jr,, is initialized to 00. The initial sub- 
problem, in which all the variables are free, is created. 
A list of active subproblems is created and the initial 
subproblem is inserted on it. 

Step 2 The subproblem whose lower bound is the smallest 
among ail subproblems on the list of active subproblems 
is selected. 

Step 3 A free variable, zk, in the selected subproblem is 
chosen and is used to generate two new subproblems. 
The first subproblem is generated by making the com- 
pletion zk = 0. The second is generated by making the 
completion Z~ = 1. The variable Z~ is now fixed. 

Step 4 The lower bound of each new subproblem is calcu- 
lated using equation (1). The infeasibility of each sub- 
problem is checked using equation (2). The feasibility 
of the lower bound completion is also checked using 
equation (3). 

Step 5 A subproblem is deleted if any one of the following 
conditions is true: 

a. fL 1 fu. 
b. The subproblem is infeasible. 

c. There are no remaining free variables. 

d. The lower bound completion is feasible. In this case, 
the incumbent is replaced by the lower bound com- 
pletion if Jo < ju, and all subproblems on the list 
of active subproblems with Jo 2 ju are deleted. 

A subproblem that is not deleted is added to the list of 
active subproblems. 

Step 6 Steps 2-5 are repeated as long as there are subprob- 
lems on the list of active subproblems. When the list is 
empty, the algorithm terminates. The optimal solution 
is the current incumbent. 

The implicit enumeration algorithm illustrates the steps of 
the general BB formulation of Sec. 2. Step 1 of the algo- 
rithm implements the initialization step. Step 2 implements 
selection. The lower bound of a subproblem is used as the 
selection heuristic function making the search strategy of the 
algorithm best-first. Steps 3 and 4 implement branching. 
Step 5.a implements the lower bound test. Steps 5.b and 5.c 
implement the termination test. Step 5.d implement the feasi- 
bility test. Finally, step 6 implements algorithm termination. 

4 The Parallel Algorithms 

A number of researchers have studied parallel BB algorithms. 
In [LaSa83,QuDe85,QuDe86] speedups theoretically achiev- 
able by parallel BB are analyzed. In [Moha83], two parallel 
BB algorithms for the traveling salesman problem for the 
Cm’ are discussed. In [waLY85] Manip, a multicomputer 
designed specifically for parallel BB algorithms is described. 
In [F&la851 distributed implementation of depth first BB al- 
gorithms on a ring machine are considered. In [Quin86] par- 
allel best lirst BB algorithms for solving the traveling sales- 
man problem on hypercube multiprocessors are considered. 
In [A&h861 a parallel implementation of BB algorithms on 
a hypercube is proposed. 

Many of the above researchers have adopted a simplified 
model for the parallel execution of the BB algorithm. We 
refer to that model as the logical model of the parallel exe- 
cution of the BB algorithm. The model is depicted in Fig. 2. 
It consists of 

1. A set of N processors (PEs). 
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Figure 2: The lo,gical model of execution. 

2. Global data which consists of the list of active subprob- 
lems and the incumbent. The global data is accessible 
by all the processors. It is assumed that no overhead is 
incurred by a proceso3r when it accesses the global data. 

3. The processors are synchronized into cycles. Each cycle 
consists of three step::: 

(a) Each processor selects a subproblem from the N 
subproblems whose lower bounds are the best 
among all those on the list of active subproblems. 

(b) Each processor, independently from the other pro- 
cessors, expands its subproblem and performs 
lower bound, feasibility, and termination tests on 
the newly generated subproblems. 

(c) The processors insert the newly created subprob- 
lems back on the list of active subproblems. 

The processors continue to iterate until the list of active 
subproblems become empty. The algorithm then termi- 
nates and the solution is stored in the incumbent. 

While the above parallel model may be adequate for shared 
memory multiprocessors, it is clear that it is not adequate for 
distributed memory multiprocessors. In the later case, there 
is no globally shared memory to facilitate the storage of the 
global data. Furthermore., in distributed memory multipro- 
cessors, each processor executes it own code which makes 
synchronizing the processors into cycles difficult. 

In the remainder of this section, we consider two parallel 
implementations of the c-1 ILP problem BB algorithm on 
hypercube multiprocessors. The first algorithm, referred to 
as the Central List (CL) algorithm, is an attempt to directly 

map the logical model on the hypercube multiprocessor. The 
second algorithm, referred to as the Distributed List (DL) al- 
gorithm, maps the logical model on the hypercube multipro- 
cessor more efficiently and effectively than the CL algorithm. 

4.1 The Central list Algorithm 

The CL algorithm consists of two major components: a mas- 
ter process and N slave processes. The master process main- 
tains the global data. The slave processes perform the com- 
putations necessary for the expansion of subproblems. 

The master process operates in iterations in a similar fash- 
ion to the logical model. The master process selects N sub- 
problems from the list of active subproblems and assigns one 
subproblem to each slave process. The N subproblems se- 
lected have the best bounds among those subproblems in the 
list of active subproblems. Each slave process then expands 
its subproblem and generates children subproblems calculat- 
ing their lower bounds. Each slave process also performs the 
lower bound, feasibility and termination tests on the subprob- 
lems it generated. The results are then sent back to the master 
process, which inserts then on the list. The algorithm termi- 
nates when the list of active subproblems becomes empty and 
all the slave processes are idle. 

In our implementation, the host processor of the 
NCUBE/six runs the master process. Each of the process- 
ing nodes, runs a slave process. After the master process has 
selected the subproblems, the host sends subproblems, one to 
each node. The nodes process the subproblems and send the 
results back to the host. 

The algorithm has the advantage of expanding subproblems 
whose bounds are best in the global sense. This is advanta- 
geous since subproblems that have smaller lower bounds are 
more likely to lead to solutions than others that have larger 
lower bounds. 

The algorithm, however, has some serious disadvantages. 
It requires two communication messages for each subproblem 
expansion. The first is required to send the subproblem from 
the host to the node for expansion. The second is needed 
to carry the newly created subproblems from the node to the 
host. Communication with the host becomes a bottleneck 
that reduces the performance of the algorithm. Also because 
the processors are unsynchronized, communication delays can 
lead the algorithm into examining subproblems that need not 
be examined. The algorithm also requires a large memory on 
the host processor to maintain the list of active subproblems. 

4.2 The Distributed List Algorithm 

In the CL algorithm, the use of resources of the hypercube 
multiprocessor is not balanced nor efficient. The global data 
is stored in the host memory leaving the memory of the pro- 
cessing nodes unutilized. Also, host to node communication 
is a bottleneck while the communication bandwidth available 
among the processing nodes is not utilized. The DL algorithm 
attempts to put the resources of the hypercube to better use 
by distributing the global data across the processing nodes. 
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The DL algorithm consists of N + 1 processes. Each pro- 
cess maintains its own set subset of the global data. That is, 
each process maintains its own list of active subproblems and 
its own incumbent. The tirst of the N + 1 processes is referred 
to as the supervisor process. It initiates the computation by 
generating N subproblems and assigning one subproblem to 
each of the remaining N processes. In other words, each 
process is assigned a subtree of the BB tree that is rooted 
at the subproblem it received. Each process then expands 
that subproblem and all subproblems in the subtree rooted at 
it. Each process expands subproblems from it own local list, 
performs the lower bound test using its local incumbent, per- 
forms feasibility and termination tests, and inserts the results 
back on its local list. In our implementation, the host runs 
the supervisor process while each of the N processing nodes 
run one of the other processes. 

Two major problems result from the distribution of the 
global data across the processes and affect the performance 
of the DL algorithm. The first is that the N subproblems 
selected by the N processes are not necessarily the N sub- 
problems with the best lower bounds in the global sense. 
Although this does not affect the correctness of the results 
of the algorithm, it does increase the number of subproblems 
examined by the algorithm. This reduces the efficiency of the 
parallel BB algorithm and, hence, reduces the speedup of the 
DL algorithm. 

The second problem is the load imbalance that can occur. 
Due to feasibility, bounding and termination tests, the num- 
ber of subproblems expanded varies from one process to the 
other. Eventually some processes run out subproblems and 
become idle and hence, reduce the speedup of the algorithm. 

Therefore, we employ a mechanism by which the load 
can be balanced and the subproblems be distributed across 
the processors to approximate the selection of the best N 
subproblems each iteration. A process expands subproblems 
from its list until the list becomes empty. At this point, the 
process becomes idle and requests subproblems from one of 
the other processes in the system. The process that receives 
the request examines its own list of active subproblems and 
either sends a portion of it to the requesting process or de- 
nies the request if its own list is too small to divide. In our 
implementation on the hypercube multiprocessor, a processor 
requests subproblems from one of its neighbors in the hyper- 
cube topology. A processor send one half of its subproblems 
to an idle processor requesting subproblems. 

The distribution of the global data also results in multiple 
copies of the incumbent. Processes can find feasible solutions 
independently and update their own incumbents. In the DL 
algorithm, once an incumbent is updated, its new value is 
broadcasted to all other processes. 

There is also the need to detect the termination of the al- 
gorithm in a distributed manner. The detection should re- 
quire minimal overhead. We employ a heuristic approach that 
is motivated by the phases of execution of a BB algorithm 
shown in Fig. 3. Termination need only be checked during 
the wind-down phase of execution. During that phase, the 
number of subproblems in the system is very small and not 

SUBPROBLEMS 

Steady state 

5 I) 
ITERATIONS 

Figure 3: Phases of execution of a BB algorithm. 

all the processors need to participate in the algorithm. There- 
fore, an idle process that can not obtain subproblems from its 
all neighbors terminates sending a message to the supervisor 
process. When all processes terminate the supervisor process 
terminates the algorithm. 

5 Results 

The two algorithms were implemented in the C programming 
language on an NCUBE/six [NCUBBS]. Figure 4 shows the 
speedup of the two algorithms for various cube sizes. The 
speedup of the DL algorithm is shown with and without load 
balancing. 

In the CL algorithm, the speedup is reasonable for up to 
16 processors. Little is gained by increasing the number of 
processors beyond that. This can be attributed to two factors. 
The first is the host to processor communication overhead 
that increases as the cube size increases. In the O-l ILP 
problem, the ratio of that overhead to the computation time for 
a subproblem is somewhat high. However, in other problems, 
like the general ILP problem for example, this ratio can be 
small and good speedup can be maintained for larger cubes 
sizes. The second factor relates to the fact that as the cube size 
increases, some processor become farther away from the host, 
resulting in an increased delay in communicating messages 
between the host and these processors. Consequently, these 
processors receive less subproblems from the host to expand 
than the processors that are closer to the host. This creates a 
load imbalance that reduces the speedup. 

The speedup of the DL algorithms with no load balancing 
is constant and extremely low for all cube sizes. This is basi- 
cally due to the distribution of the list of active subproblems 
across the processors without any consideration for load fac- 
tors. For example, in some cases, over 80% of the processors 
become idle after expanding only a few subproblems while 
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Figure 4: Speedup of the parallel algorithms. 
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Figure 5: Execution time for various systems. 

the remaining 20% end up evaluating the rest of the subprob- 
lems in the tree. Therefore, load balancing is necessary. The 
performance of the DL algorithms with the load balancing 
shows that a distributed list approach has better performance 
then the CL algorithm. This is expected since there is no 
bottleneck in communication; the communication bandwidth 
of the hypercube is utilized more efficiently. 

The performance of the two algorithms at 64 processors 
is compared to the performance of the serial algorithm on 
the VAX 11/780 and the IBM 3090 (single processor). The 
results are shown in Fig. 5. 

6 Conclusions and Future Research 

Branch and bound algorithms are a generalization of many 
search algorithms used in Attificial Intelligence and Oper- 
ations Research. Although BB algorithms are considerably 
more efficient than unguided search, they are still compu- 
tationally intensive. Large scale multiprocessors with dis- 
tributed memory offer the potential for effectively speeding 
up many computationally intensive applications. However, it 
is not clear how this class of multiprocessors can be effec- 
tively used for BB algorithms. 

In this paper, we have considered the implementation of 
parallel BB algorithms on distributed memory multiproces- 
sors such as hypercubes. Two parallel algorithms for the 
O-l ILP problem were considered. The results indicate that 
good performance can be achieved using a centralized list 
of subproblems only for a small number of processors. To 
achieve better performance, the list must be distributed and 
a load balancing mechanism must be employed. We have 
implemented a simple load balancing mechanism that works 
well for our test problems. However, other preliminary re- 
sults indicate that the load balancing scheme employed by 
the DL algorithm may not be effective in some cases. We 
are currently working towards improving the load balancing 
scheme [Abde88] for these cases. 
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