
Parallel Branch and Bound Algorithms on Hypercube Multiprocessors*

Tarek S. Abdelrahman and Trevor N. Mudge

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109

Abstract

Branch and Bound (BB) algorithms are a generalization of
many search algorithms used in Artificial Intelligence and
Operations Research. This paper presents our work on imple-
menting BB algorithms on hypercube multiprocessors. The
O-l integer linear programming (ILP) problem is taken as
an example because it can be implemented to capture the
essence of BB search algorithms without too many distract-
ing problem specific details. A BB algorithm for the &l ILP
problem is discussed. Two parallel implementations of the
algorithm on hypercube multiprocessors are presented. The
two implementations demonstrate some of the tradeoffs in-
volved in implementing these algorithms on multiprocessors
with no shared memory, su.ch as hypercubes. Experimental
results from the NCUBE/six show the performance of the
two implementations of the algorithm. Future research work
is discussed.

1 Introduction

Hypercube multiprocessors have been used successfully for a
wide range of applications in science and engineering. These
applications can be characterized to a large extent by:

1. The applications tend lo have uniform data sets that are
constant in size and homogeneous in nature.

2. There is a large degrel: of inherent parallelism in these
applications.

-This work W:LS supported in part by the Robot Syslems Divi-
sion, Univers:ily of Michigarl and by the Materials Laboratory, Air
Force Wright Aeronautical Laboratories, Aeronautical Systems Division
(AFSC), United States Air Force, Wright-Patterson AFB, Ohio 45433-
6503.

Permission to copy without fee all or part of this material is gmnted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its tile appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires ;I fee and/or specific permission.

3. The work load generated by an application is uniform
across the processors; usually as a consequence of di-
viding the data set uniformly among the processors.

In this paper, we consider the class of BB algorithms.
These algorithms do not exhibit the above characteristics and
hence provide a challenge for parallel processors that, like
hypercubes, do not have shared memory. It is not clear how
much parallelism exists in a BB algorithm. The algorithm
generates an irregular data set (the BB tree) dynamically.
This implies that the division of work among the processor
has to be done dynamically and that a load balancing mech-
anism must be employed. The BB algorithm accumulates
knowledge about the problem it is solving during its execu-
tion and uses that knowledge to improve its efficiency. In a
distributed memory environment, maintaining that knowledge
involves a number of interesting tradeoffs.

The remainder of this paper is organized as follows. The
general formulation of the BB algorithm is described in
Sec. 2. The O-l ILP problem and the specific BB algo-
rithm used to solve it are described in Sec. 3. Two parallel
implementations of that algorithm on a hypercube multipro-
cessor are described in Sec. 4. The results obtained from
our experimental setup on an NCUBE/six [NCUB85] system
are given in Sec. 5. Some concluding remarks and future
research directions are given in Sec. 6.

2 The Branch and Bound Algorithm

There is a large class of problems in the fields of Operations
Research and Artificial Intelligence for which there exists no
“direct” methods of solution or no efficient ones. Finding a
solution involves a search through the problem space. Un-
guided search, however, can easily become inefficient since
many of these problems are at least NP-complete. Several
techniques have been developed to guide the search and im-
prove its average efficiency. The most general of these tech-
niques is the Branch and Bound (BB) algorithm [LaWo66].

Many aspects of BB algorithms have been studied in the lit-
erature. In [Ibar76a,Ibar76b,Ibar77,Ib~78] many of the the-
oretical properties of BB algorithms have been developed.
BE algorithms have been applied to solve a wide variety of
problems. Examples include: traveling salesman [LMSK63],

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 ACM 1988 O-8979 1-273-X/88/0007/1492 $1 SO

1492

integer programming [GeMa72], knapsack [InKo77], and
many others. Also, BB algorithms have been recognized
to be a generalization of many of the heuristic search algo-
rithms in Artificial Intelligence such as A’, AO’ and alpha-
beta muKa83].

The BB algorithm is an intelligent structured search of the
problem space. The algorithm can be best described as a par-
titioning algorithm which conducts its search for a solution by
partitioning the problem space into subspaces of decreasing
size until the desired solution is found or its non-existence is
determined.

The BB algorithm, in its most abstract form, consists of two
processes: a branching process and a bounding process. The
branching process partitions the problem space, or subspaces
of it, into smaller size subspaces. The branching process
always partitions first the subspace which is most likely to
contain the desired solution. The branching process continues
until the subspace is small enough to be searched exhaustively
to determine if it contains the desired solution.

The bounding process of the algorithm acts to reduce the
number of subspaces partitioned by the branching process. A
subspace is examined by the bounding process before it is
partitioned. If it is proven that the subspace does not contain
the desired solution, the subspace is pruned or eliminated
from further consideration by the branching process.

The combined action of the branching and bounding pro-
cesses reduces the extent of the search and improves the
search efficiency of the BB algorithm. The branching pro-
cess guides the search towards solutions by partitioning sub-
spaces that are more likely to contain these solutions before
subspaces that are less likely to contain them. The bounding
process helps by eliminating subspaces that cannot lead to
these solutions wirhour actually partitioning these subspaces.

The branching process applied to the problem space of a
given problem can be performed by building a search tree,
called a BB tree, over the problem space of that problem.
The root of the tree represents the complete problem space.
Children nodes in the tree represent subspaces of the prob-
lem space. The branching process proceeds from the root of
the tree to the leafs of the tree partitioning subspaces into
smaller and smaller subspaces. The leaf nodes represent sub-
spaces that are small enough to be exhaustively searched for
solutions.

Subspaces of the problem space represent partial solutions
of the problem. Consequently, each node of the BB tree
represents one partial solution to the original problem. The
branching process proceeds from the root of the tree to the
leafs extending partial solutions towards more complete so-
lutions. Each child node represents one possible way of ex-
tending its parent’s partial solution towards a more complete
one.

In most problems it is not practical, if not impossible, to
explicitly represent the problem space or subspaces of it. A
more practical representation is to use a problem specific data
structure which implicitly represents the problem space. This
data structure representation is referred to as a subproblem.
Hence, a subproblem is a representation of a problem sub-

PJ

A P
Jo PJl

Figure 1: BB tree of a simple example.

space or equivalently, a partial solution to the problem. BB
algorithms are generally expressed and formulated in terms
of subproblems rather than in terms of problem subspaces.

The above process of building a BB tree is illustrated in
Fig. 1. The figure shows the BB tree for a simple exam-
ple. The original problem PO is at the root of the tree. Pa
is then partitioned into three smaller subproblems 9, Pz and
4. These subproblems are represented as three children of
Pu. Each one of the three subproblems is further partitioned
into yet smaller subproblems. In general, a subproblem Pj
is partitioned into lc smaller subproblems Pj, , , Pj* which
are represented as the Ic children of P,. The process of par-
titioning a subproblem into smaller subproblems and adding
the new subproblems to the tree is referred to as expanding
that subproblem. At any point during the search, the set of
subproblems that have been generated by the branching pro-
cess, but have not yet been expanded is referred to as the set
of active subproblems. The distance from the root of the BB
tree to any subproblem, measured in the number of edges,
defines the level of that subproblem.

A subproblem Pi can be characterized by the value of a
cost function f. The function f is defined as the value of the
best solution that can be obtained from the subproblem Pi.
The value of the function f is not known, however, until the
subtree rooted at Pi is completely expanded.

A subproblem Pi can be also characterized by the value of
another function g, which is referred to as the lower bound
function. It is defined as follows:

1. S(Pi) 5 f(P*) (g is a lower bound estimate of f),

2. s(R) = f(S) (g is exact when P, is feasible), and

1493

3. g(P,,) 2 g(J-3 (1,ower bounds of descendant nodes
never decrease).

That is, the lower bound function is a lower bound estimate
of the actual cost function f. In general, g should be much
easier to compute than f.

A BB algorithm consists of four major components: a se-
lection procedure, a branching procedure, an elimination pro-
cedure, and a termination test procedure.

The selection procedure selects a subproblem from the set
of active subproblems. It is based on a selection heuristic
function h. The selection procedure always selects the sub-
problem whose h value is minimum from the set of active
subproblems. In other words, the selection procedure deter-
mines the order in which the subproblems are selected for
expansion. Three heuristics are commonly used. In best-
jirst, the heuristic function is the same as the lower bound
function. Therefore, subproblems with smaller lower bounds
are selected first. In breadth-firs, the heuristic function is the
same as the level of a subproblem in the BB tree. Therefore,
subproblems with smaller level numbers are selected first. In
depth-jut, the heuristic function is defined as the negative
of the level of a subproblem in the BB tree. Therefore, sub-
problems that are deeper in the tree are selected first.

It is often convenient to represent the set of active subprob-
lems as an ordered list of subproblems. The order in which
the list is maintained is determined by the heuristic function
h. In depth-first, the list is maintained in a last-in-last-out
order. In breadth-first, the list is maintained in a first-in-
first-out order. Finally, in best-first, the list is maintained by
increasing lower bound values.

The branching procedure examines the subproblem that has
been selected by the selection procedure and uses problem
specific methods to break that subproblem into smaller size
subproblems.

The elimination procedure examines the newly created sub-
problems by the branching procedure and deletes the ones that
can not lead to better solutions than those already found. To
accomplish this, a special subproblem referred to as the in-
cumbent is used to store the best feasible solution discovered
during the search. A subproblem is deleted if its lower bound
is greater than or equal to that of the incumbent.

Finally, the termination test procedure eliminates a new
subproblem if that subproblem can not lead to any feasible
solutions. Like the branching procedure, problem specific
techniques are used to accomplish that task.

The BB algorithm may be formulated as shown below.

1. Initialization.

(a) The set of active subproblems is initialized to con-
tain the original subproblem.

(b) The incumbent is initialized to oo.

2. Selection.

(a) The subproblem with the smallest value of the
heuristic function h is selected from the set of ac-
tive subproblems.

(b) The subproblem is deleted from the set.

3. Branching.

(a) The branching rule is used to generate new smaller
subproblems from the one selected in (2). The
lower bounds of the new subproblems are calcu-
lated.

(b) Steps 4-7 are performed for each new subproblem
generated in 3(a).

4. Termination Test.

(a) The subproblem is evaluated to determine if it can
lead to a feasible solution. If not. it is deleted.

5. Feasibility Test.

(a)

(b)

The subproblem is evaluated to determine if it is
a feasible solution. If it is, and its lower bound is
smaller than that of the incumbent, it replaces the
incumbent. Otherwise, it is deleted.

If the incumbent is updated in .5(a), then all the sub-
problems in the set of active subproblems whose
lower bounds are greater than or equal to that of
the new incumbent are also deleted from the set.

6. tower bound test.

(a) If the lower bound of a new subproblem is greater
than the lower bound of the incumbent, the sub-
problem is deleted.

7. Algorithm Termination.

(a) If the set of active subproblems is not empty, steps
(2)-(6) are repeated. Otherwise, the algorithm ter-
minates, and the optimal solution is the incumbent.

3 The O-l ILP Problem

The O-l ILP problem is an optimization problem in which it
is desired to minimize the value of a linear objective function

f(z,, Q, . , 2,) subject to a set of constraints. The vari-
ables (z,,D,... , z,), which are referred to as the decision
variables, can take only the values 0 or 1. The problem can
be more formally stated as follows:

Minimize f = ~Cj~j

j=l

n

subject to Ca;jZj 2 b; i= 1,2,...,m
j=l

"j E i&l) j= 1,2 ,...,n

It can be assumed, with no loss of generality, that the coeffi-
cients Cj, j = 1,2,. , n are non-negative.

The BB algorithm used to solve the &i ILP problem is
known as implicit enumerutiorz [wuCo80]. There are n bi-
nary variables and the problem could, conceivably, be solved

1494

hy enumerating all of the 2” possible solutions. The bound-
ing process of the BB algorithm implies, however, that many
of these 2” solutions will be discarded without explicitly enu-
merating them; hence the name “implicit enumeration”.

The implicit enumeration algorithm can be described using
the following simple terminology. The assignment of a 0 or
1 value to each one of the decision variables gives one of the
2^ possible solutions. The assignment of values to some but
not all of the decision variables gives a partial solution. A
partial solution represents a subspace of the solution space or
a subproblem of the original problem. The decision variables
that are assigned values in a partial solution are said to be
fixed. In contrast, the decision variables with no assigned
values are said to be free. A completion is made by assigning
a value of 0 or 1 to one of the free variables.

Since cj 1 0 for all j, a lower bound jL on the value of
the objective function for any subproblem can be computed
by assigning the value of 0 to each free variable. Hence,

fL = c cjxj

fixed
variables

(1)

Furthermore, a constraint can be satisfied if and only if

C max(a,j, 0) > bi - C aijzj
fm fised

variablea variables

i= 1,2 ,..., m.

(2)
Therefore, it is possible to check the infeasibility of any

subproblem by applying equation (2) to the constraints of the
problem. Assigning the value of 0 to each free variable in
a subproblem makes a special completion that is referred to
as the lower bound completion. The feasibility of the lower
bound completion can be checked using equation (2) which
reduces to:

x xj>bi
fised

variables

i=1,2 ,..., m. (3)

The implicit enumeration BB algorithm for the O-l ILP
problem can be formulated in the following steps:

Step 1 The incumbent, denoted by ju, is created to contain
the best feasible solution found during the search. The
lower bound of jr,, is initialized to 00. The initial sub-
problem, in which all the variables are free, is created.
A list of active subproblems is created and the initial
subproblem is inserted on it.

Step 2 The subproblem whose lower bound is the smallest
among ail subproblems on the list of active subproblems
is selected.

Step 3 A free variable, zk, in the selected subproblem is
chosen and is used to generate two new subproblems.
The first subproblem is generated by making the com-
pletion zk = 0. The second is generated by making the
completion Z~ = 1. The variable Z~ is now fixed.

Step 4 The lower bound of each new subproblem is calcu-
lated using equation (1). The infeasibility of each sub-
problem is checked using equation (2). The feasibility
of the lower bound completion is also checked using
equation (3).

Step 5 A subproblem is deleted if any one of the following
conditions is true:

a. fL 1 fu.
b. The subproblem is infeasible.

c. There are no remaining free variables.

d. The lower bound completion is feasible. In this case,
the incumbent is replaced by the lower bound com-
pletion if Jo < ju, and all subproblems on the list
of active subproblems with Jo 2 ju are deleted.

A subproblem that is not deleted is added to the list of
active subproblems.

Step 6 Steps 2-5 are repeated as long as there are subprob-
lems on the list of active subproblems. When the list is
empty, the algorithm terminates. The optimal solution
is the current incumbent.

The implicit enumeration algorithm illustrates the steps of
the general BB formulation of Sec. 2. Step 1 of the algo-
rithm implements the initialization step. Step 2 implements
selection. The lower bound of a subproblem is used as the
selection heuristic function making the search strategy of the
algorithm best-first. Steps 3 and 4 implement branching.
Step 5.a implements the lower bound test. Steps 5.b and 5.c
implement the termination test. Step 5.d implement the feasi-
bility test. Finally, step 6 implements algorithm termination.

4 The Parallel Algorithms

A number of researchers have studied parallel BB algorithms.
In [LaSa83,QuDe85,QuDe86] speedups theoretically achiev-
able by parallel BB are analyzed. In [Moha83], two parallel
BB algorithms for the traveling salesman problem for the
Cm’ are discussed. In [waLY85] Manip, a multicomputer
designed specifically for parallel BB algorithms is described.
In [F&la851 distributed implementation of depth first BB al-
gorithms on a ring machine are considered. In [Quin86] par-
allel best lirst BB algorithms for solving the traveling sales-
man problem on hypercube multiprocessors are considered.
In [A&h861 a parallel implementation of BB algorithms on
a hypercube is proposed.

Many of the above researchers have adopted a simplified
model for the parallel execution of the BB algorithm. We
refer to that model as the logical model of the parallel exe-
cution of the BB algorithm. The model is depicted in Fig. 2.
It consists of

1. A set of N processors (PEs).

1495

PROCESSIIUG ELEMENTS

piJpi-J . . . pFJ

1 ACCESS

GLOBAL DATA

Figure 2: The lo,gical model of execution.

2. Global data which consists of the list of active subprob-
lems and the incumbent. The global data is accessible
by all the processors. It is assumed that no overhead is
incurred by a proceso3r when it accesses the global data.

3. The processors are synchronized into cycles. Each cycle
consists of three step:::

(a) Each processor selects a subproblem from the N
subproblems whose lower bounds are the best
among all those on the list of active subproblems.

(b) Each processor, independently from the other pro-
cessors, expands its subproblem and performs
lower bound, feasibility, and termination tests on
the newly generated subproblems.

(c) The processors insert the newly created subprob-
lems back on the list of active subproblems.

The processors continue to iterate until the list of active
subproblems become empty. The algorithm then termi-
nates and the solution is stored in the incumbent.

While the above parallel model may be adequate for shared
memory multiprocessors, it is clear that it is not adequate for
distributed memory multiprocessors. In the later case, there
is no globally shared memory to facilitate the storage of the
global data. Furthermore., in distributed memory multipro-
cessors, each processor executes it own code which makes
synchronizing the processors into cycles difficult.

In the remainder of this section, we consider two parallel
implementations of the c-1 ILP problem BB algorithm on
hypercube multiprocessors. The first algorithm, referred to
as the Central List (CL) algorithm, is an attempt to directly

map the logical model on the hypercube multiprocessor. The
second algorithm, referred to as the Distributed List (DL) al-
gorithm, maps the logical model on the hypercube multipro-
cessor more efficiently and effectively than the CL algorithm.

4.1 The Central list Algorithm

The CL algorithm consists of two major components: a mas-
ter process and N slave processes. The master process main-
tains the global data. The slave processes perform the com-
putations necessary for the expansion of subproblems.

The master process operates in iterations in a similar fash-
ion to the logical model. The master process selects N sub-
problems from the list of active subproblems and assigns one
subproblem to each slave process. The N subproblems se-
lected have the best bounds among those subproblems in the
list of active subproblems. Each slave process then expands
its subproblem and generates children subproblems calculat-
ing their lower bounds. Each slave process also performs the
lower bound, feasibility and termination tests on the subprob-
lems it generated. The results are then sent back to the master
process, which inserts then on the list. The algorithm termi-
nates when the list of active subproblems becomes empty and
all the slave processes are idle.

In our implementation, the host processor of the
NCUBE/six runs the master process. Each of the process-
ing nodes, runs a slave process. After the master process has
selected the subproblems, the host sends subproblems, one to
each node. The nodes process the subproblems and send the
results back to the host.

The algorithm has the advantage of expanding subproblems
whose bounds are best in the global sense. This is advanta-
geous since subproblems that have smaller lower bounds are
more likely to lead to solutions than others that have larger
lower bounds.

The algorithm, however, has some serious disadvantages.
It requires two communication messages for each subproblem
expansion. The first is required to send the subproblem from
the host to the node for expansion. The second is needed
to carry the newly created subproblems from the node to the
host. Communication with the host becomes a bottleneck
that reduces the performance of the algorithm. Also because
the processors are unsynchronized, communication delays can
lead the algorithm into examining subproblems that need not
be examined. The algorithm also requires a large memory on
the host processor to maintain the list of active subproblems.

4.2 The Distributed List Algorithm

In the CL algorithm, the use of resources of the hypercube
multiprocessor is not balanced nor efficient. The global data
is stored in the host memory leaving the memory of the pro-
cessing nodes unutilized. Also, host to node communication
is a bottleneck while the communication bandwidth available
among the processing nodes is not utilized. The DL algorithm
attempts to put the resources of the hypercube to better use
by distributing the global data across the processing nodes.

1496

The DL algorithm consists of N + 1 processes. Each pro-
cess maintains its own set subset of the global data. That is,
each process maintains its own list of active subproblems and
its own incumbent. The tirst of the N + 1 processes is referred
to as the supervisor process. It initiates the computation by
generating N subproblems and assigning one subproblem to
each of the remaining N processes. In other words, each
process is assigned a subtree of the BB tree that is rooted
at the subproblem it received. Each process then expands
that subproblem and all subproblems in the subtree rooted at
it. Each process expands subproblems from it own local list,
performs the lower bound test using its local incumbent, per-
forms feasibility and termination tests, and inserts the results
back on its local list. In our implementation, the host runs
the supervisor process while each of the N processing nodes
run one of the other processes.

Two major problems result from the distribution of the
global data across the processes and affect the performance
of the DL algorithm. The first is that the N subproblems
selected by the N processes are not necessarily the N sub-
problems with the best lower bounds in the global sense.
Although this does not affect the correctness of the results
of the algorithm, it does increase the number of subproblems
examined by the algorithm. This reduces the efficiency of the
parallel BB algorithm and, hence, reduces the speedup of the
DL algorithm.

The second problem is the load imbalance that can occur.
Due to feasibility, bounding and termination tests, the num-
ber of subproblems expanded varies from one process to the
other. Eventually some processes run out subproblems and
become idle and hence, reduce the speedup of the algorithm.

Therefore, we employ a mechanism by which the load
can be balanced and the subproblems be distributed across
the processors to approximate the selection of the best N
subproblems each iteration. A process expands subproblems
from its list until the list becomes empty. At this point, the
process becomes idle and requests subproblems from one of
the other processes in the system. The process that receives
the request examines its own list of active subproblems and
either sends a portion of it to the requesting process or de-
nies the request if its own list is too small to divide. In our
implementation on the hypercube multiprocessor, a processor
requests subproblems from one of its neighbors in the hyper-
cube topology. A processor send one half of its subproblems
to an idle processor requesting subproblems.

The distribution of the global data also results in multiple
copies of the incumbent. Processes can find feasible solutions
independently and update their own incumbents. In the DL
algorithm, once an incumbent is updated, its new value is
broadcasted to all other processes.

There is also the need to detect the termination of the al-
gorithm in a distributed manner. The detection should re-
quire minimal overhead. We employ a heuristic approach that
is motivated by the phases of execution of a BB algorithm
shown in Fig. 3. Termination need only be checked during
the wind-down phase of execution. During that phase, the
number of subproblems in the system is very small and not

SUBPROBLEMS

Steady state

5 I)
ITERATIONS

Figure 3: Phases of execution of a BB algorithm.

all the processors need to participate in the algorithm. There-
fore, an idle process that can not obtain subproblems from its
all neighbors terminates sending a message to the supervisor
process. When all processes terminate the supervisor process
terminates the algorithm.

5 Results

The two algorithms were implemented in the C programming
language on an NCUBE/six [NCUBBS]. Figure 4 shows the
speedup of the two algorithms for various cube sizes. The
speedup of the DL algorithm is shown with and without load
balancing.

In the CL algorithm, the speedup is reasonable for up to
16 processors. Little is gained by increasing the number of
processors beyond that. This can be attributed to two factors.
The first is the host to processor communication overhead
that increases as the cube size increases. In the O-l ILP
problem, the ratio of that overhead to the computation time for
a subproblem is somewhat high. However, in other problems,
like the general ILP problem for example, this ratio can be
small and good speedup can be maintained for larger cubes
sizes. The second factor relates to the fact that as the cube size
increases, some processor become farther away from the host,
resulting in an increased delay in communicating messages
between the host and these processors. Consequently, these
processors receive less subproblems from the host to expand
than the processors that are closer to the host. This creates a
load imbalance that reduces the speedup.

The speedup of the DL algorithms with no load balancing
is constant and extremely low for all cube sizes. This is basi-
cally due to the distribution of the list of active subproblems
across the processors without any consideration for load fac-
tors. For example, in some cases, over 80% of the processors
become idle after expanding only a few subproblems while

1497

16

I + CL
4f DL (NO LB)

PROCESSORS

Figure 4: Speedup of the parallel algorithms.

EXECUTION TIME (SEC)
0

VAX IEIM 3090 CL DL

NCUBE/SIX

Figure 5: Execution time for various systems.

the remaining 20% end up evaluating the rest of the subprob-
lems in the tree. Therefore, load balancing is necessary. The
performance of the DL algorithms with the load balancing
shows that a distributed list approach has better performance
then the CL algorithm. This is expected since there is no
bottleneck in communication; the communication bandwidth
of the hypercube is utilized more efficiently.

The performance of the two algorithms at 64 processors
is compared to the performance of the serial algorithm on
the VAX 11/780 and the IBM 3090 (single processor). The
results are shown in Fig. 5.

6 Conclusions and Future Research

Branch and bound algorithms are a generalization of many
search algorithms used in Attificial Intelligence and Oper-
ations Research. Although BB algorithms are considerably
more efficient than unguided search, they are still compu-
tationally intensive. Large scale multiprocessors with dis-
tributed memory offer the potential for effectively speeding
up many computationally intensive applications. However, it
is not clear how this class of multiprocessors can be effec-
tively used for BB algorithms.

In this paper, we have considered the implementation of
parallel BB algorithms on distributed memory multiproces-
sors such as hypercubes. Two parallel algorithms for the
O-l ILP problem were considered. The results indicate that
good performance can be achieved using a centralized list
of subproblems only for a small number of processors. To
achieve better performance, the list must be distributed and
a load balancing mechanism must be employed. We have
implemented a simple load balancing mechanism that works
well for our test problems. However, other preliminary re-
sults indicate that the load balancing scheme employed by
the DL algorithm may not be effective in some cases. We
are currently working towards improving the load balancing
scheme [Abde88] for these cases.

References

[Abde88] T. S. Abdelrahman, Parallel Best First Branch
and Bound Algorithms on Distributed Memory
Multiprocessors, Ph.D. Dissertation (in prepa-
ration), University of Michigan, 1988.

[A&h861 S. Anderson and M. C. Chen, “Parallel branch-
and-bound algorithms on the hypercube,” Proc.
Second Co@ on Hypercube Multiprocessors,
pp. 309-317, 1986.

[FiMa85] R. Finkel and U. Manbar, “DIB - A distributed
implementation of backtracking,” Proc. Conf.
Distributed Computing, pp. 44G452, 1985.

[GeMa72] A. M. Geoffrion and R. E. Marsten, “Integer
programming algorithms: A framework and

1498

[Ibar76aj

fIbar76b]

[l&u771

[Ibar78]

[InKo773

[KuKa83]

[LaSa83]

[LaWo66]

[LMSK63]

[Moha83]

[NCUB85]

[QuDe85]

[QuDe86]

state-of-the-art survey,” Management Sci., vol.
18, pp. 465-491, May 1972.

T. Ibaraki, “Computational efficiency of ap-
proximate branch and bound algorithms,” Math
Oper. Res., vol. 1, no. 3, pp. 287-298, 1976.

T. Ibaraki, “Theoretical comparisons for search
strategies in branch and bound algorithms,” Int.
J. Comput. Inform. SC;., vol. 5, no. 4, pp. 31%
344, 1976.

T. Ibaraki, “The power of dominance relations
in branch and bound algorithms,” J. ACM, vol.
24, no. 2, pp. 264-279, 1977.

T. Ibaraki, “Depth-m search in branch and
bound algorithms,” Int. J. Comput. Inform. Sci.,
vol. 7, no. 4, pp. 315-343, 1978.

G. Ingargiola and J. Korsh, “A general algo-
rithm for one dimensional knapsack problems,”
Oper. Res. vol. 25, no. 5, pp. 752-759, 1977.

V. Kumar and L. Kanal, “A general branch and
bound formulation for understanding and syn-
thesizing AND/OR tree search procedures,” Ar-
rifrcial Intelligence, vol. 2 1, pp. 179- 198, 1983.

T. H. Lai and S. Sahni, “Anomalies in parallel
branch and bound algorithms,” Proc. Int’l Conf.
on Parallel Processing, pp. 183-190, 1983.

E. L. Lawler and D. W. Wood, “Branch-and-
bound methods: A survey,” Oper. Res., vol.
14, pp. 699-719, 1966.

J.D.C. Little, K. G. Murty, D. W. Sweeney and
C. Karel, “An algorithm for the traveling sales-
man problem,” Oper. Res., vol. 11, no. 6, pp.
972-989, 1963.

J. Mohan, “Experience with two parallel pro-
grams solving the traveling salesman problem,”
Proc. Inr’l Conf on Parallel Processing, pp.
191-193, 1983.

NCUBE Corp., NCUBE Handbook, version
0.6, Beaverton, Ore., Dec. 1985.

M. J. Quinn and N. Deo, “An upper bound
for the speedup of parallel branch and bound
algorithms,” Proc. of the 3rd Conf. on Found. of
Sojware Technology and Theoretical Computer
Science, Bangalore, India, pp. 488-504, 1985.

M. J. Quinn and N. Deo, “An upper bound
for the speedup of best first branch and bound
algorithms,” BIT, vol. 26, no. 1, pp. 3543,
1986.

[Quin86] M. J. Qu~M, “Implementing best first branch
and bound algorithms on hypercube multicom-
puters,” Technical report PCL-86-02, Depart-
ment of Computer Science, University of New
Hampshire, Durham, New Hampshire 03824.

[WaLY85] B. W. Wah, G. Li and C. F. Yu, “Multiprocess-
ing of combinatorial search problems,” Com-
puter, vol. 18, no. 6, pp. 93-108, 1985.

[WuCo80] N. Wu and R. Coppins, Linear programming
and extensions, McGraw Hill, New York, pp.
420-426, 1980.

1499

